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ABSTRACT. Associated to a toric variety X of dimension r over a field k is a fan ∆
on Rr . The fan ∆ is a finite set of cones which are in one-to-one correspondence
with the orbits of the torus action on X. The fan ∆ inherits the Zariski topology
from X. In this article some cohomological invariants of X are studied in terms of
whether or not they depend only on ∆ and not k. Secondly some numerical invari-
ants of X are studied in terms of whether or not they are topological invariants of
the fan ∆. That is, whether or not they depend only on the finite topological space
defined on ∆. The invariants with which we are mostly concerned are the class
group of Weil divisors, the Picard group, the Brauer group and the dimensions of
the torsion free part of the étale cohomology groups with coefficients in the sheaf
of units. The notion of an open neighborhood of a fan is introduced and examples
are given for which the above invariants are sufficiently fine to give nontrivial
stratifications of an open neighborhood of a fan all of whose maximal cones are
nonsimplicial.

1. INTRODUCTION

Let k be a field. Let N = Zr and denote by TN the k-torus on N. Let ∆ be a finite
fan on N ⊗ R and X = TN emb(∆, k) the toric variety over k associated to ∆ [2],
[6], [10]. This defines a functor TN emb on the product category

(1) (finite fans on N ⊗R)× (fields)
TN emb−→ (toric varieties)

(∆, k) 7→ TN emb(∆, k)
.

We define the topology on ∆ as follows (cf. [4, pp. 137–138]). The orbit space X̃ of
X under the action of the torus TN is in one-to-one correspondence with the finite
set of cones that belong to ∆. There is a topology on X̃ inherited from X by the
continuous function X → X̃. Identifying a cone σ ∈ ∆ with the orbit orb σ in X̃,
we see that the topology on X̃ corresponds to the topology on ∆ under which the
open sets are the subfans of ∆. The fan ∆ is now a two-faced beast. On the one
hand ∆ is an object in the category of fans on N ⊗ R. At the same time ∆ is an
object of the category of finite topological spaces. To distinguish between these
roles played by ∆, we denote by ∆ f an the object in the category of fans on N ⊗R

and by ∆top the object in the category of finite topological spaces. This defines a
functor T (which factors via TN emb through the category of toric varieties)

(2) (finite fans on N ⊗R)× (fields) T−→ (finite top. spaces)
(∆ f an, k) 7→ ∆top

.

In Section 2 we consider some invariants of ∆ f an that are constant for all k. Sup-
pose γ(∆ f an, k) is an invariant that is defined for any pair (∆ f an, k) (in this article
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γ is usually an abelian group). We call γ a fan invariant in case γ(∆ f an, k) depends
only on ∆ f an and not on k — that is, given a fan ∆ f an, γ(∆ f an, k1) ∼= γ(∆ f an, k2) for
every pair of fields k1, k2. We show that the Brauer group B( ) is not a fan invariant
for nonsingular fans. This is an observation based on a theorem of Hoobler and
[3, Theorem 1.1]. In [3, Theorem 1.1] a complete computation of the Brauer group
of a nonsingular toric variety X = TN emb(∆) over an algebraically closed field k
was given in terms of the so-called invariant factors of the fan ∆. In Theorem 2.3
we give the Brauer group of TN emb(∆, k) for any field k in terms of the Brauer
group and Galois group of k. The main result of Section 2 is Theorem 2.5 in which
it is stated that the class group, Cl( ), the Picard group, Pic( ), and the relative
cohomology group, H2(K( )/X( )ét, Gm) (where K(X) is the function field of X),
are fan invariants. The proof of Theorem 2.5 follows from that of [4, Theorem 1]
and is omitted.

In Section 3 we consider some invariants of ∆ f an that are constant on fibers
of the map T in (2), hence depend only on ∆top. That is, suppose we have an
invariant β(∆ f an) (usually a numerical invariant) associated to any fan ∆ f an. If
two fans ∆1, ∆2 have the same β-invariant whenever (∆1)top ∼= (∆2)top, then we
say β is a topological invariant of ∆ f an. We consider several invariants, all being
cohomologically defined. The first sequence is defined by

ρ0 = dimQ

[
H0(Xét, Gm)/k∗ ⊗Q

]
,

and for i ≥ 1,
ρi = dimQ

[
Hi(Xét, Gm)⊗Q

]
.

Also set
ρ′1 = dimQ [Cl(X)⊗Q] .

For 0 ≤ i ≤ 2 these numbers are finite and are fan invariants. The first main result
of Section 3 lists some facts about ρ0 and ρ′1.

Theorem 3.1. Let N = Zr, ∆ a fan on N⊗R, X = TN emb(∆), and s = dimR R|∆ f an|
(that is, s is the dimension of the R-vector space spanned by the vectors in the support
|∆ f an|). Then

(a) ρ0 = r − s, hence is a fan invariant, but not a topological invariant.
(b) Suppose ∆ f an contains a cone σ such that dim σ = r. This is true for example if

∆ f an is a complete fan on N ⊗R. Then ρ0 = 0 and ρ0 is a topological invariant
of ∆ f an.

(c) ρ′1 = dimQ(Cl(X)⊗Q) = #(∆(1))− s. If dim ∆top = r, then ρ′1 is a topologi-
cal invariant of ∆ f an.

(d) The number ρ0 − ρ′1 is a topological invariant of ∆ f an.
The second main result of Section 3 gives some results on ρ0, ρ1 and ρ2 for

simplicial fans.

Theorem 3.2. Let N = Zr. Let ∆ be a simplicial fan on N ⊗R and s = dimR R|∆ f an|.
Then

(a) ρ1 = #(∆(1))− s.
(b) ρ2 = 0 hence is a topological invariant of ∆ f an.
(c) If dim ∆top = r, then ρ1 is a topological invariant of ∆ f an.
(d) ρ0 − ρ1 + ρ2 is a topological invariant of ∆ f an.
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The third main result of Section 3 gives some results on ρ0, ρ1 and ρ2 for 3-
dimensional fans.

Theorem 3.5. Let ∆ be a fan on N ⊗ R. Let σ0, . . . , σw be the maximal cones in ∆.
Assume σi ∩ σj is simplicial for each i 6= j. These assumptions are satisfied for example if
dim ∆top ≤ 3. Then

(a)

ρ1 + s +
w

∑
i=0

(#(∆(σi)(1))− si) = ρ2 + #(∆(1)),

where we set si = dim σi for each i = 0, . . . , w and s = dimR R|∆ f an|.
(b) ρ0 − ρ1 + ρ2 is a topological invariant of ∆ f an.

In Section 4 we introduce the notion of an open neighborhood B of a fan ∆. This
is a subset of the fiber T−1(∆top) that is parametrized by a dense subset of a real
manifold. Let SF denote the sheaf of ∆-linear support functions on the topological
space ∆top. It was shown in [4] that the numbers ρi, 1 ≤ i ≤ 2, can be determined
by the cohomology of the sheaf SF on the finite topological space ∆top. Therefore
we define another sequence of invariants by

κi = dimQ

[
Hi(∆top, SF)⊗Q

]
for i ≥ 0. We consider the stratification of B by the numerical invariant κ0. Several
examples are given for which the stratification of B is nontrivial. We conjecture
that κ0 = 3 on a nonempty open subset of B if ∆ is a complete fan on R3 such
that every maximal cone of ∆ is nonsimplicial. Algorithm 4.4 is presented which
computes an upper bound for κ0. For complete 3-dimensional fans, this algorithm
can be used to compute an upper bound for ρ1 and ρ2.

For the benefit of the reader the following notation will be fixed throughout the
rest of the paper.

k a field r a positive integer
N = Zr M = HomZ(N, Z)
∆ a finite rational fan on N ⊗R X = TN emb(∆, k) toric variety
∆ f an object in the category of fans ∆top finite topological space∣∣∣∆ f an

∣∣∣ support of the fan ∆ T functor that maps (∆ f an, k) to ∆top

Cl(X) class group of Weil divisor classes Pic X Picard group of invertible modules
B(X) Brauer group of Azumaya algebra

classes
Gm étale sheaf of units

ρ0 = dimQ

[
H0(Xét, Gm)⊗Q

]
ρi = dimQ

[
Hi(Xét, Gm)⊗Q

]
(for i > 0)

ρ′1 = dimQ [Cl(X)⊗Q] κi = dimQ

[
Hi(∆top, SF)⊗Q

]
(for i ≥ 0)

s = dimR R

∣∣∣∆ f an

∣∣∣ ∆(i) = {σ ∈ ∆|dim σ = i}
K = K(X) the function field of X SF sheaf of ∆-linear support functions
W sheaf of Weil divisors P quotient sheaf W/SF
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2. FAN INVARIANTS

In Theorem 2.3 we determine the Brauer group of a nonsingular toric variety
over k. This invariant depends on k. We then show in Theorem 2.5 that Cl(X),
Pic X and the relative cohomology group H2(K/Xét, Gm) depend only on ∆ f an,
not on k. In order to determine the Brauer group of a nonsingular toric variety
over k, we use the following theorem of Hoobler.

Theorem 2.1. Let R = A[x1, x−1
1 , . . . , xr, x−1

r ], where A is a connected, normal integral
domain. Suppose ν is an integer relatively prime to the residue characteristics of A. Then

(3) H1(R, Z/ν) = H1(A, Z/ν)⊕
(

r⊕
µ−1

ν

)
,

and

(4) ν B(R) = ν B(A)⊕
(

r⊕
H1(A, Z/ν)

)
⊕

r(r−1)/2⊕
µ−1

ν

 .

Proof. See [9, Cor. 2.6]. �

Therefore the ν-torsion of the Brauer group of R = A[x1, x−1
1 , . . . , xr, x−1

r ] is
generated by the Azumaya A-algebras and the classes of cyclic crossed product
algebras of 2 types. For each cyclic Galois extension C/A of degree ν with group
〈σ〉 and for each 1 ≤ i ≤ r, there is the cyclic crossed product (C/R, 〈σ〉, xi) which
is an Azumaya algebra over R. If there exists a primitive ν-th root of unity ζ over
A, then the symbol algebras (xi, xj)ν are Azumaya algebras over R.

Example 2.2. Let R = R[x1, x−1
1 , . . . , xr, x−1

r ]. Then by Theorem 2.1 B(R) is an
elementary 2-group and

B(R) ∼= B(R)⊕
(

r⊕
H1(R, Z/2)

)
⊕

r(r−1)/2⊕
µ−1

2


∼= (Z/2)1+r+r(r−1)/2

(5)

Define a sheaf SF on ∆top by assigning to each open set ∆′ ⊆ ∆top the abelian
group SF(∆′) of support functions on ∆′. Let M = Hom(N, Z) be the dual of N.
There is a natural map M → SF(∆′) which is locally surjective. If M denotes the
constant sheaf of M on ∆top, then there is an exact sequence of sheaves on ∆top:

(6) 0 → U → M → SF → 0

where U is defined by the sequence (6). On any open ∆′ ⊆ ∆top, U(∆′) = |∆′|⊥ ∩
M = {m ∈ M|〈m, y〉 = 0 for all y ∈ |∆′|}. Because M is flasque, Hp(∆top, M) = 0
for all p ≥ 1, so Hp(∆top, SF) ∼= Hp+1(∆top, U) for all p ≥ 1.

Let k be a field and X = TN emb(∆, k) a nonsingular toric variety over k. Let
N′ = 〈⋃σ∈∆ σ ∩ N〉, let ν ≥ 2 be relatively prime to char k, and let Mν = {m ∈
M|〈m, n′〉 ≡ 0 (mod ν) for all n′ ∈ N′}. The basis theorem for finitely generated
abelian groups gives a basis n1, . . . , nr of N such that N′ = Za1n1 ⊕Za2n2 ⊕ · · · ⊕
Zarnr where the ai are nonnegative integers and ai|ai+1 for 1 ≤ i ≤ r− 1. As in [3]
call a1, . . . , ar the set of invariant factors of X.



INVARIANTS OF A FAN 5

Theorem 2.3. In the above terminology, if (ν, ai) is the greatest common divisor of ν and
ai, then

H1(X, Z/ν) ∼= H1(k, Z/ν)⊕
(

Mν/νM⊗ µ−1
ν

)
∼= H1(k, Z/ν)⊕

(
r⊕

i=1

Z/(ν, ai)⊗ µ−1
ν

)
.

(7)

ν B(X) = ν B′(X) ∼=

ν B(k)⊕
(

r⊕
i=1

H1(k, Z/ν)⊗Z/(ν, ai)

)
⊕
(

r⊕
i=1

Hom(Z/ai ⊗ µν, Q/Z)r−i

)
(8)

Proof. Follows from the proof of [3, Theorem 1.1] and Theorem 2.1. �

Therefore the ν-torsion of the Brauer group of the nonsingular toric variety X
is generated by the classes of algebras from k and cyclic crossed product algebras
of 2 types. For each cyclic Galois extension C/k of degree ν with group 〈σ〉 and
for each 1 ≤ i ≤ r, there is the cyclic crossed product (C/k, 〈σ〉, xi) which is an
Azumaya algebra over the torus TN . This algebra is unramified on X if and only if
the function xi corresponds to an element of Mν. If there exists a ν-th root of unity
ζ over k, then the symbol algebras (xi, xj)ν are Azumaya algebras over TN . Those
symbols which are unramified on X correspond to the last summand of (8).

Example 2.4. Let k = R and X = TN emb(∆) a nonsingular toric variety over R.
Then by Theorem 2.3 B(X) is an elementary 2-group. If t = |{ai|(2, ai) 6= 1}|, then

B(X) ∼= B(R)⊕
(

r⊕
i=1

Z/(2, ai)

)
⊕
(

r⊕
i=1

Hom(Z/ai ⊗ µ2, Q/Z)r−i

)
∼= Z/2⊕ (Z/2)t ⊕ (Z/2)t(t−1)/2

(9)

Theorem 2.5. Let k be a field and X = TN emb(∆) a toric variety over k with function
field K. Then

(1) Hp(∆top, U) ∼= Hp(XZar, O∗) for all p ≥ 1 hence Hp(XZar, O∗) depends only
on ∆ f an, not k. In particular Cl(X) and Pic X depend only on ∆ f an.

(2) H1(∆top, SF) ∼= H2(XZar, O∗) ∼= H2(K/Xét, Gm) hence H2(K/Xét, Gm) de-
pends only on ∆ f an, not k.

(3) If ∆̃ is a nonsingular subdivision of ∆ and X̃ = TN emb(∆̃), then the sequence

0 → H2(K/Xét, Gm) → H2(Xét, Gm) → H2(X̃ét, Gm) → 0

(with natural maps) is split-exact.

Proof. The theorem follows from [4], noting that the proof of [4, Theorem 1] did
not assume that k is algebraically closed until the proof of Lemma 7 where it was
not necessary anyway. �
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3. TOPOLOGICAL INVARIANTS

The first invariants to be considered as candidates for topological invariants are
the following. Let ∆ and X be as in the Introduction. For each i ≥ 0 we define a
positive integer ρi. Set

ρ0 = dimQ

[
H0(Xét, Gm)/k∗ ⊗Q

]
,

ρ1 = dimQ

[
H1(Xét, Gm)⊗Q

]
= dimQ (Pic X ⊗Q)

and for i ≥ 2,
ρi = dimQ

[
Hi(Xét, Gm)⊗Q

]
.

The number ρ1 is the traditional Picard number ρ associated to X. Also set

ρ′1 = dimQ [Cl(X)⊗Q] .

It follows from Theorem 3.1 below that ρ0 is a fan invariant and from Theo-
rem 2.5 above that ρ1, ρ′1, and ρ2 are fan invariants. Since ∆ is finite, ρ0, ρ1, ρ′1 and
ρ2 are finite. For ρ0, ρ1 and ρ′1 see [10] or [6]. For ρ2 this follows from [4].

Examples where the number ρ2 is computed seem to be somewhat scarce.
Grothendieck [7, II] and Childs [1] each give an example of a local ring Ox on a nor-
mal surface where H2((Ox)ét, Gm) is torsion free, but in each case H2((Ox)ét, Gm)
is not finitely generated.

Remark 1. The dimension of the topological space ∆top is defined to be the length
of a maximal chain of irreducible closed subsets. One can check that this is equal
to max {dim σ| σ ∈ ∆}. Therefore dim ∆top is a topological invariant of ∆ f an.

Remark 2. Define another sequence of invariants by

κi = dimQ

[
Hi(∆top, SF)⊗Q

]
for i ≥ 0. It follows from Theorem 2.5 (2) that κ1 = ρ2. Let σ0, . . . , σm be the maxi-
mal cones in ∆. From [4, Lemma 8] κi can be computed from the Čech complex

(10) 0 → ⊕
i
SF(σi)

δ0
→ ⊕

i<j
SF(σij)

δ1
→ ⊕

i<j<k
SF(σijk) → . . .

For any cone τ ∈ ∆, dimQ(SF(∆(τ))⊗Q) = dim τ. Therefore, if Ci denotes the
i-th group of Čech cochains in (10) and ci = dimQ(Ci ⊗Q), then the integer

(11) c0 − c1 + c2 − . . .

is a topological invariant of ∆ f an. Note that there exists an integer M such that
Cj = 0 for all j > M. If dim(∆top) = t, then κj = 0 for all j > t. So the left hand
side of

(12) κ0 − κ1 + . . . (−1)tκt = c0 − c1 + c2 − . . . (−1)McM

is a topological invariant of ∆ f an.

Remark 3. Let ∆ be a finite fan on N⊗R where N = Zr. Setting s = dimR R|∆ f an|,
we see that s is not a topological invariant of ∆ f an. Since s ≥ dim ∆top, if dim ∆top =
r, then s = r so if ∆ contains a cone σ such that dim σ = r, then s = r and s is a
topological invariant of ∆ f an. This condition is satisfied, for instance, if ∆ is a com-
plete fan on N ⊗R.
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Remark 4. Let σ ∈ ∆ and let ∆(σ) denote the subfan of ∆ consisting of the cone σ
and all of its faces. Then

dim σ = dim ∆(σ)top,
so the dimensions of the cones in ∆ depend only on ∆top. In particular, the number
of 1-dimensional cones in ∆ f an is a topological invariant.

Remark 5. The fan ∆ f an is complete by definition if |∆ f an| = Rr. This is true if and
only if

(i) ∆(r) 6= ∅ and
(ii) for each cone σ ∈ ∆(r) and every r − 1-dimensional face τ of σ there is a

cone σ1 ∈ ∆(r) such that τ = σ ∩ σ1.
But these two conditions depend only on ∆top. That is, completeness can be thought
of as a topological property of ∆ f an.

From the next theorem, which combines some results on ρ0 and ρ′1, we see that
ρ0 depends only on the dimension of the subspace spanned by |∆ f an|.

Theorem 3.1. Let N = Zr, ∆ a fan on N⊗R, X = TN emb(∆), and s = dimR R|∆ f an|
(that is, s is the dimension of the R-vector space spanned by the vectors in the support
|∆ f an|). Then

(a) ρ0 = r − s, hence is a fan invariant, but not a topological invariant.
(b) Suppose ∆ f an contains a cone σ such that dim σ = r. This is true for example if

∆ f an is a complete fan on N ⊗R. Then ρ0 = 0 and ρ0 is a topological invariant
of ∆ f an.

(c) ρ′1 = dimQ(Cl(X)⊗Q) = #(∆(1))− s. If dim ∆top = r, then ρ′1 is a topologi-
cal invariant of ∆ f an.

(d) The number ρ0 − ρ′1 is a topological invariant of ∆ f an.

Proof. (a) Let N1 = N∩R|∆ f an|, M1 = HomZ(N1, Z), M2 = N⊥
1 , N2 = HomZ(M2, Z).

Then M = M1 ⊕ M2 and N = N1 ⊕ N2. Viewing ∆ as a fan on the s-dimensional
vector space N1⊗R, X = TN1 emb(∆)×TN2 and H0(X, Gm)/k∗ ∼= H0(TN2 , Gm)/k∗ ∼=
Zr−s. So ρ0 = r − s.

(b) In this case s = dimR R|∆ f an| = dimR(Rσ) = dim σ = r.
(c) Let N0 = N ∩R|∆ f an| be the set of lattice points in the subspace R|∆ f an| and

M0 = HomZ(N0, Z). Then dimQ(M0 ⊗Q) = dimQ(N0 ⊗Q) = dimR R|∆ f an| =
s. From [10, Corollary 2.5] there is a presentation of Cl(X)

(13) 0 → M0 →
⊕

ρ∈∆(1)

Zρ → Cl(X) → 0.

So dimQ(Cl(X)⊗Q) = #(∆(1))− s. In particular, if dim ∆top = r, then r = s so
dimQ(Cl(X)⊗Q) is a topological invariant.

(d) From (a) and (c),

ρ0 − ρ′1 = (r − s)− (#(∆(1))− s) = r − #(∆(1))

which depends only on ∆top. �

Remark 6. Let N = Zr, ∆ a fan on N ⊗R, s = dimR R|∆ f an|, t = max
σ∈∆

{dim σ}. It

follows from [3, Theorem 2.3] that if t ≤ 2, then ρ1 = #(∆(1))− s and ρ2 = 0. In
this case ∆ is a simplicial fan, so this is a special case of the following theorem.
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Theorem 3.2. Let N = Zr. Let ∆ be a simplicial fan on N ⊗R and s = dimR R|∆ f an|.
Then

(a) ρ1 = #(∆(1))− s.
(b) ρ2 = 0 hence is a topological invariant of ∆ f an.
(c) If dim ∆top = r, then ρ1 is a topological invariant of ∆ f an.
(d) ρ0 − ρ1 + ρ2 is a topological invariant of ∆ f an.

Proof. Suppose σ ∈ ∆ is a simplicial cone and dim σ = d. For any support function
h ∈ SF(∆), h|σ is linear and completely determined by its values on a spanning
set {η1, . . . , ηd} ⊆ N for σ. Since dim σ = d, σ is spanned by d lattice points. So
SF(∆(σ))⊗Q ∼= Qd.

If τ0, . . . , τn are the cones in ∆(1), and Γ = {0, τ0, . . . , τn}, then Γtop is an open
subset of the topological space ∆top. Define the sheaf W on ∆top to be the direct
image i∗(SF|Γtop). Since Γ f an is a nonsingular fan, SF|Γtop is the sheaf defined by
Ξ 7→ Z#(Ξ(1)) for each open Ξ ⊆ ∆top. It follows that W(Ξ) = Z#(Ξ(1)), hence W

is a flasque sheaf. So there is an embedding SF → W of sheaves on ∆top and we
define P by the exact sequence of sheaves [4, (13), p. 149]

(14) 0 → SF → W → P → 0.

Since ∆ is simplicial, SF(∆(σ)) and W(∆(σ)) are free of the same rank dim σ.
Therefore, P is locally torsion, hence torsion. Because W is flasque, H1(∆top, W) =
0 and the long exact sequence associated to (14) becomes

(15) 0 → H0(∆top, SF) → H0(∆top, W) → H0(∆top, P) → H1(∆top, SF) → 0.

Because P is torsion, H0(∆top, P) is torsion. So H1(∆top, SF)⊗Q = 0. By [4, Theo-
rem 1] ρ2 = dim(H1(∆top, SF)⊗Q) = 0. This proves (b). It also follows from (15)
that we obtain the isomorphism of [10, Proposition 2.1(v), p. 69]

(16) H0(∆top, SF)⊗Q ∼= H0(∆top, W)⊗Q.

By [4, Lemma 8] there is an exact sequence

(17) 0 → M0 → SF(∆top) → Pic X → 0.

Combining (13) and (17), we have a commutative diagram with exact rows and
columns.

(18)

0 0 0y y y
M −−−−→ SF(∆top) −−−−→ Pic X −−−−→ 0y=

y y
M −−−−→ W(∆top) −−−−→ Cl(X) −−−−→ 0

Because the center vertical arrow in (18) tensored with Q is the isomorphism (16),
from (18) it follows that

(19) Pic(X)⊗Q ∼= Cl(X)⊗Q.

It follows from Theorem 3.1 that ρ1 = #(∆(1)) − s. This proves (a). In case (c),
s = r so ρ1 is a topological invariant.
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(d) From Theorem 3.1 and parts (a) and (b),

ρ0 − ρ1 + ρ2 = (r − s)− (#(∆(1))− s) + 0 = r − #(∆(1))

which only depends on ∆top. �

Lemma 3.3. For any cone σ ∈ ∆, let ∆(σ) denote the subfan of ∆ consisting of σ and all
of its faces and Uσ = TN emb(∆(σ)). Then H0(∆(σ)top, P) = Cl(Uσ).

Proof. For each σ ∈ ∆ we have H1(∆(σ)top, SF) = 0 [4, Lemma 2.a, p. 139] so from
(15)

H0(∆(σ)top, P) = W(∆(σ)top)/SF(∆(σ)top).

Now W(∆(σ)top) = Z#(∆(σ)(1)) and support functions are linear on a cone σ, so

W(∆(σ)top)/SF(∆(σ)top) ∼= Z#(∆(σ)(1))/ im(M) = Cl(Uσ).

�

Lemma 3.4. Let σ be a cone in N ⊗ R and s = dim σ. Then dimQ(Cl(Uσ)⊗ Q) =
#(∆(σ)(1))− s. Also σ is simplicial if and only if Cl(Uσ) is torsion.

Proof. Follows from Theorem 3.1. �

The following can be considered a theorem for 3-dimensional fans.

Theorem 3.5. Let ∆ be a fan on N ⊗ R. Let σ0, . . . , σw be the maximal cones in ∆.
Assume σi ∩ σj is simplicial for each i 6= j. These assumptions are satisfied for example if
dim ∆top ≤ 3. Then

(a)

ρ1 + s +
w

∑
i=0

(#(∆(σi)(1))− si) = ρ2 + #(∆(1)),

where we set si = dim σi for each i = 0, . . . , w and s = dimR R|∆ f an|.
(b) ρ0 − ρ1 + ρ2 is a topological invariant of ∆ f an.

Proof. (a) The set {∆(σi)top}w
i=0 is an open cover of ∆top and the sequence

(20) 0 → H0(∆top, P) →
w⊕

i=0

H0(∆(σi)top, P) →
w⊕

i=1

i−1⊕
j=0

H0(∆(σi ∩ σj)top, P)

is exact since P is a sheaf. Applying Lemma 3.3, the sequence (20) can be written

(21) 0 → H0(∆top, P) →
w⊕

i=0

Cl(Uσi ) →
w⊕

i=1

i−1⊕
j=0

Cl(Uσi∩σj).

By our assumption σi ∩ σj is simplicial. By Lemma 3.4, Cl(Uσi∩σj) is torsion. By [4,
Theorem 1] H1(∆top, SF) ∼= H2(K/Xét, Gm) and the torsion-free part of H2(Xét, Gm)
is equal to the torsion-free part of H2(K/Xét, Gm). We compute the rank of the
torsion-free part of H2(K/Xét, Gm) from (15) tensored with Q:
(22)
0 → SF(∆top)⊗Q → W(∆top)⊗Q → P(∆top)⊗Q → H2(K/Xét, Gm)⊗Q → 0.

Tensoring (17) with Q and counting dimensions we find dimQ(SF(∆top)⊗Q) =
dimQ(Pic X ⊗Q) + s = ρ1 + s. By definition W(∆top) ⊗ Q = Q#(∆(1)). From
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(21) P(∆top) ⊗ Q =
⊕w

i=0 Cl(Uσi ) ⊗ Q. From Lemma 3.4, dimQ(Cl(Uσi ) ⊗ Q) =
#(∆(σi)(1))− si. Counting dimensions in (22), we have the equation

(23) ρ2 = ρ1 + s +
w

∑
i=0

(#(∆(σi)(1))− si)− #(∆(1)) .

(b) From (a) and Theorem 3.1 we have

ρ0 − ρ1 + ρ2 =(r − s) + s +
w

∑
i=0

(#(∆(σi)(1))− si)− #(∆(1))

=r +
w

∑
i=0

(#(∆(σi)(1))− si)− #(∆(1))

which depends only on ∆top. �

As the next example shows, ρ1 and ρ2 are not topological invariants of ∆ f an
when r ≥ 3 and ∆ is not simplicial.

Example 3.6. Let ∆ be a fan on R3 and suppose ∆ consists of three cones of dimen-
sion 3 and 6 cones of dimension 1 such that for each σi ∈ ∆(3), #(∆(σi)(1)) = 4.
Assume that the intersection of the fan ∆ with the unit sphere traces a graph that
looks like that shown in Figure 1.

For any such fan ∆, ∆top is unique up to homeomorphism. We consider 2 such
fans ∆ and ∆′ such that ρ1(∆) 6= ρ1(∆′) and ρ2(∆) 6= ρ2(∆′).

For ∆, take ∆(1) to be {R≥ηi|i = 0..5} where {η0, . . . , η5} =

(24)


 1

0
−2

 ,

−1
2
−2

 ,

−1
−2
−2

 ,

1
0
2

 ,

−1
2
2

 ,

−1
−2
2

 .

Using the methods of [5, Section 4] we find that ρ1(∆) = 1 and ρ2(∆) = 1.
For ∆′, take ∆′(1) to be {R≥ηi|i = 0..5} where {η0, . . . , η5} =

0
1
1

 ,

0
0
1

 ,

1
0
1

 ,

−1
3
1

 ,

−2
−1
1

 ,

 3
−1
1

 .

Using the methods of [5, Section 4] we find that ρ1(∆′) = 0 and ρ2(∆′) = 0.
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4. A STRATIFICATION OF THE FIBERS OF T

Let ∆ be a fan on N⊗R = Rr with ∆(1) = {r0, . . . , rn}. The intersection of ∆(1)
with the unit sphere S in Rr is a finite set of points, say {p0, . . . , pn}. About each
pi we can find an open ball Bi on S such that if pi is parametrized by Bi, then each
choice of ~p = (p0, p1, . . . , pn) in B0 × B1 × · · · × Bn defines a fan Φ = Φ(~p) such

that Φtop ∼= ∆top. The manifold B =
n

∏
i=0

Bi parametrizes a subset of fans in the fiber

T−1(∆top). Call B an open neighborhood of ∆. If ~p ∈ B, then the fan Φ = Φ(~p) is not
necessarily rational. Sometimes it will be necessary to refer to points in B that give
rise to rational fans. In this case let

(25) Brat = {(p0, . . . , pn)| for each i,

pi is the intersection of a rational 1-dimensional cone ri with Bi}.

For the present section only we define the set of support functions on a fan to be
a real vector space. If σ is a cone, define SF(σ) to be HomR(Rσ, R). Define SF(∆)
to be the kernel of δ0 in the Čech complex

(26) 0 → ⊕
i
SF(σi)

δ0
→ ⊕

i<j
SF(σij)

δ1
→ ⊕

i<j<k
SF(σijk) → . . .

where {σ0, . . . , σw} is the set of maximal cones of ∆. Define κ0(∆) = dimR SF(∆).
If ∆ is a rational fan, then this definition of κ0 agrees with the definition given in
Remark 2 of Section 3. In this section we consider the stratification of the manifold
B by the invariant κ0.

Example 4.1. If ∆ is simplicial, then κ0 = #(∆(1)) = n + 1 so B has only 1 stra-
tum. As was suggested in Example 3.6, we expect the stratification to be more
interesting when ∆ is nonsimplicial.

Example 4.2. Let ∆ be the fan on R3 given in equation (24) of Example 3.6. Let

B =
5

∏
i=0

Bi be an open neighborhood of ∆. One can check that any support function

h ∈ SF(∆) is completely determined by its values on r0, r1, r2, r3 so κ0(∆) ≤ 4.
From Example 3.6 we know that κ0(∆) = 4. It is possible to vary any one of the ri
to achieve a fan Φ in B with κ = 3. So B has exactly 2 strata. We will see later that
the stratum where κ0 = 4 is a Zariski closed subset of B.

Conjecture 4.3. Let ∆ be a complete fan on R3 such that for each cone σ ∈ ∆(3), σ is
nonsimplicial. Let B be an open neighborhood of ∆ as described above. Then for a general
choice of ~p ∈ B, if Φ = Φ(~p), then every Φ-linear support function is linear. In particular
for a general choice of ~p ∈ Brat, κ0(Φ) = 3 hence ρ1(Φ) = 0 and ρ2(Φ) is a topological
invariant.

In Conjecture 4.3 by “general choice” of ~p we mean that there is a dense open
subset G ⊆ B and each fan in the set {Φ(~p)|~p ∈ G} satisfies the conjecture. That
is, if Conjecture 4.3 is true, a sufficiently general fan ∆′ with ∆′

top
∼= ∆top should

satisfy κ0(∆′) = 3.
As motivation for Conjecture 4.3, consider the case where each σ ∈ ∆(3) has ex-

actly 4 1-dimensional faces. Let ∆(3) = {σ0, . . . , σw}, ∆(2) = {τ0, . . . , τe}, ∆(1) =
{r0, . . . , rn}. The intersections of the cones in ∆(2) with the unit sphere S in R3
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trace out the edges of a graph on S. This graph has e + 1 edges, n + 1 vertices
and w + 1 regions. So w + 1 = (e + 1) − (n + 1) + 2. Each σj has exactly 4 τi’s
and each τi is in exactly 2 σj’s, so 2(e + 1) = 4(w + 1) or e + 1 = 2(w + 1). Hence
w + 1 = n− 1. From Theorem 3.1 (c) ρ′1 = dimQ(Cl(X)⊗Q) = (n + 1)− 3 = n− 2
and ρ′1(∆(σi)) = dimQ(Cl(Uσi )⊗Q) = 4− 3 = 1. From (22) we have an exact se-
quence

(27) 0 → SF(∆top)⊗Q → W(∆top)⊗Q →
w⊕

i=0

(Cl(Uσi )⊗Q)

Since linear Weil divisors correspond to linear Cartier divisors (27) gives rise to

(28) 0 → Pic(X)⊗Q → Cl(X)⊗Q →
w⊕

i=0

(Cl(Uσi )⊗Q)

In (28) the middle term has dimension n − 2 and the third term dimension n − 1.
For each i the map Cl(X) → Cl(Uσi ) is surjective. So we can view Pic(X)⊗Q as the
intersection of n− 1 hyperplanes through (0) in Qn−2. In general, this intersection
should be (0). If the conclusion of Conjecture 4.3 is satisfied, then from (23) it
follows that ρ2 = 3 + (w + 1)− (n + 1) (for a general choice of ∆ f an).

Next we give an algorithm for computing an upper bound for κ0 for a fan of
arbitrary dimension. The algorithm can also be used to obtain an upper bound
for ρ1 and ρ2 for complete rational 3-dimensional fans. If ∆ is a fan on R3 which
contains at least 1 cone of dimension 3, then ρ0 = 0 and by Theorem 3.5 we have
ρ1 = ρ2 + (topological invariant). In this setting ρ1 = κ0 − 3 .

Algorithm 4.4. Let ∆ be a fan on N ⊗R. The following is an algorithm for computing
an upper bound for κ0.

The algorithm is based on the fact that the map SF(∆) → Z#(∆(1)) is injective.
The algorithm finds a subset G of ∆(1) such that any support function h in SF(∆)⊗
Q is completely determined by its values on the 1-dimensional cones in G.

If σ is a maximal cone in ∆ of dimension d, then a support function h is deter-
mined by its values on any d 1-dimensional faces of σ that span a d-dimensional
subspace of N ⊗R. Pick d such elements of σ(1) and place them in a set called G.
Place all other elements of σ(1) in a set called R. Initially, G and R are both empty,
and the starting cone σ is chosen somewhat arbitrarily. The algorithm proceeds to
branch from the starting cone σ outward until all maximal cones of ∆ have been
visited and ∆(1) has been partitioned into ∆(1) = G ∪ R. The order in which
the maximal cones are traversed is somewhat arbitrary and may affect both the
resulting set G and the resulting cardinality of G.
Step 0. Set B = {σ ∈ ∆|σ is a maximal cone in ∆}. Set G = ∅ and R = ∅. Go to

Step 3.
Step 1. If there is a maximal cone σ ∈ B such that σ(1) ∩ (G ∪ R) contains a span-

ning set for Rσ, then add the remaining cones in σ(1)− G − R to R. Re-
move σ from B. repeat Step 1 until the condition is false.

Step 2. If there is a maximal cone σ ∈ B such that σ(1) ∩ (G ∪ R) 6= ∅, then pick
σ ∈ B such that

(i) e = dimR〈σ(1) ∩ (G ∪ R)〉 is maximal and
(ii) d = dim σ is maximal among all σ ∈ B satisfying (i).
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For any σ satisfying (i) and (ii), pick τ1, . . . , τe in σ(1) ∩ (G ∪ R) such that
τ1 + · · · + τe has dimension e. Choose τe+1, . . . , τd in σ(1) such that τ1 +
· · · + τd has dimension d. Add τe+1, . . . , τd to G and add the remaining
elements σ(1)− G − R − {τe+1, . . . , τd} to R. Delete σ from B. Go to Step
1.

Step 3. If B 6= ∅, then pick σ ∈ B such that d = dim σ is maximal. Pick τ1, . . . , τd
in σ(1) such that τ1 + · · · + τd has dimension d. Add τ1, . . . , τd to G and
add the remaining cones in σ(1)− {τ1, . . . , τd} to R. Delete σ from B. Go
to Step 1.

Step 4. This point is reached only if B = ∅. Now ∆(1) is partitioned into 2 sets:
∆(1) = G ∪ R. Any support function h in SF(∆)⊗Q is determined com-
pletely by its values on G. So SF(∆) → Z#(G) is injective. Therefore #(G)
is an upper bound for κ0.

Example 4.5. Let ∆ be a fan on R3 that consists of three 3-dimensional cones and
assume that the intersection of the fan ∆ with the unit sphere S traces a graph as
shown in Figure 2(a). In this example, we step through Algorithm 4.4 to see that
κ0(∆) ≤ 4. It is shown later in Example 4.6 that for this fan, κ0 = 4. Initially,
B = {σ0, σ1, σ2} and G = R = ∅. The algorithm proceeds to Step 3. Place r1,
r4, r2 from σ0(1) in G and r0 in R. Delete σ0 from B. The condition in Step 1 is
still false, so the algorithm goes to Step 2. For σ1, r0 and r2 are both in G ∪ R and
r0 + r2 has dimension e = 2. Place r5 in G and r3 in R. Delete σ1 from B. Go
to Step 1. This time the set G ∪ R contains {r0, r1, r3} which is a spanning set for
Rσ2. Therefore, remove σ2 from B and place r6 in R. Any support function h is
completely determined by its values on r1, r2, r4 and r5, so κ0 ≤ 4.

Example 4.6. Let ∆ be a complete fan on R3 and assume that the intersection of
the fan ∆ with the unit sphere S traces a graph that corresponds to the edges of a
cube as shown in Figure 2(b). Applying Algorithm 4.4 to ∆, we see that ρ1(∆) ≤ 1
and ρ2(∆) ≤ 1.
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Take ∆(1) to be {R≥ηi|i = 0..7} where {η0, . . . , η7} =
1

1
1

 ,

 1
−1
1

 ,

−1
−1
1

 ,

−1
1
1

 ,

 1
1
−1

 ,

 1
−1
−1

 ,

−1
−1
−1

 ,

−1
1
−1

 .

Using the methods of [5, Section 4] we find that the upper bounds predicted by
Algorithm 4.4 are reached: ρ1(∆) = 1 and ρ2(∆) = 2.

Now change the fan so that ∆′(1) is no longer symmetrical about the origin. For
example, take ∆′(1) to be {R≥ηi|i = 0..7} where {η0, . . . , η7} =

2
1
1

 ,

 1
−1
1

 ,

−1
−1
1

 ,

−1
1
1

 ,

 1
1
−1

 ,

 1
−1
−1

 ,

−1
−1
−1

 ,

−1
1
−1

 .

Using the methods of [5, Section 4] we find that the lower bounds predicted by
Conjecture 4.3 are attained: ρ1(∆′) = 0 and ρ2(∆′) = 1. Now Pic X′ is torsion-
free for the complete toric variety X′ = TN emb ∆′. Since ρ1(∆′) = 0 we see that
Pic X′ = 0. This proves that X′ is nonprojective (see Remark 7). If B is an open
neighborhood of ∆, then the strata of B are κ0 = 4 and κ0 = 3. We will show later
that κ0 = 4 corresponds to a Zariski closed subset of B.

Remark 7. In general any toric variety satisfying Conjecture 4.3 is nonprojective.
This is because a projective normal variety X will always have a nonprincipal
Cartier divisor corresponding to a hyperplane section. This follows from com-
mutative diagram (29). See [8, Ex. 6.2, p. 146].

(29)

Pic PN = Cl(PN) −−−−→ Pic X −−−−→ Cl(X)

deg
y∼= ydeg

Z
·(deg X)−−−−→ Z Z

Example 4.7. We give an example to illustrate how (27) can be used to compute
κ0. Say ∆ consists of three 3-dimensional cones as shown in Figure 2(a). Then
W(∆top) = Zr0 ⊕ · · · ⊕Zr6 and W(∆(σ0)) = Zr0 ⊕Zr1 ⊕Zr2 ⊕Zr4. Let ηi be a
primitive lattice point on ri, so that ri = R≥ηi for i = 0..6. The kernel of the sur-
jection φ0 : W(∆) → Cl(Uσ0) is spanned by the vectors

(
0 0 0 1 0 0 0

)>,(
0 0 0 0 0 1 0

)>,
(
0 0 0 0 0 0 1

)>, and the columns of(
η0 η1 η2 0 η4 0 0

)>. So ker φ0 is a subspace of codimension 1. Consider
the matrix equation

(30)
(
η0 η1 η2 η4

)−→v0 = 0.

Set A =
(
η0 η1 η2

)
. Then (30) becomes

(31)
(

I A−1η4
)−→v0 = 0.

Set A−1η4 =
(
a0 b0 c0

)>. So −→v0 =
(
−a0z −b0z −c0z z

)>. Since any 3
columns of the matrix in (30) are linearly independent, −→v0 has 4 nonzero entries,
or −→v0 = 0. Normalize −→v0 by taking z = −1. Then ker φ0 is the set of solutions to

(32)
(
a0 b0 c0 0 −1 0 0

)
~x = 0.
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Hence if φ : W(∆) → Cl(Uσ0)⊕Cl(Uσ1)⊕Cl(Uσ2), then ker φ is the set of solutions
to

(33)

a0 b0 c0 0 −1 0 0
a1 0 b1 c1 0 −1 0
a2 b2 0 c2 0 0 −1

~x = 0.

This coefficient matrix has rank 3 so ker φ has rank 4. Therefore κ0 = 4 and for any
open neighborhood B of ∆, B has only 1 stratum. In this case, we see that κ0 and
hence ρ1 and ρ2 are topological invariants of the set of all (rational) fans that look
like the one shown in Figure 2(a). We could assume ∆ has more than three (say
w + 1) 3-dimensional cones each with four 1-dimensional faces meeting around
the common 1-dimensional face r0. By a similar argument we see that κ0 = w + 2.

Example 4.8. Let ∆ be a fan on R3 such that ∆top is homeomorphic to the fan in
Example 3.6. Following the procedure of Example 4.7, set up equations analogous
to (30) (32) and (33). Then ker φ is the set of solutions to

(34)

a0 0 b0 c0 0 −1
a1 b1 0 c1 −1 0
0 a2 b2 0 c2 −1

~x = 0.

The coefficient matrix in (34) clearly has rank 2 or more. This agrees with the upper
bound 4 predicted for κ0 by Algorithm 4.4. The third, fourth and sixth columns of
(34) are independent if and only if

(35) (b2 − b0)c1 6= 0 .

This shows that on the complement of a Zariski open subset of B, κ0 = 3. We check
that (35) is satisfied on a nonempty subset of B. Note that (35) is satisfied if
(36)

the second row of
(
η0 η2 η3

)−1
η5 6= the second row of

(
η1 η2 η4

)−1
η5

which will be true for a sufficiently general choice of the fan. To see this, consider
letting p0 vary in B0. Then in (36) the matrix

(
η0 η2 η3

)−1 varies but the matrix(
η1 η2 η4

)−1 remains constant.

Consider (27) once again. Let ∆ be a complete fan on R3. Let B be an open
neighborhood of ∆. Proceed as in Examples 4.7 and 4.8. Set up the matrix equation
Φ~x = 0 for ker φ. Since M → SF(∆′

top) is injective, ker φ has rank at least 3.
Consider an arbitrary (n− 2)− by− (n− 2) submatrix Φ0 of Φ. Then Φ0 has rank
n− 2 exactly when det(Φ0) 6= 0. As in (34) and (35), we can show that det(Φ0) = 0
is an equation in no more than 3(n− 2) variables which are parametrized by points
in B. The equation det(Φ0) = 0 defines a Zariski closed subset of B. On the
complement of this closed set det(Φ0) 6= 0, rank Φ = n − 2 and ker φ has rank
3. If there is at least one choice of ∆ f an for which det(Φ0) 6= 0, then the open set
making up the complement of the determinant equations will be nonempty, hence
the conclusion of Conjecture 4.3 will be satisfied. This shows for example that the
general fan which is topologically homeomorphic to that of Figure 2(b) satisfies the
conclusion to Conjecture 4.3, because in Example 4.6 an example is given which
shows the determinants are nonzero on a nonempty Zariski open in B.
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