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TIMOTHY J. FORD

(05/29/2025) On page 568, on line 10 of the proof of Theorem 14.1.9, Part (1),
change: “Lemma 7.1.1” to: “Corollary 7.1.9”

(05/28/2025) As mentioned below in the errata dated (07/31/2023), the proof of The-
orem 14.1.9 (3) is incomplete. To correct the proof, insert the following
example and corollary in Section 12.4, and the following proof of Theo-
rem 14.1.9 (3).

Example 12.4.6. Let S be a commutative ring, A an S-algebra, G a finite
group of automorphisms of S, and R a subring of SG. Suppose G acts as
a group of inner automorphisms of A. That is, suppose θ : G → A∗ is a
homomorphism of groups. For each σ ∈ G, write θσ instead of θ(σ). Then
for all σ, τ in G, θστ = θσθτ . So θ induces a homomorphism G → Inn(A).
Using θ we make A into a left ∆(S/R,G, 1)-module. If ∆(S/R,G, 1) =⊕

σ∈G Suσ, then for all x in A and s in S, we have (suσ)x = s
(
θσxθ

−1
σ

)
uσ.

Corollary 12.4.7. Let S/R be a Galois extension with finite group G. Let
A be an S-algebra. Assume G acts on A as a group of R-algebra auto-
morphisms and that the action is S-semilinear. Let B1 = AG be the fixed
ring under this G-action. As in Example 12.4.6, let θ : G → A∗ be a ho-
momorphism of groups. Using θ and the first G-action, define a second
G-action on A by the rule: σ · x = θσσ(x)θ

−1
σ , for all σ ∈ G and x ∈ A.

Let B2 = AG be the the fixed ring under this second G-action. Then B1

and B2 are Brauer equivalent.

Proof. Consider the R-algebra

∆1 = B1 ⊗R ∆(S/R,G, 1)

= AG ⊗R
⊕
σ∈G

Suσ

=
⊕
σ∈G

(AG ⊗R S)uσ

=
⊕
σ∈G

Auσ

where uσx = σ(x)uσ for all σ ∈ G and x ∈ A. For the second G-action
on A, we repeat this construction. To distinguish them, we use vσ for the
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basis elements in the trivial crossed product.

∆2 = B2 ⊗R ∆(S/R,G, 1) =
⊕
σ∈G

(AG ⊗R S)vσ =
⊕
σ∈G

Avσ

where vσx = θσσ(x)θ
−1
σ vσ for all σ ∈ G and x ∈ A. Define ϕ : ∆2 → ∆1 by

mapping the basis element vσ to θσuσ. Since {θσ | σ ∈ G} are units in A,
ϕ is a bijection. To see that ϕ is multiplicative, note that for each x ∈ A
we have

(θσuσ)x =
(
θσσ(x)θ

−1
σ

)
(θσuσ).

From this we see that ϕ is an R-algebra isomorphism. Since S/R is G-
Galois, ∆(S/R,G, 1) is a trivial R-Azumaya algebra. Hence B1 is Brauer
equivalent to B2. □

Proof of Theorem 14.1.9 (3). Since A is R-Azumaya, TnR(A) is R-Azumaya.
Let AS = A⊗RS. By the proof of Part (1), TnR(AS) is Azumaya over TnR(S)
and TnR(AS)f is Azumaya over TnR(S)f . Since S/R is a Galois extension,
by Theorem 7.6.1, TnR(A) → TnR(AS) is one-to-one. Therefore we identify
TnR(A) with its image in TnR(A)f ⊆ TnR(AS)f ⊆ TnR(AS). By change of base,
TnR(A)⊗R TnR(S)f is an Azumaya TnR(S)f -algebra. The homomorphism

TnR(A)⊗R TnR(S)f → TnR(AS)f

of Exercise 1.3.8 is one-to-one. Counting the ranks on both sides shows
that the map is onto. The G-action on TnR(AS)f is the extension of the
G-action on TnR(S)f . On TnR(A), the group G permutes the factors in
the tensor algebra. By Theorem 11.2.2, G acts as a group of inner auto-
morphisms of TnR(A). We are in the context of Corollary 12.4.7. Hence

(TnR(A)⊗R TnR(S)f)
G
= TnR(A) is Brauer equivalent to CorSR(AS). □

(05/28/2025) As mentioned below in the errata dated (07/31/2023), the proof of Theo-
rem 14.1.8 (3) is incomplete. At the end of the proof of Theorem 14.1.8 (3),
insert the following:

Proof of Theorem 14.1.8 (3). Let M be an invertible R-module and write
MS forM⊗RS. As in Definition 14.1.1, TnR(S)f is Galois over R with group
G = Σn. The R-module TnR(MS)f is projective of rank n!. The G-module
action on TnR(S)f extends to a G-action on TnR(MS)f . Now consider the
R-module TnR(M)⊗R TnR(S)f , which is also projective of rank n!. Define

TnR(M)⊗R TnR(S)f
θ−→ TnR(MS)f

by mapping a typical generator (x1 ⊗ · · · ⊗ xn) ⊗ (y1 ⊗ · · · ⊗ yn)f in the
left hand side to ((x1 ⊗ y1)⊗ · · · ⊗ (xn ⊗ yn)) f in TnR(MS)f . Then θ is
an R-module homomorphism. Since θ is onto, θ is an isomorphism. The
G-module action on TnR(MS)f induces a G-module action on TnR(M) ⊗R
TnR(S)f . On the factor TnR(S)f , it is the usual G-action which permutes
the factors in the tensor product. Likewise, on the factor TnR(M), the
G-action permutes the factors in the tensor product. Since TnR(M) is an
invertible R-module, by Lemma 2.6.7, the group of R-automorphisms is
isomorphic to GL1(R) = R∗. Hence G acts trivially on TnR(M). We



ERRATA TO “SEPARABLE ALGEBRAS” 3

see that (TnR(M)⊗R TnR(S)f)
G ∼= TnR(M), and by θ, this is isomorphic

to CorSR(MS). □

(05/27/2025) On p. 573, Theorem 14.1.13, Part (2) should be assumed false. The proof
as given is based on Theorem 14.1.5, Part (3) which is false in general.

(05/20/2025) On p. 559, in Theorem 14.1.3, Part (2),
change: “T and S are algebras over Q” to: “T and R are algebras over

Q”

(05/20/2025) On p. 562, in Theorem 14.1.5, Part (2),
change: “T and S are algebras over Q” to: “T and R are algebras over

Q”

(05/11/2025) On p. 197, in the line immediately above Corollary 5.5.9,
change: “proves” to: “prove”

(05/09/2025) On p. 168, in the proof of Lemma 5.1.16,
change: “

∑
ai

= 0” to: “
∑
i ai = 0”

(05/08/2025) On p. 390, in the proof of Theorem 10.3.5 (1) – (4),
change: “Proposition 4.4.1” to: “Theorem 4.4.1”

(04/23/2025) On p. 320, in the proof of Theorem 8.4.5 (2),
change: “Theorem 8.4.3” to: “Proposition 8.4.3”

(08/16/2024) On p. 475, in the proof of Corollary 12.7.4,
change: “Corollary 13.2.22” to: [DF04, Corollary 13.2.22]

(11/09/2023) I am grateful to Philippe Gille and M. Bruneaux for pointing this out to me.
In the exact sequence of Proposition 10.4.9, the map ρ is not necessarily one-
to-one. In the statement of Proposition 10.4.9, change the exact sequence
of pointed sets to:

Ȟ
1

et(R,Gm)
ρ−→ Ȟ

1

et(R,GLn)
χ−→ Ȟ

1

et(R,PGLn)
∂−→ Ȟ

2

et(R,Gm)

In the proof of Proposition 10.4.9, delete: “The proof that ρ is one-to-one
is left to the reader.”

(07/31/2023) I am grateful to Erhard Neher for bringing to my attention the following
problems that appear in Section 14.1 and for offering the suggestions for
alternate proofs of Theorems 14.1.8 (3) and 14.1.9 (3) which are given below.

A goal on my to-do list is to correct Theorem 14.1.5 and rewrite the
proofs of Theorems 14.1.8 (3) and 14.1.9 (3). Until then, Theorem 14.1.5 (3)
should be assumed false.

It seems that the second part of [KO75, Theorem 3.2 (2)], which is part
(3) of Theorem 14.1.5, is not correct. M. Ojanguren mentions this in his
review of [Ver88] for Math Reviews.

If Theorem 14.1.5 (3) is not correct, this has an impact on the proof
of Theorem 14.1.8 (3). However, we only need this for invertible mod-
ules, which has been proved in [Gro61, EGA II, (6.5.2.4)]. As pointed
out in [KO75, Example 6.1], our norm of an invertible module agrees with
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that of [Gro61, EGA II]. (See the correction above, in the errata dated
(05/28/2025).)

The same problem exists with the proof of Theorem 14.1.9 (3), which is
also based on Theorem 14.1.5 (3). The result however is correct, as is shown
in [Fer98, Remark 7.3.6], or in [Sal99, Corollary 8.2]. (See the correction
above, in the errata dated (05/28/2025).)

(07/28/2023) I am grateful to Erhard Neher for pointing this out to me. On p. 581, line
4, change: Section 13.8.1 to: Section 7.8.1.

(07/28/2023) On p. 582, in Theorem 14.1.17, the cohomology groups in the commuta-
tive diagram should both be changed to H1 groups. That is, change the
commutative diagram to:

B(L′/S)

CorSR
��

α5 // H1(G,Pic(L′))

CorL
′

L

��
B(L/R)

α5 // H1(G,Pic(L))

(02/20/2023) On p. 261, in the penultimate sentence of the proof of Theorem 7.5.4,
change: m > 1 to [D∗ : F ∗] > 1.

(10/11/2021) On p. 267, in Section 7.7: In the opening paragraph, change: “R0 ⊆ R,
where R0 is a finitely generated Z-algebra.” to: “R0 ⊆ R, where R0 is a
finitely generated subring of R. If R is commutative, then R0 can be taken
to be a finitely generated Z-algebra, hence can be taken to be noetherian.”

On p. 267, in Proposition 7.7.1 change: “Then there is a noetherian subring
R0 ⊆ R (in fact R0 can be taken to be a finitely generated Z-algebra)” to:
“Then there is a finitely generated subring R0 ⊆ R (if R is commutative,
then R0 can be taken to be a finitely generated Z-algebra, hence can be
taken to be noetherian)”

(09/13/2021) On p. 300, line 3, in the proof of (2) implies (1) of Theorem 8.1.24, change:
Corollary 1.3.19 to Corollary 1.3.18.

(06/26/2021) On p. 371, in the proof of (3) implies (4) of Theorem 10.4.1, change: S0 to
B0.

(07/03/2020) I wish to thank Nguyen Xuan Bach for pointing this out to me. On p. 269,
in the proof of Proposition 7.7.2, there is a gap because the top rows of
Diagrams (7.9) and (7.10) are not exact. To correct this error, replace the
entire first paragraph of the proof with this:

The finitely generated projective R-module A is a direct summand of
Rn, for some n ≥ 1. Therefore, there is an idempotent a in HomR(R

n, Rn)
and an exact sequence of R-modules

(7.8) Rn
a−→ Rn

c−→ A→ 0.
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Let {v1, . . . , vn} be the standard basis for Rn. Without loss of generality,
assume the image of v1 under c is 1, the multiplicative identity of A. As in
Proposition 7.7.1, the commutative diagram

(Rn ⊗Rn)⊕ (Rn ⊗R Rn)

ψ

��

a⊗1+1⊗a // Rn ⊗R Rn

ϕ

��

c⊗c // A⊗R A

µ

��

// 0

Rn
a // Rn

c // A // 0

(7.9)

results from combining (7.8) with the multiplication map µ. The top row
of (7.9) is exact, by Lemma 5.2.2. Let R0 be the subring of R generated by
the entries in the matrices of a, ψ, and ϕ with respect to the standard basis
for Rn. Then the matrices descend to define R0-module homomorphisms
a0, ψ0, and ϕ0. Define A0 to be the cokernel of a0. We get a commutative
diagram

(Rn0 ⊗R0
Rn0 )⊕ (Rn0 ⊗R0

Rn0 )

ψ0

��

a0⊗1+1⊗a0 // Rn0 ⊗R0
Rn0

ϕ0

��

// A0 ⊗R0
A0

µ0

��

// 0

Rn0
a0 // Rn0 // A0

// 0

(7.10)

where the top row is exact, by Lemma 5.2.2 and µ0 is induced by the rest
of the diagram. The proof of Proposition 7.7.1 shows that A0 is a finitely
generated projective R0-module, A = A0 ⊗R0

R, and A0 ⊆ A. Since (7.10)
commutes, A0 is an R0-subalgebra of A. This proves (1) and (2).

(03/13/2018) On p. 256, in the statement of Theorem 7.4.3,
change: RankRp

(Ap) to: RankRp
(Bp).

(11/4/2017) On p. 62, in Lemma 2.2.7 part (2), add a period after the displayed equation.

(11/4/2017) On p. 19, in Section 1.2.3, line 3,
change: . . . purpose of this section is to proof . . .
to: . . . purpose of this section is to prove . . . .

(9/26/2017) On p. 614, in Exercise 14.3.19,
change: R = k[x, y](xy − 1) to: R = k[x, y]/(xy − 1)
change: R = k[x, y](x2y − 1) to: R = k[x, y]/(x2y − 1)
change: R = k[x, y](y2 − x3 + x) to: R = k[x, y]/(y2 − x3 + x)
change: R = k[x, z](z − x3 + xz2) to: R = k[x, z]/(z − x3 + xz2)

(7/5/2017) On p. 602, in Section 14.3.3 in the third paragraph (the paragraph that
defines the ring R), between sentences one and two, add: Assume p(x) is
not a square.

(7/5/2017) On p. 595, in the proof of Theorem 14.2.12, in the last paragraph of Step 1,
change: ∂ to: ∂1.
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