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ABSTRACT. Let K be the field of fractions of a curve over R where R is the
henselization of a regular local ring on an algebraic curve over a field which
is algebraically closed and has characteristic 0. Then K has the exponent = degree
property for division algebras. In fact every central finite dimensional K-division
algebra with exponent # is a cyclic algebra of degree n.

In this paper we continue to investigate the structure of division algebras D
finite dimensional over their center K. The motivating problem is to classify
those fields K that have the exponent = degree property for division algebras. We
say that K has the exponent = degree property if for any central K-division algebra
D the exponent of the class [D] in the Brauer group B(K) is equal to the degree
/(D : K) of the division algebra. Throughout this paper k is an algebraically
closed field of characteristic o.

Example 1. Some fields that are known to have the exponent = degree property
are listed below.

(1) A global field (an algebraic number field or a function field finitely gen-
erated of transcendence degree 1 over a finite field). This is classical.
(2) The quotient field of either (a) the henselization OZ,X or (b) the completion

Op,X at a closed point p on a normal surface X over k [1] or [6].
(3) The quotient field of a ring obtained by (a) henselizing or (b) completing
an affine surface over k along an integral curve [4].
In fact in each of these three examples, each division algebra D is split by a cyclic
extension K(a!/") for some & € K and n = exponent(D).

The purpose of this paper is to add to the list of Example 1 another class of
fields satisfying the exponent = degree property.

Let O x be the local ring at a regular point p on an algebraic curve X over the
field k. Then O, x is a local principal ideal domain, hence a discrete valuation
ring. The res1clue field of Oy x is k. Let R = (’)’; be the henselization of Oy, x.
Consider an affine algebraic curve C over R. Following [9], C is an affine scheme
together with a structure morphism 77 : C — SpecR such that 77 is flat and of
finite type, the fibers of 7 are algebraic curves, and C is connected. Then 7 has
2 fibers. The closed fiber 7w : Cy — x( over the closed point xy of SpecR is an
algebraic curve over k. The open fiber 7v : C;, — 7 over the open point of Spec R
is an algebraic curve over the quotient field of R. Assume that C;, is integral, with
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K = K(Cy) the field of fractions. Our main result is that K has the exponent =
degree property for division algebras.

Theorem 2. Let R, C and K be as above and let D be a central finite dimensional K-
division algebra with exponent(D) = n. Then D is a cyclic algebra of degree n.

Proof. The proof is in the flavor of those used by [6] and [4].

Since C is Spec S for an algebra S of finite type over R, we can assume C is a
closed subscheme of affine space A%} over R. Without changing K we can replace
C with a projective completion over R. If necessary, we can also desingularize
C. Therefore assume that 7t : C — SpecR is proper, that the open fiber is a non-
singular integral curve C; over the quotient field of R. By Embedded Resolution
of Curves in Surfaces [8, p. 391], we can assume that the closed fiber (Cp),e4 is
a divisor over k with normal crossings. That is, write the reduced closed fiber
(Co)req as a union C; UCy U - - - U Cs of irreducible curves. By the normal crossing
hypothesis we assume each component C; is a nonsingular curve and that (Cp) g
has at most ordinary double points as singularities.

Let L/K be a finite extension of fields and Y — C the integral closure of C in
L. Let f: Y — Y be any desingularization of Y. That is, Y’ is nonsingular and f
is a proper birational morphism. There is a Complex

(1) 0—B(Y) - B(L @Hl ),Q/Z) @y 1) S HY(Y,u) =0

which is exact except possibly at the term @ H!(K(A),Q/Z). The first summa-
tion is over all irreducible curves A C Y, the second over all closed points P € Y'.
This follows by combining sequences (3.1) and (3.2) of [2]. If H3(Y,u) = 0, (1)
is exact. The first two groups in (1) are the Brauer groups respectively, of Y’
and L. The map a “measures the ramification” of a division algebra A over
L. The ramification divisor of A is the set of divisors A where a[A] is nontriv-
ial. The group H'(K(A),Q/Z) classifies the cyclic Galois extensions of K(A) the
function field of A The map r measures the ramification of cyclic extensions of
K(A). Here u(— UHom Un,Q/Z). Let D be a central K-division algebra

and Dy = D® L, the restriction of D to L. We say that L splits the ramification of
D on C if there exists a desingularization f : Y/ — Y such that the class of Dy in
the Brauer group B(L) is in the image of the Brauer group B(Y’) of Y'.

We proceed as in the proof of [4, Cor. 5]. Since R is a direct limit of étale
neighborhoods of (X, p), C is of finite type over R and D is a finite K-algebra,
we can find an étale neighborhood (U, p) of (X, p), and a nonsingular algebraic
surface C; satisfying the following.

(1) There is a proper morphism C; — U.

(2) C=C; xySpecR

(3) If K; is the function field of Cj, then there is a central simple algebra D,
over K; such that D = D ®g, K.

It was shown in the text immediately preceding Theorem 1.6 of [6] and again
in [4, Prop. 3] that there exists a surface C; and a proper birational morphism
Cy; — Cy and a cyclic field extension Lj/K; of degree n such that L, splits the
ramification of D; on C,. Furthermore, if Y7 is the integral closure of C; in L,
then Y7 has only rational singularities. Let L denote the field KL;. Then L/K is
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cyclic of degree n. Set C' = C, x; SpecR. Let Y denote the integral closure of C’
in L. By the construction of C;, Y has at most rational singularities and D ® L is
unramified at each prime divisor on Y. There is a desingularization Y’ — Y and
D ® L is unramified on Y’. That is, D ® L represents a class in the image of the
Brauer group of Y. It therefore suffices to show that Y’ has trivial Brauer group.
But Y/ — R satisfies the hypothesis of Theorem 3 (which is stated and proved
below), so D ® L is split. It follows that D is a cyclic algebra of degree n. O

Theorem 3. Let R, C and K be as in Theorem 2. Assume moreover that 7t : C — Spec R
is proper, C is regqular, that the fibers of 7t are one dimensional, and that the closed fiber
of 7 is a curve over k with normal crossings. Then HT(C,u) = 0 for all ¢ > 3 and
H1(C,Gy) =0 forall g > 2.

Proof. Fix an integer n > 2. By proper base change H7(C, i) = H7(Cy, jt) for all
g > 1, where Cj is the closed fiber of 7t (i.e. Cp = C X x9 where xq is the closed
point of SpecR). Since Cy is a curve over xy = Speck, H1(Co, pin) = 0 for g > 3.
Taking the direct limit over all n gives H7(Cy, ) = 0 for g4 > 3. The sequence of
sheaves for the étale topology on C

x — x"

(2)
1 Un Gy Gnm 1

is exact by Kummer theory. The associated long exact sequence

(3) -oo — HY(C, up) — H1(C,Gp) = HI(C,Gp) — ...

shows that multiplication by 7 is an isomorphism on H7(C, Gy,) for g > 3. Since
C is regular, by [7, II, p. 71] H1(C, G;,) is a torsion group for all ¢ > 2. Therefore
H1(C,Gy,) = 0 for all g > 3. Now we check that the Brauer group of C, B(C) =
H?(C,Gp), is trivial. We use the Kummer sequence (3) for g = 2

PicC
@) e
together with the fact that H?(C, u,) = H?(Co, ptn). We assume Cy is reduced,
since H?(Co, ptn) = H?((Co)yed, in)- Write Cg = C;UCo U - -- U Cs as a union of
nonsingular irreducible curves. We assume each component C; is a nonsingu-
lar curve by the normal crossing hypothesis. By the Kummer sequence (4), the
known description of Pic C; and the fact that B(C;) = 0 (see for example [10, pp.

— H?*(C,ptn) — nB(C) = 0

175-176)), it follows that H?(C i, Un) = Z/n is generated by the class of any prime
divisor on C;. Now H?(C, pin) = ?:1 H?(Cj, pin) by Lemma 4 below. It suffices
to show that for each j =1,...,s, there exists a divisor Dj on C such that Dj N Cj
is a prime divisor on C; and DN C; = @ if i # j. Let Py be a prime divisor on C;
not in the singular locus of Cy and pick any prime divisor D; on C such that the
intersection multiplicity of D; and C; at the closed point I is 1. This is possible
since C and C; are both regular at Py. The problem that one must worry about
is the possibility that D; intersects Cp at some other point. We check that this
cannot happen since D; is integral and R is henselian. Now ¢ : D; — C is a closed
immersion, hence is proper. Furthermore D; does not contain any component
Ci of Co. Also Dj is closed, so D; does not contain C;. Consider the composite

f =mou:Dj— SpecR. Since the fibers of 7 are of dimension 1, f ~1(x) is finite
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for each x in SpecR. So f is quasi-finite. Since f is a composite of proper mor-
phisms, f is proper. But a proper quasi-finite morphism is finite [10, p. 6] so D;
is finite over R. Since R is henselian, any connected component of D; X xo gives
rise to a connected component of D;. But D; is integral, hence D; xgxo = Py. So
#»B(C) =0 for each n > 1. O

Lemma 4. Let C be an algebraic curve over k embedded with normal crossings on
a surface S. If the irreducible components of C are Cy,...,Cs, then H?(C,puy) =
;'1:1 Hz(ci/ V”)

Proof. Let D = Cy]]:--11Cs denote the disjoint union of the curves Cy, ..., Cs.
There is an obvious finite projection 7w : D — C. Let ¢C denote the singular
locus of C and ¢D = 7~ 1(cC) those points on D lying over ¢C. Since C has
only nodal singularities, the map 7 : ¢D — ¢C is 2-to-1. Let P be an element
of ¢C and consider the cohomology with supports in P, H3(C, jix). The strictly
local ring Oé p is henselian with algebraically closed residue field k. Let U denote
Spec OIé,P and let P" denote the closed point of U. By excision [10, Cor. 1.28, p.

93] H3(C, pn) = le;h (U, ). The long exact sequence for P C U is
G Hl(U,yn) - Hl(u* Phrﬂn) - szvh(urﬂn) - HZ(U/W) EEREE

The curve U consists of 2 nonsingular henselian curves U, Uy crossing at the
closed point P". Each curve U; is the prime spectrum of a henselian discrete
valuation ring with residue field k. So H!(U,p,) = 0 for i > 0 and H'(U —
P" uy) = HY(U; — P", u,) @ HY(Uy — P",uy) = Z/n @ Z/n. So equation (5)
and excision show that H3(C,p,) = (Z/ n)<2). If Q is an element of oD, then
the argument above also shows that Hé(D, Hn) = Z/n. Since ¢C decomposes
into a finite number of points P, it follows that H2-(C, u4) decomposes into the
direct sum ] [pe,c H3(C, un) and similarly for ¢D. The long exact sequences of
cohomology with supports in ¢C and oD combined with the maps induced by 7
yield the commutative diagram below.

(6)
HY(C—0C,py) —— ch(C,Vn) —— H*(C,pn) —— H?*(C—0C,pn)

Js I I Js
H'(D — 0D, pn) —— HZp(D, pn) —— H*(D,pn) —— H*(D — 0D, pin)

Because 77 : C — 0C — D — oD, x and & are isomorphisms. The map S is an iso-
morphism by the above computations. Therefore < is an isomorphism. Because
D is a disjoint union, the lemma follows. O

Corollary 5. Let R, C and K be as in Theorem 3. The sequence
0 — B(K) - P H'(K(A),Q/Z) - Pu(-1)—0
A P

is exact where the first summation is over all irreducible curves A C C, the second over
all closed points P € C.

Proof. Follows immediately from (1) and Theorem 3. O
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For any discrete valuation ring R with perfect residue field k and field of frac-
tions K, for each g > 0 the natural map H(R,G,;,) — HY(k,G,) is an isomor-
phism [7, III, p. 93]. For q = 2 this is the theorem of Azumaya. There is a
split-exact sequence

0 — H(k,Gy) — HY(K,Gp) — HT71(k,Gp) — 0
for each g > 2 [7, IIl, p. 93 and p. 188]. In particular, for g = 2, it follows that
the Brauer group of K decomposes into a direct sum of B(k) and H'(k,Q/Z).
The group H 1(k,(Q /Z) parametrizes the unramified cyclic Galois extensions of

K. Various other results along these same lines are derived in [3] and [11]. We
arrive at similar results for the Brauer group of a curve over K.

Theorem 6. Let R be a strictly local ring which is the henselization of a local ring O, x
at a closed point p on a smooth curve X over k. Let T : C — SpecR be proper and
smooth of relative dimension 1. Let 17 be the generic point of Spec R and C,; = C Xg 1.
Let xq be the closed point of Spec R and Cy = C X g xg. Then the Brauer group B(Cy) is
isomorphic to H'(Cy,Q/Z). Every Azumaya algebra over Cy of exponent n is split by a
cyclic Galois extension of degree n which descends to an unramified extension of C.

Proof. Since SpecR = {xp} U {5} with {xo} closed and {1} open, we have C =
Co U Cy with Cy closed and C; open. The long exact sequence of cohomology
with supports in Cy and coefficients in G, is

(7) H%(C,Gm) — H'(Cy,Gn) — HE,(C,Gum) —
H'(C,Gn) — H'(Cy,Gw) — HZ (C,Gu) —
H2(C,Gpn) — H*(Cy,Gp) — HZ (C,Gm) — ...

H%(Cy,Gn)

HO(C,Gw)
1 along Cy. Since Cy is a principal divisor, Pic C = Pic C;. From Kummer theory
the diagram

(8)
0 —— HO(CW,Gm)(XJZ/n — Hl(CU,yn) —— pPicC; —— 0

I [ =

0 —— H°%C,Gn)®Z/n —— HY(C,pty) —— ,PicC —— 0

commutes and has exact rows. Since H(Cy, G) ® Z/n = (t) /(") and H*(C,Gy) ®
Z/n = 0, we see from (8) that H(Cy, un) = (t)/ (") x H'(C, ) and by proper
base change H'(C, u,) = H'(Co, tn). From Theorem 3 we have H7(C,G,,) = 0
for all g > 2. From (7) it follows that H1(C;, G;;) = HZOH(C, Gy,) for all g > 2.
Since SpecR is a direct limit of étale neighborhoods U < X of the closed point
p — X, the morphism 77 : C — Spec R descends to a proper smooth morphism
C' — U with a closed fiber Cj = C' xyp = Cp. By cohomological purity
(see [5]) Hq(,)(C’,Gm) >~ H172(Co,Q/Z) for all g > 3. Taking the limit over

all such U — X yields H{, (C,Gw) = H17%(Co,Q/Z) for all q > 3. Therefore
H?(Cy, Gm) = HY(Co,Q/Z), H*(Cy, Gyn) = H?*(Cy,Q/Z) = y and H1(Cy, Gpy) =
H171(Cy,Q/Z) = 0 for all g > 4. The isomorphism nHz(C,],Gm) =~ HY(Cy,Z/n)

If t is a local parameter for R, then = (t) and t vanishes with order
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is the Gysin map [10, p. 244]. Given any A in H!(C,Z/n) there is a correspond-
ing Ao in H'(Cy,Z/n). Let A, denote the image of A in the group H'(C,, Z/n)
under the natural map. Let A, also denote the corresponding cyclic Galois cover
of C; with group (). Using the cyclic Galois cover A, and the trivial factor set
t we form a cyclic crossed product algebra A(A) = (A,/Cy,0,t) which repre-
sents a class in , B(C;). Consider the ramification divisor of A(A) on C. Along
the divisor Cy of C, the ramification of A(A) is the element Ay of the group
H'(Cy,Z/n). Therefore, the correspondence A — A(A) induces an isomorphism
HY(C,Z/n) = ,B(Cy). Every Azumaya algebra over C, whose Brauer class
is annihilated by n is Brauer equivalent to a cyclic crossed product of the form
(Ay/Cy, 0, t), hence is split by Ay for some A. O
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