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ABSTRACT. A toroidal embedding is defined which does not assume the fan con-
sists of rational cones. For a rational fan, the toroidal embedding is the usual toric
variety. If the fan is not rational, the toroidal embedding is in general a quasi-
compact noetherian locally ringed space which is not a scheme. A divisor theory
exists and a class group is defined. A second construction is also carried out which
mimics the gluing construction of the usual toric variety, but which makes no ref-
erence to a lattice. The resulting scheme is separated but infinite dimensional.
The Picard group is described in terms of the group of real valued locally linear
support functions on the fan and the Brauer group is shown to be trivial. Many
examples are given throughout the paper; in particular, it is shown that there is
associated to a real hyperplane arrangement of full rank a toroidal embedding.

1. INTRODUCTION

Associated to the Z-lattice N is the algebraic torus TN whose coordinate ring
is k[x1, x−1

1 , . . . , xn, x−1
n ], where k is a field. Associated to a fan ∆ on NR consist-

ing of finitely many strictly convex rational polyhedral cones is the toric variety
TN emb(∆). Our objective is to consider this construction when the fan ∆ is not
rational.
Throughout, k is an algebraically closed field. As a standard reference we at-

tempt to follow [13].
Let∆ be a fan onNR. That is,∆ is a finite set of strictly convex polyhedral cones

satisfying: if τ ∈ ∆, then every face of τ is in ∆ and if τ and σ are in∆, then τ ∩ σ
is a common face of τ and σ. Define a topology on ∆ under which the open sets
are the subfans of ∆. This defines a functor [5]

(1.1) (finite fans on NR)
T−→ (finite top. spaces).

Let σ be a strictly convex polyhedral cone in NR. Then σ = R≥0η1 + · · · + R≥0ηr

for some minimal spanning set {η1, . . . , ηr} ⊆ NR. We say σ is rational if there is
a spanning set for σ in N . Set M = HomZ(N, Z). Let Sσ denote the semigroup
{m ∈ M |〈m, x〉 ≥ 0 for all x ∈ σ}. Our basic objects of study are the commutative
semigroup rings k[Sσ]. The ring k[Sσ] is noetherian if and only if σ is rational
(Proposition 2.1).
In Section 2 we show how to construct a ringed space TN emb(∆) depending

only on k, ∆ and N with the following properties. As a topological space, the
point set TN emb(∆) consists of the local rings at the prime ideals of the vari-
ous k[Sσ] as σ runs through the cones in ∆ together with the Zariski topology.
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The underlying topological space of TN emb(∆) is noetherian and quasi-compact.
There is a natural embedding of TN as an open subset of TN emb(∆). The group
law on the k-rational points of TN extends to an action on the k-rational points of
TN emb(∆). The orbits correspond to the cones σ in ∆. Let X = TN emb(∆) and

X̃ the orbit space with the topology inherited from X . Then X̃ is homeomorphic
to T(∆). If ∆ consists of rational cones, then TN emb(∆) is the usual toric variety.
If ∆ is irrational, then TN emb(∆) is a locally ringed space but in general does not
have a covering by open affine subsets hence is not a scheme. The assignment
∆ 7→ TN emb(∆) is functorial. As an application, in Section 2.4 we associate to any
hyperplane arrangement A of full rank in Rl, a toroidal embedding TN emb(A)
which is TN emb

(

Φ(A)
)

for a lattice N and fan Φ(A). In Section 3 we consider
the theory of divisors on TN emb(∆) and define a group of divisor classes which
generalizes the class group of Weil divisors for toric varieties.
The extension of groups M →֒ MR induces an extension of group algebras

k[M ] →֒ k[MR] which induces a morphism of group schemes Spec k[MR] → TN .
In Section 4 we define a scheme X(∆) which has a natural action by the group
scheme Spec k[MR] and show that there exists amorphism of ringed spacesX(∆) →
TN emb(∆) which is equivariant with respect to the group actions. The Picard
group ofX(∆) is described as a quotient of the group of real-valued∆-linear sup-
port functions on |∆|. We conjecture that this Picard group is trivial for a general
complete fan on R3 such that every three-dimensional cone in∆ is non-simplicial.
We show that every Azumaya algebra on X(∆) is split, hence the Brauer group is
trivial.

2. IRRATIONAL FANS

We first consider the case where the fan ∆ = ∆(σ) consists of one cone σ to-
gether with all of its faces. Some properties of the semigroup ring associated to σ
are proved. In particular we consider the valuation of rank one that is defined by a
cone of dimension one. The toroidal embedding is defined and we include several
examples.

2.1. Irrational cones. In this sectionN is a Z-lattice of rank n and∆ is a fan onNR.
Suppose∆ is irrational. Then there will be some cone σ ∈ ∆ which is strictly con-
vex polyhedral but not rational. The usual construction of an affine toric variety
for σ fails in this case because the resulting ring is not noetherian. Let us outline
the construction to see what happens. Suppose σ is a strictly convex polyhedral
cone in NR. Set M = HomZ(N, Z). Form the dual cone σ̌ = {y ∈ MR|〈y, x〉 ≥
0 for all x ∈ σ}. Set Sσ = M ∩ σ̌. Then Sσ is a submonoid ofM . Form the commu-
tative semigroup ring k[Sσ].

Proposition 2.1. If σ is a strictly convex polyhedral cone in NR, then the following are
equivalent.

(1) σ is rational.
(2) The monoid Sσ is finitely generated.
(3) The ring k[Sσ] is a noetherian integrally closed domain.
(4) The ring k[Sσ] is a Krull domain.

Proof. (1) implies (2): If σ is rational, then this is Gordan’s lemma [13, p. 3].
(2) implies (1): If Sσ is finitely generated, then let {m1, . . . , mn} be a generating

set. Let τ =
∑

R≥0mi. Then τ is a convex cone contained in σ̌ and contains all of
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the lattice points of σ̌. We show that the two cones are equal, hence σ̌ is rational.
Now σ̌ and τ are both closed in MR. Suppose σ̌ 6= τ . Then there is a nonempty
open U ⊆ σ̌ − τ . But U contains a rational point ofMR and since σ̌ − τ is a cone,
there is a lattice point in σ̌ − τ which is a contradiction.
(2) implies (3) and (3) implies (4) are both routine.
(4) implies (2): Follows from [7, Theorem 15.6 and Theorem 15.11]. �

Let σ be a strictly convex polyhedral cone in NR. We see in Section 2.3 below
that the ring k[Sσ] is an integrally closed integral domain. When σ is irrational
and has dimension two in R2, the next result shows that k[Sσ] is not a unique
factorization domain.

Proposition 2.2. Let σ be a two-dimensional strictly convex polyhedral cone inNR = R2.
If σ is irrational, then k[Sσ] is not a unique factorization domain.

Proof. Following [13, Prop. 1.21, p. 26], let Θ̌ be the convex hull inMR of (σ̌∩M)−
{0}. The lattice points in Θ̌ lying on the compact edges of the boundary polygon
∂Θ̌ of Θ̌ form a minimal set of generators of the semigroup Sσ . This set is infinite,
by Proposition 2.1. If we pick any three consecutive generators k0, k1, k2 of this
semigroup, then there exists an integer c ≥ 2 such that [13, p. 26] k0 + k2 = ck1.
Therefore, in k[Sσ] there is the relation χk0χk2 = (χk1)c. But χk0 , χk2 , and χk1 are
irreducible elements of k[Sσ]. �

If σ is a strictly convex polyhedral cone inNR, let SuppQ(σ) denote the smallest
R-subspace of NR satisfying

(1) σ ⊆ SuppQ(σ), and
(2) SuppQ(σ) has aQ-structure. That is, SuppQ(σ)∩NQ contains an R-basis for

SuppQ(σ).

Lemma 2.3. If σ is a strictly convex polyhedral cone in NR, then

SuppQ(σ)⊥ ∩ MQ = σ⊥ ∩ MQ .

Proof. Since SuppQ(σ) ⊇ σ, it follows that SuppQ(σ)⊥ ⊆ σ⊥ and SuppQ(σ)⊥∩MQ ⊆
σ⊥ ∩ MQ. For the other containment, let C denote σ⊥ ∩ MQ. Then C is a Q-

subspace of MR and since C ⊆ σ⊥, it follows that C⊥ ⊇
(

σ⊥
)⊥
. Now σ ⊆ C⊥

and C⊥ is an R-subspace of NR with a Q-structure. So C⊥ ⊇ SuppQ(σ). Since

CR ⊆
(

C⊥
)⊥ ⊆ SuppQ(σ)⊥, and CR ∩ MQ = σ⊥ ∩ MQ, it follows that σ

⊥ ∩ MQ ⊆
SuppQ(σ)⊥ ∩ MQ. �

Proposition 2.4. If σ is a strictly convex polyhedral cone in NQ with Sσ = σ̌ ∩ M , and
s = dimR SuppQ(σ), then

(1) the group of invertible elements of Sσ is a free Z-module of rank n − s,
(2) the Picard group, Pic k[Sσ], is trivial, and

(3) the Brauer group,B (k[Sσ]), is isomorphic toB(T n−s) ∼= (Q/Z)(
n−s

2 ), the Brauer
group of the (n − s)-dimensional torus Spec k[σ⊥ ∩ M ].

Proof. The group of invertible elements of Sσ is equal to the set σ
⊥∩M and apply-

ing Lemma 2.3 gives rankZ

(

σ⊥ ∩ M
)

= dimQ

(

σ⊥ ∩ MQ

)

=

dimQ

(

SuppQ(σ)⊥ ∩ MQ

)

= dimR

(

SuppQ(σ)⊥
)

= n − dimR

(

SuppQ(σ)
)

.
If σ is rational, then by [2, Corollary 10] Pic k[Sσ] ∼= Pic T q and B(k[Sσ]) ∼=

B(T q) where T q is the q-dimensional torus and q is the codimension of σ in NR.



TOROIDAL EMBEDDING 4

But PicT q = 0 and B(T q) = (Q/Z)(
q

2). If σ is irrational, then we can find a strictly
descending sequence of rational cones {σi}i≥1 in NR such that σ ⊆ σi for each i
and σ =

⋂

i≥1 σi. Thenwe have an ascending chain of rings k[Sσ1
] ⊆ k[Sσ2

] ⊆ · · · ⊆
k[Sσ] such that k[Sσ] =

⋃

i≥1 k[Sσi
]. By the proof for the rational case, Pic k[Sσi

] =

0 for each i. Given an invertible module L over k[Sσ], by the usual finiteness
argument, there is an i and invertible module Li over k[Sσi

] such that L = Li ⊗
k[Sσ]. But Li is free, hence so is L. Likewise, given an Azumaya k[Sσ]-algebra,
there is an i and an Azumaya k[Sσi

]-algebra Ai such that A = Ai ⊗k[Sσi
] k[Sσ]. By

the result for the rational case we can assumeAi is an Azumaya k[σ⊥
i ∩M ]-algebra.

But σ⊥
i ⊆ σ⊥, hence A is an Azumaya k[σ⊥ ∩ M ]-algebra. �

Example 2.5. Suppose σ = R≥0η is a one-dimensional cone in NR = R3. If η =




√
2

1
2



, then SuppQ(σ) is spanned by the set











1
0
0



 ,





0
1
2











. So the group of

invertible elements of Sσ has rank one and B(k[Sσ]) is trivial.

Example 2.6. Suppose σ = r0 + r1 is a two-dimensional cone in NR = R3 where
ri = R≥0ηi.

(1) If η0 =





1
0
0



 and η1 =





√
2√
3√
5



, then SuppQ(σ) = NR and the group of

invertible elements of Sσ has rank zero.

(2) If η0 =





1
0
0



 and η1 =





√
2

a
b



, where a, b are rational numbers, then

SuppQ(σ) is spanned by the set











1
0
0



 ,





0
a
b











, and the group of invertible ele-

ments of Sσ has rank one.

(3) If η0 =





1
0
0



 and η1 =





a√
2

b



, where a, b are rational numbers, then

SuppQ(σ) is spanned by the set











1
0
0



 ,





0
1
0



 ,





0
0
b











. If b = 0, then we see that

dimR

(

SuppQ(σ)
)

= 2 and the group of invertible elements of Sσ has rank one. If

b 6= 0, then we see that dimR

(

SuppQ(σ)
)

= 3 and the group of invertible elements
of Sσ has rank zero.

Remark 2.7. We list here some questions raised by the above discussion. Let N =
Z2, and r1, r2, σ1, σ2 be cones in NR with dimσi = 2 and dim ri = 1.
(a) IsM ∩ σ1̌

∼= M ∩ σ2̌ as semigroups? If σ1 or σ2 is rational, this is false. How
about the case where both are irrational?
(b) Is M ∩ r1̌

∼= M ∩ r2̌ as semigroups? This is false if r1 is rational and r2 is
irrational, but true if both are rational. How about if both are irrational?
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(c) Is there an automorphism θ of M that induces an isomorphism in (b)? We
give a counterexample where r1 and r2 are both irrational. Take

r1 = R≥0

(

1√
2

)

and r2 = R≥0

(

1√
3

)

.

Suppose such an automorphism θ exists. Then there is a positive real number λ
and integers a, b, c, and d satisfying:

(2.1)

(

a b
c d

) (

1√
2

)

= λ

(

1√
3

)

and ad − bc = ±1 .

It is straightforward to eliminate λ and see that there is no integer solution to (2.1).

2.2. The valuation given by an irrational cone of dimension 1. Let ρ be a cone of
dimension one in NR. Suppose ρ = R≥0 η for η ∈ NR. Set ρ̌ = {y ∈ MR|〈η, y〉 ≥ 0}
and Sρ = ρ̌ ∩ M . Upon restricting to lattice points, we can view η as an element of
HomZ(M, R). In this case η defines a valuation vρ on k(M). Up to equivalence, vρ

does not depend on the choice of η. The value group is Gρ = {〈η, m〉|m ∈ M} ⊆ R

hence vρ has rank one. Up to isomorphism, Gρ does not depend on the choice of
η. The rational rank of vρ is the rank of the free Z-module Gρ. The rational rank of
vρ is no greater than n = rankZ(N).
The next lemma adds another equivalent condition to the list of Proposition 2.1

in the case of cones of dimension one.

Lemma 2.8. The rational rank of vρ is one if and only if ρ is a rational cone.

Proof. Suppose η is rational. Then we can assume η is a lattice point and Gρ
∼= Z.

Suppose Gρ = Zr for some r ∈ R>0. Then 〈η, m0〉 = r for some m0 ∈ M . Replace
η with 1

r
η. Thus Gρ = Z and 〈η, m0〉 = 1. It follows that η ∈ N . �

The valuation ring of vρ is the local ring of k[Sρ] at the maximal ideal generated
by the monomials {χm|m ∈ Sρ}. This ring is noetherian if and only if ρ is rational
[15, II, Theorem 16, p. 41]. Notice that k[Sρ] is the subring of k[M ] consisting of
elements xwith valuation vρ(x) ≥ 0.

Example 2.9. Let n = 2, η =

(

1√
2

)

∈ NR and ρ = R≥0 η. ThenGρ = {a+
√

2b|a, b ∈
Z} has rational rank two. The reader should compare [15, II, Example 1, p. 100].
2.3. The toroidal embeddingdefinedby a fan onNR. Wedefine TN emb(∆) for∆
an irrational fan onNR. Given any σ in∆, form the dual cone σ̌ = {y ∈ MR|〈x, y〉 ≥
0 for all x ∈ σ} inMR. Let Sσ = σ̌∩M be the monoid of lattice points in σ̌ and form
the semigroup algebra k[Sσ]. From the proof of [13, Prop. 1.1] it is possible to check
that Sσ generatesM as a group and is integrally closed inM . Therefore k[Sσ] is a
subring of k[M ] and they have the same quotient field, namely the field of rational
functions on the torus K = k(M). So k[Sσ] is an integrally closed integral domain
(see [7, p. 152]). By [7, Theorem 21.4, p. 290] dim k[Sσ] = dim k[M ] = rankZ M .
For the rest of the construction, we use the terminology of [15, Vol. II, chap-

ter VI, section 17]. Let L be the set of all quasi-local rings (noetherian or non-
noetherian) between k and K . For P in L, denote by m(P ) the unique maximal
ideal of P . Define a topology on L by the following rule. If d is any ring between
k and K , denote by L(d) the subset of L made up of all quasi-local rings P con-
taining d. Let d range over all subrings ofK that are finitely generated over k, and
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take the family of corresponding sets L(d) as a basis for open sets in L. In this
topology, the closure of the singleton set {P} ⊆ L is the set of all quasi-local rings
P ′ between k and P . For any ring d between k and K , denote by V (d) the subset
of L consisting of all quasi-local rings dP where P ∈ Spec d−{(0)}. By [15, Lemma
1, p. 116] the mapping f : V (d) → Spec d − {(0)} defined by f(P ) = m(P ) ∩ d is a
homeomorphism. A subsetM of L is said to be irredundant (resp. complete) if, for
any valuation v of K/k (trivial or non-trivial), the valuation ring Rv dominates at
most one (resp. at least one) element of M . For noetherian integral schemes, the
irredundant property translates into the valuative criterion for separatedness over
k (see [9, p. 97]). For any ring d between k and K , the subset V (d) is irredundant.
One thing that makes the above construction cumbersome is the absence of the

fieldK from the set L. From now on, we includeK as an element of L, hence there
is now a generic point in L. In this case we can assume K is also in V (d) and can
identify V (d) with Spec d.

Definition 2.10. The toroidal embedding associated to the field k, the Z-latticeN and
the fan∆ on NR is the ringed space whose underlying topological space is

(2.2) TN emb(∆) =
⋃

σ∈∆

V
(

k [Sσ]
)

.

The set TN emb(∆) comes with a structure sheaf of rings O, making it into a ringed
space. Namely, to each open set U , assign

(2.3) O(U) =
⋂

P∈U

P .

Since each point x of L is a quasi-local ring, we would like the local ring Ox to
be simply x itself. We see later that this is true (Lemma 2.20).
Note that TN emb(∆) is not irredundant in general. For example, let σ be an

irrational two-dimensional cone in NR, where rankN = 2. Assume both one-
dimensional faces of σ are irrational. Let τ be a one-dimensional face of σ. Let
Pτ denote the local ring at the maximal ideal of k[Sτ ] generated by all monomials.
Likewise let Pσ denote the local ring at the maximal ideal of k[Sσ] generated by the
monomials. Then Pτ dominates Pσ . From this example we see that TN emb

(

∆(σ)
)

cannot be a scheme in general. This is because Pτ is in every neighborhood of Pσ ,
hence Pσ has no irredundant neighborhood. But Spec A is separated for any ring
A. It follows that TN emb(∆) is not a scheme in general.

Remark 2.11. If ∆ is a complete fan on NR, is TN emb(∆) a complete subset of L?
In this case it is true that every rank one valuation ring Rv of K/k dominates at
least one element of TN emb(∆) (see [13, p. 17]). How about a general valuation?

Let σ be a cone in∆. Let I be the ideal in k[Sσ] generated by the set of monomi-
alswhich are not invertible. That is, I is generated by the set {χm|m ∈ M and 〈x, m〉 >
0 for some x ∈ σ}. Define orbσ to be the closed subset of Spec k[Sσ] consisting of
those prime ideals that contain I . The semigroup Sσ decomposes into the sub-
groupM ∩ σ⊥ and the ideal I1 = {m ∈ M |〈x, m〉 > 0 for some x ∈ σ}. The group
M ∩ σ⊥ is finitely generated and torsion free since it is a subgroup of M . The
ideal I is generated by χI1 . If M ∩ σ⊥ has rank t, then k[Sσ]/I is isomorphic to
k[x1, x

−1
1 , . . . , xt, x

−1
t ]. So orbσ is an algebraic torus of dimension t, where t is pos-

sibly equal to zero. Let Pσ denote the quasi-local ring of k[Sσ] at the prime ideal I .
Then Pσ is the generic stalk of orbσ.
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Lemma 2.12. Let σ be a maximal cone in ∆. The closure of Pσ in TN emb(∆) is orbσ,
hence orbσ is closed. Also orbσ is disjoint from V

(

k[Sτ ]
)

for every τ different from σ. If
σ1, . . . , σa are all of the maximal cones of∆, then orbσ1, . . . , orbσa are pairwise disjoint
closed subsets of TN emb(∆).

Proof. We prove the first statement and leave the rest to the reader. First note that
the closure of Pσ in L consists of all quasi-local rings between k and Pσ . If τ is any
cone in ∆ different from σ, then since σ is maximal, σ is not a face of τ . Therefore
there exists a lattice point m in the relative interior of τ̌ such that m is not in σ̌.
Let y = χm and consider L

(

k[y]
)

. Since y 6∈ Pσ , Pσ 6∈ L
(

k[y]
)

. Since k[y] ⊆ k[Sτ ],

Pσ is not a localization of k[Sτ ]. So the closure of Pσ is the subset of V
(

k[Sσ]
)

corresponding to those primes that contain I , which is orbσ. �

Proposition 2.13. If the fan ∆ consists of cones of dimension less than or equal to one,
then TN emb(∆) is a scheme.

Proof. If ∆(1) is empty, then TN emb(∆) = TN . Otherwise there is an open affine
covering

{

V
(

k[Sσ]
)

|σ ∈ ∆(1)
}

. �

Since the subset Spec k[Sσ] = V
(

k[Sσ]
)

⊆ TN emb(∆) is not open in general, we

want to attach some extra points to V
(

k[Sσ]
)

. We attach any point P ∈ TN emb(∆)

that dominates some P ′ ∈ V
(

k[Sσ]
)

. Set

Uσ =
⋃

τ≤σ

orb τ .

Notice that Uσ = TN emb
(

∆(σ)
)

.

Lemma 2.14. For any σ ∈ ∆, the subset Uσ ⊆ TN emb(∆) is open. Therefore {Uσ|σ ∈
∆} is an open cover of TN emb(∆).

Proof. Check that

TN emb(∆) − Uσ =
⋃

τ 6≤σ

orb τ

is closed. �

Proposition 2.15. If ∆ is a fan on NR, then X = TN emb(∆) is noetherian and quasi-
compact.

Proof. Let σ ∈ ∆. Write Uσ =
⋃

τ≤σ orb τ . Each orb τ is isomorphic to a torus,

hence is quasi-compact. So Uσ is quasi-compact. Thus X = ∪σ∈∆Uσ is quasi-
compact. The proof that X is noetherian is similar. �

Lemma 2.16. For any σ ∈ ∆, the value of the structure sheaf O on the open set Uσ is the
commutative ring Γ(Uσ, O) = k[Sσ].

Proof. Since every quasi-local ring P in Uσ dominates some quasi-local ring P ′ in
V

(

k[Sσ]
)

, by (2.3),

O(Uσ) =
⋂

P∈Uσ

P =
⋂

P∈V (k[Sσ ])

P = k[Sσ] .

�
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Proposition 2.17. Let σ be a strictly convex polyhedral cone in NR. Then

H0(Uσ, O∗) ∼= k∗ ⊕ Zr

where r = n − dimR

(

SuppQ(σ)
)

and

H1(Uσ, O∗) = 0.

Proof. By Lemma 2.16, H0(Uσ, O∗) is the group of units of the ring k[Sσ] which
admits only trivial units [7, p. 129]. The group of invertible elements in Sσ is
computed in Proposition 2.4.

Consider a 1-cocycle x ∈ Ȟ
1
(U/Uσ, O∗) for some open cover U = {Ui}. Let Vσ

denote V
(

k[Sσ]
)

. For each i set Vi = Ui ∩ Vσ . Then V = {Vi} is an open cover for
Vσ and by Proposition 2.4, we can assume that upon restriction to Ȟ

1
(V/Vσ , O∗),

x is a coboundary. But O(Vi) =
⋂

P∈Vi
P =

⋂

Q∈Ui
Q = O(Ui) since each Q ∈ Ui

dominates some P ∈ Vi. Therefore x is also a coboundary for U. �

Lemma 2.18. If σ is a rational cone, then Uσ is equal to Spec k[Sσ].

Lemma 2.19. If τ and σ are two cones in ∆, then Uτ ∩ Uσ = Uτ∩σ.

Lemma 2.20. Given any x ∈ TN emb(∆), the local ring Ox is the element of L corre-
sponding to x.

Proof. Since x is in orbσ for some σ ∈ ∆, Uσ is an open neighborhood of x and x
is in the closed orbit of Uσ. The local ring Ox is the localization of k[Sσ] at a prime
ideal. �

The k-points of V
(

k[Sσ]
)

correspond to the maximal ideals of k[Sσ]with residue
field k. Hence

Speck k[Sσ] = Hom(Sσ, k)

where the right hand side is the set of semigroup homomorphisms from Sσ to
(k, ∗) which map 0 to 1. In this case, since Sσ generatesM as a group, there is an
injective map

TN = HomZ(M, k∗) →֒ Hom(Sσ, k) = Speck k[Sσ] .

The group HomZ(M, k∗) acts on the set Hom(Sσ, k) by point-wise multiplication.
If g ∈ HomZ(M, k∗), x ∈ Hom(Sσ, k), andm ∈ Sσ , then (gx)(m) = g(m)x(m).

Theorem 2.21. The action by the algebraic group TN extends to the k-points of TN emb(∆).
The orbits are precisely {k-rational points of orbσ|σ ∈ ∆}.
Proof. This can be checked as in [13, p. 11]. �

A map of fans φ : (N ′, ∆′) → (N, ∆) is a homomorphism φ : N ′ → N whose
scalar extension φ : N ′

R → NR satisfies the property that for each σ′ ∈ ∆′, there ex-
ists σ ∈ ∆ such that φ(σ′) ⊆ σ. The next result implies that for a fixed k, T( ) emb( )
is a functor.

Theorem 2.22. A map of fans φ : (N ′, ∆′) → (N, ∆) gives rise to a morphism of ringed
spaces

φ∗ : TN ′ emb(∆′) → TN emb(∆) ,

whose restriction to the open set TN ′ coincides with the homomorphism of algebraic tori

φ ⊗ 1 : TN ′ = N ′ ⊗Z k∗ → TN = N ⊗Z k∗
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FIGURE 1. (a) the cone σ (b) the dual cones σ̌, r1̌, r2̌ (c) Uσ

arising from φ. The morphism φ∗ is equivariant with respect to the actions of TN ′ and TN

on the toric varieties.

Proof. The homomorphism φ : N ′ → N induces the homomorphism on dual
modules φ∗ : M → M ′. Tensoring with k∗ and R gives φ ⊗ 1 : TN ′ → TN and
φ∗ : MR → M ′

R. Say φ(σ′) ⊆ σ for σ′ ∈ ∆′ and σ ∈ ∆. Then φ∗(σ̌ ) ⊆ (σ′ )̌ and
φ∗(Sσ) ⊆ Sσ′ . So there is a homomorphism of k-algebras φ# : k[Sσ] → k[Sσ′ ]
and a morphism of prime spectra Spec k[Sσ′ ] → Spec k[Sσ]. Let P ′ ∈ TN ′ emb(∆′).
From (2.2), we can pick σ′ ∈ ∆′ such that P ′ ∈ V

(

k[Sσ′ ]
)

and dimσ′ is minimal.
Likewise pick σ ∈ ∆ such that φ(σ′) ⊆ σ and dimσ is minimal. Then there is a
morphism fσ′ : V (k[Sσ′ ]) → V

(

k[Sσ]
)

and we set φ∗(P
′) equal to the point fσ′(P ′).

This defines the function φ∗ : TN ′ emb(∆′) → TN emb(∆). Note that under φ∗ the
orbit orbσ′ is mapped continuously into the orbit orbσ. Hence the open set Uσ′ is
mapped into Uσ. Define the homomorphism on rings Γ(Uσ, O) → Γ(Uσ′ , O) to be
φ# : k[Sσ] → k[Sσ′ ]. These local morphisms extend to give a morphism φ of locally
ringed spaces with the desired properties. �

Example 2.23. Consider a two-dimensional strictly convex cone σ in NR, where
N = Z2, as shown in Figure 1a. Let σ = r1 + r2 where each ri is an irrational one-
dimensional cone. The dual cones σ̌, r1̌, r2̌ are shown in Figure 1b. The dashed
lines contain no lattice points. In this case adjoining the inverse of any element of
Sσ generates the groupM . So Speck k[Sσ] consists of two TN -orbits: the closed or-
bit orbσwhich is isomorphic to Spec k and the open set isomorphic to the torus TN .
Consider the set Uσ which is obtained by attaching orb r1 and orb r2 to V

(

k[Sσ]
)

.

Observe that orb ri = Spec
(

k[Sri
]/Iri

)

, where Iri
is the ideal in k[Sri

] generated by
all monomials that are not invertible. Since ri is irrational, Iri

is a maximal ideal in
k[Sri

]. So orb ri
∼= Spec k. Therefore Uσ looks like TN with three points attached to

its border, as shown in Figure 1c. Note that orb ri consists of only one point, but is
not closed in Uσ. Topologically, closure(orb ri) = orb ri ∪ orbσ has dimension one
in Uσ.

2.4. The toroidal embedding associated to a real hyperplane arrangement. As a
standard reference we attempt to follow [14].
For a hyperplane arrangementA of full rank in a finite dimensional vector space

V over R, we define a toroidal embedding TN emb(A), depending both on A and
a basis for V . If the arrangement A is defined over Q, then TN emb(A) is a toric
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variety. As far as we know, the toroidal embedding has never been used to study
hyperplane arrangements.
Let V be a real vector space of dimension l with basis {e1, . . . , el}. Let A be a

hyperplane arrangement in V . That is,

A = {Hi|i = 1, . . . , n andHi ⊆ V is an affine subspace of codimension 1}.
For each i choose a polynomial αi of degree 1 in R[x1, . . . , xl] such that Hi is the
set of zeros of αi in V (where it is understood that {x1, . . . , xl} is a dual basis in V ∗

and R[x1, . . . , xl] is the symmetric algebra of V
∗). Then

⋃n
i=1 Hi is the zero set of

Q(A) =
∏n

i=1 αi. Let L = L(A) be the set of nonempty intersections of elements of
A ordered by reverse inclusion

X ≤ Y ⇔ Y ⊆ X .

If X ∈ L(A), then rank(X) = codimV (X). Maximal elements of L(A) have the
same rank. The rank of A is the rank of a maximal element of L(A). The cone
of A, denoted cA, is an (l + 1)-arrangement in V × Re0 with defining polynomial
x0Q

h(A). ByQh(A)wemean the homogenization ofQ(A) inR[x0, x1, . . . , xl]with
respect to the new dual basis element x0. The central arrangement cA induces a
polyhedral subdivision of V ×R into cones. The maximal cones in this subdivision
are the closures (in the metric topology) of the individual chambers of V × R −
⋃

H∈cA
H . Thus cA defines a fan on V ×R consisting of the maximal cones as well

as all of their faces. Let Φ(A) denote this fan. We leave the proof of the following
to the reader.

Lemma 2.24. Let A be a hyperplane arrangement in V and Φ(A) the polyhedral subdivi-
sion of V × R defined above.

(1) If A has rank l, then each maximal cone σ ∈ Φ(A) is a strictly convex polyhedral
cone.

(2) If each defining polynomial αi can be chosen to have rational coefficients, then
each σ ∈ Φ(A) is a rational polyhedral cone.

(3) Φ(A) is a complete fan on V × R.

Let N be the Z-lattice in V × R with basis {e0, e1, . . . , el}. If A is a real arrange-
ment of rank l, there is a toroidal embedding

(2.4) TN emb(A) = TN emb
(

Φ(A)
)

associated to the fan Φ(A). If the hypotheses of Lemma 2.24.1 and 2.24.2 are sat-
isfied, then TN emb(A) is a normal, complete variety. In general the ringed space
TN emb(A) comes equipped with an action of the torus TN . As the next example
shows, the choice of basis for V plays a critical role in the toroidal embedding
associated to A.

Example 2.25. Consider the two-arrangement A consisting of three lines defined
by Q(A) = xy(x + y − 1), where R2 has the standard basis. The cone cA consists
of four planes in R3 defined by Q(cA) = xyz(x + y − z). Since each H in cA is
rational, TN emb(A) is a toric variety. Now suppose we pick a different basis for

R2. For example, take
{

(√
2, 1

)⊤
,
(

1,
√

2
)⊤

}

. With respect to the second basis, the

equation for A becomes

Q(A) =
(√

2x + y
)(

x +
√

2y
)(

x + y −
(√

2 − 1
))

,
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and the equation for cA becomes

Q(cA) = z
(√

2x + y
)(

x +
√

2y
)(

x + y − z
(√

2 − 1
))

.

Three of the four hyperplanes in cA are irrational, so TN emb(A) is not a variety.

The next result shows that every complete toroidal embedding is a proper bira-
tional image of TN emb(A) for some arrangement A.

Proposition 2.26. Let N = Zr, r ≥ 2, and∆ any complete fan onNR = Rr. Then there
is an arrangement A in a vector space V ∼= Rr−1 such that the fan Φ(A) onNR = V ×R

is a finite subdivision of ∆. The morphism TN emb(A) → X = TN emb(∆) is proper
and birational.

Proof. For each cone τ ∈ ∆(r−1), letHτ = Rτ be the subspace spanned by τ . Then
B = {Hτ |τ ∈ ∆(r−1)} is a central hyperplane arrangement inNR. Distinguish any
H ∈ B. Pick a coordinate system for H and extend it to NR. Dehomogenize with
respect toH and let V denote the image of NR −H . Under this dehomogenization
process, B − {H} is mapped to a hyperplane arrangement A in V . Also, B = cA
and Φ(A) is a finite subdivision of ∆. The rest follows from [13, Corollary 1.17, p.
23] �

Topics of Section 2.4, namely the fan and toroidal embedding associated to
an arrangement of hyperplanes, will be revisited in Examples 3.4, 3.5, 4.18, and
Propositions 3.9, 4.17.

3. DIVISOR THEORY FOR A TOROIDAL EMBEDDING

3.1. Weil divisors. In [11] U. Krause has shown that a divisor theory can exist
for non-Krull monoids. Basic to his work is the notion of essential states. In our
context, the rank one valuations on k(M) associated to the one-dimensional cones
ρ ∈ ∆(1) (Section 2.2) play the role of the essential states. In this section we show
that a divisor theory exists for the toroidal embedding X = TN emb(∆) defined in
Section 2.3. The divisor class group Cl(X) is defined which generalizes the usual
definition for Krull schemes.
Let X = TN emb(∆) be the toroidal embedding associated to a fan ∆. Let X1

denote the points of X with codimension one. Associated to each x ∈ X1 is a
rank one valuation vx on k(M). Let Gx denote the value group. Because TN is an
open subset ofX andX − TN is a union of finitely many TN -orbits, there are only
finitely many x ∈ X1 with non-discrete rank one valuations and by Lemma 2.8
these correspond to ρ ∈ ∆(1)which are irrational. For all x ∈ X1, Gx is a Z-lattice.
Define the group of divisors to be

W =
∐

x∈X1

Gx .

LetK∗ = k(M)∗ denote the group of units in the field of rational functions on X .
The assignment f 7→ ∑

x vx(f) defines a homomorphism of groupsK∗ → W . The
class group Cl(X) is defined to be the cokernel of this homomorphism.

(3.1) K∗ →
∐

x∈X1

Gx → Cl(X) → 0

Comparing (3.1) to the counterpart for TN , and using the fact that Cl(TN ) = 0, we
see that Cl(X) is generated by the image of the group

∐

ρ∈∆(1) Gρ. If a function
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f ∈ K∗ has trivial valuation at each x ∈ TN , then f is necessarily a monomial. So
the sequence

(3.2) M →
∐

ρ∈∆(1)

Gρ → Cl(X) → 0

is exact.

Example 3.1. Let ρ ∈ NR be a one-dimensional cone. Let R = k[Sρ]. The toroidal
embedding TN emb

(

∆(ρ)
)

is the affine scheme Spec R. We compute the class
group of R using (3.2). Since ∆(1) consists of only one cone, namely ρ, and the
mapM → Gρ is surjective, it follows that Cl(R) = 0. Notice that the ring R is not
necessarily factorial by Proposition 2.2.

Proposition 3.2. Let σ be an n-dimensional strictly convex polyhedral cone inNR = Rn

and X = Uσ = TN emb
(

∆(σ)
)

. Then Cl(X) is finite if and only if σ is rational and
simplicial.

Proof. Let ∆ = ∆(σ). If σ is rational and simplicial, then Cl(X) is finite (for ex-
ample [5, Lemma 3.4]). If Cl(X) is finite, then by (3.2),

∑

ρ∈∆(1) rankZ(Gρ) ≤
rankZ M = n. Since σ is n-dimensional, #

(

∆(1)
)

≥ n. Therefore σ is simpli-
cial and rankZ(Gρ) = 1 for each ρ ∈ ∆(1). By Lemma 2.8, ρ is rational for each
ρ ∈ ∆(1). Hence σ is rational. �

It will be shown in Example 3.7 that if the dimension of σ is less than n, then
the conclusion of Proposition 3.2 is false.

Example 3.3. Let σ be a two-dimensional cone on R2, σ = r0 + r1, where ri =
R≥0ηi. Let ∆ = {σ, r0, r1, 0} and X = TN emb(∆). We compute Cl(X) using (3.2).
If r0 and r1 are both rational, then Gri

∼= Z and Cl(X) is finite. If r0 is irrational,
thenM → Gr0

is an isomorphism so (3.2) splits andGr1
∼= Cl(X). This shows that

Cl(X) is finite if and only if σ is rational. We illustrate the three possibilities with
examples.

(1) Suppose r0 and r1 are both rational. For example, if η0 =

(

1
0

)

and η1 =

(

1
2

)

,

then Cl(X) ∼= Z/2.

(2) Suppose r0 is rational and r1 is irrational. For example, if η0 =

(

1
0

)

and

η1 =

(

1√
2

)

, then Cl(X) ∼= Z.

(3) Suppose r0 and r1 are both irrational. For example, if η0 =

(

1√
2

)

and

η1 =

(

1

2
√

2

)

, then Cl(X) ∼= Z ⊕ Z.

Example 3.4. Consider the following example from [14, p. 47]. Define two 2-
arrangements by the polynomials

Q(A) = xy(x − 1)(x + 1)(y − 1)(y + 1)

Q(B) = xy(x + y − 1)(x + y + 1)(x − y − 1)(x − y + 1)

The arrangements have the same Poincaré polynomials. That is, π(A, t) = π(B, t) =
(1 + 3t)(1 + 3t), hence the arrangements are π-equivalent. But they have distinct
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intersection posets — L(A) is not equivalent to L(B). Counting the number of
one-dimensional faces shows that#

(

Φ(A)(1)
)

= 22 and#
(

Φ(B)(1)
)

= 18. Tensor
(3.2) with Q to see that

dimQ Cl
(

TN emb(A)
)

⊗ Q = 19 and

dimQ Cl
(

TN emb(B)
)

⊗ Q = 15 .

The varieties TN emb(A) and TN emb(B) are not isomorphic.

Example 3.5. Consider the following example from [14, p. 78]. Define two 2-
arrangements by the polynomials

Q(A) = x(x − 1)y(y − 1)(2y − 2x + 1)

Q(B) = (x − 1)(x + 1)y(x + y)(x − y)

Consider the cones cA and cB. The intersection posets L(cA) and L(cB) are not
equivalent. The poset L(cA) contains the two one-dimensional subspaces z = 0,
x = 0, x − z = 0 and z = 0, y = 0, y − z = 0, both of which are subspaces of
z = 0. The poset L(cB) has two triple lines, namely y = 0, y + x = 0, y − x = 0
and x − z = 0, x + z = 0, z = 0 which are not contained in the same hyperplane
of cB. In the notation of [14], L. Rose and H. Terao showed that cA and cB are
A-equivalent, hence they are π-equivalent. The fan Φ(A) has exactly ten cones
that are non-simplicial whereas the fan Φ(B) has twelve. The fan Φ(A) has two
three-dimensional cones with five one-dimensional faces. The fan Φ(B) has no
such three-dimensional cone. The local ring on TN emb(A) at the corresponding
closed orbit has class group Z ⊕ Z. No such local ring exists for TN emb(B). The
varieties TN emb(A) and TN emb(B) are not isomorphic.

3.2. Cartier divisors. Let∆ be a fan on NR andX = TN emb(∆). Let∆′ = ∆(1) ∪
∆(0) be the fan made up of the cones in ∆ of dimensions zero and one. Set X ′ =
TN emb(∆′). Then X ′ → X is an open immersion and X ′ contains each point of
codimension one in X . Therefore Cl(X ′) = Cl(X).

Theorem 3.6. In the above context, PicX ′ = Cl(X).

Proof. According to Proposition 2.13, X ′ is a scheme and has an affine open cov-
ering U =

{

V
(

k[Sσ]
)

|σ ∈ ∆(1)
}

. For each σ ∈ ∆(1), let Vσ denote V
(

k[Sσ]
)

. By

Proposition 2.4, H1(Vσ , O∗) = PicVσ = 0 for each σ ∈ ∆(1). By the spectral se-

quence comparing Čech cohomology and derived functor cohomology, the Čech

cohomology group Ȟ
1
(U/X ′, O∗) gives the Picard group PicX ′ = H1(X ′, O∗). Let

K∗ denote the constant sheaf U 7→ K∗ on X ′. Define the sheaf of Cartier divisors
C on X ′ by the exact sequence

(3.3) 1 → O
∗ → K

∗ → C → 0 .

Since K∗ is a constant sheaf and X ′ is integral, H1(X ′, K∗) = 0 so H0(X ′, C) →
H1(X ′, O∗) is surjective. Since on Vσ we have H1(Vσ , O∗) = 0, it follows that

H0(Vσ , C) = K∗/ H0(Vσ, O∗). Define the sheaf of divisorsW onX ′ byU 7→ ∐

x∈U1
Gx.

Define a morphism of sheaves C → W by mapping a function f ∈ K∗ to
∑

vx(f).
On Vσ , Example 3.1 shows that Cl(Vσ) = 0. If a function f ∈ K∗ maps to 0 in

H0(U, W), then f is a global unit on U , f ∈ H0(U, O∗). Therefore H0(Vσ, C) ∼=
H0(Vσ , W). But this implies global sections are also isomorphic,H0(X ′, C) ∼= H0(X ′, W).
Because the groups of principal divisors agree for C andW, the result follows. �
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Example 3.7. As in Example 2.6, consider a two-dimensional cone σ = r0 + r1

in NR = R3, where ri = R≥0 ηi. Suppose ∆ = {σ, r0, r1, 0}, ∆′ = {r0, r1, 0},
X = TN emb(∆), X ′ = TN emb(∆′). Then Theorem 3.6 says PicX ′ = Cl(X).

Compute PicX ′ = H1(X ′, O∗) as the first Čech cohomology group Ȟ
1
(U/X ′, O∗)

of the open affine cover U = {Ur0
, Ur1

}. The Čech complex of U is

(3.4) 0 → H0(Ur0
, O∗) ⊕ H0(Ur1

, O∗)
δ0

−→ H0(TN , O∗)
δ1

−→ 0

whereH0(Uri
, O∗) ∼= k∗⊕

(

η⊥
i ∩ M

)

andH0(TN , O∗) ∼= k∗⊕M , by Proposition 2.17.

Also η⊥
i ∩ M has rank equal to 3 − dimR

(

SuppQ(ηi)
)

. It follows from (3.4) that

(3.5) Cl(X) ∼= Pic X ′ ∼= M

η⊥
0 ∩ M + η⊥

1 ∩ M
.

If η0 and η1 are both rational, then its easy to check that Cl(X) is finite. If both η0

and η1 are irrational, then η⊥
0 ∩M + η⊥

1 ∩M has rank zero, one or two, so Cl(X) is
infinite. If η0 is rational, then we may assume η0 is the first vector in a Z-basis for
N . Assume η1 is irrational. Then η⊥

1 ∩M has rank zero or one. It follows from (3.5)
that the torsion-free part of Cl(X) has rank zero or one. The following examples
illustrate the various possibilities.

(1) If η0 =





1
0
0



 and η1 =





√
2√
3√
5



, then SuppQ(η1) = NR so η⊥
1 ∩ M = 0 and

Cl(X) ∼= Z.

(2) If η0 =





1
0
0



 and η1 =





√
2

a
b



, where a, b are rational numbers, then by

Lemma 2.3, SuppQ(η1) is spanned by the set











1
0
0



 ,





0
a
b











. Check that η⊥
0 ∩M +

η⊥
1 ∩ M is spanned by











0
1
0



 ,





0
0
1











so Cl(X) ∼= Z.

(3) If η0 =





1
0
0



 and η1 =





a√
2

b



, where a, b are integers, then by Lemma 2.3,

SuppQ(η1) is spanned by the set











0
1
0



 ,





a
0
b











. Check that η⊥
0 ∩ M + η⊥

1 ∩ M is

spanned by











b
0
−a



 ,





0
1
0



 ,





0
0
1











so Cl(X) ∼= Z/(b). This shows that Proposi-

tion 3.2 does not hold if the dimension of the cone σ is less than the dimension of
NR.

Proposition 3.8. Let ∆ be a complete fan on NR. Assume for each cone σ ∈ ∆ of
dimension n−1, the one-dimensional subspace σ⊥ ofMR is irrational. Then every Cartier

divisor on X = TN emb(∆) is principal, hence H1(X, O∗) = 0.

Proof. Choose a Cartier divisor f ∈ Γ(X, K∗/O∗). Let∆(n) = {σ1, σ2, . . . , σm}. For
each i, setUi = Uσi

= TN emb
(

∆(σi)
)

. By Proposition 2.17, for each i,H1(Ui, O
∗) =
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0. Therefore f |Ui
is principal, hence f is represented on the open cover {Ui}m

i=1 by
{(fi, Ui)}m

i=1 where fi ∈ K∗ and for each pair i, j, fi/fj ∈ Γ(Ui ∩ Uj, O
∗). After

scaling f by a principal Cartier divisor, we may assume f1 = 1. Since ∆ is com-

plete, there is some σi, i ≥ 2, such that σ1 ∩ σi ∈ ∆(n − 1). Since (σ1 ∩ σi)
⊥
is

irrational, Proposition 2.17 gives Γ(Ui ∩ Uj, O
∗) = k∗. So fi/f1 = fi ∈ k∗. By finite

induction and since ∆ is complete, we can show that fj ∈ k∗ for each j. Therefore
f represents a global section of O∗/O∗ = 1. So f is a principal Cartier divisor. Let C
denote the quotient sheaf K∗/O∗ on X . Since K∗ is constant and X is irreducible,

H1(X, K∗) = 0. The short exact sequence (3.3) gives rise to the exact sequence

(3.6) 1 → Γ(X, O∗) → Γ(X, K∗) → Γ(X, C) → H1(X, O∗) → 0

which combines with the above argument to finish the proof. �

Proposition 3.9. If A is a real hyperplane arrangement in V = NR defined by Q(A) =
∏

αi such that each αi is irrational, then H1
(

TN emb(A), O∗
) ∼= Z.

Proof. Decompose Φ = Φ(A) into Φ− ∪ Φ+ where Φ+ (resp. Φ−) consists of those
cones σ ∈ Φ such that x0 is non-negative (resp. non-positive) as a function on
σ. So Φ0 = Φ− ∩ Φ+ is a fan on the hyperplane H0 where x0 = 0. Let X− =
TN emb(Φ−), X+ = TN emb(Φ+), X0 = TN emb(Φ0). A slight modification of the

proof of Proposition 3.8 shows that H1(X−, O∗) = 0 and H1(X+, O∗) = 0. The

group of global units on Xi is k∗ × (Φi)
⊥ ∩ M . For i = − and i = +, this group is

k∗. But (Φ0)
⊥∩M ∼= Z. The Mayer-Vietoris sequence corresponding to the double

coverX = X− ∪ X+ is

(3.7) · · · → Hi−1(X0, O
∗) → Hi(X, O∗) → Hi(X−, O∗) ⊕ Hi(X+, O∗)

→ Hi(X0, O
∗) → · · · .

In low dimensions this is

1 → k∗ → k∗ ⊕ k∗ → k∗ ⊕ Z → H1(X, O∗) → 0.

ThereforeH1(X, O∗) = Z. �

Example 3.10. We compute some Čech cohomology groups ofX = TN emb(∆) for
a complete two-dimensional fan ∆ on R2 which has exactly three maximal cones.
Let∆(2) = {σ0, σ1, σ2},∆(1) = {r0, r1, r2}. Suppose σi ∩σi+1 = ri with subscripts
interpreted (mod 3). Then TN emb(∆) has an open cover U = {Uσ0

, Uσ1
, Uσ2

}
and Uσi

∩ Uσi+1
= Uri

. Also U0 ∩ U1 ∩ U2 = TN . We compute the cohomology

groups Ȟ
i
(U, O∗) with respect to the sheaf of units O∗ on TN emb(∆). We have

Γ(Uσi
, O∗) = k∗ for each i. By Proposition 2.17 H1(Uσi

, O∗) = 0 for each i, so

Ȟ
1
(U/X, O∗) = PicX . If ri is irrational, then Sri

has no units, hence

Γ(Uri
, O∗) =

{

k∗ if ri is irrational,

k∗ ⊕ Z if ri is rational

for each i. Also Γ(TN , O∗) = k∗ ⊕ Z2. The Čech complex for U is

(3.8) 0 →
2

⊕

i=0

Γ(Uσi
, O∗)

δ0

−→
2

⊕

i=0

Γ(Uri
, O∗)

δ1

−→ Γ(TN , O∗)
δ2

−→ 0
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(1) Suppose each ri is irrational. Then (3.8) becomes

0 → k∗ ⊕ k∗ ⊕ k∗ δ0

−→ k∗ ⊕ k∗ ⊕ k∗ δ1

−→ k∗ ⊕ Z2 δ2

−→ 0.

Therefore Ȟ
0
(U, O∗) = k∗, Ȟ

1
(U, O∗) = 0, Ȟ

2
(U, O∗) = Z2.

(2) Suppose r0 is rational, but r1 and r2 are irrational. Then (3.8) becomes

0 → k∗ ⊕ k∗ ⊕ k∗ δ0

−→ k∗ ⊕ Z ⊕ k∗ ⊕ k∗ δ1

−→ k∗ ⊕ Z2 δ2

−→ 0.

Therefore Ȟ
0
(U, O∗) = k∗, Ȟ

1
(U, O∗) = 0, Ȟ

2
(U, O∗) = Z.

(3) Suppose r0 and r1 are both rational, but r2 is irrational. Then (3.8) becomes

0 → k∗ ⊕ k∗ ⊕ k∗ δ0

−→ k∗ ⊕ Z ⊕ k∗ ⊕ Z ⊕ k∗ δ1

−→ k∗ ⊕ Z2 δ2

−→ 0.

Therefore Ȟ
0
(U, O∗) = k∗, Ȟ

1
(U, O∗) = 0, Ȟ

2
(U, O∗) = Z/b, where b is the index

in M of the subgroup spanned by M ∩
(

r⊥0 ∪ r⊥1
)

. Does the 2-cocycle of order b
correspond to an element of order b in the Brauer group of TN emb(∆)? If yes, can
the methods of [4] be used to construct the Azumaya algebra?

3.3. Homogeneous coordinate ring. Let ∆ be a fan on NR such that ∆(1) spans
NR. Fix σ ∈ ∆ a cone with dimension at least one. Then k[Sσ] =

⋂

ρ∈σ(1) k[Sρ] so

of course the rings k[Sρ] play a fundamental role in the theory of toroidal embed-
dings. This was pointed out by D. Cox in [1]. If ∆ is rational, the homogeneous
coordinate ring ofX = TN emb(∆) is a polynomial ring S = k

[

xρ|ρ ∈ ∆(1)
]

. If ρ ∈
∆(1) is rational, then the valuation vρ is discrete with value group Gρ

∼= Z and the

ring k[Sρ] is isomorphic to k[x1][x2, x
−1
2 , . . . , xn, x−1

n ]. The component k[x1] can be

viewed as the semigroup ring k[G+
ρ ] and the component k[x2, x

−1
2 , . . . , xn, x−1

n ] as

the group ring k
[

ρ⊥ ∩ M
]

. If ρ is irrational, then k[Sρ] is isomorphic to k
[

G+
ρ

] [

ρ⊥ ∩ M
]

.

Note that because ρ is irrational, the ring k
[

G+
ρ

]

is non-noetherian and is not a

polynomial ring. It is useful to use multiplicative notation and write k
[

G+
ρ

]

=

k
[

xα
ρ |α ∈ G+

ρ

]

where xρ is an indeterminate.
For the fan∆with toroidal embeddingX = TN emb(∆)we define the homoge-

neous coordinate ring to be the semigroup ring

(3.9) S =
⊗

ρ∈∆(1)

k
[

G+
ρ

]

= k
[

∐

ρ∈∆(1)

G+
ρ

]

.

For a rational fan, this agrees with the definition given in [1]. If σ is as above, set
xσ̂ =

∏

ρ6∈σ(1) xρ. Then xσ̂ is a monomial in S. Let Sσ be the localization of S at

xσ̂ , Sσ = S
[
∏

ρ6∈σ(1) x−1
ρ

]

. By Cl(X)+ we denote the monoid of divisor classes in

the image of the monoid
∐

ρ∈∆(1) G+
ρ . The ring S has a grading by Cl(X)+. A

monomial α =
∏

x
αρ
ρ corresponds to an effective divisor

∑

αρ in
∐

G+
ρ and we

define the degree of α to be the class of this divisor in Cl(X). There is a grading on
Sσ by themonoid image of

(
∐

ρ∈σ(1) G+
ρ

)

⊕
(
∐

ρ6∈σ(1) Gρ

)

inCl(X). The degree zero

part of Sσ is generated by those monomials α ∈ S such that α =
∏

x
αρ

ρ , αρ ≥ 0 for
all ρ ∈ σ(1) and the divisor

∑

αρ in
∐

Gρ is in the image of M →
∐

Gρ. In this
case, we see that the homomorphism [1, Lemma 2.2]

(3.10) φσ : k[Sσ] → (Sσ)0

which maps a monomial χm to
∏

x
〈ηρ,m〉
ρ is an isomorphism.
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4. A SCHEME THAT DOES NOT DEPEND ON N

It is possible to define a scheme X(∆) associated to ∆ that does not depend on
the Z-lattice N . Some of the functorial properties ofX(∆) are derived. The Picard
group and the Brauer group of X(∆) are studied.

4.1. The Definition of X(∆). Let σ be a strictly convex polyhedral cone in NR.
First let us consider the case where the cone is zero-dimensional. Then the dual
cone is MR which is an abelian group. The group algebra is k[MR]. Since MR

has infinite torsion-free rank, the Krull dimension of k[MR] is infinite [10, p. 80].
The group algebra k[MR] admits only trivial units [7, p. 129], hence the group
of units of k[MR] is isomorphic to k∗ × MR. Denote by Speck the points in Spec
corresponding to points with residue field k.

Proposition 4.1. The set SpecC C[MR] is a group and the natural map

η : SpecC C[MR] → SpecC C[M ]

is a surjective homomorphism of groups.

Proof. It is enough to prove this for the one-dimensional case where N = Z. Now
SpecC C[R] can be identified in the usual way with the group of Z-module homo-
morphisms HomZ(R, C∗). The inclusion C[x, x−1] → C[xt|t ∈ R] induces a natural
map

(4.1) HomZ(R, C∗) → HomZ(Z, C∗) ∼= C∗ .

Under this map, a homomorphism f : R → C∗ is mapped to f |Z : Z → C∗ hence
(4.1) is a homomorphism of groups. Thismap has a section, obtained bymodifying
the usual exponential map ez : C → C∗. Given α ∈ C∗, write α = |α|eiθ where
0 ≤ θ < 2π, and define f : R → C∗ by f(t) = αt = |α|teiθt. Therefore (4.1) is onto
and splits. �

Proposition 4.2. Let σ be a convex polyhedral cone, and let u be in σ̌. Then τ = σ ∩ u⊥

is a convex polyhedral cone. All faces of σ have this form, and

τ̌ = σ̌ + Z≥0 · (−u) .

Proof. See [6, Prop. 2, p. 13]. If τ is a face of σ, then τ = σ ∩ u⊥ for any u in the
relative interior of σ̌ ∩ τ⊥. Given y ∈ τ̌ , y + mu is in σ̌ form ≫ 0,m ∈ Z. �

Proposition 4.3. If σ1 and σ2 are convex polyhedral cones and τ = σ1 ∩ σ2 is a face of
both σ1 and σ2, then

τ̌ = σ1̌ + σ2̌ .

Proof. See [6, Prop. 3, p. 14]. If y1 ∈ σ1̌ and y2 ∈ σ2̌, then for all x in τ = σ1 ∩ σ2

we have 〈yi, x〉 ≥ 0 for i = 1, 2. Hence 〈y1 + y2, x〉 ≥ 0 so y1 + y2 ∈ τ̌ . By [6, (12),
p. 13] there exists u ∈ σ1̌ ∩ (−σ2)̌ with τ = σ ∩ u⊥ = σ2 ∩ u⊥. By Proposition 4.2,
τ̌ = σ1̌ + Z≥0 · (−u). But −u ∈ σ2̌, hence τ̌ ⊆ σ1̌ + σ2̌. �

Let ∆ be a fan of strictly convex polyhedral cones in NR. For each σ ∈ ∆, let
Xσ = Spec k[σ̌ ]. If τ is a face of σ, then k[τ̌ ] is a localization of k[σ̌ ], by Propo-
sition 4.2. If σ1 and σ2 have the common face τ = σ1 ∩ σ2, then Proposition 4.3
shows that the natural map k[σ1̌ ] ⊗ k[σ2̌ ] → k[τ̌ ] is surjective. Therefore we can
glue theXσ together to get a separated scheme

(4.2) X(∆) = ∪
σ∈∆

Xσ .
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The affine group scheme Speck k[MR] is a subset of Speck k[σ̌ ] for each σ ∈ ∆ and
acts as a group via the usual set inclusion:

(4.3) Speck k[MR] = Hom(MR, k∗) ⊆ Hom(σ̌, k∗) = Speck k[σ̌ ] .

Theorem 4.4. The action by the group scheme Speck k[MR] extends to the k-points of
X(∆). The orbits are in one-to-one correspondence with the cones σ ∈ ∆. The orbit space,
with the topology inherited from X(∆), is homeomorphic to T(∆). Here T is the functor
defined in (1.1).

Proof. This can be checked as in [13, p. 11]. �

Theorem 4.5. For a field k and Z-lattice N , let ∆ be a fan on NR. Then there is a
morphism of ringed spaces

φ : X(∆) → TN emb(∆)

that is equivariant with respect to the actions of the groups Speck k[MR] and TN . For
k = C, the morphism φ is surjective.

Proof. Let P ∈ X(∆). From (4.2) we can pick σ ∈ ∆ such that P ∈ Xσ and dimσ is
minimal. There is a k-algebra homomorphism φ# : k[Sσ] → k[σ̌ ] and a morphism
fσ : Xσ = Spec k[σ̌ ] → V

(

k[Sσ]
)

. Define φ(P ) to be fσ(P ). This defines the

function φ on X(∆). Note that φ maps Xσ into Uσ. The morphism of sheaves φ#

is induced locally by the homomorphism of rings k[Sσ] → k[σ̌ ]. Surjectivity is
proved by applying Proposition 4.1 to the map φ restricted to orbits. The rest is
left to the reader. �

4.2. The Picard group of X(∆).

Lemma 4.6. Let ∆ be a rational fan on NR and U the open cover {Xσ|σ ∈ ∆} of X(∆).
LetX = TN emb(∆) denote the toric variety associated to∆. Then for p ≥ 1,

Ȟ
p
(U/X(∆), O∗) ∼= Ȟ

p
(X, O∗) ⊗ R ∼= Hp(X, O∗) ⊗ R .

Proof. The algebra k[σ̌ ] admits only trivial units, hence the group of units isH0(Xσ, O∗) =

H0(k[σ̌ ], O∗) = k∗ × σ⊥. Note that σ⊥ ∼= Rcodim(σ). Likewise, the algebra k[Sσ] ad-

mits only trivial units, hence H0(Uσ, O∗) = H0(k[Sσ], O∗) = k∗ ×
(

σ⊥ ∩ M
)

and

σ⊥ ∩ M ∼= Zcodim(σ). Therefore H0(Xσ, O∗)/k∗ = H0(Uσ, O∗)/k∗ ⊗ R. Let V denote

the open cover {Uσ|σ ∈ ∆} of X . Then Ȟ
p
(V/X, O∗) = Ȟ

p
(X, O∗) = Hp(X, O∗) by

[2, Lemma 5]. Tensoring the Čech complex for the cover V and the sheaf O∗ on X

gives the Čech complex for the cover U and the sheaf O∗ onX(∆). This proves the
lemma. �

Corollary 4.7. Let∆ be a rational fan onNR andU the open cover {Xσ|σ ∈ ∆} ofX(∆).
Let X = TN emb(∆) denote the toric variety associated to ∆ and K the function field of
X . Then

Ȟ
1
(U/X(∆), O∗) = Pic(X) ⊗ R

and

Ȟ
2
(U/X(∆), O∗) = H2(K/Xét , Gm) ⊗ R .

Proof. This follows directly from Lemma 4.6 and [2, Theorem 1]. �
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Example 4.8. As in Example 3.10, we compute some Čech cohomology groups of
X(∆) for a complete two-dimensional fan ∆ on R2 which has exactly three maxi-
mal cones. Let∆(2) = {σ0, σ1, σ2},∆(1) = {r0, r1, r2}. Suppose σi∩σi+1 = ri with
subscripts interpreted (mod 3). ThenX(∆) has an open coverU = {Xσ0

, Xσ1
, Xσ2

}
and Xσi

∩ Xσi+1
= Xri

. Also X0 ∩ X1 ∩ X2 = Spec k[MR]. We compute the coho-

mology groups Ȟ
i
(U, O∗)with respect to the sheaf of units O∗ on X(∆). It follows

from Proposition 4.9 below that Ȟ
1
(U, O∗) ∼= H1(X(∆), O∗) = PicX(∆). We have

Γ(Xσi
, O∗) = k∗ for each i. Since dim ri = 1,

Γ(Xri
, O∗) = k∗ × r⊥i

∼= k∗ × R

for each i. Also Γ(k[MR], O∗) ∼= k∗ × R2. The Čech complex for U is

(4.4) 0 →
2

⊕

i=0

Γ(Xσi
, O∗)

δ0

−→
2

⊕

i=0

Γ(Xri
, O∗)

δ1

−→ Γ(k[MR], O∗)
δ2

−→ 0

which becomes, after substitution,

0 → k∗ ⊕ k∗ ⊕ k∗ δ0

−→ k∗ × R ⊕ k∗ × R ⊕ k∗ × R
δ1

−→ k∗ × R2 δ2

−→ 0.

Therefore Ȟ
0
(U, O∗) = k∗, Ȟ

1
(U, O∗) = R, Ȟ

2
(U, O∗) = 0.

Let σ be a strictly convex polyhedral cone in NR and σ̌ the dual cone inMR. We
now show that the k-algebra k[σ̌ ] is a union of finitely generated sub-k-algebras
each of which is the coordinate ring of an affine toric variety. The lattice of these
subalgebras is not a limit system in the category of toric varieties since the torus
varies.
LetΩ be a finitely generated semigroup in σ̌ andM the subgroup ofMR spanned

by Ω. Assume Ω is integrally closed inM . Let S denote the semigroup ring k[Ω],

which we view as a subring of the torus k[ M ]. The Krull dimension of S is finite

and is equal to the rank of the torsion free abelian groupM . SetN = HomZ(M, Z)

and NR = N ⊗ R. Set σ̄ = {x ∈ NR|〈x, ω〉 ≥ 0 for all ω ∈ Ω}. So σ̄ is a strictly

convex rational polyhedral cone in NR and Ω = σ̄ˇ∩ M . Therefore Spec k[Ω] is
isomorphic to the affine toric variety TN emb

(

∆(σ̄)
)

.

In the above notation, letM0 denote the maximal subgroup of Ω. If ξ is a lattice
point in the relative interior of σ̄, then 〈ξ, ω〉 is a non-negative integer for each
ω ∈ Ω, and 〈ξ, ω〉 = 0 if and only if ω is in M0. So taking inner products with ξ
turns S into a graded k-algebra and the subring of elements of degree zero is the

torus k[ M0 ].

Proposition 4.9. Let σ be a strictly convex polyhedral cone inNR and σ̌ the dual cone in
MR. Set R = k[σ̌ ]. Then PicR = 0.

Proof. Let P be an invertible R-module. Then P is locally free of rank one and of
finite presentation. So there is a finitely generated subsemigroup Ω of σ̌ such that
if S = k[Ω], then there is an invertible S-module P ′ and P ∼= P ′⊗S R. Furthermore
we can pick S so that S is a normal domain which is the affine coordinate ring of
an affine toric variety. It is well known that for such a ring S, PicS = 0. Hence, P ′

and P are both free. �

Let ∆ be a fan on NR. Let ∆(n) = {σ1, . . . , σm}. Since Pic Xσ = 0 for each
σ ∈ ∆, every Cartier divisor on X(∆) is split by the open cover U = {Xσi

}m
i=1
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and Ȟ
1
(U, O∗) ∼= H1(X(∆), O∗). Given a Cartier divisor f =

{

(Xσi
, fi)

}m

i=1
, after

scaling we assume f1 = 1. So for each i > 1we have

fi = fi/f1 ∈ Γ(Xσ1i
, O∗) ⊆ k[MR]∗.

So we can assume fi ∈ k[MR]∗. That is, fi is a linear functional on |σi| and for each
pair i, j, the functions fi|σij

and fj|σij
are equal as linear functionals on |σij |. Let

SF(∆) denote the group of (real-valued)∆-linear support functions. Let C denote
the sheaf of Cartier divisors on X(∆). The mapping SF(∆) → Γ(X(∆), C) defined

by f 7→
{

(Xσi
, f ||σi|)

}m

i=1
induces a commutative diagram

(4.5)

0 0




y





y

MR −−−−→ SF(∆)




y





y

Γ(X(∆), K∗) −−−−→ Γ(X(∆), C) −−−−→ H1(X(∆), O∗) −−−−→ 0

.

Proposition 4.10. Let ∆ be a fan on NR. The diagram (4.5) above induces an exact
sequence

(4.6) MR −→ SF(∆) −→ H1(X(∆), O∗) −→ 0 .

Suppose ∆ is simplicial and s = dimR R|∆|. Then H1(X(∆), O∗) ∼= Rρ1 where ρ1 =
#

(

∆(1)
)

− s.

Proof. As shown above, every Cartier divisor differs from an element of SF(∆)
by a principal divisor, so the sequence (4.6) is exact. The kernel of MR → SF(∆)
consists of those linear functionals in MR that vanish on |∆|. Because each σi ∈
∆(n) is simplicial, every linear functional fi on |σi| is completely determined by
its values on the one-dimensional faces of σi. There are exactly n one-dimensional
faces of σi. So dimR SF(∆) = #

(

∆(1)
)

. �

Corollary 4.11. Let ∆ be a rational fan on NR and X = TN emb(∆). Then

H1(X(∆), O∗) ∼= PicX ⊗ R .

Proof. Denote by SF(N, ∆) the set of Z-valued ∆-linear support functions on |∆|.
By [13, Corollary 2.5] there is an exact sequence

M −→ SF(N, ∆) −→ PicX −→ 0 .

Since SF(N, ∆) ⊗ R = SF(∆), the result follows from Proposition 4.10. �

Example 4.12. This example shows that Corollary 4.11 is false without the as-
sumption that ∆ is a rational fan. Let ∆ be a complete fan on NR = R2 with
exactly three one-dimensional cones, each being irrational. Then by Example 4.8,
PicX(∆) ∼= R and by Example 3.10, Pic

(

TN emb(∆)
)

= 0.

Corollary 4.13. Let ∆ be a simplicial fan on NR and Σ = ∆(1) ∪ ∆(0) the subfan
consisting of all cones in ∆ of dimension one or zero. Then

Pic X(∆) = H1(X(∆), O∗) ∼= H1(X(Σ), O∗) ∼= Rρ1

where ρ1 = #
(

∆(1)
)

− s, and s = dimR R|∆|.
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Proof. The natural map SF(∆) −→ SF(Σ) is an isomorphism, since Σ contains all of
the one-dimensional cones of ∆,∆ is simplicial and∆(1) = Σ(1). The rest follows
from Proposition 4.10 and its proof. �

Now suppose ∆ is a fan on NR, where N has rank n. Let {σ0, . . . , σw} be a set
of maximal cones in ∆. For each i, suppose dimσi ≥ 2 and let Pi denote the orbit
corresponding to σi. Since the cones σi are maximal, the sets Pi are closed and
pairwise disjoint. Let P denote the union P0 ∪ · · · ∪ Pw. Denote by ∆′ the fan
obtained from ∆ by deleting {σ0, . . . , σw}. Hence ∆′ = ∆ − {σ0, . . . , σw}. Then
X(∆′) = X(∆)−P . LetXi = Xσi

be the affine scheme Spec k[σǐ ]. ThenXi −Pi is
the scheme associated to the fan∆(σi) − {σi}.

Proposition 4.14. In the above context, there is an exact sequence

(4.7) 0 −→ H1(X(∆), O∗) −→ H1(X(∆′), O∗) −→
w

∐

i=0

H1(Xi − Pi, O
∗)

with natural maps.

Proof. Consider the cohomology groups with support in P . Because the Pi are

mutually disjoint, the cohomology with support in P , Hj
P (X(∆), O∗), decomposes

into a direct sum,
∐w

i=0 Hj
Pi

(X(∆), O∗). For each i, Hj
Pi

(X(∆), O∗) = Hj
Pi

(Xi, O
∗),

by excision, since Xi is an open neighborhood of Pi. The long exact sequence of
the couple

(

P, X(∆)
)

is

(4.8) · · · −→ Hj(X(∆), O∗) −→ Hj(X(∆′), O∗) −→
w

∐

i=0

Hj+1
Pi

(Xi, O
∗) −→ · · · .

For each iwe also have the long exact sequence for the couple (Pi, Xi).

(4.9) · · · −→ Hj(Xi, O
∗) −→ Hj(Xi − Pi, O

∗) −→ Hj+1
Pi

(Xi, O
∗) −→ · · · .

Consider the groups in degree j = 1. By (4.6) since MR → SF(∆) and SF(∆) →
SF(∆′) are injective, H1(X(∆), O∗) → H1(X(∆′), O∗) is injective. For each i, com-
bine (4.8) and (4.9) to form the commutative square below.

(4.10)

H1(X(∆′), O∗) −−−−→ ∐w
i=0 H2

Pi
(Xi, O

∗)




y

αi





y

H1(Xi − Pi, O
∗)

βi−−−−→ H2
Pi

(Xi, O
∗)

By Proposition 4.9, H1(Xi, O
∗) = PicXi = 0, hence βi is injective. Now (4.8) and

(4.10) combine to give the exact sequence (4.7). �

4.3. A conjecture on the Picard group for nonsimplicial fans. Following [5, Sec.
4] we now define an open neighborhood of a fan. Let ∆ be a fan on N ⊗ R = Rn

where N has rank n. Let ∆(1) = {r0, . . . , rm}. The intersection of ∆(1) with the
unit sphere S in Rn is a finite set of points, say {p0, . . . , pm}. About each pi we can
find an open ball Bi on S such that if pi is parametrized by Bi, then each choice
of ~p = (p0, p1, . . . , pm) in B0 × B1 × · · · × Bm defines a fan Φ = Φ(~p). Under the
topology defined on a fan in Section 1, T(Φ) is homeomorphic to T(∆), where T

is as in (1.1). Let [∆] denote the homeomorphism class of the topological space∆.
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Thus the manifold B =

m
∏

i=0

Bi parametrizes a subset of fans in the fiber T
−1 ([∆]).

Call B an open neighborhood of ∆.
As motivation for Conjecture 4.15 below, consider the following example in

dimension three. Let ∆ be a complete fan on R3 such that each σ ∈ ∆(3) has
exactly four one-dimensional faces. Let ∆(3) = {σ0, . . . , σw}, ∆(2) = {τ0, . . . , τe},
∆(1) = {r0, . . . , rm}. The intersections of the cones in ∆(2)with the unit sphere S
inR3 trace out the edges of a graph on S. This graph has e+1 edges,m+1 vertices
and w + 1 regions. So w + 1 = (e + 1) − (m + 1) + 2. Each σj has exactly four τi’s
and each τi is in exactly two σj ’s, so 2(e+1) = 4(w +1) or e+1 = 2(w +1). Hence

w + 1 = m − 1. In (4.7), H1(X(∆′), O∗) has dimension (m + 1) − 3 = m − 2 and
for each i, H1(Xi − Pi, O

∗) has dimension 4 − 3 = 1. Therefore, in (4.7) the middle
term has dimension m − 2 and the third term dimension m − 1. For each i, since
SF(∆′) → SF

(

∆(σi) − {σi}
)

is surjective, by (4.6), the natural map

αi : H1(X(∆′), O∗) → H1(Xi − Pi, O
∗)

is surjective. So we can viewH1(X(∆), O∗) as the intersection ofm−1 hyperplanes
through (0) in Rm−2. In general, this intersection should be (0).
We restate in the context of X(∆) a conjecture which was first made in the con-

text of toric varieties.

Conjecture 4.15. [5, Conjecture 4.3] Let ∆ be a complete fan on R3 such that for each
cone σ ∈ ∆(3), σ is nonsimplicial. LetB be an open neighborhood of∆ as described above.
Then for a general choice of ~p ∈ B, if Φ = Φ(~p ), then every Φ-linear support function is

linear. In particular for a general choice of ~p ∈ B, H1(X(Φ), O∗) = 0.

Example 4.16. As in Example 4.8, we compute some Čech cohomology groups of
X(∆) but in this example ∆ is a fan on R3. Suppose ∆ consists of three cones of
dimension three, nine cones of dimension two, six cones of dimension one and the
cone of dimension zero. Assume that the intersection of the fan ∆ with the unit
sphere traces a graph that looks like that shown in Figure 2.
Suppose σi ∩ σi+1 = τi with subscripts interpreted (mod 3). Then X(∆) has

an open cover U = {Xσ0
, Xσ1

, Xσ2
} and Xσi

∩ Xσi+1
= Xτi

. Also X0 ∩ X1 ∩
X2 = Spec k[MR]. We compute the cohomology groups Ȟ

i
(U, O∗) with respect

to the sheaf of units O
∗ on X(∆). It follows from Proposition 4.9 Ȟ

1
(U, O∗) ∼=
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H1(X(∆), O∗) = Pic X(∆). We have Γ(Xσi
, O∗) = k∗ for each i. Since dim τi = 2,

Γ(Uτi
, O∗) = k∗ × τ⊥

i
∼= k∗ × R

for each i. Also Γ(k[MR], O∗) ∼= k∗ × MR. The Čech complex for U is

(4.11) 0 →
2

⊕

i=0

Γ(Uσi
, O∗)

δ0

−→
2

⊕

i=0

Γ(Uτi
, O∗)

δ1

−→ Γ(k[MR], O∗)
δ2

−→ 0

which becomes, after substitution,

0 → k∗ ⊕ k∗ ⊕ k∗ δ0

−→ k∗ × τ⊥
0 ⊕ k∗ × τ⊥

1 ⊕ k∗ × τ⊥
2

δ1

−→ k∗ × MR
δ2

−→ 0.

Therefore
Ȟ

0
(U, O∗) = k∗ ,

Ȟ
1
(U, O∗) ∼=

(

τ⊥
0 + τ⊥

1 + τ⊥
2

)⊥
,

Ȟ
2
(U, O∗) = MR/

(

τ⊥
0 + τ⊥

1 + τ⊥
2

)

.

For instance, for ∆, take∆(1) to be {R≥ηi|i = 0..5}where {η0, . . . , η5} =










1
0
−2



 ,





−1
2
−2



 ,





−1
−2
−2



 ,





1
0
2



 ,





−1
2
2



 ,





−1
−2
2











.

Check that Ȟ
1
(U, O∗) ∼= R and Ȟ

2
(U, O∗) ∼= R. Next take ∆ to be less symmetric.

Take∆(1) to be {R≥ηi|i = 0..5}where {η0, . . . , η5} =










0
1
1



 ,





0
0
1



 ,





1
0
1



 ,





−1
3
1



 ,





−2
−1
1



 ,





3
−1
1











.

Check that Ȟ
1
(U, O∗) = 0 and Ȟ

2
(U, O∗) = 0.

The next proposition shows that a counterexample to Conjecture 4.15 cannot be
the fan associated to a hyperplane arrangement.

Proposition 4.17. If A is a real hyperplane arrangement in V = NR, and Φ = Φ(A)
is the fan on V × R associated to A, as defined in Section 2.4, then the Picard group

H1(X(Φ), O∗) is non-trivial.

Proof. As in the proof of Proposition 3.9, decompose Φ into Φ− ∪ Φ+ where Φ+

(resp. Φ−) consists of those cones σ ∈ Φ such that x0 is non-negative (resp. non-
positive) as a function on σ. So Φ0 = Φ−∩Φ+ is a fan on the hyperplaneH0 where
x0 = 0. LetX = X(Φ) andXi = X(Φi), for i = −, +, 0. Then

H0(Xi, O
∗) =

{

k∗ if i = −, +,

k∗ × R if i = 0.

The Mayer-Vietoris sequence corresponding to the double coverX = X− ∪ X+ is
(4.12)
1 → H0(X, O∗) → H0(X−, O∗) ⊕ H0(X+, O∗) → H0(X0, O

∗) → H1(X, O∗) → · · · .
Which becomes

1 → k∗ → k∗ ⊕ k∗ → k∗ ⊕ R → H1(X, O∗) → · · · .
Therefore dimR H1(X, O∗) is at least one. �
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Example 4.18. LetA be a hyperplane arrangement inR2 consisting of three lines in
general position. Let Φ = Φ(A) be the fan associated to A. Let X , X−, X+ and X0

be as in the proof of Proposition 4.17. Since Φ0 is simplicial, dimR H1(X0, O
∗) = 4,

by Proposition 4.10. Using (4.6), one computes

dimR H1(X−, O∗) = 6 and dimR H1(X+, O∗) = 6 .

Now (4.12) becomes

(4.13) 0 → R → H1(X, O∗) → H1(X−, O∗) ⊕ H1(X+, O∗) → H1(X0, O
∗).

Because the last arrow is a surjection, it follows that dimR H1(X, O∗) = 9.

Example 4.19. The proof of Theorem 3.1 of [3] shows that for any complete fan
of dimension three there exists a rational fan Σ of the same combinatorial type as
∆ such that X = TN emb(Σ) is projective and thus Pic X 6= 0. By Corollary 4.11,

it follows that H1(X(Σ), O∗) 6= 0. We say that two fans ∆ and Σ are of the same
combinatorial type if the two partially ordered sets formed by the cones in the two
fans are isomorphic. As is easy to see,∆ and Σ are of the same combinatorial type
if and only if ∆ and Σ are homeomorphic as topological spaces. Therefore Σ is in
T−1 ([∆]). Can Σ be chosen from within any open neighborhood B of ∆?

4.4. The Brauer group ofX(∆). In this section, ifX is a scheme, the Brauer group
B(X) of classes of Azumaya OX -algebras is as defined in [8, I]. An algebraA onX
is an Azumaya OX -algebra if A is locally free of finite-type as an OX -module and
the canonical homomorphism A⊗OX

A◦ → HomOX−mod(A, A) is an isomorphism.
We also will be using the notation established in the three paragraphs preceding
Proposition 4.9.

Proposition 4.20. Let σ be a strictly convex polyhedral cone in NR and σ̌ the dual cone
inMR. Set R = k[σ̌ ]. Then B (R) = 0.

Proof. Let A be an Azumaya R-algebra. As in the proof of Proposition 4.9, there
is a finitely generated subsemigroup Ω of σ̌ such that if S = k[Ω], then there is an
Azumaya S-algebra A0 and A ∼= A0 ⊗S R. Furthermore, we can pick S so that

S is the affine coordinate ring of an affine toric variety. Let M0 be the maximal

subgroup of Ω. Because M0 is finitely generated we can assume without loss of

generality that M0 ⊆ σ⊥. Let M be the subgroup of MR spanned by Ω. By [2,

Corollary 10],B(S) → B
(

k[ M ]
)

andB
(

k[ M0 ]
)

→ B
(

k[ M ]
)

are both injective and

have the same image. Sowe can viewA0 as a representative of a class inB
(

k[ M0 ]
)

.
So A0 is Brauer equivalent to a product of symbols of the form (χx, χy)ν where x,

y are inM0. But the symbol (χ
x, χy)ν is split by k[ M0 + Z · x/ν + Z · y/ν]. Since

{x, y} ⊆ M0 ⊆ σ⊥ it follows that {x/ν, y/ν} ⊆ σ⊥ ⊆ σ̌. Therefore, by adding at
most a finite number of new generators to Ω we can assume that A0 is split. So A
is split. �

Theorem 4.21. Let ∆ be a fan on NR. Then B
(

X(∆)
)

= 0.

Proof. Let A denote an Azumaya algebra on X(∆) of rank n2. The isomorphism
classes of Azumaya algebras of rank n2 over X(∆) are parametrized by the set

Ȟ
1
(X(∆)ét , PGLn ). By Proposition 4.20A is split by the open coverU = {Xσ}σ∈∆.

ThereforeA corresponds to a 1-cocycle y for PGLn and the open cover U. For each
σ in ∆ there is a finitely generated semigroup Ωσ in σ̌ such that on the open set
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Xσ, y is defined over the subring k[Ωσ] ⊆ k[σ̌ ]. Suppose that for each σ in ∆ we
have such an Ωσ . Also assume Ωσ is integrally closed in the Z-submodule of MR

spanned by Ωσ . Let M be the Z-submodule of MR spanned by
⋃

σ∈∆ Ωσ . Since
each σ̌ contains a Z-spanning set for MR, if necessary we can enlarge each Ωσ so

that Ωσ is finitely generated as a semigroup, is integrally closed in M and spans

M as a Z-module. Given σ, τ in ∆, let µ = σ ∩ τ . If necessary, enlarge Ωµ so
that Ωµ = Ωσ + Ωτ . This is possible since µ̌ = σ̌ + τ̌ by Proposition 4.3. Set

N = HomZ(M, Z). For every σ in ∆, set σ̄ = {x ∈ NR|〈x, ω〉 ≥ 0 for each ω ∈ Ωσ}.
Then σ̄ is a strictly convex rational polyhedral cone inNR and Ωσ = σ̄ ∩̌M . Given

that Ωµ = Ωσ +Ωτ , one can easily check that µ̄ = σ̄∩ τ̄ inNR. Set∆ =
⋃

σ∈∆ ∆(σ̄),

the set of all faces of cones σ̄. The maximal cones in ∆ are of the form σ̄, for some
σ in ∆. Therefore, given 2 cones τ1, τ2 in ∆ there are cones σ1, σ2 in ∆ such that

τ1 ≤ σ1 and τ2 ≤ σ2. So τ1 ∩ τ2 is a face of σ1 ∩ σ2 = σ1 ∩ σ2; hence τ1 ∩ τ2 is in∆.
This shows that∆ is a fan onNR. The toric variety TN emb(∆ ) has the open affine
cover {Uσ̄ = Spec k [Ωσ]|σ ∈ ∆}. The inclusion of rings k [Ωσ] → k[σ̌ ] induces a
morphism of affine schemes φσ : Xσ → Uσ̄ for each σ in∆. Gluing the morphisms

{φσ}σ∈∆ yields a morphism of schemes φ : X(∆) → TN emb(∆ ). In this way, the

1-cocycle y corresponding toA descends to a toric variety of the form TN emb(∆ ).

Let A denote the Azumaya algebra over X = TN emb(∆ ) defined by y with re-

spect to the sheaf PGLn and the open cover {Uσ̄}σ∈∆. If φ : X(∆) → TN emb(∆ )

is as above, then φ∗(A ) is Brauer equivalent to A. Since A is split by the open

cover {Uσ̄}σ∈∆, by [4, Section 1], A represents a class in B
(

K/X
)

where K is the

function field of X . By [2, Theorem 1] H1
(

T
(

∆
)

, SF
) ∼= H2

(

K/X ét , Gm

)

. Since

B
(

K/X
)

embeds into the torsion subgroup of H2
(

K/X ét , Gm

)

by a natural map

[12, Theorem IV.2.5], A is represented by a 1-cocycle on T
(

∆
)

for the sheaf of Z-

valued∆-linear support functions SF. Torsion in H1
(

T
(

∆
)

, SF
)

of order n can be

split by the morphism TnN emb(∆ ) → TN emb(∆ ) of toric varieties induced by

the submodule nN ⊆ N . By replacing M with nM if necessary, we can assume

that the algebra A is split. Therefore A is split. �
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Holland, Amsterdam, 1968, pp. 46–188.

[9] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New
York/Berlin, 1977.

[10] G. Karpilovsky, Commutative group algebras, Pure and Applied Mathematics, vol. 78, Marcel
Dekker, New York/Basel, 1983.

[11] U. Krause, On monoids of finite real character, Proc. Amer. Math. Soc. 105 (1989), 546–554.
[12] J. Milne, Etale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press,

Princeton, N.J., 1980.
[13] T. Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete,

3. Folge, vol. 15, Springer-Verlag, Berlin/Heidelberg, 1988.
[14] P. Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wis-

senschaften, vol. 300, Springer-Verlag, Berlin/Heidelberg, 1992.
[15] O. Zariski and P. Samuel, Commutative algebra, I and II, Graduate Texts in Mathematics, vol. 28 and

29, Springer-Verlag, New York/Heidelberg, 1960.

DEPARTMENT OFMATHEMATICS, FLORIDAATLANTICUNIVERSITY, BOCARATON, FLORIDA 33431
E-mail address: Ford@fau.edu, URL: http://www.math.fau.edu/ford/


