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Abstract. Let K be the field of fractions of a curve over R where R is the
henselization of a regular local ring on an algebraic curve over a field which
is algebraically closed and has characteristic 0. Then K has the exponent = degree
property for division algebras. In fact every central finite dimensional K-division
algebra with exponent n is a cyclic algebra of degree n.

In this paper we continue to investigate the structure of division algebras D
finite dimensional over their center K. The motivating problem is to classify
those fields K that have the exponent = degree property for division algebras. We
say that K has the exponent = degree property if for any central K-division algebra
D the exponent of the class [D] in the Brauer group B(K) is equal to the degree√

(D : K) of the division algebra. Throughout this paper k is an algebraically
closed field of characteristic 0.

Example 1. Some fields that are known to have the exponent = degree property
are listed below.

(1) A global field (an algebraic number field or a function field finitely gen-
erated of transcendence degree 1 over a finite field). This is classical.

(2) The quotient field of either (a) the henselization Oh
p,X or (b) the completion

Ôp,X at a closed point p on a normal surface X over k [1] or [6].
(3) The quotient field of a ring obtained by (a) henselizing or (b) completing

an affine surface over k along an integral curve [4].
In fact in each of these three examples, each division algebra D is split by a cyclic
extension K(α1/n) for some α ∈ K and n = exponent(D).

The purpose of this paper is to add to the list of Example 1 another class of
fields satisfying the exponent = degree property.

Let Op,X be the local ring at a regular point p on an algebraic curve X over the
field k. Then Op,X is a local principal ideal domain, hence a discrete valuation
ring. The residue field of Op,X is k. Let R = Oh

p,X be the henselization of Op,X .
Consider an affine algebraic curve C over R. Following [9], C is an affine scheme
together with a structure morphism π : C → Spec R such that π is flat and of
finite type, the fibers of π are algebraic curves, and C is connected. Then π has
2 fibers. The closed fiber π : C0 → x0 over the closed point x0 of Spec R is an
algebraic curve over k. The open fiber π : Cη → η over the open point of Spec R
is an algebraic curve over the quotient field of R. Assume that Cη is integral, with
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K = K(Cη) the field of fractions. Our main result is that K has the exponent =
degree property for division algebras.

Theorem 2. Let R, C and K be as above and let D be a central finite dimensional K-
division algebra with exponent(D) = n. Then D is a cyclic algebra of degree n.

Proof. The proof is in the flavor of those used by [6] and [4].
Since C is Spec S for an algebra S of finite type over R, we can assume C is a

closed subscheme of affine space Am
R over R. Without changing K we can replace

C with a projective completion over R. If necessary, we can also desingularize
C. Therefore assume that π : C → Spec R is proper, that the open fiber is a non-
singular integral curve Cη over the quotient field of R. By Embedded Resolution
of Curves in Surfaces [8, p. 391], we can assume that the closed fiber (C0)red is
a divisor over k with normal crossings. That is, write the reduced closed fiber
(C0)red as a union C1 ∪C2 ∪ · · · ∪Cs of irreducible curves. By the normal crossing
hypothesis we assume each component Cj is a nonsingular curve and that (C0)red
has at most ordinary double points as singularities.

Let L/K be a finite extension of fields and Y → C the integral closure of C in
L. Let f : Y′ → Y be any desingularization of Y. That is, Y′ is nonsingular and f
is a proper birational morphism. There is a complex

(1) 0 → B(Y′) → B(L) a−→
⊕

∆

H1(K(∆), Q/Z) r−→
⊕

P
µ(−1) s−→ H4(Y′, µ) → 0

which is exact except possibly at the term
⊕

H1(K(∆), Q/Z). The first summa-
tion is over all irreducible curves ∆ ⊆ Y′, the second over all closed points P ∈ Y′.
This follows by combining sequences (3.1) and (3.2) of [2]. If H3(Y′, µ) = 0, (1)
is exact. The first two groups in (1) are the Brauer groups respectively, of Y′

and L. The map a “measures the ramification” of a division algebra Λ over
L. The ramification divisor of Λ is the set of divisors ∆ where a[Λ] is nontriv-
ial. The group H1(K(∆), Q/Z) classifies the cyclic Galois extensions of K(∆) the
function field of ∆. The map r measures the ramification of cyclic extensions of
K(∆). Here µ(−1) =

⋃
n

Hom(µn, Q/Z). Let D be a central K-division algebra

and DL = D⊗ L, the restriction of D to L. We say that L splits the ramification of
D on C if there exists a desingularization f : Y′ → Y such that the class of DL in
the Brauer group B(L) is in the image of the Brauer group B(Y′) of Y′.

We proceed as in the proof of [4, Cor. 5]. Since R is a direct limit of étale
neighborhoods of (X, p), C is of finite type over R and D is a finite K-algebra,
we can find an étale neighborhood (U, p) of (X, p), and a nonsingular algebraic
surface C1 satisfying the following.

(1) There is a proper morphism C1 → U.
(2) C = C1 ×U Spec R
(3) If K1 is the function field of C1, then there is a central simple algebra D1

over K1 such that D = D1 ⊗K1 K.
It was shown in the text immediately preceding Theorem 1.6 of [6] and again
in [4, Prop. 3] that there exists a surface C2 and a proper birational morphism
C2 → C1 and a cyclic field extension L1/K1 of degree n such that L1 splits the
ramification of D1 on C2. Furthermore, if Y1 is the integral closure of C2 in L1,
then Y1 has only rational singularities. Let L denote the field KL1. Then L/K is
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cyclic of degree n. Set C′ = C2 ×U Spec R. Let Y denote the integral closure of C′

in L. By the construction of C2, Y has at most rational singularities and D ⊗ L is
unramified at each prime divisor on Y. There is a desingularization Y′ → Y and
D ⊗ L is unramified on Y′. That is, D ⊗ L represents a class in the image of the
Brauer group of Y′. It therefore suffices to show that Y′ has trivial Brauer group.
But Y′ → R satisfies the hypothesis of Theorem 3 (which is stated and proved
below), so D ⊗ L is split. It follows that D is a cyclic algebra of degree n. �

Theorem 3. Let R, C and K be as in Theorem 2. Assume moreover that π : C → Spec R
is proper, C is regular, that the fibers of π are one dimensional, and that the closed fiber
of π is a curve over k with normal crossings. Then Hq(C, µ) = 0 for all q ≥ 3 and
Hq(C, Gm) = 0 for all q ≥ 2.

Proof. Fix an integer n ≥ 2. By proper base change Hq(C, µn) ∼= Hq(C0, µn) for all
q ≥ 1, where C0 is the closed fiber of π (i.e. C0 = C ×R x0 where x0 is the closed
point of Spec R). Since C0 is a curve over x0 = Spec k, Hq(C0, µn) = 0 for q ≥ 3.
Taking the direct limit over all n gives Hq(C0, µ) = 0 for q ≥ 3. The sequence of
sheaves for the étale topology on C

(2)
x −−−−→ xn

1 −−−−→ µn −−−−→ Gm −−−−→ Gm −−−−→ 1

is exact by Kummer theory. The associated long exact sequence

(3) · · · → Hq(C, µn) → Hq(C, Gm) n−→ Hq(C, Gm) → . . .

shows that multiplication by n is an isomorphism on Hq(C, Gm) for q ≥ 3. Since
C is regular, by [7, II, p. 71] Hq(C, Gm) is a torsion group for all q ≥ 2. Therefore
Hq(C, Gm) = 0 for all q ≥ 3. Now we check that the Brauer group of C, B(C) =
H2(C, Gm), is trivial. We use the Kummer sequence (3) for q = 2

(4) 0 → Pic C
n Pic C

→ H2(C, µn) → n B(C) → 0

together with the fact that H2(C, µn) ∼= H2(C0, µn). We assume C0 is reduced,
since H2(C0, µn) ∼= H2((C0)red, µn). Write C0 = C1 ∪ C2 ∪ · · · ∪ Cs as a union of
nonsingular irreducible curves. We assume each component Cj is a nonsingu-
lar curve by the normal crossing hypothesis. By the Kummer sequence (4), the
known description of Pic Cj and the fact that B(Cj) = 0 (see for example [10, pp.
175–176]), it follows that H2(Cj, µn) ∼= Z/n is generated by the class of any prime
divisor on Cj. Now H2(C0, µn) ∼= äs

j=1 H2(Cj, µn) by Lemma 4 below. It suffices
to show that for each j = 1, . . . , s, there exists a divisor Dj on C such that Dj ∩ Cj
is a prime divisor on Cj and D ∩ Ci = ∅ if i 6= j. Let P0 be a prime divisor on Cj
not in the singular locus of C0 and pick any prime divisor Dj on C such that the
intersection multiplicity of Dj and Cj at the closed point P0 is 1. This is possible
since C and Cj are both regular at P0. The problem that one must worry about
is the possibility that Dj intersects C0 at some other point. We check that this
cannot happen since Dj is integral and R is henselian. Now ι : Dj ↪→ C is a closed
immersion, hence is proper. Furthermore Dj does not contain any component
Ci of C0. Also Dj is closed, so Dj does not contain Cη . Consider the composite
f = π ◦ ι : Dj → Spec R. Since the fibers of π are of dimension 1, f−1(x) is finite
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for each x in Spec R. So f is quasi-finite. Since f is a composite of proper mor-
phisms, f is proper. But a proper quasi-finite morphism is finite [10, p. 6] so Dj
is finite over R. Since R is henselian, any connected component of Dj ×R x0 gives
rise to a connected component of Dj. But Dj is integral, hence Dj ×R x0 = P0. So
n B(C) = 0 for each n > 1. �

Lemma 4. Let C be an algebraic curve over k embedded with normal crossings on
a surface S. If the irreducible components of C are C1, . . . , Cs, then H2(C, µn) ∼=
än

i=1 H2(Ci, µn).

Proof. Let D = C1 ä · · ·ä Cs denote the disjoint union of the curves C1, . . . , Cs.
There is an obvious finite projection π : D → C. Let σC denote the singular
locus of C and σD = π−1(σC) those points on D lying over σC. Since C has
only nodal singularities, the map π : σD → σC is 2-to-1. Let P be an element
of σC and consider the cohomology with supports in P, H2

P(C, µn). The strictly
local ring Oh

C,P is henselian with algebraically closed residue field k. Let U denote
SpecOh

C,P and let Ph denote the closed point of U. By excision [10, Cor. 1.28, p.
93] H2

P(C, µn) ∼= H2
Ph(U, µn). The long exact sequence for Ph ⊆ U is

(5) · · · → H1(U, µn) → H1(U − Ph, µn) → H2
Ph(U, µn) → H2(U, µn) → . . . .

The curve U consists of 2 nonsingular henselian curves U1, U2 crossing at the
closed point Ph. Each curve Ui is the prime spectrum of a henselian discrete
valuation ring with residue field k. So Hi(U, µn) = 0 for i > 0 and H1(U −
Ph, µn) = H1(U1 − Ph, µn) ⊕ H1(U2 − Ph, µn) ∼= Z/n ⊕ Z/n. So equation (5)
and excision show that H2

P(C, µn) ∼= (Z/n)(2). If Q is an element of σD, then
the argument above also shows that H2

Q(D, µn) ∼= Z/n. Since σC decomposes
into a finite number of points P, it follows that H2

σC(C, µn) decomposes into the
direct sum äP∈σC H2

P(C, µn) and similarly for σD. The long exact sequences of
cohomology with supports in σC and σD combined with the maps induced by π
yield the commutative diagram below.
(6)
H1(C − σC, µn) −−−−→ H2

σC(C, µn) −−−−→ H2(C, µn) −−−−→ H2(C − σC, µn)yα

yβ

yγ

yδ

H1(D − σD, µn) −−−−→ H2
σD(D, µn) −−−−→ H2(D, µn) −−−−→ H2(D − σD, µn)

Because π : C − σC
∼=−→ D − σD, α and δ are isomorphisms. The map β is an iso-

morphism by the above computations. Therefore γ is an isomorphism. Because
D is a disjoint union, the lemma follows. �

Corollary 5. Let R, C and K be as in Theorem 3. The sequence

0 → B(K) a−→
⊕

∆

H1(K(∆), Q/Z) r−→
⊕

P
µ(−1) → 0

is exact where the first summation is over all irreducible curves ∆ ⊆ C, the second over
all closed points P ∈ C.

Proof. Follows immediately from (1) and Theorem 3. �
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For any discrete valuation ring R with perfect residue field k and field of frac-
tions K, for each q ≥ 0 the natural map Hq(R, Gm) → Hq(k, Gm) is an isomor-
phism [7, III, p. 93]. For q = 2 this is the theorem of Azumaya. There is a
split-exact sequence

0 → Hq(k, Gm) → Hq(K, Gm) → Hq−1(k, Gm) → 0

for each q ≥ 2 [7, III, p. 93 and p. 188]. In particular, for q = 2, it follows that
the Brauer group of K decomposes into a direct sum of B(k) and H1(k, Q/Z).
The group H1(k, Q/Z) parametrizes the unramified cyclic Galois extensions of
K. Various other results along these same lines are derived in [3] and [11]. We
arrive at similar results for the Brauer group of a curve over K.

Theorem 6. Let R be a strictly local ring which is the henselization of a local ring Op,X
at a closed point p on a smooth curve X over k. Let π : C → Spec R be proper and
smooth of relative dimension 1. Let η be the generic point of Spec R and Cη = C ×R η.
Let x0 be the closed point of Spec R and C0 = C×R x0. Then the Brauer group B(Cη) is
isomorphic to H1(C0, Q/Z). Every Azumaya algebra over Cη of exponent n is split by a
cyclic Galois extension of degree n which descends to an unramified extension of C.

Proof. Since Spec R = {x0} ∪ {η} with {x0} closed and {η} open, we have C =
C0 ∪ Cη with C0 closed and Cη open. The long exact sequence of cohomology
with supports in C0 and coefficients in Gm is

(7) H0(C, Gm) → H0(Cη , Gm) → H1
C0

(C, Gm) →

H1(C, Gm) → H1(Cη , Gm) → H2
C0

(C, Gm) →
H2(C, Gm) → H2(Cη , Gm) → H3

C0
(C, Gm) → . . .

If t is a local parameter for R, then
H0(Cη , Gm)
H0(C, Gm)

= 〈t〉 and t vanishes with order

1 along C0. Since C0 is a principal divisor, Pic C ∼= Pic Cη . From Kummer theory
the diagram
(8)

0 −−−−→ H0(Cη , Gm)⊗Z/n −−−−→ H1(Cη , µn) −−−−→ n Pic Cη −−−−→ 0x x x∼=
0 −−−−→ H0(C, Gm)⊗Z/n −−−−→ H1(C, µn) −−−−→ n Pic C −−−−→ 0

commutes and has exact rows. Since H0(Cη , Gm)⊗Z/n ∼= 〈t〉/〈tn〉 and H0(C, Gm)⊗
Z/n = 0, we see from (8) that H1(Cη , µn) ∼= 〈t〉/〈tn〉 × H1(C, µn) and by proper
base change H1(C, µn) ∼= H1(C0, µn). From Theorem 3 we have Hq(C, Gm) = 0
for all q ≥ 2. From (7) it follows that Hq(Cη , Gm) ∼= Hq+1

C0
(C, Gm) for all q ≥ 2.

Since Spec R is a direct limit of étale neighborhoods U ↪→ X of the closed point
p ↪→ X, the morphism π : C → Spec R descends to a proper smooth morphism
C′ → U with a closed fiber C′

0 = C′ ×U p ∼= C0. By cohomological purity
(see [5]) Hq

C′0
(C′, Gm) ∼= Hq−2(C0, Q/Z) for all q ≥ 3. Taking the limit over

all such U ↪→ X yields Hq
C0

(C, Gm) ∼= Hq−2(C0, Q/Z) for all q ≥ 3. Therefore
H2(Cη , Gm) ∼= H1(C0, Q/Z), H3(Cη , Gm) ∼= H2(C0, Q/Z) ∼= µ and Hq(Cη , Gm) ∼=
Hq−1(C0, Q/Z) = 0 for all q ≥ 4. The isomorphism nH2(Cη , Gm) ∼= H1(C0, Z/n)
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is the Gysin map [10, p. 244]. Given any λ in H1(C, Z/n) there is a correspond-
ing λ0 in H1(C0, Z/n). Let λη denote the image of λ in the group H1(Cη , Z/n)
under the natural map. Let λη also denote the corresponding cyclic Galois cover
of Cη with group 〈σ〉. Using the cyclic Galois cover λη and the trivial factor set
t we form a cyclic crossed product algebra ∆(λ) = (λη/Cη , σ, t) which repre-
sents a class in n B(Cη). Consider the ramification divisor of ∆(λ) on C. Along
the divisor C0 of C, the ramification of ∆(λ) is the element λ0 of the group
H1(C0, Z/n). Therefore, the correspondence λ 7→ ∆(λ) induces an isomorphism
H1(C, Z/n) ∼= n B(Cη). Every Azumaya algebra over Cη whose Brauer class
is annihilated by n is Brauer equivalent to a cyclic crossed product of the form
(λη/Cη , σ, t), hence is split by λη for some λ. �
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