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In [5, II] Grothendieck suggested the problem of finding a normal algebraic surface, such that
the kernel of the map Br(X)→ Br(K) is non-trivial where K is the function field of X [5, page 75]

Tim Ford told us about a possible construction in characteristic zero. Some details still have to
be worked out. Here we present an example in characteristic p > 5.

Let
W : zp = ∑

0≤i+ j≤p
Ti jxiy j

be a generic Zariski surface p > 5. It was shown in [1], [2] that

ClW = 0

Nevertheless, W is singular, it has p2−3p + 3 singularities all rational and of type Ap−1 [3]. Let
φ be one such singularity. Let OW ,φ be the local ring of φ in W , X = SpecOW ,φ , ClX = 0.

Let Oh
W ,φ be the strict henselization of OW ,φ . Set

Xh = SpecOh
W ,φ .

Then
ClXh = Z/pZ

by Lipman [3].

Copyright ©1990 by Marcel Dekker, Inc.
3685



3686 BLASS, BLASS AND FORD
Let U = X−{φ} and Uh = Xh−{φ}. We consider the commutative diagram

(1)
PicX ClXy=

y=

H1(X ,Gm) −−−→ H1(U ,Gm) −−−→ H2
φ
(X ,Gm) −−−→ H2(X ,Gm) −−−→ H2(U ,Gm)y y ∼=

yγ

y
H1(Xh,Gm) −−−→ H1(Uh,Gm) −−−→ H2

φ
(Xh,Gm) −−−→ H2(Xh,Gm)y=

y=
y=

PicXh = 0 ClXh 0
with exact rows. The top and bottom rows of (1) are exact by [4, III, 1.25]. The map γ in (1) is the
excision isomorphism [4, III, 1.28].

Take a non-zero element α ∈ ClXh. Using (1), we obtain a non-zero element of Br(X) which
is a subgroup of the torsion subgroup of H2(X ,Gm). Moreover α maps to zero in Br(U) thus in
Br(K). Hence the element α is in Ker

(
Br

(
OW ,φ

)
→ Br(K)

)
.

Br
(
OW ,φ

)
= lim−→

φ∈V⊂W
Br(V )

Hence the element α lives in Br(V ) for some V . This answers the question or rather mild challenge
raised by Grothendieck in [5, II]. A similar example could be constructed in characteristic p = 3
using Lang [6]. The question remains open in characteristic two, and in characteristic zero.
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