# A PROOF OF THEOREM 14.2.1 (BASS' THEOREM) OF "SEPARABLE ALGEBRAS"

### BY T. J. FORD

## GRADUATE STUDIES IN MATHEMATICS, VOL. 183, 2017 July 18, 2018

#### TIMOTHY J. FORD

The purpose of this note is to prove the following theorem of Bass, which is stated without proof in [2, Theorem 14.2.1]. The proof given in [1, Proposition (4.6), p. 476] is K-theoretic. The proof given below is based on the method suggested in the paragraph immediately preceding [3, Theorem III.17] and utilizes only theorems proven in [2]. The main idea for the proof is the following lemma.

**Lemma 0.1.** Let R be a ring and M a left R-module. For any n > 0, the assignment

$$\operatorname{Hom}_R(M,M) \xrightarrow{\Delta} \operatorname{Hom}_R(M^{(n)},M^{(n)})$$

that maps a homomorphism  $\varphi$  in  $\operatorname{Hom}_R(M,M)$  to the corresponding diagonal homomorphism  $\Delta(\varphi) = \bigoplus_{i=1}^n \varphi$  in  $\operatorname{Hom}_R(M^{(n)},M^{(n)})$  defines a monomorphism of rings. If R is commutative,  $\Delta$  is an R-algebra homomorphism.

*Proof.* The proof is left to the reader.

**Theorem 0.2.** (H. Bass) Let R be a commutative ring and M an R-module. Then M is an R-progenerator if and only if there exists an R-module P such that  $P \otimes_R M \cong R^{(s)}$  for some s > 0.

*Proof.* If there exists an R-module P such that  $P \otimes_R M \cong R^{(s)}$ , then by [2, Proposition 1.3.4], both M and P are R-progenerators.

Assume M is an R-progenerator. First we show how to reduce to the case where M has constant rank. Assume M does not have constant rank. Let  $e_1, \ldots, e_t$  be the structure idempotents of M in R ([2, Corollary 2.3.6]). Write  $R_i$  for  $Re_i$  and  $M_i$  for  $Me_i$ . Then  $R = R_1 \oplus \cdots \oplus R_t$ ,  $M = M_1 \oplus \cdots \oplus M_t$ , and  $M_i$  is an  $R_i$ -progenerator of constant rank. Assume there exists an  $R_i$ -module  $P_i$  such that  $M_i \otimes_{R_i} P_i \cong R_i^{(s_i)}$  for some  $s_i > 0$ . Let s be the least common multiple of  $\{s_1, \ldots, s_t\}$ . Then  $M \otimes_R \left(P_1^{(s/s_1)} \oplus \cdots \oplus P_t^{(s/s_t)}\right) \cong R^{(s)}$ .

Assume from now on that M has constant rank r. If M is free, then there is nothing to prove. Assume N is an R-progenerator such that  $M \oplus N$  is free of rank rn and  $n \geq 2$ . Let S be a commutative faithfully flat R-algebra such that  $M \otimes_R S$  and  $N \otimes_R S$  are isomorphic to the free S-modules  $S^{(r)}$  and  $S^{(rn-r)}$ , respectively. Then  $(M \oplus N) \otimes_R S$  can be written as a direct sum  $\bigoplus_{i=1}^n S^{(r)}$ , which is isomorphic to the direct sum  $(M \otimes_R S)^{(n)}$ . Applying Lemma 0.1 to this direct sum decomposition defines the homomorphism  $\Delta : \operatorname{Hom}_S(M \otimes_R S, M \otimes_R S) \to \operatorname{Hom}_S((M \oplus N) \otimes_R S, (M \oplus N) \otimes_R S)$ . By [2, Proposition 7.1.10],  $\operatorname{Hom}_R(M, M)$  is an Azumaya R-algebra, hence it is an R-progenerator [2, Theorem 7.1.4] and the natural

1

map  $\operatorname{Hom}_R(M,M) \to \operatorname{Hom}_R(M,M) \otimes_R S$  is one-to-one. By [2, Proposition 2.4.1],  $\operatorname{Hom}_R(M,M) \otimes_R S$  is isomorphic to  $\operatorname{Hom}_S((M \oplus N) \otimes_R S, (M \oplus N) \otimes_R S)$ . Similarly, the natural map  $\operatorname{Hom}_R(M \oplus N, M \oplus N) \to \operatorname{Hom}_S((M \oplus N) \otimes_R S, (M \oplus N) \otimes_R S)$  is one-to-one. Consider the diagram

of homomorphisms of R-algebras. Next we show that  $\Delta$  restricts to a homomorphism phism  $\delta: \operatorname{Hom}_R(M,M) \to \operatorname{Hom}_R(M \oplus N, M \oplus N)$ . The proof is by faithfully flat descent. Start with a basis  $\{b_1,\ldots,b_r\}$  for the S-module  $M\otimes_R S$  and extend it to a basis for  $(M \oplus N) \otimes_R S$ . With respect to these bases, interpret  $\text{Hom}_S(M \otimes_R S, M \otimes_R S)$ as r-by-r matrices over S (denoted  $M_r(S)$ ) and  $\operatorname{Hom}_S((M \oplus N) \otimes_R S, (M \oplus N) \otimes_R S)$ as rn-by-rn matrices over S (denoted  $M_{rn}(S)$ ). We see that  $\Delta: M_r(S) \to M_{rn}(S)$ sends a matrix A to the block diagonal matrix  $A \oplus \cdots \oplus A$ . Let  $e_0 : S \to S \otimes_R S$  be defined by  $s \mapsto 1 \otimes s$ . Likewise, let  $e_1: S \to S \otimes_R S$  be defined by  $s \mapsto s \otimes 1$ . Then each  $e_i$  is an R-algebra homomorphism. Let  $\mathfrak{F}_i$  be the functor from S-modules to  $S \otimes_R S$ -modules induced by tensoring with  $e_i$ . From the description of  $\Delta$  above we see that  $\mathfrak{F}_0(\Delta)$  is equal to  $\mathfrak{F}_1(\Delta)$ . By faithfully flat descent ([2, Proposition 5.3.4]), there exists an R-algebra homomorphism  $\delta$  such that diagram (1) commutes. By the homomorphism  $\delta$ , we can view  $\operatorname{Hom}_R(M,M)$  as a ring of endomorphisms of the R-module  $M \oplus N$ . By the Morita Theorem ([2, Theorem 1.5.2]), there is an R-module P and a left  $\operatorname{Hom}_R(M,M)$ -module isomorphism  $\sigma: P \otimes_R M \to M \oplus N$ . Since  $\operatorname{Hom}_R(M,M)$  is an R-algebra,  $\sigma$  is an R-module isomorphism. Since  $M \oplus N$ is a free R-module of rank s = rn, we are finished. 

### References

- Hyman Bass, Algebraic K-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 (40 #2736)
- [2] Timothy J. Ford, Separable algebras, Graduate Studies in Mathematics, vol. 183, American Mathematical Society, Providence, RI, 2017. MR 3618889
- [3] Bernard R. McDonald, Linear algebra over commutative rings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 87, Marcel Dekker, Inc., New York, 1984. MR 769104 (86d:13008)

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431

Email address: ford@fau.edu