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The purpose of this note is to prove the following theorem of Bass, which is stated
without proof in [2, Theorem 14.2.1]. The proof given in [1, Proposition (4.6), p.
476] is K-theoretic. The proof given below is based on the method suggested in the
paragraph immediately preceding [3, Theorem III.17] and utilizes only theorems
proven in [2]. The main idea for the proof is the following lemma.

Lemma 0.1. Let R be a ring and M a left R-module. For any n > 0, the assign-
ment

HomR(M,M)
∆−→ HomR(M (n),M (n))

that maps a homomorphism ϕ in HomR(M,M) to the corresponding diagonal ho-
momorphism ∆(ϕ) = ⊕ni=1ϕ in HomR(M (n),M (n)) defines a monomorphism of
rings. If R is commutative, ∆ is an R-algebra homomorphism.

Proof. The proof is left to the reader. �

Theorem 0.2. (H. Bass) Let R be a commutative ring and M an R-module. Then
M is an R-progenerator if and only if there exists an R-module P such that P ⊗R
M ∼= R(s) for some s > 0.

Proof. If there exists an R-module P such that P ⊗RM ∼= R(s), then by [2, Propo-
sition 1.3.4], both M and P are R-progenerators.

Assume M is an R-progenerator. First we show how to reduce to the case where
M has constant rank. Assume M does not have constant rank. Let e1, . . . , et
be the structure idempotents of M in R ([2, Corollary 2.3.6]). Write Ri for Rei
and Mi for Mei. Then R = R1 ⊕ · · · ⊕ Rt, M = M1 ⊕ · · · ⊕ Mt, and Mi is
an Ri-progenerator of constant rank. Assume there exists an Ri-module Pi such

that Mi ⊗Ri
Pi ∼= R

(si)
i for some si > 0. Let s be the least common multiple of

{s1, . . . , st}. Then M ⊗R
(
P

(s/s1)
1 ⊕ · · · ⊕ P (s/st)

t

) ∼= R(s).
Assume from now on that M has constant rank r. If M is free, then there is

nothing to prove. Assume N is an R-progenerator such that M ⊕N is free of rank
rn and n ≥ 2. Let S be a commutative faithfully flat R-algebra such that M ⊗R S
and N ⊗R S are isomorphic to the free S-modules S(r) and S(rn−r), respectively.
Then (M ⊕N)⊗R S can be written as a direct sum ⊕ni=1S

(r), which is isomorphic
to the direct sum (M ⊗R S)(n). Applying Lemma 0.1 to this direct sum decom-
position defines the homomorphism ∆ : HomS(M ⊗R S,M ⊗R S) → HomS((M ⊕
N) ⊗R S, (M ⊕ N) ⊗R S). By [2, Proposition 7.1.10], HomR(M,M) is an Azu-
maya R-algebra, hence it is an R-progenerator [2, Theorem 7.1.4] and the natural
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map HomR(M,M)→ HomR(M,M)⊗R S is one-to-one. By [2, Proposition 2.4.1],
HomR(M,M)⊗RS is isomorphic to HomS((M⊕N)⊗RS, (M⊕N)⊗RS). Similarly,
the natural map HomR(M ⊕N,M ⊕N)→ HomS((M ⊕N)⊗R S, (M ⊕N)⊗R S)
is one-to-one. Consider the diagram

HomS(M ⊗R S,M ⊗R S)
∆ // HomS((M ⊕N)⊗R S, (M ⊕N)⊗R S)

HomR(M,M)⊗R S

∼=

OO

HomR(M ⊕N,M ⊕N)⊗R S

∼=

OO

HomR(M,M)

⊆

OO

∃δ // HomR(M ⊕N,M ⊕N)

⊆

OO
(1)

of homomorphisms of R-algebras. Next we show that ∆ restricts to a homomor-
phism δ : HomR(M,M)→ HomR(M⊕N,M⊕N). The proof is by faithfully flat de-
scent. Start with a basis {b1, . . . , br} for the S-module M⊗RS and extend it to a ba-
sis for (M⊕N)⊗RS. With respect to these bases, interpret HomS(M⊗RS,M⊗RS)
as r-by-r matrices over S (denoted Mr(S)) and HomS((M⊕N)⊗RS, (M⊕N)⊗RS)
as rn-by-rn matrices over S (denoted Mrn(S)). We see that ∆ : Mr(S)→Mrn(S)
sends a matrix A to the block diagonal matrix A⊕· · ·⊕A. Let e0 : S → S⊗R S be
defined by s 7→ 1⊗ s. Likewise, let e1 : S → S ⊗R S be defined by s 7→ s⊗ 1. Then
each ei is an R-algebra homomorphism. Let Fi be the functor from S-modules to
S⊗R S-modules induced by tensoring with ei. From the description of ∆ above we
see that F0(∆) is equal to F1(∆). By faithfully flat descent ([2, Proposition 5.3.4]),
there exists an R-algebra homomorphism δ such that diagram (1) commutes. By
the homomorphism δ, we can view HomR(M,M) as a ring of endomorphisms of
the R-module M ⊕ N . By the Morita Theorem ([2, Theorem 1.5.2]), there is an
R-module P and a left HomR(M,M)-module isomorphism σ : P ⊗RM →M ⊕N .
Since HomR(M,M) is an R-algebra, σ is an R-module isomorphism. Since M ⊕N
is a free R-module of rank s = rn, we are finished. �
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