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ABSTRACT. Let Y be a normal surface defined over an algebraically closed field
of characteristic 0. Let R’ be the local ring of R at a closed point and R the
completion or henselization of R’. Set K to be the field of fractions of R. If D/K is
a finite dimensional division algebra with center K we show D is a cyclic algebra.
That is, D = (&, B),,x When R has a rational singularity we describe such an a,
in terms of the ramification of D.

0. INTRODUCTION

There is a rather small class of fields K for which there is good information
about all division algebras D finite dimensional over their center K. Prominent
among such fields is the class of global fields. Let K be a global field, and write
D/K to mean D is a division algebra finite dimensional over its center K. Then
D defines an element [D] in the Brauer group Br(K). The exponent of D is the
order of [D] and the degree of D is the square root of the dimension [D : K]. As
part of the classical theory of division algebras over global fields (e.g., [Re], p.280)
one knows that D has exponent equal to its degree. furthermore, any such D is a
cyclic algebra. One has a description of the splitting fields of D in terms of the so
called Hasse invariants of D.

The goal of this paper is to present another class of fields K and results about
all division algebras D /K. To this end, let Y be an algebraic surface defined over
an algebraically closed field F of characteristic o. If P € Y is a closed normal point,
let R’ be the local ring of Y at P. Set R to be either the (strict) henselization or
completion of R’ with respect to the maximal ideal. Set K = g(R) to be the field
of fractions of the domain R. In [A], Artin showed that every division algebra
D/K has exponent equal to its degree. Using some of Artin’s basic results, we
give further results about such D/K. We reprove Artin’s result, and in addition
show that all such D/K are cyclic algebras. To prove
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such a result about D /K, one first of all notes that (just as in [A]) by Artin ap-
proximation ([A2]) we can restrict to the case that R is the henselization of R’.
Second, we note that it suffices by e.g., [Al], p.6o or [Re], p.261 to find a cyclic
field extension L/K such that L splits D and has degree equal to the exponent of
D. This we do, and along the way we give a description of all the Galois splitting
fields of D in terms of the ramification locus of D on certain blow ups of a desin-
gularization of Spec(R). A key role in our argument will be played by surfaces
with rational singularities.

Since K contains all roots of one, any cyclic algebra of degree n with center
K is a “symbol algebra” (a,b),x. Fix a primitive n root of 1, p. Recall that
(a,b),x is generated over K by «, B subject to the relations a”* = a, p* = b,
and af = pBa. Given the ramification data for a D/K, the method of proof for
the results mentioned so far give a description of an element “a” in K such that
D = (a,b), k, but no description is given of the “b”. In the last section, we give
a different proof that D/K is cyclic in the case R has a rational singularity, with
the additional virtue of describing both “a” and “b”.

Let us recall some basic facts and prove some preliminary results. Let K be
an arbitrary field and v : K¥* — Z a discrete valuation on K. Denote by T the
associated valuation ring. There is an exact sequence ([AB], p.289):

T
(1) 0 — Br(T) — Br(K) 2~ Hom(Gr,Q/Z) — 0
where Gr is the absolute Galois group of the residue field, k, of T; Hom refers to
continuous homomorphisms; and Q/Z has the discrete topology. We call xT the
character map. If f € Hom(Gr,Q/Z) then f has finite and hence cyclic image.
The kernel of f then defines a cyclic Galois extension L/k and we say L/k is the
cyclic extension defined by f. Hom(Gr, Q/Z) is also the étale cohomology group
H!(k,Q/Z) and we will use both expressions interchangeably.

If X is a two dimensional integral normal scheme then any irreducible curve
C C X defines a discrete valuation on the function field K of X. Thus for each
such C there is an associated character map x* : Br(K) — Hom(Gc,Q/Z). If
[D] € Br(K), it is very easy to see that x*([D]) = 0 for all but finitely many C.
The C for which x([D]) # 0 are called the ramification curves of D, and the set
of ramification curves and the associated x([D]) € Hom(G¢,Q/Z) is called the
ramification data of D.

To describe how this ramification data “fits together”, we make the following
definitions. Fix an isomorphism of Q/Z with the group of roots of 1. More
precisely, for all n, choose a primitive n root of 1, p(n) € F, such that p(nm)" =
p(n). Let C be a curve
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over F and C' — C the normalization of C. Denote by k the function field of
C. For a point P € C let P;,...,P, € C' be the points lying over P. For any
f € Hom(G¢,Q/Z), define the “ramification” r;(f) € Q/Z as follows. Let
k; be the completion of k with respect to the valuation defined by P;, and let
M; be the algebraic closure of k;. M; is the union of fields k;(7,) such that
(7t2)" € k; is a prime element. There is a unique generator 0; € Gal(M;/k;) such
that o;(7t,) = p(n)7m, for all n. The map f restricts to an f; : Gal(M;/k;) — Q/Z
and r;(f) = fi(0;). If f defines L/k and L; is the completion of L with respect to a
point over P;, then the order of r;(f) in Q/Z is the degree of L;/k; which is also
the ramification degree of L/k at P;. Finally, define 7p(f) to be the sum of the
ri(f)-

Let X be an irreducible, regular, two dimensional scheme which is the direct
limit of such schemes of finite type over F. Set K to be the function field of
X. The map r defined above is used in describing a necessary restriction on the
ramification data of a division algebra D /K.

Proposition o.1. The composition

X
(2) Br(K) 2~ @ Hom(Gc,Q/Z) = P Q/z
ccXx PeX
is zero, where:
1) The first direct sum is over all irreducible curves C C X
2) The second direct sum is over all closed points
3) The map x* is the sum of all the character maps x©
4) The map r is the sum of all

rp: @ Hom(Ge,Q/Z) — Q/Z
CCX

and the rp themselves are defined to be rp c on any Hom(G¢, Q/Z) where C contains
P and 0 otherwise.

The proof of the above result is in [AM], but we do not assume H3(X, Q/7Z) =
(0) and so cannot conclude (2) is exact.
A very important consequence of 0.1 is:

Corollary o.2. Let X be as above and C C X a finite tree of complete nonsingular
rational curves. Assume [D] € Br(K) satisfies xX~C([D]) = 0. Then x*([D]) = 0. In
other words, if [D] is unramified on the complement of C, then x*X[D] = 0.
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Proof. Note first of all that any cover of IP! ramifies for at least two points. That
is, Al is simply connected (e.g., [M] p.42). This can be seen directly for cyclic
covers, the only case we need, by observing the following. If f € F[x], K = F(x),
and L = K(f'/") is unramified over F[x], then each zero of f has order multiple
of n and hence f is an n-th power.

Since C is a finite tree, there is a curve P! = . C C such that LN (C — L) is
one point. Since x'([D]) ramifies at least two points, 0.1 implies x([D]) = 0. If
C' = (C—L), then xX~'([D]) = 0. By induction on the number of components
of C, the proof is done. g

Let us note that in the applications of 0.2 in this paper we will know that x* is
injective so 0.2 will imply D = K (or [D] = 1).

As a final remark in this section, let R be a two dimensional local henselian
domain, F its residue field, and P C R a prime with R/P of dimension 1. Let
k be the field of fractions of R/P, and let Gy be the absolute Galois group of k.
Then R/ P is henselian ([R], p.8), and so is the normalization R’ of R/P in its field
of fractions ([R], p.7). By [R], p.7, R’ is local and hence is a henselian discrete
valuation ring. As all field extensions L/k are totally and tamely ramified it
follows that r : Hom(Gy,Q/Z) — Q/Z is an isomorphism. It is useful to think
of R/P as a curve with one point and every cover must ramify at that point.

1. SPLITTING FIELDS

Let us recall our basic situation. R is the henselization of a closed point on
a normal algebraic surface over an algebraically closed field F of characteristic
o. If K = g(R) is the field of fractions of R, we will study the splitting fields of
elements « € Br(K). In particular, we will show that if « has exponent n, then
« has a cyclic splitting field of degree n. In other language, if D/K is a division
algebra with center K and of exponent #, then D is a cyclic algebra of degree .

Let L D K be a finite field extension and S the integral closure of R in L. Let
Y — Spec(S) be a resolution of the singularities of Spec(S). Since S itself is
the henselization of the closed point of a surface over F, Artin showed that the
character map

(3) Br(L) — €D Hom(Gc,Q/Z)
ccy
is an embedding, where the direct sum is over all irreducible curves in Y. In other

words, the splitting of & € Br(K) by L reduces to showing that « maps to o in
each Hom(G¢,Q/Z).



324 T. J. FORD AND D. J. SALTMAN IMCP

For any irreducible curve C C Y, let vc be the associated discrete valuation.
Then v restricts to a discrete valuation w¢c on K. The valuation w¢ has a residue
field with absolute Galois group we denote by Gi. Let e = e(vc/wc) be the
ramification degree. Using the definitions one can easily check that there is a
commutative diagram:

Br(L) —— Hom(G¢,Q/Z)

@ | e

Br(K) —— Hom(G[,Q/Z)

“" 17

where Br(K) — Br(L) is the restriction map and the map “e” is the integer e times
the canonical map induced by G¢c € G(.. To show L splits « it is enough to show
L “splits” the image of « in Hom(G[,Q/Z) for all w¢ that arise. That is, it is
enough to show that « maps to o in Hom(G¢,Q/Z) for all C that arise. When
L/Kis Galois, all extensions of wc are conjugate under the Galois group. Thus «
maps to o in Hom(G¢,Q/Z) for one extension if and only if « maps to o for all
extensions. When this happens, we say L splits « at C. Thus L splits « if and only
if L splits « at all possible C.

The difficulty here is that not knowing L, it is not clear which wc must be con-
sidered. If X — Spec(R) is a resolution of singularities, wc may not correspond
to a curve on X, but to one on a blow up of X. So the difficulty is to determine
how to blow up X so that all wc appear.

Given X, and the ramification locus of L, one could try to describe a blowing
up of X’ — X such that the normalization, Y, of X’ in L is nonsingular. In
particular, any curve in Y would then lie over a curve in X’. However, blowing
up to achieve nonsingularity is unnecessary. Following a hint in Artin ([A]), we
weaken the requirement on Y and show that we only need that Y have rational
singularities. We can then give a simple description of the property X’ requires
so that its normalization Y has rational singularities.

To recall the definition, let R” be a local normal two dimensional F algebra, and
17 : X" — Spec(R") a resolution of singularities. Then R” has a rational singular-
ity if H' (X", Oxn) = 0. A two dimensional scheme Y has rational singularities if
each local ring O, has one, for y a closed point. As it turns out, we will show our
varieties have rational singularities using the following theorem of Boutot ([B])
(true in any dimension). Let G be a linear reductive group over F and assume G
acts rationally on a commutative F algebra, A, with rational singularities. Then
the fixed ring A® has rational singularities.

We begin with a well known lemma, leading up to 1.2.

Lemma 1.1. Let R, M be a reqular local dimension two F algebra with R/M = F.
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Assume f,g € M is a system of parameters. Set S = Ry|/(y" — f), and let x € S be
the image of y. Then S is a domain, a regular local ring, and x, g is a system of parameters
for S. In particular, S is the integral closure of R in q(S).

Proof. Let N = M+ xR+ --- +x" 1R C S. Then N is an ideal and S/N = L.
Hence N is maximal. Any other maximal ideal containing M also contains x
and so is N. Thus S is local. As R is a unique factorization domain, y" — f is
irreducible and S is a domain. Finally, x and g clearly generate N. O

As stated above, our goal is to give conditions on the ramification of the cover
that force the cover to have rational singularities. Let R be a regular local ring of
dimension two. Assume L is a finite separable field extension of q(R) = K and
that S is the integral closure of R in L. S is a reflexive R module because the
double dual S** contains S, is naturally embedded in L, is closed under multipli-
cation (e.g., argue as in [OS], p.64), and is finite over R. By e.g., [OS], p.71, S is
then projective as an R module. By the purity of branch loci (e.g., [M], p.24), the
different ds,r C S has pure height one. Define the ramification locus ram(S/R)
to be the set of height one primes g4 C R such that 4 = pN R for p a prime
in S with p minimal over Js,g. Thus S,/R;, is unramified, and hence étale, if
and only if ¢ ¢ ram(S/R). In other terms, S/R is étale if and only if S,/R, is
unramified for all § C R of height one and all primes p C S lying over . We
say ram(S/R) has normal crossings if ram(S/R) = {(f), (g)} where f, g are a
system of parameters for R. We will now state the needed result, whose proof
will follow Lemma 1.3.

Theorem 1.2. Let R be a regular, dimension two local ring, L a finite Galois extension
of K = q(R), and S the integral closure of R in L. If the ramification locus of S/R has
normal crossings, then S has rational singularities.

Continuing with the above set up, assume L/K is Galois. Then the set of
primes p C S lying over a given g C R are all conjugate. In particular, there is a
well defined ramification degree e;(L/K) being the ramification degree of S,/ Ry,
for any p lying over q. Thus g € ram(S/R) if and only if ¢;(L/K) > 1. The key
lemma used to prove 1.2 can now be stated.

Lemma 1.3. Suppose S/R are as in 1.2 and ram(S/R) = {(f), (g)} has normal cross-
ings. Assume n is a multiple eq(S/R) for each q € ram(S/R). Set K' = K(f1/", g1/™)
to be the field extension of K and R’ the integral closure of R in K'. Set L' to be the
compositum of K' and L and S’ the integral closure of R in L. Then S’ /R is étale.
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Proof. Let x, y be such that x” = f and y" = g. Then R’ is a regular local ring
with {x,y} as a system of parameters by 1.1. By the above remarks, it suffices to
show e;(L'/K") = 1 for all height one primes q' C R’. If 4" does not lie over (f) or
(g), this is clear. It suffices then to assume (by symmetry) that g = (f) = 4’ N R.
Clearly g = xR’. Set K" = K(f/"), R" = R'nL", 4" = ¢ NR", L” to be the
compositum of L and K”, and §” = S'NL". Choose p’ C S’ a prime lying over
g’ and set p” = p’NS" and p = p’' N S. We have the following diagram all the
arrows of which denote inclusions.

R, —— &,

I |

R;’,, _ S;’,,

I I

Rq SF’
As K'/K" and L'/L" are defined by adjoining an n-th root of g, e, (K'/K") =
ey (L'/L") = 1. Thus it suffices to show ey (L"/K") = 1.
Let M, M”, N, N” be the completions of K, K”, L, L" with respect to the val-

uations defined by g, g/, p, p”’ respectively. These complete fields have canonical
valuations we need not specify explicitly. We have:

M’ C N
[
M C N

If we set e = e(N/M) = e5(L/K), then recall that e is a divisor of 1. By e.g., [CF],
p-27, there is an intermediate field M C M; C N such that M;/M is unramified
and N/M; is totally and tamely ramified of degree e. By e.g., [CF], p.32, N =
M; ((uf)'/¢) for u a unit of My. Since N” = N(f1/"), e(N"/N) = n/e. Thus
eqr(L"/K") = e(N"/M") = e(N"/N)e(N/M)/e(M"/M) = (n/e)e/n=1. O

Now to give the proof of 1.2 is an easy matter. With the notation as in 1.3, S is
a regular ring, and L'/K is Galois with group say G. Let H C G be the subgroup

fixing L. Then S is the fixed ring S’ H and the result follows from Boutot’s theorem
[B].

The next result makes good the claim that rational singularities are “good
enough”.

Lemma 1.4. Let R be as above and Y — Spec(R) a birational proper map such that Y
has rational singularities. If K = q(R), then the character map:

Br(K) — €D Hom(G¢,Q/Z)
CQy
is injective, the direct sum being over all irreducible curves on Y.
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Proof. Let Y/ — Y be a resolution of singularities of Y (and hence Spec(R)). By
[L], p.204 proof of 4.1, Y’ can be constructed by blowings up alone. In particular,
the exceptional divisors of Y/ not from Y form a tree. Suppose a« € Br(K) is in the
kernel of the map above. By (3), « must ramify along these exceptional curves.
But now the result follows from o.2. g

As a consequence of the above we have:

Proposition 1.5. Let R be as above and X — Spec(R) a resolution of the singularities
of Spec(R). Assume L/K is Galois and Y the integral closure of K in L. Assume the
ramification of Y / X has only normal crossings. Then L is a splitting field of w if and only
if L splits o on any curve of X.

The above result is a concrete description of the splitting fields of any element
a € Br(K). Given L/K, we blow up X until the ramification of « and L/K has
normal crossings. If Z C X is the ramification of L/K and « on X, it suffices
to construct a blow up X’ — X such that the inverse image of Z has normal
crossings and this is a standard construction (e.g., [H], p.391). Given X', then
we “test” L by looking at L restricted to any of the (finitely many) curves along
which « ramifies on X’ and check whether L splits the ramification by using (4).
As an application, we show that if « has exponent 7, « has a cyclic splitting field
of degree n.

We have to be a bit more specific about the construction of R and our blow ups.
Let R be the henselization of R’, where R’ is the localization at a closed point
of a normal dimension two projective variety Y of finite type over F. Assume
a € Br(K). As R is the direct limit of étale covers of R’, we may assume that « is in
the image of Br(K’) where K’ = gq(R’). Let X’ — Y be a resolution of singularities.
Let Cy,...,C, be the curves on X’ along which a ramifies. Construct a blow up
X" — X’ such that if Z C X’ is the exceptional divisor, Z union the proper
transforms of the C;’s have normal crossings. Rename things so that Z union these
Ci'shave {E,...,Es} as underlying curves. Let E = —E; — - - - — E;. According to
[H], p.358: proof of 1.1, E = Hy — Hy where the H; are very ample divisors. By[H],
p-358 Lemma 1.2 (essentially Bertini’s theorem) there are nonsingular curves Dy,
D, such that D; is in the linear system |H;| and D; U Dy UE; U - - - U Eg has normal
crossings. Hence there is an f € F(Y) = K’ with (f) = Ey+ -+ Es+ D; — D;.
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Set X = X’ Xy R, so X — Spec(R) is a resolution of singularities and X /X’ is
a direct limit of étale extensions. It follows that the divisor (f) = Y +E/ on X still
has normal crossings and the El’- are all distinct. Of course, the Elf correspond to a
subset of the E;’s, D1 and D,. In addition, the curves on X along which « € Br(K)
ramifies are among the E/. Let n be the exponent of « and set L = K(f'/"). If
v; is the valuation defined by El{, then v;(f) = 1. Hence if ¢; is the ramification
degree of L/K at v;, e; = n. It follows from (4) that L splits « along every curve of
X. The ramification of L/K is just (f) and so has normal crossings. Thus by 1.5,
L splits a. We have proved:

Theorem 1.6. Let R be the henselization of a closed normal point on a surface of finite
type over an algebraically closed field of characteristic zero. Let K be the field of fractions
of R and « € Br(K) an element of exponent n. Then « = [D] where D is a cyclic division
algebra of degree n.

That is, all division algebras over K are cyclic with degree equal to their expo-
nent.

2. AN EXPLICIT CONSTRUCTION

As in Section 1, R is the henselization at a closed point of a normal algebraic
surface over the algebraically closed field k of characteristic zero. Moreover, in
this section we assume R has a rational singularity. Let K be the quotient field of
R and A a central division algebra over K of exponent # in Br(K). Fix a primitive
n-th root of unity p. Throughout, symbol algebras («, 8),, will be formed over
K with respect to p. By the results of Section 1, A has a cyclic splitting field of
degree n, hence is a symbol algebra (&, ), for some a, f € K* ([Re], Theorem
30.3). The purpose of this section is to provide another proof of this result by
explicitly exhibiting & and B, in the case where R has a rational singularity. The
main result of this section is

Theorem 2.1. In the above context, A is a symbol algebra («, B),. In particular,
index(A) = exponent(A) .

The proof of Theorem 2.1 takes up the rest of this section and is divided into a
sequence of lemmas. First we establish some notation. As in Section 1 we fix an
identification of the group of roots of 1 sheaf y with Q/Z. Let m : X — SpecR
be a resolution of the singularities of R. From [L], proof of 4.1, we know that we
can pick 7t to be a product of “blow up” maps. In particular, the closed fiber of
7T is a tree of smooth rational curves. We also know from [L], Theorem 17.4, that
the divisor class group of R, CI(R), is finite. Assume B is a reduced curve on X
containing the underlying curve of the closed fiber of 7v. Let B=B;U--- U B,
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where the B;’s are prime divisors on X. Assume also that B contains the ram-
ification divisor of the algebra A and that B is a divisor with normal crossings
([A], Section 1). Denote by oB the singular locus of B, ¢B = {B; N Bj|i # j}.
Let | | denote cardinality of sets. If [0B| = s, let 11 : X3 — X be the blowing-
up of the s points in ¢B. Let Dy,..., D; be the new exceptional lines and write
C = nl_l(B) = DjU---UDsUBjU---UB,. Again, let cC denote the singular
locus of C and blow up the t = |¢C| points in ¢C to get 1, : X — Xj. Let
D=m(C)=FKU---UFRUD;U---UDsUB; U---U B, where the F’s are the
new exceptional lines. We have the following situation:

X, D D = RU---URUDU---UDsU---UB,
(1) X, O C = DyU---UD;UBjU---UB,
X D B = BiU---UB,
The divisor D forms a tri-partite graph with the following configuration
By By ... B,
(2) Fll Fz cee F;
Dye Dy D,

The F’s are pairwise disjoint, the B’s are pairwise disjoint and the D’s are pairwise
disjoint. Each F intersects exactly one of the B’s and exactly one of the D’s. Each
D intersects exactly 2 distinct F’s. The F’s and D’s are curves isomorphic to
P'. The B’s consist of henselian curves and P'’s. We quote the following for
reference.

Lemma 2.2. ([A], Lemma 1.7) Write D =T U - - - UL, where T'; is irreducible. Let oD
be the singular locus of D and denote by T'; the complement in T; of those points in ¢D
that lie on I';. Set U = Xp — D. The sequence

0—Br(U) & PH(T,Q/2) L P Q/Z 0
i=1 oD

is exact.

Now we show that the algebra A is essentially determined by its ramification
along the divisors F;. Denote by F/ the complement in F; of the singular points of
D that lie



330 T.J. FORD AND D. J. SALTMAN IMCP

on F;. Now F; intersects exactly one of the B’s say B, ;) and one of the D’s say
DT(i) at points P and Q as shown below.

By i) Dri)

(3)

So we see that F/ is isomorphic to the open complement of 2 closed points in

F; = P1. We denote by K(F;)" the henselization of the quotient field K(F;) at P.
Consider the commutative diagram

r

HY(F,z/n) —— Z/n

(@) | |-
HY(K(F)" Z/n) —— Z/n
where r is the ramification map defined in the introduction. That r is an isomor-
phism follows from the Gysin sequence [M], VI, 5.4(b), (where Z/n is identified
with p,(—1) via our choice of p),
0— HY(F, —Q,Z/n) — HY(F,Z/n) = pn(-1) — H2(F;, — Q,Z/n)

and the fact that F; — Q = Al. The second horizontal arrow in (4) is induced from
r. It is an isomorphism since H' (K(F/)",Z/n) = Hom(Gal(K(F/)"),Z/n) =
Z./n by the last paragraph of the introduction.

Lemma 2.3. Let U = X, — D. In the above context,
t
0— Br(U) = PH'(F,Q/Z)
i=1

is exact.

Proof. Suppose the algebra A is unramified along each component of F; U- - - U F;.
We show A is also unramified along each B and D. This will show A is split, by
Lemma 2.2. First consider one of the D’s say D;. From the graph (2) D; intersects
2 F’s say F; and F, at points P and Q as shown below

K I3
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Say x(A) on D; is the cyclic extension L. We are assuming x(A) on each Fj is the
split extension S. In Lemma 2.2 the map r sums the ramification of L at P with
the ramification of the split extension S at P. Because rx = 0, we see that L is
unramified at P. Likewise L is unramified at Q. So L is unramified. But D; = P!
is simply connected, hence L is split. So A is unramified on D;. Next consider a
curve B;. If B; is a IP!, the above argument shows A is unramified on B;. If B; is a
henselian curve, then the above argument shows that L is unramified on Bi. But
H!(B;,Q/Z) = 0 so L is split. Thus, x(A) = 0 and A is split by Lemma 2.2. [

Combining (4) and 2.3, we define:
t
¢:nBr(U) — PzZ/nz
i=1

as the composition of x and r : H'(F/,Q/Z) = Q/Z. Here by , Br(U) we mean
the subgroup annihilated by n. Therefore ¢ is injective and associates to the
algebra A a t-tuple of residues wy, ..., w; modulo n. The residues w; are uniquely
determined up to the conventions established in the set-up of (4), namely the
choice of p and the choice of the point P = F; N Bg(i) for each i.

Let mp = mpomom : Xp — SpecR be the composite morphism. Let
Eq,..., Ey. be the distinct irreducible components of the closed fiber of 7ry. Each
E; is isomorphic to IP'. Let E denote the additive group of divisors on X, gen-
erated by Ej, ..., E;. Lipman has shown [L], sections 14 and 17, that the homo-
morphism

(5) 6 : PicX, — E* = Hom(E, Z)

given by 0(A)(E;) = (A.E;)(i = 1,2,...,m) is an isomorphism since R has a
rational singularity and is strictly henselian. For each E; choose a closed point P;
such that P; is not a singular point of D. Choose a prime divisor of Y; on X, that
meets E; transversally at P;. Then Y; is the strict transform of a prime divisor of R.
That is, each Y; is a henselian curve on X; and has a unique closed point, namely
P;. So Y; intersects Ey U - - - U Ey, exactly at the point P;. Moreover, (Y;.E;) = ¢;;
(Kronecker delta).

Lemma 2.4. Choose Y1, ..., Yy as in the previous paragraph so that (Y;.E;) = 6;j. Let
X' =Xo—Y1— - — Yy Then PicX' = (0).

Proof. We see that {0(Y7),...,0(Ym)} generate E*. The homomorphism 6 in (5)
is an isomorphism so the Y; must generate Pic X;. The result follows from [L],
section 14. O
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Denoteby T = T; U- - - U T, the intersection DN X', where X' is as in Lemma 2.4.
Since Pic X’ = (0), the prime divisors T; are principal. For each T; choose a func-
tion t; € K such that

(6) va(ti) = {1 A=Ti

0 ; otherwise

where A ranges over the prime divisors on X’ and v, is the valuation on K at A.
Re-label the functions t; according to the notation of (1). That is, let

b; be the equation for B; N X’
(7) fi be the equation for F; N X’
d; be the equation for D; N X’

Lemma 2.5. If ;N B; = @, then the symbol algebra (f;, b;)y is split.

Proof. It suffices by [A] Lemma 1.5 to show x((fi, bj)n) = 0. That is, to show that
for all irreducible curves A C Xj, (f;, b;), is unramified at A. On symbols (a, f),
the character map x agrees with the tame symbol. The cyclic extension of K(A)
afforded by (a, 8), is obtained by adjoining (a*s(F) ,B’VA(“))U”. Since va(f;) and
va(bj) are zero except possibly at Bj, F;, Y1,..., Yy, the ramification divisor I' of
A = (fi,bj)n is contained in BjUF;UY{ U--- U Y.

Case 1: Let A = F;. Then va(f;) = 1 and v(b;) = 0 by (6) and (7). Since
F; is a P!, one of the Y’s say Y; intersects F;. The principal divisor (b;) looks
like Bj +c1Y1 + -+ + Y. Thus (b;) intersects F; in at most one point: Y1 N F;.
So on F; the extension K (Fi)(b}/ ") ramifies at no more than one point. Such an
extension is split, so A is unramified along F;.

Case 2: A = Bj and B; is a P!. Thus va(f;) = 0 and v (b;) = 1. As in Case 1,
(f;) intersects A in at most one point, so A is unramified on A.

Case 3: A = Y, for some z. Then A is a henselian curve on X;. Since I' C
B i UF UYL U - UYy, Cases 1 and 2 show that A is unramified along any divisor
which is a P!. That is, A is unramified on E; U - - - U E,,.. But Y; intersects one of
the E’s, say Ej.

Eq 7.

P
Suppose A ramifies along Y, with Galois extension L/K(Y;). Since Y; has just
one point P, L ramifies at P. By 0.1 A must also ramify along E; which is a
contradiction. So A is unramified along Y.
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Case 4: We are reduced to the case I' C Bj and Bj is a henselian curve. But
B;j intersects one of the F’s say F. The argument of Case 3 shows that A is
unramified along B]-. O

Lemma 2.6. Let F € {F,,...,F}, B € {By,...,B;}, D € Dy,...,D;
intersects B and D at Py and P, respectively. The symbol algebra A = (f,
has ramification divisor

}. Suppose F
b/d), over K

B D

P, F P,

if B is an exceptional divisor (i.e., a P'). Otherwise B is a henselian curve and the
ramification divisor is

B D

Py F P

Under the map x the cyclic extension of K(F) is obtained by adjoining the n-th root of
b/d and by our definition it has ramification +1 at Py.

Proof. Denote by b, d the restrictions of b and d to functions on F. The extension
of F’ is obtained by adjoining the n-th root of b/d because the ramification map

Br(K) & HY(K(F),Q/Z) agrees with the tame symbol on cyclic algebras and
ve(f) = 1. Say F intersects Y7 at P3, so we have

8 F

Yi
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The valuation of b at a closed point P of F is
1 ;P=Dn

(9) vp(b) =< =1 ;P=DP;
0 ; otherwise.

Indeed, the valuation at Pj is 1 since b was chosen to be a local parameter for
B at P;. If P is not equal to P; or P3, then P is not on the principal divisor
(b) (on X3). Therefore vp(b) = 0. Since F = P! and Y vp(b) = 0 we conclude
vp,(b) = —1. Applying a similar argument to d, we see that the cyclic extension
K(F)((b/d)/") has ramification +1 at P; and —1 at P,. Similarly A ramifies on
D with cyclic extension K(D)(f1/"). Since D = P!, A also ramifies on Y, IfBisa

IP!, the argument is as for F and D. If B is henselian, K(B)(f/") has ramification
—1 at Pl' O

Proof of Theorem 2.1. Let A be a central division algebra over K of exponent n in
B(K) such that A is unramified on U. Suppose that on Fj, ..., F; the ramification
data of A are wy, ..., w;. Consider the algebra

(10) (A" A2 f by bd L dh)
over K. Factor (10) in Br(K) into
t
(11) H(fi,bl...brd;l...dgl)fl
1=
By Lemma 2.5, (11) is Brauer-equivalent to
t
(12) [T (fiboydgy)y

i=1

where F; intersects Ba(i) and DT@ as in (3). By Lemma 2.6 (12) has ramification
data w; on F;. To show that (12) is unramified on U, it suffices to show (12) is
unramified along each Y;. From Lemma 2.6, it suffices to check only those Y; that
intersect B’s or D’s. Choose a D. Then D intersects two F’s say F;, and F, as
shown below.

Yj

(13)
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For a divisor A we denote by xa(A) the cyclic extension of K(A) for A. Then
XF, (A) has ramification —w» at P,. Thus, xp(A) has ramification wy at P; and w,
at P,. Since A is unramified along Y; we have wy + w, = 0. Thus

(14) (F1 Loz y)y (P2 Lo Ary))

is unramified on Y;. Using Lemma 2.6 we conclude (12) is unramified on Y;.
Similarly we prove that (12) is unramified along the remaining Y’s. So (12) and
hence (10) is unramified on U. By Lemma 2.3, A is Brauer-equivalent to (10).
Thus (10) has exponent n hence is a division algebra ([Re], Corollary 30.7) and is
isomorphic to A. O
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