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Preface

The purpose of this book is to provide a self-contained introduction to the theory of
Commutative Algebra, at a level that is accessible to students or researchers who have al-
ready completed a standard two-semester Introduction to Abstract Algebra course. The
first third of the book lays the foundation for a deeper study of rings and modules. Topics
include projective modules, tensor product, Hom groups, direct and inverse limits, Morita
Theory, localization, the prime spectrum of a commutative ring, artinian rings, Nakayama’s
Lemma and the Artin-Wedderburn Theorem. The middle third of the book contains an
introduction to separable algebras, an introduction to homological algebra, integral exten-
sions, Hilbert’s Nullstellensatz, and topological completion. The last third of the book
applies methods from all of the previous chapters. Topics covered include the Primary
Decomposition Theorem, Krull dimension, derivations and differentials, Noether Normal-
ization, normal rings and regular rings, Cohen-Macaulay rings, valuations, divisor class
groups and classical ideal theory.

One of the goals of this book is to consolidate in a single volume all of the background
results on commutative algebra necessary for reading a more advanced book on say, ring
theory or algebraic geometry. Consider for instance, the three examples: [19] (a book on
Ring Theory), [29] (a book on Algebraic Geometry), and [45] (a book on Étale Cohomol-
ogy). Then, with only a few exceptions, this book contains proofs of the theorems that
these standard books either state without proof, or which cite for reference.

The twelve chapters of this book contain more material than a typical one-semester
course on Commutative Algebra would cover. For those who intend to use parts of this
book as a source for such a course, here is a rough approximation to the logical interde-
pendence of the chapters:

Chapters 1, 2, 3, in that order

��
Chapter 4

tt **
Chapter 5

��

Chapter 6

��
Chapter 8

$$

Chapter 7

��
Chapter 9

tt
Chapters 10, 11, 12, in that order

Chapters 1, 2, 3 and 4 are fundamental. All of the subsequent chapters depend on
these four. The Chapter 1 establishes most of our conventions, notation and terminology.
It contains an outline of the material generally covered in a first course on abstract algebra.
This includes background material on the subjects of group theory, ring theory, linear alge-
bra, fields, and modules. Proofs are frequently omitted. Chapter 2 contains a deeper study
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of modules. Generally, the ground ring is not assumed to be commutative. Projective mod-
ules are defined, Nakayama’s Lemma for a commutative ring is proved, the fundamental
properties of tensor products and Hom groups are derived. The standard Hom Tensor rela-
tions are proved and there is a proof of the Snake Lemma. There is a section on injective
modules and a section on direct limits and inverse limits. This important chapter ends with
a proof of the Morita theorems. Chapter 3 emphasizes modules over commutative rings.
Localization methods are introduced. We show that finitely generated projective modules
can be characterized as locally free of finite type. The prime spectrum of a commutative
ring is defined. There are sections on flat modules and faithfully flat modules. Chapters 4
and 5 provide a deeper study of ring theory. Chapter 4 begins with a basic introduction
to artinian and noetherian rings and modules. The Jacobson radical is defined and the
fundamental properties of semisimple rings are studied. This leads into the proof of the
Wedderburn-Artin Theorem on the structure of a simple ring. The proof we give is an
application of Morita Theory.

Chapters 6, 7 and 9 are mostly about commutative algebra. These three chapters
do not depend on Chapters 5 or 8. Chapter 6 begins with a section on algebras that are
integral over a commutative ring and ends with a section on the Going Up and Going
Down Theorems. If R is an integral domain with quotient field K, and S is the integral
closure of R in a finite algebraic field extension L/K, a question that arises is whether S is
finitely generated as an R-module. The first important theorem on this subject is proved
in Theorem 6.1.13. This chapter also includes proofs of Hilbert’s Basis Theorem and
Hilbert’s Nullstellensatz. The topic of Chapter 7 is the completion of an R-module M with
respect to a topology defined by a nonincreasing chain of submodules M = M0 ⊇ M1 ⊇
M2 ⊇ ·· · . Mapping M to its completion defines a functor, and many of its fundamental
properties are included. In this context we prove a rather general form of Hensel’s Lemma.
Chapter 9 is concerned with prime ideals and primary ideals in a commutative ring R.
Given an R-module, these notions are generalized to associated primes ideals of M and
primary submodules of M. If R is noetherian and M is a finitely generated R-module, we
prove that a submodule of M can be written as an intersection of primary submodules of M.
This is called the Primary Decomposition Theorem and we also prove a version for graded
rings and modules. There is a proof (due to M. Raynaud) of Zariski’s Main Theorem. The
Krull dimension of a commutative ring is defined and many of the fundamental properties
of this dimension are derived. Chapter 9 ends with a proof of the Krull-Akizuki Theorem,
an important finiteness theorem on the integral closure of a noetherian integral domain R
with Krull dimension one in a finite field extension of the quotient field of R.

The results from Chapters 5 and 8 are applied in Chapters 10, 11 and 12. The two
Chapters 5 and 8 do not depend on Chapters 6, 7 or 9. Chapter 5 is an introduction to
separable algebras. Most of the material in this chapter comes from [19, Chapter 4]. We
define separable algebras over a commutative ring, present some of the standard examples,
prove the first theorems on separability under change of base, descent and transitivity of
separability, and homomorphisms of separable algebras. There are sections on separable
algebras over a field, and commutative separable algebras. Chapter 8 is a self-contained
introduction to homological algebra. First we derive the fundamental properties of the left
derived and right derived groups of a covariant or contravariant additive functor from the
category of modules to the category of abelian groups. This includes an introduction to
the Tor and Ext groups. The projective dimension and injective dimension of a module
are defined and applied to define the cohomological dimension of a commutative ring.
There is an entire section on group cohomology. The Amitsur complex of a faithfully
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flat extension of commutative rings is defined and applied to the theory of faithfully flat
descent. Hochschild cohomology groups are defined. Amitsur cohomology groups are
defined and the connection with twisted forms is studied.

Chapters 10, 11 and 12 are mostly about commutative algebra. These three chapters
depend on all of the previous chapters, including the homological methods of Chapter 8.
In Chapter 10 we define the module of R-derivations on an R-algebra and the module of
Kähler differentials. These tools are applied to prove some strong theorems on separability
of R-algebras. There are proofs of two different forms of Emmy Noether’s Normalization
Lemma, and another finiteness theorem on the integral closure of an integral domain on a
finite field extension of its quotient field. There is a section on flatness criterion, including
the Local Criteria for Flatness and the Theorem of Generic Flatness. Chapter 10 ends with
useful result on the question of whether the direct limit of a directed system of noetherian
local rings is again a noetherian local ring. The focus of Chapter 11 are commutative rings
R such that for every prime ideal P the local ring RP is an integrally closed integral domain.
In this case, R is called a normal ring. If RP is a regular local ring for each prime P, then
R is called a regular ring. Special classes of normal rings arise, namely Cohen-Macaulay
rings, and discrete valuation domains. The class group of Weil divisors of a noetherian
normal integral domain is defined. Most of the material in Chapter 12 is motivated by
ideal theory, in the classical sense. For the most part, the ground ring R is assumed to be
a noetherian integrally closed integral domain with quotient field K. The chapter begins
with a study of R-lattices in a finite dimensional K-vector space V . The ideal class group
of R is defined in terms of reflexive fractional ideals. An important theorem of Auslander
and Goldman on reflexive lattices over a regular integral domain is proved.

Many examples and applications appear in the text and in the exercises. We mention
here a few that are particularly unique for a book of this type. We apply Morita Theory to
prove the Wedderburn-Artin Theorem in Section 4.6. Algebras of dimension three over a
field and finite rings of order p3, for a prime p are classified in Section 4.6. A theorem of H.
Bass says that a module M over a commutative ring R is a progenerator if and only if there
exists an R-module P such that P⊗R M is a finitely generated free R-module. This is proved
as an application of faithfully flat descent, in Section 8.6.6. After defining the divisor class
group of a noetherian normal integral domain in Section 11.4.3, a number of nontrivial
computations appear, especially in the exercises. In Section 11.5.2 we prove a result of
Grothendieck that says if R is a noetherian local ring with residue field k, and K/k is an
extension of fields, then there exists a faithfully flat local R-algebra S such that S⊗R k = K.
A ramified radical extension of a commutative ring is introduced in Section 11.5.3, and
the associated map on class groups is computed in Section 12.5. Two main results from
classical Algebraic Number Theory are proved in Section 12.8. The first is a proof that
the class group of a global field is a finite abelian group. The second is a proof that in an
algebraic number field the group of units is a finitely generated abelian group.

The material contained in this book has been assembled from various sources. Rather
than placing a citation on each individual definition, example, or theorem, each section
begins with a short list of the main sources of general reference for that particular section.



CHAPTER 1

Preliminaries and Prerequisites

This chapter contains material of a background nature that many readers will already
be familiar with. Most of our notation and conventions are established here. Proofs are
frequently omitted. Most of the material appearing in this chapter will have significant
applications in the chapters that follow. Such results are listed here to simplify the process
of making citations and references in Chapters 2 – 12. To avoid listing many special cases,
a theorem is frequently stated in a form that is more general than any given application
may require. For all other unexplained notation and terminology, the reader is referred to
[20].

1. Rings and Modules

1.1. Groups. This book is devoted mostly to the subjects of rings and modules. We
list in this short section a few necessary references to groups. A group is a nonempty set G
together with an associative binary operation such that an identity element exists in G, and
every element of G is invertible. A commutative group is called an abelian group.

A subgroup of a group G is a subset H that is itself a group under the binary operation
on G. Associated to a subgroup H is an equivalence relation on G called left congruence
modulo H. Specifically, if the group operation is written multiplicatively, two elements
x and y of G are left congruent modulo H if there is an element z in H such that y = xz.
The equivalence class of x is the set xH = {xz | z ∈ H}, which is called the left coset of x
modulo H. The set of all left cosets of H in G is denoted G/H and there is a natural map
η : G→ G/H. All left cosets of H have the same cardinality. The number of left cosets of
H in G is called the index of H in G and is denoted [G : H].

THEOREM 1.1.1. (Lagrange’s Theorem) If G is a group and K ⊆ H ⊆ G is a chain of
subgroups, then [G : K] = [G : H][H : K]. If two of the three indices are finite, then so is the
third.

1.2. Rings. A ring is a nonempty set R with two binary operations, addition written
+, and multiplication written · or by juxtaposition. Under addition (R,+) is an abelian
group with identity element 0. Under multiplication (R, ·) is associative and contains an
identity element, denoted by 1. Multiplication distributes over addition from both the left
and the right. If (R, ·) is commutative, then we say R is a commutative ring. The trivial
ring is {0}, in which 0 = 1. Otherwise 0 ̸= 1. We say a ∈ R is a left zero divisor if a ̸= 0
and there exists b ̸= 0 such that ab = 0. We say a is left invertible in case there is b ∈ R
such that ba = 1. The reader should define the terms right zero divisor and right invertible.
If a is both a left zero divisor and right zero divisor, then we say a is a zero divisor. If a
is both left invertible and right invertible, then we say a is invertible. In this case, the left
inverse and right inverse of a are equal and unique. An invertible element in a ring R is
also called a unit of R. If R ̸= {0} and R has no zero divisors, then we say R is a domain.
A commutative domain is called an integral domain. A domain in which every nonzero

13
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element is invertible is called a division ring. A commutative division ring is called a field.
The set of all invertible elements in a ring R is a group which is denoted Units(R) or R∗ and
is called the group of units in R. If A is a subset of R, then we say A is a subring of R if A
contains both 0 and 1 and A is a ring under the addition and multiplication rules of R. The
center of R is the set Z(R) = {x ∈ R | xy = yx(∀y ∈ R)}. The center of R is a commutative
ring and a subring of R. If x ∈ Z(R), then we say x is central.

Let R be a ring. A left ideal of R is a nonempty subset I ⊆ R such that (I,+) is a
subgroup of (R,+) and ax ∈ I for all a ∈ R and all x ∈ I. The reader should define the term
right ideal. If I is both a left ideal and right ideal, we say I is an ideal. If S is a ring, a
homomorphism from R to S is a function f : R→ S satisfying

(1) f (x+ y) = f (x)+ f (y) for all x,y ∈ R,
(2) f (xy) = f (x) f (y) for all x,y ∈ R, and
(3) f (1) = 1.

The kernel of f is ker( f ) = {x ∈ R | f (x) = 0}, which is an ideal in R. The image of f is
im( f ) = { f (x) ∈ S | x ∈ R}, which is a subring of S.

PROPOSITION 1.1.2. If I is a left ideal in R, then I is both a left and right ideal if and
only if the set R/I = {a+ I | a ∈ R} of all left cosets of I in R is a ring where addition and
multiplication of cosets is defined by the rules

(a+ I)+(b+ I) = (a+b)+ I

(a+ I)(b+ I) = ab+ I.

The additive identity is the coset 0+ I, the multiplicative identity is 1+ I. The natural map
R→ R/I is a homomorphism of rings. The ring R/I is called the residue class ring, or
factor ring, or quotient ring of R modulo I.

THEOREM 1.1.3. Let θ : R→ S be a homomorphism of rings.
(1) If I is an ideal of R contained in kerθ and η : R→ R/I is the natural map, then there

exists a unique homomorphism ϕ : R/I→ S such that the diagram

R θ //

η   

S

R/I

ϕ

>>

commutes. That is, ϕ(x+ I) = θ(x).
(2) There is a unique monomorphism of rings θ̄ : R/kerθ → S such that θ = θ̄η . The

homomorphism θ factors into an epimorphism η followed by a monomorphism θ̄ .
There is an isomorphism of rings ϕ : R/kerθ → imθ .

(3) If I ⊆ J ⊆ R is a chain of ideals in R, then J/I is an ideal in R/I and the natural map

R/I
J/I
→ R/J

sending the coset containing x+ I to the coset x+ J is an isomorphism of rings.

EXAMPLE 1.1.4. Let R be a commutative ring and G a group with identity element
denoted e. The group ring is the set of all finite formal sums

R(G) =

{
∑

σ∈G
rσ σ | rσ ∈ R and rσ = 0 for all but finitely many σ

}
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with addition and multiplication rules defined by

∑
σ∈G

rσ σ + ∑
σ∈G

sσ σ = ∑
σ∈G

(rσ + sσ )σ(
∑

σ∈G
rσ σ

)(
∑

τ∈G
sτ τ

)
= ∑

σ∈G
∑

τ∈G
(rσ sτ)(στ).

The additive identity is 0 = ∑σ∈G 0σ , the multiplicative identity is 1 = 1e. Suppose H is
a group and θ : H → G is a homomorphism of groups. The action rh 7→ rθ(h) induces a
homomorphism of group rings R(H)→ R(G).
(1) The homomorphism ⟨e⟩ → G induces a homomorphism θ : R→ R(G). Notice that θ

is one-to-one and the image of θ is contained in the center of R(G).
(2) The homomorphism G→ ⟨e⟩ induces ε : R(G)→ R. Notice that ε is onto, and the

kernel of ε contains the set of elements D = {1−σ | σ ∈ G}. The kernel of ε is the
ideal generated by D in R(G). Sometimes ε is called the augmentation map.

EXAMPLE 1.1.5. If R1, . . . ,Rn are rings, then the direct product R1 × ·· · × Rn is a
ring, with coordinate-wise addition and multiplication. That is, if x = (x1, . . . ,xn) and
y = (y1, . . . ,yn), then x+ y = (x1 + y1, . . . ,xn + yn) and xy = (x1y1, . . . ,xnyn). The additive
identity is 0 = (0, . . . ,0) and the multiplicative identity is 1 = (1, . . . ,1). The projection
map πk : R1×·· ·×Rn → Rk onto coordinate k, defined by πk(x1, . . . ,xn) = xk, is an onto
homomorphism of rings. The canonical injection map ιk : Rk → R1× ·· ·×Rn maps x ∈
Rk to the n-tuple which is x in coordinate k and 0 elsewhere. Then ιk is additive and
multiplicative. If n≥ 2, then ιk(1) ̸= 1, hence ιk is not a homomorphism of rings.

EXAMPLE 1.1.6. Standard examples of homomorphisms are listed here.
(1) If u is an invertible element of R, the inner automorphism of R defined by u is σu : R→

R where σu(x) = uxu−1.
(2) If R is a ring, then the zero mapping R→ (0) is a homomorphism of rings. In the

category of rings, (0) is a terminal object.
(3) If R is a ring, there is a unique homomorphism χ : Z → R. In fact, by definition

χ(1) = 1 so χ(n) = nχ(1) = n1 for an arbitrary integer n. In the category of rings, Z
is an initial object. The image of χ is the smallest subring of R. The kernel of χ is
a subgroup of Z, hence is equal to (n) for some nonnegative integer n. We call n the
characteristic of R and write n = char(R).

If R is a ring and X ⊆ R, then the left ideal generated by X , denoted (X), is the inter-
section of the left ideals of R that contain X . If A and B are left ideals of R, then A+B is
a left ideal. The left ideal generated by the set {ab | a ∈ A,b ∈ B} is denoted AB. If R is a
ring and I and J are ideals in R, then we say I and J are comaximal if I + J = R.

THEOREM 1.1.7. Let R be any ring. If I1, . . . , In are ideals in R and

φ : R→ R/I1×R/I2×·· ·×R/In

is the natural map given by x 7→ (x+ I1, . . . ,x+ In), then the following are true.
(1) φ is a homomorphism of rings.
(2) The kernel of φ is equal to I1∩ I2∩·· ·∩ In.
(3) φ is onto if and only if n = 1 or the ideals are pairwise comaximal.

Let {I1, . . . , In} be a set of ideals in a ring R. For n ≥ 2, I1 + I2 + · · ·+ In is defined
recursively to be (I1 + · · ·+ In−1)+ In and is called the sum of the ideals. The sum of the
ideals is equal to the ideal of R generated by the set I1 ∪ I2 ∪ ·· · ∪ In. We say that R is the
internal direct sum of the ideals in case
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(1) R = I1 + I2 + · · ·+ In, and
(2) for each x∈ R, x has a unique representation as a sum x= x1+x2+ · · ·+xn where

xi ∈ Ii.
We denote the internal direct sum by R = I1⊕ I2⊕·· ·⊕ In.

Let R be a ring. An idempotent of R is an element e ∈ R that satisfies the equation
e2 = e. The elements 0 and 1 are called the trivial idempotents. A set {ei | i ∈ I} of
idempotents in R is said to be orthogonal if eie j = 0 for all i ̸= j.

In the direct product R1× ·· · ×Rn, let ek be the image of ιk(1). Then ek is the n-
tuple with 1 in coordinate k and 0 elsewhere. The set {e1, . . . ,en} is a set of orthogonal
idempotents contained in the center of R1×·· ·×Rn.

THEOREM 1.1.8. If A1, . . . ,An are ideals in the ring R and R = A1⊕·· ·⊕An, then the
following are true.
(1) For each k, Ak ∩

(
∑ j ̸=k A j

)
= (0).

(2) If x ∈ Ai, y ∈ A j and i ̸= j, then xy = yx = 0.
(3) For each i, Ai is a ring. If the identity element of Ai is denoted ei, then {e1, . . . ,en} is a

set of orthogonal idempotents in R. Moreover, each ei is in the center of R and Ai = Rei
is a principal ideal in R.

(4) R is isomorphic to the (external) direct product A1×·· ·×An.
(5) Suppose for each k that Ik is a left ideal in the ring Ak. Then I = I1 + I2 + · · ·+ In is a

left ideal in R, where the sum is a direct sum.
(6) If I is a left ideal of R, then I = I1⊕ I2⊕·· ·⊕ In where each Ik is a left ideal in the ring

Ak.

PROPOSITION 1.1.9. Suppose A1, . . . ,An are ideals in the ring R satisfying
(1) R = A1 +A2 + · · ·+An and
(2) for k = 1, . . . ,n−1, we have Ak ∩ (Ak+1 + · · ·+An) = (0).

Then R = A1⊕A2⊕·· ·⊕An.

1.3. Modules and Algebras. If R is a ring, an R-module is an abelian group M written
additively together with a left multiplication action by R such that for all r,s ∈ R and x,y ∈
M the rules

(1) r(x+ y) = rx+ ry
(2) r(sx) = (rs)x
(3) (r+ s)x = rx+ sx
(4) 1x = x

are satisfied. If R is a division ring, then M is called a vector space. By default, an
R-module is assumed to be a left R-module. There will be times when for sake of con-
venience we will utilize right R-modules. The statement of the definition for a right R-
module is left to the reader. If M is an abelian group, then the set of all endomorphisms
of M, Hom(M,M), is a ring. Endomorphisms are added point-wise and multiplication is
composition of functions.

LEMMA 1.1.10. Let R be a ring.
(1) If M is an R-module, then there is a homomorphism of rings λ : R→ Hom(M,M)

defined by λ (r) = λr, where λr : M → M is the “left multiplication by r” function
defined by λr(x) = rx.

(2) If M is an abelian group and λ : R→ Hom(M,M) is a homomorphism of rings, then
the product r ∗ x = λ (r)(x) makes M into an R-module.
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In Lemma 1.1.10, the kernel of λ : R→ Hom(M,M) is denoted annihR(M) and is
called the annihilator of M in R. Then annihR(M) is equal to {r ∈ R | rx = 0 for all x ∈M}.
Since λ is a homomorphism of rings, annihR(M) is a two-sided ideal in R. If λ is one-to-
one, then we say M is a faithful R-module.

EXAMPLE 1.1.11. Standard examples of modules are listed here.

(1) Let M be any additive abelian group. By Example 1.1.6 (3), there is a unique homo-
morphism of rings χ : Z→ Hom(M,M). Therefore, M is a Z-module in a unique
way.

(2) If R is a ring and I is a left ideal in R, then I is an R-module, by the usual addition and
multiplication in R. As a special case, taking I = R implies R is a left R-module.

(3) Let φ : R→ S be a homomorphism of rings. If M is an S-module with associated homo-
morphism θ : S→Hom(M,M), then M is an R-module by the composition homomor-
phism θφ : R→ Hom(M,M).

(4) Let M be an R-module with associated homomorphism θ : R→ Hom(M,M). If I
is a two-sided ideal of R contained in annihR(M), then θ factors through R/I. The
homomorphism R/I→Hom(M,M) makes M into an R/I-module. See Exercise 1.1.17
for a continuation of this example.

If R is a commutative ring, then an R-algebra is a ring A together with a homomor-
phism of rings θ : R→ Z(A) mapping R into the center of A. We call θ the structure
homomorphism of A. We write R · 1 for the image of θ . If B is a subring of A containing
R ·1, then we say B is an R-subalgebra of A. We say A is a finitely generated R-algebra in
case there exists a finite subset X = {x1, . . . ,xn} of A and A is the smallest subalgebra of A
containing X and R ·1. In the milieu of R-algebras, the definitions for the terms center, left
ideal, ideal are the same as for rings.

A homomorphism from the R-algebra A to the R-algebra B is a homomorphism of rings
θ : A→ B such that for each r ∈ R and x ∈ A, θ(rx) = rθ(x). An R-algebra automorphism
of A is a homomorphism from A to A that is one-to-one and onto. The set of all R-algebra
automorphisms is a group and is denoted AutR(A).

If M is an R-module, then a submodule of M is a nonempty subset N ⊆M such that N
is an R-module under the operation by R on M. If X ⊆M, the submodule of M generated
by X is the intersection of the submodules of M containing X . A submodule is principal,
or cyclic, if it is generated by a single element. The submodule generated by X is denoted
(X). If X = {x1,x2, . . . ,xn} is finite, we sometimes write (X) = Rx1 +Rx2 + · · ·+Rxn.
We say M is finitely generated if there exists a finite set X = {x1,x2, . . . ,xn} ⊆M such that
M = (X). If I is a left ideal of R, the submodule of M generated by the set {rx | r ∈ I,x∈M}
is denoted IM.

If M and N are R-modules, a homomorphism from M to N is a function f : M→ N
satisfying

(1) f (x+ y) = f (x)+ f (y) and
(2) f (rx) = r f (x)

for all x,y ∈ M and r ∈ R. Since f is a homomorphism of abelian groups f : (M,+)→
(N,+), the kernel of f is ker( f ) = {x ∈M | f (x) = 0} and the image is im( f ) = { f (x) ∈
N | x ∈M}. The cokernel of f is the quotient module coker( f ) = N/ im( f ). The set of all
R-module homomorphisms from M to N is denoted HomR(M,N). An epimorphism is a
homomorphism that is onto. A monomorphism is a homomorphism that is one-to-one. An
isomorphism is a homomorphism f : M→ N that is one-to-one and onto. In this case we
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say M and N are isomorphic. An endomorphism of M is a homomorphism from M to M.
The ring HomR(M,M) is called the ring of endomorphisms of M.

If M is an R-module, then M is said to be simple if M ̸= (0) and the only submodules
of M are (0) and M. If A is a submodule of M, then we say A is a maximal submodule of
M in case A is a maximal member of the set {S ⊆M | S is a submodule of M and S ̸= M},
ordered by set inclusion.

THEOREM 1.1.12. Let θ : M→ N be a homomorphism of R-modules.
(1) If S is a submodule of M contained in kerθ and η : M→M/S is the natural map, then

there exists a unique homomorphism ϕ : M/S→ N such that the diagram

M θ //

η !!

N

M/S

ϕ

==

commutes. The natural map ϕ : M/kerθ → imθ defined by sending the coset x+kerθ

to θ(x) is an isomorphism of modules.
(2) If A and B are submodules of M, then the natural map

A
A∩B

→ A+B
B

defined by sending the coset x+A∩B to the coset x+B is an isomorphism. If A⊆ B,
then the natural map

M/A
B/A

→M/B

defined by sending the coset containing x+A to the coset x+B is an isomorphism.
(3) If A is a submodule of M, then there is a one-to-one order-preserving correspondence

between the submodules B such that A⊆ B⊆M and the submodules of M/A given by
B 7→ B/A. The submodule A is maximal if and only if M/A is a simple R-module.

EXAMPLE 1.1.13. Let R be a commutative ring and A an R-algebra. Let M be a left
A-module. By virtue of the structure homomorphism θ : R→ A, we view M as a left R-
module. Then A acts on M as a ring of R-module endomorphisms. That is, if a ∈ A, r ∈ R,
and x ∈M, then λa(rx) = arx = rax = rλa(x). The mapping a 7→ λa defines an R-algebra
homomorphism λA : A→ HomR(M,M) which is called the left regular representation of
A in HomR(M,M). In the special case where M = A, the map λA : A→ HomR(A,A) is
one-to-one, because λα(1) = α .

EXAMPLE 1.1.14. Let R be a commutative ring, A an R-algebra, and M a left A-
module. By Exercise 1.1.20, there are two monomorphisms of rings

HomA(M,M)
Hθ−→ HomR(M,M)

Hχ−→ HomZ(M,M)

where Hθ is induced by θ and Hχ is induced by the natural map χ : Z→ R. Applying
Lemma 1.1.10, the homomorphism Hχ makes M into a module over the ring HomR(M,M).
The composite homomorphism Hχ Hθ makes M into a module over the ring HomA(M,M).

DEFINITION 1.1.15. Let R be a ring and {Mi | i = 1,2, . . .} a sequence of R-modules.
Suppose we have a sequence of R-module homomorphisms

(1.1) M1
φ1−→M2

φ2−→M3
φ3−→ ·· · .
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Then (1.1) is a complex if for all i≥ 1, φi+1φi = 0, or equivalently, if imφi ⊆ kerφi+1. We
say (1.1) is an exact sequence if for all i ≥ 1, imφi = kerφi+1. A short exact sequence is
an exact sequence with exactly five modules and four maps

(1.2) 0→M2
φ2−→M3

φ3−→M4→ 0

where M1 = 0 = M5 and φ1 = 0 = φ4. The short exact sequence (1.2) is split exact if there
exists an R-module homomorphism ψ3 : M4→M3 such that φ3ψ3 = 1. By Exercise 1.6.18,
(1.2) is split exact if and only if there exists an R-module homomorphism ψ2 : M3 →M2
such that ψ2φ2 = 1.

EXAMPLE 1.1.16. Let R be a ring and f : M → N a homomorphism of R-modules.
There is an exact sequence

0→ ker( f )→M
f−→ N→ coker( f )→ 0

of R-modules.

1.4. Exercises.

EXERCISE 1.1.17. Let R be a ring, I a two-sided ideal of R, and M a left R-module.
Prove:

(1) If I is contained in annihR(M), then M is an R/I-module under the multiplication
rule (r+ I)x = rx.

(2) M/IM is an R/I-module under the action (r+ I)(x+ IM) = rx+ IM.
(3) An R-submodule of M/IM is an R/I-submodule, and conversely.

EXERCISE 1.1.18. Let R be any ring and I a left ideal of R. Prove:
(1) annihR(R/I) is a two-sided ideal of R.
(2) annihR(R/I)⊆ I.
(3) I is a two-sided ideal of R if and only if annihR(R/I) = I.

EXERCISE 1.1.19. Let R be a ring and M a left R-module. If I and J are submodules
of M, then the module quotient is I : J = {r ∈ R | rJ ⊆ I}. Prove:

(1) I : J is a two-sided ideal in R.
(2) I : J = annihR ((I + J)/I) = annihR (J/(I∩ J)).

EXERCISE 1.1.20. Let θ : R→ S be a homomorphism of rings. Let M and N be S-
modules. Via θ , M and N can be viewed as R-modules (see Example 1.1.11 (3)). Show that
θ induces a well defined Z-module monomorphism Hθ : HomS(M,N)→ HomR(M,N).
(Note: The dual result, how the tensor group behaves when the ring in the middle is
changed, is studied in Exercise 2.3.41.)

EXERCISE 1.1.21. Let θ : R→ S be a homomorphism of commutative rings. If M is
an S-module, show that there is a commutative diagram of ring homomorphisms

R
λR //

θ

��

HomR(M,M)

S
λS // HomS(M,M)

Hθ

OO

where λR and λS are the left regular representations of Example 1.1.13 and Hθ is one-to-
one.
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EXERCISE 1.1.22. Let R be a commutative ring and S a commutative R-algebra.
Prove:

(1) The polynomial ring R[x1, . . . ,xn] in n indeterminates over R is a finitely gener-
ated R-algebra.

(2) S is a finitely generated R-algebra if and only if S is the homomorphic image of
R[x1, . . . ,xn] for some n.

(3) (Algebra version of Finitely Generated over Finitely Generated is Finitely Gener-
ated) If T is a finitely generated S-algebra and S is a finitely generated R-algebra,
then T is a finitely generated R-algebra.

EXERCISE 1.1.23. Let n ≥ 2 be an integer and ζ a primitive nth root of unity in C.
Let R be a commutative Z[ζ ]-algebra. Let a ∈ R and set S = R[x]/(xn−a). Show that there
is an R-algebra automorphism σ : S→ S induced by the assignment x 7→ ζ x.

EXERCISE 1.1.24. Let A be a commutative ring and R a subring of A. The conductor
from A to R is

R : A = {α ∈ A | αA⊆ R}.
Prove that R : A is an A-submodule of R, hence it is an ideal of both R and A.

EXERCISE 1.1.25. Let I1, I2, . . . , In be pairwise comaximal ideals in the commutative
ring R. Prove that I1I2 · · · In = I1∩ I2∩·· ·∩ In.

EXERCISE 1.1.26. Prove that if I and J are comaximal ideals in the commutative ring
R, then for every m ≥ 1 and n ≥ 1, Im and Jn are comaximal. Prove that in this case
ImJn = Im∩ Jn. (Hint: Apply the Binomial Theorem.)

EXERCISE 1.1.27. A local ring is a commutative ring R such that R has exactly one
maximal ideal. If R is a local ring with maximal ideal m, then R/m is called the residue
field of R. If (R,m) and (S,n) are local rings and f : R→ S is a homomorphism of rings,
then we say f is a local homomorphism of local rings in case f (m)⊆ n. Prove:

(1) If (R,m) is a local ring, then the group of units of R is equal to the set R−m.
(2) If f : R→ S is a local homomorphism of local rings, then f induces a homomor-

phism of residue fields R/m→ S/n.

EXERCISE 1.1.28. Let R be a commutative ring. Denote by R∗ the group of units in
R. Show that the following are equivalent.

(1) R is a local ring (see Exercise 1.1.27).
(2) For every r ∈ R, either r ∈ R∗ or 1− r ∈ R∗.
(3) For every pair r,s in R, if r+ s = 1, then either r ∈ R∗ or s ∈ R∗.

EXERCISE 1.1.29. For the following, let I, J and K be ideals in a commutative ring R.
By Exercise 1.1.19, I : J = {r ∈ R | rJ ⊆ I} is an ideal of R, and is called the ideal quotient,
or colon ideal. Prove that the ideal quotient satisfies the following properties.

(1) I ⊆ I : J
(2) (I : J)J ⊆ I
(3) (I : J) : K = I : JK = (I : K) : J
(4) If {Iα | α ∈ S} is a collection of ideals in R, then(⋂

α∈S

Iα

)
: J =

⋂
α∈S

(Iα : J)
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(5) If {Jα | α ∈ S} is a collection of ideals in R, then

I : ∑
α∈S

Jα =
⋂

α∈S

(I : Jα)

EXERCISE 1.1.30. Let R be a ring. Show that R is a Z-algebra in a unique way. Show
that:

R =
⋃
{S | S is a finitely generated commutative Z-subalgebra of R} .

That is, R is equal to the union of all commutative finitely generated Z-subalgebras of R.

2. The Well Ordering Principle and Some of Its Equivalents

Let X be a set and ≤ a binary relation on X which is reflexive, antisymmetric and
transitive. Then we say ≤ is a partial order on X . We also say X is partially ordered by
≤. If x,y ∈ X , then we say x and y are comparable if x≤ y or y≤ x. A chain is a partially
ordered set with the property that any two elements are comparable. If S⊆X is a nonempty
subset, then S is partially ordered by the restriction of ≤ to S×S. If the restriction of ≤ to
S is a chain, then we say S is a chain in X .

Let X be partially ordered by ≤ and suppose S is a nonempty subset of X . Let a ∈ S.
We say a is the least element of S if a≤ x for all x ∈ S. If it exists, clearly the least element
is unique. We say a is a minimal element of S in case x≤ a implies x = a for all x ∈ S. We
say a is a maximal element of S in case a ≤ x implies x = a for all x ∈ S. A well ordered
set is a partially ordered set X such that every nonempty subset S has a least element. The
reader should verify that a well ordered set is a chain. An element u ∈ X is called an upper
bound for S in case x ≤ u for all x ∈ S. An element l ∈ X is called a lower bound for S
in case l ≤ x for all x ∈ S. An element U ∈ X is a supremum, or least upper bound for
S, denoted U = sup(S), in case U is an upper bound for S and U is a lower bound for the
set of all upper bounds for S. The reader should verify that the supremum is unique, if it
exists. An element L ∈ X is an infimum, or greatest lower bound for S, denoted L = inf(S),
in case L is a lower bound for S and L is an upper bound for the set of all lower bounds for
S. The reader should verify that the infimum is unique, if it exists. A lattice is a partially
ordered set X such that sup{x,y} exists and inf{x,y} exists, for every pair of elements x,y
in X .

Let X be partially ordered by≤. We say that X satisfies the minimum condition if every
nonempty subset of X contains a minimal element. We say that X satisfies the maximum
condition if every nonempty subset of X contains a maximal element. We say that X
satisfies the descending chain condition (DCC) if every chain in X of the form {. . . ,x3 ≤
x2 ≤ x1 ≤ x0} is eventually constant. That is, there is a subscript n such that xn = xi for all
i ≥ n. We say that X satisfies the ascending chain condition (ACC) if every chain in X of
the form {x0 ≤ x1 ≤ x2 ≤ x3, . . .} is eventually constant.

PROPOSITION 1.2.1. Let X be a set that is partially ordered by ≤.

(1) X satisfies the descending chain condition (DCC) if and only if X satisfies the
minimum condition.

(2) X satisfies the ascending chain condition (ACC) if and only if X satisfies the
maximum condition.

AXIOM 1.2.2. (The Well Ordering Principle) If X is a nonempty set, then there exists
a partial order ≤ on X such that X is a well ordered set. That is, every nonempty subset of
X has a least element.
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Let X be a set and ≤ a partial order on X . If x,y ∈ X , then we write x < y in case x≤ y
and x ̸= y. Suppose C ⊆ X is a chain in X and α ∈C. The segment of C determined by α ,
written (−∞,α), is the set of all elements x ∈C such that x < α . A subset W ⊆C is called
an inductive subset of C provided that for any α ∈C, if (−∞,α)⊆W , then α ∈W .

PROPOSITION 1.2.3. (The Transfinite Induction Principle) Suppose X is a well or-
dered set and W is an inductive subset of X. Then W = X.

PROOF. Suppose X −W is nonempty. Let α be the least element of X −W . Then
W contains the segment (−∞,α). Since W is inductive, it follows that α ∈W , which is a
contradiction. □

PROPOSITION 1.2.4. (Zorn’s Lemma) Let X be a partially ordered set. If every chain
in X has an upper bound, then X contains a maximal element.

PROOF. By Axiom 1.2.2, there exists a well ordered set W and a one-to-one corre-
spondence ω : W → X . Using Proposition 1.2.3, define a sequence {C(w) |w∈W} of well
ordered subsets of X . If w0 is the least element of W , define C(w0) = {ω(w0)}. Induc-
tively assume α ∈W −{w0} and that for all w < α , C(w) is defined and the following are
satisfied

(1) if w0 ≤ w1 ≤ w2 < α , then C(w1)⊆C(w2),
(2) C(w) is a well ordered chain in X , and
(3) C(w)⊆ {ω(i) | w0 ≤ i≤ w}.

Let x = ω(α) and
F =

⋃
w<α

C(w).

The reader should verify that F is a well ordered chain in X and F ⊆ {ω(i) | w0 ≤ i < α}.
Define C(α) by the rule

C(α) =

{
F ∪{x} if x is an upper bound for F
F otherwise.

The reader should verify that C(α) satisfies
(4) if w0 ≤ w1 ≤ w2 ≤ α , then C(w1)⊆C(w2),
(5) C(α) is a well ordered chain in X , and
(6) C(α)⊆ {ω(i) | w0 ≤ i≤ α}.

By Proposition 1.2.3, the sequence {C(w) | w ∈W} is defined and the properties (4), (5)
and (6) are satisfied for all α ∈W . Now set

G =
⋃

w<α

C(w).

The reader should verify that G is a well ordered chain in X . By hypothesis, G has an upper
bound, say u. We show that u is a maximal element of X . For contradiction’s sake, assume
X has no maximal element. Then we can choose the upper bound u to be an element of
X −G. For some w1 ∈W we have u = ω(w1). For all w < w1, u is an upper bound for
C(w). By the definition of C(w1), we have u ∈ C(w1). This is a contradiction, because
C(w1)⊆ G. □

DEFINITION 1.2.5. Let I be a set and {Xi | i ∈ I} a family of sets indexed by I. The
product is

∏
i∈I

Xi =
{

f : I→
⋃

Xi | f (i) ∈ Xi
}
.
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An element f of the product is called a choice function, because f chooses one element
from each member of the family of sets.

PROPOSITION 1.2.6. (The Axiom of Choice) Let I be a set and {Xi | i ∈ I} a family of
nonempty sets indexed by I. Then the product ∏i∈I Xi is nonempty. That is, there exists a
function f on I such that f (i) ∈ Xi for each i ∈ I.

PROOF. By Axiom 1.2.2, we can assume
⋃

i∈I Xi is well ordered. We can view Xi as a
subset of

⋃
i∈I Xi. For each i ∈ I, let xi be the least element of Xi. The set of ordered pairs

(i,xi) defines the choice function. □

3. Topological Spaces

DEFINITION 1.3.1. Let X be a set. A topology on X is a subset T of 2X that satisfies
the following properties:

(1) X ∈T .
(2) /0 ∈T .
(3) If A,B ∈T , then A∪B ∈T .
(4) If {Ai | i ∈ I} is a family of sets such that each Ai ∈T , then ∩iAi ∈T .

The elements of T are called closed sets. If A ∈ T , then X −A is called an open set. If
Y ⊆ X , then T restricts to a topology on Y whose closed sets are {A∩Y | A ∈T }.

DEFINITION 1.3.2. Let X and Y be topological spaces and f : X → Y a function.
Then f is said to be continuous, if f−1(Y ) is closed whenever Y is closed. Equivalently,
f is continuous if f−1(U) is open whenever U is open. If f is continuous, and g : Y → Z
is continuous, then one can check that g f : X → Z is continuous. We say X and Y are
homeomorphic, if there exist continuous functions f : X → Y and g : Y → X such that
g f = 1X and f g = 1Y .

DEFINITION 1.3.3. Let X be a topological space and Y a nonempty subset. We say
Y is irreducible if whenever Y ⊆ Y1 ∪Y2 and Y1, Y2 are closed subsets of X , then Y ⊆ Y1,
or Y ⊆ Y2. We say Y is connected if whenever Y ⊆ Y1 ∪Y2 and Y1,Y2 are disjoint closed
subsets of X , then Y ⊆ Y1, or Y ⊆ Y2. The empty set is not considered to be irreducible or
connected. Notice that an irreducible set is connected.

If Z is a subset of the topological space X , then the closure of Z, denoted Z̄, is the
smallest closed subset of X that contains Z. Equivalently, Z̄ is equal to the intersection of
all closed sets that contain Z.

LEMMA 1.3.4. Let X be a topological space.
(1) If X is irreducible and U ⊆X is a nonempty open of X, then U is irreducible and dense.
(2) Let Z be a subset of X and denote by Z̄ the closure of Z in X. Then Z is irreducible if

and only if Z̄ is irreducible.
(3) If X is irreducible, then X is connected.

PROOF. Is left to the reader. □

A topological space X is said to be noetherian if X satisfies the ascending chain con-
dition on open sets. Some equivalent conditions are given by the next lemma.

LEMMA 1.3.5. The following are equivalent, for a topological space X.
(1) X satisfies the ascending chain condition on open sets.
(2) X satisfies the maximum condition on open sets.
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(3) X satisfies the descending chain condition on closed sets.
(4) X satisfies the minimum condition on closed sets.

PROOF. Proposition 1.2.1 shows the equivalence of (1) and (2), as well as the equiv-
alence of (3) and (4). The rest is left to the reader. □

LEMMA 1.3.6. Let X be a topological space.
(1) If X = X1∪·· ·∪Xn and each Xi is noetherian, then X is noetherian.
(2) If X is noetherian and Y ⊆ X, then Y is noetherian.
(3) If X is noetherian, then X is compact. That is, every open cover of X contains a finite

subcover.

PROOF. Is left to the reader. □

PROPOSITION 1.3.7. Let X be a noetherian topological space and Z a nonempty
closed subset of X.
(1) There are unique irreducible closed subsets Z1, . . . ,Zr such that Z = Z1∪ ·· ·∪Zr and

Zi ̸⊆ Z j for all i ̸= j. The sets Zi are called the irreducible components of Z.
(2) There are unique connected closed subsets Y1, . . . ,Yc such that Z = Y1 ∪ ·· · ∪Yc and

Yi∩Yj = /0 for all i ̸= j. The sets Yi are called the connected components of Z.
(3) The number of connected components is less than or equal to the number of irreducible

components.

PROOF. (1): We first prove the existence of the decomposition. For contradiction’s
sake, assume there is a nonempty closed subset Y such that Y cannot be written as a union
of a finite number of irreducible closed sets. Let S be the collection of all such subsets. By
Lemma 1.3.5 (4), S has a minimal member, call it Y . Then Y is itself not irreducible, so
we can write Y =Y1∪Y2 where each Yi is a proper closed subset of Y . By minimality of Y ,
it follows that each Yi is not in S . Therefore each Yi can be decomposed into irreducibles.
This means Y =Y1∪Y2 can also be decomposed into irreducibles, which is a contradiction.
So Z is not a counterexample. In other words, we can write Z = Z1∪·· ·∪Zr such that each
Zi is irreducible. If Zi ⊆ Z j for some j different from i, then Zi may be excluded.

Now we prove the uniqueness of the decomposition. Let Z = Z1 ∪ ·· · ∪Zr and Z =
W1∪·· ·∪Wp be two such decompositions. Then

Z1 = (Z1∩W1)∪·· ·∪ (Z1∩Wp).

Since Z1 is irreducible, Z1 = Z1∩Wi for some i. Therefore Z1 ⊆Wi. Likewise Wi ⊆ Z j for
some j. This implies

Z1 ⊆Wi ⊆ Z j.

It follows that Z1 =Wi. By a finite induction argument, we are done.
(2): Existence follows by the minimal counterexample method of Part (1). The rest is

left to the reader.
(3): Each Zi is connected, by Lemma 1.3.4. Then each Zi belongs to a unique con-

nected component of X . □

A topological space X is said to be a T1-space if for every point x ∈ X the subset {x}
is closed. We say X is separated (or Hausdorff , or a T2-space), if for any two distinct
points x,y ∈ X , there are neighborhoods x ∈ U and y ∈ V such that U ∩V = /0. We say
X is compact if for any open cover {Ui | i ∈ D} of X , there is a finite subset J ⊆ D such
that {Ui | i ∈ D} is an open cover of X . Let {Xi | i ∈ D} be a family of topological spaces
indexed by a set D. The product topology on ∏i∈D Xi is defined to be the finest topology
such that all of the projection maps πi : ∏i∈D Xi→ Xi are continuous.
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4. Categories and Functors

A category consists of a collection of objects and a collection of morphisms between
pairs of those objects. The composition of morphisms is defined and is again a morphism.
For our purposes, a category will usually be one of the following:

(1) The category whose objects are modules over a ring R and whose morphisms
are homomorphisms of modules. By RM we denote the category of all left R-
modules together with R-module homomorphisms. By MR we denote the cate-
gory of all right R-modules together with R-module homomorphisms. If A and B
are R-modules, the set of all R-module homomorphisms from A to B is denoted
HomR(A,B).

(2) The category of whose objects are rings and whose morphisms are homomor-
phisms of rings. A subcategory would be the category whose objects are com-
mutative rings.

(3) The category whose objects are finitely generated algebras over a fixed commu-
tative ring R and whose morphisms are R-algebra homomorphisms.

(4) The category whose objects are sets and whose morphisms are functions.
(5) The category of pointed sets. A pointed set is a pair (X ,x) where X is a nonempty

set and x is a distinguished element of X called the base point. A morphism from
a pointed set (X ,x) to a pointed set (Y,y) is a function f : X → Y such that
f (x) = y.

For any pair of objects A, B in a category C, the collection of all morphisms from A to
B is denoted HomC(A,B). A covariant functor from a category C to a category D is a
correspondence F : C→ D which is a function on objects A 7→ F(A) and for any pair
of objects A,B ∈ C, each morphism f in HomC(A,B) is mapped to a morphism F( f ) in
HomD(F(A),F(B)) such that the following are satisfied

(1) If 1 : A→ A is the identity map, then F(1) : F(A)→ F(A) is the identity map.
(2) Given a commutative triangle in C

B
g

��
A

f
??

g f // C

the triangle

F(B)
F(g)

""
F(A)

F( f )
<<

F(g f ) // F(C)

commutes in D.

EXAMPLE 1.4.1. The opposite ring of R is denoted Ro. Multiplication in Ro is denoted
by ∗ and is reversed from multiplication in R: x ∗ y = yx. Any M ∈ RM can be made into
a right Ro-module by defining m ∗ r = rm. The reader should verify that this defines a
covariant functor RM→MRo .

The definition of a contravariant functor is similar, except the arrows get reversed. That
is, if F : C→D is a contravariant functor and f is an element of HomC(A,B), then F( f ) is
in HomD(F(B),F(A)).
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If F : C→D is a covariant functor between categories of modules, then F is left exact
if for every short exact sequence

(4.1) 0→ A α−→ B
β−→C→ 0

in C, the corresponding sequence

0→ F(A)
F(α)−−−→ F(B)

F(β )−−−→ F(C)

is exact in D. We say F is right exact if for every short exact sequence (4.1) in C, the
sequence

F(A)
F(α)−−−→ F(B)

F(β )−−−→ F(C)→ 0

is exact in D.
If F : C→D is a contravariant functor between categories of modules, then F is left

exact if for every short exact sequence (4.1) in C, the sequence

0→ F(C)
F(β )−−−→ F(B)

F(α)−−−→ F(A)

is exact in D. We say the contravariant functor F is right exact if for every short exact
sequence (4.1) in C, the sequence

F(C)
F(β )−−−→ F(B)

F(α)−−−→ F(A)→ 0

is exact in D.

DEFINITION 1.4.2. Let F : A→ C and G : C→ A be covariant functors. We say that
(F,G) is an adjoint pair if for every A ∈ A and C ∈ C there exists a bijection

ψ : HomC(FA,C)→ HomA(A,GC)

such that for any α : A→ A′ in A, the diagram

HomC(FA′,C)
HFα //

ψ

��

HomC(FA,C)

ψ

��
HomA(A′,GC)

Hα // HomA(A,GC)

commutes and given any γ : C→C′ in SM, the diagram

HomC(FA,C)
Hγ //

ψ

��

HomC(FA,C′)

ψ

��
HomA(A,GC)

HGγ // HomA(A,GC′)

commutes. We say that ψ is natural in the variable A and the variable C.

Presently, we give an example of two functors that are adjoint pairs obtained by tensor
products and groups of homomorphisms (see Theorem 2.4.10).

DEFINITION 1.4.3. Let C and D be categories of modules and suppose we have two
functors F and F′ from C to D. We say that F and F′ are naturally equivalent if for every
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module M in C there is an isomorphism ϕM in HomD

(
F(M),F′(M)

)
such that, for every

pair of modules M and N in C and any f ∈ HomC(M,N), the diagram

F(M)
F( f ) //

ϕM

��

F(N)

ϕN

��
F′(M)

F′( f ) // F′(N)

commutes. We denote by IC the identity functor on the category C defined by IC(M) = M
and IC( f ) = f , for modules M and maps f . Then we say two categories C and D are
equivalent if there is a functor F : C→ D and a functor G : D→ C such that F ◦G is
naturally equivalent to ID and G◦F is naturally equivalent to IC. The functors F and G are
then referred to as inverse equivalences.

EXAMPLE 1.4.4. Let R be a ring. The reader should verify that the category of left
R-modules, RM, is equivalent to the category of right Ro-modules, MRo .

DEFINITION 1.4.5. Let C and D be categories of modules and F : C→D a covariant
functor. We say that F is fully faithful if

HomC(A,B)→ HomD(F(B),F(A))

is a one-to-one correspondence. We say that F is essentially surjective if for every object
D in D, there exists C in C such that D is isomorphic to F(C).

Proposition 1.4.6 states that for a functor F to establish an equivalence of categories
it is necessary and sufficient that F is both fully faithful and essentially surjective. In this
book the only applications of this proposition are in Section 2.8 and only the “necessary”
part is required. For this reason, we prove the “necessary” statement and provide a refer-
ence for a proof of the “sufficient” statement.

PROPOSITION 1.4.6. Let C and D be categories of modules and F :C→D a covariant
functor. Then F establishes an equivalence of categories if and only if F is fully faithful
and essentially surjective.

PROOF. Assume there is a functor G : D→ C such that the functors F and G are in-
verse equivalences. By the natural equivalence of F ◦G with the identity functor, we see
that F is essentially surjective. To prove that F is fully faithful, we show that HomC(A,B)→
HomD (F(A),F(B)) is one-to-one and onto.

Suppose f , g are elements of HomC(A,B) with F( f ) = F(g) in HomD

(
F(A),F(B)

)
.

Then G
(
F( f )

)
=G

(
F(g)

)
in HomC

(
G
(
F(A)

)
,G
(
F(B)

))
. By the natural equivalence of

G ◦F with the identity functor, this implies that f = g. By a symmetric argument we see
that

(4.2) HomD

(
F(A),F(B)

)
→ HomC

(
G
(
F(A)

)
,G
(
F(B)

))
is one-to-one.

Now suppose g is any element of HomD

(
F(A),F(B)

)
. We then obtain the square

G
(
F(A)

)
ϕA

��

G(g) // G
(
F(B)

)
ϕB

��
A

f // B
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where ϕA and ϕB, arise from the natural equivalence of G◦F with the identity and where
f = ϕBG(g)ϕ−1

A . On the other hand, we also have the square

G
(
F(A)

)
ϕA

��

G
(
F( f )
)
// G
(
F(B)

)
ϕB

��
A

f // B

from which we deduce that G(g) = G
(
F( f )

)
. Since (4.2) is one-to-one, it follows that

g = F( f ). This shows F is fully faithful.
For a proof of the converse, the reader is referred to a book on Category Theory. For

example, see [10, Proposition (1.1), p. 4]. □

5. Prime Ideals and Prime Elements in Commutative Rings

DEFINITION 1.5.1. Let R be a commutative ring. An ideal I in R is prime in case R/I
is an integral domain. An ideal I in R is maximal in case R/I is a field. A field is an integral
domain, so a maximal ideal is a prime ideal. An integral domain has at least two elements,
so the unit ideal is not prime.

Let a be an element of R which is not a unit and not a zero divisor. Then a is irreducible
in case whenever a = bc, either b is a unit or c is a unit. We say that a is prime in case
whenever a | bc, either a | b or a | c. If a divides b and b divides a then a and b are
associates.

LEMMA 1.5.2. Let R be an integral domain and p an element of R.
(1) p is prime if and only if (p) is a prime ideal.
(2) p is irreducible if and only if the principal ideal (p) is maximal among nonunit prin-

cipal ideals of R.
(3) If p is prime, then p is irreducible.
(4) If p is irreducible and q is an associate of p, then q is irreducible.
(5) If p is prime and q is an associate of p, then q is prime.
(6) If p is irreducible, then the only divisors of p are units and associates of p.

PROPOSITION 1.5.3. Let R be a ring and I an ideal in R. There is a one-to-one order-
preserving correspondence between the ideals J such that I ⊆ J ⊆ R and the ideals of R/I
given by J 7→ J/I. If R is commutative, then there is a one-to-one correspondence between
prime ideals of R/I and prime ideals of R that contain I.

PROPOSITION 1.5.4. Let R be a commutative ring and P an ideal of R. Assume P ̸= R.
The following are equivalent.
(1) P is a prime ideal. That is, R/P is an integral domain.
(2) For all x,y ∈ R, if xy ∈ P, then x ∈ P or y ∈ P.
(3) For any ideals I,J in R, if IJ ⊆ P, then I ⊆ P or J ⊆ P.

PROPOSITION 1.5.5. Let R be a commutative ring.
(1) An ideal M is a maximal ideal in R if and only if M is not contained in a larger proper

ideal of R.
(2) If I is an ideal of R and I ̸= R, then R contains a maximal ideal M such that I ⊆M.

We end this short section with a proof that an integral domain R is a principal ideal
domain if and only if R is a unique factorization domain such that every nonzero prime
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ideal of R is a maximal ideal. A ring R that has the ascending chain condition on left ideals
is said to be left noetherian. Likewise, we say R is right noetherian, if the ACC holds for
right ideals.

THEOREM 1.5.6. If R is a principal ideal domain, then R is a noetherian unique
factorization domain.

PROOF. See [20, Theorem 3.4.15]. □

EXAMPLE 1.5.7. Let R be a unique factorization domain. If x is a nonzero nonunit
in R, then the number of factors in a factorization of x into primes is unique ([20, Defini-
tion 3.4.11]). Let ν(x) be the number of factors in a prime factorization of x. Extend ν to
a function from R to the well ordered set N∪{0}∪{∞} by setting ν(0) = ∞ and ν(x) = 0
if x is a unit. The function ν satisfies:

(1) ν(xy) = ν(x)+ν(y).
(2) ν(x) = 0 if and only if x is a unit.
(3) ν(x) = 1 if and only if x is irreducible.

THEOREM 1.5.8. If R is an integral domain that is not a field, then the following are
equivalent.
(1) R is a principal ideal domain.
(2) R is a unique factorization domain with the property that every nonzero prime ideal is

a maximal ideal.

PROOF. (1) implies (2): A PID is a UFD, by Theorem 1.5.6. If P is a nonzero prime
ideal in R, then P = (π) is principal and π is irreducible. In an integral domain a principal
ideal generated by an irreducible element is maximal among proper principal ideals, by
[20, Theorem 3.4.5]. So P is a maximal ideal in R.

(2) implies (1): Assume R is a UFD and every nonzero prime ideal is maximal. As
in Example 1.5.7, let ν : R→ Z∪{∞} be the function defined by: ν(x) is the number of
factors in a representation of x as a product of irreducibles. Given a nonzero ideal I, define
ν(I) to be the minimum of {ν(x) | x ∈ I}. Then ν(I) = 0 if and only if I = R. If I is a
prime ideal in R, then by Exercise 1.5.10 there is a prime element π ∈ I. By Lemma 1.5.2,
(π) is a prime ideal and by hypothesis (π) is a maximal ideal in R. Hence (π)⊆ I implies
I = (π) is principal. This and [20, Corollary 3.4.14] imply that ν(I) = 1 if and only if I is
a prime ideal.

Let I be a nonzero ideal in R. The proof is by induction on ν(I). As seen already, if
ν(I) ≤ 1, then I is principal. Inductively, assume n > 1 and that if J is an ideal of R with
ν(J)< n, then J is principal. Let I be an ideal with ν(I) = n. We prove that I is principal.
Let x ∈ I be such that ν(x) = n. Let p be an irreducible factor of x and write x = px1.
Then ν(x1) = n−1. Let y ∈ I− (0). Assume for sake of contradiction that y is not in (p).
Then (y)+(p) = (1) since (p) is a maximal ideal. For some a,b ∈ R we have 1 = ay+bp.
Then x1 = ayx1 + bpx1 = ax1y+ bx is in I. This is a contradiction, since ν(x1) = n− 1
and ν(I) = n. We conclude that y ∈ (p), which proves that I ⊆ (p). By Exercise 1.1.29,
I =(I : (p))(p), where (I : (p)) is the ideal quotient. In particular, x= px1 and x1 ∈ (I : (p)).
This proves ν(I : (p))≤ n−1. By our induction hypothesis, I : (p) = (z) is principal. Then
I = (I : (p))(p) = (z)(p) = (zp) is principal, which completes the proof. □

5.1. Exercises.

EXERCISE 1.5.9. Let R be an integral domain that satisfies the two properties:
(A) In R an irreducible element is a prime element.
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(B) R satisfies the ascending chain condition on principal ideals. That is, given a chain of
principal ideals ⟨a1⟩ ⊆ ⟨a2⟩ ⊆ ⟨a3⟩ ⊆ · · · ⊆ ⟨an⟩ ⊆ · · · , there exists N ≥ 1 such that
⟨aN⟩= ⟨aN+1⟩= · · · .

Follow the outline below to show that R is a unique factorization domain.
(1) Prove that if a ∈ R is a nonunit, nonzero element of R, then the set

S = {p ∈ R | p is irreducible and p | a}
contains only a finite number of associate classes. In other words, up to asso-
ciates, a has only a finite number of irreducible factors.

(2) Suppose a is a nonzero element in R, p is irreducible and p is a factor of a. Prove
that for some n≥ 1 we have a ∈ (pn) and a ̸∈ (pn+1).

(3) Prove that if a ∈ R is a nonunit and a nonzero element, then there exists an
irreducible element p such that p | a.

(4) R is a unique factorization domain.
(Hint: Use the proof of [20, Theorem 3.4.15] as an outline.

EXERCISE 1.5.10. Let R be a UFD and P a nonzero prime ideal of R. Prove that P
contains a prime element π of R. (Hint: Let x ∈ P− (0). Show that P contains at least one
prime divisor of x.)

EXERCISE 1.5.11. Let R be a commutative ring. Let Max(R) be the set of all maximal
ideals in R and R∗ the group of units of R. Show that R−R∗ =

⋃
{m |m ∈Max(R)}.

6. Free Modules and Vector Spaces

6.1. Direct Products and Direct Sums of Rings. Let {Ri | i ∈ I} be a family of
rings. For each i ∈ I, the same symbol 0 is used to denote the additive identity of each Ri.
Likewise, 1 denotes the multiplicative identity of each Ri. The direct product is

∏
i∈I

Ri =

{
f : I→

⋃
i∈I

Ri | f (i) ∈ Ri

}
.

Notice that as a set, it is the product of the underlying sets as defined in Definition 1.2.5.
The direct product of a family of rings is a ring if addition and multiplication are defined
coordinate-wise:

( f +g)(i) = f (i)+g(i)

( f g)(i) = f (i)g(i).

Since each Ri contains 0, the additive identity in the product is the function f (i) = 0. Since
each Ri contains 1, the multiplicative identity in the product is the function f (i) = 1. The
other ring axioms hold in the product because they hold coordinate-wise. For each k ∈ I
the canonical projection map

πk : ∏
i∈I

Ri→ Rk,

defined by the rule πk( f ) = f (k), is an onto homomorphism of rings. There is a canonical
injection map

ιk : Rk→∏
i∈I

Ri

which maps x ∈ Rk to ιk(x) which is equal to x in coordinate k, and 0 elsewhere. Then ιk
is a one-to-one homomorphism of additive groups, ιk is multiplicative and πkιk = 1Rk . The
function ιk is not a homomorphism of rings, since ιk(1) ̸= 1.
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The direct sum of a family of rings, denoted
⊕

i∈I Ri, is the smallest subring of the
direct product that contains the set{

f : I→
⋃
i∈I

Ri | f (i) ∈ Ri and f (i) = 0 for all but finitely many i ∈ I

}
.

The canonical projection map
πk :

⊕
i∈I

Ri→ Rk

is an onto homomorphism of rings. The canonical injection map

ιk : Rk→
⊕
i∈I

Ri

is a one-to-one homomorphism of additive groups, is multiplicative, and we have πkιk =
1Rk . The direct product and the direct sum are equal if the index set is finite. If I =
{1,2, . . . ,n}, then

n⊕
i=1

Ri = R1⊕R2⊕·· ·⊕Rn = {(x1, . . . ,xn) | xi ∈ Ri}

which as a set is the usual product.

6.2. Direct Product and Direct Sum of a Family of Modules. As mentioned above,
we define the direct product and the direct sum of a family of R-modules {Mi | i ∈ I} over
an arbitrary index set I.

DEFINITION 1.6.1. Let R be a ring, I an index set and {Mi | i ∈ I} a family of R-
modules indexed by I. The direct product ∏i∈I Mi = { f : I →

⋃
i∈I | f (i) ∈ Mi} is an

abelian group. The binary operation is coordinate-wise addition: ( f +g)(i) = f (i)+g(i).
The identity element, denoted 0, is the constant function 0(i) = 0. The inverse of f is
defined by (− f )(i) = − f (i). We turn the direct product ∏i∈I Mi into an R-module by
defining the R-action coordinate-wise: (r f )(i) = r f (i). The R-module ∏i∈I Mi is called the
direct product of {Mi | i∈ I}. For each k∈ I there are the canonical injection and projection
maps

Mk
ιk−→∏

i∈I
Mi

πk−→Mk

where πk( f ) = f (k) and for x ∈ Mk, ιk(x) is x in coordinate k and 0 otherwise. Then
πkιk = 1Mk . The functions ιk and πk are R-module homomorphisms.

The direct sum of {Mi | i ∈ I} is denoted
⊕

i∈I Mi and is defined to be the submodule
of the direct product generated by the set

⋃
k∈I ιk(Mk). It is routine to check that⊕

i∈I

Mi =
{

f : I→
⋃
i∈I

Mi | f (i) ∈Mi and f (i) = 0 for all but finitely many i ∈ I
}
.

For each k ∈ I the canonical injection map ιk factors through the direct sum. That is,
ιk : Mk→

⊕
i∈I Mi is a one-to-one homomorphism of R-modules. All of the maps

Mk
ιk−→
⊕
i∈I

Mi
⊆−→∏

i∈I
Mi

πk−→Mk

are R-module homomorphisms. The restriction of πk to the direct sum is an onto homo-
morphism of R-modules πk :

⊕
i∈I Mi→Mk. We have πkιk = 1Mk . The direct sum

⊕
i∈I Mi

is sometimes called the external direct sum to distinguish it from the internal direct sum of
submodules defined in Definition 1.6.3 below.
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If the index set I is {1, . . . ,n} and M1, . . . ,Mn are R-modules, then the direct product
and the direct sum are equal. In this case, the direct sum is sometimes denoted M1⊕M2⊕
·· ·⊕Mn.

PROPOSITION 1.6.2. Let R be a ring, I an index set and {Mi | i ∈ I} a family of
R-modules indexed by I. Let M be an R-module.

(1) Given any family {ψi : M → Mi | i ∈ I} of R-module homomorphisms, there exists a
unique R-module homomorphism θ : M→∏i∈I Mi such that for each j ∈ I the diagram

∏i∈I Mi

π j

��
M

ψ j
//

∃θ
<<

M j

commutes and π jθ = ψ j.
(2) Given any family {φi : Mi → M | i ∈ I} of R-module homomorphisms, there exists a

unique R-module homomorphism θ :
⊕

i∈I Mi→M such that for each j∈ I the diagram⊕
i∈I Mi

∃θ

""
M j

φ j

//

ι j

OO

M

commutes and θι j = φ j.

PROOF. Part (1) is Exercise 1.6.28 (1). Part (2) is Exercise 1.6.29 (1). □

DEFINITION 1.6.3. Let I be an index set and {Si | i ∈ I} a family of submodules of
the R-module M. The submodule of M generated by the set

⋃
i∈I Si is called the sum of the

submodules and is denoted ∑i∈I Si. Let
⊕

i∈I Si be the external direct sum of the R-modules
{Si | i∈ I}. By Proposition 1.6.2 there exists an R-module homomorphism φ :

⊕
i∈I Si→M

defined by φ( f ) = ∑i∈I f (i). Therefore the image of φ is equal to the sum ∑i∈I Si. We say
that M is the internal direct sum of the submodules {Si | i∈ I} in case φ is an isomorphism.
In this case we write M =

⊕
i∈I Si.

Proposition 1.6.4 lists some useful necessary and sufficient conditions for a module M
to be the internal direct sum of a family of submodules.

PROPOSITION 1.6.4. Let I be an index set and {Si | i ∈ I} a family of submodules of
the R-module M. Then the following are equivalent.

(1) M =
⊕

i∈I Si is the internal direct sum of the submodules {Si | i ∈ I}.
(2) For each x ∈M there is a unique representation of x in the form x = ∑i∈I xi where each

xi comes from Si and for all but finitely many i ∈ I we have xi = 0.
(3) The following are satisfied:

(a) M = ∑i∈I Si is the sum of the submodules {Si | i ∈ I}, and
(b) for every finite subset {k1, . . . ,kn} of I, if xki ∈ Ski for 1≤ i≤ n, and 0 = ∑

n
i=1 xki ,

then xki = 0 for each i.
(4) The following are satisfied:

(a) M = ∑i∈I Si is the sum of the submodules {Si | i ∈ I}, and
(b) for every k ∈ I, Sk ∩∑i∈I−{k} Si = {0}.
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DEFINITION 1.6.5. If M is an R-module and N is an R-submodule of M, then N is a
direct summand of M if there is a submodule L of M such that M = N⊕L.

LEMMA 1.6.6. Let R be a ring, M an R-module, and N an R-submodule of M. The
following are equivalent.
(1) N is a direct summand of M. That is, M = N⊕L for some submodule L of M.
(2) There exists π ∈ HomR(M,M) such that

(a) π2 = π (that is, π is idempotent),
(b) for each m ∈M, π(m) ∈ N, and
(c) for each x ∈ N, π(x) = x.

(3) The short exact sequence

0→ N→M→M/N→ 0

is split exact.
(4) There exists φ ∈ HomR(M,N) such that for each x ∈ N, φ(x) = x.

6.3. Free Modules.

DEFINITION 1.6.7. Let R be any ring. An R-module M is finitely generated if there is a
finite subset {x1, . . . ,xn} of M such that M = Rx1 + · · ·+Rxn. Thus, M is finitely generated
if and only if M is equal to the sum of a finite number of cyclic submodules. If M has a
finite generating set, then by the Well Ordering Principle, there exists a generating set with
minimal cardinality. We call such a generating set a minimal generating set. The rank of
M, written Rank(M), is defined to be the number of elements in a minimal generating set.

DEFINITION 1.6.8. Let R be a ring and I any index set. For i ∈ I, let Ri = R as R-
modules. By Example 1.1.11, R is a left R-module. Denote by RI the R-module direct sum⊕

i∈I Ri. If I = {1,2, . . . ,n}, then write R(n) for RI . Let M be an R-module. We say M is
free if M is isomorphic to RI for some index set I. If X = {x1, . . . ,xn} is a finite subset of
M, define φX : R(n)→M by φX (r1, . . . ,rn) = r1x1 + . . .rnxn. The reader should verify that
φX is an R-module homomorphism. We say X is a linearly independent set in case φX is
one-to-one. An arbitrary subset Y ⊆M is a linearly independent set if every finite subset
of Y is linearly independent. The function δ : I× I→{0,1} defined by

(6.1) δi j =

{
1 if i = j
0 otherwise

is called the Kronecker delta function. The standard basis for RI is {ei ∈ RI | i ∈ I} where
ei( j) = δi j. The reader should verify that the standard basis is a linearly independent
generating set for RI .

LEMMA 1.6.9. An R-module M is free if and only if there exists a subset X = {bi |
i ∈ I} ⊆M which is a linearly independent generating set for M. A linearly independent
generating set is called a basis for M.

PROOF. Given a basis {bi | i ∈ I} define φ : RI → M by φ( f ) = ∑i∈I f (i)bi. This is
well defined since f (i) is nonzero on a finite subset of I. Clearly φ is a homomorphism.
Because X generates M and is linearly independent, the map φ is one-to-one and onto. The
converse is left to the reader. □

EXAMPLE 1.6.10. We have already seen examples of free modules.
(1) If R is any ring, then the ring of polynomials R[x] is a free R-module and the set
{1,x,x2, . . . ,xi, . . .} is a basis.
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(2) If R is a commutative ring and f ∈ R[x] is a monic polynomial of degree n, then
the Division Algorithm implies S = R[x]/( f ) is a free R-module of rank n. The set
{1,x,x2, . . . ,xn−1} is a basis.

(3) If R is a commutative ring, G a group, and R(G) the group ring (see Example 1.1.4),
then R(G) is a free R module with basis {g | g ∈ G}.

LEMMA 1.6.11. Let R be a ring and M an R-module.

(1) Let F be a free R-module and {bi | i ∈ I} a basis for F. For any function y : I →M,
there exists a unique R-module homomorphism θ : F → M such that θ(bi) = yi for
each i ∈ I and the diagram

I
y //

b ��

M

F
∃θ

>>

commutes.
(2) There exists a free R-module F and a surjective homomorphism F →M.
(3) M is finitely generated if and only if M is the homomorphic image of a free R-module

R(n) for some n.

DEFINITION 1.6.12. Let R be a ring and M an R-module. We say that M is of finite
presentation if there exists an exact sequence

R(m)→ R(n)→M→ 0

for some m and n.

A vector space is a module over a division ring. A submodule of a vector space is
called a subspace. Elements of a vector space are called a vectors. If D is a division ring
and V , W are D-vector spaces, then a homomorphism φ ∈ HomD(V,W ) is called a linear
transformation. A generating set for V as a D-module is called a spanning set.

THEOREM 1.6.13. Let D be a division ring and V a nonzero vector space over D.

(1) Every linearly independent subset of V is contained in a basis for V .
(2) If S⊆V is a generating set for V , then S contains a basis for V .
(3) V is a free D-module.

PROOF. (3) follows from either (1) or (2).
(1): Let X be a linearly independent subset of V . Let S be the set of all Y ⊆ V such

that Y is linearly independent and X ⊆Y . Applying Zorn’s Lemma to S, let B be a maximal
member. The reader should prove that B is a basis for V .

(2): Let X be a generating set for V over D. Let S be the set of all Y ⊆ X such that Y
is linearly independent. Applying Zorn’s Lemma to S, let B be a maximal member. The
reader should prove that B is a basis for V . □

THEOREM 1.6.14. Let V be a finitely generated vector space over the division ring D
and B = {b1, . . . ,bn} a basis for V .

(1) If Y = {y1, . . . ,ym} is a linearly independent set in V , then m≤ n. We can re-order the
elements of B such that {y1, . . . ,ym,bm+1, . . . ,bn} is a basis for V .

(2) Every basis for V has n elements.



6. FREE MODULES AND VECTOR SPACES 35

Let D be a division ring and V a vector space over D. If V is finitely generated and
nonzero, then we define the dimension of V , written dimD(V ), to be the number of ele-
ments in a basis for V . If V = (0), set dimD(V ) = 0 and if V is not finitely generated, set
dimD(V ) = ∞. If R is a commutative ring and F is a finitely generated free R-module, then
by Exercise 1.6.23, any two bases for F have the same number of elements. We define the
rank of F , written RankR(F), to be the number of elements in a basis for F . This definition
of rank agrees with that of Definition 1.6.7, by Exercise 1.6.24.

6.4. Exercises.

EXERCISE 1.6.15. Let R be a ring and M a left R-module. Prove that if I and J are
submodules of M, then annihR(I + J) = annihR(I)∩ annihR(J).

EXERCISE 1.6.16. Suppose S is a ring and R is a subring of S. Let I be an index set
and view the free R-module RI as a subset of the free S-module SI .

(1) Prove that if X ⊆ RI is a generating set for RI , then X ⊆ SI is a generating set for
the S-module SI .

(2) Assume S is commutative, I is finite, and X is a basis for the free R-module RI .
Prove that X is a basis for the free S-module SI .

EXERCISE 1.6.17. Let R be a ring and

0→ L→M→ N→ 0

an exact sequence of R-modules. Prove:

(1) If M is finitely generated, then N is finitely generated.
(2) If L and N are both finitely generated, then M is finitely generated.

EXERCISE 1.6.18. Let R be a ring and

0→ L
f−→M

g−→ N→ 0

a short exact sequence of R-modules. Prove that the following are equivalent.

(1) f has a left inverse which is an R-module homomorphism. That is, there exists
φ : M→ L such that φ f = 1L.

(2) g has a right inverse which is an R-module homomorphism. That is, there exists
ψ : N→M such that gψ = 1N .

EXERCISE 1.6.19. Let R be a ring and

0→ L→M→ N→ 0

a split exact sequence of R-modules. Prove that M is isomorphic to L⊕N as R-modules.

EXERCISE 1.6.20. Let m and n be positive integers. Let η : Z/mnZ→ Z/mZ be the
natural map. If ι is the set inclusion map, show that the sequence

0→ mZ/mnZ ι−→ Z/mnZ η−→ Z/mZ→ 0

is an exact sequence of Z-modules. Show that it is split exact if and only if gcd(m,n) = 1.

EXERCISE 1.6.21. Let R be a ring and B an R-module. Suppose B=B1⊕B2 and let π :
B→ B2 be the projection. Suppose σ : A→ B is one-to-one and consider the composition
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homomorphism πσ : A→ B2. If A1 = ker(πσ) and A2 = im(πσ), show that there is a
commutative diagram

0 // A1
α //

σ1

��

A
β //

σ

��

A2

σ2

��

// 0

0 // B1
ι // B π // B2 // 0

satisfying the following.
(1) α , ι , and σ2 are the set inclusion maps.
(2) σ1 is the restriction of σ to A1.
(3) The two horizontal rows are split exact sequences.

EXERCISE 1.6.22. Let R be a ring. Show that the direct sum of short exact sequences
of R-modules is a short exact sequence. That is, assume J is an index set and that for each
j ∈ J there is an exact sequence

0→ A j→ B j→C j→ 0

of R-modules. Show that the sequence

0→
⊕
j∈J

A j→
⊕
j∈J

B j→
⊕
j∈J

C j→ 0

is exact.

EXERCISE 1.6.23. Let R be a commutative ring and F a finitely generated free R-
module. Show that any two bases for F have the same number of elements. (Hint: Let m
be a maximal ideal and consider F/mF as a vector space over R/m.)

EXERCISE 1.6.24. Let D be a division ring, V a nonzero vector space over D, and
B⊆V . Prove that the following are equivalent.

(1) B is a basis for V . That is, B is a linearly independent spanning set for V .
(2) B is a spanning set for V and no proper subset of B is a spanning set for V .

EXERCISE 1.6.25. Let R1 and R2 be rings and R = R1⊕R2.
(1) If M1 and M2 are left R1 and R2-modules respectively, show how to make M1⊕

M2 into a left R-module.
(2) If M is a left R-module, show that there are R-submodules M1 and M2 of M such

that M = M1⊕M2 and for each i, Mi is a left Ri-module. See Corollary 3.4.8
for a version of this when M is a finitely generated projective module over a
commutative ring.

EXERCISE 1.6.26. Let G be a group and H a subgroup. For any commutative ring R,
let θ : R(H)→ R(G) be the homomorphism of group rings induced by the set inclusion
map H→ G (see Example 1.1.4). Show that R(G) is a free R(H)-module.

EXERCISE 1.6.27. Let R be a commutative ring, G a group, and R(G) the group ring
(see Example 1.1.4). Let A be an R-algebra and h : G→ A∗ a homomorphism from G to the
group of units of A. Show that there is a unique homomorphism of R-algebras φ : R(G)→A
such that φ(rg) = rh(g) for all r ∈ R and g ∈ G.

EXERCISE 1.6.28. Let R be a ring, I an index set and {Mi | i ∈ I} a family of R-
modules. Show that the direct product is the solution to a universal mapping problem. For
each j ∈ I, let π j : ∏i∈I Mi→M j denote the projection homomorphism onto coordinate j.
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(1) Suppose X is an R-module and f j : X →M j is an R-module homomorphism for
each j ∈ I. Show that there exists a unique R-module homomorphism f such that
for each j ∈ I the diagram

X
f j

##
∃! f
��

∏i∈I Mi π j
// M j

commutes.
(2) Suppose P is an R-module, p j : P→M j is an R-module homomorphism for each

j ∈ I, and P satisfies the universal mapping property of Part (1). That is, if X
is an R-module and f j : X →M j is an R-module homomorphism for each j ∈ I,
then there exists a unique R-module homomorphism ϕ such that for each j ∈ I
the diagram

X
f j

  
∃!ϕ
��

P p j
// M j

commutes. Prove that P∼= ∏i∈I Mi.

EXERCISE 1.6.29. Let R be a ring, I an index set and {Mi | i ∈ I} a family of R-
modules. In this exercise it is shown that the direct sum is the solution to a universal
mapping problem. For each j ∈ I, let ι j : M j →

⊕
i∈I Mi denote the injection homomor-

phism into coordinate j.
(1) Suppose X is an R-module and that for each j ∈ I there is an R-module homomor-

phism f j : M j→ X . Show that there exists a unique R-module homomorphism f
such that for each j ∈ I the diagram

M j

f j ##

ι j // ⊕
i∈I Mi

∃! f
��

X

commutes.
(2) Suppose S is an R-module, λ j : M j→ S is an R-module homomorphism for each

j ∈ I, and S satisfies the universal mapping property of Part (1). That is, if X
is an R-module and f j : M j → X is an R-module homomorphism for each j ∈ I,
then there exists a unique R-module homomorphism ϕ such that for each j ∈ I
the diagram

M j

f j   

λ j // S

∃!ϕ
��

X
commutes. Prove that S∼=

⊕
i∈I Mi.

EXERCISE 1.6.30. Let R be a commutative ring. Show that if I and J are comaximal
ideals in R, then there is an isomorphism of R-modules I⊕ J ∼= R⊕ IJ.
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7. Matrix Theory

7.1. The Characteristic Polynomial.

DEFINITION 1.7.1. Let R be any ring, M a free R-module of rank m and N a free
R-module of rank n. Let X = {x1, . . . ,xm} be a basis for M and Y = {y1, . . . ,yn} a basis for
N. Given φ ∈ HomR(M,N), φ maps x j ∈ X to a linear combination of Y . That is,

φ(x j) =
n

∑
i=1

φi jyi

where the elements φi j are in R. The set of all n-by-m matrices over R is denoted Mnm(R).
The matrix of φ with respect to the bases X and Y is defined to be M(φ ,X ,Y ) = (φi j),

which is a matrix in Mnm(R). Matrix multiplication agrees with composition of functions,
provided the matrices are treated as having entries from the opposite ring Ro. That is, if P
is a free R-module with basis Z = {z1, . . . ,zp} and ψ ∈ HomR(N,P), then

M(ψφ ,X ,Z) = M(ψ,Y,Z)M(φ ,X ,Y ),

provided the matrix multiplication takes place over the ring Ro.

In Proposition 1.7.2, by ei j we denote the elementary matrix in Mnm(R) with 1 in
position (i, j) and 0 elsewhere.

PROPOSITION 1.7.2. Let R be any ring.
(1) Mnm(R) is a free R-module of rank nm, the set {ei j | 1≤ i≤ n,1≤ j ≤ m} is a basis.
(2) If M is a free R-module of rank m with basis X, and N is a free R-module of rank n

with basis Y , then there is a Z-module isomorphism HomR(M,N) ∼= Mnm(R) defined
by φ 7→M(φ ,X ,Y ). If R is a commutative ring, then this is an R-module isomorphism
and HomR(M,N) is a free R-module of rank mn.

(3) There is an isomorphism of rings HomR(M,M)∼= Mn(Ro). If R is commutative, this is
an isomorphism of R-algebras.

DEFINITION 1.7.3. Let R be a commutative ring and M and N two R-modules. For
n ≥ 1, let Mn = M⊕ ·· · ⊕M denote the direct sum of n copies of M. An alternating
multilinear form is a function f : Mn→ N satisfying the following two properties.

(1) For each coordinate i, f is R-linear. That is,

f (x1, . . . ,xi−1,αu+βv,xi+1, . . . ,xn) =

α f (x1, . . . ,xi−1,u,xi+1, . . . ,xn)+β f (x1, . . . ,xi−1,v,xi+1, . . . ,xn).

(2) f (x1, , . . . ,xn) = 0 whenever xi = x j for some pair i ̸= j.

DEFINITION 1.7.4. The determinant of the matrix A = (ai j) ∈Mn(R) is

det(A) = det(ai j) = ∑
j⃗∈Sn

sign( j⃗)a j1,1 · · ·a jn,n.

By viewing the columns of a matrix in Mn(R) as vectors in Rn, we identify Mn(R) with
(Rn)n. By [20, Lemma 6.3.2], the determinant function is the unique alternating multilinear
form det : Mn(R)→ R such that det(In) = 1.

For A∈Mn(R), let Ai j be the matrix in Mn−1(R) obtained by deleting row i and column
j from A. Then det(Ai j) is called the minor of A in position (i, j) and (−1)i+ j det(Ai j) is
called the cofactor of A in position (i, j).

LEMMA 1.7.5. If A is a matrix in Mn(R), then the following are true.
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(1) If B ∈Mn(R), then det(AB) = det(A)det(B).
(2) A is invertible if and only if det(A) is a unit in R.
(3) For each row i, det(A) = ∑

n
j=1 ai j(−1)i+ j det(Ai j).

(4) For each column j, det(A) = ∑
n
i=1 ai j(−1)i+ j det(Ai j).

It follows from Lemma 1.7.5 that the determinant is constant on similarity classes
of matrices. By Proposition 1.7.2, we define the determinant of an endomorphism φ ∈
HomR(M,M), if M is a finitely generated free R-module.

DEFINITION 1.7.6. Let R be a commutative ring and M ∈Mn(R). If x is an indetermi-
nate, then we can view M as a matrix in Mn(R[x]). The characteristic polynomial of M is
char.polyR(M) = det(xIn−M), which is a polynomial in R[x]. Computing the determinant
using row expansion along row one, it is easy to see that char.polyR(M) is monic and has
degree n. The characteristic polynomial is constant on similarity classes. If P is a finitely
generated free R-module and φ ∈ HomR(P,P), then the characteristic polynomial of φ is
defined to be the characteristic polynomial of the matrix of φ with respect to any basis
of P. If A is an R-algebra which is free of finite rank and α ∈ A, then we have the left
regular representation λA : A→ HomR(A,A) of A as a ring of R-module homomorphisms
of A (see Example 1.1.13). Under λA, the element α ∈ A is mapped to λα , which is “left
multiplication by α”. The characteristic polynomial of α is defined to be the characteristic
polynomial of λα .

THEOREM 1.7.7. (Cayley-Hamilton Theorem) Let R be a commutative ring, M an n-
by-n matrix over R, and p(x) = char.polyR(M) the characteristic polynomial of M. Then
p(M) = 0.

PROOF. By [20, Exercise 6.3.21], if θ : A→ B is a homomorphism of commutative
rings, and M is a matrix in Mn(A), then θ(char.polyA(M)) = char.polyB(θ(M)). The proof
is based on this fact, and is split into a series of two steps.

Step 1: The theorem is true, if R is an integral domain. Let K be the quotient field of
R. By [20, Theorem 6.3.13], the Cayley-Hamilton Theorem holds for a matrix in Mn(K).
By the opening remark, the theorem holds for a matrix M in Mn(R).

Step 2. Let R0 be the subring of R generated by the n2 entries of M. Then R0 is a finitely
generated Z-algebra. Let X = {xi j | 1 ≤ i ≤ n,1 ≤ j ≤ n} be a set of n2 indeterminates
and Z[X ] the polynomial ring. Then mapping xi j to the entry in row i column j of M
induces a homomorphism of rings θ : Z[X ]→ R which factors through R0. By Step 1,
every matrix in Mn(Z[X ]) satisfies its own characteristic polynomial. Since M is in the
image of the homomorphism θ : Mn(Z[X ])→Mn(R), by the opening remark, M satisfies
its own characteristic polynomial. □

DEFINITION 1.7.8. Let R be any ring and let M and N be left R-modules. Given
two homomorphisms f ,g in HomR(M,N), we say f and g are equivalent, if there exist
automorphisms φ ∈ HomR(N,N) and ψ ∈ HomR(M,M) such that the diagram

M
f //

ψ

��

N

φ

��
M

g // N

commutes. It is routine to check that equivalence of homomorphisms defines an equiva-
lence relation on HomR(M,N).
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Lemma 1.7.9 is a very special case of the Five Lemma (Theorem 2.5.1).

LEMMA 1.7.9. Let R be a ring and let M and N be left R-modules. If f and g are
equivalent homomorphisms in HomR(M,N), then ker f ∼= kerg, im f ∼= img, and coker f ∼=
cokerg.

PROOF. There exist automorphisms φ ∈HomR(N,N) and ψ ∈HomR(M,M) such that
φ f = gψ . Therefore, ψ maps ker f isomorphically onto kerg, and φ maps im f isomorphi-
cally onto img. The composition

N
φ−→ N

η−→ cokerg

is onto and the kernel is equal to im f . By Theorem 1.1.12, ηφ factors through coker f
giving the isomorphism coker f ∼= cokerg. □

DEFINITION 1.7.10. Let R be a commutative ring. Two matrices A,B in Mnm(R) are
said to be equivalent if there exist invertible matrices Ql ∈ Mn(R) and Qr ∈ Mm(R) such
that B = QlAQr. It is routine to check that equivalence of matrices defines an equivalence
relation on Mnm(R). As in Proposition 1.7.2, multiplication from the left by A and B define
homomorphisms φA, φB in HomR(Rm,Rn). Hence A and B are equivalent matrices if and
only if φA and φB are equivalent homomorphisms in the sense of Definition 1.7.8.

DEFINITION 1.7.11. Let R be a commutative ring and A a nonzero n-by-m matrix in
Mnm(R). Let ei j be the elementary matrix in Mn(R) with 1 in position (i, j) and 0 elsewhere.
If (a1, . . . ,an)∈Rn, then diag(a1, . . . ,an) denotes the diagonal matrix a1e11+· · ·+anenn. In
particular, I = diag(1, . . . ,1) is the identity matrix in Mn(R). The three types of elementary
row operations on A are defined below where matrices multiplied from the left are in
Mn(R).
(1) Multiplication of a row by a unit. Let u ∈ R∗ be a unit in R and denote by Li(u) the

diagonal matrix diag(1, . . . ,u, . . . ,1) with u in row i and 1 on the rest of the diagonal.
Clearly, Li(u) is invertible with inverse Li(u−1) and the product Li(u)A is the matrix
obtained by multiplying row i of A by u.

(2) Adding a scalar multiple of row j to row i. If i ̸= j, let ∆i j(u) = I +uei j, where u ∈ R.
Then ∆i j(u)∆i j(−u) = (I + uei j)(I− uei j) = I (see [20, Example 6.1.5]). Therefore,
∆i j(u) is invertible with inverse ∆i j(−u). The product ∆i j(u)A is the matrix obtained
by adding u times row j of A to row i.

(3) Switch rows i and j. If i ̸= j, let Ti j denote the matrix obtained by switching rows i and
j of I. Clearly T 2

i j = I and the product Ti jA is the matrix obtained by switching rows i
and j of A.

An elementary row operation on A corresponds to multiplication by an invertible matrix,
hence results in a matrix that is equivalent to A.

DEFINITION 1.7.12. In the notation of Definition 1.7.11, the three types of elementary
column operations on A are defined below where matrices multiplied from the right are in
Mm(R):
(1) Multiplication of a column by a unit. The product AL j(u) is the matrix obtained by

multiplying column j of A by u.
(2) Adding a scalar multiple of column i to column j. The product A∆i j(v) is the matrix

obtained by adding v times column i of A to column j.
(3) Switch columns i and j. The product ATi j is the matrix obtained by switching columns

i and j of A.
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An elementary column operation on A corresponds to multiplication by an invertible ma-
trix, hence results in a matrix that is equivalent to A.

7.2. Modules over a Principal Ideal Domain.

DEFINITION 1.7.13. Let R be an integral domain and M an R-module. If x ∈M, then
we say x is a torsion element of M in case there exists a nonzero r ∈ R such that rx = 0. If
every element of M is torsion, then we say M is torsion. Since R is an integral domain, the
set of all torsion elements in M is a submodule of M, which is denoted Mt . If Mt = 0, then
we say M is torsion free.

Let R be a principal ideal domain (or PID for short) and M a finitely generated R-
module. If r ∈ R, then the “left multiplication by r” map is denoted by ℓr : M→M, and is
defined by ℓr(x) = rx. Then ℓr is an R-module homomorphism. Let π be a prime element
in R and n a positive integer. The kernel of ℓπn is contained in the kernel of ℓπn+1 . Therefore
the union M(π) =

⋃
n>0 ker(ℓπn) is a submodule of M. If x ∈M, then there is an R-module

homomorphism θx : R→M defined by θx(r) = rx. The kernel of θx is a principal ideal Ra,
for some a ∈ R and we call a the order of x. The order of x is unique up to associates in R.

Proofs of Theorems 1.7.14, 1.7.15, 1.7.16, and 1.7.17 can be found in [20, Sec-
tion 4.6].

THEOREM 1.7.14. Let R be a PID and M a nonzero finitely generated R-module. If
M is free and S is a submodule, then Rank(S)≤ Rank(M). The following are equivalent.
(1) M is torsion free.
(2) M is free.
(3) Every nonzero submodule of M is free.

THEOREM 1.7.15. If R is a PID and M a finitely generated R-module, then there is
a finitely generated free submodule F such that M is the internal direct sum M = F⊕Mt .
The rank of F is uniquely determined by M.

THEOREM 1.7.16. (Basis Theorem – Elementary Divisor Form) Let R be a PID and
M a finitely generated torsion R-module.
(1) M =

⊕
π M(π) where π runs through a finite set of primes in R.

(2) For each prime π such that M(π) ̸= 0, there exists a basis {a1, . . . ,am} such that
M(π) = Ra1⊕Ra2⊕ ·· · ⊕Ram where the order of ai is equal to πei and e1 ≥ e2 ≥
·· · ≥ em.

(3) M is uniquely determined by the primes π that occur in (2) and the integers ei that
occur in (3).

The prime powers πei that occur are called the elementary divisors of M.

THEOREM 1.7.17. (Basis Theorem – Invariant Factor Form) Let R be a PID and M a
finitely generated torsion R-module. The following are true. There exist r1, . . . ,rℓ ∈ R such
that r1 | r2 | r3 | · · · | rℓ and

M ∼= R/(r1R)⊕·· ·⊕R/(rℓR).

The integer ℓ is uniquely determined by M. Up to associates in R, the elements ri are
uniquely determined by M. The elements r1, . . . ,rℓ are called the invariant factors of M.

LEMMA 1.7.18. Let R be a principal ideal domain and A = (ai j) a nonzero matrix in
Mnm(R). Then A is equivalent to a matrix B = (bi j) such that b11 divides every other entry
of B.
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PROOF. As in Example 1.5.7, let ν(x) be the number of factors in a prime factorization
of x. Now let V = {ν(x) | x is an entry in a matrix that is equivalent to A}. Let ν(α) be the
minimum in V and B= (bi j) a matrix that is equivalent to A such that α is an entry in B. By
multiplying B from the left and right by appropriate matrices T1i and T1 j, we can assume
α = b11. We prove that α divides every entry in B. For sake of contradiction, assume not.
So α is not a unit and there is some bi j in B such that α does not divide bi j. There are three
cases. Because the statement of the theorem depends only on the equivalence class of B,
throughout the proof we will repetitively replace B with a matrix that is obtained from B
by an elementary row or column operation.

Case 1: j = 1. After multiplying by T2i we assume α does not divide b21. By [20,
Corollary 3.4.9], let d = gcd(α,b21) and write d = αx+b21y. If u = α/d and v = b21/d,
then 1 = ux+ vy. Notice [

x y
−v u

][
u −y
v x

]
=

[
1 0
0 1

]
shows that the matrix

[
x y
−v u

]
is invertible. If we set

C =

([
x y
−v u

]
⊕ I
)

B = (ci j)

then c11 = d. But d is a proper factor of α , C is a matrix that is equivalent to B and B is
equivalent to A. Therefore, this is a contradiction to the choice of α .

Case 2: Suppose α divides column one of B, but there is some b1 j that is not a multiple
of α . Transposing all of the row and column arguments of Case 1 shows B is equivalent to
a matrix C = (ci j) and ν(c11)< ν(α), a contradiction.

Case 3: Suppose α divides every entry in column one and row one of B. Factoring α

from each entry in column one, we write ai1 = αbi for 2≤ i≤ n. Likewise, factoring row
one, we have a1 j = αc j for 2≤ j ≤m. Eliminate all nonzero entries below the diagonal in
column one and to the right of the diagonal in row one by the matrix product:

C = ∆21(−b2) · · ·∆n1(−bn)B∆12(−c2) · · ·∆1m(−cm).

Then C is the matrix direct sum (α)⊕C1 where C1 is an (n−1)-by-(m−1) matrix over R.
Moreover, since α does not divide B we know α does not divide C1. There is some ci j in C
such that 1 < i≤ n, 1 < j ≤ m and α does not divide ci j. Then C∆ j1(1) is equivalent to C
and has an entry in column one that is not a multiple of α . By Case 1 applied to C∆ j1(1),
we get a contradiction. □

THEOREM 1.7.19. (Smith Normal Form) Let R be a principal ideal domain and
A = (ai j) a nonzero matrix in Mnm(R). Then A is equivalent to a matrix of the form
diag(d1,d2, . . . ,dr)⊕ 0 where d1, . . . ,dr are nonzero elements of R and d1 | d2 | · · · | dr.
The matrix diag(d1,d2, . . . ,dr)⊕0 is called the Smith normal form of A.

PROOF. Inductively assume m ≥ 1, n ≥ 1, and that the result holds for any matrix
over R of size (n− 1)-by-(m− 1). Because the statement of the theorem depends only
on the equivalence class of A, throughout the proof we will repetitively replace A with a
matrix that is equivalent to A. For instance, by Lemma 1.7.18, we can assume entry a11 in
A divides all other entries in A. Use the method of Case 3 in the proof of Lemma 1.7.18
to eliminate all nonzero entries below the diagonal in column one and to the right of the
diagonal in row one. Call the new matrix B. Then B is the matrix direct sum (a11)⊕B1
where B1 is an (n−1)-by-(m−1) matrix over R. If m = 1 or n = 1 or B1 is a zero matrix,
then we are done and B is the Smith normal form of A. This proves the basis step for
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an induction proof. Otherwise, B1 is a nonzero matrix and a11 divides every entry in B1.
By the induction hypothesis applied to B1, there exist invertible matrices Ql of rank n−1
and Qr of rank m− 1 such that QlB1Qr = diag(d2, . . . ,dr)⊕ 0 is in Smith normal form.
Moreover, a11 divides the diagonal entries d2, . . . ,dr since a11 divides all entries of B1. Set
Pl = (1)⊕Ql and Pr = (1)⊕Qr. Then PlBPr is in Smith normal form with d1 = a11 in the
upper left position. □

COROLLARY 1.7.20. Let R be a principal ideal domain, F a free R-module of rank n,
and S a submodule of F. Then there exist a basis {y1, . . . ,yn} of F and nonzero elements
d1, . . . ,dr in R satisfying the following.

(1) (Simultaneous Bases Theorem) {d1y1,d2y2, . . . ,dryr} is a free basis for S.
(2) d1 | d2 | · · · | dr.
(3) The elements in the list d1, . . . ,dr that are not units are precisely the invariant factors

of the quotient module F/S.
(4) The elements d1, . . . ,dr are uniquely determined up to associates by S and F.

PROOF. (1) and (2): By Theorem 1.7.14, S is a finitely generated free R-module. Let
{s1, . . . ,sm} be a generating set for S and {u1, . . . ,un} a basis for F . For 1 ≤ j ≤ m write
s j = ∑

n
i=1 ai jui and set A = (ai j) the associated matrix in Mnm(R). Let φA : Rm → F be

the homomorphism defined by left multiplication by A. The image of φA is the column
space of A, which is equal to the submodule S. By Theorem 1.7.19, there exist bases
X = {x1, . . . ,xm} for Rm and Y = {y1, . . . ,yn} for F such that the matrix M(φA,X ,Y ) is in
Smith normal form diag(d1, . . . ,dr)⊕0. This means {d1y1, . . . ,dryr} is a basis for S.

(3) and (4): By (1),

F/S∼=
Ry1

Rd1y1
⊕ Ry2

Rd2y2
⊕·· ·⊕ Ryr

Rdryr
⊕Ryr+1⊕·· ·⊕Ryn.

The R-module Ryi
Rdiyi

is nonzero if and only if di is not a unit. If dq, . . . ,dr are the nonunits,
then the torsion submodule of F/S is isomorphic to R/Rdq⊕ ·· ·⊕RRdr. Applying The-
orem 1.7.17, the elements dq, . . . ,dr are the invariant factors of F/S. The numbers q and
r are uniquely determined by F/S. Up to associates the elements d1, . . . ,dr are uniquely
determined by F/S. □

COROLLARY 1.7.21. Let R be a principal ideal domain and A a nonzero matrix in
Mnm(R). If D = diag(d1, . . . ,dr)⊕0 and E = diag(e1, . . . ,es)⊕0 are two matrices in Smith
normal form such that A is equivalent to both D and E, then r = s and for each i the
elements di and ei are associates.

PROOF. This follows from Corollary 1.7.20 and Lemma 1.7.9. □

7.3. Block Matrices. The main result of this section is Theorem 1.7.23 which is a de-
terminant formula for a matrix A in Mmn(R), where A is viewed as a matrix in Mm(Mn(R)).
Such a matrix is called a block matrix. The theorem and its proof are from [57]. We begin
by fixing some notation and establishing the context of the theorem. Let R be a commu-
tative ring and S a commutative R-subalgebra of Mn(R). We view Mmn(R) as the ring of
m-by-m matrices over Mn(R). Thus, a matrix M in Mm(S) can be viewed as a matrix in
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Mmn(R). We have the lattice of R-algebras

Mm(S) // Mmn(R)

S

OO

// Mn(R)

OO

R

OO 99
(7.1)

where an arrow denotes subring. When M is viewed as a matrix in Mm(S), the determinant
is denoted detS(M). By detR(M) we denote the determinant when M is viewed as a matrix
with entries in R. In the context of (7.1), there are three such determinant maps

Mm(S)
⊆ //

detS
��

Mmn(R)

detR
��

S
⊆ // Mn(R)

detR // R

(7.2)

and the purpose of Theorem 1.7.23 below is to show that (7.2) is a commutative diagram.

EXAMPLE 1.7.22. Let R be a commutative ring and x an indeterminate. If n≥ 1 and
Mn(R) is the ring of n-by-n matrices over R, then we can identify the ring of polynomials
over Mn(R) with the ring of matrices over R[x]. That is,

Mn(R)[x] = Mn(R[x]).

In fact, given a polynomial f = ∑
m
i=0 Aixi in the left-hand side, we can view xi = xiIn as a

matrix, and f = ∑
m
i=0 Ai(xiIn) is an element of the right-hand side. Conversely, if M = ( fi j)

is in the right-hand side, then we can write each polynomial fi j in the form fi j =∑k≥0 ai jkxk

where it is understood that only a finite number of the coefficients are nonzero. For a fixed
k ≥ 0, let Mk be the matrix (ai jk). Then M is equal to the polynomial M = ∑k≥0 Mkxk in
the left-hand side.

THEOREM 1.7.23. In the above context, the following are true for any matrix A in
Mm(S).
(1) detR(A) = detR(detS(A)). In other words, diagram (7.2) commutes.
(2) char.polyR(A) = detR[x] (char.polyS(A)).

PROOF. Part (2) follows from (1). The proof of (1) is by induction on m. If m = 1,
then detS is the identity map and there is nothing to prove. Assume m ≥ 1 and that the
determinant formula of the theorem holds for every matrix in Mm(S). Let A = (ai j) be a
matrix in Mm+1(S). Partition A into four blocks

A =


a11 . . . a1m a1,m+1

...
...

...
am1 . . . amm am,m+1

am+1,1 . . . am+1,m am+1,m+1

=

[
A0 B
C D

]

where A0 is the m-by-m matrix obtained by deleting row m+ 1 and column m+ 1 from
M, B is the m-by-1 column matrix (a1,m+1, . . . ,am,m+1)

t , C is the 1-by-m row matrix
(am+1,1, . . . ,am+1,m), and D = (d) is the 1-by-1 matrix (am+1,m+1).
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To prove the determinant formula for the matrix A, we use what can be viewed as a
“homotopy trick”. Let x be an indeterminate. As in Example 1.7.22, we view the ring
Mmn(R) as the subring of Mmn(R[x]) corresponding to the polynomials in x of degree 0.
Likewise Mm(S) is a subring of Mm(S[x]). Let θ : R[x]→ R be the evaluation homomor-
phism defined by x 7→ 0. By [20, Exercise 6.3.21], the diagram

Mn(R[x])
θ //

detR[x]
��

Mn(R)

detR
��

R[x] θ // R

(7.3)

commutes. The counterpart of (7.3) with S instead of R also commutes. The strategy is to
replace A with a matrix Ax in the ring Mm+1(S[x]) such that θ(Ax) = A and show that the
equation

(7.4) detR[x] (Ax) = detR[x]
(
detS[x](Ax)

)
holds in the ring R[x]. The equation

(7.5) detR (A) = detR (detS(A))

then follows from (7.3) and (7.4).

Let Ax be the matrix
[

A0 B
C (d + x)

]
obtained by adding x to the entry in position

m+1,m+1 of A. Then Ax is in the ring Mm+1(S[x]) and θ(Ax) = A. The equation

(7.6)
[

A0 B
C (d + x)

][
(d + x)Im 0
−C (1)

]
=

[
(d + x)A0−BC B

0 (d + x)

]
holds in the ring Mm+1(S[x]). Taking determinants in (7.6), we use Lemma 1.7.5 to get the
equation

(7.7) detS[x](Ax)(d + x)m = detS[x] ((d + x)A0−BC)(d + x)

in the ring S[x]. The equation (7.7) holds in the ring Mn(R[x]), and taking determinants we
get the equation

(7.8) detR[x]
(
detS[x](Ax)

)
detR[x](d + x)m =

detR[x]
(
detS[x] ((d + x)A0−BC)

)
detR[x](d + x)

in the ring R[x]. The equation (7.6) holds in the ring Mmn(R[x]), and taking determinants
we get the equation

(7.9) detR[x] (Ax)detR[x](d + x)m = detR[x] ((d + x)A0−BC)detR[x](d + x)

in the ring R[x]. By induction on m, we have

detR[x] ((d + x)A0−BC) = detR[x]
(
detS[x] ((d + x)A0−BC)

)
which implies the right hand side of (7.9) is equal to the right hand side of (7.8). Equating
the left hand sides of (7.9) and (7.8), we get the equation

(7.10) detR[x] (Ax)detR[x](d + x)m = detR[x]
(
detS[x](Ax)

)
detR[x](d + x)m

in R[x]. But detR[x](d + x) is a monic polynomial of degree n, hence is not a zero divisor.
Canceling in (7.10) yields the equation (7.4) in R[x]. From (7.4) we get (7.5), and this
completes the induction proof. □
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PROPOSITION 1.7.24. Let R be a commutative ring and assume A, B, C, D are matri-

ces in Mn(R). Let M =

[
A B
C D

]
. Then M is a block matrix in M2n(R).

(1) If AC =CA, then det(M) = det(AD−CB).
(2) If CD = DC, then det(M) = det(AD−BC).
(3) If BD = DB, then det(M) = det(DA−BC).
(4) If AB = BA, then det(M) = det(DA−CB).

PROOF. (1): The proof is based on the commutative diagram (7.3). We replace M with

the matrix Mx =

[
A+ xIn B

C D

]
which is in the ring M2n(R[x]). Notice that θ(Mx) = M.

Since AC =CA, the equation

(7.11)
[

In 0
−C A+ xIn

][
A+ xIn B

C D

]
=

[
A+ xIn B

0 AD−CB+ xD

]
holds in the ring M2n(R[x]). Take determinants in (7.11). Using Lemma 1.7.5 and Exer-
cise 1.7.27, the equation

(7.12) det(A+ xIn)det(Mx) = det(A+ xIn)det(AD−CB+ xD)

holds in the ring R[x]. Now det(A+ xIn) is a monic polynomial of degree n, hence is not a
zero divisor in R[x]. Therefore, (7.12) yields the polynomial identity

(7.13) det(Mx) = det(AD−CB+ xD)

in which both sides are polynomials of degree n. By the commutative diagram (7.3), eval-
uating (7.13) at x = 0 yields the formula det(M) = det(AD−CB).

The proofs of (2), (3), and (4) are similar and left to the reader. □

7.4. Exercises.

EXERCISE 1.7.25. Let R be a commutative ring and M a finitely generated free R-
module of rank n. Let φ ∈ HomR(M,M). Show that if char.polyR(φ) = xn + an−1xn−1 +
· · ·+a0, then trace(φ) =−an−1 and det(φ) = (−1)na0.

EXERCISE 1.7.26. Let R be a commutative ring and suppose A is an R-algebra which
is finitely generated and free of rank n as an R-module. We have θ : A→ HomR(A,A),
the left regular representation of A in HomR(A,A) which is defined by α 7→ ℓα . Define
T A

R : A→ R by the assignment α 7→ trace(ℓα). We call T A
R the trace from A to R. Define

NA
R : A→ R by the assignment α 7→ det(ℓα). We call NA

R the norm from A to R.
(1) Show that T A

R (rα + sβ ) = rT A
R (α)+ sT A

R (β ), if r,s ∈ R and α,β ∈ A.
(2) Show that NA

R (αβ ) = NA
R (α)NA

R (β ) and NA
R (rα) = rnNA

R (α), if r ∈ R and α,β ∈
A.

EXERCISE 1.7.27. Let R be a commutative ring, m ≥ 1, and n ≥ 1. Let A ∈ Mm(R)

and D∈Mn(R). Let M be a block triangular matrix of the form
[

A B
0 D

]
or
[

A 0
C D

]
. Show

that det(M) = det(A)det(D). (Hint: Use induction on m and Lemma 1.7.5.)

EXERCISE 1.7.28. Let S be a commutative R-algebra that is a finitely generated free
R-module of rank n. Let A be an S-algebra that is a finitely generated free S-module of
rank m. Then for any a ∈ A,

(1) T A
R (a) = T S

R
(
T A

S (a)
)
, and

(2) NA
R (a) = NS

R
(
NA

S (a)
)
.
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See Exercise 1.7.26 for the definition of the trace and norm functions. (Hint: After choos-
ing free bases for A and S, reduce this to statements about block matrices over R. Prove (1)
directly and for (2) apply Theorem 1.7.23.)

EXERCISE 1.7.29. Let R be any ring, M and N finitely generated R-modules, and
φ ∈ HomR(M,N).

(1) Show that there exist positive integers m and n, epimorphisms f : Rm → M, g :
Rn→ N, and θ ∈ HomR(Rm,Rn) such that the diagram

Rm θ //

f
��

Rn

g
��

M
φ // N

commutes. Therefore, given generators for M and N, φ can be represented as a
matrix.

(2) Now assume R is commutative and φ ∈ HomR(M,M). Show that there exists
a monic polynomial p(x) ∈ R[x] such that p(φ) = 0. (Hint: Apply the Cayley-
Hamilton Theorem to the map θ .)

8. Finitely Generated Field Extensions

8.1. Algebraic Closure, Existence and Uniqueness. We prove that a field has an
algebraic closure which is unique up to isomorphism.

PROPOSITION 1.8.1. Let k be a field.

(1) Let f be a polynomial in k[x] of positive degree n. There exists a splitting field F/k for
f such that dimk(F)≤ n!.

(2) Let S be a set of polynomials in k[x]. There exists a splitting field F/k for S.
(3) There exists an algebraic closure Ω/k for k.

PROOF. (1): Factor f = p1 . . . pm in k[x] where each pi is irreducible. If deg pi = 1
for each i, then take F = k and stop. Otherwise, assume deg p1 > 1 and by Kronecker’s
Theorem ([20, Theorem 5.2.4]), there is an extension field F1/k such that F1 = k(α) and
p1(α)= 0. Note that f (α)= 0 and dimk(F1)= deg p1≤ n. Factor f =(x−α)g in F1[x]. By
induction on n, there exists a splitting field F/F1 for g and dimF1(F)≤ (n−1)!. So f splits
in F and there exist roots u1, . . . ,um of f such that F = F1(u1, . . . ,um) = k(α,u1, . . . ,um).
Lastly, dimk(F) = dimk(F1)dimF1(F)≤ n!.

(2): Assume every element of S has degree greater than one. If not, simply take F = k
and stop. The proof is by transfinite induction, Proposition 1.2.3. By the Well Ordering
Principle, Axiom 1.2.2, assume S is indexed by a well ordered index set I. For any γ ∈ I,
let pγ be the corresponding element of S and let S(γ) = {pα ∈ S | α ≤ γ}. Let p1 be the
first element of S and use Part (1) to construct a splitting field F1/k for p1. Let γ ∈ I and
assume 1 < γ . Inductively, assume that we have constructed for each α < γ an extension
field Fα/k that is a splitting field for S(α). Assume moreover that the set {Fα | α < γ} is
an ascending chain. That is, if α < β < γ , then Fα ⊆ Fβ . It follows that E =

⋃
α<γ Fα is

an extension field of k and E is a splitting field for
⋃

α<γ S(α). Use Part (1) to construct a
splitting field Fγ for pγ over E. Then Fγ/k is a splitting field for S(γ). By induction, the
field F =

⋃
γ∈S Fγ is an extension field of k and F is a splitting field for S.

(3) Apply Part (2) to the set of all nonconstant polynomials in k[x]. □
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LEMMA 1.8.2. Let σ : k→K be an isomorphism of fields. Let S be a set of polynomials
in k[x] and σ(S) its image in K[x]. Let F/k be a splitting field for S. Let L/K be an extension
field such that every polynomial in σ(S) splits in L. Then σ extends to a homomorphism of
k-algebras σ̄ : F → L. If L is a splitting field for σ(S), then σ̄ is an isomorphism.

PROOF. Step 1: Assume S = { f} contains only one polynomial and F is a splitting
field for f . If F = k, then take σ̄ = σ and stop. Otherwise, dimk(F) > 1 and there is an
irreducible factor g of f such that degg > 1. Let α be a root of g in F and β a root of
σ(g) in L. By [20, Theorem 5.1.6] there is a k-algebra isomorphism τ : k(α)→ K(β ) such
that τ(α) = β . Also, F is a splitting field for f over k(α), and dimk(α)(F)< dimk(F). By
induction on dimk(F), τ can be extended to a k-algebra homomorphism σ̄ : F→ L. A root
of f is mapped under σ̄ to a root of σ( f ). Since f splits in F , σ( f ) splits in σ̄(F). By [20,
Corollary 3.6.9], σ( f ) has at most deg( f ) roots in L, and they all belong to σ̄(F). If λ ∈ L
is a root of σ( f ), then λ ∈ σ̄(F). If L/K is generated by roots of σ( f ), then L⊆ σ̄(F) and
σ̄ is an isomorphism.

Induction step: Consider the set S of all k-algebra isomorphisms τ : E → M where
E is an intermediate field of F/k and M is an intermediate field of L/K. Define a partial
order on S . If τ : E→M and τ1 : E1→M1 are two members of S , then say τ < τ1 in case
E ⊆ E1 and τ is equal to the restriction of τ1. Since σ : k→ K is in S , the set is nonempty.
Any chain in S is bounded above by the union. By Zorn’s Lemma, Proposition 1.2.4,
there is a maximal member, say τ : E→M. We need to show that E = F . If not, then Step
1 shows how to extend τ , which leads to a contradiction. Also τ(F) contains every root of
every polynomial in σ(S), so τ is onto if L is a splitting field of σ(S). □

COROLLARY 1.8.3. Let k be a field.
(1) If S is a set of polynomials in k[x], the splitting field of S is unique up to k-algebra

isomorphism.
(2) If Ω is an algebraic closure of k and F/k is an algebraic extension field, then there is

a k-algebra homomorphism F →Ω.
(3) The algebraic closure of k is unique up to k-algebra isomorphism.

PROOF. (1): Follows straight from Lemma 1.8.2.
(2): Let X be a set of algebraic elements of F such that F = k(X). For each α ∈ X , let

Irr.polyk(α) denote the irreducible polynomial of α over k. Let S = {Irr.polyk(α) | α ∈
X}. By Proposition 1.8.1, let E/F be a splitting field for S over F . The set of all roots
of elements of S contains X as well as a generating set for E over F . Therefore E/k is a
splitting field for S over k. By Lemma 1.8.2, there is a k-algebra homomorphism τ : E→Ω.
The restriction, τ|F : F →Ω is the desired k-algebra homomorphism.

(3): Let Ω′ be another algebraic closure. Applying Part (2), there exists a homomor-
phism θ : Ω′→Ω. By Lemma 1.8.2, θ is an isomorphism. □

8.2. The Trace Map and Norm Map. Let F/k be a finite dimensional separable
extension of fields. In this section we show that there is a trace map T F

k : F → k which is
a k-linear homomorphism, and a norm map NF

k : F∗ → k∗ which is a homomorphism of
multiplicative abelian groups. To define the trace and norm maps we first embed F into a
Galois extension K/k with Galois group G. Then F corresponds to a subgroup H =GF . We
show that the trace and norm maps are defined by a complete set of coset representatives
for G/H. The resulting trace map and norm map agree with the usual trace and norm maps
defined in Exercise 1.7.26. In the present context, we show that T F

k is nonzero, hence is a
free generator for the F-vector space Homk(F,k). We will see in Corollary 5.6.8 below that



8. FINITELY GENERATED FIELD EXTENSIONS 49

a finite dimensional extension of fields F/k is separable if, and only if, the trace map T F
k

is a free generator for the F-vector space Homk(F,k). For a generalization of the trace and
norm maps defined below, see the corestriction homomorphism of Definition 8.5.15 (3).

LEMMA 1.8.4. Let K/k be a Galois extension with finite group G. Let H be a subgroup
of G with [G : H] = m. Let {τ1, . . . ,τm} be a complete set of left coset representatives for
H in G. Let F = KH . The following are true.
(1) The assignment x 7→ y = ∑

m
i=1 τi(x) defines a k-linear transformation T F

k : F→ k which
does not depend on the choice of left coset representatives for H in G.

(2) The assignment x 7→ z = ∏
m
i=1 τi(x) defines a homomorphism of multiplicative groups

NF
k : F∗→ k∗ which does not depend on the choice of left coset representatives for H

in G.
(3) For any α ∈ F, T F

k (α) is the trace and NF
k (α) is the determinant of ℓα : F → F.

(4) The functions T F
k : F → k and NF

k : F → k depend on F and k, not K.

PROOF. We prove (1), the proof of (2) is similar. Let {ρ1, . . . ,ρm} be another complete
set of left coset representatives for H in G and x ∈ F = KH . After a permutation, we can
assume τiH = ρiH for each i. So there exist hi ∈ H such that τihi = ρi. For every x ∈ F ,
y = ∑

m
i=1 τi(x) = ∑

m
i=1 τihi(x) = ∑

m
i=1 ρi(x). By [20, Example 2.4.6], G acts as a group of

permutations on G/H. If σ ∈ G, then στiH = στ jH if and only if τiH = τ jH. That is,
{στi | 1 ≤ i ≤ m} is a complete set of coset representatives, and σ(y) = ∑

m
i=1 στi(x) = y.

So y ∈ KG = k. Since each σ ∈ G is k-linear, so is the function T F
k .

(3): Let α ∈ F = KH and consider the polynomial

g = ∏
σ∈G

(x−σ(α)) =
m

∏
i=1

∏
ρ∈H

(x− τiρ(α)) =

(
m

∏
i=1

(x− τi(α))

)[H:1]

.

As in Exercise 1.8.11, the polynomial g is the characteristic polynomial of ℓα : K→K, and
f = ∏

m
i=1(x− τi(α)) is the characteristic polynomial of ℓα : F → F . The only irreducible

factor of f in k[x] is Irr.polyk(α). By Exercise 1.7.25, T F
k (α) is the trace and NF

k (α) is the
determinant of ℓα : F → F .

(4): Follows from (3). □

DEFINITION 1.8.5. Let F/k be a finite dimensional separable extension. Let K/k be a
Galois extension with finite group G which contains F as an intermediate field. Then there
is a subgroup H of G such that F = KH . As in Lemma 1.8.4, if {τ1, . . . ,τm} is a complete
set of left coset representatives for H, then for x∈F =KH , T F

k (x)=∑
m
i=1 τi(x) and NF

k (x)=
∏

m
i=1 τi(x). Note that both T F

k and NF
k are functions from F to k. The function T F

k , which
is called the trace from F to k, is k-linear and represents an element of Homk(F,k). The
function NF

k , called the norm from F to k, induces a homomorphism of multiplicative
groups F∗ → k∗. The trace map is generalized to a separable extension of commutative
rings in Section 5.6.2.

LEMMA 1.8.6. In the context of Lemma 1.8.4 and Definition 1.8.5,
(1) There exists c ∈ F such that T F

k (c) = 1.
(2) Homk(F,k) is an F-vector space of dimension 1 and {T F

k } is a basis.
(3) If {λ1, . . . ,λm} is a k-basis for F, then there exist elements {µ1, . . . ,µm} in F such that

(a) T F
k (µ jλi) = δi j (Kronecker delta), and

(b) for each σ ∈ G: λ1σ(µ1)+ · · ·+λmσ(µm) =

{
1 if σ ∈ H
0 if σ ̸∈ H

.
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PROOF. (1): By [20, Lemma 5.5.1], there is b ∈ K such that 1 = ∑σ∈G σ(b). Let
c = ∑ρ∈H ρ(b). Then c ∈ F and 1 = ∑σ∈G σ(b) = ∑

m
i=1 τi ∑ρ∈H ρ(b) = ∑

m
i=1 τi(c).

(2): As we have seen already (Example 1.1.13), the field F is a k-algebra, hence it
acts as a ring of k-homomorphisms on itself. Let θ : F → Homk(F,F) be the left regular
representation of F in Homk(F,F). Using θ we can turn Homk(F,k) into a right F-vector
space. For every f ∈ Homk(F,k) and α ∈ F , define f α to be f ◦ ℓα . By counting di-
mensions, it is easy to see that Homk(F,k) is an F-vector space of dimension one. As an
F-vector space, any nonzero element f ∈ Homk(F,k) is a generator. By (1), T F

k is a gen-
erator for Homk(F,k). This implies for every f ∈Homk(F,k) there is a unique α ∈ F such
that f (x) = T F

k (αx) for all x ∈ F . The mapping F → Homk(F,k) given by α 7→ T F
k ◦ ℓα is

an isomorphism of k-vector spaces.
(3): Let {λ1, . . . ,λm} be a k-basis for F . For each j = 1,2, . . . ,m, let f j : F → k be

the projection onto coordinate j. That is, f j(λi) = δi j (Kronecker delta) and {(λ j, f j) |
j = 1, . . . ,m} is a dual basis for F . For each x ∈ F , x = ∑

m
j=1 f j(x)λ j. Since T F

k is a
generator for Homk(F,k) over F , there exist unique µ1, . . . ,µm in F such that for each
x ∈ F , f j(x) = T F

k (µ jx) = ∑
m
i=1 τi(µ jx). We have T F

k (µ jλi) = f j(λi) = δi j, which is (a).
For (b), consider

x =
m

∑
j=1

f j(x)λ j

=
m

∑
j=1

m

∑
i=1

τi(µ jx)λ j

=
m

∑
i=1

(
τi(x)

m

∑
j=1

τi(µ j)λ j

)
.

Since GF = H, for exactly one i0 ∈ {1, . . . ,m}, we have τi0 ∈ H. In other words, τi(x) = x
for all x ∈ F if and only if i = i0 if and only if τi ∈H. By [20, Theorem 5.3.7], {τ1, . . . ,τm}
are linearly independent over F . If σ ∈ G, then σ ≡ τi (mod H) for a unique i. Then
σ(x) = τi(x) for all x ∈ F . Hence

m

∑
j=1

σ(µ j)λ j =

{
1 if σ ∈ H
0 if σ ̸∈ H.

This is (b). □

8.3. Finite Fields. For a proof of Theorem 1.8.7, see [20, Theorem 5.5.14].

THEOREM 1.8.7. Let F be a finite field with charF = p. Let k be the prime subfield of
F and n = dimk(F).

(1) The group of units of F is a cyclic group.
(2) F = k(u) is a simple extension, for some u ∈ F.
(3) The order of F is pn.
(4) F is the splitting field for the separable polynomial xpn − x over k.
(5) F/k is a separable extension. F is a perfect field.
(6) Any two finite fields of order pn are isomorphic as fields.
(7) F/k is a Galois extension.
(8) The Galois group Autk(F) is cyclic of order n and is generated by the Frobenius homo-

morphism ϕ : F → F defined by ϕ(x) = xp.
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(9) If d is a positive divisor of n, then E = {u ∈ F | upd
= u} is an intermediate field of

F/k which satisfies the following.
(a) dimE(F) = n/d, and dimk(E) = d.
(b) If ϕ is the generator for Autk(F), then AutE(F) is the cyclic subgroup generated

by ϕd .
(c) E/k is Galois and Autk(E) is the cyclic group of order d generated by the restric-

tion ϕ|E .
(10) If E is an intermediate field of F/k, and d = dimk(E), then d divides n and E is the

field described in Part (9).

8.4. Transcendence Bases. Let F/k be an extension of fields and Ξ ⊆ F . We say
Ξ is algebraically dependent over k if there exist n distinct elements ξ1, . . . ,ξn in Ξ and a
nonzero polynomial f ∈ k[x1, . . . ,xn] such that f (ξ1, . . . ,ξn) = 0. Otherwise we say Ξ is
algebraically independent. A transcendence base for F/k is a subset Ξ⊆ F which satisfies

(1) Ξ is algebraically independent over k and
(2) if Ξ⊆ Z and Z is algebraically independent over k, then Ξ = Z.

THEOREM 1.8.8. Let F/k be an extension of fields.
(1) Assume F is a finitely generated field extension of k. If Ξ is a finite subset of F such

that F is algebraic over k(Ξ), then there is a subset of Ξ that is a transcendence base
for F/k. A finite transcendence base for F/k exists.

(2) If Ξ = {ξ1, . . . ,ξn} is a finite transcendence base for F over k, then any other tran-
scendence base for F over k also has cardinality n.

If F/k is an extension of fields such that a finite transcendence base exists, then the
transcendence degree of F/k, denoted tr.degk(F), is the number of elements in any tran-
scendence base of F over k.

8.5. Exercises.

EXERCISE 1.8.9. Let k be a field, a,b,c some elements of k and assume a ̸= b. Let
f = (x−a)(x−b) and g = (x− c)2. Prove:

(1) There is an isomorphism of k-algebras k[x]/( f )∼= k⊕ k.
(2) There is an isomorphism of k-algebras k[x]/(g)∼= k[x]/(x2).
(3) If h is a monic irreducible quadratic polynomial in k[x], then the k-algebras

k[x]/( f ), k[x]/(g), and k[x]/(h) are pairwise nonisomorphic.

EXERCISE 1.8.10. Let k be a field and A a finite dimensional k-algebra. Prove that if
dimk(A) = 2, then

(1) A is commutative.
(2) A is either a field extension of k, or isomorphic as a k-algebra to one of the two

rings in parts (1) or (2) of Exercise 1.8.9.

EXERCISE 1.8.11. Let F/k be a Galois extension of fields with finite group G. Let α

be an arbitrary element of F , and set

g = ∏
σ∈G

(x−σ(α)).

Show that g ∈ k[x] and the only irreducible factor of g in k[x] is Irr.polyk(α).

EXERCISE 1.8.12. Let R be a UFD with quotient field K. Assume the characteristic of
R is not equal to 2. Let a∈R be an element which is not a square in R and f = x2−a∈R[x].
Let S = R[x]/( f ), L = K[x]/( f ).
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(1) Show that there is a commutative square

S // L

R

OO

// K

OO

where each arrow is the natural map and each arrow is one-to-one.
(2) Show that L is the quotient field of S.
(3) AutK L = ⟨σ⟩ is a cyclic group of order two and L/K is a Galois extension.
(4) If σ : L→ L is the automorphism of order two, then σ restricts to an R-algebra

automorphism of S.
(5) The norm map NL

K : L→ K restricts to a norm map NS
R : S→ R.

EXERCISE 1.8.13. If F/k is an extension of finite fields, show that the image of the
norm map NF

k : F∗→ k∗ is equal to k∗.

EXERCISE 1.8.14. Let k be a field and A a k-algebra which is algebraic over k. Let
u ∈ A and let min.polyk(u) be the minimal polynomial of u in k[x]. Prove the following.

(1) u is invertible if and only if min.polyk(u) has a nonzero constant term.
(2) If u is not invertible, then u is a zero divisor.



CHAPTER 2

Modules

This chapter contains a deeper study of modules. The material presented here is fun-
damental and will be applied in all of the following chapters. Throughout, the ground ring
R will be a general ring. That is, R is not assumed to be commutative. By default, an
R-module M will be a left R-module. For many of the constructions, the module will be a
right R-module, or a two-sided R-module.

In Section 2.1 we introduce the notion of progenerator modules, which is a class of
modules that have many of the categorical properties of finitely generated free modules.
Our first version of Nakayama’s Lemma appears in Section 2.2. This is an important
theorem about finitely generated modules over a commutative ring. It states that if M is
nonzero and finitely generated, then there is a maximal left ideal m of R such that mM ̸=M.
There is a version for noncommutative rings in Chapter 4.2.

Four of the most important constructions in modern algebra are defined in this chapter.
These are the tensor product, Hom groups, the direct limit and the inverse limit. In Sec-
tion 2.3 we define the tensor product M⊗R N for a right R-module M and left R-module N
over a ring R. This important construction allows us to define the tensor functor by fixing
either M or N and treating the other as a variable. In Section 2.4, the group of homomor-
phisms HomR(M,N) is defined for any ring R and left R-modules M and N. There are two
possible Hom functors defined by fixing either M or N and treating the other as a variable.
The functor HomR(M, ·) is left exact, covariant, and right exact if and only if M is projec-
tive. Fixing N, the functor HomR(·,N) is left exact, contravariant, and right exact if and
only if N is injective. Some of the important properties satisfied by injective modules are
derived in Section 2.6. When the tensor and Hom functors are composed some important
relations arise. The first of these so-called “Hom Tensor Relations” are proved in Sec-
tion 2.4.3. In Section 2.7 we define the direct limit of a directed family of R-modules and
the inverse limit of an inverse system of R-modules. For these two important constructions
many of the fundamental functorial properties are derived.

Section 2.5 is a short introduction to the theory of Homological Algebra. We prove
three fundamental theorems, namely the Five Lemma, the Snake Lemma, and the Product
Lemma.

This chapter ends with a proof of the classical Morita Theorems. For a ring R and a left
R-progenerator module M, the main theorem states that there is an equivalence between the
category of right R-modules and the category of left modules over the endomorphism ring
HomR(M,M).

1. Progenerator Modules

Throughout this section, R will be an arbitrary ring. Unless otherwise specified, an
R-module is a left R-module.

We begin by defining the class of R-modules called projective modules. Projective
modules arise naturally as direct summands of free modules. From the point of view of
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category theory, projective modules play several important roles. For instance, a module P
is projective if and only if every exact sequence 0→ A→ B→ P→ 0 is split exact. We will
show in Proposition 2.4.5 below that P is a projective module if and only if HomR(P, ·) is
an exact functor. The definition we give for a generator module is in terms of the ideal of R
generated by the images of all linear functionals (see Definition 2.1.12). In Exercise 2.4.16
there is an equivalent definition that is more category theoretic and less element-wise ori-
ented. A finitely generated projective generator module is called a progenerator. When
the ring R is commutative, we prove in Corollary 2.2.4 below that an R-module P is a
progenerator if and only if M is finitely generated projective and faithful. We prove in
Theorem 8.6.14 below that a module M over a commutative ring R is a progenerator if and
only if there is an R-module P such that the tensor product P⊗R M is a finitely generated
free R-module. This theorem, which is due to H. Bass, shows that progenerator modules
over a commutative ring arise naturally when a finitely generated free module is factored
into a tensor product. The proof is an application of the Morita Theorems and the theory
of faithfully flat descent. For a general ring R the class of progenerator modules properly
contains the class of all finitely generated free modules.

Proposition 2.1.1 lists three fundamental properties of a projective module. The defi-
nition follows the proposition.

PROPOSITION 2.1.1. Let R be a ring and M an R-module. The following are equiva-
lent.

(1) There is a free R-module F and M is isomorphic to a direct summand of F.
(2) Every short exact sequence of R-modules

0→ A→ B
β−→M→ 0

is split exact.
(3) For any diagram of R-modules

M
∃ψ

��
φ

��
A α // B // 0

with the bottom row exact, there exists an R-module homomorphism ψ : M→ A
such that αψ = φ .

PROOF. (3) implies (2): Start with the diagram

M
∃ψ

��
=

��
0 // A // B

β // M // 0

where we assume the bottom row is exact. By Part (3) there exists ψ : M→ B such that
βψ = 1M . Then ψ is the splitting map.

(2) implies (1): Take I to be the set M. Let B = RI be the free R-module on I. Take
β : B → M to be β ( f ) = ∑ f (i)i. The reader should verify that this is a well defined
epimorphism. By Part (2) the exact sequence

B
β−→M→ 0

splits. By Exercise 1.6.19, M is isomorphic to a direct summand of B.
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(1) implies (3): We are given a free module F and F ∼= M⊕M′. Let π : F → M be
the projection onto the first factor and let ι : M→ F be the splitting map to π . Given the
diagram of R-modules in Part (3), consider this augmented diagram

F

∃γ

��

π

��
M∃ψ

xx
φ

��

ι

OO

A α // B // 0.

First we show that there exists γ making the outer triangle commutative, then we use γ

to construct ψ . Pick a basis {ei | i ∈ I} for F . For each i ∈ I set bi = φπ(ei) ∈ B. Since
α is onto, lift each bi to get ai ∈ A such that α(ai) = bi (this uses the Axiom of Choice,
Proposition 1.2.6). Define γ : F → A on the basis elements by γ(ei) = ai and extend by
linearity. By construction, αγ = φπ . Applying ι to both sides gives αγι = φπι . But
πι = 1M , hence αγι = φ . Define ψ to be γι . □

DEFINITION 2.1.2. Let R be a ring and M an R-module. We say M is a projective
R-module if M satisfies any of the equivalent conditions of Proposition 2.1.1.

EXAMPLE 2.1.3. A free module trivially satisfies Proposition 2.1.1 (1), hence a free
module is a projective module.

EXAMPLE 2.1.4. Let D be a division ring and R = M2(D) the ring of two-by-two
matrices over D. As a left D-module, R is free of rank 4. Let

e1 =

[
1 0
0 0

]
, e2 =

[
0 0
0 1

]
.

The reader should verify the following facts.
(1) e1 and e2 are orthogonal idempotents.
(2) Re1 is the set of all matrices with second column consisting of zeros.
(3) Re2 is the set of all matrices with first column consisting of zeros.
(4) dimD(Re1) = dimD(Re2) = 2.
(5) R = Re1⊕Re2 as R-modules.

By (5), Re1 and Re2 are projective R-modules. It follows from the rank formula proved in
Proposition 2.1.13 below that Re1 and Re2 are not free R-modules.

EXAMPLE 2.1.5. If R = Mn(D) is the ring of n-by-n matrices over a division ring D,
then we will see in Example 4.4.2 that R is a simple artinian ring. By Theorem 4.3.3, every
R-module is projective. If n ≥ 2, then using the method of Example 2.1.4 one can show
that R contains left ideals that are not free.

EXAMPLE 2.1.6. Here is a list of rings with the property that every finitely generated
projective module is free.

(1) A vector space over a division ring is free, by Theorem 1.6.13.
(2) Let R be a principal ideal domain and M a finitely generated projective R-module.

By Proposition 2.1.1, M is isomorphic to a submodule of a finitely generated free
R-module. By Theorem 1.7.14, M is free.

(3) Let R be a commutative local ring. If M is projective, then Kaplansky proved
that M is free. If M is finitely generated, we prove this in Proposition 3.4.3.
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(4) We will not give a proof, but if k is a field and R = k[x1, . . . ,xn], then Quillen
and Suslin proved that any finitely generated projective R-module is free [52,
Theorem 4.62]. The same conclusion is true if k is a principal ideal domain [52,
Theorem 4.63] or [38, Theorem V.2.9].

EXAMPLE 2.1.7. Here is another example of a projective module that is not free. Let
R = Z/6 be the ring of integers modulo 6. In R let I = {0,2,4} be the ideal generated by
the coset containing 2. Let J = {0,3}. Then R is the internal direct sum R = I⊕ J. Then
both I and J are projective R-modules by Proposition 2.1.1 (1). But I is not free, since it
has only 3 elements. Likewise J is not free.

COROLLARY 2.1.8. Let R be a ring and M a finitely generated projective R-module.
Then M is of finite presentation over R (Definition 1.6.12). There exists a finitely generated
projective R-module N such that M⊕N is a finitely generated free R-module.

PROOF. Is left to the reader. □

DEFINITION 2.1.9. Let M be an R-module. A dual basis for M is a set of ordered pairs
{(mi, fi) | i ∈ I} over an index set I consisting of mi ∈M, fi ∈ HomR(M,R) and satisfying

(1) For each m ∈M, fi(m) = 0 for all but finitely many i ∈ I, and
(2) for all m ∈M, m = ∑i∈I fi(m)mi.

LEMMA 2.1.10. (Dual Basis Lemma) Let R be a ring and M an R-module. Then
M is projective if and only if M has a dual basis {(mi, fi) | i ∈ I} consisting of mi ∈ M,
fi ∈ HomR(M,R) as in Definition 2.1.9. Moreover, the R-module M is finitely generated if
and only if I can be chosen to be a finite set.

PROOF. Assume M is projective. Let {mi | i ∈ I} ⊆ M be a generating set for the
R-module M. Let {ei | i ∈ I} be the standard basis for RI . Using Lemma 1.6.11, define
an onto homomorphism π : RI →M by π(ei) = mi. By Proposition 2.1.1 (3) with M = B
and α = π , there is a splitting map ι : M→ RI such that πι = 1. Let πi : RI → R be the
projection onto the ith summand. For each f ∈ RI , πi( f ) = f (i). Then h = ∑i∈I πi(h)ei for
each h ∈ RI . For each i ∈ I, set fi = πi ◦ ι . By definition of πi, for each m ∈M, fi(m) = 0
for all but finitely many i ∈ I. For any m ∈M

∑
i∈I

fi(m)mi = ∑
i∈I

πi(ι(m))π(ei)

= π

(
∑
i∈I

πi(ι(m))ei

)
= π(ι(m))

= m.

This shows {(mi, fi) | i ∈ I} satisfies both parts of Definition 2.1.9, hence is a dual basis.
Conversely, assume {(mi, fi) | i ∈ I} is a dual basis. We show that M is a direct sum-

mand of RI . Define ι : M → RI by ι(m)( j) = f j(m). Define π : RI → M by π(h) =
∑i∈I h(i)mi. The reader should verify that π and ι are R-linear. The proof follows from

π(ι(m)) = ∑
i∈I

ι(m)(i)mi

= ∑
i∈I

fi(m)mi

= m.

□
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LEMMA 2.1.11. Let R be a ring and M an R-module. The set

TRM =

{
n

∑
i=1

fi(mi) | n≥ 1, fi ∈ HomR(M,R),mi ∈M

}

is a 2-sided ideal in R. The ideal TRM is called the trace ideal of M in R.

PROOF. The proof is left to the reader. (Hint: Make HomR(M,R) into a right R-
module by the action ( f r)(m) = f (m)r.) □

DEFINITION 2.1.12. Let R be a ring and M an R-module. We say that M is a generator
over R in case TRM = R. We say that M is a progenerator over R in case M is finitely
generated, projective and a generator over R.

PROPOSITION 2.1.13. Let θ : R→ S be a homomorphism of rings and let M be an
S-module. Using θ , we can view S and M as R-modules.

(1) (Finitely Generated over Finitely Generated is Finitely Generated) If S is a
finitely generated R-module and M is a finitely generated S-module, then M is
a finitely generated R-module.

(2) (Projective over Projective is Projective) If S is a projective R-module and M is
a projective S-module, then M is a projective R-module.

(3) (A Generator over a Generator is a Generator) If S is a generator over R and M
is a generator over S, then M is a generator over R.

(4) (A Progenerator over a Progenerator is a Progenerator) If S is a progenerator
over R and M is a progenerator over S, then M is a progenerator over R.

(5) (Free over Free is Free) If S is free as an R-module and M is free as an S-module,
then M is free as an R-module. If M has a finite basis over S , and S has a finite
basis over R, then M has a finite basis over R. In this case, if R and S are both
commutative, then RankR(M) = RankS(M)RankR(S). If R and S are division
rings, then dimR(S) and dimS(M) are both finite if and only if dimR(M) is finite.

PROOF. (1): The proof of this part is left to the reader.
(2): There exists a dual basis {(mi, fi) | i ∈ I} for M over S where mi ∈ M and fi ∈

HomS(M,S) and fi(m) = 0 for almost all i ∈ I and ∑i fi(m)mi = m for all m ∈M. There
exists a dual basis {(s j,g j) | j ∈ J} for S over R where s j ∈ S and g j ∈ HomR(S,R) and
g j(s) = 0 for almost all j ∈ J and ∑ j g j(s)s j = s for all s ∈ S. For each (i, j) ∈ I× J the
composition of functions g j fi is in HomR(M,R) and the product s jmi is in M. For each
m ∈M we have

∑
(i, j)∈I×J

g j( fi(m))s jmi = ∑
i∈I

(
∑
j∈J

g j( fi(m))s j

)
mi

= ∑
i∈I

fi(m)mi

= m.

Under the finite hypotheses, both I and J can be taken to be finite.
(3): For some m> 0 there exist { f1, . . . , fm}⊆HomS(M,S) and {x1, . . . ,xm}⊆M such

that 1 = ∑
m
i=1 fi(xi). For some n there exist {g1, . . . ,gn} ⊆HomR(S,R) and {s1, . . . ,sn} ⊆ S
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such that 1 = ∑
n
j=1 g j(s j). For each (i, j), g j fi ∈ HomR(M,R) and s jmi ∈M and

m

∑
i=1

n

∑
j=1

g j fi(s jmi) =
m

∑
i=1

n

∑
j=1

g j
(
s j fi(mi)

)
=

n

∑
j=1

g j

(
s j

m

∑
i=1

fi(mi)
)

=
n

∑
j=1

g j(s j)

= 1.

(4): Follows from Parts (1), (2) and (3).
(5): Start with a free basis {mi | i ∈ I} for M over S where mi ∈ M. If we let fi ∈

HomS(M,S) be the coordinate projection onto the submodule Smi (in Definition 1.6.1 this
projection map was called πi), then we have a dual basis {(mi, fi) | i ∈ I} for M over S.
Likewise, there exists a dual basis {(s j,g j) | j ∈ J} for S over R where {s j | j ∈ J} is
a free basis and g j : S→ R is the projection homomorphism onto coordinate j. By (2),
{(s jmi,g j fi)} is a dual basis for M over R. The reader should verify that {s jmi} is a free
basis and the formula for the ranks. □

EXAMPLE 2.1.14. Let R be a ring with no zero divisors. Let I be a nonzero left ideal
of R. Then I is an R-module. Since annihR(I) = (0), I is faithful. If a ∈ R, the principal
ideal I = Ra is a free R-module and RankR(I) = 1.

EXAMPLE 2.1.15. Let k be a field of characteristic different from 2. Let x and y be
indeterminates over k. Let f = y2− x(x2−1). Set S = k[x,y]/( f ) and let M = (x,y) be the
maximal ideal of S generated by the images of x and y. By Exercise 2.1.17, S is an integral
domain. By Exercise 2.1.18, M is not free. In this example, we prove that M is projective.
The proof consists of constructing a dual basis for M. An arbitrary element m ∈M can be
written in the form m = ax+by, for some a,b ∈ S. From(

x2−1
y

)
m =

x2−1
y

(ax+by)

=
ax(x2−1)+by(x2−1)

y

=
ay2 +by(x2−1)

y

= ay+b(x2−1)

we see that
(

x2−1
y

)
m ∈ S. For each m ∈M we have

m = mx2−m(x2−1) = mx2−
(

x2−1
y

)
my.

This also shows that M is generated by x2 and y. Define the dual basis. Set m1 = x2 and
m2 = y. Define φi : M→ S by φ1(m) = m and φ2(m) =−

(
x2−1

y

)
m. Since m = φ1(m)m1 +

φ2(m)m2 for every m ∈ M, {(m1,φ1),(m2,φ2)} is a dual basis and M is a projective S-
module. To see how this fits into the Dual Basis Lemma 2.1.10, notice that a splitting
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of

S2 π−→M

(a,b) 7→ ax2 +by

is φ : M→ S2 which is given by

φ(m) = (φ1(m),φ2(m))

=

(
m,−

(
x2−1

y

)
m
)
.

Notice that φ(x) = (x,−y) and φ(y) = (y,−(x2−1)).

EXAMPLE 2.1.16. Let R be the field of real numbers. Let x and y be indeterminates
over R. Let f = x2 + y2− 1. Set S = R[x,y]/( f ) and let M = (x,y− 1) be the maximal
ideal of S generated by the images of x and y− 1. By Exercise 2.1.19, S is an integral
domain. By Exercise 2.1.20, M is not free. In this example, we prove that M is projective.
The proof consists of constructing a dual basis for M. An arbitrary element m ∈M can be
written in the form m = ax+b(y−1), for some a,b ∈ S. From(

y+1
x

)
m =

y+1
x

(ax+b(y−1))

=
ax(y+1)+b(y2−1)

x

=
ax(y+1)−bx2

x
= a(y+1)−bx

we see that
(

y+1
x

)
m ∈ S. For each m ∈M we have

m =
y+1

2
m− y−1

2
m

=

(
y+1

2x

)
mx− m

2
(y−1).

Define the dual basis. Set m1 = x and m2 = y−1. Define φi : M→ S by φ1(m) =
(

y+1
2x

)
m

and φ2(m) = −m
2 . Since m = φ1(m)m1 + φ2(m)m2 for every m ∈ M, {(m1,φ1),(m2,φ2)}

is a dual basis and M is a projective S-module. To see how this fits into the Dual Basis
Lemma 2.1.10, notice that the splitting of

S2 π−→M

(a,b) 7→ ax+b(y−1)

is ι : M→ S2 which is given by

ι(m) = (φ1(m),φ2(m))

=

(
y+1

2x
m,
−m
2

)
.

Notice that ι(x) = ( y+1
2 , −x

2 ) and ι(y−1) = (−x
2 , −y−1

2 ).
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1.1. Exercises.

EXERCISE 2.1.17. For the following, let k be a field of characteristic different from 2.
Let R = k[x] and f be the polynomial f = y2− x(x2−1) in R[y]. Let S be the factor ring

S =
k[x,y]

(y2− x(x2−1))
.

Elements of S are cosets represented by polynomials in k[x,y]. For example, in S the
polynomial x represents a coset. When it is clear that we are referring to a coset in S, we
choose not to adorn the polynomial with an extra “bar”, “tilde” or “mod” symbol. So,
for the sake of notational simplicity in what follows, we refer to a coset by one of its
representatives. The following is an outline of a proof that S is not a UFD. In particular, S
is not a PID.

(1) Use Exercise 1.8.12 to show that S = R[y]/( f ) = k[x][y]/( f ) is an extension ring
of R and there is an R-algebra automorphism σ : S→ S defined by y 7→ −y. The
norm map NS

R : S→ R is defined by u 7→ uσ(u).
(2) Use the norm map to prove that the group of invertible elements of S is equal to

the nonzero elements in k.
(3) Show that x and y are irreducible in S. (Hint: First show that x is not a norm.

That is, x is not in the image of NS
R. Likewise x−1 and x+1 are not norms.)

(4) Prove that S is not a UFD. In particular, S is not a PID.

EXERCISE 2.1.18. In what follows, let S be the ring defined in Exercise 2.1.17. Any
ideal in S is an S-module. Let M = (x,y) denote the ideal in S generated by x and y. To
show that M is not a free S-module, prove the following:

(1) If J is a nonzero ideal of S, then as an S-module J is faithful.
(2) The principal ideal (x) is not a maximal ideal in S.
(3) The ideal M = (x,y) is a maximal ideal in S. The factor ring S/M is a field.
(4) The ideal M is not a principal ideal. (Hint: Lemma 1.5.2,(2).)
(5) The ideal M2 is a principal ideal in S. (Hint: x ∈M2.)
(6) Over the field S/M, the vector space M/M2 has dimension one. (Hint: y ∈ M,

but y ̸∈M2.)
(7) M is not a free S module. (Hint: Exercise 1.1.17. If M were free, it would have

rank one.)

EXERCISE 2.1.19. Let R = R[x] and f be the polynomial f = y2 + x2−1 in R[y]. Let
S be the factor ring

S =
R[x,y]

(y2 + x2−1)
.

The following is an outline of a proof that S is not a UFD. In particular, S is not a PID.

(1) Use Exercise 1.8.12 to show that S = R[y]/( f ) =R[x][y]/( f ) is an extension ring
of R and there is an R-algebra automorphism σ : S→ S defined by y 7→ −y. The
norm map NS

R : S→ R is defined by u 7→ uσ(u).
(2) Use the norm map to prove that the group of invertible elements of S is equal to

the nonzero elements in R.
(3) Show that x and y−1 are irreducible in S. (Hint: First show that x is not a norm

from S.)
(4) Prove that S is not a UFD. In particular, S is not a PID.
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EXERCISE 2.1.20. In what follows, let S be the ring defined in Exercise 2.1.19. Any
ideal in S is an S-module. Let M = (x,y−1) denote the ideal in S generated by x and y−1.
To show that M is not a free S-module, prove the following:

(1) The principal ideal (x) is not a maximal ideal in S.
(2) The ideal M = (x,y−1) is a maximal ideal in S. The factor ring S/M is a field.
(3) The ideal M is not a principal ideal. (Hint: Lemma 1.5.2,(2).)
(4) The ideal M2 is a principal ideal in S. (Hint: y−1 ∈M2.)
(5) Over the field S/M, the vector space M/M2 has dimension one. (Hint: x ∈ M,

but x ̸∈M2.)
(6) M is not a free S module. (Hint: Exercise 1.1.17. If M were free, it would have

rank one.)

EXERCISE 2.1.21. Let R be any ring and M an R-module. Suppose there is an infinite
exact sequence

(1.1) · · · → An+1→ An→ ··· → A2→ A1→ A0→M→ 0

of R-modules. If each Ai is a free R-module, then we say (1.1) is a free resolution of M.
Use Lemma 1.6.11 and induction to show that a free resolution exists for any R and any M.
Since a free module is also projective, this also shows that M has a projective resolution.

EXERCISE 2.1.22. Let R be a ring and {Mi | i ∈ I} a family of R-modules. Show that
the direct sum

⊕
i∈I Mi is projective over R if and only if each Mi is projective over R.

EXERCISE 2.1.23. Let R be a unique factorization domain. Let α be a nonzero ele-
ment of R which is not invertible.

(1) Show that HomR(R[α−1],R) = (0).
(2) Show that R[α−1] is not a projective R-module.

EXERCISE 2.1.24. This is a slight generalization of Exercise 2.1.23. Let R be an
integral domain. Let α be a nonzero element of R such that the ideals In = (αn) satisfy the
identity

⋂
n>0(α

n) = (0). Show that R[α−1] is not a projective R-module.

EXERCISE 2.1.25. Let R be a ring and M a left R-module. Prove that the following
are equivalent.

(1) M is an R-generator.
(2) The R-module R is the homomorphic image of a direct sum M(n) of finitely many

copies of M.
(3) The R-module R is the homomorphic image of a direct sum MI of copies of M

over some index set I.
(4) Every left R-module A is the homomorphic image of a direct sum MI of copies

of M over some index set I.

EXERCISE 2.1.26. State and prove a version of Exercise 1.6.28 for rings. That is,
show that the product ∏i∈I Ri of a family {Ri | i ∈ I} of rings is the solution to a universal
mapping problem.

EXERCISE 2.1.27. This exercise is based on Example 2.1.15. Let k be a field of
characteristic different from 2, S = k[x,y]/(y2− x(x2− 1)), and M = (x,y) the maximal
ideal of S generate by x and y. Prove that the assignment

(m1,m2) 7→
(
−
(

x2−1
y

)
m1 +m2,xm1−

(
x2−1

y

)
m2

)
defines an isomorphism of S-modules: M⊕M ∼= S⊕S.
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EXERCISE 2.1.28. Let R be a ring, and M a projective R-module with submodules
S and T . Show that if S+ T = M, then there is an isomorphism of R-modules S⊕ T ∼=
M⊕ (S∩T ).

2. Nakayama’s Lemma

Nakayama’s Lemma is a fundamental tool in Commutative Algebra. We eventually
prove three different forms. The first form, Lemma 2.2.1, as well as its proof, are from [17].
There is a similar theorem with a different proof in [4]. A second version, Corollary 2.2.5,
is from [42]. Theorem 4.2.3 is a version for noncommutative rings and is based on a
theorem from [32].

Throughout this book there are dozens of applications of Nakayama’s Lemma. In an
attempt to illustrate its breadth, we mention a few here. Assume we are in the following
context: M is a finitely generated module over a commutative ring R and I is an ideal in R.
The first version of Nakayama’s Lemma says that IM =M if and only if I+annihR(M)=R.
From this it follows that if M ̸= (0), then there exists a maximal ideal m in R such that
mM ̸= M (see Corollary 2.2.2). Nakayama’s Lemma implies that a module over a commu-
tative ring R is a progenerator module if and only if it is finitely generated, projective and
faithful (see Corollary 2.2.4). The third version shows that I is contained in every maximal
ideal of R if and only if every element of the set 1+ I is a unit in R. This implies that
the natural homomorphism on groups of units η : Units(R)→ Units(R/I) is onto and the
kernel of η is the set 1+ I (see Exercise 4.2.9). If f is an endomorphism in HomR(M,M),
then we show f is onto if and only if f is invertible (see Corollary 2.4.2). Moreover, f is
onto if and only if the induced map f̄ : M/mM→M/mM is onto for every maximal ideal
m in R (see Corollary 2.4.3). In addition to these examples there are many applications in
Chapters 4, 7 and 10.

Let R be a ring, A ⊆ R a left ideal of R, and M an R-module. We denote by AM the
R-submodule of M generated by all elements of the form am, where a ∈ A and m ∈M.

LEMMA 2.2.1. (Nakayama’s Lemma) Let R be a commutative ring and M a finitely
generated R-module. An ideal A of R has the property that AM = M if and only if A+
annihR(M) = R.

PROOF. Assume A+ annihR(M) = R. Write 1 = α + β for some α ∈ A and β ∈
annihR(M). Given m in M, m = 1m = (α +β )m = αm+βm = αm. Therefore AM = M.

Conversely, say AM = M. Choose a generating set {m1, . . . ,mn} for M over R. Define
M = M1 = Rm1 + · · ·+Rmn

M2 = Rm2 + · · ·+Rmn

...
Mn = Rmn

Mn+1 = 0.

We prove that for every i = 1,2, . . . ,n+ 1, there exists αi in A such that (1−αi)M ⊆Mi.
Since (1−0)M = M ⊆M1, take α1 = 0. Proceed inductively. Let i≥ 1 and assume αi ∈ A
and (1−αi)M ⊆Mi. Then

(1−αi)M = (1−αi)AM

= A(1−αi)M

⊆ AMi.
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In particular, (1−αi)mi ∈ AMi = Ami +Ami+1 + · · ·+Amn. So there exist αii, . . . ,αim ∈ A
such that

(1−αi)mi =
n

∑
j=i

αi jm j.

Subtracting

(1−αi−αii)mi =
n

∑
j=i+1

αi jm j

is in Mi+1. Look at

(1−αi)(1−αi−αii)M = (1−αi−αii)
(
(1−αi)M

)
⊆ (1−αi−αii)Mi

⊆Mi+1.

Set αi+1 = −(−αi−αii−αi +α2
i +αiαii). Then αi+1 ∈ A and (1−αi+1)M ⊆Mi+1. By

finite induction, (1−αn+1)M = 0. Hence 1−αn+1 ∈ annihR(M) and 1 ∈ A+ annihR(M).
□

COROLLARY 2.2.2. Let R be a commutative ring and M a finitely generated R-module.
If mM = M for every maximal ideal m of R, then M = 0.

PROOF. If M ̸= 0, then 1 ̸∈ annihR(M). Some maximal ideal m contains annihR(M).
So m+ annihR(M) =m ̸= R. By Nakayama’s Lemma 2.2.1, mM ̸= M. □

PROPOSITION 2.2.3. Let R be a commutative ring and M a finitely generated and
projective R-module. Then TR(M)⊕ annihR(M) = R.

PROOF. There exists a dual basis {(mi, fi) | 1≤ i≤ n} for M. For each m ∈M, we see
that m = f1(m)m1 + · · ·+ fn(m)mn is in TR(M)M. Then TR(M)M = M. By Nakayama’s
Lemma 2.2.1, TR(M)+annihR(M) = R. Now check that TR(M)annihR(M) = 0. A typical
generator for TR(M) is f (m) for some m∈M and f ∈HomR(M,R). Given α ∈ annihR(M),
we see that α f (m) = f (αm) = f (0) = 0. By Exercise 1.1.25, TR(M)∩ annihR(M) = 0.

□

COROLLARY 2.2.4. Let R be a commutative ring and M an R-module. Then the
following are true.

(1) M is an R-progenerator if and only if M is finitely generated projective and faith-
ful.

(2) Assume R has no idempotents except 0 and 1. Then M is an R-progenerator if
and only if M is finitely generated, projective, and M ̸= (0).

PROOF. (1): By Proposition 2.2.3, TR(M) = R if and only if annihR(M) = (0) which
is true if and only if M is faithful.

(2): If 0 and 1 are the only idempotents, then annihR(M) = (0). □

Here is another variation of Nakayama’s Lemma.

COROLLARY 2.2.5. Let R be a commutative ring. Suppose I is an ideal in R, M is an
R-module, and there exist submodules A and B of M such that M = A+ IB. If

(1) I is nilpotent (that is, In = 0 for some n > 0), or
(2) I is contained in every maximal ideal of R and M is finitely generated,

then M = A.
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PROOF. Notice that

M/A =
A+ IB

A

⊆ A+ IM
A

⊆ I(M/A)

⊆M/A.

Assuming (1) we get M/A = I(M/A) = · · · = In(M/A) = 0. Assume (2) and let m be
an arbitrary maximal ideal of R. Then M/A = I(M/A) ⊆ m(M/A). By Corollary 2.2.2,
M/A = 0. □

2.1. Exercises.

EXERCISE 2.2.6. Let φ : R→ S be a local homomorphism of commutative local rings.
Assume S is a finitely generated R-module, and m is the maximal ideal of R. Show that
if the map R/m→ S/mS induced by φ is an isomorphism, then φ is onto. (Hint: S is
generated by φ(R) and mS.)

EXERCISE 2.2.7. Let R be a commutative ring and J an ideal in R. Prove:
(1) If J is a direct summand of R (that is, R = J⊕ I for some ideal I), then J2 = J.
(2) If J is a finitely generated ideal, and J2 = J, then J is a direct summand of R.

EXERCISE 2.2.8. Let R be a local ring with maximal ideal m and S a commutative
R-algebra. Assume S is a finitely generated R-module and S/mS is a field. Show that S is
a local ring with maximal ideal mS.

3. Tensor Product

Given a ring R and M and N, we already defined the direct product M×N. In this
section we define another product, called the tensor product. The tensor product of a right
R-module M and left R-module N is an abelian group denoted M⊗R N. In general, M⊗R N
is not an R-module. If R is commutative and A and B are two R-algebras, then the tensor
product A⊗R B is an R-algebra. When M is fixed and N is treated as a variable, M⊗R (·)
defines an important functor from the category of left R-modules to the category of abelian
groups. Similarly, (·)⊗R N defines a functor from the category of right R-modules to the
category of abelian groups. When R is commutative and S is an R-algebra, S⊗R (·) defines a
functor from the category of left R-modules to the category of left S-modules. This section
contains many of the fundamental properties of tensor products and the tensor functors.

3.1. Tensor Product of Modules and Homomorphisms.

DEFINITION 2.3.1. Let R be a ring, M ∈MR and N ∈ RM. Let C be a Z-module. Let
f : M×N→C be a function. Then f is an R-balanced map if it satisfies

(1) f (m1 +m2,n) = f (m1,n)+ f (m2,n),
(2) f (m,n1 +n2) = f (m,n1)+ f (m,n2), and
(3) f (mr,n) = f (m,rn).

for all possible mi ∈ N, ni ∈ N, r ∈ R.

DEFINITION 2.3.2. Let R be a ring, M ∈MR and N ∈ RM. The tensor product of
M and N over R consists of an abelian group, denoted M⊗R N, and an R-balanced map
τ : M ×N → M ⊗R N satisfying the following universal mapping property. If C is an
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abelian group and f : M×N→C is R-balanced, then there exists a unique homomorphism
φ : M⊗R N→C such that φτ = f . Hence the diagram

M×N

f
%%

τ // M⊗R N

∃φ
��

C

commutes. The element τ(x,y) is denoted x⊗ y.

THEOREM 2.3.3. Let R be a ring, M ∈MR and N ∈ RM.

(1) The tensor product M⊗R N exists and is unique up to isomorphism of abelian
groups.

(2) The image of τ generates M⊗R N. That is, every element of M⊗R N can be
written as a finite sum of the form ∑

n
i=1 τ(mi,ni).

PROOF. Part (2) follows from the proof of Part (1).
(1): Existence of M⊗R N. Let F = ZM×N be the free Z-module on the set M×N.

Write (x,y) as the basis element of F corresponding to (x,y). Let K be the subgroup of F
generated by all elements of the form

(1) (m1 +m2,n)− (m1,n)− (m2,n),
(2) (m,n1 +n2)− (m,n1)− (m,n2), and
(3) (mr,n)− (m,rn).

We show that F/K satisfies Definition 2.3.2. Define τ : M×N→ F/K by τ(x,y) = (x,y)+
K. Clearly τ is R-balanced. Since F has a basis consisting of the elements of the form (x,y),
the image of τ contains a generating set for the abelian group F/K.

Now we show that F/K satisfies the universal mapping property. Assume that we have
a balanced map f : M×N→C. By Lemma 1.6.11 we define a Z-module homomorphism
h : F → C. On a typical basis element (x,y), h is defined to be h(x,y) = f (x,y). This
diagram

M×N τ //

f
##

F/K

∃φ
��

F

h
}}

ηoo

C

commutes. The reader should verify that K is contained in the kernel of h, since f is
balanced. So h factors through F/K, showing that φ exists. Since F/K is generated by
elements of the form (x,y)+K and φ ((x,y)+K) = f (x,y), it is clear that φ is unique.

Uniqueness of M⊗R N. Suppose there exist an abelian group T and an R-balanced
map t : M×N→ T such that Definition 2.3.2 is satisfied. We show that T is isomorphic to
M⊗R N. There exist f and φ such that τ = f t and t = φτ . That is, the diagrams

M×N t //

τ %%

T

f
��

M⊗R N

M×N t //

τ %%

T

M⊗R N

φ

OO
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commute. Notice that both ψ = 1 and ψ = f φ make the diagram

M×N τ //

τ %%

M⊗R N

∃ψ
��

M⊗R N

commute. By the uniqueness of ψ , it follows that f φ = 1. Likewise, φ f = 1. □

EXAMPLE 2.3.4. Let R, M, N be as in Theorem 2.3.3.
(1) It follows from the proof of Theorem 2.3.3 (1) that the identities

(m1 +m2)⊗n = m1⊗n+m2⊗n

m⊗ (n1 +n2) = m⊗n1 +m⊗n2

mr⊗n = m⊗ rn

hold in M⊗R N.
(2) In M⊗R N the zero element is 0⊗ 0. Usually the representation of zero is not

unique. For instance,

x⊗0 = x⊗0(0) = (x)0⊗0 = 0⊗0,

and
0⊗ y = (0)0⊗ y = 0⊗0(y) = 0⊗0.

EXAMPLE 2.3.5. Let Q denote the additive group of rational numbers. Let n > 1. Let
Z/n denote the cyclic group of integers modulo n. A typical generator of Q⊗ZZ/n looks
like (a/b)⊗ c, for a,b,c ∈ Z. Therefore

a
b
⊗ c =

na
nb
⊗ c =

a
nb
⊗n(c) =

a
b
⊗0 = 0⊗0

which proves Q⊗ZZ/n = 0.

LEMMA 2.3.6. Let f : M→M′ in MR and g : N→ N′ in RM. Then there is a homo-
morphism of abelian groups

f ⊗g : M⊗R N→M′⊗R N′

which satisfies ( f ⊗g)(x⊗ y) = f (x)⊗g(y).

PROOF. Define ρ : M×N → M′⊗R N′ by ρ(x,y) = f (x)⊗ g(y). The reader should
check that ρ is balanced. □

LEMMA 2.3.7. Given
M1

f1−→M2
f2−→M3

in MR and
N1

g1−→ N2
g2−→ N3

in RM, the triangle

M2⊗R N2
f2⊗g2

&&
M1⊗R N1

f2 f1⊗g2g1 //

f1⊗g1
88

M3⊗R N3

in the category of Z-modules commutes so that ( f2⊗g2)( f1⊗g1) = ( f2 f1⊗g2g1).

PROOF. Left to the reader. □
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DEFINITION 2.3.8. If S and R are rings and M ∈MR and M ∈ SM, then M is a left
S right R bimodule if s(mr) = (sm)r for all possible s ∈ S, m ∈ M and r ∈ R. Denote by
SMR the category of all left S right R bimodules. We say that M is a left R left S bimodule
if M is both a left R-module and a left S-module and r(sm) = s(rm) for all possible r ∈ R,
m ∈M and s ∈ S. Denote by R−SM the category of all left R left S bimodules.

EXAMPLE 2.3.9. Let R and S be two rings.
(1) If I is an ideal in R, the associative law for multiplication in R shows that I is a

left R right R bimodule.
(2) If R is a commutative ring, any left R-module M can be made into a left R right

R bimodule by defining mr to be rm.
(3) If R is a subring of S, the associative law for multiplication in S shows that S is a

left R right R bimodule.
(4) If φ : R→ S is a homomorphism of rings, then the image of φ is a subring of S.

As in (3) and Example 1.1.11, we see that R acts on S from both the left and right
by the rules rx = φ(r)x and xr = xφ(r). The associative law for multiplication in
S shows that S is a left R right R bimodule.

If R is a noncommutative ring, the tensor product M⊗R N cannot be turned into an
R-module per se. If S is another ring and M or N is a bimodule over R and S, then we can
turn M⊗R N into an S-module. Lemma 2.3.10 lists four such possibilities.

LEMMA 2.3.10. Let R and S be rings.

(1) If M and M′ are in SMR, and N and N′ are in RM, then the following are true.
(a) M⊗R N is in SM, with the action of S given by s(m⊗n) = sm⊗n.
(b) If f : M→M′ and g : N→ N′ are homomorphisms in SMR and RM respec-

tively, then f ⊗g : M⊗R N→M′⊗R N′ is a homomorphism in SM.
(2) If M and M′ are in MR, and N and N′ are in R−SM, then the following are true.

(a) M⊗R N is in SM, with the action of S given by s(m⊗n) = m⊗ sn.
(b) If f : M → M′ and g : N → N′ are homomorphisms in MR and R−SM re-

spectively, then f ⊗g : M⊗R N→M′⊗R N′ is a homomorphism in SM.
(3) If M and M′ are in MR−S, and N and N′ are in RM, then the following are true.

(a) M⊗R N is in MS, with the action of S given by (m⊗n)s = ms⊗n.
(b) If f : M → M′ and g : N → N′ are homomorphisms in MR−S and RM re-

spectively, then f ⊗g : M⊗R N→M′⊗R N′ is a homomorphism in MS.
(4) If M and M′ are in MR, and N and N′ are in RMS, then the following are true.

(a) M⊗R N is in MS, with the action of S given by (m⊗n)s = m⊗ns.
(b) If f : M→M′ and g : N→ N′ are homomorphisms in MR and RMS respec-

tively, then f ⊗g : M⊗R N→M′⊗R N′ is a homomorphism in MS.

PROOF. (1): Given s ∈ S define ℓs : M×N→M⊗R N by ℓs(x,y) = s(x⊗ y) = sx⊗ y.
Check that ℓs is balanced, hence the action by S on M⊗R N is well defined. The rest of (a)
is left to the reader. For (b) the reader should verify that f ⊗g is S-linear.

The proofs of (2) – (4) are similar and left to the reader. □

COROLLARY 2.3.11. Let R be a commutative ring. If M and N are R-modules, then
the following are true.

(1) M⊗R N is a left R-module by the rule: r(m⊗n) = rm⊗n = m⊗ rn.
(2) If f : M→ M′ and g : N → N′ are homomorphisms of R-modules, then f ⊗ g :

M⊗R N→M′⊗R N′ is a homomorphism of R-modules.
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PROOF. Apply Lemma 2.3.10. □

COROLLARY 2.3.12. Let θ : R→ S be a homomorphism of rings. If M and M′ are
R-modules, then the following are true.

(1) S⊗R M is a left S-module under the action s1(s2⊗m) = s1s2⊗m.
(2) If f : M→M′ is an R-module homomorphism, then 1⊗ f : S⊗R M→ S⊗R M′ is

an S-module homomorphism.

PROOF. This follows from Lemma 2.3.10 since by Example 2.3.9 parts (3) and (4), S
is a left S right R bimodule. □

LEMMA 2.3.13. If R is a ring, then R⊗R M ∼= M as left R-modules under the map
x⊗ y 7→ xy.

PROOF. Since R ∈ RMR, given M ∈ RM we view R⊗R M as a left R-module. Define
f : R×M → M by f (x,y) = xy. Since M is an R-module, f is balanced. There exists
φ : R⊗R M→M such that the diagram

R×M

f
%%

τ // R⊗R M

φ

��
M

commutes. Define ψ : M→R⊗M by x 7→ 1⊗x. The reader should verify that ψ is R-linear.
Notice that φψ(x) = φ(1⊗ x) = x. On a typical generator ψφ(x⊗ y) = 1⊗ xy = x⊗ y. It
follows that φ and ψ are inverses. □

LEMMA 2.3.14. (Tensor Product Is Associative) Let R and S be rings and assume
L ∈MR, M ∈ RMS and N ∈ SM. Then (L⊗R M)⊗S N is isomorphic as an abelian group
to L⊗R (M⊗S N) under the map which sends (x⊗ y)⊗ z to x⊗ (y⊗ z).

PROOF. Fix z ∈ N and define

L×M
ρz−→ L⊗R (M⊗S N)

(x,y) 7→ x⊗ (y⊗ z).

The reader should verify that ρz is R-balanced. Therefore,

L⊗R M
fz−→ L⊗R (M⊗S N)

x⊗ y 7→ x⊗ (y⊗ z).

is a well defined homomorphism of groups. The function

(L⊗R M)×N
f−→ L⊗R (M⊗S N)(

∑
i

xi⊗ yi,z
)
7→ fz(∑

i
xi⊗ yi) = ∑

i
xi⊗ (yi⊗ z).
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is well defined. The following equations show that f is balanced.

f
(
∑

i
xi⊗ yi,z1 + z2

)
= ∑

i
xi⊗

(
yi⊗ (z1 + z2)

)
= ∑

i
xi⊗ (yi⊗ z1 + yi⊗ z2)

= ∑
i

xi⊗ (yi⊗ z1)+∑
i

xi⊗ (yi⊗ z2)

= f
(
∑

i
xi⊗ yi,z1

)
+ f
(
∑

i
xi⊗ yi,z2

)

f
( k

∑
i=1

xi⊗ yi +
ℓ

∑
i=k+1

xi⊗ yi,z
)
=

ℓ

∑
i=1

xi⊗ (yi⊗ z)

=
k

∑
i=1

xi⊗ (yi⊗ z)+
ℓ

∑
i=k+1

xi⊗ (yi⊗ z)

= f
( k

∑
i=1

xi⊗ yi,z
)
+ f
( ℓ

∑
i=k+1

xi⊗ yi,z
)

f
(
∑

i
xi⊗ yis,z

)
= ∑

i
xi⊗ (yis⊗ z)

= ∑
i

xi⊗ (yi⊗ sz)

= f
(
∑

i
xi⊗ yi,sz

)
In the diagram

(L⊗R M)×S N

f ((

τ // (L⊗R M)⊗S N

φ

��
L⊗R (M⊗S N)

the homomorphism φ is well defined. The inverse of φ is defined in a similar way. □

Lemma 2.3.15 shows that tensoring distributes across a direct sum. The analogous
result for a direct product is false if the index set is infinite. For a counterexample, see
Example 3.5.10.

LEMMA 2.3.15. (Tensor Product Distributes over a Direct Sum) Let M and {Mi}i∈I
be right R-modules. Let N and {N j} j∈J be left R-modules. There are isomorphisms of
abelian groups

M⊗R

(⊕
j∈J

N j

)
∼=
⊕
j∈J

(M⊗R N j)

and (⊕
i∈I

Mi

)
⊗R N ∼=

⊕
i∈I

(Mi⊗R N) .

PROOF. Define ρ :
(⊕

Mi
)
×N→

⊕(
Mi⊗N

)
by ρ( f ,n) = g where g(i) = f (i)⊗n.

We prove that ρ is balanced. First, say f1, f2 ∈
⊕

Mi and ρ( f1 + f2,n) = g, ρ( f1,n) = g1
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and ρ( f2,n) = g2. Then

g(i) =
(

f1(i)+ f2(i)
)
⊗n

= f1(i)⊗n+ f2(i)⊗n

= g1(i)+g2(i)

which shows g = g1 +g2. Next say ρ( f r,n) = g and ρ( f ,rn) = h. Then

g(i) =
(

f r(i)⊗n

= f (i)r⊗n

= f (i)⊗ rn

= h(i)

which shows g = h. Clearly ρ( f ,n1 +n2) = ρ( f ,n1)+ρ( f ,n2). Therefore the homomor-
phism φ exists and the diagram(⊕

Mi
)
×N τ //

ρ &&

(⊕
Mi
)
⊗N

φ

��⊕(
Mi⊗N

)
commutes. Let ι j : M j →

⊕
Mi be the injection of the jth summand into the direct sum.

Let ψ j = ι j⊗1. Then ψ j : M j⊗N→
(⊕

Mi
)
⊗N. Define ψ =

⊕
ψi to be the direct sum

map of Proposition 1.6.2 (2). Then ψ :
⊕(

Mi⊗N
)
→
(⊕

Mi
)
⊗N. The reader should

verify that φ and ψ are inverses of each other. □

LEMMA 2.3.16. Let R be a ring, M a right R-module and N a left R-module. Then
M⊗R N ∼= N⊗Ro M under the map x⊗ y 7→ y⊗ x.

PROOF. Define ρ : M×N→ N⊗Ro M by ρ(x,y) = y⊗ x. Then

ρ(x1 + x2,y) = y⊗ (x1 + x2)

= y⊗ x1 + y⊗ x2

= ρ(x1,y)+ρ(x2,y).

Likewise ρ(x,y1 + y2) = ρ(x,y1)+ρ(x,y2). Also

ρ(xr,y) = y⊗ xr

= y⊗ r ∗ x

= y∗ r⊗ x

= ry⊗ x

= ρ(x,ry)

which shows ρ is balanced. There exists a homomorphism φ and the diagram

M×N

ρ %%

τ // M⊗R N

φ

��
N⊗Ro M

commutes. Since R = (Ro)o, it is clear that φ is an isomorphism. □
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3.2. Tensor Functor. Keeping one side of the tensor product fixed, and treating the
other side as a variable defines a functor from a category of R-modules to the category of
abelian groups. The fundamental properties of the tensor functor are derived in this section.

LEMMA 2.3.17. Let R be a ring.
(1) If M is a right R-module, then tensoring with M defines a covariant functor

M⊗R (·) : RM→ ZM from the category of left R-modules to the category of
abelian groups.

(2) If S is a ring and M is a left S right R bimodule, then M⊗R (·) defines a covariant
functor from RM to SM.

(3) If R is a commutative ring and M is an R module, then M⊗R (·) defines a covari-
ant functor from RM to RM.

(4) If θ : R→ S is a homomorphism of rings, then S⊗R (·) defines a covariant functor
from RM to SM.

If N is a left R-module, then versions of (1) – (3) hold for the functor defined by (·)⊗R N
provided the roles of left and right are switched. The right hand version of (4) holds for
the functor defined by (·)⊗R B.

PROOF. (1): For any object N in the category RM we can construct the Z-module
M⊗R N. Given any homomorphism f ∈ HomR(A,B), there is a homomorphism 1⊗ f :
M⊗R A→M⊗R B. By Lemma 2.3.7, the composition of functions is preserved by tensor-
ing with M.

For Part (2), use Part (1) and Lemma 2.3.10. For Part (3), use Part (1) and Corol-
lary 2.3.11. For Part (4), use Part (1) and Corollary 2.3.12. □

LEMMA 2.3.18. (Tensoring Is Right Exact.) Let R be a ring and M a right R-module.
Given a short exact sequence in RM

0→ A α−→ B
β−→C→ 0

the sequence

M⊗R A 1⊗α−−→M⊗R B
1⊗β−−→M⊗R C→ 0

is an exact sequence of Z-modules.

PROOF. Step 1: Show that 1⊗β is onto. Given an element x⊗ c in M⊗R C, use the
fact that β is onto and find b ∈ B such that β (b) = c. Notice that (1⊗β )(x⊗ b) = x⊗ c.
The image of 1⊗β contains a generating set for M⊗R C.

Step 2: im(1⊗α) ⊆ ker(1⊗β ). By Lemma 2.3.7, (1⊗ β ) ◦ (1⊗α) = 1⊗ βα =
1⊗0 = 0.

Step 3: im(1⊗α) ⊇ ker(1⊗β ). Write E = im(1⊗α). By Step 2, E ⊆ ker(1⊗β )
so 1⊗β factors through M⊗R B/E, giving

β̄ :
M⊗R B

E
→M⊗R C.

It is enough to show that β̄ is an isomorphism. To do this, we construct the inverse map.
First, let c ∈ C and consider two elements b1,b2 in β−1(c). Then β (b1− b2) = β (b1)−
β (b2) = c−c = 0. That is, b1−b2 ∈ kerβ = imα . For any x ∈M, it follows that x⊗b1−
x⊗b2 = x⊗ (b1−b2) ∈ im(1⊗α) = E. Therefore we can define a function

M×C
f−→ M⊗R B

E
(x,c) 7→ x⊗b+E
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where b is an arbitrary element in β−1(c). The reader should verify that f is R-balanced.
So there exists a homomorphism γ making the diagram

M×C

f $$

τ // M⊗R C

γ

��
M⊗RB

E

commutative. By construction, γ = β̄−1. □

DEFINITION 2.3.19. By Lemma 2.3.18 the functor M⊗R (·) is right exact. In case
M⊗R (·) is also left exact, then we say M is a flat R-module.

EXAMPLE 2.3.20. Take R = Z, M = Z/n. The sequence

0→ Z→Q→Q/Z→ 0

is exact. In M⊗Q, 1⊗1 is equal to 1⊗n/n = n⊗1/n = 0⊗0. So tensoring the previous
sequence with M⊗ (·),

0→ Z/n→ 0→ 0→ 0
is not exact. As a Z-module, Z/n is not flat.

In Lemma 2.3.21 below, we show that the tensor product of two R-algebras is an R-
algebra. In other words, tensor product defines a product on the category of R-algebras.

LEMMA 2.3.21. If A and B are R-algebras, then A⊗R B is an R-algebra with multi-
plication induced by (x1⊗ y1)(x2⊗ y2) = x1x2⊗ y1y2.

PROOF. Using Corollary 2.3.11 (1), the tensor product of R-modules is an R-module.
Using Lemma 2.3.16, the “twist” map

τ : A⊗R B→ B⊗R A

x⊗ y 7→ y⊗ x

is an R-module isomorphism. The reader should verify that multiplication in A and in B
induce R-module homomorphisms

µ : A⊗R A→ A

x⊗ y 7→ xy

and
ν : B⊗R B→ B

x⊗ y 7→ xy

respectively. Consider the R-module homomorphisms

(A⊗R B)⊗R (A⊗R B)
∼=−→ A⊗R (B⊗R A)⊗R B
1⊗τ⊗1−−−−→ A⊗R (A⊗R B)⊗R B
∼=−→ (A⊗R A)⊗R (B⊗R B)
µ⊗ν−−→ A⊗R B.

(3.1)

Since it is defined by the composition of the homomorphisms in (3.1), the multiplication
rule in A⊗R B is well defined. The reader should verify that the associative and distributive
laws hold. The multiplicative identity is 1⊗ 1. If r ∈ R, then r⊗ 1 = 1⊗ r in A⊗R B.
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The reader should verify that r 7→ r⊗ 1 defines a homomorphism from R to the center of
A⊗R B. □

LEMMA 2.3.22. Let R be a commutative ring and let A and B be R-algebras. Let
M be a left A-module and N a left B-module. Given a ∈ A, b ∈ B, x ∈ M, and y ∈ N, if
(a⊗b)(x⊗ y) is defined to be ax⊗by, then this makes M⊗R N into a left A⊗R B-module.

PROOF. The R-algebras A and B come with homomorphisms θ1 : R→ A and θ2 :
R→ B satisfying im(θ1) ⊆ Z(A) and im(θ2) ⊆ Z(B). Therefore, A and B are both left R
right R bimodules and by Example 2.3.9 we can view M as a left A right R bimodule and
N as a left B left R bimodule. By Lemma 2.3.10, M⊗R N is a left A-module and a left
B-module. By Example 1.1.13, the left regular representations of A and B are R-algebra
homomorphisms φ1 : A→HomR(M⊗R N,M⊗R N) and φ2 : B→HomR(M⊗R N,M⊗R N).
Therefore φ1(a)φ2(b)(x⊗ y) = ax⊗by = φ2(b)φ1(a)(x⊗ y), which shows elements in the
image of φ1 commute with elements in the image of φ2. By Exercise 2.3.31, there exists
an R-algebra homomorphism γ : A⊗R B→HomR(M⊗R N,M⊗R N) such that the diagram

HomR(M⊗R N,M⊗R N)

A

φ1
77

ρ1
// A⊗R B

γ

OO

B
ρ2

oo

φ2
gg

commutes. By Lemma 1.1.10, this makes M⊗R N into a left A⊗R B-module. Finally, left
multiplication of x⊗ y by a⊗b is equal to ax⊗by, □

In Theorem 2.3.23 below we show that given a homomorphism of rings φ : A→ B,
there is a change of base ring functor from the category of right A-modules to the category
of right B-modules given by the tensor functor (·)⊗A B.

THEOREM 2.3.23. Let φ : A→ B be a homomorphism of rings. As in Example 2.3.9,
φ makes B into a left A right A bimodule.

(1) The assignment M 7→M⊗A B defines a right exact covariant functor MA→MB
which satisfies:
(a) A is mapped to B.
(b) Any direct sum

⊕
i∈I Mi is mapped to the direct sum

⊕
i∈I (Mi⊗A B).

(c) The free module AI is mapped to the free B-module BI .
(2) If M is A-projective, then M⊗A B is B-projective.
(3) If M is an A-generator, then M⊗A B is a B-generator.
(4) If M is finitely generated over A, then M⊗A B is finitely generated over B.
(5) If M is a flat A-module, then M⊗A B is a flat B-module.

Left hand versions of (1) – (5) hold for the covariant functor AM→ BM which is defined
by M 7→ B⊗A M.

PROOF. (1): Apply Lemmas 2.3.13, 2.3.15, 2.3.17, and 2.3.18.
(2): By Proposition 2.1.1, M is a direct summand of a free A-module. By (1), M⊗A B

is a direct summand of a free B-module.
(3): If M(n)→ A→ 0 is an exact sequence of right A-modules, then by (1)

(M⊗A B)(n)→ B→ 0

is an exact sequence of right B-modules. By Exercise 2.1.25 we are done.
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(4): If A(n)→M→ 0 is an exact sequence of right A-modules, then by (1)

B(n)→M⊗A B→ 0

is an exact sequence of right B-modules. By Lemma 1.6.11 we are done.
(5): Is left to the reader. □

In Proposition 2.3.24 below, R is a ring and M and N are two-sided R-bimodules.
Given that M and N both have a certain property, we ask whether the tensor product M⊗R N
also has that same property.

PROPOSITION 2.3.24. Let R be a ring and let M and N be left R right R-bimodules.
(1) If M and N are finitely generated as left R-modules, then M⊗R N is finitely gen-

erated as a left R-module.
(2) If M and N are projective as left R-modules, then M⊗R N is projective as a left

R-module.
(3) If M and N are left R-generator modules, then M⊗R N is a left R-generator

module.
(4) If M and N are left R-progenerator modules, then M⊗R N is a left R-progenerator

module.
Right hand versions of (1) – (4) hold.

PROOF. (1): We are given exact sequences of left R-modules

(3.2) R(m) α−→M→ 0

and

(3.3) R(n) β−→ N→ 0.

Tensor (3.2) with (·)⊗R N to get the exact sequence of left R-modules

(3.4) R(m)⊗R N α⊗1−−→M⊗R N→ 0.

Tensor (3.3) with R(m)⊗R (·) to get the exact sequence of left R-modules

(3.5) R(m)⊗R R(n) 1⊗β−−→ R(m)⊗R N→ 0.

The composition map (α⊗1)◦ (1⊗β ) is onto.
(2): Start with dual bases {( fi,mi) | i∈ I} for M and {(g j,n j) | j ∈ J} for N. Then fi⊗

g j ∈ HomR(M⊗R N,R). For a typical generator x⊗ y of M⊗R N, the following equations

∑
(i, j)

( fi⊗g j)(x⊗ y)(mi⊗n j) = ∑
(i, j)

( fi(x)g j(y)(mi⊗n j)

= ∑
(i, j)

fi(x)mi⊗g j(y)n j)

= ∑
i

(
fi(x)mi⊗

(
∑

j
g j(y)n j

))
= ∑

i

(
fi(x)mi⊗ y

)
=
(
∑

i
fi(x)mi

)
⊗ y

= x⊗ y

show that {( fi⊗g j,mi⊗n j) | (i, j) ∈ I× J} is a dual basis for M⊗R N.
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(3): By Exercise 2.1.25, there are exact sequences

(3.6) M(m) α−→ R→ 0

and

(3.7) N(n) β−→ R→ 0.

Tensor (3.6) with (·)⊗R N(n) to get the exact sequence

(3.8) M(m)⊗R N(n) α⊗1−−→ R⊗R N(n)→ 0.

Then the composition (1⊗β )◦ (α⊗1) maps (M⊗R N)(mn) onto R.
(4): Follows from (1), (2) and (3). □

In Proposition 2.3.25 below, R is a ring and M and N are two-sided R-bimodules. If
the tensor product M⊗R N has a certain property, we ask whether M and N also have that
same property.

PROPOSITION 2.3.25. Let R be a ring. Let M and N be left R right R-bimodules.
Assume M⊗R N is a left R-generator module. Then the following are true.

(1) M and N are both left R-generator modules.
(2) If M⊗R N is projective as a left R-module, then M and N are both projective as

left R-modules.
(3) If M⊗R N is finitely generated as a left R-module, then M and N are both finitely

generated as left R-modules.
(4) If M⊗R N is a left progenerator over R, then M and N are both left progenerators

over R.
If M⊗R N is a right R-generator module, then right hand versions of (1) – (4) hold for M
and N.

PROOF. (1): By Exercise 2.1.25 there is a free R-module F1 of finite rank and a
homomorphism f1 of left R-modules such that f1 : F1 ⊗R (M ⊗R N) → R is onto. By
Lemma 1.6.11 there is a free R-module F2 and a left R-module homomorphism f2 such
that f2 : F2→M is onto. By Lemma 2.3.18,

F2⊗R N
f2⊗1−−−→M⊗R N→ 0

is exact. For the same reason,

F1⊗R (F2⊗R N)
1⊗ f2⊗1−−−−→ F1⊗R (M⊗R N)→ 0

is exact. Since F1⊗R F2 is a free R-module, Lemma 2.3.14 and Lemma 2.3.15 show that
F1⊗R (F2⊗R N) is a direct sum of copies of N. Then f1 ◦ (1⊗ f2⊗1) maps a direct sum of
copies of N onto R. Use Exercise 2.1.25 again to show N is a left R-module generator. The
other case is left to the reader.

(2) and (3): By Part (1) and Exercise 2.1.25 there is a free R-module F of finite rank

and a left R-module homomorphism f such that N⊗R F
f−→ R is onto. But f is split since R

is projective over R. By Exercise 2.3.31,

M⊗R N⊗R F
f⊗1−−→M→ 0

is split exact. If M⊗R N is projective, then by Lemma 2.3.15 and Exercise 2.1.22, M is
projective. If M⊗R N is finitely generated, then so is M. The other cases are left to the
reader. □
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3.3. Exercises.

EXERCISE 2.3.26. Assume A is a Z-module and m> 0. Prove that A⊗ZZ/m∼=A/mA.

EXERCISE 2.3.27. If m > 0, n > 0 and d = gcd(m,n), then Z/m⊗ZZ/n∼= Z/d.

EXERCISE 2.3.28. Let R be a ring, M a right R-module, N a left R-module. If M′

is a submodule of M and N′ is a submodule of N, then show that M/M′ ⊗R N/N′ ∼=
(M⊗R N)/C where C is the subgroup of M⊗R N generated by all elements of the form
x′⊗ y and x⊗ y′ with x ∈M, x′ ∈M′, y ∈ N and y′ ∈ N′.

EXERCISE 2.3.29. Let B = ⟨b⟩ be the cyclic group of order four, A = ⟨2b⟩ the sub-
group of order two and α : A→ B the homomorphism defined by A ⊆ B. Show that the
groups A⊗Z A and A⊗Z B are both nonzero. Show that 1⊗α : A⊗Z A→ A⊗Z B is the
zero homomorphism.

EXERCISE 2.3.30. Let R be a ring and let RI and RJ be free R-modules.

(1) Show that RI⊗R RJ is a free R-module.
(2) If A is a free R-module of rank m and B is a free R-module of rank n, then show

that A⊗R B is free of rank mn.

EXERCISE 2.3.31. Let

(3.9) 0→ A α−→ B
β−→C→ 0

be a short exact sequence of left R-modules. Given a right R-module M, consider the
sequence

(3.10) 0→M⊗R A 1⊗α−−→M⊗R B
1⊗β−−→M⊗R C→ 0.

Prove:

(1) If (3.9) is split exact, then (3.10) is split exact.
(2) If M is a free right R-module, then (3.10) is exact, hence M is flat.
(3) If M is a projective right R-module, then (3.10) is exact, hence M is flat.

EXERCISE 2.3.32. If R is any ring and M is an R-module, use Exercise 2.3.31 and
Exercise 2.1.21 to show that M has a flat resolution.

EXERCISE 2.3.33. Let R be a ring and I a right ideal of R. Let B be a left R-module.
Prove that there is an isomorphism of groups

R/I⊗R B∼= B/IB

where IB is the subgroup of B generated by {rx | r ∈ I, x ∈ B}.

EXERCISE 2.3.34. Prove that if R is a commutative ring with ideals I and J, then there
is an isomorphism of R-modules

R/I⊗R R/J ∼= R/(I + J).

EXERCISE 2.3.35. Let R be a commutative ring. Suppose A and B are R-algebras.
Then A and B come with homomorphisms θ1 : R→ A and θ2 : R→ B satisfying im(θ1)⊆
Z(A) and im(θ2)⊆ Z(B).
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(1) Show that there exist R-algebra homomorphisms ρ1 : A→ A⊗R B and ρ2 : B→
A⊗R B such that the diagram

(3.11) A⊗R B

A

ρ1
<<

B

ρ2
bb

R
θ1

cc

θ2

;;

commutes. Show that im(ρ1) commutes with im(ρ2). That is, ρ1(x)ρ2(y) =
ρ2(y)ρ1(x) for all x ∈ A, y ∈ B.

(2) Suppose there exist R-algebra homomorphisms α : A→ C and β : B→ C such
that im(α) commutes with im(β ). Show that there exists a unique R-algebra
homomorphism γ : A⊗R B→C such that the diagram

(3.12) C

A

α

<<

ρ1
// A⊗R B

∃γ

OO

B
ρ2
oo

β

bb

commutes.
(3) Show that if there exists an R-algebra homomorphism γ : A⊗R B→C, then there

exist R-algebra homomorphisms α : A→C and β : B→C such that the image
of α commutes with the image of β and diagram (3.12) commutes.

EXERCISE 2.3.36. Let S be a commutative R-algebra. Show that there is a well defined
homomorphism of R-algebras µ : S⊗R S→ S which maps a typical element ∑xi⊗yi in the
tensor algebra to ∑xiyi in S.

EXERCISE 2.3.37. Let R be a commutative ring and let A and B be R-algebras. Prove
that A⊗R B∼= B⊗R A as R-algebras.

EXERCISE 2.3.38. Let A be an R-algebra. Show that A⊗R R[x]∼= A[x] as R-algebras.

EXERCISE 2.3.39. Let S and T be commutative R-algebras. Prove:
(1) If S and T are both finitely generated R-algebras, then S⊗R T is a finitely gener-

ated R-algebra.
(2) If T is a finitely generated R-algebra, then S⊗R T is a finitely generated S-algebra.

EXERCISE 2.3.40. Let R be a commutative ring. Prove that if I is an ideal in R, then
I⊗R R[x]∼= I[x] and R[x]/I[x]∼= (R/I)[x].

EXERCISE 2.3.41. Let θ : R→ S be a homomorphism of rings. Let M ∈MS and
N ∈ SM. Via θ , M can be viewed as a right R-module and N as a left R-module. Show
that θ induces a well defined Z-module epimorphism M⊗R N→M⊗S N. (Note: The dual
result, how a Hom group behaves when the ring in the middle is changed, is studied in
Exercise 1.1.20.)

EXERCISE 2.3.42. Let θ : R→ S be a homomorphism of rings. Let M ∈MR and
N ∈ RM, M′ ∈MS and N′ ∈ SM. Via θ , M′ and N′ are viewed as R-modules. In this
context, let f : M→M′ be a right R-module homomorphism and g : N→N′ a left R-module
homomorphism. Using Lemma 2.3.6 and Exercise 2.3.41, show that there is a well defined
Z-module homomorphism M⊗R N→M′⊗S N′ which satisfies x⊗ y 7→ f (x)⊗g(y).
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EXERCISE 2.3.43. Let R be a commutative ring and S a commutative R-algebra. Let
A be an S-algebra. Using Exercise 2.3.41, show that there is a well defined epimorphism
of rings A⊗R A→ A⊗S A.

EXERCISE 2.3.44. Prove that if A is an R-algebra, then A⊗R Mn(R) ∼= Mn(A) as R-
algebras.

EXERCISE 2.3.45. Let R be an integral domain and K the field of fractions of R. Show
that M⊗R K = 0, if M is a torsion R-module (Definition 1.7.13).

EXERCISE 2.3.46. Let k be a field and n> 1 an integer. Let T = k[x,y], S= k[xn,xy,yn],
and R = k[xn,yn]. For the tower of subrings R⊆ S⊆ T , prove:

(1) T is free over R of rank n2.
(2) S is free over R of rank n.
(3) T is not free over S. (Hint: Consider the residue class rings S/(xn,xy,yn) and

T/(xn,xy,yn).)
For more properties of the ring k[xn,xy,yn], see Exercise 11.4.20.

4. Hom Groups

If R is a ring and M and N are R-modules, then HomR(M,N) is the set of R-module
homomorphisms from M to N. Then HomR(M,N) is an additive group under point-wise
addition:

( f +g)(x) = f (x)+g(x).

If R is commutative, then HomR(M,N) can be turned into a left R-module by defining
(r f )(x) = r f (x). If R is noncommutative, then HomR(M,N) cannot be turned into an R-
module per se. If S is another ring and M or N is a bimodule over R and S, then we can
turn HomR(M,N) into an S-module. Lemma 2.4.1 lists four such possibilities.

LEMMA 2.4.1. Let R and S be rings.
(1) If M is a left R right S bimodule and N is a left R-module, then HomR(M,N) is a

left S-module, with the action of S given by (s f )(m) = f (ms).
(2) If M is a left R-module and N is a left R right S bimodule, then HomR(M,N) is a

right S-module, with the action of S given by ( f s)(m) = ( f (m))s.
(3) If M is a left R left S bimodule and N is a left R-module, then HomR(M,N) is a

right S-module, with the action of S given by ( f s)(m) = f (sm).
(4) If M is a left R-module and N is a left R left S bimodule, then HomR(M,N) is a

left S-module, with the action of S given by (s f )(m) = s( f (m)).

PROOF. Is left to the reader. □

Let R be a ring and M a left R-module. Then HomR(M,M) is a ring where multiplica-
tion is composition of functions:

( f g)(x) = f (g(x)).

By Example 1.1.14, the ring S = HomR(M,M) acts as a ring of functions on M and this
makes M a left S-module. If R is commutative, then S = HomR(M,M) is an R-algebra. The
next two results are corollaries to Lemma 2.2.1 (Nakayama’s Lemma).

COROLLARY 2.4.2. Let R be a commutative ring and M a finitely generated R-module.
Let f : M→M be an R-module homomorphism such that f is onto. Then f is one-to-one.
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PROOF. Let R[x] be the polynomial ring in one variable over R. We turn M into an
R[x]-module using f . Given m ∈M and p(x) ∈ R[x], define

p(x) ·m = p( f )(m).

Since M is finitely generated over R, M is finitely generated over R[x]. Let I be the ideal
in R[x] generated by x. Then IM = M because f is onto. By Nakayama’s Lemma 2.2.1,
I+annihR[x] M =R[x]. For some p(x)x∈ I, 1− p(x)x∈ annihR[x] M. Then (1− p(x)x)M = 0
which says for each m ∈M, m = (p( f ) f )(m). Then p( f ) f is the identity function, so f is
one-to-one. □

COROLLARY 2.4.3. Let R be a commutative ring, M an R-module, N a finitely gener-
ated R-module, and f ∈HomR(M,N). Then f is onto if and only if for each maximal ideal
m in R, the induced map f̄ : M/mM→ N/mN is onto.

PROOF. Let C denote the cokernel of f and let m be an arbitrary maximal ideal of R.
Since N is finitely generated, so is C. Tensor the exact sequence

M
f−→ N→C→ 0

with (·)⊗R R/m to get

M/mM
f̄−→ N/mN→C/mC→ 0

which is exact since tensoring is right exact. If f is onto, then C = 0 so f̄ is onto. Con-
versely if mC = C for every m, then Corollary 2.2.2 (Corollary to Nakayama’s Lemma)
implies C = 0. □

4.1. Hom Functor. In Section 2.3.2 we defined two tensor functors by keeping one
side of the tensor product fixed, and treating the other side as a variable. In this section,
a similar approach leads to two Hom functors. The fundamental properties of these two
Hom functors are derived in this section.

LEMMA 2.4.4. For a ring R and a left R-module M, the following are true.
(1) HomR(M, ·) is a covariant functor from RM to ZM which sends a left R module

N to the abelian group HomR(M,N). Given any R-module homomorphism f :
A→ B, there is a homomorphism of groups

HomR(M,A)
H f−→ HomR(M,B)

which is defined by the assignment g 7→ f g.
(2) HomR(·,M) is a contravariant functor from RM to ZM which sends a left R mod-

ule N to the abelian group HomR(N,M). Given any R-module homomorphism
f : A→ B, there is a homomorphism of groups

HomR(B,M)
H f−→ HomR(A,M)

which is defined by the assignment g 7→ g f .

PROOF. Is left to the reader. □

Next we prove the first fundamental property satisfied by both of the Hom functors,
namely they are both left exact functors.

PROPOSITION 2.4.5. Let R be a ring and M a left R-module.
(1) HomR(M, ·) is a left exact covariant functor from RM to ZM.
(2) M is projective if and only if HomR(M, ·) is an exact functor.
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(3) HomR(·,M) is a left exact contravariant functor from RM to ZM.

PROOF. (1): Given an exact sequence

(4.1) 0→ A α−→ B
β−→C→ 0

in RM, we prove that the corresponding sequence

(4.2) 0→ HomR(M,A)
Hα−−→ HomR(M,B)

Hβ−−→ HomR(M,C)

in ZM is exact.
Step 1: Show that Hα is one-to-one. Assume g ∈ HomR(M,A) and αg = 0. Since α

is one-to-one, then g = 0.
Step 2: Show imHα ⊆ kerHβ . Suppose g∈HomR(M,A). Then Hβ Hα(g) = βαg = 0

since (4.1) is exact.
Step 3: Show imHα ⊇ kerHβ . Suppose h ∈ HomR(M,B) and Hβ (h) = βh = 0. Then

im(h) ⊆ ker(β ) = im(α). Since α is one-to-one, there is an isomorphism of R-modules
α−1 : im(α)→ A. So the composition g=α−1 ◦h is an R-module homomorphism g : M→
A and Hα(g) = αg = h.

(2) and (3): Are left to the reader. □

A partial converse to Proposition 2.4.5 (3) is

LEMMA 2.4.6. Let R be a ring. The sequence of R-modules

A α−→ B
β−→C

is exact, if for all R-modules M

HomR(C,M)
Hβ−−→ HomR(B,M)

Hα−−→ HomR(A,M)

is an exact sequence of Z-modules.

PROOF. Step 1: imα ⊆ kerβ . Suppose there exists a ∈ A such that βαa ̸= 0. We take
M to be the nonzero module C. By assumption,

HomR(C,C)
Hβ−−→ HomR(B,C)

Hα−−→ HomR(A,C)

is an exact sequence of Z-modules. Let 1 denote the identity element in HomR(C,C). By
evaluating at the element a, we see that Hα Hβ (1) ̸= 0, a contradiction.

Step 2: imα ⊇ kerβ . Suppose there exists b ∈ B such that βb = 0 and b ̸∈ imα . By
Proposition 2.4.5 (3), the exact sequence

A α−→ B π−→ B/ imα → 0

gives rise to the exact sequence

0→ HomR(B/ imα,B/ imα)
Hπ−→ HomR(B,B/ imα)

Hα−−→ HomR(A,B/ imα).

The identity map 1 ∈HomR(B/ imα,B/ imα) maps to the nonzero map π = Hπ(1). Since
Hα(π) = πα = 0, we see that π ∈ kerHα . If we take M to be the nonzero module B/ imα ,
then by assumption,

HomR(C,B/ imα)
Hβ−−→ HomR(B,B/ imα)

Hα−−→ HomR(A,B/ imα)

is an exact sequence of Z-modules. So π ∈ imHβ . There exists g∈HomR(C,B/ imα) such
that gβ = π . On the one hand we have gβ (b) = 0. On the other hand we have π(b) ̸= 0, a
contradiction. □
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4.2. Various Identities Involving the Hom Functor.

LEMMA 2.4.7. Let R be a ring and M a left R-module. Then the map f 7→ f (1) defines
an R-module isomorphism φ : HomR(R,M)→M.

PROOF. By Lemma 2.4.1 (1), we make HomR(R,M) into a left R-module by the action
(r f )(x) = f (xr). The equations

φ( f1 + f2) = ( f1 + f2)(1) = f1(1)+ f2(1) = φ( f1)+φ( f2)

and
φ(r f ) = (r f )(1) = f (1r) = f (r1) = r f (1) = rφ( f )

show that φ is an R-module homomorphism. Given any x ∈ M, define ρx : R→ M to be
“right multiplication by x”. That is, ρx(a) = ax for any a ∈ R. Since M is a left R-module,
it follows that ρx ∈ HomR(R,M). This defines a function ρ : M→ HomR(R,M) which is
the inverse to φ . □

PROPOSITION 2.4.8. Let R be a ring. Let M, N, {Mi | i ∈ I} and {N j | j ∈ J} be
R-modules. There are isomorphisms

(1)
HomR

(⊕
i∈I

Mi,N
)
∼= ∏

i∈I
HomR(Mi,N)

(2)
HomR

(
M,∏

j∈J
N j

)
∼= ∏

j∈J
HomR(M,N j)

of Z-modules.

PROOF. (1): Let ι j : M j→
⊕

i∈I Mi be the injection into coordinate j. Define

φ : HomR

(⊕
i∈I

Mi,N
)
→∏

i∈I
HomR(Mi,N)

by φ( f ) = g where g(i) = f ιi. Clearly φ is a Z-module homomorphism. Given any g ∈
∏i∈I HomR(Mi,N), by Proposition 1.6.2 (2) there exists a unique f such that the diagram

M j

g( j)
##

ι j // ⊕
i∈I Mi

∃! f
��

N

commutes for every j ∈ I. Therefore φ( f ) = g. This shows that φ is a one-to-one corre-
spondence, completing (1).

(2): Is left to the reader. (Hint: instead of the injection maps, use projections. Use
Exercise 1.6.28.) □

COROLLARY 2.4.9. (Hom Distributes over a Finite Direct Sum) Let R be a ring and
say {M1, . . . ,Mm} and {N1, . . . ,Nn} are R-modules. There is an isomorphism of Z-modules

HomR

( m⊕
i=1

Mi,
n⊕

j=1

N j

)
φ−→

(m,n)⊕
(i, j)=(1,1)

HomR(Mi,N j)

given by φ( f ) = g where g(k, ℓ)∈HomR(Mk,Nℓ) is defined by g(k, ℓ) = πℓ ◦ f ◦ ιk. Here we
use the notation ιk : Mk→

⊕
Mi is the injection into the kth summand and πℓ :

⊕
N j→ Nℓ

is the projection onto the ℓth summand.
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4.3. Hom Tensor Relations. In this section we prove several identities involving
Hom groups and the tensor product. We usually refer to these as “Hom Tensor Relations”.

THEOREM 2.4.10. (Adjoint Isomorphism) Let R and S be rings.
(1) If A ∈ RM, B ∈ SMR and C ∈ SM, then there is an isomorphism of Z-modules

HomS(B⊗R A,C)
ψ−→ HomR(A,HomS(B,C))

defined by ψ( f )(a) = f (·⊗a).
(2) If A ∈MR, B ∈ RMS and C ∈MS, then there is an isomorphism of Z-modules

HomS(A⊗R B,C)
φ−→ HomR(A,HomS(B,C))

defined by φ( f )(a) = f (a⊗·).
In both cases, the isomorphism is natural in both variables A and C. The “Tensor-Hom”
pair, (B⊗R (·),HomS(B, ·)), is an adjoint pair.

PROOF. (1): Make B⊗R A into a left S-module by s(b⊗a)= sb⊗a. Make HomS(B,C)
into a left R-module by (r f )(b) = f (br). Let f ∈ HomS(B⊗R A,C). For any a ∈ A, define
f (· ⊗ a) : B→ C by b 7→ f (b⊗ a). The reader should verify that a 7→ f (· ⊗ a) is an R-
module homomorphism A→ HomS(B,C). This map is additive in f so ψ is well defined.
Conversely, say g ∈ HomR(A,HomS(B,C)). Define B×A→C by (b,a) 7→ g(a)(b). The
reader should verify that this map is balanced and commutes with the left S-action on B
and C. Hence there is induced φ(g) ∈ HomS(B⊗R A,C) and the reader should verify that
φ is the inverse to ψ . The reader should verify that ψ is natural in both variables.

(2): is left to the reader. □

LEMMA 2.4.11. Let R and S be rings. Let A∈ RM be finitely generated and projective.
For any B ∈ RMS and C ∈MS there is a natural isomorphism

HomS(B,C)⊗R A α−→ HomS(HomR(A,B),C)

of abelian groups. On generators, the map is defined by α( f ⊗a)(g) = f (g(a)).

PROOF. Note that HomS(B,C) is a right R-module by the action ( f r)(b) = f (rb)
and HomR(A,B) is a right S-module by the action (gs)(a) = g(a)s. Given any ( f ,a) in
HomS(B,C)×A, define φ( f ,a) ∈ HomS(HomR(A,B),C) by φ( f ,a)(g) = f (g(a)). The
reader should verify that φ is a well defined balanced map. Therefore α is a well defined
group homomorphism. Also note that if ψ : A→ A′ is an R-module homomorphism, then
the diagram

HomS(B,C)⊗R A α //

1⊗ψ

��

HomS(HomR(A,B),C)

H(H(ψ))

��
HomS(B,C)⊗R A′ α // HomS(HomR(A′,B),C)

commutes. If A = R, then by Lemma 2.4.7 we see that α is an isomorphism. If A = Rn

is finitely generated and free, then use Lemma 2.4.9 to show α is an isomorphism. If A
is a direct summand of a free R-module of finite rank, then combine the above results to
complete the proof. □

THEOREM 2.4.12. Let R be a commutative ring and let A and B be R-algebras. Let M
be a finitely generated projective A-module and N a finitely generated projective B-module.
Then for any A-module M′ and any B-module N′, the mapping

HomA(M,M′)⊗R HomB(N,N′)
ψ−→ HomA⊗RB(M⊗R N,M′⊗R N′)
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induced by ψ( f ⊗ g)(x⊗ y) = f (x)⊗ g(y) is an R-module isomorphism. If M = M′ and
N = N′, then ψ is also a homomorphism of rings.

PROOF. By Lemma 2.3.22, M⊗R N and M′⊗R N′ are A⊗R B-modules. Define ρ :
HomA(M,M′)×HomB(N,N′)→HomA⊗RB(M⊗R N,M′⊗R N′) by ρ( f ,g)(x⊗y) = f (x)⊗
g(y). The equations

ρ( f1 + f2,g)(x⊗ y) = ( f1 + f2)(x)⊗g(y)

= ( f1(x)+ f2(x))⊗g(y)

= f1(x)⊗g(y)+ f2(x)⊗g(y)

= ρ( f1,g)(x⊗ y)+ρ( f2,g)(x⊗ y)

=
(
ρ( f1,g)+ρ( f2,g)

)
(x⊗ y)

and
ρ( f r,g)(x⊗ y) = ( f r)(x)⊗g(y)

= f (x)r⊗g(y)

= f (x)⊗ rg(y)

= f (x)⊗ (rg)(y)

= ρ( f ,rg)(x⊗ y)

show that ρ is R-balanced. Therefore ψ is well defined. Now we show that ψ is an iso-
morphism. The method of proof is to reduce to the case where M and N are free modules.

Case 1: Show that ψ is an isomorphism if M = A and N = B. By Lemma 2.4.7, both
sides are naturally isomorphic to M′⊗R N′.

Case 2: Show that ψ is an isomorphism if M is free of finite rank m over A and N is
free of finite rank n over B. By Lemma 2.4.9, Lemma 2.3.15 and Case 1, both sides are
naturally isomorphic to (M′⊗R N′)(mn).

Case 3: The general case. By Proposition 2.1.1 (1), we can write M⊕L∼= F where F
is a free A module of finite rank and N⊕K ∼= G where G is a free B module of finite. Using
Lemma 2.4.9 and Lemma 2.3.15

(4.3) HomA(F,M′)⊗R HomB(G,N′) =
(
HomA(M,M′)⊗R HomB(N,N′)

)
⊕H

is an internal direct sum of the left hand side for some submodule H. Likewise,

(4.4) HomA⊗RB(F⊗R G,M′⊗R N′) = HomA⊗RB(M⊗R N,M′⊗R N′)⊕H ′

is an internal direct sum of the right hand side, for some submodule H ′. By Case 2, the
natural map Ψ is an isomorphism between the left hand sides of (4.3) and (4.4). The
restriction of Ψ gives the desired isomorphism ψ . □

COROLLARY 2.4.13. Let R be a commutative ring and N a finitely generated projec-
tive R-module. Let A be an R-algebra. Then

A⊗R HomR(N,N′)
ψ−→ HomA(A⊗R N,A⊗R N′)

is an R-module isomorphism for any R-module N′.

PROOF. Set B = R, M = M′ = A. □

COROLLARY 2.4.14. If R is commutative and M and N are finitely generated projec-
tive R-modules, then

HomR(M,M)⊗R HomR(N,N)
ψ−→ HomR(M⊗R N,M⊗R N)
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is an R-algebra isomorphism.

PROOF. Take A = B = R, M = M′ and N = N′. □

THEOREM 2.4.15. Let A and B be rings. Let L be a finitely generated and projective
left A-module. Let M be a left A right B bimodule. Let N be a left B-module. Then

HomA(L,M)⊗B N
ψ−→ HomA(L,M⊗B N)

is a Z-module isomorphism, where ψ( f ⊗ y)(x) = f (x)⊗ y for all y ∈ N and x ∈ L.

PROOF. By Lemma 2.4.1, HomA(L,M) is a right B-module by the action ( f b)(x) =
f (x)b. The reader should verify that ψ is balanced, hence well defined.

Case 1: Show that ψ is an isomorphism if L = A. By Lemma 2.4.7, both sides are
naturally isomorphic to M⊗B N.

Case 2: Show that ψ is an isomorphism if L is free of rank n over A. By Lemma 2.4.9,
Lemma 2.3.15 and Case 1, both sides are naturally isomorphic to (M⊗R N)(n).

Case 3: The general case. By Proposition 2.1.1 (1), we can write L⊕K ∼= F where F
is a free A module of rank n. Using Lemma 2.4.9 and Lemma 2.3.15

(4.5) HomA(F,M)⊗B N = HomA(L,M)⊗R N⊕H

is an internal direct sum of the left hand side for some submodule H. Likewise,

(4.6) HomA(F,M⊗B N) = HomA(L,M⊗R N)⊕H ′

is an internal direct sum of the right hand side, for some submodule H ′. By Case 2, the
natural map Ψ is an isomorphism between the left hand sides of (4.5) and (4.6). The
restriction of Ψ gives the desired isomorphism ψ . □

4.4. Exercises.

EXERCISE 2.4.16. Let R be a ring and M a left R-module. The functor HomR(M,−)
from the category of left R-modules to the category of Z-modules is said to be faith-
ful in case for every R-module homomorphism β : A → B, if β ̸= 0, then there exists
h ∈ HomR(M,A) such that βh ̸= 0. This exercise outlines a proof that M is an R-generator
if and only if the functor HomR(M,−) is faithful. (This idea comes from [10, Proposi-
tion 1.1(a), p. 52].)

(1) For any left R-module A, set H = HomR(M,A). Let MH denote the direct sum of
copies of M over the index set H. Show that there is an R-module homomorphism

α : MH → A

defined by α( f ) = ∑h∈H h( f (h)).
(2) Show that if HomR(M,−) is faithful, then for any left R-module A, the map α

defined in Part (1) is surjective. Conclude that M is an R-generator. (Hint: Let

β : A→ B be the cokernel of α . Show that the composition M h−→ A
β−→ B is the

zero map for all h ∈ H.)
(3) Prove that if M is an R-generator, then HomR(M,−) is faithful. (Hint: Use

Exercise 2.1.25.

EXERCISE 2.4.17. Let R be any ring and φ : A → B a homomorphism of left R-
modules. Prove that the following are equivalent.

(1) φ has a left inverse. That is, there exists an R-module homomorphism ψ : B→ A
such that ψφ = 1A.
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(2) For every left R-module M, the sequence

HomR(B,M)
Hφ−→ HomR(A,M)→ 0

is exact.
(3) The sequence

HomR(B,A)
Hφ−→ HomR(A,A)→ 0

is exact.
See Exercise 2.4.24 for the dual result on the splitting of A→ B→ 0.

EXERCISE 2.4.18. Let R be any ring and φ : A → B a homomorphism of left R-
modules. Prove that the following are equivalent.

(1) φ is an isomorphism.
(2) For every R-module M, Hφ : HomR(B,M)→ HomR(A,M) is an isomorphism.

EXERCISE 2.4.19. Let A be an R-algebra that is finitely generated as an R-module.
Suppose x and y are elements of A satisfying xy = 1. Prove that yx = 1. (Hints: Let
ρy : A→ A be defined by “right multiplication by y”. That is, ρy(a) = ay. Show that ρy is
onto. Conclude that ρy is one-to-one and use this to prove yx = 1.)

EXERCISE 2.4.20. Let R be a ring, M a left R-module, and N a right R-module. Prove
the following:

(1) M∗ = HomR(M,R) is a right R-module by the formula given in Lemma 2.4.1 (2).
(2) N∗ = HomR(N,R) is a left R-module by the rule (r f )(x) = r f (x).
(3) The left R-module M∗∗ = HomR(M∗,R) is called the double dual of M. For

m ∈M, let ϕm : M∗→ R be the “evaluation at m” map. That is, if f ∈M∗, then
ϕm( f ) = f (m). Prove that ϕm ∈M∗∗, and that the assignment m 7→ ϕm defines a
homomorphism of left R-modules M→M∗∗.

EXERCISE 2.4.21. Let R be a ring. We say a left R-module M is reflexive in case the
homomorphism M→M∗∗ of Exercise 2.4.20 is an isomorphism. Prove the following:

(1) If M1, . . . ,Mn are left R-modules, then the direct sum
⊕n

i=1 Mi is reflexive if and
only if each Mi is reflexive.

(2) A finitely generated free R-module is reflexive.
(3) A finitely generated projective R-module is reflexive.
(4) Let R be a commutative ring. If P is a finitely generated projective R-module and

M is a reflexive R-module, then P⊗R M is reflexive.

EXERCISE 2.4.22. Let A be a finite abelian group. Prove that HomZ(A,Z) = (0).
Conclude that A is not a reflexive Z-module.

EXERCISE 2.4.23. Let R be a PID and A a finitely generated torsion R-module. Prove
that HomR(A,R) = (0). Conclude that A is not a reflexive R-module.

EXERCISE 2.4.24. Let R be any ring and φ : A → B a homomorphism of left R-
modules. Prove that the following are equivalent.

(1) φ has a right inverse. That is, there exists an R-module homomorphism ψ : B→A
such that φψ = 1B.

(2) For every left R-module M, the sequence

HomR(M,A)
Hφ−→ HomR(M,B)→ 0

is exact.



86 2. MODULES

(3) The sequence

HomR(B,A)
Hφ−→ HomR(B,B)→ 0

is exact.

See Exercise 2.4.17 for the dual result on the splitting of 0→ A→ B.

EXERCISE 2.4.25. Let R be a ring. Show that there exists an isomorphism of rings
HomR(R,R)∼= Ro, where R is viewed as a left R-module and Ro denotes the opposite ring.

5. Some Homological Algebra

We prove three fundamental theorems of Homological Algebra. These theorems are
usually called The Five Lemma, The Snake Lemma, and The Product Lemma.

5.1. The Five Lemma.

THEOREM 2.5.1. (The Five Lemma) Let R be any ring and

A1
f1 //

α1

��

A2
f2 //

α2

��

A3
f3 //

α3

��

A4
f4 //

α4

��

A5

α5

��
B1

g1 // B2
g2 // B3

g3 // B4
g4 // B5

a commutative diagram of R-modules with exact rows.

(1) If α2 and α4 are onto and α5 is one-to-one, then α3 is onto.
(2) If α2 and α4 are one-to-one and α1 is onto , then α3 is one-to-one.

PROOF. (1) Let b3 ∈ B3. Since α4 is onto there is a4 ∈ A4 such that α4(a4) = g3(b3).
The second row is exact and α5 is one-to-one and the diagram commutes, so f4(a4) =
0. The top row is exact, so there exists a3 ∈ A3 such that f3(a3) = a4. The diagram
commutes, so g3(b3−α3(a3)) = 0. The bottom row is exact, so there exists b2 ∈ B2 such
that g2(b2) = b3−α3(a3). Since α2 is onto, there is a2 ∈ A2 such that α2(a2) = b2. The
diagram commutes, so α3( f2(a2)+a3) = b3−α3(a3)+α3(a3) = b3.

(2) Is left to the reader. □

5.2. The Snake Lemma. We now prove what is perhaps the most fundamental tool
in homological algebra, the so-called Snake Lemma.

THEOREM 2.5.2. (The Snake Lemma) Let R be any ring and

A1
f1 //

α

��

A2
f2 //

β

��

A3 //

γ

��

0

0 // B1
g1 // B2

g2 // B3

a commutative diagram of R-modules with exact rows. Then there is an exact sequence

kerα
f ∗1−→ kerβ

f ∗2−→ kerγ
∂−→ cokerα

g∗1−→ cokerβ
g∗2−→ cokerγ.

If f1 is one-to-one, then f ∗1 is one-to-one. If g2 is onto, then g∗2 is onto.
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PROOF. The proof is a series of small steps.
Step 1: There is an exact sequence

kerα
f ∗1−→ kerβ

f ∗2−→ kerγ

where the maps are the restriction maps of f1 and f2 to submodules. If f1 is one-to-one,
then f ∗1 is one-to-one. These are routine diagram chasing arguments.

Step 2: Construct the exact sequence

cokerα
g∗1−→ cokerβ

g∗2−→ cokerγ.

Since g1(α(A1) = β ( f1(A1), it follows from Theorem 1.1.12 that g∗1 is well-defined. Like-
wise, since g2(β (A2) = γ( f2(A2), it follows that g∗2 is well-defined. Since g2g1 = 0 it
follows that g∗2g∗1 = 0. Suppose x ∈ B2 and g2(x) ∈ im(γ). Then there is y ∈ A3 and
γ(y) = g2(x). Since f2 is onto, there is z ∈ A2 such that f2(z) = y. We have γ( f2(z)) =
g2(β (z)) = g2(x). Then x− β (z) ∈ ker(g2) = im(g1). There exists w ∈ B1 such that
g1(w) = x− β (z). Then x ≡ g1(w) (mod imβ ) which proves img∗1 = kerg∗2. If g2 is
onto, then it is easy to see that g∗2 is onto.

Step 3: Define the connecting homomorphism ∂ : kerγ → cokerα by the formula

∂ (x) = g−1
1 β f−1

2 (x) (mod imα).

Step 3.1: Check that ∂ is well defined. First notice that

g2(β ( f−1
2 (x))) = γ( f2( f−1

2 (x))) = γ(x) = 0

since x ∈ kerγ . Therefore, β ( f−1
2 (x)) ∈ img1. Now pick y ∈ f−1

2 (x). Then

f−1
2 (x) = y+ im f1

β ( f−1
2 (x)) = β (y)+β (im f1)

β ( f−1
2 (x)) = β (y)+g1(imα)

g−1
1 (β ( f−1

2 (x))) = g−1
1 (β (y))+ imα.

So ∂ (x)≡ g−1
1 (β (y)) (mod imα), hence ∂ is well defined.

Step 3.2: Construct the complex

kerβ
f ∗2−→ kerγ

∂−→ cokerα
g∗1−→ cokerβ .

The proof follows directly from the definition of ∂ .
Step 3.3: Prove exactness at kerγ . Suppose ∂ (x) = 0. That is, g−1

1 (β ( f−1
2 (x)))∈ imα .

Pick y ∈ A2 such that f2(y) = x. Then for some z ∈ A1,

β (y) = g1α(z) = β f1(z).

Hence y− f1(z) ∈ kerβ and f2(y− f1(z)) = f2(y)− f2 f1(z) = f2(y) = x. So x ∈ im f ∗2 .
Step 3.4: Prove exactness at cokerα . Suppose x ∈ B1 and g1(x) ∈ imβ . Then g1(x) =

β (y) for some y ∈ A2. Then γ( f2(y)) = g2(β (y)) = g2(g1(x)) = 0. So f2(y) ∈ kerγ and
∂ ( f2(y))≡ x (mod imα). □

5.3. The Product Lemma. The following lemma is another fundamental tool in ho-
mological algebra. It is called the Product Lemma in [11], [39], and [14]. Sometimes it is
called the Kernel-Cokernel Sequence.
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THEOREM 2.5.3. If R is any ring and

A
f−→ B

g−→C

a sequence of R-module homomorphisms, then there exists an exact sequence

0→ ker f
α1−→ ker(g f )

α2−→ kerg
α3−→ coker f

α4−→ coker(g f )
α5−→ cokerg→ 0

where α3 is the natural map B→ coker f restricted to kerg.

PROOF. The proof consists of a sequence of five steps. Each homomorphism αi is
defined, and exactness proved at each term in the sequence.

Step 1: Exactness at ker f . The map α1 is defined to be the set inclusion homomor-
phism, which is well defined because ker f ⊆ ker(g f ). Being the set inclusion map, α1 is
one-to-one.

Step 2: Exactness at ker(g f ). The map α2 is f restricted to ker f . If x ∈ ker f , then
g f (x)= g( f (x))= g(0)= 0, which implies α2α1 = 0. Let x∈ ker(g f ) and assume α2(x)=
f (x) = 0. Then x ∈ ker f . This proves imα1 = kerα2.

Step 3: Exactness at kerg. The map α3 is the natural map f̄ : B→ coker f restricted
to kerg. If x ∈ ker(g f ), then α3α2(x) = f̄ f (x) = 0. Hence α3α2 = 0. Let y ∈ kerg
and assume f̄ (y) = 0. Then y ∈ im f , so there exists x ∈ A such that y = f (x). Therefore
0= g(y)= g f (x), which implies x∈ ker(g f ). Hence y∈ imα2. This proves imα2 = kerα3.

Step 4: Exactness at coker f . To define the map α4, consider the following commuta-
tive diagram.

A
f //

g f ��

B
f̄ //

g
��

coker f

∃α4

��

// 0

C

g f $$
coker(g f )

##
0

A typical y ∈ im f = ker f̄ can be written y = f (x) for some x ∈ A. Then g(y) ∈ im(g f ),
and it follows that g f (g(y)) = 0. By Theorem 1.1.12, α4 is well defined. If y ∈ kerg,
then α4 f̄ (y) = g f (g(y)) = 0. Therefore α3α4 = 0. To see that imα3 = kerα4, let y∈ B and
assume α4 f̄ (y)= 0. Then 0=α4 f̄ (y)= g f g(y). Thus g(y)∈ img f , hence g(y)= g f (x) for
some x ∈ A. We have y− f (x) ∈ kerg. Since f̄ (y− f (x)) = f̄ (y) we see that f̄ (y) ∈ imα3.

Step 5: Exactness at coker(g f ). To define the map α5, consider the following com-
mutative diagram.

A
g f // C

g f //

ḡ ##

coker(g f )

∃α5

��

// 0

cokerg

Let z∈ kerg f = im(g f ). Then z = g f (x) for some x∈ A, hence z∈ img = ker ḡ. Therefore
ḡ(z) = ḡg f (x) = 0. By Theorem 1.1.12, α5 is well defined. Let y ∈ B. Then α4 f̄ (y) =
g f g(y) and α5α4 f̄ (y) = α5g f g(y) = ḡg(y) = 0. Therefore α5α4 = 0. Given z ∈ C, if
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0 = α5g f (z) = ḡ(z), then z ∈ img. So z = g(y) for some y ∈ B. Thus g f (z) = α4 f̄ (y) is in
imα4. This shows imα4 = kerα5. Given z ∈C we have ḡ(z) = α5g f (z) is in imα5. This
shows α5 is onto. □

5.4. Exercise.

EXERCISE 2.5.4. In the context of Theorem 2.5.3, let

A
f //

a
��

B
g //

b
��

C

c
��

A1
f1 // B1

g1 // C1

be a commutative diagram of R-modules. Show that there exist homomorphisms γ1, . . . ,γ6
connecting the six term exact sequence for g f and the six term exact sequence for g1 f1
such that the diagram

ker f
α1 //

γ1

��

kerg f
α2 //

γ2

��

kerg
α3 //

γ3

��

coker f
α4 //

γ4

��

cokerg f
α5 //

γ5

��

cokerg

γ6

��
ker f1

α1 // kerg1 f1
α2 // kerg1

α3 // coker f1
α4 // cokerg1 f1

α5 // cokerg1

commutes.

EXERCISE 2.5.5. Let Z = Max(Z) denote the set of maximal ideals in Z. Then
each m ∈ Z is a principal ideal pZ for some positive prime p ∈ Z. In other words, Z is
parametrized by the set of prime numbers. For each m ∈ Z, the residue ring Z/m is a finite
field whose order is a prime number. Let P = ∏m∈Z Z/m be the direct product of the finite
prime fields. Then P is a ring and there is a natural homomorphism θ : Z→ P. As in
Example 1.1.13, the left regular representation λ : P→HomZ(P,P) is defined by α 7→ ℓα .
The following steps outline a proof that λ is an isomorphism of rings.

(1) Let W ⊆ Z and assume W is infinite. Show that θ : Z→∏m∈W Z/m is one-to-
one. Hence the ring ∏m∈W Z/m (and in particular P) is a faithful Z-algebra and
has characteristic zero.

(2) Let p be a prime number, πp : P→ Z/p the projection map, and ιp : Z/p→ P
the injection map. Show that

0→ Z/p
ιp−→ P

ℓp−→ P
πp−→ Z/p→ 0

is an exact sequence of Z-modules.
(3) Let h : P→ P be a Z-module homomorphism. Show that h restricts to Z-module

homomorphisms h : kerπp→ kerπp and h : im ιp→ im ιp.
(4) Let h be as in (3). Show that there exists α ∈ P such that h is equal to ℓα .
(5) Conclude that λ : P→ HomZ(P,P) is an isomorphism of rings.

EXERCISE 2.5.6. In this exercise we continue to use the notation introduced in Exer-
cise 2.5.5. Let S =

⊕
m∈Z Z/m be the direct sum of the finite prime fields. The following

steps outline a proof that the endomorphism rings HomZ(S,S) and HomZ(P,P) are equal.
(1) Show that S is an ideal in the ring P.
(2) Show that if h : P→ P is a Z-module homomorphism, then h restricts to a Z-

module homomorphism h : S→ S.
(3) Show that every h ∈ HomZ(S,S) is equal to ℓα for some α ∈ P.
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(4) Show that HomZ(P,P)∼= HomZ(S,S) by the restriction map of (2).

For a continuation of this example, see Example 2.6.7.

EXERCISE 2.5.7. Let k be a field, A a k-algebra, and M a left A-module. Prove that if
dimk(M) = 1, then A contains a two-sided ideal m such that A/m∼= k. (Hint: Consider the
left regular representation λ : A→ Homk(M,M).)

EXERCISE 2.5.8. Let R be a ring, and M an R-module with submodules S and T .

(1) Prove that if φ is the subtraction mapping (x,y) 7→ x− y, and ψ is the diagonal
z 7→ (z,z), then there are exact sequences of R-modules

0→M
ψ−→M⊕M

φ−→M→ 0

and

0→ S∩T
ψ−→ S⊕T

φ−→ S+T → 0.

(2) Combine the exact sequences of (1) and apply Theorem 2.5.2 to prove that

0→ S∩T →M
ψ−→M/S⊕M/T

φ−→M/(S+T )→ 0

is an exact sequence of R-modules.

6. Injective Modules

Throughout this section, R will be an arbitrary ring. Unless otherwise specified, an
R-module is a left R-module.

Injective modules play a role in the category RM that is dual to that held by projective
modules. For instance, by Proposition 2.1.1, a module P is projective if and only if every
short exact sequence 0→A→B→P→ 0 is split exact. There is a dual result for injectives,
Proposition 2.6.12 below, which says E is injective if and only if every short exact sequence
0→ E → A→ B→ 0 is split exact. As another example, we proved in Proposition 2.4.5
that P is a projective module if and only if HomR(P, ·) is an exact functor. The dual result
for injective modules is Theorem 2.6.2 below, which says that E is an injective module if
and only if HomR(·,E) is an exact functor.

DEFINITION 2.6.1. Let R be a ring and E an R-module. Then E is injective if for any
diagram of R-modules

E

0 // A

φ

OO

α // B

∃ψ
__

with the bottom row exact, there exists an R-module homomorphism ψ : B→ E such that
ψα = φ .

THEOREM 2.6.2. An R-module E is injective if and only if the functor HomR(·,E) is
exact.

PROOF. Is left to the reader. □

PROPOSITION 2.6.3. If {Ei | i ∈ I} is a family of R-modules, then the direct product
∏i∈I Ei is injective if and only if each Ei is injective.
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PROOF. Assume each Ei is injective. For each i ∈ I, let πi : ∏i Ei→ Ei be the projec-
tion onto coordinate i. In the following diagram , assume that we are given α and φ and
that α is one-to-one.

∏i Ei
πi // Ei

0 // A

φ

OO

α // B

∃ψi

OO

For each i there exists ψi : B→ Ei such that ψiα = πiφ . Define ψ : B→ ∏i Ei to be the
product of the ψi. That is, for any x ∈ B, ψ(x)(i) = ψi(x). The reader should verify that
ψα = φ . The converse is left to the reader. □

LEMMA 2.6.4. An R-module E is injective if and only if for every left ideal I of R,
every homomorphism I→ E can be extended to an R-module homomorphism R→ E.

PROOF. Suppose E is injective and α : I → R is the set inclusion map. Then any
R-homomorphism φ : I→ E can be extended to ψ : R→ E.

Conversely suppose any homomorphism I→ E can be extended to R if I is a left ideal
of R. Let

E

0 // A

φ

OO

α // B

be a diagram of R-modules with the bottom row exact. We need to find an R-module
homomorphism ψ : B→ E such that ψα = φ . Consider the set S of all R-module ho-
momorphisms σ : C→ E such that α(A) ⊆ C ⊆ B and σα = φ . Then S is nonempty
because φ : A→ E is in S . Put a partial ordering on S by saying σ1 : C1 → E is less
than or equal to σ2 : C2→ E if C1 ⊆C2 and σ2 is an extension of σ1. By Zorn’s Lemma,
Proposition 1.2.4, S contains a maximal member, ψ : M→ E. To finish the proof, it is
enough to show M = B.

Suppose M ̸= B and let b ∈ B−M. The proof is by contradiction. Let I = {r ∈ R |
rb ∈ M}. Then I is a left ideal of R. Define an R-module homomorphism σ : I → E by
σ(r) = ψ(rb). By hypothesis, there exists τ : R→ E such that τ is an extension of σ .
To arrive at a contradiction, we show that there exists a homomorphism ψ1 : M+Rb→ E
which is an extension of ψ . Define ψ1 in the following way. If m+ rb ∈M +Rb, define
ψ1(m+ rb) = ψ(m)+ rτ(1). To see that ψ1 is well defined, assume that in M +Rb there
is an element expressed in two ways: m+ rb = m1 + r1b. Subtracting gives m−m1 =
(r1−r)b which is in M. Therefore r1−r is in I. From ψ(m−m1) = ψ((r1−r)b) = σ(r1−
r) = τ(r1− r) = (r1− r)τ(1), it follows that ψ(m)−ψ(m1) = r1τ(1)− rτ(1). Therefore
ψ(m) + rτ(1) = ψ(m1) + r1τ(1) and we have shown that ψ1 is well defined. This is a
contradiction because ψ1 is an extension of ψ and ψ is maximal. □

DEFINITION 2.6.5. An abelian group A is said to be divisible in case for every nonzero
integer n and every a ∈ A there exists x ∈ A such that nx = a.

EXAMPLE 2.6.6. Let n be a nonzero integer and a∈Q. Set x= a/n∈Q. Then nx= a,
which shows the additive group Q is divisible.
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EXAMPLE 2.6.7. Let Z = Max(Z) denote the set of maximal ideals in Z. Then each
m ∈ Z is a principal ideal pZ for some positive prime p ∈ Z. Let

P = ∏
m∈Z

Z/m

S =
⊕
m∈Z

Z/m

be the direct product and the direct sum of the prime fields Z/m. By Exercises 2.5.5
and 2.5.6, S is an ideal in the ring P. In this example we show that the quotient P/S is
a divisible abelian group. Let α ∈ Z be a positive integer. Let V (α) = {m ∈ Z | α ∈
m} and U(α) = {m ∈ Z | α ̸∈ m}. Then Z = V (α)∪U(α) is a disjoint union. By The
Fundamental Theorem of Arithmetic, V (α) is a finite set. If we set P0 = ∏m∈V (α)Z/m
and P1 = ∏m∈U(α)Z/m, then P = P0⊕P1 is the internal direct sum of the ideals. Let e0
and e1 be the idempotent generators of P0 and P1 respectively. The reader should verify
that in the ring P0, αe0 is equal to 0 and in the ring P1, αe1 is invertible. Then αP = P1
and P⊗Z Z/α = P/αP ∼= P0. Notice that P0 ⊆ S and S⊗Z Z/α = S/αS ∼= P0. Consider
the exact sequence

0→ S→ P→ P/S→ 0.
By Lemma 2.3.18, (P/S)⊗ZZ/α = 0. This proves P/S is a divisible abelian group. For a
continuation of this example, see Exercise 3.1.34.

LEMMA 2.6.8. An abelian group A is divisible if and only if A is an injective Z-module.

PROOF. Assume A is an injective Z-module. Let n ∈ Z− (0) and a ∈ A. Let φ : Zn→
A be the map induced by n 7→ a. By Lemma 2.6.4, φ can be extended to a homomorphism
ψ : Z→ E. In this case, a = φ(n) = ψ(n) = nψ(1) so a is divisible by n.

Conversely, assume A is divisible. A typical ideal of Z is I =Zn. Suppose σ : I→ A is
a homomorphism. By Lemma 2.6.4, it is enough to construct an extension τ : Z→ A of σ .
If n = 0, then simply take τ = 0. Otherwise solve nx = σ(n) for x and define τ(1) = x. □

LEMMA 2.6.9. If A is an abelian group, then A is isomorphic to a subgroup of a
divisible abelian group.

PROOF. The Z-module A is the homomorphic image of a free Z-module, σ : ZI → A,
for some index set I. Then A ∼= ZI/K where K ⊆ ZI is the kernel of σ . Since Z ⊆ Q,
there is a chain of subgroups K ⊆ ZI ⊆QI . This means ZI/K is isomorphic to a subgroup
of QI/K. By Example 2.6.6, Q is divisible and by Exercises 2.6.13 and 2.6.14, QI/K is
divisible. □

LEMMA 2.6.10. Let A be a divisible abelian group and R a ring. Then HomZ(R,A) is
an injective left R-module.

PROOF. Since R ∈ ZMR, we make HomZ(R,A) into a left R-module by (r f )(x) =
f (xr). If M is any left R-module, then by the Adjoint Isomorphism (Theorem 2.4.10) there
is a Z-module isomorphism HomZ(R⊗R M,A)→ HomR(M,HomZ(R,A)). To prove the
lemma, we show that the contravariant functor HomR(·,HomZ(R,A)) is right exact and
apply Theorem 2.6.2. Let 0→M→ N be an exact sequence of R-modules. The diagram

HomZ(N,A) //

∼=
��

HomZ(M,A) //

∼=
��

0

HomR(N,HomZ(R,A)) // HomR(M,HomZ(R,A)) // 0
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commutes. The top row is exact because by Lemma 2.6.8 and Theorem 2.6.2, the con-
travariant functor HomZ(·,A) is right exact. The vertical maps are the adjoint isomor-
phisms, so the bottom row is exact. □

PROPOSITION 2.6.11. Every left R-module M is isomorphic to a submodule of an
injective R-module.

PROOF. By Lemma 2.4.7 there is an R-module isomorphism M ∼= HomR(R,M) given
by m 7→ ρm, where ρm is “right multiplication by m”. Every R-homomorphism is a Z-
homomorphism, so HomR(R,M) ⊆ HomZ(R,M). By Lemma 2.6.9, there is a one-to-one
homomorphism of abelian groups σ : M → D for some divisible abelian group D. By
Proposition 2.4.5, there is an exact sequence

0→ HomZ(R,M)→ HomZ(R,D).

Combining the above, the composite map

M ∼= HomR(R,M)⊆ HomZ(R,M)→ HomZ(R,D)

is one-to-one and is given by m 7→ σρm. This is an R-module homomorphism since the left
R-module action on HomZ(R,D) is given by (r f )(x) = f (xr). By Lemma 2.6.10, we are
done. □

PROPOSITION 2.6.12. Let R be a ring and E an R-module. The following are equiva-
lent.

(1) E is injective.
(2) Every short exact sequence of R-modules 0→ E→ A→ B→ 0 is split exact.
(3) E is a direct summand of any R-module of which it is a submodule.

PROOF. (1) implies (2): Let φ : E→ E be the identity map on E. By Definition 2.6.1
there exists ψ : A→ E such that ψ is the desired splitting map.

(2) implies (3): Suppose that E is a submodule of M. The sequence 0→ E →M→
M/E → 0 is exact. By (2) there is a splitting map ψ : M→ E such that for any x ∈ E we
have ψ(x) = x. If K = kerψ , then M = E⊕K.

(3) implies (1): By Proposition 2.6.11, there is an injective R-module I such that E is
a submodule of I. By (3), I = E⊕K for some submodule K. By Proposition 2.6.3, E is
injective. □

6.1. Exercises.

EXERCISE 2.6.13. Prove that if A is a divisible abelian group and B⊆ A is a subgroup,
then A/B is divisible.

EXERCISE 2.6.14. Prove that for any family of divisible abelian groups {Ai | i ∈ I},
the direct sum

⊕
i∈I Mi is divisible.

EXERCISE 2.6.15. Let A be a divisible abelian group. Prove that if B is a subgroup of
A which is a direct summand of A, then B is divisible.

EXERCISE 2.6.16. Let R be any ring and M an R-module. Suppose there is an infinite
exact sequence

(6.1) 0→M→ E0→ E1→ E2→ ··· → En→ En+1→ ···
of R-modules. If each E i is an injective R-module, then we say (6.1) is an injective resolu-
tion of M. Use Proposition 2.6.11 and induction to show that an injective resolution exists
for any R and any M. We say that the category RM has enough injectives.
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EXERCISE 2.6.17. Prove that if D is a division ring, then any nonzero vector space
over D is an injective D-module.

EXERCISE 2.6.18. Let p be a prime number and A an abelian group. We say that A
is p-divisible, if for every n ≥ 0 and for every x ∈ A, there exists y ∈ A such that pny = x.
Prove that a p-divisible p-group is divisible.

6.2. Injective Modules and Flat Modules. Throughout this section, R is an arbitrary
ring.

THEOREM 2.6.19. Let R and S be arbitrary rings. Let M ∈ SMR and assume M is a
flat right R-module. Let I be a left injective S-module. Then HomS(M, I) is an injective left
R-module.

PROOF. Notice that HomS(M, I) is a left R-module by the action (r f )(x) = f (xr).
By the hypothesis on M and I, the functors M⊗R (·) and HomS(·, I) are both exact. The
composite functor HomS(M⊗R (·), I) is also exact. By Theorem 2.4.10, this functor is
naturally isomorphic to HomR(·,HomS(M, I)), which is also exact. By Theorem 2.6.2,
HomS(M, I) is injective. □

DEFINITION 2.6.20. A module C is a cogenerator for RM if for every module M and
every nonzero x ∈M there exists f ∈ HomR(M,C) such that f (x) ̸= 0.

LEMMA 2.6.21. The Z-module Q/Z is a cogenerator for ZM.

PROOF. By Example 2.6.6 and Exercise 2.6.13, Q/Z is a divisible abelian group. By
Lemma 2.6.8, Q/Z is an injective Z-module. Let M be a Z-module and let x be a nonzero
element of M. To define a map f : Zm→ Q/Z, it is enough to specify the image of the
generator m. If d is the order of m, then

f (m) =

{
1
2 +Z if d = ∞

1
d +Z if d < ∞

produces a well defined map f . Also f (m) ̸= 0 and since Q/Z is injective, f can be
extended to HomZ(M,Q/Z). □

DEFINITION 2.6.22. Let M be a right R-module. The R-module HomZ(M,Q/Z) is
called the character module of M. The character module of M is a left R-module by the
action r f (x) = f (xr) where r ∈ R, f ∈ HomZ(M,Q/Z) and x ∈M.

LEMMA 2.6.23. The sequence of right R-modules

0→ A α−→ B
β−→C→ 0

is exact if and only if the sequence of character modules

0→ HomZ(C,Q/Z)
Hβ−−→ HomZ(B,Q/Z) Hα−−→ HomZ(A,Q/Z)→ 0

is exact.

PROOF. Assume the original sequence is exact. By Theorem 2.6.2, the second se-
quence is exact. Conversely, it is enough to assume

(6.2) HomZ(C,Q/Z)
Hβ−−→ HomZ(B,Q/Z) Hα−−→ HomZ(A,Q/Z)

is exact and prove that

A α−→ B
β−→C
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is exact.
Step 1: Show that imα ⊆ kerβ . For contradiction’s sake, assume a ∈ A and βα(a) ̸=

0. By Lemma 2.6.21, there is f ∈ HomZ(C,Q/Z) such that f βα(a) ̸= 0. Therefore
Hα Hβ ( f ) ̸= 0 which is a contradiction.

Step 2: Show that imα ⊇ kerβ . For contradiction’s sake, assume b ∈ B and β (b) = 0
and b ̸∈ imα(a). Then b+ imα is a nonzero element of B/ imα . The exact sequence

A α−→ B π−→ B/ imα

gives rise to the exact sequence

HomZ(B/ imα,Q/Z) Hπ−→ HomZ(B,Q/Z) Hα−−→ HomZ(A,Q/Z).

By Lemma 2.6.21, there is g ∈ HomZ(B/ imα,Q/Z) such that g(b + imα) ̸= 0. Let
f = Hπ(g). Then Hα( f ) = 0 and exactness of (6.2) implies f = Hβ (h) for some h ∈
HomZ(C,Q/Z). On the one hand, f (b) = gπ(b) ̸= 0. On the other hand, f (b) = hβ (b) =
h(0) = 0. This is a contradiction. □

THEOREM 2.6.24. Let R be any ring and M a right R-module. Then M is flat if and
only if the character module HomZ(M,Q/Z) is an injective left R-module.

PROOF. View M as a left Z-right R-bimodule. Since Q/Z is an injective Z-module, if
M is flat, apply Theorem 2.6.19 to see that HomZ(M,Q/Z) is an injective left R-module.

Conversely assume HomZ(M,Q/Z) is an injective left R-module. By Theorem 2.6.2,
the functor HomR(·,HomZ(M,Q/Z)) is exact. By Theorem 2.4.10, the isomorphic functor
HomZ(M⊗R (·),Q/Z) is also exact. Suppose 0→ A→ B is an exact sequence of left R-
modules. The sequence

HomZ(M⊗R B,Q/Z)→ HomZ(M⊗R A,Q/Z)→ 0

is an exact sequence of Z-modules. By Lemma 2.6.23, 0→M⊗R A→M⊗R B is an exact
sequence of Z-modules. This proves M is flat. □

For another proof of Theorem 2.6.25, see Corollary 3.7.7. For a stronger version when
R is a local ring, see Corollary 3.7.5.

THEOREM 2.6.25. The R-module M is finitely generated projective over R if and only
if M is flat and of finite presentation over R.

PROOF. If M is finitely generated and projective, then M is flat by Exercise 2.3.31 and
of finite presentation by Corollary 2.1.8.

Assume M is flat and of finite presentation over R. Then M is finitely generated, so by
Proposition 2.4.5 it is enough to show that HomR(M, ·) is right exact. Let A→ B→ 0 be an
exact sequence of R-modules. It is enough to show that HomR(M,A)→ HomR(M,B)→ 0
is exact. By Lemma 2.6.23, it is enough to show that

(6.3) 0→ HomZ(HomR(M,B),Q/Z)→ HomZ(HomR(M,A),Q/Z)

is exact. Since M is of finite presentation, there exist free R-modules F1 and F0 of finite
rank, and an exact sequence

(6.4) F1→ F0→M→ 0.
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Suppose B ∈ RMZ. Suppose E ∈MZ is injective. Consider the diagram

HomZ(B,E)⊗R F1 //

α

��

HomZ(B,E)⊗R F0 //

α

��

HomZ(B,E)⊗R M→ 0

α

��
HomZ(HomR(F1,B),E) // HomZ(HomR(F0,B),E) // HomZ(HomR(M,B),E)→ 0

The top row is obtained by tensoring (6.4) with HomZ(B,E), hence it is exact. The bottom
row is exact because it comes from (6.4) by first applying the left exact contravariant func-
tor HomR(·,B),E) followed by the exact contravariant functor HomZ(·,E). The vertical
maps come from the proof of Lemma 2.4.11, so the diagram commutes. The two left-most
vertical maps are isomorphisms, by Lemma 2.4.11. The Five Lemma (Theorem 2.5.1) says
that the third vertical map is an isomorphism. The isomorphism is natural in B which says
we can apply this result to the exact sequence A→ B→ 0 and get a commutative diagram

0 // HomZ(B,Q/Z)⊗R M

α

��

// HomZ(A,Q/Z)⊗R M

α

��
0 // HomZ(HomR(M,B),Q/Z) // HomZ(HomR(M,A),Q/Z)

where the vertical arrows are isomorphisms. The top row is obtained from the exact se-
quence A→ B→ 0 by first applying the exact contravariant functor HomZ(·,Q/Z) fol-
lowed by the exact functor (·)⊗R M. Therefore, the top row is exact, which implies the
bottom row is exact. The bottom row is (6.3), so we are done. □

7. Direct Limits and Inverse Limits

7.1. The Direct Limit. Given a directed system of objects and morphisms in a cat-
egory, the direct limit is defined as the solution to a universal mapping property. For the
category of modules over a ring, we show that the direct limit exists and is unique. Like-
wise, the direct limit of a system of algebras over a commutative ring exists and is unique.
The fundamental functorial properties of the direct limit are either proved in this section or
appear in the exercises.

DEFINITION 2.7.1. An index set I is called a directed set in case there is a reflexive,
transitive binary relation, denoted ≤, on I such that for any two elements i, j ∈ I, there is
an element k ∈ I with i ≤ k and j ≤ k. Let I be a directed set and C a category. Usually
C will be a category of R-modules for some ring R. At other times, C will be a category
of R-algebras for some commutative ring R. Suppose that for each i ∈ I there is an object
Ai ∈ C and for each pair i, j ∈ I such that i ≤ j there is a C-morphism φ i

j : Ai → A j such
that the following are satisfied.

(1) For each i ∈ I, φ i
i : Ai→ Ai is the identity on Ai, and

(2) for all i, j,k ∈ I with i≤ j ≤ k, the diagram

Ai
φ i

k //

φ i
j ��

Ak

A j

φ
j

k

??

commutes.
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Then the collection of objects and morphisms {Ai,φ
i
j} is called a directed system in C with

index set I.

DEFINITION 2.7.2. Let {Ai,φ
i
j} be a directed system in C for a directed index set

I. The direct limit of this system, denoted lim−→Ai, is an object in C together with a set of
morphisms αi : Ai→ lim−→Ai indexed by I such that the following are satisfied.

(1) For all i≤ j, αi = α jφ
i
j, and

(2) lim−→Ai satisfies the universal mapping property. Namely, if X is an object in C and
fi : Ai→ X is a set of morphisms indexed by I such that for all i ≤ j, fi = f jφ

i
j,

then there exists a unique morphism β : lim−→Ai→ X making the diagram

lim−→Ai
∃!β // X

Ai

αi
aa

fi

??

φ i
j

��
A j

α j

VV

f j

II

commute for all i≤ j in I.

PROPOSITION 2.7.3. Let R be a ring. If {Ai,φ
i
j} is a directed system of R-modules

for a directed index set I, then the direct limit lim−→Ai exists. The direct limit is unique up to
isomorphism.

PROOF. Let U =
⋃

i Ai be the disjoint union of the modules. Define a binary relation
∼ on U in the following way. For any x ∈ Ai and y ∈ A j, we say x and y are related and
write x ∼ y in case there exists k ∈ I such that i ≤ k and j ≤ k and φ i

k(x) = φ
j

k (y). Clearly
∼ is reflexive and symmetric. Assume x ∈ Ai, y ∈ A j and z ∈ Ak and there exists m and
n such that i ≤ m, j ≤ m, j ≤ n, k ≤ n, and φ i

m(x) = φ
j

m(y) and φ
j

n (y) = φ k
n (z). Since I is

directed, there exists p such that m≤ p and n≤ p. It follows that φ i
p(x) = φ

j
p(y) = φ k

p(z),
so ∼ is transitive. Denote the equivalence class of x ∈U by [x] and let L = U/ ∼ be the
set of all equivalence classes. Turn L into an R-module in the following way. If r ∈ R and
x ∈U , define r[x] = [rx]. If x ∈ Ai and y ∈ A j and k is such that i≤ k and j ≤ k, then define
[x]+ [y] = [φ i

k(x)+φ
j

k (y)]. For each i ∈ I, let αi : Ai→ L be the assignment x 7→ [x]. It is
clear that αi is R-linear. If i≤ j and x ∈ Ai, then x∼ φ i

j(x), which says αi = α jφ
i
j.

To see that L satisfies the universal mapping property, let X be an R-module and fi :
Ai→ X a set of morphisms indexed by I such that for all i≤ j, fi = f jφ

i
j. Suppose x ∈ Ai

and y ∈ A j are related. Then there exists k ∈ I such that i ≤ k, j ≤ k and φ i
k(x) = φ

j
k (y).

Then fi(x) = fk(φ
i
k(x)) = fk(φ

j
k (y)) = f j(y), so the assignment [x] 7→ fi(x) induces a well

defined R-module homomorphism β : L→ X . The R-module L satisfies Definition 2.7.2,
so L = lim−→Ai.

Mimic the uniqueness part of the proof of Theorem 2.3.3 to prove that the direct limit
is unique. □
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COROLLARY 2.7.4. Let R be a commutative ring. If {Ai,φ
i
j} is a directed system of

R-algebras for a directed index set I, then the direct limit lim−→Ai exists.

PROOF. The proof is left to the reader. □

LEMMA 2.7.5. Let R be a ring and {Ai,φ
i
j} a directed system of R-modules for a

directed index set I. Suppose for some i ∈ I and x ∈ Ai that [x] = 0 in the direct limit lim−→Ai.
Then there exists k ≥ i such that φ i

k(x) = 0 in Ak.

PROOF. This follows straight from the construction in Proposition 2.7.3. Namely,
x∼ 0 if and only if there exists k ≥ i such that φ i

k(x) = 0 in Ak. □

Let R be a ring and I a directed index set. Suppose {Ai,φ
i
j} and {Bi,ψ

i
j} are two

directed systems of R-modules. A morphism from {Ai,φ
i
j} to {Bi,ψ

i
j} is a set of R-module

homomorphisms α = {αi : Ai→ B j}i∈I indexed by I such that the diagram

Ai
αi //

φ i
j
��

Bi

ψ i
j
��

A j
α j // B j

commutes whenever i≤ j. Define fi : Ai→ lim−→Bi by composing αi with the structure map
Bi → lim−→Bi. The universal mapping property guarantees a unique R-module homomor-
phism α⃗ : lim−→Ai→ lim−→Bi.

THEOREM 2.7.6. Let R be a ring, I a directed index set, and

{Ai,φ
i
j}

α−→ {Bi,ψ
i
j}

β−→ {Ci,ρ
i
j}

a sequence of morphisms of directed systems of R-modules such that

0→ Ai
αi−→ Bi

βi−→Ci→ 0

is exact for every i ∈ I. Then

0→ lim−→Ai
α⃗−→ lim−→Bi

β⃗−→ lim−→Ci→ 0

is an exact sequence of R-modules.

PROOF. The proof is a series of four small steps. We incorporate the notation of
Proposition 2.7.3.

Step 1: β⃗ is onto. Given [x] ∈ lim−→Ci, there exists i ∈ I such that x ∈Ci. Since βi : Bi→
Ci is onto, there exists b ∈ Bi such that x = βi(b). Then [x] = β⃗ [b].

Step 2: im α⃗ ⊆ ker β⃗ . Given [x] ∈ lim−→Ai there exists i ∈ I such that x ∈ Ai. Then

β⃗ α⃗[x] = [βiαi(x)] = [0].
Step 3: ker β⃗ ⊆ im α⃗ . Given [x] ∈ ker β⃗ there exists i ∈ I such that x ∈ Bi. By

Lemma 2.7.5 there exists j > i such that ρ i
jβi(x) = 0. Since β is a morphism, β jψ

i
j(x) = 0.

Therefore ψ i
j(x) ∈ kerβ j = imα j, so [x] ∈ imα .

Step 4: α⃗ is one-to-one. Given [x] ∈ ker α⃗ , there exists i ∈ I such that x ∈ Ai and
[αi(x)] = 0. By Lemma 2.7.5 there exists j > i such that ψ i

jαi(x) = 0. Since α is a
morphism, α jφ

i
j(x) = 0. Since α j is one-to-one, it follows that φ i

j(x) = 0, hence [x] =
0. □
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COROLLARY 2.7.7. In the context of Theorem 2.7.6,

lim−→(Ai⊕Bi)∼=
(
lim−→Ai

)
⊕
(
lim−→Bi

)
7.1.1. Tensor Product of Direct Limits. Let {Ri,θ

i
j} be a directed system of rings for a

directed index set I. Each Ri can be viewed as a Z-algebra, hence the direct limit R = lim−→Ri

exists, by Corollary 2.7.4. For the same index set I, let {Mi,φ
i
j} and {Ni,ψ

i
j} be directed

systems of Z-modules such that each Mi is a right Ri-module and each Ni is a left Ri-
module. For each i ≤ j, M j and N j are Ri-modules via θ i

j : Ri → R j. In this context, we
also assume that the transition homomorphisms φ i

j and ψ i
j are Ri-linear:

φ
i
j(ax) = θ

i
j(a)φ

i
j(x)

ψ
i
j(ax) = θ

i
j(a)φ

i
j(x)

for all a ∈ Ri, x ∈Mi and y ∈ Ni. By Exercise 2.3.42 there are Z-module homomorphisms

τ
i
j : Mi⊗Ri Ni→M j⊗R j N j

such that {Mi⊗Ri Ni,τ
i
j} is a directed system for I. Let M = lim−→Mi, N = lim−→Ni.

PROPOSITION 2.7.8. In the above context, lim−→Mi⊗Ri Ni = M⊗R N.

PROOF. By Exercise 2.3.42 there are Z-module homomorphisms

αi : Mi⊗Ri Ni→M⊗R N

such that αi = α jτ
i
j. We show that M⊗R N satisfies the universal mapping property of

Definition 2.7.2. Suppose we are given Z-module homomorphisms

fi : Mi⊗Ri Ni→ X

such that fi = f jτ
i
j. Suppose (x,y)∈M×N. Then for some i∈ I, (x,y) comes from Mi×Ni.

The reader should verify that (x,y) 7→ fi(x⊗ y) defines an R-balanced map M×N → X .
This induces β : M⊗R N→ X . By Theorem 2.3.3, β is unique and satisfies βαi = fi. □

7.1.2. Direct Limits and Adjoint Pairs.

THEOREM 2.7.9. Let F : A→ C and G : C→ A be covariant functors and assume
(F,G) is an adjoint pair. Let {Ai,φ

i
j} be a directed system in A for a directed index set I

and assume the direct limit lim−→Ai exists. Then {FAi,Fφ i
j} is a directed system in C for the

directed index set I and lim−→FAi ∼= F(lim−→Ai).

PROOF. Because F is a functor, {FAi,Fφ i
j} is a directed system in C for I. The proof

reduces to showing F(lim−→Ai) satisfies the universal mapping property of Definition 2.7.2.
Assume we are given a commutative diagram

F(lim−→Ai) X

FAi

Fαi
dd

fi

>>

Fφ i
j

��
FA j

Fα j

WW

f j

II
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in C, where the left half comes from the definition of lim−→Ai. To finish the proof we must
show that there is a unique β : F(lim−→Ai)→X which commutes with the rest of the diagram.
Since (F,G) is an adjoint pair, there is a natural bijection

ψ : HomC(FA,X)→ HomA(A,GX)

for any A ∈A. Applying ψ to the right half of the diagram, we get a commutative diagram

lim−→Ai
θ // GX

Ai

αi
aa

ψ fi
>>

φ i
j

��
A j

α j

VV

ψ f j

II

in A. By definition of lim−→Ai, the morphism θ exists and is unique. Let β = ψ−1(θ). Then
β : F(lim−→Ai)→ X . Because ψ (and ψ−1) is natural in the A variable, β makes the first
diagram commutative. Because ψ is a bijection, β is unique. □

COROLLARY 2.7.10. Let R be a ring and {Ai,φ
i
j} a directed system of left R-modules

for a directed index set I. If M is a right R-module, then

M⊗R lim−→Ai ∼= lim−→(M⊗R Ai) .

PROOF. This follows from Proposition 2.7.8. We give a second proof based on The-
orem 2.7.9. View M as a left Z right R bimodule. By Theorem 2.4.10, Tensor-Hom,
(M⊗R (·),HomZ(M, ·)), is an adjoint pair. □

7.2. The Inverse Limit. Given an inverse system of objects and morphisms in a cat-
egory, the inverse limit is defined as the solution to a universal mapping property. For
the category of modules over a ring, we show that the inverse limit exists and is unique.
Likewise, the inverse limit of a system of algebras over a commutative ring exists and is
unique. The fundamental functorial properties of the inverse limit are either proved in this
section or appear in the exercises.

DEFINITION 2.7.11. Let C be a category. Usually C will be a category of modules
or a category of algebras over a commutative ring. At other times, C will be a category of
topological groups. Let I be an index set with a reflexive, transitive binary relation, denoted
≤. (Do not assume I is a directed set.) Suppose that for each i ∈ I there is an object Ai ∈ C

and for each pair i, j ∈ I such that i ≤ j there is a C-morphism φ
j

i : A j → Ai such that the
following are satisfied.

(1) For each i ∈ I, φ i
i : Ai→ Ai is the identity on Ai, and

(2) for all i, j,k ∈ I with i≤ j ≤ k, the diagram

Ak
φ k

i //

φ k
j ��

Ai

A j

φ
j

i

??
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commutes.
Then the collection of objects and morphisms {Ai,φ

j
i } is called an inverse system in C with

index set I.

DEFINITION 2.7.12. Let {Ai,φ
j

i } be an inverse system in C for an index set I. The in-
verse limit of this system, denoted lim←−Ai, is an object in C together with a set of morphisms
αi : lim←−Ai→ Ai indexed by I such that the following are satisfied.

(1) For all i≤ j, αi = φ
j

i α j, and
(2) lim←−Ai satisfies the universal mapping property. Namely, if X is an object in C and

fi : X → Ai is a set of morphisms indexed by I such that for all i≤ j, fi = φ
j

i f j,
then there exists a unique morphism β : X → lim←−Ai making the diagram

lim←−Ai

α j

��

αi

!!

X
βoo

fi

��

f j

		

Ai

A j

φ
j

i

OO

commute for all i≤ j in I.

PROPOSITION 2.7.13. Let R be a ring. If {Ai,φ
j

i } is an inverse system of R-modules
for an index set I, then the inverse limit lim←−Ai exists. The inverse limit is unique up to
isomorphism.

PROOF. Let L be the set of all f ∈∏Ai such that f (i) = φ
j

i f ( j) whenever i≤ j. The
reader should verify that L is an R-submodule of ∏Ai. Let πi : ∏Ai→ Ai be the projection
onto the i-th factor. Let αi be the restriction of πi to L. The reader should verify that
αi = φ

j
i α j.

To see that L satisfies the universal mapping property, let X be an R-module and fi :
X → Ai a set of morphisms indexed by I such that for all i ≤ j, fi = φ

j
i f j. Define an R-

module homomorphism β : X → ∏Ai by the rule β (x)(i) = fi(x) for all x ∈ X . If i ≤ j,
then β (x)(i) = fi(x) = φ

j
i f j(x) = φ

j
i β (x)( j), so the image of β is contained in L. The

R-module L satisfies Definition 2.7.12, so L = lim←−Ai.
Mimic the uniqueness part of the proof of Theorem 2.3.3 to prove that the inverse limit

is unique. □

COROLLARY 2.7.14. Let R be a commutative ring. If {Ai,φ
j

i } is an inverse system of
R-algebras for an index set I, then the inverse limit lim←−Ai exists.

PROOF. The proof is left to the reader. □

THEOREM 2.7.15. Let F : A→ C and G : C→ A be covariant functors and assume
(F,G) is an adjoint pair. Let {Ci,ψ

j
i } be an inverse system in C for an index set I and

assume the inverse limit lim←−Ci exists. Then {GCi,Gψ
j

i } is an inverse system in A for the
index set I and lim←−GCi ∼= G(lim←−Ci).
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PROOF. The proof is left to the reader. (Hint: Follow the proof of Theorem 2.7.9. Start
with the appropriate diagram in A. Use the adjoint isomorphism ψ to get the commutative
diagram in C which can be completed.) □

COROLLARY 2.7.16. Let R be a ring and {Ai,φ
j

i } an inverse system of left R-modules
for an index set I. If M is a left R-module, then

HomR(M, lim←−Ai)∼= lim←−HomR(M,Ai).

PROOF. We view M as a left R right Z bimodule. By Theorem 2.4.10, Tensor-Hom,
(M⊗Z (·),HomR(M, ·)), is an adjoint pair. □

EXAMPLE 2.7.17. Let A be a ring. Suppose f1 : M1 → M3 and f2 : M2 → M3 are
homomorphisms of left A-modules. Then the pullback (or fiber product) is defined to be
M = {(x1,x2) ∈M1⊕M2 | f1(x1) = f2(x2)}. Notice that M is the kernel of the A-module
homomorphism M1⊕M2 → M3 defined by (x1,x2) 7→ f1(x1)− f2(x2), hence M is a left
A-module. If h1 and h2 are induced by the coordinate projections, then

M
h2 //

h1
��

M2

f2
��

M1
f1 // M3

(7.1)

is a commutative diagram of A-modules. An important feature of the pullback is that it can
be interpreted as an inverse limit. For the index set, take I = {1,2,3} with the ordering
1 < 3, 2 < 3. The reader should verify that if f1, f2 are the transition homomorphisms,
then {M1,M2,M3} is an inverse system and the inverse limit lim←−Mi is isomorphic to the
pullback M of (7.1). In particular, the pullback M satisfies the universal mapping property.
That is, if N is an R-module and there exist h′1 and h′2 such that f1h′1 = f2h′2, then there
exists a unique morphism β : N→M such that the diagram

N

∃β ##

h′2

&&

h′1

  

M
h2

//

h1
��

M2

f2
��

M1 f1
// M3

commutes. A commutative square of R-modules such as (7.1) is called a cartesian square
(or fiber product diagram, or pullback diagram), if M is isomorphic to the pullback lim←−Mi.
Let A1, A2, A3 be rings. If f1 : A1 → A3 and f2 : A2 → A3 are homomorphisms, then the
inverse limit A = lim←−Ai with respect to the index set I = {1,2,3} is a ring. As above, A can
be identified with the pullback A = {(x1,x2) ∈ A1⊕A2 | f1(x1) = f2(x2)}.

7.3. Inverse Systems Indexed by Nonnegative Integers. In this section we consider
inverse limit systems for the well ordered index set {0,1,2, . . .}. If I is an ideal in a
commutative ring R, the I-adic completion of an R-module is defined as an inverse limit.
This important construction is applied in Chapter 7.

For the index set Z≥0 = {0,1,2, . . .}, the notation simplifies. Let R be any ring and
{Ai,φ

j
i } an inverse system of R-modules for the index set {0,1,2, . . .}. Simply write φi+1

for φ
i+1
i . Then for any j > i we can multiply to get φ

j
i = φi+1φi+2 · · ·φ j. Using this
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notation, and Proposition 2.7.13, the inverse limit lim←−Ai can be identified with the set
of all sequences (x0,x1,x2, . . .) in ∏

∞
n=0 An such that xn = φn+1xn+1 for all n≥ 0. Define

d :
∞

∏
n=0

An −→
∞

∏
n=0

An

by d(x0,x1,x2, . . .) = (x0−φ1x1, x1−φ2x2, x2−φ3x3, . . . , xn−φn+1xn+1, . . .).

LEMMA 2.7.18. Let R be any ring and {Ai,φi+1} an inverse system of R-modules for
the index set {0,1,2, . . .}. If φn+1 : An+1→ An is onto for each n≥ 0, then there is an exact
sequence

0→ lim←−An→
∞

∏
n=0

An
d−→

∞

∏
n=0

An→ 0

where d is defined in the previous paragraph.

PROOF. It follows at once that kerd = lim←−An. Let (y0,y1,y2, . . .) ∈ ∏An. To show
that d is surjective, it is enough to solve the equations

x0−φ1x1 = y0

x1−φ2x2 = y1

...
xn−φn+1xn+1 = yn

for (x0,x1,x2, . . .). This is possible because each φn+1 is surjective. Simply take x0 = 0,
x1 = (φ1)

−1(−y0), and recursively, xn+1 = (φn+1)
−1(xn− yn). □

Let R be a ring and suppose {Ai,φi+1} and {Bi,ψi+1} are two inverse systems of R-
modules indexed by I = {0,1,2,3, . . .}. A morphism from {Ai,φi+1} to {Bi,ψi+1} is a
sequence of R-module homomorphisms α = {αi : Ai→ B j}i≥0 such that the diagram

Ai+1
αi+1 //

φi+1

��

Bi+1

ψi+1

��
Ai

αi // Bi

commutes whenever i≥ 0. Define fi : lim←−Ai→Bi by composing the structure map lim←−Ai→
Ai with αi. The universal mapping property guarantees a unique R-module homomorphism
←−
α : lim←−Ai→ lim←−Bi.

PROPOSITION 2.7.19. Let R be a ring, and

{Ai,φi+1}
α−→ {Bi,ψi+1}

β−→ {Ci,ρi+1}

a sequence of morphisms of inverse systems of R-modules indexed by {0,1,2,3, . . .} such
that

(1) 0→ Ai
αi−→ Bi

βi−→Ci→ 0 is exact for every i≥ 0, and
(2) φi+1 : Ai+1→ Ai is onto for every i≥ 0.

Then

0→ lim←−Ai
←−
α−→ lim←−Bi

←−
β−→ lim←−Ci→ 0

is an exact sequence of R-modules.
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PROOF. The diagram

0 // ∏An

d
��

α // ∏Bn

d
��

β // ∏Cn

d
��

// 0

0 // ∏An
α // ∏Bn

β // ∏Cn // 0

commutes and the rows are exact. By Lemma 2.7.18, the leftmost vertical map is onto.
The rest of the proof follows from Theorem 2.5.2 and Lemma 2.7.18. □

7.3.1. The I-adic completion of a module.

DEFINITION 2.7.20. Let R be a commutative ring, I an ideal in R and M an R-module.
Then for all integers n ≥ 1, In denotes the ideal generated by all products of the form
x1x2 · · ·xn where each xi is in I. The chain of ideals R ⊇ I1 ⊇ I2 ⊇ I3 ⊇ . . . gives rise to
the chain of submodules M ⊇ I1M ⊇ I2M ⊇ I3M ⊇ . . . . Then Ii+1M ⊆ IiM so there is a
natural projection φi+1 : M/Ii+1M→M/IiM. The set of R-modules and homomorphisms
{M/IiM,φi+1} is an inverse system indexed by {1,2,3,4, . . .}. The inverse limit of this
system M̂ = lim←−M/IiM is called the I-adic completion of M. For each i, let ηi : M →
M/IiM be the natural projection. Clearly ηi = φi+1ηi+1 so by Definition 2.7.12, there is a
unique β : M→ M̂ such that the diagram

M̂

��

##

M
βoo

ηi{{

ηi+1

��

M/IiM

M/Ii+1M

φi+1

OO

commutes.

PROPOSITION 2.7.21. Let I be an ideal in the commutative ring R. Let M be an R-
module and M̂ the I-adic completion of M. The natural map β : M→ M̂ is one-to-one if
and only if ∩InM = 0.

PROOF. Let x ∈M. Notice that

ker(β ) = {x ∈M | x ∈ InM (∀n > 0)}=
⋂

InM.

Therefore β is one-to-one if and only if ∩InM = 0. □

PROPOSITION 2.7.22. Let I be an ideal in the commutative ring R and R̂ the I-adic
completion of R. Let M be an R-module and M̂ the I-adic completion of M. Then M̂ is an
R̂-module.

PROOF. By Corollary 2.7.14, R̂ is a commutative ring. For each i, let αi : R̂→ R/Ii

and βi : M̂→M/IiM be the natural maps. Then

αi⊗βi : R̂⊗Z M̂→ R/Ii⊗Z M/IiM
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is a well defined R-module homomorphism. Since M/IiM is a module over R/Ii, let

µi : R/Ii⊗Z M/IiM→M/IiM

be the multiplication map defined by x⊗ y 7→ xy. So the maps fi = µi ◦ (αi ⊗ βi) and
the universal mapping property give a product map R̂⊗ M̂ → M̂ which turns M̂ into an
R̂-module. □

7.4. Exercises.

EXERCISE 2.7.23. Let R be an arbitrary ring. Let I be an index set, X = {xi}i∈I a set
of indeterminates indexed by I. Let J be the set of all finite subsets of I, ordered by set
inclusion. For each α ∈ J, let Xα = {x j | j ∈ α}. Show how to make the set of polynomial
rings {R[Xα ]}α∈J into a directed system of rings. Define R[X ] = lim−→R[Xα ] as the direct
limit. Let σ : R→ S be a homomorphism of commutative rings. Show that σ extends to a
homomorphism on the polynomial rings σ̄ : R[X ]→ S[X ]. If f : X → S is a function, show
that there is a unique homomorphism σ̄ : R[X ]→ S such that σ̄ [x] = f (x) for every x ∈ X ..

EXERCISE 2.7.24. Suppose A0 ⊆ A1 ⊆ A2 ⊆ . . . is a chain of submodules of the R-
module A. Show how to make {Ai} into a directed system and prove that lim−→Ai =

⋃
i Ai.

EXERCISE 2.7.25. Let A be an R-module. Let S be the set of all subsets of A which
are finitely generated R-submodules of A. Let S be ordered by ⊆. For α ∈ S, let Aα denote
the R-submodule of A whose underlying set is α . Show how to make {Aα} into a directed
system and prove that A = lim−→Aα .

EXERCISE 2.7.26. Let R be a commutative ring and A an R-algebra. Show that A =
lim−→Aα where Aα runs over the set of all finitely generated R-subalgebras of A.

EXERCISE 2.7.27. Let R be a commutative ring, A an R-algebra and f ∈ A. Show
that A = lim−→Aα where Aα runs over all finitely generated R-subalgebras of A such that
R[ f ]⊆ Aα ⊆ A.

EXERCISE 2.7.28. Let R be a ring and {Mi | i ∈ I} a family of R-modules where I is
an indexing set. Let S =

⊕
Mi be the direct sum. Let J be the set of all finite subsets of I,

ordered by set inclusion. For each α ∈ J, let Sα =
⊕

i∈α Mi be the direct sum over the finite
index set α . Show how to make {Sα} into a directed system and prove that lim−→Sα

∼= S.

EXERCISE 2.7.29. Let A be a commutative ring and R = A[x] the polynomial ring in
one variable with coefficients in A. Let I = Rx be the ideal in R generated by x. Show that
the I-adic completion of R is isomorphic to the power series ring A[[x]] in one variable over
A. (Hint: Show that A[[x]] satisfies properties (1) and (2) of Definition 2.7.12.)

EXERCISE 2.7.30. Let R be any ring and {Ai,φ
i
j} a directed system of flat R-modules

for a directed index set I. Show that the direct limit lim−→Ai is a flat R-module.

EXERCISE 2.7.31. Let {Ri,θ
i
j} be a directed system of rings for a directed index set

I. Let R = lim−→Ri be the direct limit. As in Proposition 2.7.8, let {Mi,φ
i
j} be a directed

system of Z-modules for the same index set I such that each Mi is a left Ri-module and
the transition homomorphisms φ i

j are Ri-module homomorphisms. If each Mi is a flat Ri-
module, show that M = lim−→Mi is a flat R-module. (Hint: {R⊗Ri Mi,1⊗φ i

j} is a directed
system of flat R-modules.)

EXERCISE 2.7.32. Let R be any ring and A an R-module. Show that if every finitely
generated submodule of A is flat, then A is flat.
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EXERCISE 2.7.33. Let R be a ring and {Mi,φ
i
j} a directed system of R-modules for a

directed index set I. Let Ξ = {(x,y) ∈ I× I | x≤ y}. Let ιi : Mi→
⊕

k∈I Mk be the injection
map into coordinate i. Given (i, j) ∈ Ξ, define δi j : Mi →

⊕
k∈I Mk by δi j(x) = ι jφ

i
j(x)−

ιi(x). By Proposition 1.6.2 (2), there exists δ :
⊕

(i, j)∈Ξ Mi→
⊕

k∈I Mk. Define L to be the
cokernel of δ . There is a natural projection η :

⊕
k∈I Mk→ L. Define αi = ηιi : Mi→ L.

(1) Prove that αi = α jφ
i
j for all i≤ j.

(2) Prove that L satisfies the universal mapping property of Definition 2.7.2, hence
L∼= lim−→Mi.

(3) Prove that there is an exact sequence of R-modules⊕
(i, j)∈Ξ

Mi
δ−→
⊕
k∈I

Mk→ lim−→Mi→ 0

EXERCISE 2.7.34. Let R be a ring and {Mi,φ
j

i } an inverse system of R-modules for
an index set I. Let Ξ = {(x,y)∈ I× I | x≤ y}. Let πi : ∏k∈I Mk→Mi be the projection map
onto coordinate i. Given (i, j) ∈ Ξ, define di j : ∏k∈I Mk→Mi by di j(x) = φ

j
i π j(x)−πi(x).

By Proposition 1.6.2, there exists d : ∏k∈I Mk → ∏(i, j)∈Ξ Mi. Use Proposition 2.7.13 to
prove that there is an exact sequence of R-modules

0→ lim←−Mi→∏
k∈I

Mk
d−→ ∏

(i, j)∈Ξ

Mi

EXERCISE 2.7.35. Let R be a ring and {Ai,φ
i
j} a directed system of R-modules for a

directed index set I. Show that if M is any R-module, then there is an isomorphism

HomR(lim−→Ai,M)∼= lim←−HomR(Ai,M)

of Z-modules. (Hint: Start with the exact sequence of Exercise 2.7.33 (3). Apply the
functor HomR(·,M). Use Proposition 2.4.8 and Exercise 2.7.34.)

EXERCISE 2.7.36. Let I be any index set ordered by the relation x ≤ y if and only if
x = y. For any family of R-modules {Mi | i ∈ I} indexed by I, prove the following.

(1) I is a directed index set and if 1Mi is the identity map on Mi, then {Mi,1Mi} is
both a directed system of R-modules, and an inverse system of R-modules.

(2) The direct limit lim−→Mi exists and is equal to the direct sum
⊕

i∈I Mi.
(3) The inverse limit lim←−Mi exists and is equal to the product ∏i∈I Mi.

EXERCISE 2.7.37. Let C1, C2 be categories of modules and F : C1 → C2 a left ex-
act functor which commutes with arbitrary products. That is, F(∏k∈I Mk) = ∏k∈I F(Mk),
for any family of objects in C1. Prove that F commutes with inverse limits. That is,
F
(
lim←−Mk

)
= lim←−F(Mk) for any inverse system in C1.

EXERCISE 2.7.38. Let R be a ring and {Ai,φ
i
j} a directed system of R-modules for a

directed index set I. Let P be a finitely generated projective R-module.
(1) Show that HomR(P, lim−→Ai) ∼= lim−→HomR(P,Ai). (Hint: As in Theorem 2.4.12,

reduce to the case where P is free.)
(2) Show that HomR(P,

⊕
i Ai)∼=

⊕
i HomR(P,Ai).

EXERCISE 2.7.39. Let R be a commutative ring and {Ai,φ
i
j} a directed system of

R-algebras for a directed index set I. Show that an idempotent in lim−→Ai comes from an
idempotent in Ai, for some i ∈ I. In other words, if e ∈ lim−→Ai and e2 = e, then for some
i ∈ I, there exists ei ∈ Ai such that e2

i = ei and if αi : Ai→ lim−→Ai is the natural map, then
αi(ei) = e.
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EXERCISE 2.7.40. Let R be a commutative ring. Let I and J be ideals in R and assume
there exists m > 0 such that Im ⊆ J. Prove that the natural homomorphisms R/Imi →
R/Ji induce a homomorphism of rings lim←−R/Ik → lim←−R/Jk. See Exercise 7.1.17 for an
application of this result.

EXERCISE 2.7.41. In the context of the pullback diagram (7.1), prove the following:
(1) kerh1 ∼= ker f2 and kerh2 ∼= ker f1.
(2) If f2 is onto, then h1 is onto. If f1 is onto, then h2 is onto.

EXERCISE 2.7.42. Let A be a ring and let I and J be two-sided ideals in A. Show that

A
I∩J

h2 //

h1
��

A
J

f2
��

A
I

f1 // A
I+J

is a cartesian square of rings, where all of the homomorphisms are the natural maps.

EXERCISE 2.7.43. Let B be a ring and I a two-sided ideal of B. Assume A ⊆ B is a
subring such that I ⊆ A. Show that

A //

h1
��

B

f2
��

A
I

f1 // B
I

is a cartesian square of rings, where all of the homomorphisms are the natural maps.

8. The Morita Theorems

Let R be a ring, M a left R-progenerator, and S = HomR(M,M) the ring of endomor-
phisms. In this context, the main theorem of this section, Theorem 2.8.2, states that the
category MR of right R-modules is equivalent to the category SM of left S-modules. A
corollary states that there is a one-to-one correspondence between two-sided ideals of R
and two-sided ideals of S. The results of this section are applied in Chapter 4 below to
prove the Wedderburn-Artin Theorem (Theorem 4.4.5) and in Section 8.6.6.2 to prove a
theorem of Bass. The Morita Theorems can be stated and proved for more general cat-
egories. In the following we restrict ourselves to categories of modules. The theorems
presented here and their proofs are based on [17].

8.1. The Functors. We begin by establishing some notation that will be in effect
throughout this section. For any ring R and any left R-module M, set

M∗ = HomR(M,R)

and
S = HomR(M,M).

Since R is a left R right R bimodule, by Lemma 2.4.1 (2), M∗ is a right R-module under
the operation ( f r)(m) = f (m)r. Since S is a ring of R-module endomorphisms of M, M is
a left S-module by sm = s(m). This follows from Example 1.1.14. Under this operation
M is a left R left S bimodule. By Lemma 2.4.1 (3), we make M∗ a right S-module by
( f s)(m) = f

(
s(m)

)
, which is just composition of functions. The reader should verify that

M∗ is in fact a right R right S bimodule. It follows that we can form M∗⊗R M and M∗⊗S M.
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By Lemma 2.3.10, M∗⊗R M is a left S right S bimodule by virtue of M being a left R left
S bimodule and M∗ being a right R right S bimodule. Similarly M∗⊗S M is a left R right R
bimodule.

Define
M∗⊗R M

θR−→ S = HomR(M,M)

by the rule θR( f ⊗m)(x) = f (x)m. The reader should check that θR is both a left and a
right S-module homomorphism. Define

M∗⊗S M
θS−→ R

by the rule θS( f ⊗m) = f (m). The reader should verify that θS is a right and left R-module
homomorphism whose image is the trace ideal TR(M).

LEMMA 2.8.1. In the above context,
(1) θR is onto if and only if M is finitely generated and projective. If θR is onto, it is

one-to-one.
(2) θS is onto if and only if M is a generator. If θS is onto, it is one-to-one.

PROOF. (1): Suppose θR is onto. Then there exist fi ∈ M∗ and mi ∈ M such that
the identity map 1 : M → M is equal to θR(∑

n
i=1 fi⊗mi). That is, for every x ∈ M, x =

∑
n
i=1 fi(x)mi. Then {( fi,mi)} is a finite dual basis for M. By the Dual Basis Lemma 2.1.10,

we are done. Conversely, if a finite dual basis exists, then 1 : M→M is in the image of θR.
Since θR is an S-module homomorphism, θR is onto.

Now assume θR is onto. Then M has a dual basis f1, . . . , fn ∈ M∗, m1, . . . ,mn ∈ M.
Assume α = ∑ j h j⊗n j ∈M∗⊗R M and θR(α) = 0. That is, ∑ j h j(x)n j = 0 for every x in
M. Then

α = ∑
j

h j⊗n j

= ∑
j

[
h j⊗

(
∑

i
fi(n j)mi

)]
= ∑

i, j
h j⊗ fi(n j)mi

= ∑
i, j

(
h j · fi(n j)

)
⊗mi

= ∑
i

[(
∑

j
h j · fi(n j)

)
⊗mi

]
= ∑

i
0⊗mi

= 0,

because for each i and for each x ∈M,[
∑

j
h j · fi(n j)

]
(x) = ∑

j
h j(x) fi(n j)

= ∑
j

fi
(
h j(x)n j

)
= fi

(
∑

j
h j(x)n j

)
= fi(0)
= 0.



8. THE MORITA THEOREMS 109

(2): Because the image of θS equals TR(M), the trace ideal of M, it is clear that θS is
onto if and only if M is an R-generator (Definition 2.1.12).

Suppose θS is onto. Assume ∑ j h j⊗ n j ∈ kerθS. That is, ∑ j h j(n j) = 0. Since θS is
onto, there exist f1, . . . , fn in M∗, m1, . . . ,mn in M with ∑i fi(mi) = 1 ∈ R. Notice that for
every i and every x ∈M,

∑
j

h j ·θR( fi⊗n j)(x) = ∑
j

h j
(

fi(x)n j
)

= fi(x)∑
j

h j(n j)

= 0.

Hence

∑
j

h j⊗n j = ∑
j

h j⊗
(
∑

i
fi(mi)

)
n j

= ∑
j

h j⊗
(
∑

i
fi(mi)n j

)
= ∑

j
h j⊗

(
∑

i
θR( fi⊗n j)(mi)

)
= ∑

i, j
h j⊗θR( fi⊗n j)(mi)

= ∑
i

(
∑

j
h j ·θR( fi⊗n j)

)
⊗ (mi)

= ∑
i

0⊗mi

= 0.

Therefore, θS is one-to-one. □

8.2. The Morita Theorems. Let R be any ring and M a left R-progenerator. Set
S=HomR(M,M) and M∗=HomR(M,R). As in Section 2.8.1, M is a left R left S bimodule.
A slight variation of Lemma 2.3.17 (2) shows that (·)⊗R M defines a covariant functor from
MR to SM. Likewise, M∗ is a right R right S bimodule, hence M∗⊗S (·) defines a covariant
functor from SM to MR. The following is the crucial theorem.

THEOREM 2.8.2. In the above context, the functors

(·)⊗R M : MR→ SM

and
M∗⊗S (·) : SM→MR

are inverse equivalences. We say that the categories MR and SM are Morita equivalent.

PROOF. Let L be any right R-module. Then, by the basic properties of the tensor
product and Lemma 2.8.1 (2), we have

M∗⊗S (L⊗R M)∼= M∗⊗S (M⊗Ro L)
∼= (M∗⊗S M)⊗Ro L
∼= R⊗Ro L
∼= L⊗R R
∼= L
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where the composite isomorphism is given by f ⊗ (l⊗m) 7→ l ·θS( f ⊗m) = l · f (m). This
isomorphism allows one to verify that ()⊗R M followed by M∗⊗S () is naturally equivalent
to the identity functor on MR. Likewise, for any left S-module N, the isomorphism of
Lemma 2.8.1 (1) implies that

(M∗⊗S N)⊗R M ∼= (N⊗So M∗)⊗R M
∼= N⊗So (M∗⊗R M)
∼= N⊗So S
∼= S⊗S N
∼= N

under the map ( f ⊗n)⊗m 7→ θR( f ⊗m) ·n. Again this gives us that M∗⊗S () followed by
()⊗R M is naturally equivalent to the identity on SM. □

COROLLARY 2.8.3. In the setting of Theorem 2.8.2, we have
(1) R∼= HomS(M,M) (as rings) where r in R maps to “left multiplication by r”.
(2) M∗ ∼= HomS(M,S) (as right S-modules) where f in M∗ maps to the homomor-

phism θR
(

f ⊗ ()
)
.

(3) M ∼= HomR(M∗,R) = M∗∗ (as left R-modules) where m in M maps to the element
in M∗∗ which is “evaluation at m”.

(4) So ∼= HomR(M∗,M∗) (as rings) where s in So maps to “right multiplication by
s”.

(5) M is an S-progenerator.
(6) M∗ is an R-progenerator.
(7) M∗ is an S-progenerator.

PROOF. The fully faithful part of Proposition 1.4.6 applied to the functor ()⊗R M
says that for any two right R-modules A and B, the assignment

(8.1) HomR(A,B)→ HomS(A⊗R M,B⊗R M)

is a one-to-one correspondence. Under this equivalence, the right R-module R corresponds
to the left S-module R⊗R M ∼= M and the right R-module M∗ corresponds to the left S-
module M∗⊗R M ∼= S. For (1), use (8.1) with A = B = R. For (2), use (8.1) with A = R
and B = M∗. In each case, the reader should verify that the composite isomorphisms are
the correct maps.

The fully faithful part of Proposition 1.4.6 applied to the functor M∗⊗S () : SM→MR
says that for any two left S-modules C and D, the assignment

(8.2) HomS(C,D)→ HomR(M∗⊗S C,M∗⊗S D)

is a one-to-one correspondence. By Lemma 2.4.7, M is isomorphic to HomS(S,M). By
(8.2) with C = S and D = M, we get HomS(S,M) ∼= HomR(M∗,R) = M∗∗, which is (3).
For (4), use (8.2) with C = D = S. Since M∗⊗S S ∼= M∗, we get the isomorphism of rings
HomS(S,S)∼=HomR(M∗,M∗). By Exercise 2.4.25, So∼=HomS(S,S) as rings. In each case,
the reader should verify that the composite isomorphisms are the correct maps.

(5): Because M is an R-progenerator, we have θS : M∗⊗S M∼=R and θR : M∗⊗R M∼= S.
By (1) and (2) above, this gives rise to isomorphisms

θS : HomS(M,S)⊗S M ∼= HomS(M,M)

and
θR : HomS(M,S)⊗HomS(M,M) M ∼= S.
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By Lemma 2.8.1 with R and S interchanged, it follows that M is an S-progenerator.
(6): Again using M∗⊗S M ∼= R and M∗⊗R M ∼= S and this time substituting (3) and

(4), we obtain

R∼= M∗⊗S M
∼= M∗⊗S HomR(M∗,R)
∼= HomR(M∗,R)⊗So M∗

∼= HomR(M∗,R)⊗HomR(M∗,M∗) M∗

(8.3)

and
HomRo(M∗,Ro)⊗Ro M∗ ∼= M∗⊗R HomR(M∗,R)

∼= M∗⊗R M
∼= S
∼= HomR(M∗,M∗)
∼= HomRo(M∗,M∗)

(8.4)

where the last isomorphism in the second string is set identity and M∗ is considered as a
left Ro-module since it is a right R-module. By Lemma 2.8.1 with M∗ in place of M, we see
that M∗ is an R-generator by (8.3) and a finitely generated and projective left Ro-module
by (8.4). This implies that M∗ is a right R-progenerator.

(7): By (5), M is an S-progenerator. Apply (6) to the S-module M to get HomS(M,S)
is an S-progenerator. By (2), HomS(M,S)∼= M∗. □

COROLLARY 2.8.4. Let R, M and S be as in Theorem 2.8.2. For any two-sided ideal
a of R, M∗⊗R (a⊗R M) is naturally isomorphic to the two-sided ideal of S consisting of all
elements of the form

∑
i

θR( fi⊗αimi) , fi ∈M∗ , αi ∈ a , mi ∈M.

For any two-sided ideal b of S, M∗⊗S (b⊗S M) is naturally isomorphic to the two-sided
ideal of R consisting of all elements of the form

∑
i

θS
(

fi⊗βi(ni)
)
= ∑

i
fi
(
βi(ni)

)
, fi ∈M∗ ,βi ∈ b ,ni ∈M.

These correspondences are inverses of each other and establish a one-to-one, order pre-
serving correspondence between the two-sided ideals of R and the two-sided ideals of S.

PROOF. Since M and M∗ are both R-projective, they are flat. The exact sequence
0→ a→ R yields the exact sequence

0→M∗⊗R (a⊗R M)→M∗⊗R (R⊗R M)∼= M∗⊗R M ∼= S .

We consider M∗⊗R (a⊗R M) as a subset of M∗⊗R (R⊗R M). By θR, M∗⊗R (R⊗R M) is
isomorphic to S. This maps this submodule M∗⊗R (a⊗R M) onto the ideal of S made up
of elements of the form ∑i θR( fi⊗αimi).

Likewise, M and M∗ are S-projective. The exact sequence 0→ b→ S yields the exact
sequence

0→M∗⊗S (b⊗S M)→M∗⊗S M ∼= R .

We view M∗⊗S (b⊗S M) as the ideal of R made up of elements looking like ∑i fi
(
βi(ni)

)
.

The reader should verify that the correspondences are inverses of each other. □
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REMARK 2.8.5. In the setting of Theorem 2.8.2, the categories MR and SM are equiv-
alent. In Corollary 2.8.6 below, we show that finitely generated R-modules correspond to
finitely generated S-modules, projective R-modules correspond to projective S-modules,
and R-generator modules correspond to S-generator modules. It is important to remem-
ber that under this equivalence, free R-modules do not necessarily correspond to free S-
modules. Note that the free R-module R corresponds to the left S-module M, which is not
necessarily a free S-module. Likewise, the free S-module S corresponds to the right R-
module M∗, which is not necessarily a free R-module. Consider a specific example. Start
with a division ring R and an R-vector space M of dimension 2. Then S = HomR(M,M) is
isomorphic to the matrix ring M2(Ro). By Corollary 2.8.3 (5), M is an S-progenerator mod-
ule. However, in Example 2.1.4 we saw that M is not a free S-module. See Exercises 2.8.11
and 2.8.12 for an elaboration of this example.

COROLLARY 2.8.6. In the setting of Theorem 2.8.2, let L be a right R-module and
L⊗R M its corresponding left S-module.

(1) L is finitely generated over R if and only if L⊗R M is finitely generated over S.
(2) L is R-projective if and only if L⊗R M is S-projective.
(3) L is an R-generator if and only if L⊗R M is an S-generator.

PROOF. Use Lemma 1.6.11 to write L as the homomorphic image of a free R-module

(8.5) RI → L→ 0

where I is an index set. Tensor (8.5) with (·)⊗R M to get the exact sequence

(8.6) MI → L⊗R M→ 0

of S-modules. By Corollary 2.8.3 (5), M is finitely generated and projective as an S-
module. For each biconditional, we prove only one direction. Each converse follows by
categorical equivalence.

(1): If L is finitely generated over R, we may assume I is a finite set. In (8.6), MI =⊕
i∈I M is a finite sum of finitely generated modules and is finitely generated. So L⊗R M

is finitely generated.
(2): If L is projective, by Proposition 2.1.1, (8.5) splits. It follows that (8.6) also splits.

Use Exercise 2.1.22 to show that the S-modules MI and L⊗R M are projective.
(3): Let L be an R-generator. Let δ : C → D be a nonzero homomorphism of left

S-modules. By Exercise 2.4.16 (3), to show that L⊗R M is an S-generator it suffices to
show that there exists an S-module homomorphism f : L⊗R M → C such that δ ◦ f is
nonzero. By Proposition 1.4.6, 1⊗ δ : M∗⊗S C→M∗⊗S D is a nonzero homomorphism
of right R-modules. Since L is an R-generator, by Exercise 2.4.16 (4), there exists an R-
module homomorphism α : L → M∗ ⊗S C such that (1⊗ δ ) ◦ α is nonzero. Again by
Proposition 1.4.6, δ ◦ (α⊗1) is nonzero. □

EXAMPLE 2.8.7. Let R be a ring and Mn(R) the ring of n-by-n matrices over R. It
is an exercise using multiplication by elementary matrices to show that if I is an ideal in
Mn(R), then I = Mn(J) for some ideal J in R (see [20, Exercise 3.2.34]). The reader should
verify that this is a special case of Corollary 2.8.4. (Hint: Ideals in Mn(R) correspond to
ideals in Mn(R)o ∼= Mn(Ro)∼= HomR(F,F), where F is a free left R-module with rank n.)

EXAMPLE 2.8.8. An important special case of Example 2.8.7 is when R = D is a
division ring. Then D has no proper two-sided ideal. A left D-progenerator is a finitely
generated D-vector space, say V . By Corollary 2.8.4, the endomorphism ring HomD(V,V )
has no proper two-sided ideal. In the Wedderburn-Artin Theorem (Theorem 4.4.5) below,
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we prove the converse of this fact. That is, we show that if R is an artinian ring with no
proper two-sided ideal, then R is isomorphic to a ring of the form HomD(V,V ) for some
division ring D.

8.3. Exercises.

EXERCISE 2.8.9. Let R be any ring and let M be a left R-progenerator. Set S =
HomR(M,M). Show that

()⊗R M : MR→ SM

and
HomS(M, ) : SM→MR

are inverse equivalences, establishing MR ∼ SM. (Hint: Use Corollary 2.8.3 (2) and The-
orem 2.4.15.)

EXERCISE 2.8.10. Let R be any ring. A left R-module M is said to be faithfully flat
if M is flat and M has the property that N ⊗R M = 0 implies N = 0. Show that a left
R-progenerator is faithfully flat.

EXERCISE 2.8.11. Let k be a field, V a left k-vector space of dimension n > 0, and
S = Homk(V,V ).

(1) Show that every left S-module is isomorphic to a direct sum of copies of V .
(2) If N is a finitely generated left S-module, then N is a finite dimensional k-vector

space and dimk(N) is a multiple of n.

EXERCISE 2.8.12. State and prove a version of Exercise 2.8.11 for D a division ring,
V a finite dimensional left D-vector space and S = HomD(V,V ). (Hint: V is a left D left S
bimodule.)





CHAPTER 3

Modules over Commutative Rings

This chapter is a study of the theory of modules over commutative rings. In Chapter 2,
modules were studied over general rings. So in this sense, the present chapter marks for us
the beginning of Commutative Algebra. Like the material in Chapter 2, the material in this
chapter is fundamental and will be applied in all of the following chapters.

The localization of a commutative ring R at a multiplicative subset W is a ring, denoted
W−1R, together with a natural homomorphism R→W−1R. This construction generalizes
the familiar construction of the ring of quotients of an integral domain. As a set, W−1R
is the set of equivalence classes of fractions {r/w | r ∈ R,w ∈W}, modulo an appropriate
equivalence relation. The localization of an R-module M at W is defined in a similar way.
The “localization at W” functor from the category of R-modules to the category of W−1R-
modules, which is defined by M 7→W−1M, is exact. Localization plays a central role
throughout this chapter. The terminology for localization comes from the fact that in the set
of all prime ideals of R, the prime ideals of W−1R make up a subset (see Exercise 3.3.25).

Section 3.1.1 contains some fundamental lemmas on homological algebra. These “Lo-
cal to Global” lemmas are motivated by the question: “If a homomorphism of R-modules
ϕ : M→ N becomes an isomorphism upon localization at W , is ϕ an isomorphism?”

The fundamental theorems on the decomposition of a ring into an internal direct sum
of ideals are Theorem 1.1.8 and Proposition 1.1.9. In Lemma 3.2.4, necessary and suffi-
cient conditions are derived such that a left ideal I in a ring R is a module direct summand
of R. This is one of the few results in this chapter that does not require the ring R to be
commutative.

The set of all prime ideals in a commutative ring R is called the prime spectrum of R
and is denoted SpecR. We define a topology on SpecR, the Zariski topology, and show
that the assignment R 7→ SpecR is a contravariant functor from the category of commuta-
tive rings to the category of topological spaces. If θ : R→ S is a homomorphism of rings,
then θ ♯ : SpecS→ SpecR is the corresponding continuous function. If W is a multiplica-
tive subset of R, then SpecW−1R→ SpecR is one-to-one. As mentioned above, the term
“localization” refers to localization to a smaller subset of SpecR.

A local ring is a commutative ring R that has exactly one maximal ideal. If R is a
commutative ring and P is a prime ideal of R, then the set R−P is a multiplicative set.
The localization of R at R−P is denoted RP and is a local ring with maximal ideal PRP.
In Section 3.4 we show that if M is a finitely generated projective R-module, then MP is
a free RP-module of finite rank. Moreover, there exists an element α ∈ R−P such that
Mα is a free Rα -module of finite rank. If U(α) denotes the image of the natural map
SpecRα → SpecR, then U(α) is an open subset in the Zariski topology. We show that
there is a finite set {α1, . . . ,αn} such that {U(α1), . . . ,U(αn)} is an open cover of SpecR
and Mαi is free of finite rank over Rαi . We say that a finitely generated projective module
is locally free of finite rank. In Section 3.6 we prove the converse.

115
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If M is a module over commutative ring R, then M is flat if the functor M⊗R (·) is both
left and right exact. If M is flat and if M⊗R N = 0 implies N = 0, then M is called faithfully
flat. As an R-module, W−1R, the localization of R at a multiplicative set W , is generally
flat but not faithfully flat. We study faithfully flat modules and algebras over commutative
rings in Section 3.5 and flat modules and algebras in Section 3.7. If S is an R-algebra, we
derive a number of very important necessary conditions and sufficient conditions in order
for S to be a faithfully flat R-module.

We have included a short section on multilinear algebra, Section 3.8. In this section
we establish much of our notation and conventions on graded rings and modules.

1. Localization of Modules and Rings

In this section we define the localization of a module over a commutative ring. This
definition is a generalization of the construction of the quotient field of an integral domain.
Let R be a commutative ring and W a subset of R that satisfies

(1) 1 ∈W , and
(2) if x and y are in W , then xy ∈W .

In this case, we say that W is a multiplicative subset of R.

EXAMPLE 3.1.1. Here are some typical examples of multiplicative sets.

(1) If P is a prime ideal in R, then Proposition 1.5.4 says that R−P is a multiplicative
subset of R.

(2) If R is an integral domain, then W = R− (0) is a multiplicative subset of R.
(3) If f ∈ R, then {1, f , f 2, f 3, . . .} is a multiplicative subset of R.
(4) The set of all x ∈ R such that x is not a zero divisor is a multiplicative subset of

R.

Suppose W is a multiplicative subset of R. Define a relation on R×W by (r,v)∼ (s,w)
if and only if there exists q ∈W such that q(rw− sv) = 0. Clearly ∼ is reflexive and
symmetric. Let us show that it is transitive. Suppose (r,u) ∼ (s,v) and (s,v) ∼ (t,w).
There exist e, f ∈W such that e(rv− su) = 0 and f (sw− tv) = 0. Multiply the first by
f w and the second by eu to get f we(rv− su) = 0 and eu f (sw− tv) = 0. Subtracting, we
have r f wev− s f weu+ seu f w− teu f v = ev f (rw− tu) = 0. Since ev f ∈W , this shows
(r,u) ∼ (t,w). Therefore ∼ is an equivalence relation on R×W . The set of equivalence
classes is denoted W−1R and the equivalence class containing (r,w) is denoted by the
fraction r/w.

LEMMA 3.1.2. Let R be a commutative ring and W a multiplicative subset of R. Then
W−1R is a commutative ring under the addition and multiplication operations

r
v
+

s
w

=
rw+ sv

vw
,

r
v

s
w

=
rs
vw

.

The additive identity is 0/1, the multiplicative identity is 1/1. The map θ : R→W−1R
defined by r 7→ r/1 is a homomorphism of rings. The image of W under θ is a subset of the
group of units of W−1R.

PROOF. Assume r
v =

r1
v1

and s
w = s1

w1
. Then there exist α and β in W such that

α(rv1− r1v) = 0(1.1)

β (sw1− s1w) = 0.(1.2)
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Multiply (1.1) by βww1 and (1.2) by αvv1 to get the identities

αβ rv1ww1−αβ r1vww1 = 0

αβ sw1vv1−αβ s1wvv1 = 0.

Adding the left-hand sides we derive

αβ ((rw+ sv)v1w1− (r1w1 + s1v1)vw) = 0.

This is the center equation in:
r
v
+

s
w

=
rw+ sv

vw
=

r1w1 + s1v1

v1w1
=

r1

v1
+

s1

w1
.

Hence, addition of fractions is well defined. Multiply (1.1) by β sw1 and (1.2) by αr1v to
get the identities

αβ (rsv1w1− r1vsw1) = 0

αβ (sw1r1v− s1wr1v) = 0.

Adding the left-hand sides we derive

αβ (rsv1w1− r1s1vw) = 0.

This is the center equation in:
r
v

s
w

=
rs
vw

=
r1s1

v1w1
=

r1

v1

s1

w1
.

Hence, multiplication of fractions is well defined. It is routine to check that the associative
and distributive laws hold and that W−1R is a commutative ring. The rest of the proof is
left to the reader. □

DEFINITION 3.1.3. As in Lemma 3.1.2, let R be a commutative ring and W a multi-
plicative subset of R. The ring W−1R is called the localization of R at W . It comes with
the natural map θ : R→W−1R. If W is the set of all elements of R that are not zero divi-
sors, then W−1R is called the total ring of quotients of R. If R is an integral domain and
W = R− (0), then W−1R is called the quotient field, or field of fractions of R.

The notion of localization is now extended to R-modules and R-algebras. Let M be an
R-module and W a multiplicative subset of R. Define a relation on M×W by (m1,w1) ∼
(m2,w2) if and only if there exists w ∈W such that w(w2m1 −w1m2) = 0. The same
argument used in Lemma 3.1.2 shows that ∼ is an equivalence relation on M×W . The
set of equivalence classes is denoted W−1M and the equivalence class containing (m,w) is
denoted by the fraction m/w. We call W−1M the localization of M at W .

LEMMA 3.1.4. Let R be a commutative ring, W a multiplicative set in R, and M an
R-module.

(1) W−1M is a Z-module under the addition rule
m1

w1
+

m2

w2
=

w2m1 +w1m2

w1w2
.

(2) W−1M is an R-module under the multiplication rule

r
m
w

=
rm
w

.

(3) The assignment m 7→m/1 defines an R-module homomorphism σ : M→W−1M.
The kernel of σ is equal to the the set of all m ∈M such that wm = 0 for some w
in W.
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(4) If M is an R-algebra, the multiplication rule
m1

w1

m2

w2
=

m1m2

w1w2

makes W−1M into an R-algebra.
(5) W−1M is a W−1R-module under the multiplication rule

r
w1

m
w2

=
rm

w1w2
.

(6) The assignment φ(m/w) = 1/w⊗m defines a W−1R-module isomorphism

W−1M
φ−→W−1R⊗R M.

PROOF. The proof is left to the reader. Notice that in (6) the inverse of φ is given by
a⊗b 7→ ab. □

EXAMPLE 3.1.5. Given a prime ideal P in R, let W = R−P = {x ∈ R | x ̸∈ P}. As
remarked in Example 3.1.1 (1), R−P is a multiplicative set. The R-algebra W−1R is usually
written RP and if M is an R-module, we write MP for the localization W−1M. The ideal
generated by P in RP is PRP = {x/y ∈ RP | x ∈ P,y ̸∈ P}. If x/y ̸∈ PRP, then x ̸∈ P so
y/x ∈ RP is the multiplicative inverse of x/y. Since the complement of PRP consists of
units, the ideal PRP contains every nonunit. So PRP is the unique maximal ideal of RP.
As in Exercise 1.1.27, a local ring is a commutative ring that has a unique maximal ideal.
Hence RP is a local ring with maximal ideal PRP, which is sometimes called the local
ring of R at P. The factor ring RP/PRP is a field, which is sometimes called the residue
field of RP. The factor ring R/P is an integral domain and by Exercise 3.1.20, RP/PRP is
isomorphic to the quotient field of R/P.

THEOREM 3.1.6. (Universal Mapping Property) Let R be a commutative ring, W a
multiplicative subset of R, and W−1R the localization. If S is a commutative ring and
f : R→ S a homomorphism such that f (W ) ⊆ Units(S), then there exists a unique homo-
morphism f̄ : W−1R→ S

R
f //

θ ""

S

W−1R
∃ f̄

<<

such that f = f̄ θ .

PROOF. First we show the existence of f̄ . Assume x1/y1 = x2/y2. Then there exists
y ∈W such that y(x1y2− x2y1) = 0. Applying f , we get f (y)( f (x1) f (y2)− f (x2) f (y1)) =
0. Since f (W )⊆Units(S) we get f (x1) f (y1)

−1 = f (x2) f (y2)
−1. The reader should verify

that f̄ (x/y) = f (x) f (y)−1 defines a homomorphism of rings.
Now we prove the uniqueness of f̄ . Suppose g : W−1R→ S is another such homomor-

phism. Then for each y∈W , f (y) = gθ(y) = g(y/1) is a unit in S. Then g(1/y) = g(y/1)−1

for each y ∈W . Now g(x/y) = g(θ(x))g(θ(y))−1 = f (x) f (y)−1 = f̄ (x/y). □

Lemma 3.1.7 below shows that a localization of a commutative ring R is a flat R-
module. In general, a localization W−1R is not projective (see Exercise 2.1.24).

LEMMA 3.1.7. W−1R is a flat R-module.
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PROOF. Given an R-module monomorphism

0→ A
f−→ B

we need to show that
0→ A⊗R W−1R

f⊗1−−→ B⊗R W−1R

is exact. Equivalently, by Lemma 3.1.4, we show

0→W−1A
fW−→W−1B

is exact, where fW (a/w) = f (a)/w. If f (a)/w = 0 in W−1B, then there exists y ∈W such
that y f (a) = 0. Then f (ya) = 0. Since f is one-to-one, ya = 0 in A. Then a/w = 0 in
W−1A. □

EXAMPLE 3.1.8. Let k be a field of characteristic different from 2. Let x be an indeter-
minate and f (x) = x2−1. Let R = k[x]/( f (x)). The Chinese Remainder Theorem, Theo-
rem 1.1.7, says R∼= k[x]/(x−1)⊕k[x]/(x+1). In R are the two idempotents e1 = (1+x)/2
and e2 = (1− x)/2. Notice that e1e2 = 0, e1 + e2 = 1, e2

i = ei. Then {1,e1} is a multi-
plicative set. Consider the localization R[e−1

1 ] which is an R-algebra, hence comes with a
structure homomorphism θ : R→ R[e−1

1 ]. Note that kerθ = {a ∈ R | a/1 = 0}= {a ∈ R |
ae1 = 0}= Re2. Then the sequence

0→ Re2→ R θ−→ R[e−1
1 ]

is exact. Since e2
1 = e1, multiplying by e1/e1 shows that an arbitrary element of R[e−1

1 ] can
be represented in the form a/e1. But an element a ∈ R can be written a = ae1 + ae2 so
every element of R[e−1

1 ] can be written a/e1 = (ae1)/e1 ∈ θ(Re1). That is, θ is onto and
R[e−1

1 ]∼= R/Re2.

1.1. Local to Global Lemmas. Let R be a commutative ring and ϕ : M→N a homo-
morphism of R-modules. Suppose there is a multiplicative set W ⊆ R such that the lo-
calization ϕW : MW → NW is one-to-one, or onto, or both. The results of this section are
motivated by the question of whether ϕ is one-to-one, or onto, or both. Generally the
answer is no, but we derive sufficient conditions such that the answer is yes for the local-
ization at a subset of W of the form {1,w,w2, ...} ⊆W . In Section 3.3 we will see that in
the Zariski topology on the set of all prime ideals of R, the set of prime ideals of the ring Rw
is an open neighborhood of the set of prime ideals of RW . This explains the terminology.

PROPOSITION 3.1.9. Let R be a commutative ring and M an R-module. If Mm = 0 for
every maximal ideal m of R, then M = (0).

PROOF. Let x ∈M. We show that x = 0. Assume x ̸= 0. Look at annihR(x) = {y ∈ R |
yx= 0}. Since 1 ̸∈ annihR(x), there exists a maximal ideal m⊇ annihR(x). Since x/1= 0/1
in Mm, there exists y ̸∈m such that yx = 0. This is a contradiction. □

LEMMA 3.1.10. Let R be a commutative ring, M a finitely generated R-module, and
W ⊆ R a multiplicative subset. Then W−1M = 0 if and only if there exists w ∈W such that
wM = 0.

PROOF. If wM = 0, then clearly W−1M = 0. Conversely, assume W−1M = 0. Pick
a generating set {m1, . . . ,mn} for M over R. Since each mi/1 = 0/1 in MW , there exist
w1, . . . ,wn in W such that wimi = 0 for each i. Set w = w1w2 · · ·wn. This w works. □
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In the following, we write Mα instead of M[α−1] for the localization of an R-module
at the multiplicative set {1,α,α2, . . .}.

LEMMA 3.1.11. Let R be a commutative ring and ϕ : M → N a homomorphism of
R-modules. Let W ⊆ R be a multiplicative subset and ϕW : M⊗R W−1R→ N⊗R W−1R.

(1) If ϕW is one-to-one and kerϕ is a finitely generated R-module, then there exists
α ∈W such that ϕα : Mα → Nα is one-to-one.

(2) If ϕW is onto and cokerϕ is a finitely generated R-module, then there exists
β ∈W such that ϕβ : Mβ → Nβ is onto.

(3) If ϕW is an isomorphism and both kerϕ and cokerϕ are finitely generated R-
modules, then there exists w ∈W such that ϕw : Mw→ Nw is an isomorphism.

PROOF. Start with the exact sequence of R-modules

(1.3) 0→ ker(ϕ)→M
ϕ−→ N→ coker(ϕ)→ 0.

Tensoring (1.3) with (·)⊗R R[W−1] we get

(1.4) 0→W−1 ker(ϕ)→W−1M
ϕW−−→W−1N→W−1 coker(ϕ)→ 0

which is exact, by Lemma 3.1.7.
(1): If ϕW is one-to-one, then by Lemma 3.1.10 there is α ∈W such that α(ker(ϕ)) =

0. Therefore, ker(ϕ)⊗R R[α−1] = 0, and ϕα is one-to-one.
(2): If ϕW is onto, then by Lemma 3.1.10 there is β ∈W such that β (coker(ϕ)) = 0.

Therefore, coker(ϕ)⊗R R[β−1] = 0, and ϕβ is onto.
(3): Let α be as in (1) and β as in (2). If we set w = αβ , then ϕw is an isomorphism

of Rw-modules. □

LEMMA 3.1.12. Let R be a commutative ring. Let A and B be commutative R-algebras
and ϕ : A→ B an R-algebra homomorphism. Assume kerϕ is a finitely generated ideal
of A, and B is a finitely generated A-algebra. If W ⊆ R is a multiplicative subset and
ϕ⊗1 : A⊗R W−1R→ B⊗R W−1R is an isomorphism of W−1R-algebras, then there exists
w ∈W such that ϕw : Aw→ Bw is an isomorphism of Rw-algebras.

PROOF. Suppose kerϕ = Ax1 + · · ·+Axn. By Lemma 3.1.10 there is α ∈W such that
α(Rx1 + · · ·+Rxn) = 0. Therefore, α kerϕ = 0. Suppose the A-algebra B is generated by
y1, . . . ,ym. By Lemma 3.1.10 there is β ∈W such that β (Ry1 + · · ·+Rym) ⊆ ϕ(A). If we
set w = αβ , then ϕw : Aw→ Bw is an isomorphism of Rw-algebras. □

LEMMA 3.1.13. Let R be any ring and

0→ A α−→ B
β−→C→ 0

an exact sequence of R-modules.

(1) If B is finitely generated, then C is finitely generated.
(2) If A and C are finitely generated, then B is finitely generated.
(3) If B is finitely generated and C is of finite presentation, then A is finitely gener-

ated.

PROOF. (1) and (2): Left to the reader.
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(3): Consider the commutative diagram

(1.5) R(n) φ //

∃ρ
��

R(n) ψ //

∃η
��

C //

=

��

0

0 // A α // B
β // C // 0

where the top row exists because C is of finite presentation. The homomorphism η exists
by Proposition 2.1.1 (3) because R(n) is projective. Now βηφ = ψφ = 0 so imηφ ⊆
kerβ = imα . Again, since R(n) is projective there exists ρ making the diagram commute.
Since B is finitely generated, so is cokerη by Part (1). The Snake Lemma 2.5.2 applied to
(1.5) says that cokerρ ∼= cokerη so cokerρ is finitely generated. Because imρ is finitely
generated, the exact sequence

0→ imρ → A→ cokerρ → 0

and Part (2) show that A is finitely generated. □

LEMMA 3.1.14. Let R be a commutative ring and M an R-module of finite presenta-
tion. Let p ∈ SpecR and assume Mp = M⊗R Rp is a free Rp-module. Then there exists
α ∈ R−p such that Mα is a free Rα -module.

PROOF. Since M is finitely generated, we know that Mp is free of finite rank. Pick a
basis {m1/α1, . . . ,mn/αn} for Mp over Rp. Since {1/α1, . . . ,1/αn} are units in Rp, it fol-
lows that {m1/1, . . . ,mn/1} is a basis for Mp over Rp. Define ϕ : Rn→M by (x1, . . . ,xn) 7→
∑

n
i=1 ximi, and consider the exact sequence of R-modules

(1.6) 0→ kerϕ → Rn ϕ−→M→ cokerϕ → 0.

Tensoring (1.6) with (·)⊗R Rp, we get

(1.7) 0→ (kerϕ)p→ Rn
p

ϕp−→Mp→ (cokerϕ)p→ 0

which is exact, by Lemma 3.1.7. But Mp is free over Rp with basis {m1/1, . . . ,mn/1} and
ϕp maps the standard basis to this basis. That is, ϕp is an isomorphism. So 0 = (kerϕ)p =

(cokerϕ)p. Since M is finitely generated over R so is cokerϕ . By Lemma 3.1.10 there
exists β ∈ R− p such that β · cokerϕ = 0. Then (cokerϕ)

β
= 0. Tensoring (1.6) with

( )⊗R Rβ we get the sequence

(1.8) 0→ (kerϕ)
β
→ Rn

β

ϕβ−→Mβ → 0

which is exact. Since M is a finitely presented R-module, Mβ is a finitely presented Rβ -
module. By Lemma 3.1.13, (kerϕ)β is a finitely generated Rβ -module. Since β ∈ R−p,
by Theorem 3.1.6 there exists a homomorphism of rings Rβ → Rp so we can tensor (1.8)
with (·)⊗Rβ

Rp to get (1.7) again. That is, (kerϕ)
β
⊗Rβ

Rp
∼= (kerφ)p = 0. Lemma 3.1.10

says there exists µ/β k ∈ Rβ − pRβ such that µ/β k (kerφ)
β
= 0. But β is a unit in Rβ so

this is equivalent to µ (kerφ)
β
= 0. It is easy to check that Rµβ = R[(µβ )−1] = (Rβ )µ .

This means 0 =
(
(kerφ)

β

)
µ
= (kerφ)

β µ
. We also have (cokerφ)

β µ
= 0. Tensor (1.6)

with Rµβ to get R(n)
µβ
∼= Mµβ . Take α = µβ . □
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1.2. Exercises.

EXERCISE 3.1.15. Let R be a commutative ring and W a multiplicative set. Let M be
an R-module with submodules A and B. Prove:

(1) W−1(A+B) =W−1A+W−1B
(2) W−1(A∩B) =W−1A∩W−1B

EXERCISE 3.1.16. Let R be a commutative ring and assume e ∈ R is a nonzero idem-
potent. Show that there is a natural homomorphism of rings R[e−1] ∼= Re. (Hint: The
localization map θ : R→ R[e−1] is onto and the kernel of θ is the principal ideal generated
by the idempotent 1− e.)

EXERCISE 3.1.17. Suppose R is a commutative ring, R = R1⊕R2 is a direct sum, and
πi : R→ Ri is the projection. Let p be a prime ideal in R1 and q = π

−1
1 (p). Prove that π1

induces an isomorphism on local rings Rq
∼= (R1)p.

EXERCISE 3.1.18. Suppose R is a commutative ring, R= R1⊕·· ·⊕Rn is a direct sum,
and πi : R→ Ri is the projection. Assume each Ri is a local ring with maximal ideal ni. Let
mi = π

−1
i (ni). Prove:

(1) m1, . . . ,mn is the complete list of maximal ideals of R.
(2) πi induces an isomorphism on local rings Rmi

∼= Ri.
(3) The natural homomorphism R→ Rm1 ⊕·· ·⊕Rmn is an isomorphism.

EXERCISE 3.1.19. Let R be a commutative ring, K a field, and φ : R→ K a homo-
morphism of rings. If P is the kernel of φ , show that P is a prime ideal of R and φ induces
a homomorphism of fields RP/(PRP)→ K.

EXERCISE 3.1.20. Let R be a commutative ring and P a prime ideal in R. Show that
RP/(PRP) is isomorphic to the quotient field of R/P.

EXERCISE 3.1.21. Let f : R→ S be a homomorphism of commutative rings and W a
multiplicative subset of R. Prove:

(1) f (W )⊆ S is a multiplicative subset of S.
(2) If Z = f (W ) is the image of W , then Z−1S∼=W−1S = S⊗R W−1R.
(3) If I is an ideal in R, then W−1(R/I)∼= (R/I)⊗R W−1R∼= (W−1R)/(I(W−1R)).

EXERCISE 3.1.22. Let R be a commutative ring. Let V and W be two multiplicative
subsets of R. Prove:

(1) If VW = {vw | v ∈V,w ∈W}, then VW is a multiplicative subset of R.
(2) Let U be the image of V in W−1R. Then (VW )−1R∼=U−1(W−1R)∼=V−1(W−1R).

EXERCISE 3.1.23. Let R = Z be the ring of integers and S = Z[2−1] the localization
of R obtained by inverting 2. Prove:

(1) If P = (p) is a prime ideal of R and p is different from 2 and 0, then RP ∼= SP =
S⊗R RP.

(2) If P = (2) is the prime ideal of R generated by 2, then S⊗R RP is isomorphic to
Q. Therefore, RP is not isomorphic to SP.

EXERCISE 3.1.24. Let R be a commutative ring and P a prime ideal in R. Show that
if α ∈ R−P, then RP ∼= (Rα)PRα

∼= Rα ⊗R RP.

EXERCISE 3.1.25. Let f : R→ S be a homomorphism of commutative rings. Let Q
be a prime ideal in S and P = f−1(Q). Let QP = Q⊗R RP and SP = S⊗R RP. Prove:
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(1) f induces a local homomorphism of local rings g : RP→ SQ.
(2) QP is a prime ideal of SP.
(3) SQ is isomorphic to the local ring of SP at QP.
(4) The diagram

RP
g //

f⊗1   

SQ

SP

φ

>>

commutes where φ is the localization map.

EXERCISE 3.1.26. Let R be an integral domain with quotient field K. Let MaxR
denote the set of all maximal ideals of R. If m ∈MaxR, then m is a prime ideal and by
Example 3.1.5 the local ring of R at m is denoted Rm. By Exercise 3.1.30, Rm can be
viewed as a subring of K. Show that

R =
⋂

m∈MaxR

Rm.

EXERCISE 3.1.27. Let R be an integral domain with field of fractions K. Let M be a
torsion free R-module (Definition 1.7.13) such that K⊗R M is a finite dimensional K-vector
space and dimK(K⊗R M) = n. Show that M contains a free R-submodule F of rank n such
that M/F is a torsion R-module and the natural map K⊗R F→K⊗R M is an isomorphism.

EXERCISE 3.1.28. Let R be a commutative ring and f ∈ R. As remarked in Exam-
ple 3.1.1 (3), W = {1, f , f 2, . . .} is a multiplicative set. Localization of R at W is denoted
R[ f−1] and is sometimes called the R-algebra formed by “inverting f ”. Let α and β be two
elements of R. Prove the following.

(1) If β/1 denotes the image of β in R[α−1], then the ring R[(αβ )−1] is isomorphic
to the ring R[α−1][(β/1)−1].

(2) If i > 0, then R[α−1] and R[α−i] are isomorphic as rings.

EXERCISE 3.1.29. Let R be a commutative ring and W ⊆ R a multiplicative set. Let
V ⊆W−1R be a multiplicative set. Show that there exists a multiplicative set U ⊆ R such
that the rings U−1R and V−1(W−1R) are isomorphic.

EXERCISE 3.1.30. Let R be a commutative ring, W ⊆ R a multiplicative set, and
θ : R→W−1R the natural map.

(1) The kernel of θ is equal to {x ∈ R | xw = 0 for some w ∈W}.
(2) θ is an isomorphism if and only if W ⊆ Units(R).

EXERCISE 3.1.31. Let R be a local PID with maximal ideal m. Let π be a generator
for m. Let K be the quotient field of R. Prove:

(1) If π1 is another irreducible element of R, then π and π1 are associates. That is,
up to associates, π is the unique irreducible element in R.

(2) As in Exercise 3.1.28, let R[π−1] be the R-algebra formed by inverting π . Then
R[π−1] is equal to K, the quotient field of R.

(3) If x is a nonzero element of K, then x has a representation in the form x = uπn,
for a unit u ∈ R∗ and an integer n in Z. The unit u and integer n are uniquely
determined by x.

EXERCISE 3.1.32. Let R be a commutative ring, f ∈R−(0), and R[ f−1] the R-algebra
formed by inverting f (Exercise 3.1.28). Show that R[ f−1] is a finitely generated R-algebra.
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EXERCISE 3.1.33. Let R be a ring of characteristic 0 such that (R,+) is a divisible
abelian group. Show that the center of R contains a subfield isomorphic to Q, hence R is a
Q-algebra. (Hint: Theorem 3.1.6.)

EXERCISE 3.1.34. As in Example 2.6.7, let S be the direct sum and P the direct
product of the finite prime fields. Show that the quotient P/S is a Q-algebra. (Hint: Exer-
cise 3.1.33.)

EXERCISE 3.1.35. Let R be a commutative ring and p ∈ SpecR. Show how to make
{R[α−1] | α ∈ R−p} into a directed system and prove that the local ring of R at p is equal
to the direct limit: Rp = lim−→Rα .

EXERCISE 3.1.36. (Local to Global Property for Idempotents) Let R be a commutative
ring and p ∈ SpecR. Let A be an R-algebra and e an idempotent in Ap. Show that there
exists α ∈ R− p and an idempotent e0 in Aα = A⊗R R[α−1] such that e is equal to the
image of e0 under the natural map Aα → Ap.

2. Module Direct Summands of Rings

Let R be a ring and I a left ideal of R. The main result of this section, Lemma 3.2.4, is
motivated by the question of whether R decomposes as an R-module into I⊕ J, for some
left ideal J.

DEFINITION 3.2.1. Let R be a ring. An idempotent e ∈ R is said to be primitive if e
cannot be written as a sum of two nonzero orthogonal idempotents.

DEFINITION 3.2.2. Let R be a ring and I ⊆ R a nonzero left ideal. Then I is a minimal
left ideal of R if whenever J is a left ideal of R and J ⊆ I, then either J = 0, or J = I.

EXAMPLE 3.2.3. Let F be a field and R = M2(F) the ring of two-by-two matrices
over F . Let

e1 =

[
1 0
0 0

]
, e2 =

[
0 0
0 1

]
.

The reader should verify the following facts.
(1) e1 and e2 are orthogonal idempotents.
(2) Re1 is the set of all matrices with second column consisting of zeros.
(3) Re2 is the set of all matrices with first column consisting of zeros.
(4) R = Re1⊕Re2 as R-modules.
(5) Re1 is a minimal left ideal.
(6) e1 is a primitive idempotent.

LEMMA 3.2.4. Let R be a ring and I a left ideal of R.
(1) I is an R-module direct summand of R if and only if I = Re for some idempotent

e.
(2) Suppose e ∈ R is idempotent. Then e is primitive if and only if Re cannot be

written as an R-module direct sum of proper left ideals of R.
(3) If I is a minimal left ideal, then I is an R-module direct summand of R if and only

if I2 ̸= 0.
(4) Suppose R = I⊕ J where I and J are two-sided ideals. Then I = Re for some

central idempotent e, I is a ring, and e is the multiplicative identity for I.

PROOF. (1): Assume R = I⊕L. Write 1 = e+ f where e ∈ I and f ∈ L. Then e =
e2 +e f . Now e f = e−e2 ∈ I∩L = 0. Likewise f e = 0. Also e+ f = 1 = 12 = (e+ f )2 =
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e2+ f 2. In the direct sum the representation of 1 is unique, so e = e2 and f = f 2. Let x ∈ I.
Then x = x ·1 = xe+x f . But x f = x−xe∈ I∩L = 0. So Re = I. Conversely assume e2 = e
and prove that Re is a direct summand of R. Then 0 = e− e2 = e(1− e) = (1− e)e. Also
(1− e)2 = 1− e− e+ e2 = 1− e. This shows e,1− e are orthogonal idempotents. Since
1 = e+(1−e) we have R = Re+R(1−e). Let x ∈ Re∩R(1−e). Then x = ae = b(1−e)
for some a,b ∈ R. Then xe = ae2 = ae = x and again xe = b(1− e)e = 0. Therefore
R = Re⊕R(1− e).

(2): Use the same ideas as in (1) to show e is a sum of nonzero orthogonal idempotents
if and only if Re decomposes into a direct sum of proper left ideals of R.

(3): Assume I is a minimal left ideal of R. Suppose R = I⊕L for some left ideal L of
R. By (1), I = Re for some idempotent e. Then e = e2 ∈ I2 so I2 ̸= 0. Conversely assume
I2 ̸= 0. There is some x∈ I such that Ix ̸= 0. But Ix is a left ideal of R and since I is minimal,
we have Ix = I. For some e ∈ I, we have ex = x. Let L = annihR(x) = {r ∈ R | rx = 0}.
Then L is a left ideal of R. Since (1− e)x = x− ex = x− x = 0 it follows that 1− e ∈ L.
Therefore 1 = e+(1−e)∈ I+L so R = I+L. Also, e ∈ I and ex = x ̸= 0 shows that e ̸∈ L.
Now I∩L is a left ideal in R and is contained in the minimal left ideal I. Since I∩L ̸= I, it
follows that I∩L = 0 which proves that R = I⊕L as R-modules.

(4): This follows from Theorem 1.1.8 (3). □

THEOREM 3.2.5. Let R be a commutative ring and assume R decomposes into an
internal direct sum R = Re1⊕ ·· · ⊕Ren, where each ei is a primitive idempotent. Then
this decomposition is unique in the sense that, if R = R f1 ⊕ ·· · ⊕ R fp is another such
decomposition of R, then n = p, and after rearranging, e1 = f1, . . . , en = fn.

PROOF. Any idempotent of R = Re1⊕·· ·⊕Ren is of the form x1 + · · ·+ xn where xi
is an idempotent in Rei. By Lemma 3.2.4, the only idempotents of Rei are 0 and ei. Hence,
R has exactly n primitive idempotents, namely e1, . . . ,en. □

2.1. Exercises.

EXERCISE 3.2.6. Let R be a ring and I a left ideal in R. Prove that the following are
equivalent.

(1) R/I is a projective left R-module.
(2) The R-module sequence 0→ I→ R→ R/I→ 0 is split exact.
(3) The left ideal I is finitely generated, and the left R-module R/I is flat.
(4) I is an R-module direct summand of R.
(5) There is an element e ∈ R such that 1− e ∈ I and Ie = (0).
(6) There is an idempotent e ∈ R such that I = R(1− e).

EXERCISE 3.2.7. Let A be an R-algebra and e an idempotent in A.
(1) Show that eAe is an R-algebra.
(2) Show that there is an R-module direct sum decomposition:

A = eAe⊕ eA(1− e)⊕ (1− e)Ae⊕ (1− e)A(1− e).

3. The Prime Spectrum of a Commutative Ring

The set of all prime ideals in a commutative ring R is denoted SpecR. We define a
topology on SpecR, the Zariski topology, and show that the assignment R 7→ SpecR is a
contravariant functor from the category of commutative rings to the category of topological
spaces.
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DEFINITION 3.3.1. Let R be a commutative ring. The prime ideal spectrum of R is

SpecR = {P | P is a prime ideal in R}.

The maximal ideal spectrum of R is

MaxR = {m |m is a maximal ideal in R}.

Given a subset L⊆ R, let

V (L) = {P ∈ SpecR | P⊇ L}.

Given a nonempty subset Y ⊆ SpecR, let

I(Y ) =
⋂

P∈Y

P.

Being an intersection of ideals, I(Y ) is an ideal. By definition, we take I( /0) to be the unit
ideal R.

LEMMA 3.3.2. Let L,L1,L2 denote subsets of R and Y1,Y2 subsets of SpecR.
(1) If L1 ⊆ L2, then V (L1)⊇V (L2).
(2) If Y1 ⊆ Y2, then I(Y1)⊇ I(Y2).
(3) I(Y1∪Y2) = I(Y1)∩ I(Y2).
(4) If I is the ideal of R spanned by L, then V (L) =V (I).

PROOF. Is left to the reader. □

LEMMA 3.3.3. Given any collection {Li} of subsets of R
(1) V ({1}) = /0 and V ({0}) = SpecR.
(2)

⋂
i V (Li) =V (

⋃
Li).

(3) V (L1)∪V (L2) =V
(
{x1x2 | x1 ∈ L1,x2 ∈ L2}

)
.

PROOF. (1) is left to the reader. (2) follows because P ∈ ∩V (Li) if and only if Li ⊆ P
for each i if and only if ∪Li ⊆ P. For (3) suppose P⊇ L1L2 and L1 ̸⊆ P. Pick x1 ∈ L1 such
that x1 ̸∈ P. Since x1L2 ⊆ P and P is prime, L2 ⊆ P. Therefore P ∈ V (L2). Conversely, if
P ∈V (L1)∪V (L2) then L1 ⊆ P or L2 ⊆ P. Let L1 ⊆ P. Multiplying, we get L1L2 ⊆ P. □

DEFINITION 3.3.4. By Lemma 3.3.3, the collection of sets {V (L) | L ⊆ R} make up
the closed sets for a topology on SpecR, called the Zariski topology.

LEMMA 3.3.5. Let R be a commutative ring. If W ⊆ R is a multiplicative set and
0 ̸∈W, then there exists a prime ideal P ∈ SpecR such that P∩W = /0.

PROOF. Let S = {I ⊆ R | I is an ideal and I∩W = /0}. Then (0) ∈S . Apply Zorn’s
Lemma, Proposition 1.2.4. Then S has a maximal element, say P. To see that P is a prime
ideal, assume x ̸∈ P and y ̸∈ P. By maximality of P we know Rx+P∩W ̸= /0 so there exists
a ∈ R and u ∈W such that ax−u ∈ P. Likewise Ry+P∩W ̸= /0 so there exists b ∈ R and
v ∈W such that by− v ∈ P. Multiply, abxy ≡ uv (mod P). Since uv ∈W and P∩W = /0
we have proved xy ̸∈ P. □

DEFINITION 3.3.6. If R is a commutative ring, the set of all nilpotent elements of R
is RadR(0) = {x ∈ R | xn = 0 for some n > 0}. Then RadR(0) is called the nil radical of R
and we show in Lemma 3.3.7 below that it is an ideal in R. More generally, if A is an ideal
in R, the set

RadR(A) = {x ∈ R | xn ∈ A for some n > 0}
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is called the nil radical of A. When the ring R is understood, we usually write Rad(A)
instead of RadR(A). If A = Rad(A), then we say A is a radical ideal. In Lemma 3.3.7
below we prove that Rad(A) is an ideal of R containing A.

LEMMA 3.3.7. Let R be a commutative ring. Then the following are true.
(1) RadR(0) is an ideal in R and

RadR(0) =
⋂

P∈SpecR

P.

(2) If A is an ideal in R, then Rad(A) is an ideal in R which contains A and

Rad(A) = I(V (A)) =
⋂

P∈V (A)

P.

PROOF. (1): Pick x ∈ RadR(0). Fix P ∈ SpecR. If xn = 0, then either x = 0 or n≥ 2.
If n ≥ 2 then x · xn−1 ∈ P so x ∈ P or xn−1 ∈ P. Inductively, x ∈ P so RadR(0) ⊆ P. If
x ̸∈ RadR(0), let W = {1,x,x2, . . .}. Lemma 3.3.5 says there exists P ∈ SpecR such that
x ̸∈ P.

(2): Under the natural map η : R→ R/A there is a one-to-one correspondence be-
tween ideals of R containing A and ideals of R/A. Under this correspondence, prime ideals
correspond to prime ideals. To finish, apply Part (1). □

LEMMA 3.3.8. Let A be an ideal in R and Y a subset of SpecR. Then
(1) V (A) =V (Rad(A)), and
(2) V (I(Y )) = Ȳ , the closure of Y in the Zariski topology.

PROOF. (1): Since A ⊆ Rad(A), it follows that V (A) ⊇ V (Rad(A)). Conversely, if
P ∈ SpecR and P⊇ A, then by Lemma 3.3.7, P⊇ Rad(A). Then P ∈V (Rad(A)).

(2): Since V (I(Y )) is closed we have V (I(Y )) ⊇ Ȳ . Since Ȳ is closed, Ȳ = V (A) for
some ideal A. Since Y ⊆ Ȳ , I(Y ) ⊇ I(Ȳ ) = I(V (A)) = Rad(A) ⊇ A. Thus, V (I(Y )) ⊆
V (A) = Ȳ . □

COROLLARY 3.3.9. There is a one-to-one order-reversing correspondence between
closed subsets of SpecR and radical ideals in R given by Y 7→ I(Y ) and A 7→V (A). Under
this correspondence, irreducible closed subsets correspond to prime ideals.

PROOF. The first part follows from Lemmas 3.3.2, 3.3.7, and 3.3.8. The last part is
proved in Lemma 3.3.10. □

LEMMA 3.3.10. Let R be a commutative ring and Y a subset of SpecR. Then Y is
irreducible if and only if P = I(Y ) is a prime ideal in R. If Z is an irreducible closed subset
of SpecR, then P = I(Z) is the unique minimal element of Z, and is called the generic point
of Z.

PROOF. Suppose Y is irreducible. Assume x,y∈R and xy∈ I(Y ). Notice that Y ⊆ Ȳ =
V (I(Y ))⊆V (xy) =V (x)∪V (y). Since Y is irreducible, Y ⊆V (x) or Y ⊆V (y). Therefore,
x ∈ I(Y ), or y ∈ I(Y ). This shows I(Y ) is a prime ideal. Conversely, assume P = I(Y ) is a
prime ideal of R. The singleton set {P} is irreducible, and by Lemma 1.3.4 the closure of
{P} is irreducible. By Lemma 3.3.8, the closure of {P} is equal to V (P), which is equal to
Ȳ . By Lemma 1.3.4, Y is irreducible. The rest is left to the reader. □

Let R be a commutative ring. If α ∈ R, the basic open subset of SpecR associated to
α is

U(α) = SpecR−V (α) = {Q ∈ SpecR | α ̸∈ Q}.
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LEMMA 3.3.11. Let R be a commutative ring.
(1) Let α,β ∈ R. The following are equivalent.

(a) V (α) =V (β ).
(b) U(α) =U(β ).
(c) There exist a≥ 1, b≥ 1 such that αa ∈ Rβ and β b ∈ Rα .

(2) If I is an ideal in R, then

SpecR−V (I) =
⋃
α∈I

U(α)

Every open set can be written as a union of basic open sets. The collection of all
basic open sets {U(α) | α ∈ R} is said to be a basis for the Zariski topology on
SpecR.

PROOF. (1): By Lemma 3.3.7, Rad(Rα) = I(V (α)). By Lemma 3.3.8, V (α) =
V (Rad(Rα)). So V (α) = V (β ) if and only if Rad(Rα) = Rad(Rβ ) which is true if and
only if there exist a ≥ 1, b ≥ 1 such that αa ∈ Rβ and β b ∈ Rα . The rest is left to the
reader. □

3.1. Idempotents and Subsets that are Open and Closed. The main result of this
section, Theorem 3.3.13, states that there is a one-to-one correspondence between subsets
of SpecR that are both open and closed and the set of principal ideals of R that are idem-
potent generated. Hence, there is a one-to-one correspondence between the left ideals of R
that are R-module direct summands of R and the subsets of SpecR that are both open and
closed.

Let R be any ring. The set of idempotents of R is denoted

idemp(R) = {x ∈ R | x2− x = 0}.
The homomorphic image of an idempotent is an idempotent, so given a homomorphism of
rings R→ S, there is a function idemp(R)→ idemp(S).

LEMMA 3.3.12. Let R be a commutative ring and idemp(R) the set of all idempotents
of R.

(1) If e ∈ idemp(R), then the closed set V (1− e) is equal to the open set U(e).
(2) Let e, f ∈ idemp(R). Then V (e) =V ( f ) if and only if e = f .
(3) Let e, f ∈ idemp(R). Then Re = R f if and only if e = f .

PROOF. (1): Let P ∈ SpecR. Since e(1− e) = 0, either e ∈ P, or 1− e ∈ P. Since
1 = e+(1− e), P does not contain both e and 1− e.

(2): Assume V (e) = V ( f ). By Lemma 3.3.11, there exist a ≥ 1, b ≥ 1 such that
e = ea ∈ R f and f = f b ∈ Re. Write e = x f and f = ye for some x,y ∈ R. Then e = x f =
x f 2 = (x f ) f = e f = eye = ye2 = ye = f .

(3): Re = R f implies V (e) =V ( f ), which by Part (2) implies e = f . □

THEOREM 3.3.13. Let R be a commutative ring and define

C = {Y ⊆ SpecR | Y is open and closed}
D = {A⊆ R | A is an ideal in R which is an R-module direct summand of R}.

Then there are one-to-one correspondences:

γ : idemp(R)→ C ,
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defined by e 7→V (1− e) =U(e), and

δ : idemp(R)→D ,

defined by e 7→ Re.

PROOF. Lemma 3.3.12, Parts (1) and (2) show that γ is well defined and one-to-one.
By Lemma 3.2.4 (1), δ is well defined and onto. By Lemma 3.3.12 (3), δ is one-to-one. It
remains to prove that γ is onto. Assume A1,A2 are ideals in R, X1 = V (A1), X2 = V (A2),
X1 ∪X2 = SpecR, X1 ∩X2 = /0. We prove that Xi = V (ei) for some ei ∈ idemp(R). Since
/0 = X1 ∩X2 = V (A1 +A2), we know A1 and A2 are comaximal and A1A2 = A1 ∩A2, by
Exercise 1.1.25. Since SpecR = X1∪X2 =V (A1A2) =V (A1∩A2), Lemma 3.3.7 implies

A1∩A2 ⊆
⋂

P∈SpecR

P = RadR(0).

That is, A1 ∩A2 consists of nilpotent elements. Write 1 = α1 +α2, where αi ∈ Ai. Then
R = Rα1 +Rα2 so Rα1 and Rα2 are comaximal. Also Rα1 ∩Rα2 = Rα1α2 ⊆ A1 ∩A2 ⊆
RadR(0). So there exists m > 0 such that (α1α2)

m = 0. Then Rαm
1 and Rαm

2 are comaximal
(Exercise 1.1.26) and Rαm

1 ∩Rαm
2 = (0). By Proposition 1.1.9, R is isomorphic to the

internal direct sum R∼= Rαm
1 ⊕Rαm

2 . By Theorem 1.1.8, there are orthogonal idempotents
e1,e2 ∈ R such that 1 = e1 +e2 and Rei = Rαm

i . Then SpecR =V (e1)∪V (e2) and V (e1)∩
V (e2) = /0. Moreover, V (ei)⊇V (Rαm

i )⊇V (Ai) = Xi. From this it follows that Xi =V (ei),
hence γ is onto. □

COROLLARY 3.3.14. Suppose R is a commutative ring and SpecR = X1 ∪ ·· · ∪Xr,
where each Xi is a nonempty closed subset and Xi∩X j = /0 whenever i ̸= j. Then there are
idempotents e1, . . . ,er in R such that Xi =U(ei) =V (1− ei) is homeomorphic to SpecRei,
and R = Re1⊕·· ·⊕Rer.

PROOF. By Theorem 3.3.13 there are unique idempotents e1, . . . ,er in R such that
Xi = U(ei) = V (1− ei). Since R = Rei⊕R(1− ei), the map πi : R→ Rei defined by x 7→
xei is a homomorphism of rings with kernel R(1− ei). By Exercise 3.3.21, πi induces
a homeomorphism SpecRei → Xi. If i ̸= j, then V (1− ei)∩V (1− e j) = Xi ∩X j = /0. It
follows that the ideals R(1−ei) are pairwise relatively prime. By Theorem 1.1.7, the direct
sum map

R
φ−→ Re1⊕·· ·⊕Rer

is onto. By Exercise 1.1.25, the kernel of φ is the principal ideal generated by the product
(1− e1) · · ·(1− er). But X = X1 ∪ ·· · ∪ Xr = V ((1− e1) · · ·(1− er)). Therefore, (1−
e1) · · ·(1− er) ∈ RadR(0). Since the only nilpotent idempotent is 0, φ is an isomorphism.

□

COROLLARY 3.3.15. The topological space SpecR is connected if and only if 0 and
1 are the only idempotents of R.

COROLLARY 3.3.16. Let e be an idempotent of R. The following are equivalent.
(1) e is a primitive idempotent.
(2) V (1− e) =U(e) is a connected component of SpecR.
(3) 0 and 1 are the only idempotents of the ring Re.

PROOF. (1) is equivalent to (3): This follows from Lemma 3.2.4 (2).
(2) is equivalent to (3): Since R = Re⊕R(1− e), it follows from Exercise 3.3.21 that

V (1− e) is homeomorphic to SpecRe. This follows from Corollary 3.3.15. □
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3.2. Exercises.

EXERCISE 3.3.17. Let R be a commutative ring and P ∈ SpecR. Prove:

(1) The closure of the singleton set {P} is equal to V (P).
(2) The set {P} is closed if and only if P is a maximal ideal in R.
(3) Let U ⊆ SpecR be an open set. Then U = SpecR if and only if MaxR⊆U .

EXERCISE 3.3.18. Prove that if R is a local ring, then 0 and 1 are the only idempotents
in R.

EXERCISE 3.3.19. Let θ : R→ S be a homomorphism of commutative rings. Show
that P 7→ θ−1(P) induces a function θ ♯ : SpecS → SpecR which is continuous for the
Zariski topology. If σ : S→ T is another homomorphism, show that (σθ)♯ = θ ♯σ ♯.

EXERCISE 3.3.20. For the following, let I and J be ideals in the commutative ring R.
Prove that the nil radical satisfies the following properties.

(1) I ⊆ Rad(I)
(2) Rad(Rad(I)) = Rad(I)
(3) Rad(IJ) = Rad(I∩ J) = Rad(I)∩Rad(J)
(4) Rad(I) = R if and only if I = R
(5) Rad(I + J) = Rad(Rad(I)+Rad(J))
(6) If P ∈ SpecR, then for all n > 0, P = Rad(Pn).
(7) I + J = R if and only if Rad(I)+Rad(J) = R.

EXERCISE 3.3.21. Let R be a commutative ring and I ⊊ R an ideal. Let η : R→ R/I
be the natural map and η♯ : Spec(R/I)→ SpecR the continuous map of Exercise 3.3.19.
Prove:

(1) η♯ is a one-to-one order-preserving correspondence between the prime ideals of
R/I and V (I).

(2) There is a one-to-one correspondence between radical ideals in R/I and radical
ideals in R containing I.

(3) Under η♯ the image of a closed set is a closed set.
(4) η♯ : Spec(R/I)→V (I) is a homeomorphism.
(5) If I ⊆ RadR(0), then η♯ : Spec(R/I)→ Spec(R) is a homeomorphism.

EXERCISE 3.3.22. Let R be a commutative ring which is a direct sum of ideals R =
A1⊕·· ·⊕An. As in Theorem 1.1.8, let e1, . . . ,en be the orthogonal idempotents of R such
that Ai = Rei. For 1≤ i≤ n, let πi : R→ Rei be the projection homomorphism. Prove:

(1) Let I be an ideal in R. Then I is prime if and only if there exists a unique
k ∈ {1, . . . ,n} such that Iek is a prime ideal in Rek and for all i ̸= k, Iei = Rei.

(2) Let π
♯
i : SpecRi → SpecR be the continuous map defined in Exercise 3.3.19.

Then imπ
♯
i is equal to V (1− ei) =U(ei), hence is both open and closed.

(3) π
♯
i : SpecRi→V (1− ei) =U(ei) is a homeomorphism.

(4) SpecR = imπ
♯
1∪·· ·∪ imπ

♯
n and the union is disjoint.

EXERCISE 3.3.23. Let R be a commutative ring. Show that under the usual set inclu-
sion relation, SpecR has at least one maximal element and at least one minimal element.
(Hint: To prove that R contains a minimal prime ideal, reverse the set inclusion argument
of Proposition 1.5.5.)
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EXERCISE 3.3.24. Let R be a commutative ring and I ⊊ R an ideal. Prove that under
the usual set inclusion relation, V (I) contains at least one minimal element and at least one
maximal element. A minimal element of V (I) is called a minimal prime over-ideal of I.

EXERCISE 3.3.25. Let R be a commutative ring and W a multiplicative set. Let θ :
R→W−1R be the localization. For any subset S ⊆W−1R, use the intersection notation
S∩R = θ−1(S) for the preimage. Prove:

(1) If J is an ideal in W−1R, then J =W−1(J∩R).
(2) The continuous map θ ♯ : Spec(W−1R)→ Spec(R) is one-to-one.
(3) If P ∈ SpecR and P∩W = /0, then W−1P is a prime ideal in W−1R.
(4) The image of θ ♯ : Spec(W−1R)→ Spec(R) consists of those prime ideals in R

that are disjoint from W .
(5) If P ∈ SpecR, there is a one-to-one correspondence between prime ideals in RP

and prime ideals of R contained in P.

EXERCISE 3.3.26. Let R be a commutative ring and α an element of R. Let Rα

denote the localization W−1R with respect to the multiplicative set W = {α i | 0 ≤ i} and
θ : R→ Rα the localization map. Prove:

(1) The image of θ ♯ : SpecRα→ SpecR is the basic open set U(α) = SpecR−V (α).
(2) θ ♯ : SpecRα →U(α) is a homeomorphism.

EXERCISE 3.3.27. Let R be a commutative ring and W a multiplicative set. Prove:
(1) RadW−1R(0) =W−1 RadR(0).
(2) If I is a ideal of R, then Rad(W−1I) =W−1 Rad(I).

EXERCISE 3.3.28. Show that if R is a commutative ring, then SpecR is compact. That
is, every open cover of SpecR has a finite subcover.

EXERCISE 3.3.29. Let f : R→ S be a homomorphism of commutative rings. Let
α ∈ R and assume f (α) is a unit in S. Prove that if f ♯ : SpecS→ SpecR is onto, then α is
a unit in R.

4. Finitely Generated Projective Modules

As the title indicates, this section is about finitely generated projective modules over
commutative rings. The first main result (Proposition 3.4.3) is that over a local ring R
with maximal ideal m, a finitely generated projective module M is free, and a basis for
M/mM lifts to a basis for M. If R is a commutative ring and M is a finitely generated
projective R-module, then for every P ∈ SpecR, MP is a free RP-module. The second main
result (Theorem 3.4.7) is a local to global theorem. If M is a finitely generated projective R-
module, then for every P∈ SpecR there exists α ∈ R−P such that Mα is a free Rα -module.
As in Exercise 1.1.27, a local ring is a commutative ring that has a unique maximal ideal.
We begin by proving two useful applications of Nakayama’s Lemma, Corollary 2.2.5. See
Exercise 4.2.15 for a version of these lemmas over a noncommutative ring R.

LEMMA 3.4.1. Let R be a commutative ring and I an ideal in R. Let M be an R-
module. If

(1) I is nilpotent, or
(2) I is contained in every maximal ideal of R and M is finitely generated,

then a subset X ⊆M generates M as an R-module if and only if the image of X generates
M/IM as an R/I-module.
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PROOF. Let η : M → M/IM. Suppose X ⊆ M and let T be the R-submodule of M
spanned by X . Then η(T ) = (T + IM)/IM is spanned by η(X). If T = M, then η(T ) =
M/IM. Conversely, η(T ) = M/IM implies M = T + IM. By Corollary 2.2.5, this implies
M = T . □

LEMMA 3.4.2. Let R be a commutative ring and I an ideal in R. Let M be a projective
R-module. If

(1) I is nilpotent, or
(2) I is contained in every maximal ideal of R and M is finitely generated,

then M is a free R-module if and only if M/IM is a free R/I-module.

PROOF. If M is free, then M/IM is free, by Theorem 2.3.23. Assume M/IM is a free
R/I-module. Let X = {x j | j ∈ J} be a subset of M such that {x j + IM | j ∈ J} is a basis
for M/IM over R/I. In Case (2), we can assume J is finite, by Lemma 1.6.11. Define
φ : RJ → M by φ( f ) = ∑ j∈J f ( j)x j. The goal is to show that φ is onto and one-to-one,
in that order. The image of φ is the submodule of M generated by X . It follows from
Lemma 3.4.1 that φ is onto. To show that φ is one-to-one we prove that kerφ = 0. Since
M is R-projective, the sequence

0→ kerφ → RJ φ−→M→ 0

is split exact. If J is finite, then kerφ is finitely generated. Upon tensoring with ()⊗R R/I,
φ ⊗1 becomes the isomorphism (R/I)J ∼= M/IM. By Exercise 2.3.31,

0→ kerφ ⊗R R/I→ (R/I)J φ⊗1−−→M/IM→ 0

is split exact. Therefore, kerφ ⊗R R/I = 0, or in other words I(kerφ) = kerφ . By Corol-
lary 2.2.5, kerφ = (0). □

PROPOSITION 3.4.3. Let R be a commutative local ring. If P is a finitely generated
projective R-module, then P is free of finite rank. If m is the maximal ideal of R and
{xi+mP | 1≤ i≤ n} is a basis for the vector space P/mP over the residue field R/m, then
{x1, . . . ,xn} is a basis for P over R. It follows that RankR (P) = dimR/m(P/mP).

PROOF. Over the residue field R/m, P/mP is a finitely generated vector space. By
Lemma 3.4.2, a basis for P/mP lifts to a free basis for P. □

Another proof of Proposition 3.4.3 is presented in Corollary 3.7.5. Corollary 3.4.4 is
a special case of Proposition 10.4.14.

COROLLARY 3.4.4. Let R be a commutative local ring with residue field k. Let ψ :
M→ N be a homomorphism of R-modules, where M is finitely generated and N is finitely
generated and free. Then

0→M
ψ−→ N

is split exact if and only if ψ⊗1 : M⊗R k→ N⊗R k is one-to-one.

PROOF. Assume ψ⊗1 is one-to-one. By Proposition 3.4.3 we can pick a generating
set {x1, . . . ,xn} for the R-module M such that {x1⊗1, . . . ,xn⊗1} is a basis for the k-vector
space M⊗R k. Define π : R(n)→M by mapping the ith standard basis vector to xi. Then
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π⊗1 : k(n)→M⊗R k is an isomorphism. The diagram

R(n)

��

π // M

��

ψ // N

��
k(n)

π⊗1 // M⊗R k
ψ⊗1 // N⊗R k

commutes. The composite map ψπ ⊗ 1 is one-to-one. By Exercise 3.4.14, there is an R-
module homomorphism τ : N → R(n) which is a left inverse for ψπ . Since π is onto, it
follows that πτ is a left inverse for ψ .

Conversely, if ψ has a left inverse, then clearly ψ⊗1 is one-to-one. □

4.1. A Finitely Generated Projective Module is Locally Free.

DEFINITION 3.4.5. Let M be a finitely generated projective module over the com-
mutative ring R. For any prime ideal P of R, the localization MP is a finitely generated
projective RP-module (Theorem 2.3.23). Therefore, MP is a finitely generated free RP-
module (Proposition 3.4.3) and MP has a well defined rank. If there is an integer n ≥ 0
such that n = RankRP(MP) for all P ∈ SpecR, then we say M has constant rank and write
RankR(M) = n.

PROPOSITION 3.4.6. Let R be a commutative ring and S a commutative R-algebra. If
M is a finitely generated projective R-module of constant rank RankR(M) = n, then M⊗R S
is a finitely generated projective S-module of constant rank and RankS(M⊗R S) = n.

PROOF. By Theorem 2.3.23, M⊗R S is a finitely generated projective S-module. Let
θ : R→ S be the structure map. Let Q ∈ SpecS and P = θ−1(Q) ∈ SpecR. Then by
Exercise 3.1.25, θ extends to a local homomorphism of local rings θ : RP→ SQ. The proof
follows from

(M⊗R S)⊗S SQ ∼= M⊗R (S⊗S SQ)
∼= M⊗R SQ

∼= M⊗R (RP⊗RP SQ)

∼= (M⊗R RP)⊗RP SQ

∼= (RP)
(n)⊗RP SQ

∼= (SQ)
(n) .

□

In the following, for the localization of R at the multiplicative set {1,α,α2, . . .} we
write Rα instead of R[α−1].

THEOREM 3.4.7. Let R be a commutative ring and M a finitely generated projective
R-module.

(1) Given P ∈ SpecR there exists α ∈ R−P such that Mα is a free Rα -module.
(2) If α is as in (1), then the values RankRQ(MQ) are constant for all Q ∈U(α).
(3) The map

SpecR
φ−→ {0,1,2, . . .}

P 7→ RankRP MP

is continuous if {0,1,2, . . .} is given the discrete topology (that is, the topology
where every subset is closed, or equivalently, “points are open”).
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PROOF. (1): By Proposition 3.4.3 we know that MP is a free module over RP. By
Corollary 2.1.8, M is an R-module of finite presentation. An application of Lemma 3.1.14
completes the proof.

(2): If Q ∈U(α), then α ∈ R−Q. By Exercise 3.1.24, RQ = (Rα)QRα
. Since Mα is

Rα -free of rank n, it follows from Theorem 2.3.23 (1) that MQ is RQ-free of rank n.
(3): We need to prove that for every n ≥ 0, the preimage φ−1(n) is open in SpecR.

Let P ∈ SpecR such that RankRP MP = n. It is enough to find an open neighborhood of P
in the preimage of n. By Part (1), there exists α ∈ R−P such that Mα is free of rank n
over Rα . Since U(α) is an open neighborhood of P in SpecR, it is enough to show that
RankRQ MQ = n for all Q ∈U(α). This shows that (3) follows from Part (2). □

COROLLARY 3.4.8. Let R be a commutative ring and M a finitely generated projective
R-module. Then there are idempotents e1, . . . ,et in R satisfying the following.

(1) R = Re1⊕·· ·⊕Ret .
(2) M = Me1⊕·· ·⊕Met .
(3) If Ri =Rei and Mi =M⊗R Ri, then Mi is a finitely generated projective Ri-module

of constant rank.
(4) If RankRi(Mi) = ni, then n1, . . . ,nt are distinct.
(5) The integer t and the idempotents e1, . . . ,et are uniquely determined by M.

In [43, Theorem IV.27] the elements e1, . . . ,et are called the structure idempotents of M.

PROOF. The rank function φ : SpecR→ {0,1,2, . . .} defined by φ(P) = RankRP MP
is continuous and locally constant (Theorem 3.4.7). Let Un = φ−1({n}) for each n ≥ 0.
Then {Un | n ≥ 0} is a collection of subsets of SpecR each of which is open and closed.
Moreover, the sets Un are pairwise disjoint. Since SpecR is compact (Exercise 3.3.28)
the image of φ is a finite set, say {n1, . . . ,nt}. Let e1, . . . ,et be the idempotents in R
corresponding to the disjoint union SpecR =Un1 ∪·· ·∪Unt (Corollary 3.3.14). The rest is
left to the reader. □

COROLLARY 3.4.9. If R is a commutative ring with no idempotents except 0 and 1,
then for any finitely generated projective R-module M, RankR M is defined. That is, there
exists n≥ 0 such that for every P ∈ SpecR, RankRP MP = n.

PROOF. By Proposition 3.3.15 we know SpecR is connected. The continuous image
of a connected space is connected. The rest follows from Corollary 3.4.8. □

4.2. Exercises. For the following, R always denotes a commutative ring.

EXERCISE 3.4.10. Let L and M be finitely generated projective R-modules such that
RankR(L) and RankR(M) are both defined. Prove:

(1) The rank of L⊕M is defined and is equal to the sum RankR(L)+RankR(M).
(2) The rank of L⊗R M is defined and is equal to the product RankR(L)RankR(M).
(3) The rank of HomR(L,M) is defined and is equal to the product of the ranks

RankR(L)RankR(M).

EXERCISE 3.4.11. Let f : R→ S be a homomorphism of commutative rings and P ∈
SpecR. Let k(P) = RP/PRP be the residue field and SP = S⊗R RP. Let Q ∈ SpecS such
that P = f−1(Q). Prove:

(1) S⊗R k(P)∼= SP/PSP.
(2) Q⊗R k(P) is a prime ideal of S⊗R k(P) and QSP/PSP is the corresponding prime

ideal of SP/PSP.
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(3) The localization of SP/PSP at QSP/PSP is SQ/PSQ.
(4) The localization of S⊗R k(P) at the prime ideal Q⊗R k(P) is SQ⊗R k(P).

EXERCISE 3.4.12. Let f : R→ S be a homomorphism of commutative rings and f ♯ :
SpecS→ SpecR the continuous map of Exercise 3.3.19.

(1) Let W ⊆ R be a multiplicative set. Denote by W−1S the localization S⊗R W−1R.
Define all of the maps such that the diagram

Spec(W−1S)
g♯ //

ε♯

��

Spec(W−1R)

η♯

��
SpecS

f ♯ // SpecR

commutes. Show that ε♯ and η♯ are one-to-one.
(2) Let I ⊆ R be an ideal. Define all of the maps such that the diagram

Spec(S/IS)
g♯ //

ε♯

��

Spec(R/I)

η♯

��
SpecS

f ♯ // SpecR

commutes. Show that ε♯ and η♯ are one-to-one.
(3) Let P ∈ SpecR. Let k(P) = RP/PRP be the residue field. Prove that there is a

commutative diagram

Spec(S⊗R k(P))
g♯ //

ε♯

��

Spec(k(P))

η♯

��
SpecS

f ♯ // SpecR

where ε♯ and η♯ are one-to-one. Show that the image of ε♯ is ( f ♯)−1(P). (Hints:
Take W = R−P in (1), then take I = PRP in (2). We call Spec(S⊗R k(P)) the
fiber over P of the map f ♯.

EXERCISE 3.4.13. Let R be a commutative ring. Let M and N be finitely generated
projective R-modules, and ϕ : M→ N an R-module homomorphism. Let p ∈ SpecR and
assume ϕ⊗1 : M⊗R Rp→ N⊗R Rp is an isomorphism. Prove that there exists α ∈ R−p
such that ϕ⊗1 : M⊗R Rα → N⊗R Rα is an isomorphism.

EXERCISE 3.4.14. Let R be a commutative local ring with residue field k. Let M and
N be finitely generated free R-modules and ψ : M→ N a homomorphism of R-modules.
Show that if ψ⊗1 : M⊗R k→N⊗R k is one-to-one, then ψ has a left inverse. That is, there
exists an R-module homomorphism σ : N→M such that σψ = 1 is the identity mapping
on M.

EXERCISE 3.4.15. Let R be a commutative ring and S a commutative R-algebra that
as an R-module is a progenerator. Show that if SpecR is connected, then the number of
connected components of SpecS is bounded by RankR(S), hence is finite.



136 3. MODULES OVER COMMUTATIVE RINGS

5. Faithfully Flat Modules and Algebras

5.1. Faithfully Flat Modules. Recall that in Definition 2.3.19 we defined a left R-
module N to be flat if the functor ()⊗R N is both left and right exact. In Exercise 2.8.10 we
defined N to be faithfully flat if N is flat, and N has the property that for any right R-module
M, M⊗R N = 0 implies M = 0. If R is a commutative ring, then Lemma 3.5.1 below adds
more necessary and sufficient conditions for N to be faithfully flat.

LEMMA 3.5.1. Let R be a commutative ring and N an R-module. The following are
equivalent.

(1) A sequence of R-modules

0→ A→ B→C→ 0

is exact if and only if

0→ A⊗R N→ B⊗R N→C⊗R N→ 0

is exact.
(2) A sequence of R-modules

A
f−→ B

g−→C

is exact if and only if

A⊗R N
f⊗1−−→ B⊗R N

g⊗1−−→C⊗R N

is exact.
(3) N is faithfully flat. That is, N is flat and for any R-module M, if M⊗R N = 0, then

M = 0.
(4) N is flat and for every maximal ideal m of R, N ̸=mN.

PROOF. (1) implies (2): Start with a sequence of R-modules

A
f−→ B

g−→C

and assume in the sequence

A⊗R N
f⊗1−−→ B⊗R N

g⊗1−−→C⊗R N

that im( f ⊗1) = ker(g⊗1). We must prove that im f = kerg. Factor f through A/ker f
and factor g through img to get the sequence

(5.1) 0→ A/ker f
f̄−→ B

ḡ−→ img→ 0

where f̄ is one-to-one and ḡ is onto. It is enough to prove im f̄ = ker ḡ. Tensor (5.1) with
N to get the sequence

(5.2) 0→ A/ker f ⊗R N
f̄⊗1−−→ B⊗R N

ḡ⊗1−−→ img⊗R N→ 0.

By (1) we know that f̄ ⊗ 1 is one-to-one and ḡ⊗ 1 is onto. By (1), it is enough to show
(5.2) is exact. To do this, it is enough to show im( f̄ ⊗1) = im( f ⊗1) and ker(ḡ⊗1) =
ker(g⊗1). Consider the commutative diagram

A

α

��

f // B

=

��
A/ker f

f̄ // B
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in which the natural map α is onto, and f̄ is one-to-one. Tensor with N to get the commu-
tative diagram

A⊗R N

α⊗1
��

f⊗1 // B⊗R N

=

��
A/ker f ⊗R N

f̄⊗1 // B⊗R N

in which α⊗1 is onto. It follows that im( f̄ ⊗1) = im( f ⊗1). Consider the commutative
diagram

B

=

��

ḡ // img

β

��
B

g // C
in which the inclusion map β is one-to-one and ḡ is onto. Tensor with N to get the com-
mutative diagram

B⊗R N

=

��

ḡ⊗1 // img⊗R N

β⊗1
��

B⊗R N
g⊗1 // C⊗R N

in which β ⊗1 is one-to-one because N is flat. It follows that ker(ḡ⊗1) = ker(g⊗1).
(1) implies (3): Clearly N is flat. Assume N⊗R M = 0. Then 0→N⊗R M→ 0 is exact

and (1) implies 0→M→ 0 is exact.
(3) implies (4): Let m be a maximal ideal of R. Then M = R/m is not zero. By (3),

0 ̸= N⊗R R/m= N/mN. Therefore N ̸=mN.
(4) implies (3): Suppose M ̸= 0 and prove N⊗R M ̸= 0. Let x ∈ M, x ̸= 0. Then if

I = annihR(x), we have I ̸= R. Let m be a maximal ideal of R containing I. By (4) we get
IN ⊆mN ̸=N. Then N⊗R R/I =N/IN ̸= 0. Tensor the exact sequence 0→ R/I→M with
(·)⊗N and by flatness we know 0→N⊗R R/I→N⊗R M is exact. Therefore N⊗R M ̸= 0.

(3) implies (2): Start with a sequence of R-modules

A
f−→ B

g−→C

and assume
A⊗R N

f⊗1−−→ B⊗R N
g⊗1−−→C⊗R N

is exact.
Step 1: Show that im f ⊆ kerg. Tensor the exact sequence

A
g◦ f−−→ im(g◦ f )→ 0.

with N to get the exact sequence

A⊗R N
g◦ f⊗1−−−−→ im(g◦ f )⊗R N→ 0.

By Lemma 2.3.7, im(g◦ f )⊗R N = im((g⊗1)◦ ( f ⊗1)) = 0. By (3) we have im(g◦ f ) =
0, so g◦ f = 0.

Step 2: Show im f ⊇ kerg. Set H = kerg/ im f . To prove H = 0 it is enough to show
H⊗R N = 0. Tensor the exact sequence

A
f−→ kerg→ H→ 0.



138 3. MODULES OVER COMMUTATIVE RINGS

with N to get the exact sequence

A⊗R N
f⊗1−−→ kerg⊗R N→ H⊗R N→ 0.

The reader should verify that kerg⊗R N = ker(g⊗1) and H⊗R N = ker(g⊗1)/ im( f⊗1)=
0. The proof follows.

(2) implies (1): Is left to the reader. □

EXAMPLE 3.5.2. If N is projective, then N is flat (Exercise 2.3.31) but not necessarily
faithfully flat. For example, say the ring R = I⊕J is an internal direct sum of two nonzero
ideals I and J. Then IJ = 0, I2 = I, J2 = J and I + J = R. The sequence 0→ I→ 0 is not
exact. Tensor with (·)⊗R J and get the exact sequence 0→ 0→ 0. So J is not faithfully
flat.

PROPOSITION 3.5.3. Let R be a commutative ring. The R-module

E =
⊕

m∈MaxR

Rm

is faithfully flat.

PROOF. Each Rm is flat by Lemma 3.1.7, so E is flat by Exercise 3.5.19. For every
maximal ideal m of R, mRm ̸=Rm so mE ̸=E. To finish the proof, apply Lemma 3.5.1. □

5.2. Faithfully Flat Algebras.

LEMMA 3.5.4. If θ : R→ S is a homomorphism of commutative rings such that S is a
faithfully flat R-module, then the following are true.

(1) For any R-module M,

M→M⊗R S

x 7→ x⊗1

is one-to-one. In particular, θ is one-to-one, so we can view R = θ(R) as a
subring of S.

(2) For any ideal I ⊆ R, IS∩R = I.
(3) The continuous map θ ♯ : SpecS→ SpecR of Exercise 3.3.19 is onto.

PROOF. (1): Let x ̸= 0, x ∈M. Then Rx is a nonzero submodule of M. If follows from
Lemma 3.5.1 (2) that Rx⊗R S ̸= 0. But Rx⊗R S = S(x⊗1) so x⊗1 ̸= 0.

(2): Apply Part (1) with M = R/I. Then θ̄ : R/I→ R/I⊗R S = S/IS is one-to-one.
(3): Let P ∈ SpecR. By Exercise 3.5.18, SP = S⊗R RP is faithfully flat over RP. By

Part (2), PRP = PSP ∩RP, so PSP is not the unit ideal. Let m be a maximal ideal of SP
containing PSP. Then m∩RP ⊇ PRP. Since PRP is a maximal ideal, m∩RP = PRP. Let
Q =m∩S. So Q∩R = (m∩S)∩R =m∩R = (m∩RP)∩R = PRP∩R = P. □

LEMMA 3.5.5. If θ : R→ S is a homomorphism of commutative rings, then the fol-
lowing are equivalent.

(1) S is faithfully flat as an R-module.
(2) S is a flat R-module and the continuous map θ ♯ : SpecS→ SpecR is onto.
(3) S is a flat R-module and for each maximal ideal m of R, there is a maximal ideal

n of S such that n∩R =m.
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PROOF. (1) implies (2): Follows from Lemma 3.5.4 (3).
(2) implies (3): There is a prime P of S and P∩R =m. Let n be a maximal ideal of S

containing P. Then n∩R⊇ P∩R =m. Since m is maximal, n∩R =m.
(3) implies (1): For each maximal ideal m of R, pick a maximal ideal n of S lying over

m. Then mS⊆ n ̸= S. By Lemma 3.5.1 (3), S is faithfully flat. □

PROPOSITION 3.5.6. Let R be a commutative ring and ε : R→ A a homomorphism of
rings such that ε makes A into a progenerator R-module.

(1) Under ε , R is mapped isomorphically onto an R-module direct summand of A.
(2) If B is a subring of A containing the image of ε , then the image of ε is an R-

module direct summand of B.
(3) A is faithfully flat as an R-module.

PROOF. (1): By Corollary 2.2.4, A is R-faithful. The sequence

0→ R ε−→ A

is exact, where ε(r) = r ·1. By Exercise 2.4.17, there is a splitting map for ε if and only if

(5.3) HomR(A,R)
Hε−→ HomR(R,R)→ 0

is exact. Let m be a maximal ideal in R. By Theorem 2.3.23, A⊗R R/m = A/mA is a
progenerator over the field R/m. In other words, A/mA is a nonzero finite dimensional
vector space over R/m. The diagram

R/m⊗R HomR(A,R)
1⊗Hε //

∼=
��

R/m⊗R HomR(R,R)

∼=
��

// 0

HomR/m(A/mA,R/m)
Hε // HomR/m(R/m,R/m) // 0

commutes. The bottom row is exact since 0→ R/m→ A/mA is split exact over R/m.
The vertical maps are isomorphisms by Corollary 2.4.13. Therefore the top row is exact.
Corollary 2.4.3 says that (5.3) is exact. This proves (1).

(2): Assume R ⊆ B ⊆ A is a tower of subrings. If σ : A→ R is a left inverse for
ε : R→ A, then σ restricts to a left inverse for R→ B.

(3): This follows from Exercise 2.8.10. □

Let S be a faithfully flat R-algebra. In the terminology of Exercise 2.4.16, Propo-
sition 3.5.7 shows that the functor S⊗R () from the category of left R-modules to the
category of left S-modules is faithful.

PROPOSITION 3.5.7. Let S be a faithfully flat R-algebra. If M and N are R-modules,
then the function

HomR(M,N)
φ−→ HomS(S⊗R M,S⊗R N)

defined by f 7→ 1⊗ f is a monomorphism of abelian groups.

PROOF. By Lemma 2.3.17 (4), S⊗R () is a functor from the category of left R-modules
to the category of left S-modules. The reader should verify that the assignment f 7→ 1⊗ f
defines a homomorphism of abelian groups φ : HomR(M,N)→ HomS(S⊗R M,S⊗R N).



140 3. MODULES OVER COMMUTATIVE RINGS

Suppose f : M→ N is a homomorphism of left R-modules and 1⊗ f : S⊗R M→ S⊗R N is
the zero homomorphism. In the commutative diagram

M

α !!

f // N

im f
β

==

α is onto and β is one-to-one. Since S is flat, in the commutative diagram

S⊗R M

1⊗α %%

1⊗ f // S⊗R N

S⊗R im f
1⊗β

99

1⊗α is onto and 1⊗β is one-to-one. By assumption, the image of 1⊗ f is (0). Therefore,
S⊗R im f = (0). Since S is faithfully flat, this implies im f = (0). □

5.3. Another Hom Tensor Relation.

PROPOSITION 3.5.8. Let S be a flat commutative R-algebra. Let M and N be R-
modules, and assume M is finitely generated.

(1) The natural map

S⊗R HomR(M,N)
α−→ HomS(S⊗R M,S⊗R N)

is a monomorphism of S-modules.
(2) If M is a finitely presented R-module, then α is an isomorphism of S-modules.

PROOF. If M is finitely generated and projective, then this follows immediately from
Hom Tensor Relation Corollary 2.4.13.

(1): By Exercise 2.1.21, M has a free resolution. So there are index sets I and J and
an exact sequence

(5.4) RJ → RI →M→ 0

of R-modules. Since M is finitely generated, we assume I is a finite set. Since S is flat, the
functor S⊗R (·) is exact. By Lemmas 2.3.15 and 2.3.13,

(5.5) SJ → SI → S⊗R M→ 0

is an exact sequence of S-modules. It follows from Proposition 2.4.5 that the contravariant
functor HomR(·,N) is left exact.

Applying it to (5.4), we get the exact sequence

(5.6) 0→ HomR(M,N)→ HomR(RI ,N)→ HomR(RJ ,N).

By Lemma 2.4.7 and Proposition 2.4.8, (5.6) can be written as

(5.7) 0→ HomR(M,N)→∏
I

N→∏
J

N.

Tensoring (5.7) with the flat module S gives the exact sequence

(5.8) 0→ S⊗R HomR(M,N)→ S⊗R ∏
I

N→ S⊗R ∏
J

N.
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Apply the left exact functor HomS(·,S⊗R N) to (5.5). By Lemma 2.4.7 and Proposi-
tion 2.4.8,

(5.9) 0→ HomS(S⊗R M,S⊗R N)→∏
I
(S⊗R N)→∏

J
(S⊗R N)

is an exact sequence of S-modules. Since I is a finite set, ∏I N is equal to
⊕

I N and
S⊗R

⊕
I N ∼=

⊕
I(S⊗R N)∼= ∏I S⊗R N by Lemma 2.3.15. Combining (5.8) and (5.9) with

the natural maps yields a commutative diagram

S⊗R HomR(M,N)
f1

1-to-1
//

α

��

⊕
I(S⊗R N)

f2 //

β

��

S⊗R ∏J N

γ

��
HomS(S⊗R M,S⊗R N)

g1

1-to-1
// ⊕

I(S⊗R N)
g2 // ∏J(S⊗R N).

(5.10)

Since f1 and β are one-to-one, α is one-to-one.
(2): Because M is of finite presentation, the index sets I and J can both be chosen to

be finite. Hence we assume the vertical maps β and γ are both isomorphisms. To see that
α is onto, let x be an element of the lower left corner of (5.10). Set y = β−1(g1(x)). Then
γ( f2(y))= g2(β (y))= g2(g1(x))= 0. So y= f1(z) for some z in the upper left corner. Then
x = α(z). Note that this also follows from a slight variation of the Snake Lemma 2.5.2. □

PROPOSITION 3.5.9. Let S be a flat commutative R-algebra and A an R-algebra. Let
M be a finitely presented A-module and N any A-module. The natural map

S⊗R HomA(M,N)
α−→ HomS⊗RA(S⊗R M,S⊗R N)

is an isomorphism of S-modules.

PROOF. Is left to the reader. □

EXAMPLE 3.5.10. We show by example that Proposition 3.5.8 is false without the
finitely generated hypothesis on M. Let R = Z and S = Q. Let M =

⊕
∞
i=1Z be the free

abelian group on N and N = Q/Z. By Lemma 3.1.7, S is a flat R-algebra. By Exer-
cise 2.3.45, S⊗R N =Q⊗ZQ/Z= (0). Therefore,

∞

∏
i=1

(S⊗R N) =
∞

∏
i=1

(Q⊗ZQ/Z) = (0).

Let γ : N→Q/Z be defined by i 7→ 1/2i +Z. For any n > 1, if i is chosen so that 2i > n,
then n/2i +Z ̸= 0+Z. Therefore, γ is an element of infinite order in ∏

∞
i=1Q/Z. There is

an exact sequence

0→ Z
ℓγ−→

∞

∏
i=1

Q/Z

where ℓγ is defined by 1 7→ γ . Tensoring with S =Q,

0→Q
1⊗ℓγ−−−→Q⊗Z

(
∞

∏
i=1

Q/Z

)
is exact, so the group Q⊗Z (∏

∞
i=1Q/Z) is non-trivial. However, its image under the natural

map

Q⊗Z

(
∞

∏
i=1

Q/Z

)
→

∞

∏
i=1

(Q⊗ZQ/Z)
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is the trivial group (0). In particular, this shows tensoring does not distribute across an
infinite direct product. We also have

S⊗R HomR(M,N) =Q⊗Z HomZ

(
∞⊕

i=1

Z,Q/Z

)

=Q⊗Z

(
∞

∏
i=1

HomZ (Z,Q/Z)

)

=Q⊗Z

(
∞

∏
i=1

Q/Z

)
is a non-trivial group. Since

HomS(S⊗R M,S⊗R N) = HomQ

(
Q⊗Z

∞⊕
i=1

Z,Q⊗ZQ/Z

)
= (0)

is the trivial group, this shows the natural map α of Proposition 3.5.8 is not one-to-one.

For another proof of Proposition 3.5.11, see Proposition 3.7.9.

PROPOSITION 3.5.11. Let S be a commutative flat R-algebra and M a finitely gen-
erated R-module. Then annihS(S⊗R M) = SannihR(M). In particular, if M is a faithful
R-module, then S⊗R M is a faithful S-module.

PROOF. By Lemma 1.1.10,

(5.11) 0→ annihR(M)→ R
λR−→ HomR(M,M)

is an exact sequence of R-modules. Likewise,

(5.12) 0→ annihS(S⊗R M)→ S
λS−→ HomS(S⊗R M,S⊗R M)

is an exact sequence of S-modules. Since S is a flat R-module,

(5.13) 0→ S⊗R annihR(M)
1⊗λR−−−→ S⊗R HomR(M,M)

is an exact sequence of S-modules. Since λS factors through 1⊗λR and the natural mono-
morphism α of Proposition 3.5.8, the kernel of λS is equal to the kernel of 1⊗λR. This
follows from Theorem 2.5.3, or by direct observation. Thus SannihR(M) = annihS(S⊗R
M). □

5.4. Faithfully Flat Base Change.

LEMMA 3.5.12. Let S be a commutative faithfully flat R-algebra and M an R-module.
(1) M is finitely generated over R if and only if S⊗R M is finitely generated over S.
(2) M is of finite presentation over R if and only if S⊗R M is of finite presentation

over S.
(3) M is finitely generated projective over R if and only if S⊗R M is finitely generated

projective over S.
(4) M is flat over R if and only if S⊗R M is flat over S.
(5) M is faithfully flat over R if and only if S⊗R M is faithfully flat over S.
(6) If M is an R-generator, then S⊗R M is an S-generator. If M is a finitely presented

R-module and S⊗R M is an S-generator, then M is an R-generator.
(7) If S⊗R M is faithful over S, then M is faithful over R.
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PROOF. (1): If M is finitely generated, then Theorem 2.3.23 (4) shows S⊗R M is
finitely generated. Conversely, choose generators {t1, . . . , tm} for S⊗R M. After breaking
up summations and factoring out elements of S, we can assume each ti looks like 1⊗ xi
where xi ∈M. Consider the sequence

(5.14) R(n)→M→ 0

which is defined by (r1, . . . ,rn) 7→ ∑rixi. Tensoring (5.14) with S gives the sequence

S(n)→ S⊗R M→ 0

which is exact. Since S is faithfully flat, (5.14) is exact.
(2): Assume M is finitely presented. Suppose R(n) → R(n) → M → 0 is exact. Ten-

soring is right exact, so S(n)→ S(n)→ S⊗R M→ 0 is exact. Therefore S⊗R M is finitely
presented. Conversely assume S⊗R M is finitely presented. By Part (1) M is finitely gen-
erated over R. Suppose φ : R(n)→M is onto. Let N = kerφ . It is enough to show that N is
finitely generated. Since

0→ N→ R(n) φ−→M→ 0

is exact and S is faithfully flat,

0→ S⊗R N→ S(n)
1⊗φ−−→ S⊗R M→ 0

is exact. By Lemma 3.1.13 (3), S⊗R N is finitely generated over S. Part (1) says that N is
finitely generated over R.

(3): If M is finitely generated and projective over R, then Theorem 2.3.23 says the same
holds for S⊗R M over S. Conversely, suppose S⊗R M is finitely generated and projective
over S. By Corollary 2.1.8, S⊗R M is of finite presentation over S. By Part (2), M is of
finite presentation over R. To show that M is R-projective, by Proposition 2.4.5 (2) it is
enough to show HomR(M, ·) is a right exact functor. Start with an exact sequence

(5.15) A α−→ B→ 0

of R-modules. It is enough to show

(5.16) HomR(M,A)
Hα−−→ HomR(M,B)→ 0

is exact. Since S is faithfully flat over R, it is enough to show

(5.17) S⊗R HomR(M,A)
1⊗Hα−−−→ S⊗R HomR(M,B)→ 0

is exact. Tensoring is right exact, so tensoring (5.15) with S⊗R (·) gives the exact sequence

(5.18) S⊗R A 1⊗α−−→ S⊗R B→ 0.

Since we are assuming S⊗R M is S-projective, by Proposition 2.4.5 (2) we can apply the
functor HomS(S⊗R M, ·) to (5.18) yielding

(5.19) HomS(S⊗R M,S⊗R A)
H1⊗α−−−→ HomS(S⊗R M,S⊗R B)→ 0

which is exact. Combine (5.17) and (5.19) to get the commutative diagram

S⊗R HomR(M,A)
1⊗Hα //

∼=
��

S⊗R HomR(M,B)

∼=
��

HomS(S⊗R M,S⊗R A)
H1⊗α // HomS(S⊗R M,S⊗R B) // 0
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where the vertical maps are the natural maps from Proposition 3.5.8. Since the bottom row
is exact and the vertical maps are isomorphisms, it follows that 1⊗Hα is onto.

(4): Assume M⊗R S is a flat S-module. By Exercise 3.5.24, M⊗R S is flat over R. Let

0→ A→ B→C→ 0

be an exact sequence of R-modules. Then

0→ A⊗R M⊗R S→ B⊗R M⊗R S→C⊗R M⊗R S→ 0

is an exact sequence of R-modules. Since S is faithfully flat over R,

0→ A⊗R M→ B⊗R M→C⊗R M→ 0

is an exact sequence of R-modules.
(6): Assume M is a finitely presented R-module and S⊗R M is an S-generator. To

show M is an R-generator, we apply Exercise 2.4.16. Suppose f : A→ B is a nonzero
homomorphism of R-modules. We show that there exists an R-module homomorphism β :
M→ A such that f β : M→ B is nonzero. Since S is faithfully flat over R, 1⊗ f : S⊗R A→
S⊗R B is nonzero. Since S⊗R M is an S-generator, there exists h : S⊗R M→ S⊗R A such
that (1⊗ f )h : S⊗R M→ S⊗R B is nonzero. By Proposition 3.5.8, α : S⊗R HomR(M,A)→
HomS(S⊗R M,S⊗R A) is an isomorphism. So there exist s1, . . . ,sm in S and h1, . . . ,hm in
HomR(M,A) such that h = α(∑m

i=1 si⊗hi). Hence there exists x ∈ A and some 1 ≤ i ≤ m
such that f hi(x) ̸= 0. Therefore β exists.

(7): Let λR : R→ HomR(M,M) be the homomorphism of Lemma 1.1.10. We also
have λS : S→ HomS(S⊗R M,S⊗R M), and the diagram

S

1⊗λR &&

λS // HomS(S⊗R M,S⊗R M)

S⊗R HomR(M,M)

α

55

commutes, where α is the homomorphism of Proposition 3.5.8. By assumption, λS is one-
to-one. Therefore, 1⊗λR is one-to-one. Since S is faithfully flat over R, λR is one-to-one.

(5): Is left to the reader. □

5.5. Faithfully Flat Descent of Central Algebras.

DEFINITION 3.5.13. Let R be a commutative ring and A an R-algebra. If the structure
homomorphism R→ Z(A) from R to the center of A is an isomorphism, then we say A is a
central R-algebra.

PROPOSITION 3.5.14. Let R be a commutative ring. Let A be an R-algebra and S a
commutative faithfully flat R-algebra. If A⊗R S is a central S-algebra, then A is a central
R-algebra.

PROOF. Assume A⊗R S is a central S-algebra. Since S is flat over R, Z(A)⊗R S→
A⊗R S is one-to-one. By hypothesis, the composite map

R⊗R S→ Z(A)⊗R S→ Z(A⊗R S)

is an isomorphism. Since S is faithfully flat over R, R→ Z(A) is an isomorphism. □

PROPOSITION 3.5.15. Let R be a commutative ring and A an R-algebra. If Am =
A⊗R Rm is a central Rm-algebra for every maximal ideal m of R, then A is a central
R-algebra.
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PROOF. Let m be a maximal ideal of R. Since Rm is a flat R-module, Z(A)⊗R Rm→
Am is one-to-one. Clearly, Z(A)⊗R Rm ⊆ Z(Am). We are given that the composite map

Rm→ Z(A)⊗R Rm ⊆ Z(Am)

is an isomorphism. Therefore, Rm→ Z(A)⊗R Rm is an isomorphism. By Exercise 3.5.16,
R→ Z(A) is an isomorphism. □

5.6. Exercises.

EXERCISE 3.5.16. Let R be a commutative ring, let M and N be R-modules, and
f ∈ HomR(M,N). For any prime ideal P ∈ SpecR there is the RP-module homomorphism
fP : MP→ NP obtained by “localizing at P”.

(1) Prove that the following are equivalent.
(a) f is one-to-one.
(b) fP is one-to-one for all P ∈ SpecR.
(c) fm is one-to-one for all m ∈MaxR.

(2) Prove that the following are equivalent.
(a) f is onto.
(b) fP is onto for all P ∈ SpecR.
(c) fm is onto for all m ∈MaxR.

EXERCISE 3.5.17. Let R be a commutative ring. Let M and N be finitely generated
and projective R-modules of constant rank and assume RankR(M) = RankR(N). Let f ∈
HomR(M,N). Show that if f is onto, then f is one-to-one.

EXERCISE 3.5.18. (Faithfully Flat Is Preserved under a Change of Base) If A is a
commutative R-algebra and M is a faithfully flat R-module, show that A⊗R M is a faithfully
flat A-module.

EXERCISE 3.5.19. Let R be a ring and {Mi | i ∈ I} a set of right R-modules. Prove
that the direct sum

⊕
i∈I Mi is a flat R-module if and only if each Mi is a flat R-module.

EXERCISE 3.5.20. Let R be a ring. Let M and N be right R-modules. If M is a flat
R-module and N is a faithfully flat R-module, show that M⊕N is a faithfully flat R-module.

EXERCISE 3.5.21. State and prove a version of Lemma 3.5.1 for a ring R which is not
necessarily commutative.

EXERCISE 3.5.22. Let R be a ring. Show that R is a faithfully flat R-module. Show
that a free R-module is faithfully flat.

EXERCISE 3.5.23. Let R be a ring and S = R[x] the polynomial ring which can be
viewed as a left R-module. Prove:

(1) S is a free R-module.
(2) S is a faithfully flat R-module.
(3) The exact sequence 0→R→ S of R-modules is split. That is, R ·1 is an R-module

direct summand of S.

EXERCISE 3.5.24. (Flat over Flat is Flat) Let θ : R→ A be a homomorphism of rings
and M a left A-module. Using θ , view A as a left R-right A-bimodule and M as a left
R-module. Show that if A is a flat R-module, and M is a flat A-module, then M is a flat
R-module.
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EXERCISE 3.5.25. (Faithfully Flat over Faithfully Flat is Faithfully Flat) If A is a
commutative faithfully flat R-algebra and M a faithfully flat A-module, show that M is a
faithfully flat R-module.

EXERCISE 3.5.26. Let R be a ring, M ∈ RMR and N ∈ RM. Prove:
(1) If M and N are flat left R-modules, then M⊗R N is a flat left R-module.
(2) Assume R is commutative. If M and N are faithfully flat R-modules, then M⊗R N

is a faithfully flat R-module.

EXERCISE 3.5.27. Let θ : R→ S be a local homomorphism of local rings (see Exer-
cise 1.1.27). If S is a flat R-algebra, show that S is faithfully flat.

EXERCISE 3.5.28. Let R be a commutative ring. Assume f1, . . . , fn are elements of
R− (0). Let S = R f1 ⊕ ·· ·⊕R fn be the direct sum. Let θ : R→ S be defined by θ(x) =
(x/1, . . . ,x/1). Prove that the following are equivalent.

(1) f1, . . . , fn generate the unit ideal of R. That is, R = R f1 + · · ·+R fn.
(2) S is a faithfully flat R-algebra.

EXERCISE 3.5.29. Let R be a commutative ring and {αi | i∈ I} a subset of R−(0). Let
S = ∏i∈I R[α−1

i ]. Then S is an R-algebra, where the structure homomorphism is the unique
map R→ S of Proposition 1.6.2 which commutes with each natural map R→ R[α−1

i ].
Prove that the following are equivalent.

(1) S is a faithfully flat R-algebra.
(2) There exists a finite subset {i1, . . . , in} ⊆ I such that R[α−1

i1
]
⊕
· · ·
⊕

R[α−1
in ] is

faithfully flat over R.
(3) There exists a finite subset {i1, . . . , in} ⊆ I such that R = Rαi1 + · · ·+Rαin .

EXERCISE 3.5.30. Let R = Z be the ring of integers and S = Z[2−1] the localization
of R obtained by inverting 2. Prove:

(1) S is not a projective R-module. (See Exercise 2.1.23.)
(2) S is a flat R-module.
(3) S is not a finitely generated R-module.
(4) S is not a faithfully flat R-module.
(5) The exact sequence 0→ R→ S is not split exact. That is, R · 1 is not a direct

summand of S.

EXERCISE 3.5.31. Let R be a commutative ring and I an ideal of R which is contained
in the nil radical of R. Show that R/I is a flat R-algebra if and only if I = (0).

EXERCISE 3.5.32. Let R be a commutative ring and W ⊆ R a multiplicative set. Show
that W−1R is a faithfully flat R-algebra if and only if W ⊆ Units(R).

EXERCISE 3.5.33. Let f : R→ S be a homomorphism of commutative rings and f ♯ :
SpecS→ SpecR the continuous map of Exercise 3.3.19. Assume

(a) f ♯ is one-to-one,
(b) the image of f ♯ is an open subset of SpecR, and
(c) for every q ∈ SpecS, if p = q∩R, then the natural map Rp → Sq is an isomor-

phism.
If (a), (b) and (c) are satisfied, then we say f ♯ is an open immersion. Under these hypothe-
ses, prove the following.

(1) For every q ∈ SpecS, if p= q∩R, then S⊗R Rp is isomorphic to Sq.
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(2) If α ∈ R and U(α) is a nonempty basic open subset of the image of f ♯, then
R[α−1] is isomorphic to S⊗R R[α−1].

EXERCISE 3.5.34. Let f : R→ S be a homomorphism of commutative rings. Show
that f is an isomorphism of rings if and only if

(a) f ♯ : SpecS→ SpecR is a homeomorphism and
(b) for every q ∈ SpecS, if p = q∩R, then the natural map Rp → Sq is an isomor-

phism.

EXERCISE 3.5.35. Let f : R→ S be a homomorphism of commutative rings. In each
of the following, give a specific example to show that f is not an isomorphism if either
condition (a) or (b) of Exercise 3.5.34 is not satisfied.

(1) Give an example such that condition (a) is satisfied, condition (b) is not satisfied,
and f is not an isomorphism.

(2) Give an example such that f ♯ is one-to-one, condition (b) is satisfied, and f is
not an isomorphism.

(3) Give an example such that f ♯ is onto, condition (b) is satisfied, and f is not an
isomorphism.

5.7. Locally of Finite Type is Finitely Generated as an Algebra. If S is a com-
mutative R-algebra, then S is said to be locally of finite type in case there exist elements
f1, . . . , fn in S such that S = S f1 + · · ·+ S fn and for each i, S[ f−1

i ] is a finitely generated
R-algebra. Proposition 3.5.36 is from [46, Proposition 1, p. 87].

PROPOSITION 3.5.36. Let S be a commutative R-algebra. Then S is locally of finite
type if and only if S is a finitely generated R-algebra.

PROOF. Assume S is locally of finite type and prove that S is finitely generated as
an R-algebra. The converse is trivial. We are given f1, . . . , fn in S such that S = S f1 +
· · ·+ S fn and for each i, S[ f−1

i ] is a finitely generated R-algebra. Fix elements u1, . . . ,un

in S such that 1 = u1 f1 + · · ·+un fn. Fix elements yi1, . . . ,yim in S[ f−1
i ] such that S[ f−1

i ] =
R[yi1, . . . ,yim]. There exist elements si j in S and nonnegative integers ei such that yi j =

si j f−ei
i in S[ f−1

i ]. Let S1 be the finitely generated R-subalgebra of S generated by the finite
set of elements {si j}∪{ f1, . . . , fn}∪{u1, . . . ,un}. To finish, it is enough to show that S1 is
equal to S. Let α be an arbitrary element of S and let 1≤ i≤ n. Consider α/1 as an element
of S[ f−1

i ]. Since S[ f−1
i ] is generated over R by si1, . . . ,sim and f−1

i , there exists an element
βi in S1 such that α/1 = βi f−ki

i for some ki ≥ 0. For some ℓi ≥ 0, f ℓi
i (βi− f ki

i α) = 0 in S.
For some large integer L, f L

i α = f L−ki
i βi is an element of S1, for each i. For any positive

integer N, α = 1α = (u1 f1 + · · ·+ un fn)
Nα . By the multinomial expansion, when N is

sufficiently large, (u1 f1 + · · ·+un fn)
N is in the ideal S1 f L

1 + · · ·+S1 f L
n . Therefore, α is in

S1. □

COROLLARY 3.5.37. Let f : R→ S be a homomorphism of commutative rings. If f ♯ :
SpecS→ SpecR is an open immersion (see Exercise 3.5.33), then S is a finitely generated
R-algebra.

PROOF. Is left to the reader. □

If R is a commutative ring and MaxR is a finite set, then we say R is a semilocal ring.

COROLLARY 3.5.38. Let R be a commutative semilocal ring. If m ∈MaxR, then Rm

is a finitely generated R-algebra. The map SpecRm→ SpecR is an open immersion.
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PROOF. If MaxR = {m}, then Rm = R and there is nothing to prove. Assume n ≥ 1
and MaxR = {m,m1, . . . ,mn}. For i = 1, . . . ,n pick αi ∈ mi−m. Set α = α1 · · ·αn. Then
α ∈ mi −m for each i. Let R[α−1] be the R-algebra formed by inverting α . Let θ :
R→ R[α−1]. By Exercise 3.3.25, the image of θ ♯ : SpecR[α−1]→ SpecR consists of those
prime ideals of R that do not contain α . So Max(R[α−1]) = {m}. By Exercise 3.1.24, Rm =
R[α−1]⊗R Rm. By Exercise 3.5.16, the natural map φ : R[α−1]→ Rm is an isomorphism.
By Exercise 3.1.32, R[α−1] is a finitely generated R-algebra. Since SpecR[α−1]→ SpecR
is an open immersion, this also shows SpecRm→ SpecR is an open immersion. □

6. Locally Free Modules

In this section we study finitely generated projective modules over commutative rings
from a local point of view. An R-module is said to be locally free of finite rank if there
exist f1, . . . , fn in R such that R = R f1 + · · ·+Rn and for each i, the localization M fi is a
free R fi -module of finite rank. If U( fi) denotes the image of the natural map SpecR fi →
SpecR, then {U( fi)} is an open cover of SpecR. The first main result of this section
(Proposition 3.6.2) shows that an R-module M is locally free of finite rank if and only if
M is finitely generated and projective. An important corollary shows that if M is a finitely
generated R-module, where R is an integral domain with quotient field K, then M is an R-
progenerator if and only if for every maximal ideal m in MaxR, the dimension of the vector
space M/mM over the field R/m is equal to the dimension of the vector space M⊗R K over
K.

The set of isomorphism classes of finitely generated projective R-modules of constant
rank one is called the Picard group of R, and is denoted Pic(R). We show that under
tensor product, Pic(R) is an abelian group and R 7→ Pic(R) defines a covariant functor
from the category of commutative rings to the category of abelian groups. In Section 12.2,
the Picard group of an integral domain R with quotient field K is described in terms of
invertible fractional ideals.

6.1. Locally Free of Finite Rank Equals Finitely Generated Projective.

DEFINITION 3.6.1. Let R be a commutative ring and M an R-module. Then M is
locally free of finite rank if there exist elements f1, . . . , fn in R such that R= R f1+ · · ·+R fn
and for each i, M fi = M⊗R R fi is free of finite rank over R fi .

PROPOSITION 3.6.2. Let R be a commutative ring and M an R-module. The following
are equivalent.

(1) M is finitely generated projective.
(2) M is locally free of finite rank.
(3) M is an R-module of finite presentation and for each p ∈ SpecR, Mp is a free

Rp-module.
(4) M is an R-module of finite presentation and for each m ∈MaxR, Mm is a free

Rm-module.

PROOF. (1) implies (3): This part follows directly from Corollary 2.1.8 and Proposi-
tion 3.4.3. It is trivial that (3) implies (4).

(4) implies (2): Using Lemma 3.1.14, for each m ∈MaxR pick αm ∈ R−m such that
Mαm = M⊗R Rαm is free of finite rank over Rαm . Let U(αm) = SpecR−V (αm) be the
basic open set associated to αm. Since U(αm) is an open neighborhood of m, we have an
open cover {U(αm) | m ∈MaxR} of SpecR (Exercise 3.3.17). By Exercise 3.3.28, there
is a finite subset of {αm | m ∈MaxR}, say {α1, . . . ,αn} such that {U(α1), . . . ,U(αn)} is
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an open cover of SpecR. For each i, Mαi is free of finite rank over Rαi which proves M is
locally free of finite rank.

(2) implies (1): Assume {U( f1), . . . ,U( fn)} is an open cover of SpecR and that for
each i, M fi is free of rank Ni over R fi . Let N = max{N1, . . . ,Nn}. Then

Fi = M fi ⊕R(N−Ni)
fi

is free of rank N over R fi . Set S =
⊕

i R fi . Then R→ S is faithfully flat (Exercise 3.5.28).
Set F =

⊕
i Fi. Then F is free over S of rank N and M⊗R S =

⊕
i M fi is a direct summand

of F (Exercise 3.6.11). Now apply Lemma 3.5.12 (3). □

Let R be a commutative ring. For any prime ideal p∈ Spec(R), write kp for the residue
field Rp/pRp. If M is a finitely generated R-module, then M can be used to define a rank
function SpecR→ {0,1,2, . . .}, where p 7→ dimkp(M⊗R kp). The next two corollaries
to Proposition 3.6.2 utilize this rank function to give us a powerful test for locally free
modules and for flatness over an integral domain.

COROLLARY 3.6.3. Let R be an integral domain with quotient field K. For each
maximal ideal m ∈ Max(R), write km for R/m. The following are equivalent for any
finitely generated R-module M.

(1) M is a locally free R-module of constant rank n.
(2) dimK(M⊗R K) = n and for every m ∈Max(R), dimkm(M/mM) = n.

PROOF. (1) implies (2): If M ∼= R(n), then M⊗R km ∼= k(n)m and M⊗R K ∼= K(n).
(2) implies (1): Let m be a maximal ideal of R and write Mm for M⊗R Rm. Since

M/mM is free of dimension n over km, there exist x1, . . . ,xn in Mm which restrict to a km-
basis under the natural map Mm→M/mM. For some α ∈ R−m, the finite set x1, . . . ,xn

is in the image of the natural map Mα → Mm. Define θ : R(n)
α → Mα by mapping the

standard basis vector ei to xi. By Lemma 3.4.1, Mm is generated by x1, . . . ,xn as an Rm-
module. Therefore, upon localizing θ at the maximal ideal mRα , it becomes onto. Because
the cokernel of θ is a finitely generated Rα -module, by Lemma 3.1.11, there exists β ∈
Rα −mRα such that if we replace α with αβ , then θ is onto. The diagram

0 // kerθ //

α

��

R(n)
α

θ //

β

��

Mα
//

��

0

0 // kerθ ⊗R K // K(n) θ⊗1 // M⊗R K // 0

commutes, where the second row is obtained by tensoring the top row with ( )⊗R K. Since
the top row is exact, by Lemma 3.1.7 so is the second row. Since R is an integral domain,
R→ K is one-to-one. Therefore β is one-to-one. Since M⊗K has dimension n and θ ⊗1
is onto, it follows that kerθ ⊗R K = 0. The Snake Lemma implies that kerθ = 0. We have
shown that every maximal ideal m ∈Max(R) has a basic open neighborhood U(α) such
that Mα is a free Rα -module of rank n. The argument that was used to show (4) implies (2)
in Proposition 3.6.2 can now be applied to finish the proof. □

COROLLARY 3.6.4. Let R be an integral domain with quotient field K and M a finitely
generated R-module. Then the following are equivalent.

(1) M is of finite presentation and flat.
(2) M is an R-progenerator.
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(3) There exists n > 0 such that dimK(M⊗R K) = n and for every maximal ideal m
in Max(R), dimkm(M/mM) = n.

PROOF. By Theorem 2.6.25 and Corollary 2.2.4, (1) and (2) are equivalent. Proposi-
tion 3.6.2, Corollary 3.6.3, and Corollary 2.2.4 imply that (2) and (3) are equivalent. □

6.2. Invertible Modules and the Picard Group. In this short section we define an
important invariant of a commutative ring. Given a commutative ring R, the Picard group
of R, denoted Pic(R), parametrizes the isomorphism classes of projective R-modules of
constant rank one. Under tensor product, Pic(R) is an abelian group, and R 7→ Pic(R) is a
covariant functor from the category of commutative rings to the category of abelian groups.

LEMMA 3.6.5. Let M be a finitely generated projective faithful module over the com-
mutative ring R. Then the following are equivalent.

(1) RankR(M) = 1.
(2) RankR(M∗) = 1.
(3) HomR(M,M)∼= R.
(4) M∗⊗R M ∼= R.

PROOF. The hypotheses on M imply that M is an R-progenerator module. Fix a prime
P ∈ SpecR. Then MP ∼= R(m)

P for some positive integer m. By Corollary 2.4.13 and Ex-
ercise 3.4.10, M∗⊗R RP = HomR(M,R)⊗R RP ∼= HomRP(MP,RP) is isomorphic to R(m)

P .

Likewise, RP⊗R HomRP(M,M) ∼= HomRP(MP,MP) is isomorphic to R(m2)
P . By properties

of tensors and Exercise 3.4.10, RP⊗R M∗⊗R M ∼= (RP⊗R M∗)⊗RP MP is isomorphic to

R(m2)
P . From this it follows that (1) – (4) are equivalent for the prime P. Since P was

arbitrary, this proves the lemma. □

DEFINITION 3.6.6. If M is an R-module that satisfies any of the equivalent properties
of Lemma 3.6.5, then we say M is invertible. Given a commutative ring R let Pic(R) be
the set of isomorphism classes of invertible R-modules. The isomorphism class containing
a module M is denoted by |M|. As stated in Proposition 3.6.8, Pic(R) is an abelian group,
which is called the Picard group of R.

PROPOSITION 3.6.7. Let R be a commutative ring and M an R-module. Then M is
invertible if and only if there exists an R-module N such that M⊗R N ∼= R. In this case,
N ∼= M∗ = HomR(M,R).

PROOF. Assume M is an invertible R-module. By Lemma 3.6.5, if we take N to be
M∗, then M⊗R N ∼= R. Conversely, assume M⊗R N ∼= R. By Proposition 2.3.25, both M
and N are R-progenerators. Fix a prime P ∈ SpecR. Then MP ∼= R(m)

P and NP ∼= R(n)
P for

some positive integers m, n. Tensor both sides of M⊗R N ∼= R with RP to get RP ∼= RP⊗R

(M⊗R N)∼= (M⊗R RP)⊗RP (N⊗R RP ∼= R(m)
P ⊗RP R(n)

P
∼= R(mn)

P . It follows that m = n = 1.
Since P was arbitrary, this shows M has constant rank 1. Tensor both sides of M⊗R N ∼= R
with M∗ to get M∗ ∼= M∗⊗R M⊗R N ∼= R⊗R N ∼= N. □

PROPOSITION 3.6.8. Under the binary operation |P| · |Q| = |P⊗R Q|, Pic(R) is an
abelian group. The identity element is the class |R|. The inverse of |M| ∈ Pic(R) is |M∗|.
The assignment R 7→ Pic(R) defines a (covariant) functor from the category of commutative
rings to the category of abelian groups.

PROOF. Is left to the reader. □
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EXAMPLE 3.6.9. See Exercise 2.1.18. Let k be any field. Let x and y be indetermi-
nates. Let f be the polynomial f = y2− x(x2−1). Let R be the factor ring

R =
k[x,y]

(y2− x(x2−1))
.

Then R is an integral domain. Let M be the maximal ideal of R generated by x and y.
If we invert x2− 1, then x = y2(x2− 1)−1, so M becomes principal. If we invert x, then
M becomes the unit ideal, and is principal. Since R(x2 − 1) and R(x) are comaximal,
there is an open cover U(x2− 1)∪U(x) = SpecR on which M is locally free of rank 1.
Proposition 3.6.2 shows that |M| ∈ PicR. Note that M2 is generated by x2,xy,y2. But an
ideal that contains x2 and y2 also contains x. We see that M2 is generated by x, hence is
free of rank one. The map

M⊗R M→M2

a⊗b 7→ ab

is R-linear. Since this map is onto and both sides are projective of rank one, it is an iso-
morphism. This proves that M∗ ∼= M and |M|−1 = |M|.

EXAMPLE 3.6.10. If R is a commutative ring with the property that every progenerator
module is free, then Pic(R) contains just one element, namely |R|. Using the notation of
abelian groups, we usually write Pic(R) = (0) in this case. For example, Pic(R) = (0) in
each of the following cases.

(1) R is a field (Theorem 1.6.13).
(2) R is a local ring (Proposition 3.4.3).
(3) R is a principal ideal domain (Example 2.1.6).
(4) R is a semilocal ring (Exercise 4.2.13).

6.3. Exercises.

EXERCISE 3.6.11. Let R1 and R2 be rings and let S = R1⊕R2 be the direct sum. Let
M1 be an R1-module and M2 an R2-module and let M = M1⊕M2. Prove:

(1) M is an S-module.
(2) If Mi is free of rank N over Ri for each i, then M is free of rank N over S.
(3) If Mi is finitely generated and projective over Ri for each i, then M is finitely

generated and projective over S.

EXERCISE 3.6.12. Let R1 and R2 be commutative rings. Show that Pic(R1⊕R2) is
isomorphic to Pic(R1)⊕Pic(R2).

EXERCISE 3.6.13. Let R be a commutative ring. A quadratic extension of R is an
R-algebra S which as an R-module is an R-progenerator of rank two. Prove that a quadratic
extension S of R is commutative. (Hint: First prove this when S is free of rank two. For the
general case, use the fact that S is locally free of rank two.)

EXERCISE 3.6.14. Let R be a commutative ring and M a finitely generated projective
R-module of constant rank n. Show that there exist elements f1, . . . , fm of R satisfying the
following:

(1) R = R f1 + · · ·+R fm.
(2) If S = R f1 ⊕·· ·⊕R fm , then M⊗R S is a free S-module of rank n.

EXERCISE 3.6.15. Let R be a commutative ring and M an R-progenerator. Prove:
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(1) If L is an invertible R-module, then there is an isomorphism of R-algebras

HomR(M,M)∼= HomR(L⊗R M,L⊗R M).

(2) If N is an R-progenerator such that HomR(M,M) and HomR(N,N) are isomor-
phic as R-algebras, then there exists an invertible R-module L such that N and
L⊗R M are isomorphic as R-modules. (Hint: By the Morita Theorem 2.8.2 there
exists an R-module L such that L⊗R M and N are isomorphic as HomR(M,M)-
modules.)

EXERCISE 3.6.16. Let k be a field and A = k[x] the polynomial ring over k in one
variable. Let R = k[x2,x3] be the k-subalgebra of A generated by x2 and x3. In Algebraic
Geometry, the ring k[x2,x3] corresponds to a cuspidal cubic curve. Show:

(1) R and A have the same quotient field, namely K = k(x).
(2) A is a finitely generated R-module.
(3) The conductor ideal from A to R is m = (x2,x3) which is a maximal ideal of R

(see Exercise 1.1.24).
(4) Use Corollary 3.6.4 to show that A is not flat over R. (Hint: Consider R/m and

A/mA.)
(5) The rings R[x−2] and A[x−2] are equal, hence the extension R→ A is flat upon

localization to the nonempty basic open set U(x2).
For a continuation of this example, see Exercise 6.1.20.

EXERCISE 3.6.17. Let k be a field, n > 1 an integer, T = k[x,y], S = k[xn,xy,yn], and
S→ T the set containment map. Using Corollary 3.6.4 and Exercise 2.3.46, show that T is
not flat over S. See [19, Exercise 4.4.19] for more properties of the extension T/S.

EXERCISE 3.6.18. Let k be a field and A = k[x] the polynomial ring over k in one
variable. Let R = k[x2− 1,x3− x] be the k-subalgebra of A generated by the polynomials
x2−1 and x3− x. In Algebraic Geometry, the ring k[x2−1,x3− x] corresponds to a nodal
cubic curve. Show:

(1) The quotient field of k[x2−1,x3−x] is k(x). In other words, k[x2−1,x3−x] and
k[x] are birational.

(2) k[x2−1,x3− x] is not a UFD.
(3) A is a finitely generated R-module.
(4) The conductor ideal from A to R is m= (x2−1,x3−x) which is a maximal ideal

of R (see Exercise 1.1.24).
(5) A is not flat over R.
(6) The rings R[(x2−1)−1] and A[(x2−1)−1] are equal, hence the extension R→ A

is flat upon localization to the nonempty basic open set U(x2−1).
For a continuation of this example, see Exercise 6.1.22.

EXERCISE 3.6.19. Let R be a commutative ring and I an ideal in R. If I is contained in
every maximal ideal of R, prove that the natural map Pic(R)→ Pic(R/I) is an isomorphism.

7. Flat Modules and Algebras

An R-module M is flat if the functor M⊗R (·) is left exact. This section contains a
deeper look into the theory of flat modules over a commutative ring R, and algebras over R
that are flat as R-modules. First we show that an R-module M is flat if and only if MP is flat
over RP for every P ∈ SpecR. Secondly we show that M is flat if and only if the functor
M⊗R (·) is left exact on every exact sequence 0→ A→ B of finitely generated R-modules.
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This is called a finiteness criterion for flatness. In Section 7.7.3 we prove that an R-module
M is finitely generated and projective if and only if M is of finite presentation and flat.
Section 7.7.4 contains some material which will be applied in Section 9.6. We remark that
some of the results in this section are proved for modules over a general ring.

7.1. Flat if and only if Locally Flat.

PROPOSITION 3.7.1. Let R be a commutative ring and A an R-module. The following
are equivalent.

(1) A is a flat R-module.
(2) Ap is a flat Rp-module, for every p ∈ SpecR.
(3) Am is a flat Rm-module, for every m ∈MaxR.

PROOF. (1) implies (2): This follows from Theorem 2.3.23.
(2) implies (3): This is trivially true.
(3) implies (1): Denote by S the exact sequence

0→M α−→ N
β−→ P→ 0

of R-modules. Let m ∈MaxR. Because Rm is flat over R and Am is flat over Rm,

(S)⊗R Rm⊗Rm Am = (S)⊗R Am

is an exact sequence. Take the direct sum over all m. It follows from Exercise 1.6.22 that

(S)⊗R

( ⊕
m∈MaxR

Am

)
= (S)⊗R A⊗R

( ⊕
m∈MaxR

Rm

)
is exact. By Proposition 3.5.3,

E =
⊕

m∈MaxR

Rm

is a faithfully flat R-module, so (S)⊗R A is exact. □

PROPOSITION 3.7.2. Let f : R→ S be a homomorphism of commutative rings. The
following are equivalent.

(1) S is a flat R-algebra.
(2) Sq is a flat Rp-algebra, for every q ∈ SpecS, if f−1(q) = p.
(3) Sm is a flat Rp-algebra, for every m ∈MaxS, if f−1(m) = p.

PROOF. Is left to the reader. (Hints: For (1) implies (2), use Exercise 3.7.12. For (3)
implies (1), there is an isomorphism (A⊗R S)⊗S Sm ∼= (A⊗R Rp)⊗Rp Sm for any R-module
A.) □

7.2. A Finiteness Criterion for Flat.

PROPOSITION 3.7.3. Let R be any ring and M a right R-module. Then M is flat if and
only if given any exact sequence

0→ A→ B

of finitely generated left R-modules, the sequence

0→M⊗R A→M⊗R B

is an exact sequence of Z-modules.
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PROOF. If M is flat, the second statement is trivially true. We prove the converse.
Start with an exact sequence

0→ A α−→ B

of left R-modules. We need to show that

0→M⊗R A 1⊗α−−→M⊗R B

is exact. We show that if v = ∑
n
i=1 xi⊗ yi is an element in the kernel of 1⊗α , then v =

0. Set A1 equal to Ry1 + · · ·+Ryn, which is a finitely generated submodule of A. Set
B1 equal to Rα(y1) + · · ·+ Rα(yn), which is a finitely generated submodule of B. As
in Exercise 2.7.25, B = lim−→Bα where {Bα} is the directed system of finitely generated
submodules of B. By Corollary 2.7.10, M⊗R B = lim−→(M⊗R Bα). In M⊗R B1 we have the
element u = ∑xi⊗α(yi) and the image of u in lim−→(M⊗R Bα) is equal to (1⊗α)(v) = 0.
By Lemma 2.7.5, there exists B2, a finitely generated submodule of B which contains B1,
such that under the restriction map φ 1

2 : M⊗R B1 → M⊗R B2 we have φ 1
2 (u) = 0. The

sequence

0→ A1
α−→ B2

is exact and the modules are finitely generated over R. Therefore, tensoring with M gives
the exact sequence

0→M⊗R A1
1⊗α−−→M⊗R B2.

In M⊗R A1 there is the element v1 = ∑
n
i=1 xi⊗ yi which maps onto v in M⊗R A. Under

1⊗α , the image of v1 in M⊗R B2 is φ 1
2 (u), which is 0. Therefore v1 = 0, hence v = 0. □

If R is any ring, M is any left R-module, and I is a right ideal in R, the multiplication
map

µ : I⊗R M→M

is defined by r⊗ x 7→ rx. The image of µ is

IM =

{
n

∑
i=1

rixi | n≥ 1,ri ∈ I,xi ∈M

}
which is a Z-submodule of M. If I is a two-sided ideal, then IM is an R-submodule of M.

COROLLARY 3.7.4. Let R be any ring and M a left R-module. The following are
equivalent.

(1) M is a flat R-module.
(2) For every right ideal I of R, the sequence

0→ I⊗R M
µ−→M→M/IM→ 0

is an exact sequence of Z-modules.
(3) For every finitely generated right ideal I of R, the sequence

0→ I⊗R M
µ−→M→M/IM→ 0

is an exact sequence of Z-modules.
(4) If there exist a1, . . . ,ar in R and x1, . . . ,xr in M such that ∑i aixi = 0, then there

exist an integer s, elements {bi j ∈ R | 1≤ i≤ r,1≤ j ≤ s} in R, and y1, . . . ,ys in
M satisfying ∑i aibi j = 0 for all j and xi = ∑ j bi jy j for all i.
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PROOF. (1) implies (2): is routine.
(2) implies (3): is trivial.
(3) implies (2): Let I be any right ideal in R. According to Exercise 2.7.25, I = lim−→ Iα ,

where each Iα is a finitely generated right ideal in R and Iα ⊆ I. By Corollary 2.7.10,
lim−→(Iα ⊗R M) = I⊗R M. By hypothesis the sequence

0→ Iα ⊗R M
µα−→M

is exact for each α . By Theorem 2.7.6, the sequence

0→ lim−→ Iα ⊗R M→M

is exact, which proves (2).
(2) implies (1): Start with the exact sequence of right Z-modules

0→ I⊗R M→ R⊗R M.

Since Q/Z is an injective Z-module, the sequence

HomZ(R⊗R M,Q/Z)→ HomZ(I⊗R M,Q/Z)→ 0

is an exact sequence of Z-modules. By Theorem 2.4.10, the sequence

HomR(R,HomZ(M,Q/Z)→ HomR(I,HomZ(M,Q/Z)→ 0

is an exact sequence of Z-modules. By Lemma 2.6.4, HomZ(M,Q/Z) is an injective right
R-module. By Theorem 2.6.24, this implies M is a flat left R-module.

(1) implies (4): Assume M is a flat R-module and ∑i aixi = 0 for some elements ai ∈ R
and xi ∈ M. Define θ : R(r) → R by the assignment (b1, . . . ,br) 7→ ∑i aibi. Then θ is a
homomorphism of right R-modules and the image of θ is the right ideal of R generated
by a1, . . . ,ar. Let K = ker(θ) and apply the tensor functor ()⊗R M to the exact sequence
0→ K→ R(r)→ R. The sequence

0→ K⊗R M→M(r) θM−→M

is an exact sequence of Z-modules, since M is flat. Moreover, θM is defined by the as-
signment (m1, . . . ,mr) 7→ ∑i aimi. We identify K⊗R M with ker(θM). Since (x1, . . . ,xr) ∈
ker(θM), there exists λ = ∑ j κ j⊗ y j ∈ K⊗R M such that λ = (x1, . . . ,xr). Since κ j ∈ K,
we can write κ j = (b1 j, . . . ,br j) for each j. This proves (4).

(4) implies (2): Let I be any right ideal of R and let θ : I⊗R M→ M. Suppose λ is
an arbitrary element of the kernel of θ . Then there exist a1, . . . ,ar in I and x1, . . . ,xr in M
such that λ = ∑i ai⊗ xi and θ(λ ) = ∑i aixi = 0. By (4) there are elements bi j in R and y j
in M such that xi = ∑ j bi jy j and ∑i aibi j = 0. In this case,

λ = ∑
i

ai⊗
(

∑
j

bi jy j

)
= ∑

j

(
∑

i
aibi j

)
⊗ y j = 0

so θ is one-to-one. □

In Corollary 3.7.5 we show that over a local ring a finitely generated module M is flat
if and only if it is free if and only if it is projective. Since we do not assume M is of finite
presentation, this statement is stronger than that of Theorem 2.6.25.

COROLLARY 3.7.5. Let R be a local ring and M a finitely generated R-module. The
following are equivalent.

(1) M is a free R-module.
(2) M is a projective R-module.
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(3) M is a flat R-module.

PROOF. (1) implies (2): Follows straight from the definition of projective.
(2) implies (3): This is Exercise 2.3.31.
(3) implies (1): If m is the maximal ideal of R and {xi +mM | 1≤ i≤ n} is a basis for

the vector space M/mM over the residue field R/m, then {x1, . . . ,xn} generate M over R.
This follows from Lemma 3.4.1.

To prove that {x1, . . . ,xn} is a free basis for M, it is enough to show that any depen-
dence relation ∑

n
i=1 aixi = 0 is trivial. The proof is by induction on n. We prove that if

1 ≤ j ≤ n and ξ1, . . . ,ξ j are elements of M such that {ξi +mM | 1 ≤ i ≤ j} is a linearly
independent set in M/mM over R/m, then ξ1, . . . ,ξ j are linearly independent over R.

For the basis step, say x ∈M−mM and that there exists a ∈ R such that ax = 0. By
Corollary 3.7.4 (4), there exist b1, . . . ,bs in R and y1, . . . ,ys in M such that ab j = 0 for each
b j and x = ∑ j b jy j. Since x ̸∈ mM, not all of the b j are in m. Suppose b1 ∈ R−m. Then
b1 is invertible in R, so ab1 = 0 implies a = 0.

Inductively assume n > 1 and that the result holds for n− 1 elements of M. Assume
{xi +mM | 1≤ i≤ n} are linearly independent over the residue field R/m and that there is
a dependence relation ∑i aixi = 0. By Corollary 3.7.4 (4), there exist bi j in R and y1, . . . ,ys
in M such that ∑i aibi j = 0 for each j and xi = ∑ j bi jy j for each i. Since xn ̸∈mM, not all of
the bn j are in m. Let bn1 ∈ R−m. Then bn1 is invertible in R, so we can solve ∑i aibi1 = 0
for an to get

an =−b−1
n1

n−1

∑
i=1

aibi1 =
n−1

∑
i=1

ciai.

Substitute to get

0 = ∑
i

aixi

= a1x1 + · · ·+an−1xn−1 +
n−1

∑
i=1

ciaixn

= a1(x1 + c1xn)+ · · ·+an−1(xn−1 + cn−1xn).

The set {x1 + c1xn, . . . ,xn−1 + cn−1xn} is linearly independent modulo mM. By the induc-
tion hypothesis we conclude that a1 = a2 = · · ·= an−1 = 0. Since an = ∑

n−1
i=1 ciai = 0, we

are done. □

7.3. Finitely Presented and Flat is Projective. In this section the ring R is a general
ring, not necessarily commutative. The goal is to prove that an R-module M is finitely
generated and projective if and only if M is of finite presentation and flat.

LEMMA 3.7.6. Let R be any ring, M a flat left R-module and

0→ A ⊆−→ B θ−→M→ 0

an exact sequence of left R-modules, where A = ker(θ).

(1) For any right ideal I of R, A∩ IB = IA.
(2) Suppose B is a free left R-module, and {bi | i ∈ J} is a basis for B over R. If

x = ∑i ribi is in A, then there exist ai ∈ A such that x = ∑i riai.
(3) Suppose B is a free left R-module. For any finite set {a1, . . . ,an} of elements of

A, there exists f ∈ HomR(B,A) such that f (ai) = ai for i = 1, . . . ,n.
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PROOF. (1): The multiplication map µ induces a commutative diagram

I⊗R A

��

µ // IA

⊆
��

// 0

I⊗R B
µ // IB // 0

of Z-modules with exact rows. The image of I⊗R A→ B is equal to IA and clearly IA ⊆
A∩ IB. Since M is flat, Corollary 3.7.4 implies µ : I⊗R M ∼= IM is an isomorphism. The
diagram

I⊗R A //

γ

��

I⊗R B
1⊗θ //

µ

��

I⊗R M //

∼=
��

0

0 // A∩ IB // IB θ // IM
is commutative and the rows are exact. The Snake Lemma (Theorem 2.5.2) says that γ is
onto. This proves that the image of I⊗R A→ B is equal to A∩ IB.

(2): Suppose we are given x = ∑i ribi ∈ A, where only finitely many of the ri are
nonzero. Let I be the right ideal of R generated by the coordinates {ri} of x. Then x ∈ A∩
IB = IA. Since IA = (∑i riR)A = ∑i riRA = ∑i riA, there exist ai ∈ A such that x = ∑i riai.

(3): Let {b j | j ∈ J} be a basis for the free module B. Let x1, . . . ,xn be elements in A.
The proof is by induction on n. Assume n = 1. Since x1 ∈ B, we write x1 = ∑ j r jb j where
r j ∈ R and only finitely many of r j are nonzero. By Part (2) there exist a j ∈ A such that
x = ∑ j r ja j. Define f : B→ A on the basis by setting f (b j) = a j. Then f (x1) = x1.

Inductively, assume n > 1 and that the result holds for any set involving n−1 or fewer
elements of A. By the n = 1 case, there exists f1 : A→ B such that f1(x1) = x1. By the
n− 1 case applied to the set x2− f1(x2), . . . ,xn− f1(xn), there exists f2 : A→ B such that
f2(x j− f1(x j)) = x j− f1(x j) for j = 2, . . . ,n. Set f = f1 + f2− f2 f1. Note that

f (x1) = f1(x1)+ f2(x1)− f2( f1(x1)) = x1,

and if 2≤ j ≤ n, then

f (x j) = f1(x j)+ f2(x j)− f2( f1(x j))

= f1(x j)+ f2(x j− f1(x j))

= f1(x j)+ x j− f1(x j)

= x j.

□

We give another proof of Theorem 2.6.25.

COROLLARY 3.7.7. Let R be any ring and M a finitely generated left R-module. The
following are equivalent.

(1) M is projective.
(2) M is of finite presentation and flat.

PROOF. (1) implies (2): If M is finitely generated and projective, then M is flat by
Exercise 2.3.31 and of finite presentation by Corollary 2.1.8.

(2) implies (1): Let

0→ A→ B θ−→M→ 0
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be a finite presentation of M, where B is a finitely generated free left R-module, and A is
a finitely generated submodule of B. According to Lemma 3.7.6 (3), this sequence is split
exact. □

7.4. Flat Algebras. The goal of this section is to prove Corollary 3.7.10, which will
be applied in Section 9.6.

LEMMA 3.7.8. Let S be a commutative flat R-algebra. If I and J are ideals in R, then
(1) (I∩ J)S = IS∩ JS.
(2) If J is finitely generated, then (I : J)S = (IS : JS).

PROOF. (1): The sequence of R-modules

0→ I∩ J→ R→ R/I⊕R/J

is exact, by Theorem 1.1.7. Tensoring with S,

0→ (I∩ J)⊗R S→ S→ S/IS⊕S/JS

is exact. By Corollary 3.7.4, this implies (I∩ J)⊗R S = (I∩ J)S = IS∩ JS.
(2): Step 1: J = Ra is principal. Let ℓa : R→ R be “left-multiplication by a” and

η : R→ R/I the natural map. The kernel of the composite map η ◦ ℓa is (I : Ra). Tensor
the exact sequence

0→ (I : Ra)→ R
η◦ℓa−−−→ R/I

with S and use Corollary 3.7.4 to get

0→ (I : Ra)S→ S
η◦ℓa−−−→ S/IS.

This shows (I : Ra)S = (IS : aS).
Step 2: J = Ra1 + · · ·+Ran. By Exercise 1.1.29, (I : J) =

⋂
i(I : Rai). By Part (1) and

Step 1,

(I : J)S =
⋂

i

(I : Rai)S =
⋂

i

(IS : RaiS) = (IS : ∑
i

RaiS) = (IS : JS).

□

In Proposition 3.7.9 we give another proof of Proposition 3.5.11.

PROPOSITION 3.7.9. Let S be a commutative flat R-algebra and M a finitely generated
R-module. Then annihR(M)S = annihS(M⊗R S).

PROOF. The proof is by induction on the number of generators of M. Assume M = Ra
is a principal R-module. If a = annihR(M), then R/a = M. By Corollary 3.7.4, a⊗R S =
aS. Tensor the exact sequence 0→ a→ R→ M → 0 with S to get aS = annihR(M)S =
annihS(M⊗R S). Inductively, assume I and J are finitely generated submodules of M for
which the proposition holds. Since S is flat, we view I⊗R S, J⊗R S, and (I + J)⊗R S as
submodules of M⊗R S. We have

annihR(I + J)S = (annihR(I)∩ annihR(J))S (Exercise 1.6.15)

= annihR(I)S∩ annihR(J)S (Lemma 3.7.8)

= annihS(I⊗R S)∩ annihS(J⊗R S) (Induction Hypothesis)

= annihS(I⊗R S+ J⊗R S) (Exercise 1.6.15)

= annihS ((I + J)⊗R S) .

Hence the proposition holds for I + J. □
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COROLLARY 3.7.10. Let R be a commutative ring and W a multiplicative set.

(1) If M is a finitely generated R-module, then W−1 annihR(M)= annihW−1R(W
−1M).

(2) If I and J are finitely generated ideals in R, then W−1(I : J) = (W−1I : W−1J).

PROOF. (1): Follows from Proposition 3.7.9.
(2): By Exercise 1.1.19, (I : J) = annihR ((I + J)/I). To complete the proof, apply

Part (1). □

7.5. Exercises.

EXERCISE 3.7.11. Let A be an R-algebra and M a faithfully flat left A-module which
is also faithfully flat as a left R-module. Prove that A is a faithfully flat R-algebra.

EXERCISE 3.7.12. Let f : R→ S be a homomorphism of commutative rings such that
S is a flat R-algebra. Let V ⊆ R and W ⊆ S be multiplicative sets such that f (V ) ⊆W .
Prove that W−1S is a flat V−1R-module.

EXERCISE 3.7.13. Let R be a ring, M a left R-module, and a ∈ R. Let ℓa : M→M be
“left multiplication by a”. Prove:

(1) If M is a flat R-module, and ℓa : R→ R is one-to-one, then ℓa : M→ M is also
one-to-one.

(2) If R is commutative, A is a flat R-algebra, and a ∈ R is not a zero divisor, then a
is not a zero divisor in A.

(3) If R is an integral domain and A is a flat R-algebra, then the structure homomor-
phism R→ A which maps x 7→ x ·1 is one-to-one, hence A is a faithful R-module.

EXERCISE 3.7.14. Let R⊆ S be an extension of integral domains. Assume R has the
property that for every m ∈MaxR, Rm is a principal ideal domain (a Dedekind domain has
this property). Show that S is a flat R-algebra. (Hint: Use Proposition 3.7.1 to assume R is
a local PID. Use Corollary 3.7.4.)

8. Multilinear Algebra

In Section 3.8.1 we establish much of our notation and conventions for graded rings
and modules. The rest of this section is not directly applied in this book. A general
reference for the material in this section is [12].

8.1. Graded Algebras. A graded ring is a commutative ring R which under addition
is the internal direct sum R =

⊕
∞
n=0 Rn of a set of additive subgroups {Rn}n≥0 satisfying

the property that RiR j ⊆ Ri+ j for all i, j ≥ 0. The reader should verify (Exercise 3.8.15)
that R0 is a subring of R and each Rn is an R0-module. An element of Rn is said to be
homogeneous of degree n. The set R+ =

⊕
∞
n=1 Rn is an ideal of R (Exercise 3.8.16), and

is called the exceptional ideal of R. Let R be a graded ring. A graded R-module is an R-
module M which under addition is the internal direct sum M =

⊕
n∈Z Mn of a set of additive

subgroups {Mn}n∈Z and such that RiM j ⊆Mi+ j for all pairs i, j. The reader should verify
that each Mn is an R0-module (Exercise 3.8.17). Any x ∈ Mn is said to be homogeneous
of degree n. Every y ∈ M can be written uniquely as a finite sum y = ∑

d
n=−d yn where

yn ∈Mn. We call the elements y−d , . . . ,y0, . . . ,yd the homogeneous components of y. The
set of homogeneous elements of M is

Mh =
⋃

d∈Z
Md .
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Let M and N be graded R-modules and θ : M→ N an R-module homomorphism. We say
θ is a homomorphism of graded R-modules if for every n ∈ Z we have θ(Mn)⊆ Nn.

Let R be a commutative ring. A graded R-algebra is an R-algebra A which as an R-
module is the internal direct sum A=

⊕
∞
n=0 An of a set of R-submodules {An}n≥0 satisfying

the property that AiA j ⊆ Ai+ j for all i, j ≥ 0. It follows that A0 is a subalgebra of A and
R ·1⊆A0. An element x in An is said to be homogeneous of degree n and we write deg(x) =
n. Let B be another graded R-algebra, and θ : A→ B an R-algebra homomorphism. Then
θ is a graded R-algebra homomorphism in case θ(Ai) ⊆ Bi for all i ≥ 0. A graded R-
subalgebra of A is a subalgebra B of A such that B is a graded R-submodule of A. A graded
left ideal of A is an ideal I of A which is a graded R-submodule of A. The definitions for
graded right ideal and graded two-sided ideal of A are similar. If I is a graded two-sided
ideal of A, the reader should verify that A/I is a graded R-algebra. If θ : A→ B is a graded
homomorphism of graded R-algebras, the reader should verify that the kernel of θ is a
graded two-sided ideal of A and the image of θ is a graded subalgebra of B.

PROPOSITION 3.8.1. Let R be a commutative ring and A a graded R-algebra. Let S
be a set of homogeneous elements of A. The R-subalgebra of A generated by S is a graded
subalgebra. The left ideal of A generated by S is a graded left ideal. The right ideal of A
generated by S is a graded right ideal. The two-sided ideal of A generated by S is a graded
two-sided ideal.

PROOF. Let B denote the R-subalgebra of A generated by S. Let P be the set of all
products of finitely many elements of S. Then B is equal to the R-submodule of A generated
by P∪{1}, which is graded since P consists of homogeneous elements. The rest is left to
the reader. □

DEFINITION 3.8.2. Let R be a commutative ring. A graded R-algebra A is said to be
anticommutative if for all homogeneous elements x, y in A

xy = (−1)deg(x)deg(y)yx.

A graded R-algebra A is said to be alternating if A is anticommutative and x2 = 0 for all
homogeneous elements x of odd degree.

DEFINITION 3.8.3. Let R be a commutative ring. Let A and B be graded R-algebras.
The graded tensor product of A and B, denoted A⊗R B, is defined by the following rules.

(1) As an R-module, A⊗R B is the usual tensor product.
(2) As a graded R-module, the homogeneous component of degree n is

(A⊗R B)n =
⊕

i+ j=n

(Ai⊗R B j) .

(3) The multiplication rule on A⊗R B is defined to be

(u⊗ x)(v⊗ y) = (−1)deg(x)deg(v)uv⊗ xy

for homogeneous elements u,v ∈ A, x,y ∈ B.
The reader should verify that the multiplication rule can be extended to A⊗R B and that
A⊗R B is a graded R-algebra. If A and B are two commutative graded R-algebras, we
define the commutative graded tensor product of A and B, denoted A⊗R B, in the same
way, except the multiplication rule is induced by (u⊗ x)(v⊗ y) = uv⊗ xy.

PROPOSITION 3.8.4. Let R be a commutative ring. Let A and B be graded R-algebras.
The graded tensor product A⊗R B satisfies the following.
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(1) The assignments a 7→ a⊗ 1, b 7→ 1⊗ b are graded R-algebra homomorphisms
ρ1 : A→ A⊗R B, ρ2 : B→ A⊗R B. For any homogeneous elements x ∈ A, y ∈ B,
ρ1(x)ρ2(y) = (−1)deg(x)deg(y)ρ2(y)ρ1(x).

(2) Suppose C is a graded R-algebra and α : A → C, β : B → C are graded R-
algebra homomorphisms such that α(x)β (y) = (−1)deg(x)deg(y)β (y)α(x) for any
homogeneous x ∈ A, y ∈ B. Then there exists a unique graded R-algebra homo-
morphism γ : A⊗R B→C such that the diagram

C

A

α

<<

ρ1
// A⊗R B

∃γ

OO

B
ρ2
oo

β

bb

commutes.

PROOF. Is left to the reader. □

8.2. The Tensor Algebra of a Module. Let R be a commutative ring and A an R-
algebra, and M a left A-module. Then M is a left R-module by the action rx = (r ·1)x for
all r ∈ R and x ∈M. A two-sided A/R-module is a left A right A bimodule M such that the
two induced R-actions are equal. That is, for all a,b ∈ A, r ∈ R, x ∈M:

(1) (ax)b = a(xb) and
(2) rx = (r ·1)x = x(r ·1) = xr.

The enveloping algebra of A is Ae = A⊗R Ao. If M is a left Ae-module, then we can make
M into a two-sided A/R-module by

ax = a⊗1 · x,
xa = 1⊗a · x.

Conversely, any two-sided A/R-module can be turned into a left Ae-module in the same
way.

DEFINITION 3.8.5. Let A be an R-algebra and M a two-sided A/R-module. For n≥ 0
we define two-sided A/R-modules T n(M) as follows. Define T 0(M) to be A, the free two-
sided A/R-module of rank one. If n > 0, define T n(M) to be M⊗n by which we mean M⊗A
· · · ⊗A M, the tensor product of n copies of M. By Lemma 2.3.10, T n(M) is a two-sided
A/R-module. The tensor algebra of M, denoted T (M), is the graded R-algebra defined by
the following rules.

(1) As a graded R-module, T (M) is equal to
⊕

n≥0 T n(M).
(2) The product rule on T (M) is induced on homogeneous components by

T i(M)⊗A T j(M)
ηi, j−−→ T i+ j(M)

which is a two-sided A/R-module isomorphism.

The reader should verify that T (M) is a graded R-algebra, the identity mapping of A onto
T 0(M) is a natural R-algebra homomorphism τ0 : A→ T (M), and the identity mapping of
M onto T 1(M) is a two-sided A/R-module homomorphism τ1 : M→ T (M). In case the
rings A and R are ambiguous, we write T n

A/R(M) instead of T n(M) and TA/R(M) instead
of T (M). If A = R, we sometimes write T n

R (M) instead of T n
A/R(M) and TR(M) instead of

TA/R(M).
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PROPOSITION 3.8.6. Let A be an R-algebra and M a two-sided A/R-module. The
tensor algebra satisfies the following.

(1) The R-algebra T (M) is generated by the set T 0(M)+T 1(M).
(2) (Universal Mapping Property) For any R-algebra homomorphism θ : A→ B and

two-sided A/R-module homomorphism f : M→ B, there exists a unique homo-
morphism φ of both R-algebras and two-sided A/R-modules such that the dia-
gram of R-algebras

A τ0
//

θ ��

T (M)

∃φ
}}

B

commutes and the diagram of two-sided A/R-modules

M τ1
//

f ��

T (M)

∃φ
}}

B

commutes. Up to an isomorphism of both R-algebras and two-sided A/R-modules,
T (M) is uniquely determined by this mapping property.

(3) If θ : M → N is a homomorphism of two-sided A/R-modules, then there exists
a unique homomorphism T (θ) of both graded R-algebras and two-sided A/R-
modules such that the diagram

M
τM //

θ

��

T (M)

T (θ)
��

N
τN // T (N)

commutes.
(4) The assignment M 7→ T (M) defines a covariant functor from the category of two-

sided A/R-modules to the category of graded R-algebras which are also two-
sided A/R-modules. The assignment M 7→ T n(M) defines a covariant functor
from the category of two-sided A/R-modules to the category of two-sided A/R-
modules.

(5) Given an exact sequence of two-sided A/R-modules

0→ K→M θ−→ N→ 0

the graded R-algebra homomorphism T (θ) : T (M) → T (N) is onto, and the
kernel of T (θ) is the ideal in T (M) generated by the image of K in T 1(M).

(6) If R→ S is a homomorphism of commutative rings, then for all n≥ 0 there is an
isomorphism of two-sided (S⊗R A)/S-modules

S⊗R T n
A/R(M)∼= T n

S⊗RA/S(S⊗R M)

and an isomorphism

S⊗R TA/R(M)∼= TS⊗RA/S(S⊗R M)

of both graded S-algebras and two-sided (S⊗R A)/S-modules.
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PROOF. (1), (4) and (6): Are left to the reader.
(2): Notice that

φ(x) =

{
θ(x) for all x ∈ T 0(M),
f (x) for all x ∈ T 1(M)

and T 0(M)+T 1(M) contains a generating set for the R-algebra T (M). The rest is left to
the reader.

(3): Apply Part (2) to the composite map M→ N→ T (N).
(5): Use Lemma 3.8.7 below and induction on n to show that T n(θ) : T n(M)→ T n(N)

is onto. Since T (θ)(K) = 0, it is clear that the ideal generated by K is in the kernel of T (θ).
Use Lemma 3.8.7 and induction on n to show that the kernel of T n(θ) : T n(M)→ T n(N)
is generated by elements of the form x1⊗ x2⊗·· ·⊗ xn where at least one of the xi is in K.
Elements of this form are in the two-sided ideal of T (M) generated by K. □

LEMMA 3.8.7. Let R be any ring. Let

0→ A α−→ B
β−→C→ 0

be an exact sequence in MR and

0→ D δ−→ E ε−→ F → 0

an exact sequence in RM. Then

(A⊗R E)⊕ (B⊗R D)
α⊗1+1⊗δ−−−−−−→ B⊗R E

β⊗ε−−→C⊗R F → 0

is an exact sequence of abelian groups.

PROOF. This is a restatement of Exercise 2.3.28. □

8.3. The Symmetric Algebra of a Module.

DEFINITION 3.8.8. Let R be a commutative ring, M an R-module, and T (M) the tensor
algebra of M. Let I be the ideal of T (M) generated by the set {x⊗y−y⊗x | x,y∈ T 1(M)}.
By Proposition 3.8.1, I is a graded ideal of T (M). The symmetric algebra of M, denoted
S(M), is the graded R-algebra T (M)/I. The homogeneous component of degree n in S(M)
is denoted Sn(M). In case the ring of scalars is ambiguous, we write Sn

R(M) instead of
Sn(M) and SR(M) instead of S(M).

The reader should verify that the sequence 0→ I∩T n(M)→ T n(M)→ Sn(M)→ 0 is
exact. In particular, R = S0(M) and M = S1(M).

PROPOSITION 3.8.9. Let R be a commutative ring and M an R-module. The symmetric
algebra of M, S(M), satisfies the following.

(1) The R-algebra S(M) is generated by the set M = S1(M).
(2) S(M) is a commutative graded R-algebra.
(3) (Universal Mapping Property) Let τ : M→ S(M) be the identity mapping of M

onto S1(M). For any R-algebra A and R-module homomorphism f : M → A
such that f (x) f (y) = f (y) f (x) for all x,y ∈M, there exists a unique R-algebra
homomorphism φ such that the diagram

M τ //

f ��

S(M)

∃φ
}}

A
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commutes. Up to an R-algebra isomorphism, S(M) is uniquely determined by
this mapping property.

(4) If θ : M→ N is an R-module homomorphism, then there exists a unique graded
R-algebra homomorphism S(θ) such that the diagram

M
τM //

θ

��

S(M)

S(θ)
��

N
τN // S(N)

commutes.
(5) S(M) is a covariant functor from the category of R-modules to the category of

commutative graded R-algebras. Sn(M) is a covariant functor from the category
of R-modules to the category of R-modules.

(6) Given an exact sequence of R-modules

0→ K→M θ−→ N→ 0

the graded R-algebra homomorphism S(θ) : S(M)→ S(N) is onto, and the kernel
of S(θ) is the ideal in S(M) generated by the image of K in S1(M).

(7) If R→ T is a homomorphism of commutative rings, then for all n≥ 0 there is an
isomorphism of T -modules T ⊗R Sn

R(M) ∼= Sn
T (T ⊗R M) and an isomorphism of

graded T -algebras T ⊗R SR(M)∼= ST (T ⊗R M).
(8) Let M1, M2 be two R-modules. There is a natural isomorphism of graded R-

algebras S(M1)⊗R S(M2) ∼= S(M1 ⊕M2), where S(M1)⊗R S(M2) denotes the
commutative graded tensor product.

PROOF. (1): Since T 1(M) contains a generating set for the R-algebra T (M), it follows
that S1(M) contains a generating set for the R-algebra S(M).

(2): For all x,y ∈M = T 1(M), x⊗ y+ I = y⊗ x+ I. Use Part (1).
(3): Apply Proposition 3.8.6 (2) to get φ : T (M)→ A. Check that I ⊆ ker(φ), so φ

factors through S(M).
(4) , (5) and (7): Are left to the reader.
(6): Write I(M) for the ideal in T (M) which defines S(M). Similarly, let I(N) denote

the ideal in T (N) which defines S(N). By Proposition 3.8.6 (5), T (θ) is onto. Since θ is
onto, for any x,y ∈ N, we can write x = θ(u) and y = θ(v) for some u,v ∈M. Therefore,
T (θ) maps u⊗ v− v⊗ u onto x⊗ y− y⊗ x. Therefore, the restriction of T (θ) defines a
homomorphism I(M)→ I(N). The diagram of R-modules

0 // I(M) //

��

T (M)

T (θ)
��

// S(M)

S(θ)
��

// 0

0 // I(N) // T (N) // S(N) // 0

commutes and the rows are exact. The three vertical maps are onto. By the Snake Lemma,
Theorem 2.5.2, ker(T (θ))→ ker(S(θ)) is onto. By Proposition 3.8.6 (5), the kernel of
T (θ) is the ideal generated by K. This proves Part (6).

(8): For each j, let ι j : M j → M1⊕M2 be the natural injection homomorphism. By
Part (4), there exists a natural homomorphism of graded rings S(ι j) : S(M j)→ S(M1⊕M2).
By Exercise 2.3.35 there exists a unique R-algebra homomorphism

S(M1)⊗R S(M2)
γ−→ S(M1⊕M2).
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The reader should verify that γ is a graded homomorphism of graded R-algebras. To com-
plete the proof, we construct the inverse mapping to γ . By Proposition 1.6.2 (2), there
exists a unique R-module homomorphism f such that the diagram

M j

ι j ##

τ j // S(M j)
ρ j // S(M1)⊗R S(M2)

M1⊕M2

∃ f

77

commutes. The maps ρ j are as in Exercise 2.3.35. By Part (3) there exists a unique R-
algebra homomorphism φ such that the diagram

M1⊕M2
f //

τ &&

S(M1)⊗R S(M2)

S(M1⊕M2)

φ

66

commutes. The reader should verify that φ is a graded R-algebra homomorphism and that
γ and φ are inverses of each other. □

8.4. The Exterior Algebra of a Module.

DEFINITION 3.8.10. Let R be a commutative ring, M an R-module, and T (M) the
tensor algebra of M. Let I be the ideal of T (M) generated by the set {x⊗ x | x ∈ T 1(M)}.
By Proposition 3.8.1, I is a graded ideal of T (M). The exterior algebra of M, denoted∧
(M) (and pronounced “wedge”), is the graded R-algebra T (M)/I. The homogeneous

component of degree n in
∧
(M) is denoted

∧n(M). In case the ring of scalars is ambiguous,
we write

∧n
R(M) instead of

∧n(M) and
∧

R(M) instead of
∧
(M). The coset of x1⊗ x2⊗

·· ·⊗ xn in
∧n(M) is denoted x1∧ x2∧·· ·∧ xn.

The reader should verify that the sequence 0→ I ∩T n(M)→ T n(M)→
∧n(M)→ 0

is exact. In particular, R =
∧0(M) and M =

∧1(M).

PROPOSITION 3.8.11. Let R be a commutative ring and M an R-module. The exterior
algebra of M,

∧
(M), satisfies the following.

(1) The R-algebra
∧
(M) is generated by the set M =

∧1(M).
(2) (Universal Mapping Property) Let τ : M→

∧
(M) be the identity mapping of M

onto
∧1(M). For any R-algebra A and R-module homomorphism f : M→ A such

that f (x) f (x) = 0 for all x ∈M, there exists a unique R-algebra homomorphism
φ such that the diagram

M τ //

f ��

∧
(M)

∃φ
}}

A

commutes. Up to an R-algebra isomorphism,
∧
(M) is uniquely determined by

this mapping property.
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(3) If θ : M→ N is an R-module homomorphism, then there exists a unique graded
R-algebra homomorphism

∧
(θ) such that the diagram

M
τM //

θ

��

∧
(M)

∧
(θ)

��
N

τN // ∧(N)

commutes.
(4) Given an exact sequence of R-modules

0→ K→M θ−→ N→ 0

the graded R-algebra homomorphism
∧
(θ) :

∧
(M)→

∧
(N) is onto, and the

kernel of
∧
(θ) is the ideal in

∧
(M) generated by the image of K in

∧1(M).
(5)

∧
(M) is an alternating R-algebra.

(6) If M is a finitely generated R-module which has a generating set consisting of n
elements, then

∧
(M) is a finitely generated R-module and for all p> n,

∧p(M)=
0.

(7)
∧
(M) is a covariant functor from the category of R-modules to the category of

alternating R-algebras.
∧n(M) is a covariant functor from the category of R-

modules to the category of R-modules.
(8) If R→ T is a homomorphism of commutative rings, then for all n≥ 0 there is a

natural isomorphism of T -modules
∧n

T (T ⊗R M) ∼= T ⊗R
∧n

R(M) and a natural
isomorphism of graded T -algebras

∧
T (T ⊗R M)∼= T ⊗R

∧
R(M).

(9) Let M1, M2 be two R-modules. There is a natural isomorphism of graded R-
algebras

∧
(M1)⊗R

∧
(M2)∼=

∧
(M1⊕M2), where

∧
(M1)⊗R

∧
(M2) denotes the

graded tensor product.

PROOF. (1): Is left to the reader.
(2): Similar to the proof of Proposition 3.8.9 (3).
(3): Is left to the reader.
(4): Similar to the proof of Proposition 3.8.9 (6).
(5): Assume m > 0 and n > 0. Let u ∈

∧m(M) and v ∈
∧n(M). Write u = ∑ui where

each ui is of the form x1 ∧ ·· · ∧ xm. Likewise, write v = ∑vi where each vi is of the form
y1∧ ·· · ∧ yn. By Exercise 3.8.26, ui∧ v j = (−1)mnv j ∧ui for each pair i, j. It follows that
u∧ v = (−1)mnv∧ u, so

∧
(M) is anticommutative. If m is odd, the reader should verify

that u∧u = 0, hence
∧
(M) is alternating.

(6): Suppose M is generated by x1, . . . ,xn. Let J = {1, . . . ,n}. For all p≥ 1,
∧p(M) is

generated by the finite set {xσ1∧·· ·∧xσp |σ ∈ Jp}. Suppose σ ∈ Jp and p> n. The pigeon
hole principle says that σi = σ j for some i ̸= j, and Exercise 3.8.24 says xσ1 ∧·· ·∧xσp = 0.
That is,

∧p(M) = 0 for all p > n.
(7) and (8): Are left to the reader.
(9): For each j, let ι j : M j → M1⊕M2 be the natural injection homomorphism. By

Part (3), there exists a natural homomorphism of graded rings
∧
(ι j) :

∧
(M j)→

∧
(M1⊕

M2). By Proposition 3.8.4, there exists a unique graded R-algebra homomorphism

∧
(M1)⊗R

∧
(M2)

γ−→
∧
(M1⊕M2).
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To complete the proof, we construct the inverse mapping to γ . By Proposition 1.6.2 (2),
there exists a unique R-module homomorphism f such that the diagram

M j

ι j ##

τ j // ∧(M j)
ρ j // ∧(M1)⊗R

∧
(M2)

M1⊕M2

∃ f

77

commutes. The maps ρ j are as in Proposition 3.8.4. The reader should verify that the
graded tensor product

∧
(M1)⊗R

∧
(M2) is alternating. By Part (2) there exists a unique

R-algebra homomorphism φ such that the diagram

M1⊕M2
f //

τ &&

∧
(M1)⊗R

∧
(M2)

∧
(M1⊕M2)

φ

66

commutes. The reader should verify that φ is a graded R-algebra homomorphism and that
γ and φ are inverses of each other. □

EXAMPLE 3.8.12. Let τ : Mn→
∧n(M) be the composite map

Mn→ T n(M)→
n∧
(M)

defined by (x1, . . . ,xn) 7→ x1⊗·· ·⊗xn 7→ x1∧·· ·∧xn. By Definition 2.3.2, Definition 3.8.10,
and Exercise 3.8.24 it follows that τ is an alternating multilinear form (see Definition 1.7.3).

PROPOSITION 3.8.13. (Universal Mapping Property) Let R be a commutative ring
and M and N two R-modules. For any alternating multilinear form f : Mn→N there exists
a unique R-module homomorphism f̄ :

∧n(M)→ N such that f̄ τ = f .

Mn τ //

f   

∧n(M)

∃ f̄||
N

commutes. Up to an R-module isomorphism,
∧n(M) is uniquely determined by this map-

ping property.

PROOF. Since f is multilinear, it factors through the tensor product T n(M). That is,
there exists a unique f ′ : T n(M)→ N such that the left side of the diagram

Mn //

f
##

T n(M) //

f ′

��

∧n(M)

∃ f̄
zz

N

commutes. The reader should verify that f ′(I∩T n(M)) = 0. Therefore, f ′ factors through∧n(M), giving f̄ . The map f̄ is unique because
∧n(M) is generated by the image of τ . The

last claim is proved as in the proof of Theorem 2.3.3. □
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PROPOSITION 3.8.14. Let R be a commutative ring, L an invertible R-module, and M
a finitely generated projective R-module of constant rank n. Then

n∧
(L⊗R M) = L⊗n⊗R

n∧
(M).

PROOF. Let σ : T n(L⊗R M)→ T n(L)⊗R T n(M) be the R-module isomorphism in-
duced by (l1⊗ x1, . . . , ln⊗ xn) 7→ (l1⊗·· ·⊗ ln)⊗ (x1⊗·· ·⊗ xn). The reader should verify
that the composite map

(L⊗R M)n→ T n(L⊗R M)
σ−→ T n(L)⊗R T n(M)→ T n(L)⊗R

n∧
(M)

is alternating multilinear. By Proposition 3.8.13 this map factors through an R-module
homomorphism f̄ :

∧n(L⊗M)→ T n(L)⊗R
∧n(M). In the special case that M is a free

R-module, it follows from Exercise 3.8.27 and Exercise 3.8.29 that f̄ is an isomorphism.
By Proposition 3.8.11 (8), the exterior power commutes with change of base. Localizing at
a prime ideal P of R, the modules M and L are free. Therefore, f̄ is locally an isomorphism.

□

8.5. Exercises.

EXERCISE 3.8.15. Let R =
⊕

∞
n=0 Rn be a graded ring. Show that R0 is a subring of R

and each Rn is an R0-module.

EXERCISE 3.8.16. Let R=
⊕

∞
n=0 Rn be a graded ring. Show that the set R+=

⊕
∞
n=1 Rn

is an ideal of R.

EXERCISE 3.8.17. Let R =
⊕

∞
n=0 Rn be a graded ring and M =

⊕
∞
n=0 Mn a graded

R-module. Show that each Mn is an R0-module.

EXERCISE 3.8.18. Let R be a commutative ring and M a finitely generated projective R
module with RankR(M) = n. Show that T r(M) is a finitely generated projective R-module
and RankR (T r(M)) = nr.

EXERCISE 3.8.19. Let R be a commutative ring. Let M = Ra be a free R-module of
rank 1 with generator a. Show that there is an isomorphism of R-algebras T (M)→ R[x]
defined by the assignment a 7→ x.

EXERCISE 3.8.20. Let R be a commutative ring. Let M be a rank one R-progenerator.
Use Proposition 3.6.2, Exercise 3.5.28, and Exercise 3.8.19 to prove that the tensor algebra
T (M) is commutative.

EXERCISE 3.8.21. Let R be an integral domain with field of fractions K. Let M be a
finitely generated torsion-free R-module. If K⊗R M has dimension one over K, prove that
the tensor algebra T (M) is commutative.

EXERCISE 3.8.22. Let R be a commutative ring. Let M be a finitely generated free
R-module of rank n with basis m1, . . . ,mn. Show that there is an isomorphism of R-algebras
S(M)→ k[x1, . . . ,xn] defined by the assignments mi 7→ xi.

EXERCISE 3.8.23. Let R be a commutative ring and M a finitely generated projective
R module with RankR(M)= n. Show that Sr(M) is a finitely generated projective R-module
and RankR (Sr(M)) =

(n+r−1
n−1

)
.

EXERCISE 3.8.24. Prove that x1∧ x2∧ ·· ·∧ xn = 0, if there exist distinct subscripts i
and j such that xi = x j.



8. MULTILINEAR ALGEBRA 169

EXERCISE 3.8.25. For any permutation σ of the set {1,2, . . . ,n}, show that

xs1 ∧ xs2 ∧·· ·∧ xsn = sign(σ)x1∧ x2∧·· ·∧ xn.

EXERCISE 3.8.26. For any elements x1, . . . ,xm,y1, . . . ,yn ∈M, show that

x1∧ x2∧·· ·∧ xm∧ y1∧ y2∧·· ·∧ yn = (−1)mny1∧ y2∧·· ·∧ yn∧ x1∧ x2∧·· ·∧ xm.

EXERCISE 3.8.27. Let R be a commutative ring and M a free R-module with basis
{x1, . . . ,xn}. Use Proposition 3.8.11 to prove that if 0 ≤ m ≤ n, then

∧m(M) is a free
R-module of rank

(n
m

)
with basis {xi1 ∧·· ·∧ xim | 1≤ i1 < · · ·< im ≤ n}.

EXERCISE 3.8.28. Let R be a commutative ring and M a finitely generated projective
R-module. Prove:

(1)
∧m(M) is a finitely generated projective R-module.

(2)
∧
(M) is a finitely generated projective R-module.

(3) If M has constant rank n, then
∧m(M) has constant rank

(n
m

)
and

∧
(M) has

constant rank 2n.

EXERCISE 3.8.29. Let R be a commutative ring and M = P1⊕·· ·⊕Pm, where each Pi
is an invertible R-module (see Definition 3.6.6). Prove:

(1)
∧m(M)∼= P1⊗R P2⊗R · · ·⊗R Pm.

(2) Suppose N = Q1⊕·· ·⊕Qn, where each Qi is an invertible R-module. If M ∼= N,
then m = n and P1⊗R P2⊗R · · ·⊗R Pm ∼= Q1⊗R Q2⊗R · · ·⊗R Qn.

EXERCISE 3.8.30. Let R be a commutative ring, S a commutative R-algebra, and M
an S-module. Show that T n

R (M) is a left T n
R (S)-module where the multiplication rule is

(s1⊗·· ·⊗ sn)(x1⊗·· ·⊗ xn) = (s1x1⊗·· ·⊗ snxn). Prove the following.
(1) If M is a finitely generated S-module, then T n

R (M) is a finitely generated T n
R (S)-

module.
(2) If M is a projective S-module, then T n

R (M) is a projective T n
R (S)-module.

(3) If M is an S-module generator, then T n
R (M) is a T n

R (S)-module generator.
(4) If A is an S-algebra, then T n

R (A) is a T n
R (S)-algebra.

EXERCISE 3.8.31. Let R be a commutative ring and M = Rn the free R-module of
rank n. Let θ : M→ M be an R-module homomorphism, and

∧n(θ) :
∧n(M)→

∧n(M)
the R-module homomorphism guaranteed by Proposition 3.8.11 (3). By Exercise 3.8.27,∧n(M)∼= R. Show that

∧n(θ) : R→ R is left multiplication by the determinant of θ .





CHAPTER 4

Artinian and Noetherian Rings and Modules

If an R-module M satisfies the descending chain condition (DCC) on submodules, then
M is said to be artinian. If M satisfies the ascending chain condition (ACC) on submodules,
then M is called noetherian. Viewing the ring R as a left R-module, we say R is artinian,
if the DCC on left ideals holds. Likewise, R is noetherian, if the ACC on left ideals holds.
We prove in Theorem 4.5.1 that an artinian ring is noetherian. Theorem 4.1.16 shows that a
commutative noetherian ring R has a unique decomposition as a finite direct sum of ideals
of the form Re, where the ring Re has only two idempotents. We prove that a module has
a composition series if and only if both the ACC and the DCC hold on submodules.

Section 4.2 begins with the definition of the Jacobson radical. If R is a ring, the Jacob-
son radical of R is the intersection of all maximal left ideals in R. If R is commutative, then
the Jacobson radical contains the nil radical, but in general the two radicals are not equal.
In terms of the Jacobson radical, we state and prove a version of Nakayama’s Lemma for
noncommutative rings. In Section 4.3 we study semisimple rings. These are rings which
are artinian and have trivial Jacobson radical. We prove that a ring is semisimple if and
only if every module is projective.

In this book, a simple ring is an artinian ring with no proper two-sided ideal. We prove
that a semisimple ring is a finite direct sum of simple rings. The main result on this subject
is the Wedderburn-Artin Theorem which shows that a simple ring R is isomorphic to the
ring of n-by-n-matrices over a division ring D. The ring D is unique up to isomorphism and
is called the division ring component of R. The proof is an application of Morita Theory.

Theorem 4.5.6 is an important structure theorem for commutative artinian rings. In it
we show that a commutative artinian ring is a finite direct sum of local artinian rings. For
instance, this implies that over a commutative artinian ring any finitely generated projective
module of constant rank is a free module.

In Section 4.6 we apply the results from all of the previous sections to compute some
nontrivial examples. First we completely classify all k-algebras of dimension 3, for an
arbitrary field k. Secondly we give a complete classification of all finite rings of order p3,
where p is a prime.

1. Chain Conditions

DEFINITION 4.1.1. Let R be any ring and M an R-module. Let S be the set of all R-
submodules of M, partially ordered by ⊆, the set inclusion relation. The reader is referred
to Section 1.2 for the definitions of ACC, DCC, maximum condition, and minimum condi-
tion on the partially ordered set S . We say that M satisfies the ascending chain condition
(ACC) on submodules, if S satisfies the ACC. We say that M satisfies the descending
chain condition (DCC) on submodules, if S satisfies the DCC. We say that M satisfies the
maximum condition on submodules, if S satisfies the maximum condition. We say that M
satisfies the minimum condition on submodules, if S satisfies the minimum condition.

171
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DEFINITION 4.1.2. Let R be any ring and M an R-module. We say M is noetherian
if M satisfies the ACC on submodules. We say M is artinian if M satisfies the DCC on
submodules. The ring R is said to be (left) noetherian if R is noetherian when viewed as
a left R-module. In this case we say R satisfies the ACC on left ideals. The ring R is said
to be (left) artinian if R is artinian when viewed as a left R-module. In this case we say R
satisfies the DCC on left ideals.

LEMMA 4.1.3. Let R be a ring and M an R-module. Then M is artinian, that is
M satisfies the DCC on submodules, if and only if M satisfies the minimum condition on
submodules.

PROOF. This follows from Proposition 1.2.1. □

COROLLARY 4.1.4. Let R be a ring. Then R is artinian, that is R satisfies the DCC on
left ideals, if and only if R satisfies the minimum condition on left ideals.

EXAMPLE 4.1.5. We list a few examples of artinian rings. Some of the proofs will
come later.

(1) A division ring has only two left ideals, hence satisfies both ACC and DCC on
left ideals.

(2) If M is a finite dimensional vector space over a division ring D, then HomD(M,M)
is artinian, by Exercise 4.1.34.

(3) By Exercise 4.1.35, any finite dimensional algebra over a field is artinian.

LEMMA 4.1.6. Let R be a ring and M an R-module. The following are equivalent.
(1) M is noetherian. That is, M satisfies the ACC on submodules.
(2) M satisfies the maximum condition on submodules.
(3) Every submodule of M is finitely generated.

PROOF. (1) and (2) are equivalent by Proposition 1.2.1.
(2) implies (3): Let A be a submodule of M and let S be the set of all finitely generated

submodules of A. Let B be a maximal member of S. If B=A, then we are done. Otherwise,
let x be an arbitrary element of A−B. So B+Rx is a finitely generated submodule of A
which properly contains B. This contradicts the maximality of B.

(3) implies (1): Suppose M0 ⊆M1 ⊆M2 ⊆ . . . is a chain of submodules in M. The set
theoretic union U =

⋃
n≥0 Mn is also a submodule of M. Then U is finitely generated, so

for large enough m, Mm contains each element of a generating set for U . Then U ⊆Mm.
Moreover, for each i ≥ m, U ⊆ Mm ⊆ Mi ⊆U . This proves that the ACC is satisfied by
M. □

COROLLARY 4.1.7. Let R be a ring. The following are equivalent.
(1) R is noetherian. That is, R satisfies the ACC on left ideals.
(2) Every left ideal of R is finitely generated as an R-module.
(3) Every nonempty set of left ideals of R contains a maximal member.

EXAMPLE 4.1.8. We list a few examples of noetherian rings. Some of the proofs will
come later.

(1) In a principal ideal ring R, left ideals are principal, so Corollary 4.1.7 (3) is sat-
isfied. In particular, a PID is noetherian.

(2) It follows from the Hilbert Basis Theorem, which is prove in Theorem 6.2.1 be-
low, that a polynomial ring k[x1, . . . ,xn] in n variables over a field k is noetherian.

(3) We will prove in Theorem 4.5.1 below that an artinian ring is noetherian.
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LEMMA 4.1.9. Let R be any ring and

0→ A α−→ B
β−→C→ 0

a short exact sequence of R-modules.
(1) The following are equivalent.

(a) B satisfies the ACC on submodules.
(b) A and C satisfy the ACC on submodules.

(2) The following are equivalent.
(a) B satisfies the DCC on submodules.
(b) A and C satisfy the DCC on submodules.

PROOF. (2): Is left to the reader.
(1): (a) implies (b): Assume B satisfies the ACC on submodules. By virtue of α we

can identify A with an R-submodule of B. Any ascending chain of submodules of A is
also an ascending chain of submodules in B, hence is eventually constant. Therefore A
satisfies the ACC on submodules. If C0 ⊆ C1 ⊆ C2 ⊆ . . . is a chain of submodules in C,
then β−1(C0) ⊆ β−1(C1) ⊆ β−1(C2) ⊆ . . . is a chain of submodules of B. There exists d
such that for all i > d, β−1(Cd) = β−1(Ci). But β is onto, so Cd =Ci and we have shown
C satisfies the ACC on submodules.

(b) implies (a): Assume A and C satisfy the ACC on submodules. For simplicity’s
sake, identify A with the kernel of β . Let B0 ⊆ B1 ⊆ B2 ⊆ . . . be a chain of submodules in
B. For each i set Ci = β (Bi) and let Ai be the kernel of β : Bi→Ci. The ascending chain
C0 ⊆C1 ⊆C2 ⊆ . . . eventually is constant. The reader should verify that the Ais form an
ascending chain A0 ⊆ A1 ⊆ A2 ⊆ . . . in A which also is eventually constant. Find some
d > 0 such that for all i > d we have Ad = Ai and Cd =Ci. The diagram

0 // Ad
α //

=

��

Bd
β //

⊆
��

Cd //

=

��

0

0 // Ai
α // Bi

β // Ci // 0

commutes. By the Five Lemma, (Theorem 2.5.1), the center vertical arrow is onto so
Bd = Bi. □

COROLLARY 4.1.10. Let R be a ring, M an R-module and A a submodule.
(1) The following are equivalent.

(a) M satisfies the ACC on submodules.
(b) A and M/A satisfy the ACC on submodules.

(2) The following are equivalent.
(a) M satisfies the DCC on submodules.
(b) A and M/A satisfy the DCC on submodules.

PROOF. Apply Lemma 4.1.9 to the exact sequence 0→ A→M→M/A→ 0. □

COROLLARY 4.1.11. Let R be a ring and M1, . . . ,Mn some R-modules.
(1) The following are equivalent.

(a) For each i, Mi satisfies the ACC on submodules.
(b) M1⊕·· ·⊕Mn satisfies the ACC on submodules.

(2) The following are equivalent.
(a) For each i, Mi satisfies the DCC on submodules.
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(b) M1⊕·· ·⊕Mn satisfies the DCC on submodules.

PROOF. If n = 2, the result follows from Lemma 4.1.9 applied to the exact sequence
0→ M1 → M1⊕M2 → M2 → 0. Use induction on n. Apply Lemma 4.1.9 to the exact
sequence

0→M1⊕·· ·⊕Mn−1→M1⊕·· ·⊕Mn→Mn→ 0
to finish the proof. □

COROLLARY 4.1.12. If R is a noetherian ring and M is a finitely generated R-module,
then

(1) M satisfies the ACC on submodules,
(2) M is finitely presented,
(3) M satisfies the maximum condition on submodules, and
(4) every submodule of M is finitely generated.

PROOF. By Lemma 1.6.11, for some m > 0, M is the homomorphic image of R(m).
There is an exact sequence

0→ K→ R(m) θ−→M→ 0
where K is defined to be the kernel of θ . To prove (2) it is enough to prove K is finitely
generated. If we prove M and K both satisfy the ACC on submodules, then we get (1)
and Lemma 4.1.6 implies (2), (3) and (4). By Definition 4.1.2, R as an R-module satisfies
the ACC on submodules. By Corollary 4.1.11, R(m) satisfies the ACC on submodules. By
Lemma 4.1.9, M and K both satisfy the ACC on submodules. □

COROLLARY 4.1.13. Let R be a noetherian ring.
(1) If I is a two-sided ideal of R, then R/I is noetherian.
(2) If R is commutative and W ⊆ R is a multiplicative set, then RW is noetherian.

PROOF. (1) Lemma 4.1.9 applied to the exact sequence of R-modules

0→ I→ R→ R/I→ 0

shows that R/I satisfies the ACC on left ideals, hence is noetherian.
(2) Let J be an ideal in RW . If x/w ∈ J, then x/1 ∈ J. Let I be the ideal of R consisting

of all x such that x/1 ∈ J. Then I is finitely generated, IW = J, and a generating set for I as
an ideal in R maps to a generating set for IW as an ideal of RW . □

PROPOSITION 4.1.14. Let R be a commutative noetherian ring.
(1) SpecR is a noetherian topological space.
(2) SpecR has a finite number of irreducible components.
(3) SpecR has a finite number of connected components.

PROOF. Apply Corollary 3.3.9 and Proposition 1.3.7 □

COROLLARY 4.1.15. Let R be a commutative noetherian ring and I an ideal of R
which is not the unit ideal. There is a one-to-one correspondence between the irreducible
components of V (I) and the minimal prime over-ideals of I given by Z 7→ I(Z).

PROOF. Let V (I) = Z1 ∪ ·· · ∪Zr be the decomposition into irreducible components,
which exists by Propositions 4.1.14 and 1.3.7. For each i, let Pi = I(Zi). By Lemma 3.3.10,
each of the ideals P1, . . . ,Pr is prime. First we show that each Pi is minimal. Assume I ⊆
Q⊆ Pi, for some prime Q. Then V (I)⊇V (Q)⊇ Zi. By Lemma 3.3.10, V (Q) is irreducible.
By the uniqueness part of Proposition 1.3.7, V (Q) = Zi. Therefore, Q = I(V (Q)) = Pi.
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Now let P be a minimal prime over-ideal of I. We show that P is equal to one of P1, . . . ,Pr.
By Lemma 3.3.10, V (P) is an irreducible subset of V (I). Since V (P) ⊆ Z1 ∪ ·· · ∪ Zr,
V (P)⊆ Zi, for some i. Therefore, I ⊆ Pi ⊆ P. Since P is minimal, P = Pi. □

THEOREM 4.1.16. Let R be a commutative noetherian ring. Then there exist primitive
idempotents e1, . . . ,en in R such that R is the internal direct sum R = Re1 ⊕ ·· · ⊕ Ren.
This decomposition is unique in the sense that, if R = R f1 ⊕ ·· · ⊕ R fp is another such
decomposition of R, then n = p, and after rearranging, e1 = f1, . . . , en = fn.

PROOF. Let SpecR = X1∪·· ·∪Xn be the decomposition into connected components,
which exists by Propositions 4.1.14 and 1.3.7. By Corollary 3.3.14 there are idempotents
e1, . . . ,en in R such that Xi = U(ei) = V (1− ei) is homeomorphic to SpecRei, and R =
Re1⊕·· ·⊕Ren. Corollary 3.3.16 implies each ei is a primitive idempotent. The uniqueness
claim comes from Theorem 3.2.5. □

EXAMPLE 4.1.17. Consider the localization Z[2−1] of Z at the multiplicative set
{1,2,22,23, . . .}. By Example 4.1.8, the principal ideal domain Z is noetherian. By Corol-
lary 4.1.13, Z[2−1] is a noetherian ring. As a Z-module Z[2−1] is not noetherian since

Z ·2−1 ⊊ Z ·2−2 ⊊ Z ·2−3 ⊊ · · ·⊊ Z ·2−i ⊊ · · ·
is a strictly increasing chain of Z-submodules.

1.1. Exercises.
EXERCISE 4.1.18. Let R1, . . . ,Rn be rings. Prove that the direct sum R1⊕·· ·⊕Rn is

an artinian ring if and only if each Ri is an artinian ring.

EXERCISE 4.1.19. Let R be an artinian ring and M a finitely generated R-module.
Show that M satisfies the DCC on submodules.

EXERCISE 4.1.20. Prove that if R is an artinian ring and I is a two-sided ideal in R,
then R/I is artinian.

EXERCISE 4.1.21. Let R be a commutative artinian ring and W is a multiplicative set
in R. Show that W−1R is artinian.

EXERCISE 4.1.22. Let R be a noetherian ring and M a finitely generated R-module.
Prove that the following are equivalent.

(1) M is flat.
(2) M is projective.

EXERCISE 4.1.23. Prove that if R is an artinian domain, then R is a division ring.

EXERCISE 4.1.24. Let θ : R→ S be a homomorphism of commutative rings such that
S is a faithfully flat R algebra. Prove:

(1) If S is artinian, then R is artinian.
(2) If S is noetherian, then R is noetherian.

EXERCISE 4.1.25. Let R be a noetherian commutative ring. Show that if M and N are
finitely generated R-modules, then HomR(M,N) is a finitely generated R-module.

EXERCISE 4.1.26. This exercise is based on an example attributed to Lance Small.

Let R be the subring of M2(Q) consisting of all matrices of the form
(

a 0
b c

)
where a ∈ Z

and b,c ∈ Q. Show that every left ideal of R is finitely generated. Show that R does not
satisfy the ACC on right ideals. Conclude that R is left noetherian but not right noetherian.
Show R is not isomorphic to the opposite ring Ro.
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1.2. Composition Series. Let R be any ring and M a left R-module. As in Sec-
tion 1.1.3, we say M is simple if M ̸= (0) and the only submodules of M are (0) and
M.

DEFINITION 4.1.27. Let R be any ring and M an R-module. Suppose there is a strictly
descending finite chain of submodules

M = M0 ⊋ M1 ⊋ M2 ⊋ · · ·⊋ Mn = (0)

starting with M = M0 and ending with Mn = (0). The length of the chain is n. A composi-
tion series for M is a chain such that Mi/Mi+1 is simple. If M has no composition series,
define ℓ(M) = ∞. Otherwise, let ℓ(M) be the minimum of the lengths of all composition
series of M. The number ℓ(M) is called the length of M. If ℓ(M)< ∞, then we say M is a
module of finite length.

We prove in Proposition 4.1.28 below that if M has a composition series, then every
composition series has the same length. We show in Proposition 4.1.29 below that a module
M of finite length satisfies both the ACC and DCC on submodules. In particular, M is
finitely generated.

PROPOSITION 4.1.28. Let R be any ring and M an R module. Suppose that M has a
composition series of length n. Then

(1) If N is a proper submodule of M, then ℓ(N)< ℓ(M).
(2) Every chain in M has length less than or equal to ℓ(M).
(3) Every composition series has length n.
(4) Every chain in M can be extended to a composition series.

PROOF. (1): Suppose

M = M0 ⊋ M1 ⊋ M2 ⊋ · · ·⊋ Mn = (0)

is a composition series for M such that n = ℓ(M). For each i, set Ni = N ∩Mi. The
reader should verify that the kernel of the composite map Ni → Mi → Mi/Mi+1 is Ni+1.
Therefore, Ni/Ni+1→Mi/Mi+1 is one-to-one. Either Ni+1 = Ni, or Ni/Ni+1 ∼= Mi/Mi+1 is
simple. If we delete any repetitions from N = N0 ⊇ N1 ⊇ ·· ·Nn = 0, then we are left with
a composition series for N. This shows ℓ(N) ≤ ℓ(M). For contradiction’s sake assume
ℓ(N) = ℓ(M). Then Ni/Ni+1 ∼= Mi/Mi+1 for each i = 0, . . . ,n− 1. By a finite induction
argument we conclude that N = M, a contradiction.

(2): Given any chain of submodules

M = M0 ⊋ M1 ⊋ M2 ⊋ · · ·⊋ Mm = (0)

starting at M and ending at (0), apply Part (1) to get

0 < ℓ(Mm−1)< · · ·< ℓ(M1)< ℓ(M)

which proves that m≤ ℓ(M).
(3): Follows straight from Part (2) and the definition of ℓ(M).
(4): Consider any chain of submodules

M = M0 ⊋ M1 ⊋ M2 ⊋ · · ·⊋ Mm = (0)

starting at M and ending at (0). If m = ℓ(M), then this is a composition series. Otherwise
for some i, Mi/Mi+1 is not simple, so there exists a proper submodule Mi ⊊ N ⊊ Mi+1.
Insert N into the chain, re-label and get a chain of length m+ 1. Repeat this insertion
procedure until the length of the new chain is equal to ℓ(M), at which point it must be a
composition series. □
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PROPOSITION 4.1.29. Let R be any ring and M an R-module. The following are
equivalent.

(1) M has a composition series.
(2) M satisfies both the ACC and the DCC on submodules.

PROOF. (1) implies (2): By Proposition 4.1.28 all chains in M are of bounded length.
(2) implies (1): By Lemma 4.1.6, every submodule of M satisfies the maximum con-

dition on submodules. Set M0 = M. Let M1 be a maximal submodule of M0. Iteratively
suppose i > 0 and let Mi+1 be a maximal submodule of Mi. The strictly descending chain
M0,M1,M2, . . . must converge to 0 since M satisfies the DCC on submodules. The result is
a composition series. □

PROPOSITION 4.1.30. Let R be any ring and

0→ A α−→ B
β−→C→ 0

an exact sequence of R-modules of finite length. Then ℓ(B) = ℓ(A)+ ℓ(C).

PROOF. Start with a composition series A = A0 ⊋ A1 ⊋ · · · ⊋ Am = 0 for A and a
composition series C =C0 ⊋C1 ⊋ · · ·⊋Cn = 0 for C. Then

B = β
−1(C0)⊋ β

−1(C1)⊋ · · ·⊋ β
−1(Cn) = α(A0)⊋ α(A1)⊋ · · ·⊋ α(Am) = 0

is a composition series for B. □

1.3. Infinite Chains. This short section has only one goal, which is to prove Proposi-
tion 4.1.31. The proposition is stated in terms of chains of subgroups of a group G, but the
method of proof can be employed to prove a similar theorem on the existence of a chain of
subfields of a field. In this context, see Theorem 11.5.7 for an application.

The proof given below is an application of the Well Ordering Principle (Axiom 1.2.2)
and uses transfinite induction. To simplify the statement of the proposition and its proof
we use some terminology from the theory of Ordinal Numbers which we define here. For
more on this subject the reader is referred to a book on Set Theory, for example [59]. Let
I be a well ordered set and β ∈ I. As in Section 1.2, denote by (−∞,β ) = {ξ ∈ I | ξ < β}
the segment of I determined by β . We say β has an immediate predecessor if the set
(−∞,β ) contains a maximal element, say α . In this case we write β = α + 1. This is
equivalent to the statement that β is the minimal element of the set {ξ ∈ I | α < ξ}. The
proposition shows that a group G is the union of a chain of subgroups {Gα}α∈I indexed
by a well ordered set I with the property that for every α ∈ I, the subgroup Gα+1 is equal
to the subgroup of G generated by Gα and a single element xα+1. The set I and the
subgroups making up the chain are not unique. For our purposes the following proposition
is sufficient. Nevertheless we remark that if one uses properties of ordinal numbers it is
possible to choose I to be minimal among all such ordinals.

PROPOSITION 4.1.31. Let G be a group and H a subgroup of G. Then there exists a
well ordered set I and a family of subgroups {Gξ | ξ ∈ I} satisfying the following.

(1) If 1 denotes the least element of I, then G1 = H.
(2) If α and β are in I and α ≤ β , then H ⊆ Gα ⊆ Gβ .
(3) For each β ∈ I, if β has an immediate predecessor, say α , then there exists

xβ ∈ G such that Gβ is the subgroup of G generated by Gα and {xβ}. If β has
no immediate predecessor, then Gβ =

⋃
ξ∈(−∞,β ) Gξ .

(4) G =
⋃

ξ∈I Gξ .
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PROOF. If H = G, then take I = {1}, G1 = H, and stop. Otherwise let X = (G−H)∪
{e}, where e is the identity element of G. By Axiom 1.2.2, there exists a well ordered set I
and a function I→ X . If ξ ∈ I, then the image of ξ in X will be denoted xξ . Without loss
of generality, assume the least element of I is 1 and x1 = e and if 1 < ξ , then xξ ̸= e. Set
G1 = H. The proof is based on Proposition 1.2.3. Assume inductively that γ ∈ I, 1 < γ ,
and that we have defined a family of subgroups {Gξ | ξ ∈ (−∞,γ)} satisfying:

(a) If α ≤ β < γ , then H ⊆ Gα ⊆ Gβ .
(b) If β < γ and β has an immediate predecessor, say α , then Gβ is the subgroup

of G generated by Gα and xβ . If β has no immediate predecessor, then Gβ =⋃
ξ∈(−∞,β ) Gξ .

To define Gγ , there are two cases. If γ has an immediate predecessor, say α , then we define
Gγ to be the subgroup of G generated by Gα and xγ . If γ has no immediate predecessor,
then Gγ is defined to be

⋃
ξ∈(−∞,γ) Gξ , which is a subgroup of G since {Gξ | ξ ∈ (−∞,γ)}

is a chain of subgroups. By Proposition 1.2.3 this defines {Gξ | ξ ∈ I} satisfying properties
(1), (2) and (3).

To complete the proof, we show that there exists a chain of subgroups of G that satisfies
properties (1) — (4). Let S be the set of all chains of subgroups of G of the form C =
{Gξ | ξ ∈ I} where I is a well ordered set and properties (1) — (3) are satisfied. By the
construction above, S is nonempty. Given a chain C = {Gξ | ξ ∈ I} in S , let G(C) =⋃
{Gξ | ξ ∈ I} be the union of the subgroups in C. The usual set containment relation on

the sets G(C) defines a partial order on S . That is, if C1 and C2 are in S , then C1 ≤C2
if G(C1) ⊆ G(C2). By a Zorn’s Lemma argument, S contains a maximal member, say
C = {Gξ | ξ ∈ I}. If G(C) ̸= G, then we apply the procedure in the first paragraph to get a
nontrivial chain of subgroups of G containing G(C) of the form C1 = {Kη | η ∈ J} where
J is a well ordered set and if 1 is the least element of J, then K1 = G(C). The set I + J is
well ordered in the usual way (see Exercise 4.1.37). Combining the two chains C and C1
gives a chain of subgroups in S that is strictly larger than C, a contradiction. Therefore, C
satisfies properties (1) — (4). □

1.4. Exercises.

EXERCISE 4.1.32. Let D be a division ring and V a finite dimensional vector space
over D. Prove:

(1) V is a simple module if and only if dimD(V ) = 1.
(2) dimD(V ) = ℓ(V ).

EXERCISE 4.1.33. Let D be a division ring and V a vector space over D. Prove that
the following are equivalent.

(1) V is finite dimensional over D.
(2) V is a D-module of finite length.
(3) V satisfies the ACC on submodules.
(4) V satisfies the DCC on submodules.

EXERCISE 4.1.34. Let D be a division ring.

(1) Prove that the ring Mn(D) of all n-by-n matrices over D is both artinian and
noetherian.

(2) Let M be a finite dimensional D-vector space. Prove that the ring HomD(M,M)
is both artinian and noetherian.
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EXERCISE 4.1.35. Let k be a field and R a k-algebra which is finite dimensional as a
k-vector space. Prove that the ring R is both artinian and noetherian. See Exercise 6.2.23
for the converse of this statement when R is commutative.

EXERCISE 4.1.36. Let θ : R→ S be a homomorphism of rings. Let M be a left S-
module. View M as a left R-module using θ (Example 1.1.11 (3)). Show that if M is an
R-module of finite length, then M is an S-module of finite length.

EXERCISE 4.1.37. Let I1 be a well ordered set with binary relation R1 ⊆ I1× I1. Let
I2 be a well ordered set with binary relation R2 ⊆ I2× I2. Using the distributive law (X ∪
Y )×Z = (X×Z)∪ (Y ×Z), the set R1∪ (I1× I2)∪R2 is a subset of (I1∪ I2)× (I1∪ I2) and
hence defines a binary relation on I1∪ I2. Show that this makes I1∪ I2 into a well ordered
set. Usually this well ordered set is denoted I1 + I2 and in words we say, “elements of I1
are comparable by R1, elements of I1 are less than elements of I2, and elements of I2 are
comparable by R2”.

2. The Jacobson Radical and Nakayama’s Lemma

Let R be any ring and M a left R-module. As in Section 1.1.3, we say N is a maximal
submodule of M in case N is a maximal member of the set

{S⊆M | S is a submodule of M and S ̸= M}
ordered by set inclusion. By Theorem 1.1.12 (3), N is a maximal submodule of M if and
only if N/M is simple.

DEFINITION 4.2.1. The Jacobson radical of M is

J(M) =
⋂
{N | N is a maximal submodule of M}

=
⋂
{ker f | f ∈ HomR(M,S) and S is simple}.

By J(R) we denote the Jacobson radical of R viewed as a left R-module. Then J(R) is equal
to the intersection of all maximal left ideals of R.

LEMMA 4.2.2. J(R) is a two-sided ideal of R.

PROOF. For any R-module M, let g∈HomR(M,M), let S be any simple R-module and
let f ∈HomR(M,S). Then f ◦g∈HomR(M,S) so J(M)⊆ ker( f ◦g). Then f (g(J(M))) = 0
for all f . That is, g(J(M))⊆ J(M). Given r ∈ R, let ρr ∈ HomR(R,R) be “right multiplica-
tion by r” (Lemma 2.4.7). Then ρr(J(R)) = J(R) · r ⊆ J(R). □

THEOREM 4.2.3. (Nakayama’s Lemma) Let R be any ring and I a left ideal of R. The
following are equivalent.

(1) I ⊆ J(R).
(2) 1+ I = {1+ x | x ∈ I} ⊆ Units(R).
(3) If M is a finitely generated left R-module and IM = M, then M = 0.
(4) If M is a finitely generated left R-module and N is a submodule of M and IM +

N = M, then N = M.

PROOF. (1) implies (2): Let x ∈ I. Assume 1+x has no left inverse. Then R(1+x) ̸=
R. By Zorn’s Lemma, Proposition 1.2.4, R(1+ x) is contained in some maximal left ideal
L of R. Then 1+ x = y ∈ L. But I ⊆ J(R) ⊆ L. So x ∈ L. Therefore 1 = y− x ∈ L. This
contradiction means there exists u∈ R such that u(1+x) = 1. We show u has a left inverse.
Since 1 = u+ ux, u = 1− ux = 1+(−u)x ∈ 1+ I and by the previous argument, u has a
left inverse. Then u ∈ Units(R) and 1+ x = u−1.
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(2) implies (1): Assume L is a maximal left ideal and L does not contain I. Then
I +L = R, so 1 = x+ y for some x ∈ I and y ∈ L. Hence y = 1− x = 1+(−x) ∈ 1+ I ⊆
Units(R), a contradiction.

(1) plus (2) implies (3): Assume IM = M and prove that M = 0. Now I ⊆ J(R) and
IM = M implies J(R)M ⊆ M = IM ⊆ J(R)M. Therefore J(R)M = M. Assume M ̸= 0.
Pick a generating set {x1, . . . ,xn} for M with n ≥ 1 minimal. A typical element of M
looks like ∑

n
i=1 rixi, ri ∈ R. A typical element of J(R)M looks like ∑

n
i=1 airixi, ai ∈ J(R).

By Lemma 4.2.2, bi = airi ∈ J(R), so each element of J(R)M can be written in the form
∑

n
i=1 bixi, bi ∈ J(R). In particular, x1 = ∑

n
i=1 bixi, some bi ∈ J(R). Then x1(1− b1) =

∑
n
i=2 bixi. Now 1− b1 ∈ 1+ I, so 1− b1 is a unit. This shows that M is generated by

x2, . . . ,xn. This contradiction implies M = 0.
(3) implies (4): Since M is finitely generated so is M/N. Then

I(M/N) =
IM+N

N
= M/N

and by (3) we conclude that M/N = 0, or N = M.
(4) implies (1): Assume L is a maximal left ideal of R and that L does not contain I.

Then I+L = R. Apply (4) with L = N, R = M. Since IR⊇ I we have IR+L = R so L = R,
a contradiction. □

COROLLARY 4.2.4. Let

Jr(R) =
⋂
{I | I is a maximal right ideal of R}.

Then Jr(R) = J(R).

PROOF. By Lemma 4.2.2 both Jr(R) and J(R) are two-sided ideals of R. It follows
from Theorem 4.2.3 (2) that 1+ J(R) consists of units of R. Apply a right-sided version of
Theorem 4.2.3 to the right ideal J(R) and conclude that J(R)⊆ Jr(R). The converse follows
by symmetry. □

COROLLARY 4.2.5. If I is a left ideal of R which consists of nilpotent elements, then
I ⊆ J(R).

PROOF. Let a ∈ I and assume an = 0 for some n≥ 1. Then (1−a)(1+a+a2 + · · ·+
an−1) = 1. So 1+ I ⊆ Units(R). □

COROLLARY 4.2.6. If R is artinian, then J(R) is nilpotent.

PROOF. Consider the chain of left ideals

J(R)⊇ J(R)2 ⊇ J(R)3 ⊇ . . . .

There is some n≥ 1 such that J(R)n = J(R)n+1. Assume J(R)n ̸= 0. Since R is artinian, by
Lemma 4.1.3, the minimum condition is satisfied on left ideals. Consider the set L of all
finitely generated left ideals L such that J(R)nL ̸= 0. Since J(R)n = J(R)n J(R) ̸= 0, there
exists a ∈ J(R) such that J(R)nRa ̸= 0. Since Ra ∈L , the set is nonempty. Pick a minimal
element L of L . Now J(R)nL⊆ L. Since L ̸= 0, Theorem 4.2.3 (3) says J(R)nL is a proper
subset of L. But J(R)n (J(R)nL) = J(R)2nL = J(R)nL ̸= 0. There exists a ∈ J(R)nL such
that J(R)nRa ̸= 0. So Ra ∈L . But Ra⊆ J(R)nL ⊊ L. This is a contradiction, because L is
minimal. We conclude J(R)n = 0. □

COROLLARY 4.2.7. Let R be a ring.
(1) If M is a maximal two-sided ideal of R, then J(R)⊆M.
(2) If f : R→ S is an epimorphism of rings, then f (J(R))⊆ J(S).
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(3) If R is commutative and A is an R-algebra which is finitely generated as an R-
module, then J(R)A⊆ J(A).

PROOF. (1): Assume the contrary. The ideal J(R)+M is a two-sided ideal of R. Since
M is maximal, J(R)+M = R. By Theorem 4.2.3 (4), M = R, a contradiction.

(2): Let x ∈ J(R) and a ∈ R. By Theorem 4.2.3, 1+ ax ∈ Units(R), so f (1+ ax) =
1+ f (a) f (x) ∈ Units(S). Therefore the left ideal S f (x) is contained in J(S).

(3): Let M be a finitely generated left A-module. Then M is finitely generated as
an R-module. If (J(R)A)M = M, then J(R)(AM) = J(R)M = M. By (1) implies (3) of
Theorem 4.2.3, M = 0. By (3) implies (1) of Theorem 4.2.3, J(R)A⊆ J(A). □

2.1. Idempotents and the Jacobson Radical. As in Section 3.3.1, if R is a ring, then
idemp(R) = {x ∈ R | x2− x = 0} denotes the set of idempotents of R. The homomorphic
image of an idempotent is an idempotent, so given a homomorphism of rings A→ B, there
is a function idemp(A)→ idemp(B). If this function is onto, then we say idempotents of
B lift to idempotents of A. Corollary 4.2.8 is a corollary to Theorem 4.2.3, Nakayama’s
Lemma. It provides useful sufficient conditions for lifting idempotents modulo an ideal.

COROLLARY 4.2.8. Let R be a ring and I a two-sided ideal of R.
(1) If R is commutative and I ⊆ J(R), then idemp(R)→ idemp(R/I) is one-to-one.
(2) If I consists of nilpotent elements, then idemp(R)→ idemp(R/I) is onto.

PROOF. (1): Let e0,e1 ∈ idemp(R) and assume x = e0− e1 ∈ I. We show that x = 0.
Look at

x3 = e3
0−3e2

0e1 +3e0e2
1− e3

1

= e0−3e0e1 +3e0e1− e1

= e0− e1

= x.

Then x(x2−1) = 0. By Theorem 4.2.3, x2−1 is a unit, which implies that x = 0.
(2): Assume I consists of nilpotent elements. By Corollary 4.2.5, I ⊆ J(R). If x ∈ R,

denote by x̄ the image of x in R/I. Assume x̄2 = x̄. It follows that (1− x̄)2 = 1− x̄. Since
x−x2 ∈ I, for some n> 0 we have (x−x2)n = xn(1−x)n = 0. Set e0 = xn and e1 = (1−x)n.
Then e0e1 = e1e0 = 0, ē0 = x̄n = x̄, and ē1 = (1− x̄)n = 1− x̄. This says that e0+e1−1∈ I,
so by Theorem 4.2.3, u = e0 + e1 is a unit in R. We have 1 = e0u−1 + e1u−1 = u−1e0 +
u−1e1, hence e0 = e2

0u−1 = u−1e2
0, and e0u = e2

0 = ue0. We have shown that e0 commutes
with u. From this it follows that e0u−1 is an idempotent of R. Since ū = 1, ē0ū−1 = x̄. □

2.2. Exercises.

EXERCISE 4.2.9. Let R be a ring, I an ideal contained in J(R), and η : R→ R/I the
natural map. Prove the following:

(1) If η(r) is a unit in R/I, then r is a unit in R.
(2) The natural map η : Units(R)→ Units(R/I) is onto and the kernel is 1+ I.

EXERCISE 4.2.10. Let R be a PID, π a prime in R, and e≥ 1 an integer. This exercise
describes the group of units in the principal ideal ring R/(πe) in terms of the additive and
multiplicative groups of the field R/(π). To simplify notation, write (·)∗ for the group
of units in a ring. Let I = (π)/(πe) be the maximal ideal of R/(πe). Starting with the
descending chain of ideals

R/(πe) = I0 ⊇ I1 ⊇ ·· · ⊇ Ie−1 ⊇ Ie = (0),
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for i = 1, . . . ,e, define Ui to be the coset 1+ Ii. Write U0 for the group of units (R/(πe))∗.
Prove

(R/(πe))∗ =U0 ⊇U1 ⊇ ·· · ⊇Ue−1 ⊇Ue = (1)
is a series of subgroups satisfying these properties: U0/U1 is isomorphic to the multiplica-
tive group (R/(π))∗, and for i = 1, . . . ,e− 1, Ui/Ui+1 is isomorphic to the additive group
R/(π). To prove this, follow this outline.

(1) To show the Ui form a series of subgroups and U0/U1 is isomorphic to (R/(π))∗,
use Exercise 4.2.9 to prove that

1→Ui→ (R/(πe))∗→
(
R/(π i)

)∗→ 1

is an exact sequence, for i = 1, . . . ,e.
(2) Assume e≥ 2. Show that R/(π)∼=Ue−1 by the assignment which sends x to the

coset represented by 1+ xπe−1. This can be proved directly. By induction on e,
conclude that R/(π)∼= 1+(π i−1)/(π i), for all i≥ 2.

(3) Prove that Ui−1/Ui ∼= 1+(π i−1)/(π i), for all i≥ 2. This can be proved directly,
or by applying the Snake Lemma (Theorem 2.5.2) to the commutative diagram:

1 // Ui //

��

(R/(πe))∗ //

��

(
R/(π i)

)∗ //

��

1

1 // Ui−1 // (R/(πe))∗ //
(
R/(π i−1)

)∗ // 1

EXERCISE 4.2.11. Let R be a ring and J(R) ⊇ B ⊇ A a chain of ideals. Prove this
generalization of Exercise 4.2.10: Units(R)⊇ 1+B⊇ 1+A is a series of normal subgroups
and the quotient group (1+B)/(1+A) is isomorphic to 1+(B/A). (Hint: Show that the
image of the natural map 1+B→ Units(R/A) is 1+(B/A).)

EXERCISE 4.2.12. Let R = R1⊕·· ·⊕Rn be a direct sum, where each Ri is a commu-
tative local ring. Prove that a finitely generated projective R-module M of constant rank r
is a free R-module of rank r.

EXERCISE 4.2.13. Let R be a commutative semilocal ring. Prove:
(1) R/J(R) is isomorphic to a finite direct sum of fields.
(2) If M is a finitely generated projective R-module of constant rank r, then M is a

free R-module of rank r. (Hint: Mimic the proof of Proposition 3.4.3.)

EXERCISE 4.2.14. Let R be a ring. Prove that J(Mn(R)) = Mn (J(R)). (Hint: First
show that if S is a simple left R-module, then Sn is a simple left Mn(R)-module.)

EXERCISE 4.2.15. Let R be a ring and I a two-sided ideal of R such that I ⊆ J(R). Let
M,N ∈ RM and θ : N→M a homomorphism of left R-modules. Let 1⊗θ : R/I⊗R N→
R/I⊗R M be the homomorphism of R/I-modules induced by tensoring with R/I⊗R ( ).

(1) Assuming M is finitely generated as an R-module, prove that θ is onto if and
only if 1⊗θ is onto.

(2) Assuming M and N are finitely generated projective R-modules, prove that θ is
an isomorphism if and only if 1⊗θ is an isomorphism.

(3) Assuming M is a finitely generated projective R-module, prove that M is a free
R-module if and only if R/I⊗R M is a free R/I-module.

EXERCISE 4.2.16. Prove that J(∏i∈I Ri) = ∏i∈I (J(Ri)), where {Ri | i ∈ I} is a family
of rings.
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3. Semisimple Modules and Semisimple Rings

In this section we introduce an important class of artinian rings called semisimple
rings. A ring R is semisimple if every left ideal of R is a module direct summand of R. We
eventually derive more than five sets of necessary and sufficient conditions for a ring R to
be semisimple. Two such sets that are particularly useful are: R is semisimple if and only
if every R-module is projective, which is true if and only if R is artinian and J(R) = (0).

THEOREM 4.3.1. Let R be a ring and M a nonzero R-module. The following are
equivalent.

(1) M =
⊕

i∈I Mi is the internal direct sum of a family of simple submodules {Mi |
i ∈ I}.

(2) M = ∑i∈I Mi is the sum of a family of simple submodules {Mi | i ∈ I}.
(3) Every submodule of M is a direct summand of M.

PROOF. (2) clearly follows from (1).
(2) implies (1): Assume M = ∑i∈I Mi and each Mi is a simple submodule of M. By

Zorn’s Lemma, Proposition 1.2.4, choose a maximal subset J⊆ I such that the sum ∑i∈J Mi
is a direct sum. Assume ∑i∈J Mi ̸= M. Then there is some k ∈ I such that Mk is not
contained in ∑i∈J Mi. Since Mk is simple,(

∑
i∈J

Mi
)⋂

Mk = 0.

In this case, the sum
(
∑i∈J Mi

)
+Mk is a direct sum which contradicts the choice of J.

(1) plus (2) implies (3): Then M is an internal direct sum of simple submodules {Mi |
i ∈ I}. Let N be a submodule of M. If N = M, then we are done. Assume N ̸= M. For each
i ∈ I, Mi∩N is a submodule of Mi hence Mi∩N = 0 or Mi∩N = Mi. Then for some k ∈ I
we have Mk ∩N = 0. Choose a maximal subset J ⊆ I such that

(3.1)
(
∑
i∈J

Mi
)⋂

N = 0.

Let
N′ =

(
∑
i∈J

Mi
)
+N.

If N′ = M, then M =
(
∑i∈J Mi

)
⊕N and we are done. Otherwise for some index k ∈ I,

Mk ∩N′ = 0. Consider
x ∈
(
∑
i∈J

Mi +Mk
)
∩N.

Write x = x0 + xk where x0 ∈ ∑i∈J Mi and xk ∈Mk. So xk = x− x0 ∈ N′∩Mk = 0. By (3.1)
we see that x = 0. Then J∪{k} satisfies (3.1) which contradicts the choice of J.

(3) implies (2): Let {Mi | i ∈ I} be the family of all simple submodules of M. Set
N = ∑i Mi. Assume N ̸= M. By (3), M = N⊕N′ for some nonzero submodule N′. To
finish the proof, it is enough to show the existence of a simple submodule of N′. Let
x ∈ N′− (0). Being a direct summand of M, N′ satisfies (3) (the reader should verify this).
Therefore N′ = Rx⊕N′′. Let L be a maximal left ideal of R such that L contains annihR(x).
Then R/L is simple. The diagram

0 // L //

α

��

R //

β

��

R/L //

η

��

0

0 // Lx // Rx // Rx/Lx // 0
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commutes. The rows are exact. The vertical maps α and β are onto, therefore η is onto.
Since x ̸∈ Lx, we know Rx/Lx is not zero. Then η is not the zero map. Since R/L is simple,
η is an isomorphism. Applying (3) to Rx gives Rx = Lx⊕S where S ∼= Rx/Lx is a simple
R-submodule of Rx. But then N′ contains S, so we are done. □

DEFINITION 4.3.2. Let R be a ring and M an R-module. If M satisfies any of the
properties of Theorem 4.3.1, then M is called semisimple.

THEOREM 4.3.3. Let R be a ring. The following conditions are equivalent.
(1) Every left R-module is projective.
(2) Every short exact sequence of left R-modules splits.
(3) Every left R-module is semisimple.
(4) R is semisimple when viewed as a left R-module.
(5) R is artinian and J(R) = 0.

PROOF. The reader should verify that (3) implies (4) and that the first three statements
are equivalent.

(4) implies (1): Let M be a left R-module. Let I = M and F = RI . As in the proof
of Proposition 2.1.1, there is an R-module homomorphism π : F →M which is surjective.
Because R is semisimple, R is the internal direct sum of simple R-submodules. So F is an
internal direct sum of simple R-modules. So F is semisimple and kerπ is a direct summand
of F . Then F ∼= kerπ⊕M, hence M is projective.

(4) implies (5): Since J(R) is a submodule of R, it is an internal direct summand of R.
For some left ideal L we have R = J(R)⊕L. By Lemma 3.2.4, J(R) = Re1 and L = Re2
and e1e2 = 0 and 1 = e1 + e2. By Nakayama’s Lemma (Theorem 4.2.3), e2 is a unit in
R. Therefore e1 = 0 and J(R) = 0. To show that R is artinian, assume I1 ⊇ I2 ⊇ I3 . . . is a
descending chain of ideals. Since R is semisimple as an R-module, I1 is a direct summand
of R, and we can write R = L0⊕ I1. Also, I2 is a direct summand of I1, so R = L0⊕L1⊕ I2.
For each index i, Ii+1 is a direct summand of Ii and we can write Ii = Li⊕ Ii+1. Each
Li = Rei for some idempotent ei and

⊕
∞
i=1 Li is a direct summand of R. That is,

R =

( ∞⊕
i=1

Li

)
⊕L

for some L. The representation of 1 in the direct sum involves only a finite number of the
ei, and the rest are 0.

(5) implies (4): We show that R is the direct sum of a finite collection of minimal left
ideals and apply Theorem 4.3.1 (1). Let L1 be a minimal left ideal of R. This exists since R
is artinian. Since J(R) = 0 it follows from Corollary 4.2.5 that L2

1 ̸= 0. By Lemma 3.2.4 (3),
there is a left ideal I1 and R = L1⊕ I1. If I1 = 0, then we are done. Otherwise, by the
minimum condition, there is a minimal left ideal L2 of R contained in I1. Again from
Lemma 3.2.4 we have R = L2⊕ J for some J. There exists an R-module homomorphism
π : R→ L2 which splits L2 ⊆ R. The restriction of π to I1 is therefore a splitting of L2 ⊆ I1.
Therefore, I1 = L2⊕ I2, where I2 = {x∈ I1 | π(x) = 0}= I1∩kerπ . Hence R = L1⊕L2⊕ I2
where L1,L2 are minimal ideals in R. If I2 = 0, then we are done. Otherwise we continue
inductively to get R = L1⊕ ·· · ⊕ Ln⊕ In where each Li is a minimal left ideal. After a
finite number of iterations, the process terminates with In = 0 because R is artinian and
I1 ⊇ I2 ⊇ ·· · ⊇ In is a descending chain of ideals. □

DEFINITION 4.3.4. The ring R is called semisimple if R satisfies any of the equivalent
conditions of Theorem 4.3.3.
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EXAMPLE 4.3.5. Let R be an artinian ring. Then R/J(R) satisfies Theorem 4.3.3 (5),
hence is semisimple.

4. Simple Rings and the Wedderburn-Artin Theorem

A ring R is simple if it is artinian and has no proper two-sided ideal. We show that a
semisimple ring is a finite direct sum of simple rings. The main result of this section is the
Wedderburn-Artin Theorem which shows that a simple ring is isomorphic to the ring of
n-by-n matrices ring over a division ring. This important theorem plays a fundamental role
in the definition of the Brauer group of a field. The interested reader is referred to [19].
Results from this section will be applied in Section 5.5 to classify separable algebras over
a field.

DEFINITION 4.4.1. A ring R is called simple if R is artinian and the only two-sided
ideals of R are 0 and R. Since J(R) is a two-sided ideal, a simple ring satisfies Theo-
rem 4.3.3 (5) hence is semisimple.

EXAMPLE 4.4.2. Let D be a division ring and M a finite dimensional D-vector space.
Let S = HomD(M,M). By Exercise 4.1.34, S is artinian. By Corollary 2.8.4 it follows that
there is a one-to-one correspondence between two-sided ideals of D and two-sided ideals
of S. Since D is a simple ring, it follows that S is a simple ring. We prove the converse of
this fact in Theorem 4.4.5.

THEOREM 4.4.3. Let A be an artinian ring and let R be a semisimple ring.
(1) Every simple left R-module is isomorphic to a minimal left ideal of R.
(2) R is a finite direct sum of simple rings.
(3) R is simple if and only if all simple left R-modules are isomorphic.
(4) If A is simple, then every nonzero A-module is faithful.
(5) If there exists a simple faithful A-module, then A is simple.

PROOF. (1): Let R be a semisimple ring. By the proof of Theorem 4.3.3 there are
idempotents e1, . . . ,en such that each Rei is a minimal left ideal of R and R = Re1⊕·· ·⊕
Ren. Let S be any simple left R-module. Let x be a nonzero element of S. Then for some
ei we have eix ̸= 0. The R-module homomorphism Rei → S defined by rei 7→ reix is an
isomorphism because both modules are simple. This proves (1).

(2): Let S1, . . . ,Sm be representatives for the distinct isomorphism classes of simple
left R-modules. By (1) there are only finitely many such isomorphism classes. For each i,
define

Ri = ∑
j

{
Li j | Li j is a left ideal of R and Li j ∼= Si

}
.

We proceed in four steps to show that R = R1⊕·· ·⊕Rm and each Ri is a simple ring.
Step 1: Ri is a two-sided ideal. By definition, Ri is a left ideal of R. Pick any Li j. Let

r∈R and consider the R-module homomorphism ρr : Li j→R which is “right multiplication
by r”. Since Li j is simple, either kerρr = Li j and Li jr⊆ Li j, or kerρr = 0 and Li j ∼= Li jr. In
the latter case, the left ideal Li j is isomorphic to some Lik. In both cases, Li jr ⊆ Ri which
shows Rir ⊆ Ri and Ri is a two-sided ideal of R.

Step 2: Let L be a minimal left ideal of R contained in Ri. We show that L∼= Si. Since
L is idempotent generated, there is some e ∈ L such that e2 = e ̸= 0. Since e ∈ L⊆ Ri, the
R-module homomorphism ρe : Ri→ L is nonzero. Since Ri is generated by the ideals Li j,
there is some j such that Li je ̸= 0. The map ρe : Li j → L is an isomorphism. Therefore
L∼= Si.
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Step 3: R=R1⊕·· ·⊕Rm. Clearly R=R1+ · · ·+Rm. For contradiction’s sake, assume
R1∩ (R2 + · · ·+Rm) ̸= 0. Let L be a minimal left ideal of R contained in R1∩ (R2 + · · ·+
Rm). By Step 2, L ∼= S1. There is an idempotent e such that L = Re. As in Step 2, the
map ρe : R2 + · · ·+Rm → L is nonzero. Hence there exists Lik such that 2 ≤ i ≤ m and
ρe : Lik→ L is an isomorphism. This is a contradiction, since S1 and Si are not isomorphic.
Therefore R1∩ (R2 + · · ·+Rm) = 0. By induction on m, this step is done.

Step 4: Fix i and show that Ri is simple. By Theorem 4.3.3, R is artinian. Let I be a
nonzero two-sided ideal in Ri. To show I = Ri, the plan is to show I contains each of the
ideals Li j. By Step 3 and Theorem 1.1.8, ideals of Ri are also ideals in R. In particular, I
is a two-sided ideal in R. Let L be any minimal left ideal of R contained in I. By Step 2,
L = Lik for some k. There exists an idempotent e such that Lik = Re. Let Li j be another
minimal left ideal in Ri. There is an R-module isomorphism φ : Iik ∼= Ii j. We have

Li j = imφ

= {φ(re) | r ∈ R}
= {φ(ree) | r ∈ R}
= {reφ(e) | r ∈ R}.

Since e belongs to the two-sided ideal I, Li j ⊆ I. Thus I = Ri.
(4): Assume A is simple. Let M be any nonzero left A-module. Let I = annihA(M), a

two-sided ideal of A. Since 1 ̸∈ I, it follows that I ̸= A. Therefore I = 0 and M is faithful.
(3): By (2) we can write R = R1⊕ ·· · ⊕Rm as a direct sum of simple rings. If all

simple left R-modules are isomorphic, then m = 1 and R is simple. Now say R is simple
and L is a simple left R-module. We know that m = 1, otherwise R1 is a proper two-sided
ideal. Then L∼= L1 j for some j and all simple left R-modules are isomorphic.

(5): Assume A is artinian and S is a simple faithful left A-module. Since S is simple,
J(A)S is either 0 or S. Since S is simple and faithful, S is nonzero and generated by one
element. By Theorem 4.2.3 (3) we know J(A)S ̸= S. So J(A)S = 0. Since S is faithful,
J(A) = 0. This proves A is semisimple. By (2) A = A1 ⊕ ·· · ⊕ An where each Ai is a
two-sided ideal of A. Assume n ≥ 2. By (1), we assume without loss of generality that
S ∼= S1. Then A1S = S. Since the ideals are two-sided, A2A1 ⊆ A1 ∩A2 = 0. Therefore
0 = (A2A1)S = A2(A1S) = A2S. So A2 ⊆ annihA(S). This contradiction implies n = 1, and
A is simple. □

LEMMA 4.4.4. (Schur’s Lemma) Let R be any ring and M a simple left R-module.
Then S = HomR(M,M) is a division ring.

PROOF. Is left to the reader. □

THEOREM 4.4.5. (Wedderburn-Artin) Let R be a simple ring. Then R∼= HomD(M,M)
for a finite dimensional vector space M over a division ring D. The division ring D and the
dimension dimD(M) are uniquely determined by R.

PROOF. Since R is semisimple, by the proof of Theorem 4.3.3 there are idempotents
e1, . . . ,en such that each Li = Rei is a minimal left ideal of R and R = Re1⊕·· ·⊕Ren is an
R-module direct sum. But R is simple, so L1 ∼= . . .∼= Ln by Theorem 4.4.3. Set M = L1 and
D = HomR(M,M). By Lemma 4.4.4, D is a division ring. Since L1 = Re1 for some idem-
potent e1, M is finitely generated. By Theorem 4.3.3, M is projective. By Lemma 2.1.11,
the trace ideal of M is a two-sided ideal of R. Since R is simple, M is a generator over R.
By Morita Theory, Corollary 2.8.3 (1), R ∼= HomD(M,M). By Corollary 2.8.3 (5), M is a
finitely generated D-vector space.
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To prove the uniqueness claims, assume D′ is another division ring and M′ is a fi-
nite dimensional D′-vector space and HomD(M,M)∼= HomD′(M′,M′). By Morita Theory,
D′ ∼= HomR(M′,M′) and M′ is an R-progenerator. We know M′ is a simple R-module,
otherwise M′ would have a nontrivial direct summand and HomR(M′,M′) would contain
noninvertible elements. Since R is simple, by Theorem 4.4.3, M ∼= M′ as R-modules. □

4.1. Central Simple Algebras.

DEFINITION 4.4.6. Let k be a field and A a k-algebra. We say A is a central simple
k-algebra if these three conditions are met:

(1) A is a simple ring.
(2) A is a central k-algebra.
(3) dimk(A)< ∞.

EXAMPLE 4.4.7. It follows from Example 4.4.2 that the ring of matrices Mn(k) over
a field k is a central simple k-algebra. If A is a central simple k-algebra, then by Theo-
rem 4.4.5 we know A ∼= HomD(E,E) where D is a division ring and E is a finite dimen-
sional D-vector space. The reader should verify that dimk(D)< ∞ and Z(D) = k.

PROPOSITION 4.4.8. Let k be an algebraically closed field and A a central simple
k-algebra. Then A∼= Mn(k) for some n.

PROOF. Let D be the division algebra component of A. Let α ∈ D. Because D is a
finite dimensional division algebra over k, k[α] is an algebraic field extension of k. Because
k is algebraically closed, α ∈ k. Therefore, k = D. □

Theorem 4.4.9 below shows that over a field k, tensor product induces a product on
the category of all central simple k-algebras.

THEOREM 4.4.9. Let k be a field and let A and B be simple k-algebras. If A is a
central simple k-algebra, then

(1) A⊗k B is a simple ring.
(2) Z(A⊗k B) = Z(B).

PROOF. (1): Let I be a nonzero two-sided ideal in A⊗k B. Let x be a nonzero element
of I. Then there are a1, . . . ,an in A and there are k-linearly independent b1, . . . ,bn in B such
that x = ∑

n
i=1 ai⊗ bi. Choose x such that n is minimal. Since A is simple, the principal

ideal Aa1A is the unit ideal. Pick r1, . . . ,rm,s1, . . . ,sm in A such that ∑ j r ja1s j = 1. Since
(r j⊗1)x(s j⊗1) ∈ I for each j,

y = ∑
j
(r j⊗1)x(s j⊗1)

= ∑
j

(
(r j⊗1)

(
∑

i
ai⊗bi

)
(s j⊗1)

)
= ∑

j
∑

i
(r jais j⊗bi)

= ∑
i

((
∑

j
r jais j

)
⊗bi

)
= 1⊗b1 +a′2⊗b2 + · · ·+a′n⊗bn
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is an element of I for some a′2, . . . ,a
′
n in A. For all a ∈ A we have

(a⊗1)y− y(a⊗1) = a⊗b1 +aa′2⊗b2 + · · ·+aa′n⊗bn

−
(
a⊗b1 +a′2a⊗b2 + · · ·+a′na⊗bn

)
= (aa′2−a′2a)⊗b2 + · · ·+(aa′n−a′na)⊗bn

is in I. Because the length n of x was minimal, (a⊗1)y− y(a⊗1) = 0. Because b1, . . . ,bn
are k-linearly independent in B, it follows that 1⊗b1, . . . ,1⊗bn are A-linearly independent
in A⊗k B. It follows that aa′i = a′ia for all a ∈ A and all 2≤ i≤ n. That is to say, each a′i is
in Z(A) = k. In that case we can write

y = 1⊗b1 +1⊗a′2b2 + · · ·+1⊗a′nbn

= 1⊗ (b1 +a′2b2 + · · ·+a′nbn)

= 1⊗b

where b is nonzero because b1 ̸= 0 and the set {bi} is k-linearly independent. Since B is
simple, there exist u1, . . . ,up,v1, . . . ,vp ∈ B such that ∑ j u jbv j = 1. Now y = 1⊗b is in the
ideal I, so

∑
j

(
(1⊗u j)(1⊗b)(1⊗ v j)

)
= 1⊗∑

j
u jbv j = 1⊗1

is in I. This shows I = A⊗k B.
(2): It is easy to see that 1⊗k Z(B) ⊆ Z(A⊗k B). Let x ∈ Z(A⊗k B). Assume x ̸= 0

and write x = ∑
n
i=1 ai⊗bi where we assume b1, . . . ,bn are linearly independent over k. For

each a ∈ A we have
0 = (a⊗1)x− x(a⊗1)

= aa1⊗b1 + · · ·+aan⊗bn− (a1a⊗b1 + · · ·+ana⊗bn)

= (aa1−a1a)⊗b1 + · · ·+(aan−ana)⊗bn

Since 1⊗ bi are A-linearly independent in A⊗k B, we conclude that aai = aia for each
i. That is, each ai is in Z(A) = k. Therefore, x = 1⊗ b. It is now easy to verify that
b ∈ Z(B). □

COROLLARY 4.4.10. Let k be a field, A a k-algebra, and K an algebraic closure of
k. If A is a central simple k-algebra, then A⊗k K is isomorphic to Mn(K), for some n≥ 1.
For this same n, dimk(A) = n2.

PROOF. By Theorem 4.4.9, A⊗k K is a central simple K-algebra. By Proposition 4.4.8,
A⊗k K is isomorphic to Mn(K), for some n≥ 1. By Theorem 2.3.23, dimk(A) = dimK(A⊗k
K) = n2. □

For a converse to Corollary 4.4.10, see Exercise 5.5.16.

4.2. Exercises.

EXERCISE 4.4.11. Let k be a field and A a finite dimensional k-algebra. Let N be
a nilpotent left ideal of A such that dimk(N) ≤ 2. Prove that N is commutative. That is,
xy = yx for all x and y in N.

EXERCISE 4.4.12. Let k be a field and let A be the subset of M2(k) consisting of all
matrices of the form

(
a 0
b c

)
where a,b,c are in k.

(1) Show that A is a k-subalgebra of M2(k), and dimk(A) = 3.
(2) Show that A is noncommutative.
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(3) Let I1 be the set of all matrices of the form
(

a 0
b 0

)
. Show that I1 is a maximal left

ideal of A and I = Ae1 for an idempotent e1.
(4) Let I2 be the set of all matrices of the form

(
0 0
b c

)
. Show that I2 is a maximal left

ideal of A. Show that I2 is not an A-module direct summand of A.
(5) Determine the Jacobson radical J(A) and show that A is not semisimple.
(6) Classify A/J(A) in the manner of Exercise 1.8.9.

EXERCISE 4.4.13. Let k be a field. Let A be the k-subspace of M3(k) spanned by
1,α,β , where

α =

0 1 0
1 0 0
0 0 −1

 , β =

0 0 0
0 0 0
1 1 0

 .
(1) Show that A is a k-subalgebra of M3(k), and dimk(A) = 3.
(2) Show that A is commutative if and only if chark = 2.
(3) Determine the Jacobson radical J(A) and show that A is not semisimple.
(4) Classify A/J(A) in the manner of Exercise 1.8.9.

EXERCISE 4.4.14. Let k be a field. Let A be the k-subspace of M3(k) spanned by
1,α,β , where

α =

0 0 0
1 1 0
0 0 0

 , β =

0 0 0
0 0 0
1 1 0

 .
(1) Show that A is a k-subalgebra of M3(k), and dimk(A) = 3.
(2) Show that A is noncommutative.
(3) Determine the Jacobson radical J(A) and show that A is not semisimple.
(4) Classify A/J(A) in the manner of Exercise 1.8.9.

EXERCISE 4.4.15. Let k be a field and n≥ 1. Prove:
(1) If m does not divide n, then Mn(k) has no k-subalgebra isomorphic to Mm(k).

(Hint: Exercise 2.8.11.)
(2) If m | n, then Mn(k) contains a k-subalgebra which is isomorphic to Mm(k).

EXERCISE 4.4.16. Let R be a ring, M an R-module and suppose M =
⊕

i∈I Mi is the
internal direct sum of a family of simple R-submodules, for some index set I. Prove that
the following are equivalent.

(1) M is artinian.
(2) M is noetherian.
(3) I is finite.

EXERCISE 4.4.17. Let R be a semisimple ring and M an R-module. Prove that M is
artinian if and only if M is noetherian.

EXERCISE 4.4.18. Prove the converse of Theorem 4.4.3 (2). That is, a finite direct
sum of simple rings is a semisimple ring.

EXERCISE 4.4.19. Let k be a field and A = M2(k) the ring of all 2-by-2 matrices over
k. Let I be the set of all matrices of the form

(
a 0
b 0

)
. Show that I is a left ideal of A.

Let λ : A→ Homk(A/I,A/I) be the left regular representation of A (see Example 1.1.13).
Show that λ is an isomorphism of rings. (Hint: Exercise 1.1.18.)

EXERCISE 4.4.20. Let k be an algebraically closed field and A a finite dimensional
k-algebra. Show that if A is a simple ring, then A is isomorphic to Mn(k), for some n. In
particular, dimk(A) = n2.
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5. Commutative Artinian Rings

We begin by proving that any artinian ring R is noetherian. Following that result, our
focus is on commutative artinian rings. It is shown that a commutative ring R is artinian
if and only if R is noetherian and every prime ideal is maximal. A commutative artinian
ring R decomposes into a finite direct sum of local artinian rings. As a corollary, if M is a
projective R-module of constant rank r, then M is a free module of rank r.

THEOREM 4.5.1. Let R be an artinian ring and M an R-module. If M is artinian, then
M is noetherian. In particular, R is a noetherian ring.

PROOF. Let J = J(R) denote the Jacobson radical of R. Then R/J is a semisimple
ring, by Example 4.3.5. By Lemma 4.1.9, since M is artinian, so are the submodules JnM
and the quotient modules JnM/Jn+1M, for all n ≥ 0. By Exercise 1.1.17, the quotient
module JnM/Jn+1M is artinian over R/J. By Exercise 4.4.17, JnM/Jn+1M is noetherian
as a R/J-module. Again by Exercise 1.1.17, JnM/Jn+1M is noetherian as an R-module.
For each n≥ 0, the sequence

0→ Jn+1M→ JnM→ JnM
Jn+1M

→ 0

is exact. By Corollary 4.2.6, for some r, we have Jr+1 = (0). Taking n = r in the exact
sequence, Lemma 4.1.9 implies JrM is noetherian. A finite induction argument using
Lemma 4.1.9 and the exact sequence proves JnM is noetherian for n = r, . . . ,1,0. □

LEMMA 4.5.2. Let R be a commutative noetherian local ring with maximal ideal m.
If m is the only prime ideal of R, then R is artinian.

PROOF. By Lemma 3.3.7, I(V (0)) = RadR(0) = m. Therefore, mn = (0), for some
n≥ 1. Look at the filtration

R⊇m⊇m2 ⊇ ·· · ⊇mn−1 ⊇ (0).

Each factor mi/mi+1 is finitely generated as an R-module, hence is finitely generated as
a vector space over the field R/m. By Exercise 1.1.17, the R-submodules of mi/mi+1

correspond to R/m-subspaces. By Exercise 4.1.33, mi/mi+1 satisfies DCC as an R/m-
vector space, hence as an R-module. In particular, mn−1 satisfies DCC as an R-module. A
finite induction argument using Lemma 4.1.9 and the exact sequences

0→mi+1→mi→mi/mi+1→ 0

shows that each R-module mi has the DCC on submodules. In particular, R is artinian. □

PROPOSITION 4.5.3. Let R be a commutative artinian ring.
(1) Every prime ideal of R is maximal.
(2) The nil radical RadR(0) is equal to the Jacobson radical J(R).
(3) There are only finitely many maximal ideals in R.
(4) The nil radical RadR(0) is nilpotent.
(5) If R is simple, then R is a field. If R is semisimple, then R is a finite direct sum of

fields.

PROOF. (1): Let P be a prime ideal in R. Then R/P is an artinian integral domain. By
Exercise 4.1.23, R/P is a field.

(2): This is Exercise 4.5.9.
(3): Theorem 4.5.1 implies R is noetherian, and Proposition 4.1.14 implies SpecR

has only a finite number of irreducible components. By Corollary 4.1.15, the irreducible
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components of SpecR correspond to the minimal primes of R. It follows from Part (1) that
every prime ideal in R is minimal. Therefore, SpecR is finite.

(4): In an artinian ring the Jacobson radical is always nilpotent, by Corollary 4.2.6.
(5): This part is left to the reader. □

PROPOSITION 4.5.4. Let R be a commutative ring. The following are equivalent.
(1) R is artinian.
(2) R is noetherian and every prime ideal is maximal (dim(R) = 0, in the notation of

Section 9.6.1).
(3) R is an R-module of finite length.

PROOF. By Proposition 4.1.29, it is enough to show (1) and (2) are equivalent.
(1) implies (2): By Theorem 4.5.1, R is noetherian. By Proposition 4.5.3, every prime

ideal of R is maximal.
(2) implies (1): By Theorem 4.1.16, R has a decomposition R = R1⊕·· ·⊕Rn where

each Ri has only two idempotents. By Exercise 4.1.18 it suffices to show each Ri is artinian.
Therefore, assume SpecR is connected. By Proposition 1.3.7, SpecR decomposes into a
union of a finite number of irreducible closed subsets. Each prime ideal of R is maximal,
so the irreducible components of SpecR are closed points. Since we are assuming SpecR
is connected, this proves R is a local ring. By Lemma 4.5.2, R is artinian. □

PROPOSITION 4.5.5. Let R be a commutative noetherian local ring and let m be the
maximal ideal of R.

(1) If mn ̸=mn+1 for all n≥ 1, then R is not artinian.
(2) If there exists n≥ 1 such that mn =mn+1, then mn = 0 and R is artinian.

PROOF. (1): If R is artinian, then by Proposition 4.5.3 (4) there exists n > 0 such that
mn = 0.

(2) If mn = mn+1, then by Nakayama’s Lemma (Theorem 4.2.3), mn = 0. If P is a
prime ideal of R, then mn ⊆ P. By Exercise 3.3.20, m = Rad(mn) ⊆ Rad(P) = P. This
proves that P =m, so by Proposition 4.5.4, R is artinian. □

THEOREM 4.5.6. Let R be a commutative artinian ring.
(1) R = R1⊕R2⊕·· ·⊕Rn where each Ri is a local artinian ring.
(2) The rings Ri in Part (1) are uniquely determined up to isomorphism.
(3) If m1, . . . ,mn is the complete list of prime ideals in SpecR, then the natural homo-

morphism R→ Rm1 ⊕·· ·⊕Rmn is an isomorphism.

PROOF. (1): By Proposition 4.5.3, MaxR = SpecR = {m1, . . . ,mn} is a finite set.
So the topological space SpecR has the discrete topology. By Theorem 4.1.16, R can be
written as a direct sum R = R1⊕·· ·⊕Rr where SpecRi is connected. Since the topology
is discrete, this implies SpecRi is a singleton set, hence Ri is a local ring. This also proves
n = r.

(2): A local ring has only two idempotents, so this follows from Theorem 3.2.5.
(3): Start with the decomposition R ∼= R1 ⊕ ·· · ⊕ Rn of Part (1) and apply Exer-

cise 3.1.18. □

COROLLARY 4.5.7. Let R be a commutative artinian ring. If M is a finitely generated
projective R module of constant rank r, then M is a free R-module of rank r.

PROOF. By Theorem 4.5.6, R is the finite direct sum of local rings. By Exercise 4.2.12,
M is a free module of rank r. □
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COROLLARY 4.5.8. Let R be a commutative ring and S a commutative R-algebra
which is finitely generated and projective as an R-module. Let M be a finitely generated
projective S-module. Let p be a prime ideal in SpecR such that RankSp(Mp) = s is defined.
Then

RankRp(Mp) = RankRp(Sp)RankSp(Mp)

PROOF. Let k = Rp/pRp be the residue field of Rp. Then S⊗R k is a finite dimensional
k-algebra, hence is artinian. By Corollary 4.5.7, M⊗R k = M⊗S (S⊗R k) is a free S⊗R k-
module of constant rank s. Proposition 2.1.13 (5) applies to the trio k, S⊗R k, M⊗R k.
Applying Proposition 3.4.3 we get the rank formula over the local ring Rp. □

5.1. Exercises.

EXERCISE 4.5.9. Let R be a commutative artinian ring. Prove that the Jacobson radi-
cal J(R) is equal to the nil radical RadR(0).

EXERCISE 4.5.10. Let R be a commutative artinian ring and M a finitely generated
free R-module of rank n. Prove that the length of M is equal to ℓ(M) = nℓ(R).

EXERCISE 4.5.11. Let R be a commutative ring with the property that for every max-
imal ideal m in R, V (m) is both open and closed in SpecR. Prove that every prime ideal of
R is maximal.

EXERCISE 4.5.12. Let R be a commutative noetherian ring. Recall that a topological
space has the discrete topology if “points are open”. Prove that the following are equiva-
lent.

(1) R is artinian.
(2) SpecR is discrete and finite.
(3) SpecR is discrete.
(4) For each maximal ideal m in MaxR, the singleton set {m} is both open and

closed in SpecR.

EXERCISE 4.5.13. Let k1, . . . ,km be fields and R = k1⊕ ·· · ⊕ km. Show that R has
exactly m maximal ideals. Prove that if σi : R→ ki is the ring homomorphism onto ki and
mi is the kernel of σi, then the maximal ideals of R are m1, . . . ,mm.

EXERCISE 4.5.14. Let R be a commutative noetherian semilocal ring. Let I be an
ideal which is contained in the Jacobson radical, I ⊆ J(R). Prove that the following are
equivalent.

(1) There exists ν > 0 such that J(R)ν ⊆ I ⊆ J(R).
(2) R/I is artinian.

EXERCISE 4.5.15. Let R be a commutative noetherian ring, m a maximal ideal in R,
and n≥ 1.

(1) Prove that R/mn is a local artinian ring.
(2) Prove that the natural map R/mn→ Rm/m

nRm is an isomorphism.

EXERCISE 4.5.16. Let k be a field and R = k[x1, . . . ,xn]. Let α1, . . . ,αn be elements
of k and m the ideal in R generated by x1−α1, . . . ,xn−αn.

(1) Show that m is a maximal ideal, and the natural map k→R/m is an isomorphism.
(2) Show that m/m2 is a k-vector space of dimension n.
(3) Show that mRm/m

2Rm is a k-vector space of dimension n.
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EXERCISE 4.5.17. Let k be an algebraically closed field. Show that if A and B are
local artinian k-algebras, then A⊗k B is a local artinian k-algebra.

EXERCISE 4.5.18. Let k be a field and R = k[x,y]/(xn,ym), where m,n∈N. Show that
R is a local k-algebra with maximal ideal m= (x,y). Show that dimk(R) = nm.

EXERCISE 4.5.19. Let R = (Z/4)[x]/(x4 +1).
(1) Show that R is a local ring.
(2) Show that the maximal ideal of R is the principal ideal m= (x+1).

EXERCISE 4.5.20. Let f : R→ S be a homomorphism of commutative rings and as-
sume S is finitely generated as an R-module. Let f ♯ : SpecS→ SpecR be the continuous
map of Exercise 3.3.19. For each P ∈ SpecR, show that the set ( f ♯)−1(P) is finite. In other
words, show that there are only finitely many Q ∈ SpecS such that f−1(Q) = P. (Hint:
Exercise 3.4.12.)

EXERCISE 4.5.21. Let R be a commutative artinian ring. Show that every element of
R is either a unit or a zero divisor.

6. Examples

This section is devoted to applications and examples. First we apply the results from
the previous sections to study algebras which are three dimensional over a field. Let k be a
field and A a k-algebra such that dimk(A) = 3. We show that if A is semisimple, then either
A is a field extension of k, or the direct sum of field extensions of k. If A is noncommutative,
then we show that A is isomorphic to the subring of M2(k) consisting of lower triangular
matrices. If A is a commutative local ring, then there are two possibilities for A, depending
on whether the Jacobson radical J(A) contains an element with index of nilpotency greater
than 2. The last case is when A is the direct sum of a local ring of dimension two and a
copy of k. Our second application is a classification of all finite rings of order p3, where
p is a prime number. Most of the cases that arise in this context fall under the hypotheses
of an algebra of dimension three over the finite field Fp. In particular, there is exactly one
case where the ring A is noncommutative. In the computation of this example, most of the
work is spent on the case where A is a finite ring of order p3 and characteristic p2. We
show that such a ring A is a commutative Z/p2-algebra. If p = 2, then up to isomorphism
there are three distinct possibilities for A, but if p is odd, there are four.

6.1. Three Dimensional Algebras. Let k be a field. We apply the results of the
previous sections to classify up to isomorphism all three dimensional k-algebras. First we
review in Example 4.6.1 below the classification of k-algebras A such that dimk(A) = 2.

EXAMPLE 4.6.1. Let k be a field and A a finite dimensional k-algebra such that
dimk(A) = 2. By Exercises 1.8.9 and 1.8.10, A is a commutative simple extension of k
and there are three possibilities for A. Either A is a field extension of k or A is isomorphic
as a k-algebra to a direct sum k⊕ k of two copies of k, or to the local ring k[x]/(x2).

THEOREM 4.6.2. Let k be a field and A a finite dimensional k-algebra. If dimk(A) = 3,
then exactly one of the following is true.
(1) A is a field extension of k of degree 3. A is a simple ring.
(2) A is isomorphic to k⊕F, a direct sum of k and a field extension F/k of degree 2. A is

semisimple but not simple.
(3) A is isomorphic to k⊕ k⊕ k, a direct sum of three copies of k. In this case, A is

semisimple.
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(4) A is isomorphic to


x 0 0

y x 0
z 0 x

 | x,y,z ∈ k

, a subring of the ring of matrices M3(k),

a commutative local ring. If J = J(A), then dimk(J) = 2 and J2 = (0). By Exer-
cise 4.6.13, this ring is isomorphic to the ring R = k[x,y]/(x2,xy,y2).

(5) A is isomorphic to


x 0 0

y x 0
z y x

 | x,y,z ∈ k

, a subring of the ring of matrices M3(F2),

a commutative local ring. If J = J(A), then dimk(J) = 2 and dimk(J2) = 1. There is
an element u ∈ J such that u2 ̸= 0, u3 = 0. By Exercise 4.6.14, this ring is isomorphic
to the ring R = k[x,y]/(x2− y,xy,y2).

(6) A is isomorphic to k⊕k[x]/(x2), a commutative ring, the Jacobson radical is the prin-
cipal ideal generated by the ordered pair (0,x).

(7) A is isomorphic to
{[

x 0
y z

]
| x,y,z ∈ k

}
, which is a subring of the ring of matrices

M2(k), a noncommutative ring. The Jacobson radical is the principal ideal generated

by
[

0 0
1 0

]
. This is the ring of Exercise 4.4.12.

A finite dimensional k-algebra A is artinian (Exercise 4.1.35). By Corollary 4.2.6, J(A)
is a nilpotent ideal. It follows that every element of J(A) is nilpotent.

For the remainder of this section, we will use the notation Ring (1), . . . , Ring (7) to
refer to the seven rings of Theorem 4.6.2. The proof is divided into a series of lemmas.

LEMMA 4.6.3. Let k be a field and A a finite dimensional k-algebra such that dimk(A)=
3.
(1) If J(A) = (0), then A is either a field, or a direct sum of fields. Hence A is either a

direct sum k⊕ k⊕ k of three copies of k, or a direct sum k⊕F, where F is a quadratic
extension field of k, or A is an extension field of k with degree 3. In this case A is
isomorphic to exactly one of the rings (1), (2) or (3) of Theorem 4.6.2.

(2) If dimk J(A) = 1, then A/J(A) ∼= k⊕ k. In this case, A contains exactly two maximal
ideals m1 and m2, where dimk mi = 2 and J(A) =m1∩m2.

(3) If dimk J(A) = 2, then A/J(A)∼= k.

PROOF. (1): Since A is semisimple, A is a direct sum of simple rings. By Theo-
rem 4.4.5, a simple ring is a ring of matrices over a division ring. Since dimk(A) = 3,
a simple k-algebra is necessarily a division ring D such that dimk(D) = 3. By Corol-
lary 4.4.10, the dimension of D over the center Z(D) is a square. If D is a simple ring that
is a direct summand of A, then D = Z(D), hence D is a field.

(2): By Exercise 2.5.7, if J(A) has dimension one, then A contains a maximal ideal m
such that A/m ∼= k. By Corollary 4.2.7 (1), J(A) is contained in m. By Proposition 1.5.3,
A/J(A) is not simple. By Example 4.6.1, A/J(A) is isomorphic to the ring k⊕ k. By
Exercise 4.5.13, A/J(A) has exactly two maximal ideals, hence, so does A.

(3): In this case, A/J(A) is a k-algebra of dimension 1. □

The classification of algebras A such that J(A) has dimension 2 over k will utilize the
following result on two-by-two nilpotent matrices.

LEMMA 4.6.4. Let k be a field and M2(k) the ring of two-by-two matrices over k. Let
U and V be nonzero nilpotent matrices in M2(k). The following are equivalent.
(1) kerU = kerV .
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(2) imU = imV .
(3) U = sV for some s ∈ k∗.
(4) For every pair (s, t) ∈ k2, the matrix sU + tV is singular.

PROOF. (1) and (2) are equivalent: Since U and V are nonzero nilpotent matrices in
M2(k), kerU = imU and kerV = imV .

(1) and (2) imply (3): Let u be an eigenvector for U . If u1 ∈ k2−kerU , then B= {u,u1}
is a basis for k2. We have Uu1 = su for some s∈ k∗. Likewise, since kerU = kerV , Vu1 = tu
for some t ∈ k∗. On the basis B, we have tU = sV . This proves U = t−1sV .

(3) implies (4): Say s ∈ k∗ and U = sV . For contradiction’s sake, assume aU +bV is
nonsingular, where (a,b) ∈ k2. Substituting, aU +bV = asV +bV = (as+b)V is nonsin-
gular. But (as+b)V has rank less than or equal to one, hence is singular.

(4) implies (1): Suppose kerU ̸= kerV . Let u be an eigenvector for U and v an eigen-
vector for V . Then B = {u,v} is a basis for k2. By the proof of (1) and (2) implies
(3), there exist a, b in k∗ such that Uv = au and Vu = bv. On the basis B, we have
(U +V )(U +V )u = (U +V )bv = abu and (U +V )(U +V )v = (U +V )au = abv. This
proves U +V is invertible and (U +V )−1 = (ab)−1(U +V ). □

LEMMA 4.6.5. Let k be a field and A a finite dimensional k-algebra such that dimk(A)=
3. If J = J(A) and dimk(J) = 2, then A is isomorphic to exactly one of the two rings (4) or
(5) of Theorem 4.6.2.

PROOF. Let {u,v} be a k-basis for J. Then u and v are nilpotent. Let λ : A →
Homk(J,J) be the left regular representation of A (Example 1.1.13). The image of A
under λ is a k-subalgebra S = imλ of Homk(J,J). The endomorphism ring Homk(J,J)
and the ring of matrices M2(k) are isomorphic as k-algebras. The image of J under λ

consists of nilpotent matrices. By Lemma 4.6.4, dimk λ (J) ≤ 1. Therefore, the kernel of
λ : J→ Homk(J,J) is not equal to (0). In other words, there exists w ∈ J− (0) such that
0 = wu = uw = wv = vw = w2. We split the rest of the proof into two cases.

Case 1: λ (J) ̸= (0). Since dimk(J) = 2 and λ (J) ∼= J/(ker(λ ) ∩ J), this means
ker(λ )∩J = kw has dimension one. Then there exists some u ∈ J such that u ̸∈ annihR(J).
Thus, u ̸∈ kw. Since λ (u)2 = 0, we have u2 ∈ kw. Hence u2 = aw, for some a ∈ k. A basis

for J over k is {u,w}. With respect to this basis, the matrix for λ (u) is
[

0 0
a 0

]
. Since

λ (u) ̸= 0, this implies a ̸= 0. Define a k-linear transformation f : A→M3(k) on the basis
{1,u,aw} by

f (1) =

1 0 0
0 1 0
0 0 1

 , f (u) =

0 0 0
1 0 0
0 1 0

 , f (aw) =

0 0 0
0 0 0
1 0 0

 .
It is routine to check that f maps the ring A isomorphically onto Ring (5).

Case 2: λ (J) = (0). We have J ⊆ annihR(J), thus J2 = (0). As above, a basis for A
over k is {1,u,v}, where J = ku+ kv. On this basis we define a k-linear transformation
f : A→M3(k) by

f (1) =

1 0 0
0 1 0
0 0 1

 , f (u) =

0 0 0
1 0 0
0 0 0

 , f (v) =

0 0 0
0 0 0
1 0 0

 .
It is routine to check that f maps the ring A isomorphically onto Ring (4). □
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LEMMA 4.6.6. Let k be a field and A a finite dimensional k-algebra such that dimk(A)=
3. If J = J(A) and dimk(J) = 1, then A is isomorphic to exactly one of the two rings (6) or
(7) of Theorem 4.6.2.

PROOF. Let v∈ J−(0). Then J = kv. By Lemma 4.6.3, A/J is isomorphic to k⊕k. By
Corollary 4.2.8 (2), lift one of the nontrivial idempotents of A/J to an idempotent e ∈ A.
Then {1,e,v} is a basis for A as a k-vector space. Let λ : A→ Homk(J,J) be the left
regular representation. The ring Homk(J,J) is isomorphic to the field k, hence has only two
idempotents. Therefore, either λ (e) = 0, or λ (e) = 1. Thus ev is either 0 or v. Likewise,
ve is either 0 or v. There are four mutually exclusive cases.

Case 1: ev = ve = 0. Then A = k1+ ke+ kv is clearly a commutative ring and A is
the internal direct sum A = Ae⊕A(1− e). So Ae = ke is isomorphic as a ring to k by the
assignment e 7→ 1. Moreover, v(1− e) = v, (1− e)v = v. The assignment 1− e 7→ 1 and
v 7→ x induces an isomorphism of rings from A(1−e) = k(1−e)+kv to k[x]/(x2). Hence,
A is isomorphic to Ring (6).

Case 2: ev = ve = v. Then (1− e)v = 0, v(1− e) = 0. It follows at once that this is
Case 1, with the roles of e and 1− e reversed. Hence, A is isomorphic to Ring (6).

Case 3: ev = 0 and ve = v. Then (1− e)v = v and v(1− e) = 0. On the basis {1,e,v}
define a k-linear transformation φ : A→M2(k):

φ(1) =
[

1 0
0 1

]
, φ(v) =

[
0 0
1 0

]
, φ(e) =

[
1 0
1 0

]
.

It is routine to check that φ(e)φ(v) = 0, φ(v)φ(e) = φ(v) and that φ maps A isomorphically
onto Ring (7).

Case 4: ev = v, ve = 0. With the roles of e and 1− e reversed, this is Case 3. The ring
A is isomorphic to Ring (7). □

6.2. Finite Rings of Order p3. Throughout this section p is a fixed prime number.
The goal of this section is to classify in a systematic way all finite rings of order p3. In
Theorem 4.6.8 we show that if p is odd, then up to isomorphism there are twelve different
rings of order p3. If p = 2, we show that there are eleven different rings of order eight.

EXAMPLE 4.6.7. We know from [20, Exercise 5.5.26] that up to isomorphism there
are exactly four different rings of order p2.

(1) Z/p2. This ring has order p2 and characteristic p2.
(2) (Z/p)[x]/(x2). This ring has order p2, characteristic p, is a local ring, and has

nontrivial Jacobson radical.
(3) Z/p⊕Z/p. This ring has order p2, characteristic p, trivial Jacobson radical, and

is not a field.
(4) Fp2 , the unique field of order p2, which exists by Theorem 1.8.7.

THEOREM 4.6.8. Let R be a finite ring of order p3. Then R is isomorphic to exactly
one of the following rings.
(1) Z/p3, the ring of integers modulo p3, a local ring with characteristic p3. The Jacobson

radical is {0, p,2p, . . . ,(p−1)p}, which has order p2.
(2) Fp3 , the field of order p3 and characteristic p, a simple ring.
(3) Fp2 ⊕Fp, the direct sum of the field of order p2 and the field of order p. The charac-

teristic is p. This is a semisimple ring which is not simple.
(4) Fp⊕Fp⊕Fp, the direct sum of three copies of the field of order p. The characteristic

is p. This is a semisimple ring which is not simple.
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(5)


x 0 0

y x 0
z 0 x

 | x,y,z ∈ Fp

, a subring of the ring of matrices M3(Fp), a commutative

local ring with characteristic p. The Jacobson radical, J, has order p2, and J2 = (0).
By Exercise 4.6.13, this ring is isomorphic to the ring R = Fp[x,y]/(x2,xy,y2).

(6)


x 0 0

y x 0
z y x

 | x,y,z ∈ Fp

, a subring of the ring of matrices M3(Fp), a commutative

local ring with characteristic p. The Jacobson radical, J, has order four, and J2 has
order two. There is an element b ∈ J such that b2 ̸= 0, b3 = 0. By Exercise 4.6.14, this
ring is isomorphic to the ring R = Fp[x,y]/(x2− y,xy,y2).

(7) Fp⊕Fp[x]/(x2), a commutative ring with characteristic p. The Jacobson radical is
the principal ideal generated by the ordered pair (0,x).

(8)
{[

x 0
y z

]
| x,y,z ∈ Fp

}
, which is a subring of the ring of matrices M2(Fp), a non-

commutative ring with characteristic p. The Jacobson radical is the principal ideal

generated by
[

0 0
1 0

]
.

(9) Z/p2⊕Z/p, the direct sum of the local ring Z/p2 and the field Z/p, the Jacobson
radical is {0, p,2p, . . . ,(p−1)p}, the characteristic is p2.

(10) Z/p2[x]/(px,x2), the polynomial ring Z/p2[x] modulo the ideal (px,x2), a local ring
with characteristic p2. The maximal ideal m is generated by {p,x}, where pv = 0,
x2 = 0, and m2 = (0). The additive group (m,+) is an elementary p-group of order
p2.

(11) Z/p2[x]/(px,x2− p), the polynomial ring Z/p2[x] modulo the ideal (px,x2− p), a
local ring with characteristic p2. The maximal ideal m is principal, generated by {x},
where pv = 0, x2 = p, and m2 = {0, p,2p, . . . ,(p−1)p}. The additive group (m,+) is
an elementary p-group of order p2.

(12) This case does not occur if p = 2. Z/p2[x]/(px,x2−ap), the polynomial ring Z/p2[x]
modulo the ideal (px,x2−ap), a is any quadratic nonresidue modulo p. A local ring
with characteristic p2, the maximal ideal m is principal, generated by {x}, where
pv = 0, x2 = ap, and m2 = {0, p,2p, . . . ,(p− 1)p}. The additive group (m,+) is an
elementary p-group of order p2. In this ring p is not a square.

For the remainder of this section, we will use the notation Ring (1), . . . , Ring (12) to
refer to the twelve rings of Theorem 4.6.8. Rings (2) – (8) all have characteristic p and
these seven fall under the hypotheses of Theorem 4.6.2. The only ring of order p3 that has
characteristic p3 is Z/p3, which is Ring (1). To complete the proof of Theorem 4.6.8, it
suffices to classify all rings of order p3 that have characteristic p2. The rings of character-
istic p2 in Theorem 4.6.8 are Rings (9) – (12). We show in Lemma 4.6.12 below that if p
is odd, then a ring A of order p3 and characteristic p2 is isomorphic to exactly one of the
Rings (9) – (12). If p = 2, then we show A is isomorphic to one of the Rings (9) – (11).

For the rest of this section, A denotes a finite ring of order p3, characteristic p2, and
C denotes the image of the natural map Z→ A. So C is isomorphic to Z/p2. If M is an
additive abelian group, then in Lemma 4.6.9 below, λp : M→M is the “multiplication by
p” map. We write pM for the image and M(p) for the kernel of λp.

LEMMA 4.6.9. Let A be a finite ring of order p3 and characteristic p2. Let C be the
canonical subring of order p2, the image of the natural map Z→ A.



198 4. ARTINIAN AND NOETHERIAN RINGS AND MODULES

(1) A is a commutative ring and generated as a C-algebra by any element v ∈ A−C.
(2) The abelian group (A,+) is isomorphic to Z/p2⊕Z/p.
(3) Denote by A(p) the subgroup of (A,+) annihilated by p. Then A(p) is isomorphic to

Z/p⊕Z/p.
(4) Denote by pA the ideal generated by p. Then pA is equal to the ideal pC and has order

p.

PROOF. (1): Since C is central, given any v ∈ A−C, the assignment x 7→ v defines
an evaluation homomorphism C[x]→ A. The image is the commutative subring C[v]. The
index of (C,+) in (A,+) is prime. By Lagrange’s Theorem, Theorem 1.1.1 the order of
C[v] is necessarily p3.

(2): This follows from the Basis Theorem for Finite Abelian Groups (Theorem 1.7.16),
since (A,+) has order p3 and exponent p2.

(3) and (4): These follow immediately from (2). Notice that the ideal pC is actu-
ally an A-module contained in C and is equal to C : A, the conductor from A to C (see
Exercise 1.1.24). □

LEMMA 4.6.10. If A is a finite ring of order p3 and characteristic p2, then exactly one
of the following is true.

(1) A is a local ring.
(2) A is isomorphic to Z/p2⊕Z/p.

PROOF. By Lemma 4.6.9, A is commutative. Since A is finite, A is artinian. By
Theorem 4.5.6, A is a direct sum of local artinian rings. If A is not a local ring, then
A = A1⊕A2. Since A has characteristic p2, either A1 or A2 has characteristic p2 and the
other has order p. By Example 4.6.7, one of the direct summands is isomorphic to Z/p2

and the other is isomorphic to Z/p. □

In Lemma 4.6.11 (4), we denote by Up the group of units modulo p. The homomor-
phism π2 : Up→Up is defined by u 7→ u2. We write U2

p for the image of π2. Since Up is a
cyclic group of order p−1 (Theorem 1.8.7), it follows that [Up : U2

p ] = 2, if p is odd.

LEMMA 4.6.11. Let p be an odd prime number and i an integer such that gcd(i, p)= 1.
Consider the quotient ring

Ai = Z/p2[x]/(px,x2− ip).

In the following, cosets in the ring Ai are written without brackets or any extra adornment.

(1) Ai is a local ring of order p3 and characteristic p2. The Jacobson radical J =
J(Ai) is equal to the principal ideal (x) and (J,+) is an elementary p-group of
order p2.

(2) J2 is equal to the principal ideal (p), which has order p.
(3) The set {α2 | α ∈ J} is equal to the subset {u2ip | u ∈ Z} of (p) and has order

(p+1)/2.
(4) If j is an integer such that gcd( j, p) = 1, then the rings Ai and A j are isomorphic

if and only if the cosets of i and j in the factor group Up/U2
p are equal.

PROOF. (1) and (2): This is Exercise 4.6.15.
(3): Since J2 = (p), the set {α2 | α ∈ J} is a subset of (p). The additive group (J,+)

is an elementary p-group of rank 2, and {p,x} is a basis. A typical element α ∈ J is of the
form α = ux+ vp, where u and v are integers. Since px = 0, p2 = 0, and x2 = ip, we have
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α2 = u2ip. If p | u, then α2 = 0. If gcd(u, p) = 1, then u2i is in the coset of i in Up/U2
p .

Since [Up : U2
p ] = 2, this implies there are (p−1)/2+1 = (p+1)/2 squares α2 in J.

(4): If i and j are not congruent modulo U2
p , then by (3), the rings Ai and A j are

not isomorphic. Conversely, assume i = ju2 + kp for some integers u and k such that
gcd(u, p) = 1. Define φ : Ai → A j by φ(x) = ux. Note that φ(x2− ip) = (ux)2− ip =

u2 jp− ip = (i− kp)p− ip = 0. From this it is routine to check that φ is well defined, and
φ is an isomorphism. □

LEMMA 4.6.12. Let A be a finite ring of order p3 and characteristic p2. If p = 2, then
A is isomorphic to exactly one of the Rings (9), (10), or (11) of Theorem 4.6.8. If p is odd,
then A is isomorphic to exactly one of the Rings (9), (10), (11), or (12).

PROOF. By Lemma 4.6.10, if A is not a local ring, then A is isomorphic to Ring (9).
Assume from now on that A is a local ring with maximal ideal J = J(A). By Lemma 4.6.9,
A(p) is a maximal ideal. Therefore, J = A(p). Then (J,+) is an elementary p-group of
order p2. Let v ∈ J− (p). By Lemma 4.6.9, a basis for (J,+) is the set {p,v}, and A is
generated as a C-algebra by v. By Corollary 4.2.6, either J2 = (0), or J2 = (p). We now
consider these two mutually exclusive cases.

Case 1: Assume J2 = (0). Then v2 = 0. Define a homomorphism from Ring (10) to A
by the assignment x 7→ v. It is immediate that this is an isomorphism.

Case 2: Assume J2 = (p). Then v2 = ip for some integer i such that gcd(i, p) = 1.
As in Lemma 4.6.11, let Ai = Z/p2[x]/(px,x2− ip). Define a homomorphism from Ai to
A by the assignment x 7→ v. It is immediate that this is an isomorphism. If p = 2, then
(p) = {0, p}. In this case there is only one choice for i, and A is isomorphic to Ring (11).
If p is odd, then by Lemma 4.6.11, A is isomorphic to exactly one of Ring (11) or (12). □

6.3. Exercises.

EXERCISE 4.6.13. Let k be a field and k[x,y] the polynomial ring over k in two vari-
ables. Consider the quotient ring R = k[x,y]/(x2,xy,y2). In the following, cosets in the ring
R are written without brackets or any extra adornment. Prove:

(1) R is a local ring with maximal ideal m= Rx+Ry.
(2) R has Krull dimension 0.
(3) dimk(R) = 3. (Hint: a basis for R over k is 1,x,y.)

(4) R is isomorphic to the subring


α 0 0

β α 0
γ 0 α

 | α,β ,γ ∈ k

 of M3(k). (Hints:

map x to

0 0 0
1 0 0
0 0 0

, and y to

0 0 0
0 0 0
1 0 0

.)

EXERCISE 4.6.14. Let k be a field and k[x,y] the polynomial ring over k in two vari-
ables. Consider the quotient ring R = k[x,y]/(x2− y,xy,y2). In the following, cosets in the
ring R are written without brackets or any extra adornment. Prove:

(1) R is a local ring with maximal ideal m= Rx+Ry.
(2) R has Krull dimension 0.
(3) dimk(R) = 3. (Hint: a basis for R over k is 1,x,y.)
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(4) R is isomorphic to the subring


α 0 0

β α 0
γ β α

 | α,β ,γ ∈ k

 of M3(k). (Hints:

map x to

0 0 0
1 0 0
0 1 0

, and y to

0 0 0
0 0 0
1 0 0

.)

EXERCISE 4.6.15. Let p be a prime number and i an integer such that gcd(i, p) = 1.
Consider the quotient ring R = Z/p2[x]/(px,x2− ip). In the following, cosets in the ring
R are written without brackets or any extra adornment. Prove:

(1) R has order p3 and characteristic p2.
(2) Denote by (x) the principal ideal generated by x. Then (x) has order p2 and (x)

is equal to RadR(0), the nil radical of R.
(3) R is a local ring, the maximal ideal is (x).
(4) The ideals (x2) and (p) are equal and they both have order p.
(5) Find the invariants of the finite abelian groups (R,+) and (Rx,+). That is, find

the elementary divisors (Theorem 1.7.16).



CHAPTER 5

Separable Algebras, Definition and First Properties

This chapter is an introduction to the theory of separable algebras over commutative
rings. Most of the material in this chapter appears in [19, Chapter 4]. In Section 5.1 we
have the definition of a separable algebra over a commutative ring R. Many of the standard
examples of separable R-algebras are presented. A localization of R is separable, as is a
nonzero homomorphic image of R and the ring of n-by-n matrices over R. If G is a finite
group such that the order of G is invertible in R, then the group ring R(G) is separable
over R. We show that separability is preserved under a change of base, and separability
is transitive in the sense that a separable algebra over a separable algebra is separable. If
k is a field, then a separable k-algebra is a finite direct sum of matrix algebras over finite
dimensional k-division algebras such that the center of each division algebra appearing
is a separable extension field of k. We do not prove it here, but an R-algebra A is R-
separable if and only if A is separable over its center Z(A), and Z(A) is R-separable (see
[19, Theorem 7.1.11]).

1. Separable Algebra, the Definition

In this section the notion of a separable algebra over a commutative ring is defined.
The basic properties of separable algebras are studied. Most of the material in this section
first appeared in [7], including the definition of separability.

An extension of fields F/k is separable if every element of F is the root of a separable
polynomial over k. This definition does not generalize to an algebra A over a commutative
ring R. Instead the definition of a separable algebra is based on a certain module structure
of the ring A over the enveloping algebra A⊗R Ao which is induced by the multiplication
map x⊗ y 7→ xy.

DEFINITION 5.1.1. Let R be a commutative ring and A an R-algebra. In Section 3.8.2
we defined a two-sided A/R-module to be a left A right A bimodule M such that the two
induced R-actions are equal. That is, for all a,b ∈ A, r ∈ R, x ∈M:

(ax)b = a(xb), and

rx = (r ·1)x = x(r ·1) = xr.
(1.1)

The enveloping algebra of A, Ae = A⊗R Ao, is an R-algebra. If M is a left Ae-module, then
we can make M into a two-sided A/R-module by

ax = a⊗1 · x,
xa = 1⊗a · x.(1.2)

Conversely, any two-sided A/R-module can be turned into a left Ae-module in the same
way. Since A is an R-algebra, A is a two-sided A/R-module. Hence, by (1.2), A is a left
Ae-module. By Example 1.1.13, the left regular representation of Ae as a ring of R-module
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endomorphisms of A induces an R-algebra homomorphism

(1.3) ϕ : Ae→ HomR(A,A)

where an element α of Ae is mapped to the element ϕ(α) of HomR(A,A) which is “left
multiplication by α”. Specifically, if α = ∑ai⊗bi, then for any x ∈ A, ϕ(α)(x) = α · x =
∑i aixbi. The map ϕ will be called the enveloping homomorphism of A. The ring Ae is a
left Ae-module, and the assignment x 7→ x ·1 defines an Ae-module epimorphism

Ae µ−→ A

a⊗b 7→ ab.
(1.4)

Denote by JA/R the kernel of µ . Then JA/R is an Ae-submodule of Ae, hence is a left ideal.
The sequence

(1.5) 0→ JA/R→ Ae µ−→ A→ 0

is an exact sequence of Ae-modules. When A is commutative, µ is a homomorphism of
R-algebras (see Exercise 2.3.36). See Example 5.5.2 for an example of a noncommutative
algebra A over a field k such that µ is not a homomorphism of rings and JA/k is not a two-
sided ideal. Notice that µ(a⊗ 1− 1⊗ a) = 0 so a⊗ 1− 1⊗ a ∈ JA/R. In Exercise 5.1.11
the reader is asked to prove that JA/R is generated by elements of the form a⊗1−1⊗a.

PROPOSITION 5.1.2. Let R be a commutative ring and A an R-algebra. The following
are equivalent.

(1) A is projective as a left Ae-module.
(2) The sequence

0→ JA/R→ Ae µ−→ A→ 0

of left Ae-modules is split exact.
(3) There is an element e ∈ Ae such that µ(e) = 1 and JA/Re = 0.
(4) There is an idempotent e ∈ Ae such that JA/R is equal to the principal left ideal

in Ae generated by 1− e.

PROOF. Follows from Exercise 3.2.6. □

DEFINITION 5.1.3. Let R be a commutative ring and A an R-algebra. If A satisfies any
of the equivalent properties of Proposition 5.1.2, then we say A is a separable R-algebra.
Notice that the same element e works for both (3) and (4). The element e ∈ Ae is called
a separability idempotent for A. If A is commutative, then a separability idempotent is
unique, if it exists (Exercise 5.1.9).

DEFINITION 5.1.4. Let R be a commutative ring and A an R-algebra. If M is a two-
sided A/R-module, define

MA = {x ∈M|ax = xa, ∀a ∈ A}.

This R-submodule of M is called the centralizer of A in M.

The rest of this section focuses on a proof that A is R-separable if and only if the
assignment M 7→MA defines an exact functor from the category of left Ae-modules to the
category of left R-modules.
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LEMMA 5.1.5. Let R be a commutative ring, A an R-algebra, and M an Ae-module.
Then

HomAe(A,M)
∼=−→MA

f 7→ f (1)

is an isomorphism of R-modules. If g : M→ N is an Ae-module homomorphism, then the
diagram

HomAe(A,M)
g◦(·) //

��

HomAe(A,N)

��
MA g // NA

commutes. The functors HomAe(A, ·) and (·)A are naturally isomorphic and both are left
exact.

PROOF. Let f ∈ HomAe(A,M). Then for a ∈ A,

a · f (1) = a⊗1 · f (1)

= f (a⊗1 ·1)
= f (a)

= f (1⊗a ·1)
= 1⊗a · f (1)

= f (1) ·a.

So f (1) ∈MA. Conversely, say x ∈MA. Define ρx : A→M to be “right multiplication by
x”, ρx(a) = ax. See that ρx is Ae-linear:

ρx(b⊗ c ·a) = ρx(bac)

= (bac)x

= (b⊗ c ·a)x
= b⊗ c · (a⊗1 · x)
= b⊗ c · (ax)

= b⊗ c ·ρx(a).

Since ρx(1) = x and ρ f (1)(x) = x f (1) = f (x), these are inverses of each other. The rest of
the proof is left to the reader. □

COROLLARY 5.1.6. HomAe(A,A)∼= Z(A) under the correspondence f 7→ f (1).

PROOF. Take M = A in Lemma 5.1.5 and note that AA = Z(A). □

COROLLARY 5.1.7. Let (0: JA/R) = {x ∈ Ae|yx = 0, ∀y ∈ JA/R} be the right annihila-
tor of JA/R in Ae. Then HomAe(A,Ae) ∼= (0: JA/R). If A is R-separable, then µ(0: JA/R) =
Z(A).

PROOF. Take M = Ae in Lemma 5.1.5. Then

HomAe(A,Ae)∼=
(
Ae)A

= {x ∈ Ae |(a⊗1−1⊗a)x = 0, ∀a ∈ A}
= (0: JA/R).
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If A is R-separable, then A is Ae-projective. Since

Ae µ−→ A→ 0

is exact, it follows from Proposition 2.4.5 that

HomAe(A,Ae)
µ◦()−−→ HomAe(A,A)→ 0

is exact. By Lemma 5.1.5, µ(0: JA/R) = Z(A). □

COROLLARY 5.1.8. An R-algebra A is separable if and only if (·)A is a right exact
functor.

PROOF. By Proposition 2.4.5, the functor HomAe(A, ·) is right exact if and only if A
is a projective Ae-module. □

1.1. Exercises.

EXERCISE 5.1.9. If S is a commutative separable R-algebra, then the separability
idempotent is unique. (Hint: Lemma 3.3.12.)

EXERCISE 5.1.10. Let R be a commutative ring.
(1) R is a separable R-algebra.
(2) If W ⊆ R is a multiplicative set, then the localization RW is a separable R-algebra.
(3) If I ⊆ R is a nonunit ideal, then R/I is a separable R-algebra.

EXERCISE 5.1.11. Let µ : A⊗R Ao→ A be as in Eq. (1.4) Prove that JA/R, the kernel
of µ , is the left ideal in A⊗R Ao generated by the set {a⊗1−1⊗a | a ∈ A}.

EXERCISE 5.1.12. Let R be a commutative ring.
(1) Let R⊕R be the ring direct sum of two copies of R. Let e1 = (1,0) and e2 =

(0,1) be the orthogonal idempotents in R⊕R. Use Exercise 5.1.11 to show that
e = e1⊗e1+e2⊗e2 is a separability idempotent. Hence, R⊕R is separable over
R.

(2) Let Rn = R⊕ ·· ·⊕R be the ring direct sum of n copies of R. Show that Rn is
separable over R. (Hint: e = ∑

n
i=1 ei ⊗ ei is a separability idempotent, where

e1, . . . ,en are the orthogonal idempotents in Rn.)

EXERCISE 5.1.13. Show that C is separable over R. (Hint: Use Exercise 5.1.11 to
show that 1

2 (1⊗1− i⊗ i) is a separability idempotent.)

EXERCISE 5.1.14. Let H = R1+Ri+R j+Ri j be the ring of real quaternions. As
an R-vector space H is spanned by the four linearly independent elements 1, i, j, i j. Multi-
plication in H is determined by the rules:

i2 = j2 = (i j)2 =−1, i j =− ji.

Show that H is a separable R-algebra. (Hint: e = 1
4 (1⊗ 1− i⊗ i− j⊗ j− i j⊗ i j) is a

separability idempotent.)

EXERCISE 5.1.15. If A is a separable R-algebra and e is a separability idempotent,
then (A⊗R Ao)e = (A⊗R 1)e = (1⊗R Ao)e.

EXERCISE 5.1.16. Prove the following generalization of Lemma 5.1.5. Let R be a
commutative ring, A an R-algebra, and S a commutative R-subalgebra of A. If M is a left
S⊗R Ao-module, then the assignment f 7→ f (1) induces an isomorphism of R-modules
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HomS⊗RAo(A,M) ∼= MS. If g : M→ N is a homomorphism of left S⊗R Ao-modules, then
the diagram

HomS⊗RAo(A,M)
g◦(·) //

��

HomS⊗RAo(A,N)

��
MS g // NS

commutes. The functors HomS⊗RAo(A, ·) and (·)S are naturally isomorphic and both are
left exact.

2. Examples of Separable Algebras

In this section three standard examples of separable algebras are presented. First we
show that the ring of n-by-n-matrices over a commutative ring R is a separable R-algebra.
Secondly, we show that if G is a finite group of order n and n is invertible in R, then
the group ring R(G) is a separable R-algebra. In our third example we show that if 2 is
invertible in R and I is an R-module with the property that I⊗R I ∼= R, then S = R⊕ I can
be turned into a separable R-algebra.

More examples appear in the exercises (Sections 5.1.1 and 5.4.1).

EXAMPLE 5.2.1. Let R be a commutative ring and let Mn(R) be the ring of n-by-n
matrices over R. Let ei j be the elementary matrix having a single 1 in position (i, j) and 0
elsewhere. Notice that

ekℓei j =

{
ek j if ℓ= i
0 otherwise.

Fix j and define

e =
n

∑
i=1

ei j⊗ e ji

in the enveloping algebra of Mn(R). Then

µ(e) = ∑
i

ei je ji

= ∑
i

eii

= 1.

For any k and l,

(ekl⊗1−1⊗ ekl)e = ∑
i
(eklei j⊗ e ji− ei j⊗ e jiekl)

= ek j⊗ e jl− ek j⊗ e jl

= 0.

Since the ekl generate Mn(R) as an R-module, Exercise 5.1.11 shows that JA/Re = 0. By
Proposition 5.1.2 we see that Mn(R) is a separable R-algebra and e is a separability idem-
potent.

EXAMPLE 5.2.2. Let G be a finite multiplicative group and R a commutative ring.
Suppose G has order n and assume n = n · 1 is a unit in R. Starting with the identity
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element, let G = {1 = σ1,σ2, . . . ,σn} be an enumeration of the elements of G. Let R(G) =
R ·1⊕R ·σ2⊕·· ·⊕R ·σn be the group algebra (Example 1.1.4). Let

e =
1
n ∑

σ∈G
σ ⊗σ

−1

which is an element in the enveloping algebra
[
R(G)

]e. Then

µ(e) =
1
n ∑

σ∈G
σσ
−1 =

1
n ∑

σ∈G
1 = 1.

If we fix any τ ∈ G, then as sets we have G = {στ|σ ∈ G}, hence

(τ⊗1)e =
1
n ∑

σ∈G
τσ ⊗σ

−1

=
1
n ∑

ρ

ρ⊗ρ
−1

τ

=
1
n ∑

ρ

ρ⊗ τ ∗ρ
−1

= (1⊗ τ)e.

(We write x ∗ y = yx as the product in the opposite algebra.) The group algebra R(G) is
generated over R by the basis elements τ ∈ G. This together with Exercise 5.1.11 and
Proposition 5.1.2 shows that e is a separability idempotent for R(G) and the group algebra
R(G) is a separable R-algebra. For the converse of this result see Exercise 5.5.14.

EXAMPLE 5.2.3. Let R be an integral domain and assume 2 = 1+ 1 is a unit in R.
In this example, we see that an element of order two in the Picard group gives rise to a
separable R-algebra. Let I ⊆ R an ideal which is an invertible R-module (I is projective
and has rank one). Suppose I2 = Rα is principal. In this case, there is an isomorphism of
R-modules φ : I2 → R defined by φ(x) = α−1x. The multiplication map R⊗R R→ R of
Exercise 2.3.36 induces an R-module homomorphism ψ : I⊗R I→ I2. Since ψ is onto and
I2 ∼= R, ψ splits. But I2 is free of rank one, so by counting ranks it follows that ψ is is an
isomorphism of R-modules. By Lemma 3.6.5, I ∼= I∗. It follows that in the Picard group,
|I| has order 1 or 2. Let S = R⊕ I as R-modules. We turn S into a commutative R-algebra
using φ to define a multiplication operation:

(a⊕b)(c⊕d) = (ac+φ(bd))⊕ (ad + cb).

The reader should verify that this multiplication rule is associative, commutative, dis-
tributes over addition, and that 1⊕0 is the identity element.

We show S is separable by constructing a separability idempotent in Se. By assump-
tion, there exist elements a1, . . . ,an,b1, . . . ,bn in I and ∑i aibi = α . In S define two se-
quences

x1 = 0⊕a1, . . . ,xn = 0⊕an, xn+1 = 1⊕0

and

y1 = 0⊕b1, . . . ,yn = 0⊕bn, yn+1 = 1⊕0.
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Notice that
n+1

∑
i=1

xiyi = x1y1 + · · ·+ xnyn + xn+1yn+1

=
(
φ(a1b1)+ · · ·+φ(anbn)+1

)
⊕0

= (φ(a1b1 + · · ·+anbn)+1)⊕0

= (1+1)⊕0
= 2⊕0

In the enveloping algebra Se, define

e =
1
2

n+1

∑
i=1

xi⊗ yi.

By the above,

µ(e) =
1
2 ∑

i
xiyi = 1⊕0 = 1.

By Exercise 5.1.11, JS/R is generated by elements of the form x⊗1−1⊗x, where x ∈ S =
R⊕ I. Since a⊗1−1⊗a = 0, if a ∈ R, it follows that JS/R is generated by elements of the
form x⊗1−1⊗ x, where x ∈ 0⊕ I. Notice that (0⊕ I)2 ⊆ R⊕0. Therefore, if x ∈ 0⊕ I,
then

x⊗1 · e = 1
2

(
n

∑
j=1

xx j⊗ y j + x⊗1

)

=
1
2

(
n

∑
j=1

1⊗ xx jy j + x⊗1

)

=
1
2

(
1⊗

(
n

∑
j=1

x jy j

)
·1⊗ x+ x⊗1

)

=
1
2
(1⊗ x+ x⊗1)

which by a similar argument is equal to 1⊗ x · e. Then JS/Re = (0). By Proposition 5.1.2,
e is a separability idempotent for S and S is separable over R. This example is a small part
of Kummer Theory, the interested reader is referred to [19, Section 12.9] for additional
results.

3. Separable Algebras Under Change of Base Ring

There are two main results in this section, both of which are due to M. Auslander and
O. Goldman, [7]. Proposition 5.3.1, which is actually very general, implies that tensor
product induces a product on the category of all separable R-algebras. It also implies
that the property of an algebra being separable is preserved under a change of base ring.
Proposition 5.3.3 and its corollaries are particular types of “Descent Theorems”. They have
the form, “If A becomes separable under a suitable change of base, then A is separable.”
We prove in Theorem 10.1.17 below a faithfully flat descent theorem for separability.

PROPOSITION 5.3.1. Let R be a commutative ring and S1 and S2 commutative R-
algebras. Let A1 be a separable S1-algebra and A2 a separable S2-algebra. Then A1⊗R A2
is separable over S1⊗R S2.
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PROOF. We show that (·)A1⊗RA2 is an exact functor on two-sided A1⊗R A2/S1⊗R S2-
modules and then apply Corollary 5.1.8. Start with an exact sequence

M
f−→ N→ 0

of two-sided A1⊗R A2/S1⊗R S2-modules. The diagram of ring homomorphisms

A1 // A1⊗R A2

S1

OO

// S1⊗R S2

OO

commutes so M and N can be turned into two-sided A1/S1-modules. Since A1 is separable
over S1, the sequence

(M)A1
f−→ (N)A1 → 0

is exact. From Exercise 2.3.35 the diagram

A1⊗R A2

A1

ρ1
::

A2

ρ2
dd

R

dd ::

commutes and im(ρ1) commutes with im(ρ2). So we turn MA1 and NA1 into two-sided
A2/S2-modules. Since A2 is separable over S2, the sequence(

MA1
)A2 f−→

(
NA1
)A2 → 0

is exact. As a ring A1⊗R A2 is generated by the images of ρ1 and ρ2. So
(
MA1

)A2 ⊆
MA1⊗RA2 . Conversely, MA1⊗RA2 ⊆MA1⊗R1∩M1⊗RA2 =

(
MA1

)A2 . □

COROLLARY 5.3.2. Let A be a separable R-algebra and S a commutative R-algebra.
Then A⊗R S is a separable S-algebra.

PROOF. Take A = A1, R = S1, S = S2 = A2 in Proposition 5.3.1. □

PROPOSITION 5.3.3. (Descent of Separable Algebras) Let R be a commutative ring
and S1 and S2 commutative R-algebras. Let A1 be any S1-algebra and A2 any S2-algebra
such that A1⊗R A2 is separable over S1⊗R S2. If A2 is faithful as an R-module and R ·1 is
an R-module direct summand of A2, then A1 is separable over S1.

PROOF. We show that (·)A1 is right exact and apply Corollary 5.1.8. Let M be a two-
sided A1/S1-module. The reader should verify that M⊗R A2 is then a two-sided A1⊗R
A2/S1⊗R S2-module. By our hypothesis, the sequence of natural maps 0→ R→ A2 splits.
That is, A2 = L⊕R ·1 as R-modules and there is an isomorphism

M⊗R A2 = M⊗R (L⊕R ·1)∼= (M⊗R L)⊕ (M⊗R R ·1).

The reader should verify that in fact M⊗R R · 1 is a two-sided A1/S1-module direct sum-
mand of M⊗R A2, hence there is a projection

(3.1) M⊗R A2
π−→M⊗R R ·1
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of two-sided A1/S1-modules. Apply the functor (·)A1 to (3.1) to get the R-module homo-
morphism

(M⊗R A2)
A1 π−→ (M⊗R R ·1)A1 .

Since
(
M⊗R A2

)A1⊗RA2 ⊆ (M⊗R A2)
A1 , the map π restricted to

(
M⊗R A2

)A1⊗RA2 takes
values in (M⊗R R ·1)A1 . Using the fact that A2 is R-faithful, the reader should verify that
MA1 ⊗R R ·1 = (M⊗R R ·1)A1 and the sequence

(3.2)
(
M⊗R A2

)A1⊗RA2 π−→MA1 ⊗R R ·1→ 0

is exact. Consider an arbitrary exact sequence

(3.3) M
f−→ N→ 0

of two-sided A1/S1-modules. Combine (3.2) with (3.3) to get the diagram(
M⊗R A2

)A1⊗RA2

π

��

f⊗1 //
(
N⊗R A2

)A1⊗RA2

π

��

// 0

MA1 ⊗R R ·1
f⊗1 // NA1 ⊗R R ·1 // 0

(3.4)

which commutes. The functor (·)⊗R A2 is always right exact, and by assumption the
functor (·)A1⊗RA2 is right exact. Therefore the top row of (3.4) is exact. By (3.2), π is
onto, which implies the bottom row of (3.4) is exact. Since R→ R · 1 is an isomorphism,
f : MA1 → NA1 is onto. □

COROLLARY 5.3.4. Let A1 and A2 be R-algebras such that A2 is faithful over R, and
R · 1 is an R-module direct summand of A2. If A1⊗R A2 is separable over R, then A1 is
separable over R.

PROOF. Take S1 = S2 = R in Proposition 5.3.3. □

COROLLARY 5.3.5. Let S be a commutative faithful R-algebra such that R · 1 is an
R-module direct summand of S. Let A be an R-algebra such that A⊗R S is S-separable.

(1) A is R-separable.
(2) If the image of R⊗R S→ A⊗R S is equal to the center of A⊗R S, then R · 1 is

equal to the center of A.

PROOF. For the first part, take A1 = A, A2 = S2 = S and S1 = R in Proposition 5.3.3.
For the second part, notice that

1⊗R S = Z(A⊗R S) =
(
A⊗R S

)A⊗RS

maps onto AA = Z(A) by the proof of Proposition 5.3.3. But the projection map π is the
splitting map to R→ S which has image R ·1. Hence 1⊗S projects onto 1⊗R∼= R ·1. □

REMARK 5.3.6. Say A is an R-algebra with structure homomorphism θ : R→ Z(A).
If I is an ideal in R and I ⊆ kerθ , then θ factors through R/I so A is an R/I-algebra and
A⊗R Ao = A⊗R/I Ao so A is R-separable if and only if A is R/I-separable.

PROPOSITION 5.3.7. Say A is a separable R-algebra and I is a two-sided ideal of A.
Then A/I is a separable R-algebra. Moreover,

Z(A/I) =
Z(A)+ I

I
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PROOF. Let M be a two-sided (A/I)/R-module. Then M can be viewed as a two-sided
A/R-module using the natural homomorphism η : A→ A/I. Then MA = MA/I . Then A/I
is R-separable by Corollary 5.1.8. Now

A→ A/I→ 0

is an exact sequence of two-sided A/R-modules. Since A is R-separable,

AA→ (A/I)A→ 0

is exact. So Z(A/I) is the image under η of Z(A). □

COROLLARY 5.3.8. Let A1 be an R1-algebra and A2 an R2-algebra, where R1 and R2
are commutative rings. Then A1⊕A2 is a separable R1⊕R2-algebra if and only if both A1
and A2 are separable over R1 and R2 respectively.

PROOF. Follows from Corollary 5.1.8 and Proposition 5.3.7. □

4. Homomorphisms of Separable Algebras

We prove three fundamental theorems on separable algebras. The first (Theorem 5.4.1)
is a theorem of permanence which says that if A is R-separable and M is an A-module
which is R-projective, then M is A-projective. In Theorem 5.4.2 we prove that separability
is transitive. The third (Theorem 5.4.3) is a general result, more technical than the rest, and
applies to any homomorphism of R-algebras θ : A→ B such that A is R-separable.

THEOREM 5.4.1. Let R be a commutative ring and A a separable R-algebra. By the
structure homomorphism θ : R→ A, any left A-module M inherits the structure of a left
R-module.

(1) Let
0→ L→ N

η−→M→ 0
be any exact sequence of left A-modules. If the sequence is split exact in RM,
then it is split exact in AM.

(2) Let M be a left A-module. If M is R-projective, then M is A-projective.

PROOF. By Proposition 2.1.1, (2) follows from (1). Suppose there exists an R-module
homomorphism ψ : M → N with ηψ = 1M . Since both N and M are left A-modules,
Lemma 2.4.1 shows that HomR(M,N) can be given the structure of a left Ae-module under
the operation induced by [

(x⊗ y) · f
]
(m) = x · f (y ·m),

where x⊗ y ∈ A⊗R Ao, f ∈ HomR(M,N), and m ∈M. Since A is R-separable, let e ∈ Ae

be a separability idempotent for A. Define ψ ′ = e ·ψ . That is, if e = ∑i xi⊗ yi, and m ∈M
then

ψ
′(m) = ∑

i
xiψ(yim).

Since η is an A-module homomorphism and µ(e) = 1, we have

ηψ
′(m) = η

(
∑

i
xiψ(yim)

)
= ∑

i
xiη ·ψ(yim)

= ∑
i

xiyim

= m
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for all m ∈M. Since JA/Re = 0, we have

(a⊗1−1⊗a)ψ ′ = (a⊗1−1⊗a)e ·ψ
= 0,

for all a ∈ A. It follows that
aψ
′(m) = a⊗1 ·ψ ′(m)

= 1⊗a ·ψ ′(m)

= ψ
′(am),

for all a ∈ A, m ∈M. □

THEOREM 5.4.2. Let S be a commutative R-algebra and let A be an S-algebra. Then
A is also an R-algebra.

(1) (Separable over Separable is Separable) If S is separable over R and A is sepa-
rable over S, then A is separable over R.

(2) If A is separable over R, then A is separable over S.
(3) If A is separable over R and A is an S-progenerator, then S is separable over R.

PROOF. (1): Any two-sided A/R-module M is also a two-sided S/R-module. Given
any x ∈MS, a ∈ A and s ∈ S, the equations

s · (a · x) = a · (s · x)
= a · (x · s)
= (a · x) · s

show that ax ∈MS. It follows that MS is a two-sided A/S-module, with
(
MS
)A

= MA. For
any two-sided A/R-modules M and N, if

M
f−→ N→ 0

is exact then, by Corollary 5.1.8 applied to the separable R-algebra S, it follows that

MS f−→ NS→ 0

is exact. But
(
MS
)A

= MA and
(
NS
)A

= NA. By Corollary 5.1.8 applied to the separable
S-algebra A, it follows that

MA f−→ NA→ 0
exact. Hence A is R-separable, which proves (1).

(2): In the commutative diagram

0 // JA/R

��

// A⊗R Ao µ //

��

A

=

��

// 0

0 // JA/S
// A⊗S Ao µ // A // 0

all of the vertical maps are onto (Exercise 2.3.41). A separability idempotent for A/R maps
to a separability idempotent for A/S.

(3): By part (2), A is separable over S. Since A is S-projective, so is Ao. The reader
should verify (for example, by an argument involving dual bases) that A⊗R Ao is projective
over S⊗R S. Because A is separable over R, A is projective as a left A⊗R Ao-module under
the µ-action. By Proposition 2.1.13, it follows that A is projective as a left S⊗R S-module.
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By Proposition 3.5.6, S ·1 is an S-module direct summand of A, so we can write A = S⊕L
for some L. It follows that S is also an S⊗R S-module direct summand of A under the
µ-action. Hence S is S⊗R S-projective and S is R-separable. □

Let R be a commutative ring and θ : A→ B an R-algebra homomorphism. Consider
the commutative diagram

A⊗R B0 γ //

θ⊗1 %%

B

B⊗R Bo

µ

<<

(4.1)

where γ is defined to be the R-algebra homomorphism θ ⊗ 1, followed by the left B⊗R
Bo-module homomorphism µ . Therefore, all of the terms in (4.1) can be viewed as left
A⊗R Bo-modules. Notice that γ(x⊗ y) = θ(x)y, hence the left A⊗R Bo-module action on
B is given by (a⊗ b) · x = θ(a)xb. We emphasize that γ is not a homomorphism of rings
unless the image of θ is a subring of the center of B.

THEOREM 5.4.3. Let R be a commutative ring and θ : A→ B an R-algebra homomor-
phism. If A is R-separable, then the following are true.

(1) The sequence of left A⊗R Bo-modules

A⊗R Bo γ−→ B→ 0

is split exact. The kernel of γ is idempotent generated, and B is projective as a
left A⊗R Bo-module.

(2) If B is a flat left R-module, then B is a flat left A-module.
(3) If B is a projective left R-module, then B is a projective left A-module.
(4) If A is commutative, im(θ)⊆ Z(B), and B is R-separable, then B is A-separable.

PROOF. (1): Since A is R-separable, there is a split exact sequence

(4.2) 0→ JA/R→ Ae µ−→ A→ 0

of left Ae-modules. The R-algebra homomorphism 1⊗ θ : Ae → A⊗R Bo allows us to
view A⊗R Bo as a left A⊗R Bo right Ae-bimodule. Applying the functor (A⊗R Bo)Ae() to
sequence (4.2) yields the split exact sequence

(4.3) 0→ (A⊗R Bo)⊗Ae JA/R→ (A⊗R Bo)⊗Ae Ae 1⊗µ−−→ (A⊗R Bo)Ae A→ 0

of left A⊗R Bo-modules. By Lemma 2.3.13, the middle term in (4.3) is isomorphic to
A⊗R Bo. Define φ : B→ (A⊗R Bo)⊗Ae A by x 7→ 1⊗x⊗1. The reader should verify that φ

is onto. Notice a⊗b ·φ(x) = a⊗b ·1⊗x⊗1 = a⊗xb⊗1 = 1⊗xb⊗a = 1⊗θ(a)xb⊗1 =
φ(a⊗b · x), so φ is a well defined A⊗R Bo-module epimorphism. To see that φ is one-to-
one, look at the Z-module homomorphisms

(4.4) B
φ−→ (A⊗R Bo)AeA θ⊗1⊗θ−−−−→ (B⊗R Bo)Ae B

ξ−→ (B⊗R Bo)BeB
∼=−→ B

where ξ is from Exercise 2.3.41, and the last isomorphism is Lemma 2.3.13. In (4.4), the
composite map is the identity on B. This shows φ is an isomorphism, hence the last term
in (4.3) is isomorphic to B. The reader should verify that γ is the map induced by 1⊗ µ ,
and that

0→ ker(γ)→ A⊗R Bo γ−→ B→ 0
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is a split exact sequence of left A⊗R Bo-modules. The kernel of γ is idempotent generated,
by Lemma 3.2.4. This proves (1).

(2): Since B is a flat left R-module, A⊗R Bo is a flat left A-module (Theorem 2.3.23).
By Exercise 2.3.31, a projective module is flat. Part (1) and Exercise 3.5.24 imply that B is
a flat left A-module.

(3): This can be proved using the method of Part (2). Alternatively, this follows from
Theorem 5.4.1.

(4): This is Theorem 5.4.2(2). □

Let A be a ring and Z(A) the center of A. The next three results are concerned with the
tower of subrings of A:

(4.5) R⊆ S⊆ Z(A)⊆ A.

COROLLARY 5.4.4. As in Eq. (4.5), let R and S be subrings of the center of A. Then
any two of the following statements imply the third.

(1) S is a separable R-algebra and a finitely generated projective R-module.
(2) A is a separable S-algebra and a finitely generated projective S-module.
(3) A is a separable R-algebra and a finitely generated projective R-module.

PROOF. (1) and (2) implies (3): Apply Proposition 2.1.13 and Theorem 5.4.2(1).
(1) and (3) implies (2): Since A is a finitely generated R-module, A is a finitely gener-

ated S-module. Since A is projective over R and S is separable over R, by Theorem 5.4.1, A
is projective over S. Since A is separable over R, by Theorem 5.4.2(2), A is separable over
S.

(2) and (3) implies (1): By Theorem 5.4.2(3), S is separable over R. By Proposi-
tion 3.5.6, S ·1 is a S-module direct summand of A. Therefore, the R-module S is isomor-
phic to a direct summand of the R-progenerator A. This shows that S is a finitely generated
projective R-module. □

The following finiteness criterion for a separable R-algebra is due to O. Villamayor
and D. Zelinsky ([60]).

PROPOSITION 5.4.5. Let R be a commutative ring and A a separable R-algebra which
is projective as an R-module. Then A is finitely generated as an R-module.

PROOF. Since A and Ao are identical as R-modules, it is enough to show Ao is finitely
generated. Let { fi,ai} be a dual basis for Ao over R with ai ∈ Ao and fi ∈ HomR(Ao,R).
For every a ∈ Ao, fi(a) = 0 for almost all i and

a = ∑
i

fi(a)ai.

Identify A⊗R R with A, and consider 1A⊗ fi as an element of HomA(Ae,A). The set {1A⊗
fi,1⊗ai} forms a dual basis for Ae as a projective left A-module. That is,

u = ∑
i
(1A⊗ fi)(u) · (1⊗ai)

for all u ∈ Ae. Applying the multiplication map µ and setting u = (1⊗ a)e where e is a
separability idempotent for A over R, we obtain

a = µ
(
(1⊗a)e

)
= ∑

i

[
(1A⊗ fi)

(
(1⊗a)e

)]
·ai

(4.6)
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for each a ∈ Ao. Since
(1A⊗ fi)

(
(1⊗a)e

)
= (1A⊗ fi)

(
(a⊗1)e

)
= (a⊗1)

(
(1A⊗ fi)(e)

)
the set of subscripts i for which (1A⊗ fi)

(
(1⊗ a)e

)
is not equal to zero is contained in

the finite set of subscripts for which (1A⊗ fi)(e) is not equal to zero. This latter set is
independent of a. Therefore the summation (4.6) may be taken over a fixed finite set.
Writing

e = ∑
j

x j⊗ y j ,

we have from (4.6) that

a = ∑
i, j

x j fi(y ja)ai

= ∑
i, j

fi(y ja)x jai

for each a ∈ Ao. This shows that the finite set {x jai} generates Ao over R. □

Corollary 5.4.6 is attributed to F. DeMeyer.

COROLLARY 5.4.6. Assume A is a separable R-algebra which as an R-module is
faithful and projective. Then
(1) A is an R-module progenerator.
(2) If S is a commutative separable R-subalgebra of A, then S is an R-module progenerator.

PROOF. (1): By Corollary 2.2.4, a finitely generated projective and faithful R-module
is an R-progenerator. Therefore, this follows from Proposition 5.4.5.

(2): We identify R with R · 1. By Proposition 3.5.6, R is an R-module direct sum-
mand of S. Since A is finitely generated over R, A is finitely generated over S. By The-
orem 5.4.1, A is a finitely generated projective S-module. Since A is faithful over S, A is
an S-progenerator. By Proposition 3.5.6, S is an S-module direct summand of A. So S is
finitely generated projective and faithful over R. □

COROLLARY 5.4.7. Let S and A be separable R-algebras and f : S→ A an R-algebra
homomorphism. Assume the image of f is a commutative R-subalgebra of A, and A is an
R-module progenerator. The following are true:

(1) The diagram of R-algebra homomorphisms

R α //

β
  

f (S)
⊆ // A

S

OO

f

>>

commutes.
(2) α and β are one-to-one.
(3) The kernel of f is idempotent generated.
(4) If S is commutative and connected, then f is a monomorphism.

PROOF. By Proposition 3.5.6, α is one-to-one. By Proposition 5.3.7, the image of f is
a commutative separable R-subalgebra of A. By Corollary 5.4.6, f (S) is an R-progenerator.
By Theorem 5.4.1, f (S) is projective over S. By Exercise 3.2.6, the kernel of f is idempo-
tent generated. The rest is left to the reader. □
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Let A be an R-algebra with structure homomorphism θ : R→ A. A section to θ is
an R-algebra homomorphism σ : A→ R such that σθ is the identity map on R. If A is
R-separable, then in Corollary 5.4.8 below we show that a section σ : A→ R is determined
by a particular type of central idempotent in A.

COROLLARY 5.4.8. Let R be a commutative ring and A a separable R-algebra. Then

(1) There is a one-to-one correspondence between the set of all R-algebra homo-
morphisms σ : A→ R, and the set of all central idempotents e in A such that the
composite mapping

R→ Re→ Ae

is one-to-one and onto. In this case σ(e) = 1 and σ(x)e = xe for all x ∈ A.
(2) Suppose R is connected, σ1, . . . ,σn are distinct R-algebra homomorphisms from

A to R, and e1, . . . ,en are the corresponding idempotents. Then
(a) σ j(ei) = 0 if i ̸= j, and
(b) eie j = 0, if i ̸= j.

PROOF. (1): Let θ : R→ A be the structure homomorphism. Let e be a central idem-
potent in A and π : A→ Ae the canonical projection map. The diagram

R α //

θ

��

Re

⊆
��

A π // Ae

of R-algebra homomorphisms commutes, where α(x)= xe. If Re=Ae and α is one-to-one,
then α−1π is an R-algebra homomorphism.

Conversely, assume σ : A→ R is an R-algebra homomorphism. By Theorem 5.4.1,
σ makes R into a projective A-module. By Exercise 3.2.6 kerσ is an A-module direct
summand of A, hence kerσ = Ae0 for some idempotent e0 ∈ A. Since kerσ is a two-sided
ideal of A, e = 1− e0 is a central idempotent by Theorem 1.1.8. The rest is left to the
reader.

(2): Since R is connected, σ j(ei) is equal to either 0 or 1. Suppose σ j(ei) = 1. Then
for every x ∈ A, σ j(x) = σ j(x)σ j(ei) = σ j(xei) = σ j(σi(x)ei) = σi(x)σ j(ei) = σi(x) which
implies i = j. This proves (a). Lastly, σ j(x)e j = xe j for all x ∈ A implies σ j(ei)e j = eie j.
This proves (b). □

4.1. Exercises.

EXERCISE 5.4.9. Let f : R→ S be a homomorphism of commutative rings. Let q ∈
SpecS and p = f−1(q). If S is a separable R-algebra, then Sq is a separable Rp-algebra.

EXERCISE 5.4.10. Let R be a commutative ring. Let A1 and A2 be R-algebras. Prove
that A1⊕A2 is separable over R if and only if A1 and A2 are separable over R.

EXERCISE 5.4.11. Let k be any field and x an indeterminate.
(1) Show that A = k[x]/(x2) is not separable over k. (Hint: Show that Ae is a local

ring. What are the candidates for e?)
(2) Show that k[x]/(xn) is k-separable if and only if n = 1.
(3) Suppose f ∈ k[x] is a nonconstant polynomial such that each irreducible factor

of f has degree one. Show that k[x]/( f ) is separable over k if and only if f has
no repeated roots.
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(4) Suppose f ∈ k[x] is a nonconstant polynomial and F is a splitting field for f
over k. Show that k[x]/( f ) is separable over k if and only if f has no repeated
roots in F . Equivalently, show that k[x]/( f ) is separable over k if and only if
gcd( f , f ′) = 1. For a generalization of this result, see Proposition 5.6.2.

EXERCISE 5.4.12. Let k be a field and k[x] the polynomial ring over k in one variable.
Show that A = k[x] is not separable over k. (Hint: Show that Ae is an integral domain.)

EXERCISE 5.4.13. Let R be a commutative ring. Show that A = R[x] is not separable
over R.

EXERCISE 5.4.14. Let A = Z[i] be the ring of gaussian integers. Then up to iso-
morphism A is equal to Z[x]/(x2 + 1). Show that A is not separable over Z. (Hints: Use
Corollary 5.3.2. Take S = Z/2 and apply the argument of Exercise 5.4.11 to show A⊗Z/2
is not separable over the field Z/2. We say that A ramifies at the prime 2.)

EXERCISE 5.4.15. Let R be an integral domain in which 2 = 1+ 1 is a unit. Let a
be a unit of R and define S = R[

√
a] to be R with the square root of a adjoined. That is,

S = R[x]/(x2−a).
(1) Show that S is a faithfully flat R-algebra. (Hint: Example 1.6.10 (2).)
(2) Show that the

√
a 7→ −

√
a induces an R-algebra automorphism σ : S→ S. (Hint:

Exercise 1.1.23.)
(3) The trace map T : S→ R is defined by T (z) = z+σ(z). Show that T is an R-

module homomorphism and the image of T is R. Show that the kernel of T is the
R-submodule generated by

√
a. Conclude that S∼= R ·1⊕R

√
a as R-modules.

(4) If m is any maximal ideal in S, then m does not contain the R-submodule R
√

a.
(5) Show that S is a separable R-algebra. (Hint: e = 1

2 (1⊗1+
√

a⊗ 1√
a ) is a sepa-

rability idempotent.)

EXERCISE 5.4.16. Let R be an integral domain in which 2 is a unit. Let a ∈ R and
S = R[

√
a] = R[x]/(x2−a).

(1) If a = b2 and b is a unit in R, then S∼= R⊕R as R-algebras.
(2) If a is not a unit in R, then S is not separable over R.

EXERCISE 5.4.17. Let the Cartesian plane R2 have the usual metric space topology.
Let X be the x-axis and π : R2→ X the standard projection map defined by π(x,y) = x.

(1) Let S = R[x,y]/(x2− y2) and R = R[x]. Show that S is faithfully flat over R, but
is not separable.

Geometrically, S corresponds to two intersecting lines and R corresponds to
the x-axis. In R2 let Y denote the two lines x = ±y. The projection π : Y → X
of Y onto the x-axis is two-to-one everywhere except at the origin, hence is not a
local homeomorphism.

(2) Let S = R[x,y]/(x2 + y2−1). Show that S is faithfully flat over R = R[x], but is
not separable.

Geometrically, S corresponds to a circle of radius 1 and R corresponds to the
x-axis. In R2 let Y denote the circle x2 + y2 = 1. The projection π : Y → X of
Y onto the x-axis is two-to-one everywhere except at the points where x = ±1,
hence is not a local homeomorphism.

EXERCISE 5.4.18. Let R be an integral domain in which 2 is a unit. Assume i ∈ R
such that i2 =−1. Let α and β be units of R. Define an R algebra A by the following rules.
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As an R-module, A is the free R-module on the basis 1,u,v,uv:

A = R ·1+R ·u+R · v+R ·uv.

Multiplication in A is determined by the relations

u2 = α, v2 = β , uv =−vu.

(1) Show that A is a separable R-algebra. (Hint: e = 1
4 (1⊗1+u⊗u−1 + v⊗ v−1 +

uv⊗ (uv)−1) is a separability idempotent.)
(2) Assume α = a2 and β = b2 for some a,b in R. Show that A is isomorphic to the

ring M2(R) of two-by-two matrices over R. (Hint: Define the map A→ M2(R)
on generators by

u 7→
[

0 −ia
ia 0

]
, v 7→

[
0 b
b 0

]
.

Show that this definition extends to A.)
(3) If R = C, then A∼= M2(C) for every choice of α and β .

EXERCISE 5.4.19. Let S be a commutative separable R-algebra. For n≥ 1, let T n
R (S)=

S⊗R S⊗R · · ·⊗R S be the tensor product of n copies of S. View T n
R (S) as an S-algebra by

the homomorphism ρ : S→ T n
R (S), where ρ(s) = s⊗1⊗·· ·⊗1. Let µ : T n

R (S)→ S be the
product map, where µ(x1⊗·· ·⊗ xn) = x1 · · ·xn.

(1) Show that µ is an S-algebra homomorphism and the kernel of µ is idempotent
generated.

(2) Show that there is an idempotent e∈ T n
R (S) such that Se=(S⊗R 1⊗R · · ·⊗R 1)e=

T n
R (S)e.

5. Separable Algebras over a Field

The goal of this section is to prove a structure theorem that classifies separable algebras
over a given field k. First we show in Section 5.5.1 that A is a central separable k-algebra
if and only if A is a central simple k-algebra. The main results on separable k-algebras are
Theorem 5.5.7 and its corollaries. Given the connection between central simple and central
separable, these results are generalizations of the Wedderburn-Artin Theorem. When k is
infinite and A is commutative, we prove that A is generated as a k-algebra by a primitive el-
ement. If k is a field and A is a central simple k-algebra, then the Skolem-Noether Theorem
shows that any k-algebra automorphism of A is an inner automorphism.

The theorems and their proofs appearing below are from various sources, including
[17], [37], [50], [53], [34], and [19].

5.1. Central Simple Equals Central Separable. Let k be a field. As in Defini-
tion 4.4.6, a k-algebra A is central simple in case k = Z(A), dimk(A) is finite, and A is
a simple ring.

PROPOSITION 5.5.1. Let k be a field and A a finite dimensional k-algebra. Then A is a
central simple k-algebra if and only if the enveloping homomorphism ϕ : Ae→Homk(A,A)
of Eq. (1.3) is an isomorphism.

PROOF. If A is a central simple k-algebra, then so is Ao. By Proposition 4.4.9 it
follows that Ae is a central simple k-algebra. Therefore ϕ is one-to-one and counting
dimensions over k proves that ϕ is onto. Conversely, suppose that ϕ is an isomorphism.
Since Homk(A,A) is isomorphic to a ring of matrices Mn(k), it is a central simple k-algebra
by Example 4.4.2. If I is a two-sided ideal of A, then I⊗k Ao is an ideal in Ae. So I is
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either (0) or A. If α ∈ Z(A), then α ⊗1 ∈ Z(Ae) so ϕ(α ⊗1) ∈ k. Since ϕ is a k-algebra
isomorphism, α⊗1 ∈ k ·1⊗1. It follows that α ∈ k. □

EXAMPLE 5.5.2. Let k be a field and A a finite dimensional central simple k-algebra.
Assume dimk(A) = n≥ 2. Consider the exact sequence

0→ JA/k→ A⊗k Ao µ−→ A→ 0

of Eq. (1.5), where µ is the multiplication map defined by a⊗ b 7→ ab. In this exam-
ple we show that µ is not a ring homomorphism and JA/k is not a two-sided ideal. By
Proposition 5.5.1, the enveloping algebra Ae = A⊗k Ao is isomorphic to the endomor-
phism ring Homk(A,A). Therefore, Ae is a central simple k-algebra, by Example 4.4.2.
This implies Ae is a simple ring. Since the multiplication map µ is always onto, we have
dimk JA/k = dimk(Ae)−dimk(A) = n2−n > 0. Since Ae is a simple ring, this implies JA/k
is not a two-sided ideal. It follows that µ is not a homomorphism of rings.

COROLLARY 5.5.3. Let A be a separable k-algebra where k is a field. Then A is a
finite dimensional k-vector space.

PROOF. This follows immediately from Proposition 5.4.5. □

COROLLARY 5.5.4. Let k be a field and A a k-algebra. Then A is a central simple
k-algebra if and only if A is a central separable k-algebra.

PROOF. Assume A is a central simple k-algebra. Let K be an algebraic closure of
k. Then by Theorem 4.4.9, A⊗k K is a central simple K-algebra. By Proposition 4.4.8,
A⊗k K ∼= Mn(K) for some n. By Example 5.2.1, A⊗k K is a central separable K-algebra.
By Corollary 5.3.5, A is a separable k-algebra. Conversely assume A is a central separable
k-algebra. Then Z(A) = k and by Corollary 5.5.3, A is finite dimensional over k. Any left
A-module is a k-vector space, hence is projective as a k-module. By Theorem 5.4.1, every
left A-module is projective. By Theorem 4.3.3, A is semisimple. By Theorem 4.4.3, A is
a finite direct sum of simple rings. Since the center of A is the field k, it follows that A is
simple. □

5.2. A Separable Field Extension is a Separable Algebra.

THEOREM 5.5.5. Let k be a field and A a k-algebra. The following are equivalent.

(1) A is a separable k-algebra.
(2) A is finite dimensional over k and if K/k is any field extension of k, then A⊗k K

is semisimple.

PROOF. (1) implies (2): By Corollary 5.5.3, A is finite dimensional over k. By Corol-
lary 5.3.2, A⊗k K is a separable K-algebra. Every A⊗k K-module is free over K. By
Theorem 5.4.1, every A⊗k K-module is projective. By Theorem 4.3.3, A⊗k K is semisim-
ple.

(2) implies (1): Let k̄ be the algebraic closure of k. By Theorem 4.4.3(2), A⊗k k̄ =R1⊕
·· ·⊕Rn is a direct sum of a finite number of simple rings Ri. Each Ri is finite dimensional
over k̄. By Theorem 4.4.5, the center of Ri is a finite extension field of k̄. Since k̄ is
algebraically closed, the center of Ri is k̄. By Corollary 5.5.4, each Ri is central separable
over k̄. Therefore A⊗k k̄ is separable over k̄⊕ ·· ·⊕ k̄. By Exercise 5.1.12, k̄⊕ ·· ·⊕ k̄ is
separable over k̄. By Theorem 5.4.2 (1), A⊗k k̄ is separable over k̄. By Corollary 5.3.5, A
is separable over k. □
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PROPOSITION 5.5.6. Let k be a field and F a finite dimensional extension field of k.
Then F is a separable k-algebra if and only if F/k is a separable field extension.

PROOF. Assume F is a separable field extension of k. Then F = k(u1, . . . ,um) where
each ui is separable over k. By Theorem 5.4.2 (1), it is enough to assume F = k[x]/( f (x))
is a simple extension and prove that F is a separable k-algebra. Let K/k be a splitting
field for f (x). In K[x] we have the factorization f (x) = (x−α1) . . .(x−αn) where the
roots αi are distinct. The Chinese Remainder Theorem shows that F ⊗k K ∼= K[x]/( f (x))
is isomorphic to a direct sum of n copies of K. By Exercise 5.1.12, F ⊗k K is separable
over K. By Corollary 5.3.5, F is a separable k-algebra.

Conversely assume F/k is not a separable extension of fields and let S be the separable
closure of k in F (see [20, Theorem 5.4.2], for example). Let p be the characteristic
of k. Since F/S is purely inseparable, there exists u ∈ F , n ≥ 1, and α ∈ S such that
the irreducible polynomial of u over S is Irr.polyS(u) = xpn −α . Consider the element
t = u⊗1−1⊗u in F⊗S F . It is easy to see that t is nonzero and that t pn

= 0. The Jacobson
radical of F ⊗S F contains t, so F ⊗S F is not a semisimple ring (Theorem 4.3.3). By
Theorem 5.5.5, F is not a separable S-algebra. By Theorem 5.4.2 (2), F is not a separable
k-algebra. □

5.3. Unique Decomposition Theorems. A separable algebra over a field k has a
unique decomposition into a finite direct sum of matrix rings.

THEOREM 5.5.7. Let k be a field and A a k-algebra. Then A is a separable k-algebra
if and only if A is isomorphic to a finite direct sum of matrix rings Mni(Di) where each Di
is a finite dimensional k-division algebra such that the center Z(Di) is a finite separable
extension field of k.

PROOF. If A is separable over k, then by Theorem 5.5.5, A is semisimple. It follows
from Theorem 4.4.3(2) that A = A1⊕·· ·⊕Am is a direct sum of a finite number of simple
rings Ai. By Exercise 5.4.10, Ai is separable over k, for each i. By Theorem 4.4.5, Ai ∼=
Mni(Di) where Di is a finite dimensional k-division algebra. The center of Ai is Z(Di) and
by Theorem 5.4.2(3), Z(Di) is separable over k. By Proposition 5.5.6, Z(Di)/k is a finite
separable field extension.

For the converse, suppose K/k is a finite separable field extension and D is a fi-
nite dimensional K-central division algebra. Then by Example 4.4.2 and Theorem 4.4.9,
Mn(D) ∼= HomK(K(n),K(n))⊗K D is K-central simple. By Corollary 5.5.4, Mn(D) is K-
central separable. By Proposition 5.5.6 and Theorem 5.4.2 (1), Mn(D) is separable over k.
The part about direct sums follows from Exercise 5.4.10. □

Corollaries 5.5.9 and 5.5.10 are generalizations of the Primitive Element Theorem for
a separable extension of fields, which is stated here for reference.

THEOREM 5.5.8. If F/k is a finite dimensional separable extension of fields, then
there is a separable element u ∈ F such that F = k(u).

PROOF. [20, Theorem 5.2.14]. □

COROLLARY 5.5.9. Let k be a field and A a commutative k-algebra. Then the follow-
ing are true.

(1) A is separable over k if and only if A is isomorphic to a finite direct sum of fields
K1⊕·· ·⊕Kn where each Ki is a finite separable extension field of k.
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(2) If k is infinite and A is separable over k, then there is a monic polynomial f (x) ∈
k[x] such that gcd( f , f ′) = 1 and A is isomorphic to k[x]/( f (x)) as a k-algebra.
There is a primitive element α ∈ A such that A is generated as a k-algebra by α .

PROOF. (1): Follows from Theorem 5.5.7.
(2): By Part (1), there is a k-algebra isomorphism A∼= K1⊕·· ·⊕Kn, where each Ki is

a separable extension field of k. By Theorem 5.5.8, Ki ∼= k[x]/(pi(x)), for some irreducible
monic separable polynomial pi(x) ∈ k[x]. By induction, assume n≥ 2 and there is a monic
polynomial f (x) such that gcd( f , f ′) = 1 and K2⊕ ·· ·⊕Kn is isomorphic to k[x]/( f (x))
as a k-algebra. Let F be a splitting field for f (x)p1(x). Let {u1, . . . ,ur} be all the roots of
f (x)p1(x) in F . Assume p1(u1) = 0. Since k is infinite, pick a ∈ k such that a is not in the
set {0,u2− u1, . . . ,ur− u1}. So p1(x− 1) is a monic irreducible separable polynomial in
k[x] and a+u1 is a root of p1(x−a) but not a root of f (x). Therefore, p1(x−a) does not
divide f (x). Hence p1(x− a) f (x) is a separable polynomial. By the Chinese Remainder
Theorem, Theorem 1.1.7,

k[x]
(p1(x−a) f (x))

→ k[x]
(p1(x−a))

⊕ k[x]
( f (x))

is an isomorphism. But the k-algebra on the right is isomorphic to A. □

Corollary 5.5.10 is a kind of “Primitive Element Theorem” for commutative separable
algebras over a finite field which is due to T. McKenzie ([44]).

COROLLARY 5.5.10. If k is a finite field and A is a commutative separable k-algebra,
then there is a monic polynomial f (x) ∈ k[x] such that gcd( f , f ′) = 1 and A is isomorphic
to a k-subalgebra of k[x]/( f (x)).

PROOF. By Corollary 5.5.9 (1), there is a k-algebra isomorphism A ∼= K1⊕·· ·⊕Kn,
where each Ki is a separable extension field of k. Let di = dimk(Ki), and d = lcm(d1, . . . ,dn).
By [20, Exercise 5.5.24] there exists a polynomial f (x) ∈ k[x] such that gcd( f , f ′) = 1 and
k[x]/( f (x)) is isomorphic to the direct sum F ⊕ ·· ·⊕F of n copies of the field F , where
dimk(F) = dm, for some m ≥ 1. By Theorem 1.8.7, F contains a subfield isomorphic to
Ki, and we can embed A into k[x]/( f (x)). □

5.4. The Skolem-Noether Theorem. The classical Skolem-Noether Theorem states
that if k is a field and A is a central simple k-algebra, then any automorphism of A is an
inner automorphism. First we prove a version that is more general.

THEOREM 5.5.11. (Skolem-Noether) Let A be a central simple k-algebra. Let B and
B̃ be two simple k-subalgebras of A and ϕ : B→ B̃ a k-algebra isomorphism. Then ϕ

extends to an inner automorphism of A. That is, there exists an invertible u ∈ A such that
ϕ(x) = uxu−1, for all x ∈ B.

PROOF. By Theorem 4.4.5, if M is a minimal left ideal of A, then D = HomA(M,M)
is a division ring, and A∼= HomD(M,M). For a ∈ A, let λa : M→M be “left multiplication
by a”. For all x ∈M, d ∈ D, b ∈ B, we have λdλbx = λbλdx. Therefore, we can make M
into a left D⊗k B-module by d⊗b · x = dbx. Using ϕ , define a second left D⊗k B-module
structure on M by d⊗ b · x = dϕ(b)x. Denote this module by ϕ M. By Theorem 4.4.9,
D⊗k B is a simple ring. It follows from Theorem 4.3.1 and Theorem 4.4.3 that V and ϕ M
are isomorphic D⊗k B-modules. Therefore, there exists an isomorphism θ ∈Homk(M,M)
satisfying:

θ(d⊗b · x) = d⊗b ·θ(x) = dϕ(b)θ(x).
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For b = 1, this implies θ(dx) = dθ(x), so θ ∈HomD(M,M) = A. That is, θ = λu, for some
invertible u ∈ A. The equation above becomes

u(db)x = dϕ(b)ux.

If d = 1, this becomes: ubx = ϕ(b)ux. Since M is a faithful module (Theorem 4.4.3), this
proves ϕ(b) = ubu−1. □

COROLLARY 5.5.12. Let k be a field and A a central simple k-algebra. If θ : A→ A
is a k-algebra homomorphism, then θ is an inner automorphism of A.

PROOF. Since A is simple, the kernel of θ is the zero ideal, hence θ is one-to-one.
The image of θ has dimension dimk(A), hence θ is onto. □

5.5. Exercises.

EXERCISE 5.5.13. Let k be a field and G a finite group of order [G : 1].
(1) (Maschke’s Theorem) If [G : 1] is invertible in k, then the group algebra k(G) is

semisimple.
(2) This exercise contains an outline of a proof of the converse to Maschke’s Theo-

rem. In the group algebra k(G), let t = ∑σ∈G σ and I = k(G)t be the left ideal
generated by t.
(a) Show that I is equal to kt.
(b) Show that if the characteristic of k divides [G : 1], then I2 = 0. Conclude

that I is not a k(G)-module direct summand of k(G).
(c) Show that if the group algebra k(G) is semisimple, then [G : 1] is invertible

in k.

EXERCISE 5.5.14. The purpose of this exercise is to prove the converse of Exam-
ple 5.2.2. Let R be a commutative ring and G a finite group of order [G : 1]. Show that
if the group algebra R(G) is separable over R, then [G : 1] is invertible in R. (Hint: If m
is a maximal ideal in R which contains [G : 1], then by Exercise 5.5.13, the group algebra
(R/m)(G) is not semisimple.)

EXERCISE 5.5.15. Let θ : R→ S be a local homomorphism of local rings and assume
θ makes S into a separable R-algebra. Let m be the maximal ideal of R, n the maximal
ideal of S, and R/m→ S/n the corresponding extension of residue fields. Then mS = n,
S⊗R R/m= S/n, and R/m→ S/n is a finite separable extension of fields.

EXERCISE 5.5.16. Let k be a field and A a k-algebra. Let K be an algebraic closure of
k. Show that A is a central simple k-algebra if and only if A⊗k K is isomorphic to Mn(K)
for some n≥ 1.

6. Commutative Separable Algebras

In this section we study R-algebras that are separable and commutative. References
for the material in this section are [53] and [34]. If S is a commutative ring and R is a
subring of S, then we say S/R is an extension of commutative rings.

DEFINITION 5.6.1. Let R be a commutative ring. A monic polynomial f (x) in R[x]
is called separable in case R[x]/( f (x)) is separable over R. If S/R is an extension of
commutative rings, and b ∈ S, then we say b is a separable element in S in case there is a
separable polynomial f (x) ∈ R[x] and f (b) = 0.
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Proposition 5.6.2, a generalization of Exercise 5.4.11 (4), provides a useful Jacobian
Criterion for a polynomial to be separable. The proof we give below is from [53, Proposi-
tion 2.16]. See Proposition 10.2.7 for a more general version that applies when the exten-
sion S/R is not necessarily a simple extension.

PROPOSITION 5.6.2. Let R be a commutative ring and f (x) a monic polynomial in
R[x]. Let I = ( f (x), f ′(x)) be the ideal of R[x] generated by f (x) and the formal derivative,
f ′(x). Let S = R[x]/( f (x)). Then the following are true.

(1) S is a free R-module. RankR(S) = deg( f (x)).
(2) S is separable over R if and only if the ideal I is the unit ideal.

PROOF. (1): This is Example 1.6.10 (2).
(2): Assume I is not the unit ideal of R[x]. By (1), R[x]/I is a finitely generated R-

module. By Nakayama’s Lemma (Corollary 2.2.2), there is a maximal ideal m in R such
that

(R[x]/I)⊗R (R/m) =
(R/m)[x]
( f , f ′)

is nonzero. Let k = R/m. Then in k[x], ( f , f ′) is not the unit ideal. By Exercise ??, S⊗R k
is not separable over k. By Corollary 5.3.2, S is not separable over R.

Now we prove the converse of (2). In R[x,y], y− x is monic in y and linear, so the
Division Algorithm applies. Upon dividing f (y)− f (x) by y− x one finds the remainder
is 0. We can write f (y) = f (x)+ (y− x)q(x,y). Compute the derivative with respect to y:
f ′(y) = q(x,y)+(y− x)qy(x,y). By assumption, there are u(y),v(y) ∈ R[y] such that

1 = f (y)u(y)+ f ′(y)v(y)

=
(

f (x)+(y− x)q(x,y)
)
u(y)+(q(x,y)+(y− x)qy(x,y))v(y)

= (y− x)
(
q(x,y)u(y)+qy(x,y)v(y)

)
+ f (x)u(y)+q(x,y)v(y)

(6.1)

Under the mapping R[x,y]→ S[y], all of the polynomials above represent elements in S[y].
Consider the principal ideals A = (y− x), B = (q(x,y)) in S[y]. By (6.1), A and B are
comaximal in S[y]. By Exercise 1.1.25, A∩ B = AB. But in S[y] the equation f (y) =
(y− x)q(x,y) holds. The Chinese Remainder Theorem, Theorem 1.1.7, implies

(6.2)
S[y]

( f (y))
φ1⊕φ2−−−→ S[y]

(y− x)

⊕ S[y]
(q(x,y))

is an isomorphism. To interpret the map µ : S⊗R S→ S of Eq. (1.4), it is convenient to
write the generators of the three copies of S as x, y, and z. Then µ(x⊗1) = µ(1⊗ y) = z.
The diagram

S⊗R S
µ //

��

S

��
R[x]
( f (x)) ⊗R

R[y]
( f (y))

µ //

��

R[z]
( f (z))

��
S⊗R

R[y]
( f (y))

φ1 // S[y]
(y−x)

commutes, the vertical maps are isomorphisms. As we have already seen in (6.2), the
kernel of φ1 is idempotent generated. □
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6.1. Algebras over Local Rings. Given a local ring R with residue field k, Corol-
lary 5.6.3 shows that a separable finite simple field extension k(u)/k lifts to an extension of
local rings S/R where S is a commutative separable R-algebra that is generated by a prim-
itive element and as an R-module is finitely generated and faithfully flat. The proof given
below is from [53, Corollary 2.17]. See Section 11.5.2 for similar existence theorems in
the larger category of all faithfully flat local R-algebras S.

COROLLARY 5.6.3. Let R be a local ring with maximal ideal m and residue field k.
Let F be a finite dimensional commutative k-algebra such that dimk(F) = n. Assume F is
generated as a k-algebra by a primitive element u. Then there is a commutative faithful
R-algebra S satisfying the following.

(1) S is a free R-module of rank n.
(2) S is generated as an R-algebra by a primitive element a.
(3) S⊗R k is isomorphic to F.
(4) If F is a field, then S is a local ring and mS is the maximal ideal of S.
(5) If F/k is a separable extension, then S/R is separable.

PROOF. Let θ : k[x]→ F be defined by x 7→ u. Let f ∈ k[x] be the monic polynomial
that generates the kernel of θ . Since θ is onto, f has degree n. Lift f to a monic polynomial
g ∈ R[x]. Set S = R[x]/(g).

(1): This is Example 1.6.10 (2).
(2): Take a to be the image of x.
(3): This follows from S⊗R k = k[x]/( f ) = F .
(4): If F is a field, then by (3), it follows that mS is a maximal ideal of S. By Exer-

cise 2.2.8, S is a local ring.
(5): Under the map R[x]→ k[x], the ideal (g,g′) in R[x] restricts to the ideal ( f , f ′) in

k[x]. Since F/k is separable, Proposition 5.6.2 implies ( f , f ′) = k[x]. Since R[x]/(g,g′) is a
finitely generated R-module, Nakayama’s Lemma (Corollary 2.2.2) implies (g,g′) = R[x].
Proposition 5.6.2 implies S/R is separable. □

COROLLARY 5.6.4. Let θ : R→ S be a local homomorphism of local rings such that S
is a separable R-algebra and finitely generated as an R-module. Then S is a homomorphic
image of R[x]. That is, S is generated as an R-algebra by a primitive element a.

PROOF. Let m be the maximal ideal of R, and k the residue field. By Exercise 5.5.15,
mS is equal to the maximal ideal of S, and S/mS is a finite separable extension field of k.
By Theorem 5.5.8, S/mS = k(u) is a simple extension. Define φ : R[x]→ S by x 7→ a, where
a ∈ S is a preimage of u. Then R[x]⊗R k→ S⊗R k is onto, S is generated as an R-module
by im(φ) and mS, and Nakayama’s Lemma (Corollary 2.2.5) implies φ is onto. □

If the residue field of R is infinite, then Corollary 5.6.5, which is from [34, Lemma 3.1],
shows that it is not necessary to assume S is local.

COROLLARY 5.6.5. Let R be a local ring with infinite residue field k. If S is a separa-
ble R-algebra which is finitely generated as an R-module, then S is a homomorphic image
of R[x]. That is, S is generated as an R-algebra by a primitive element a.

PROOF. By Corollary 5.5.9, there is a monic separable polynomial f ∈ k[x] such that
gcd( f , f ′) = 1 and k[x]/( f )∼= S⊗R k. The rest of the proof is as in Corollary 5.6.4. □

6.2. Separability and the Trace. Let F/k be a finite dimensional separable extension
of fields. In Definition 1.8.5 the trace map T F

k : F→ k is defined and some of its important
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properties are derived in Lemma 1.8.6. In this section we generalize this definition. For
an extension of commutative rings S/R such that S is finitely generated and projective as
an R-module, we derive necessary and sufficient conditions in terms of the trace map for
S to be R-separable. Theorem 5.6.7, which is fundamental, and its proof are from [17,
Theorem 3.2.1].

DEFINITION 5.6.6. Let A be any R-algebra. Let M be a left A-module which as
an R-module is finitely generated and projective. Let x1, . . . ,xm ∈ M and f1, . . . , fm ∈
HomR(M,R) be a dual basis for the R-module M. Define T A,M

R : A→ R by the rule

T A,M
R (x) =

m

∑
i=1

fi(xxi).

The reader should verify that T A,M
R ∈ HomR(A,R). We call T A,M

R the trace from A to R
afforded by M. By Exercise 5.6.13, T A,M

R is independent of the choice of a dual basis for
M. When M = A, we simplify the notation and write T A

R . The reader should verify that
T R

R (x) = x for all x ∈ R.

THEOREM 5.6.7. Let S/R be an extension of commutative rings. Then S is finitely
generated as an R-module, projective, and separable over R if and only if there exists an
element T ∈ HomR(S,R) and elements x1, . . . ,xn, y1, . . . ,yn in S satisfying

(1)
n

∑
j=1

x jy j = 1, and

(2)
n

∑
j=1

x jT (y jx) = x for all x ∈ S.

Moreover, the map T is always equal to T S
R , the trace map from S to R.

PROOF. Assume S is a finitely generated R-module, projective, and separable over R.
Pick a dual basis {a1, . . . ,am}, { f1, . . . , fm} for the R-module S. The trace map from S to R
is given by

T S
R (x) =

m

∑
j=1

f j(xa j)

for all x ∈ S. Since S is a finitely generated, projective extension of R, by Theorem 2.3.23,
S⊗S is a finitely generated projective extension of S⊗1. A dual basis for S⊗S over S⊗1
is {1⊗a1, . . . ,1⊗am}, {1⊗ f1, . . . ,1⊗ fm} and the trace map from S⊗S to S⊗1 is equal
to T S⊗S

S⊗1 = 1⊗ T S
R . Since S is a separable extension of R, S⊗ S is a separable extension

of S⊗ 1, by Corollary 5.3.2. Let e be a separability idempotent for S over R. Under the
homomorphism µ of Proposition 5.1.2, (S⊗ 1)e ∼= S⊗ 1. By Proposition 5.1.2, as S⊗ S-
modules, we have S⊗ S ∼= JA/R⊕ (S⊗ 1)e ∼= JA/R⊕ (S⊗ 1). Exercise 5.6.14 allows us to
write the trace from S⊗S to S⊗1 as the sum

T S⊗S
S⊗1 = T

JA/R
S⊗1 +T S⊗1

S⊗1 ,

where T
JA/R

S⊗1 is the restriction of the trace map to JA/R and T S⊗1
S⊗1 is the restriction to (S⊗1)e.

To compute T S⊗1
S⊗1 , use the dual basis {e,σ} where σ : (S⊗1)e→ S⊗1 is the isomorphism

defined by σ(e) = 1. For any x ∈ S,

T S⊗S
S⊗1 ((x⊗1)e) = T

JA/R
S⊗1 ((x⊗1)e)+T S⊗1

S⊗1 ((x⊗1)e)

= T S⊗1
S⊗1 ((x⊗1)e)

= x⊗1.
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Now let x ∈ S and let e = ∑
n
j=1 x j⊗ y j. Then (1) follows from µ(e) = ∑

n
j=1 x jy j = 1 and

(2) follows from applying µ to both sides of

x⊗1 = T S⊗S
S⊗1 ((x⊗1) · e)

= T S⊗S
S⊗1 ((1⊗ x) · e)

=
(
1⊗T S

R
)( n

∑
j=1

x j⊗ y jx

)

=
n

∑
j=1

x j⊗T S
R (y jx).

Conversely, suppose we are given T ∈ HomR(S,R) and elements x1, . . . ,xn, y1, . . . ,yn
in S satisfying (1) and (2). The reader should verify that the assignment s 7→ T (y js) defines
an element T (y j·) in HomR(S,R). The set {x1, . . . ,xn}, {T (y1·), . . . ,T (yn·)} forms a dual
basis for S over R. Therefore S is a finitely generated, projective R-module. Define an
element in S⊗R S by e =∑

n
j=1 x j⊗y j. If µ is as in Proposition 5.1.2, µ(e) =∑

n
j=1 x jy j = 1.

For any x ∈ S,

(1⊗ x)e =
n

∑
j=1

x j⊗ y jx

=
n

∑
j=1

n

∑
i=1

x j⊗ xiT (yiy jx)

=
n

∑
i=1

n

∑
j=1

x jT (y jyix)⊗ xi

=
n

∑
i=1

xyi⊗ xi.

If x = 1, then we see e = ∑
n
j=1 x j⊗y j = ∑

n
i=1 yi⊗xi. It follows that (1⊗x)e = (x⊗1)e and

by Proposition 5.1.2, S is separable over R.
Lastly, the set {x1, . . . ,xn}, {T (y1·), . . . ,T (yn·)} is a dual basis for S over R, so by

Exercise 5.6.13,

T S
R (x) =

n

∑
j=1

T (y jxx j) = T (x
n

∑
j=1

x jy j) = T (x).

□

Assume S/R is an extension of commutative rings. As we saw in Example 1.1.13,
there is an R-algebra embedding λ : S→ HomR(S,S) given by α 7→ λα where λα is “left
multiplication by α”. Using Lemma 2.4.1, we turn HomR(S,R) into a right S-module. In
fact, for every f ∈ HomR(S,R) and α ∈ S, f α is defined to be f ◦λα .

COROLLARY 5.6.8. Let S/R be an extension of commutative rings such that S is a
finitely generated projective R-module. Then S is separable over R if and only if the trace
map T S

R from S to R is a free right S-module generator of HomR(S,R).

PROOF. Assume S/R is a separable extension of R which is a finitely generated pro-
jective R-module. Let x1, . . . ,xn, y1, . . . ,yn be elements in R guaranteed by Theorem 5.6.7.
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For any f ∈ HomR(S,R) and any x ∈ S

f (x) =
n

∑
j=1

f
(
x jT S

R (y jx)
)

=
n

∑
j=1

T S
R (y jx) f (x j)

= T S
R
( n

∑
j=1

y jx f (x j)
)
.

Let α = ∑
n
j=1 f (x j)y j. Then f (x) = T S

R (αx), for all x ∈ S, which shows that f = T S
R ◦ ℓα .

If T S
R α = 0 in HomR(S,R), then by Theorem 5.6.7(2),

0 =
n

∑
j=1

x jT S
R (y jα) = α.

This shows that the assignment α 7→ T S
R α induces an isomorphism of S-modules S ∼=

HomR(S,R).
Conversely suppose x1, . . . ,xm, f1, . . . , fm is a dual basis for S over R. Assuming T S

R
generates HomR(S,R) as an S-module, there exist y1, . . . ,ym in S such that f j = T S

R ◦ ℓy j .
We prove that (1) and (2) of Theorem 5.6.7 are satisfied. For any x ∈ S,

x =
m

∑
j=1

f j(x)x j =
m

∑
j=1

x jT S
R (y jx)

which is (2). For any z ∈ S

T S
R

((
1−

m

∑
j=1

x jy j
)
z
)
= T S

R (z)−T S
R

( m

∑
j=1

x jy jz
)

=
m

∑
j=1

f j(zx j)−T S
R

( m

∑
j=1

x jy jz
)

=
m

∑
j=1

T S
R (y jzx j)−T S

R

( m

∑
j=1

x jy jz
)

= T S
R

( m

∑
j=1

y jx jz
)
−T S

R

( m

∑
j=1

x jy jz
)

= 0.

Since T S
R is a free generator of HomR(S,R), we conclude that

m

∑
j=1

x jy j = 1 which is (1). □

COROLLARY 5.6.9. If S is a separable extension of R which is a finitely generated
projective R-module, and T S

R is the trace map from S to R, then there is an element c ∈ S
with T S

R (c) = 1. Moreover R · c is an R-module direct summand of S.

PROOF. By hypothesis, S is finitely generated projective and faithful as an R-module.
By Corollary 2.2.4, S is an R-progenerator module. There exist elements f1, . . . , fn in
HomR(S,R) and x1, . . . ,xn in S with 1 = ∑

n
j=1 f j(x j). By Corollary 5.6.8, for each j there

is a unique element a j ∈ S such that f j(x) = T S
R (a jx) for all x ∈ S. Set c = ∑

n
j=1 a jx j. Then

T S
R (c) = 1. The R-module homomorphism R→ S which is defined by 1 7→ c is split by the

trace map T S
R : S→ R. □
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6.3. Twisted Form of the trivial extension. Let R be a commutative ring and n≥ 1.
We write Rn for the direct sum R⊕·· ·⊕R. By Exercise 5.1.12, Rn is separable over R. We
call Rn the trivial commutative separable extension of R of rank n. An R-algebra S is said
to be a twisted form of Rn if there is a faithfully flat R-algebra T and an isomorphism of
T -algebras S⊗R T ∼= Rn⊗R T . Proposition 5.6.10 gives a criterion for separability in terms
of twisted forms of Rn. The proof given below is based on [53, Proposition 2.18].

PROPOSITION 5.6.10. Let S be a commutative R-algebra. The following are equiva-
lent.

(1) S is a separable R-algebra and an R-module progenerator of constant rank n.
(2) There is a commutative separable R-algebra T which is an R-module progener-

ator of constant rank n! and S⊗R T ∼= T n as T -algebras.
(3) There is a faithfully flat R-algebra T such that S⊗R T ∼= T n as T -algebras.

PROOF. (1) implies (2): Let e ∈ S⊗R S be a separability idempotent. Then S⊗R S =
(S⊗R S)e⊕ (S⊗R S)(1− e) and (S⊗R S)e ∼= S. Using Exercise 5.4.10 one can check that
(S⊗R S)(1−e) is separable over S and is an S-module progenerator of constant rank n−1.
By Proposition 3.4.6, S⊗R S is an S-module progenerator of rank n−1. If n = 1, then we
take T = S. Otherwise, inductively, there is a commutative separable S-algebra T which
is an S-module progenerator of rank (n−1)! such that (S⊗R S)(1− e)⊗S T ∼= T n−1. The
reader should verify that T is a separable R-algebra, an R-module progenerator of rank n!,
and S⊗R T ∼= T n.

(2) implies (3): By Proposition 3.5.6, T is faithfully flat.
(3) implies (1): We are given that T is faithfully flat over R and S⊗R T ∼= T n. Using this

and Lemma 3.5.12, the reader should verify that S is an R-module which is a progenerator
of constant rank n. A projective dual basis for S over R gives rise to a dual basis for
S⊗R T , so the trace T S⊗RT

T is T S
R ⊗ 1. By Proposition 3.5.9, we see that T S

R ⊗ 1 is a free
right S⊗R T -module generator of HomR(S,R)⊗R T . Using the fact that T is faithfully flat
over R, the reader should verify that T S

R is a free right S-module generator for HomR(S,R).
Corollary 5.6.8 implies S is separable over R. □

6.4. The Trivial Galois Extension of a Field. In this section we derive some results
on separable field extensions that will be used in the proof of Dirichlet’s Unit Theorem,
Section 12.8.2.

EXAMPLE 5.6.11. Let R be a commutative ring and G a finite group of order n = [G :
1]. As in Section 5.6.3, let S =

⊕
σ∈G Reσ be the trivial commutative separable extension

of R of rank n. For τ ∈ G, let λτ : G→ G be “left multiplication by τ”. Using λ we
make S into a left ZG-module. The G-action is defined on the basis {eσ | σ ∈ G} by
λτ(eσ ) = eτσ . Denote by Sλ the R-algebra S with the left ZG-module defined using λ .
Following [19, Example 12.2.5], we call Sλ the trivial, or split, G-Galois extension of R.
Now let ρτ : G→ G be “right multiplication by τ−1”. Using ρ we define another ZG-
module structure on S. This G-action is defined on the basis {eσ | σ ∈ G} by the rule
ρτ(eσ ) = eστ−1 . Denote by Sρ the R-algebra S with the left ZG-module defined using
ρ . The two ZG-actions we have just defined on the R-algebra S are isomorphic. To see
this, define h : Sλ → Sρ on the basis {eσ | σ ∈ G} by h(eσ ) = eσ−1 . For τ ∈ G we have
h(λτ eσ ) = h(eτσ ) = eσ−1τ−1 which is equal to ρτ h(eσ ) = ρτ eσ−1 = eσ−1τ−1 . Although it
is not required for our purposes here, the interested reader is referred to Chapter 12 of [19]
for an introduction to Galois Theory of commutative rings.
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Now we establish some notation that will be in effect for the remainder of this section.
Let F/k be a Galois extension of fields with finite group G = Autk(F) of order n = [G : 1].
By Theorem 5.5.8, there exists a separable element u ∈ F such that F = k(u). Let f =
Irr.polyk(u) be the irreducible polynomial for u over k. Let k̄ be any splitting field for f
containing k. In Proposition 5.6.12 we show that F⊗k k̄ is a trivial G-Galois extension of
k̄. The rings defined so far make up the following commutative diagram. Each arrow is a
one-to-one homomorphism of rings.

F⊗k k̄ = k̄[x]
( f )

F = k(u) = k[x]
( f )

φ

88

k̄

OO

k

77
OO

PROPOSITION 5.6.12. Let F/k be a Galois extension of fields with finite group G =
Autk(F). Suppose F = k(u), f = Irr.polyk(u) and k̄ is a splitting field for f containing k.
Then F⊗k k̄ is a trivial G-Galois extension of k̄.

PROOF. We know from Exercise 1.8.11 that in the polynomial ring k̄[x], the poly-
nomial f has the splitting f = ∏σ∈G(x− σ(u)). By the Chinese Remainder Theorem,
Theorem 1.1.7,

(6.3) F⊗k k̄ =
k̄[x]
( f )

=
⊕
σ∈G

k̄[x]
(x−σ(u))

=
⊕
σ∈G

k̄eσ

where {eσ | σ ∈G} are the idempotents in F⊗k k̄ corresponding to the direct sum decom-
position. For each σ ∈ G, the projection map πσ :

⊕
σ∈G k̄eσ → k̄eσ is a ring homomor-

phism. The ring homomorphism

φ : F → F⊗k k̄ =
⊕
σ∈G

k̄eσ

is one-to-one and

(6.4) φ(u) = ∑
σ∈G

σ(u)eσ .



6. COMMUTATIVE SEPARABLE ALGEBRAS 229

Let α ∈ F be an arbitrary element of F . If n = [G : 1], there are unique a0, . . . ,an−1 in k
such that α = ∑

n−1
i=0 aiui. Hence

φ(α) =
n−1

∑
i=0

ai(φ(u))i

=
n−1

∑
i=0

ai

(
∑

σ∈G
σ(u)eσ

)i

=
n−1

∑
i=0

(
∑

σ∈G
ai(σ(u))ieσ

)

= ∑
σ∈G

(
n−1

∑
i=0

ai(σ(u))i

)
eσ

= ∑
σ∈G

σ(α)eσ .

(6.5)

For each τ ∈ G, the diagram

F

φ

��

τ // F

φ

��
F⊗k k̄

τ⊗1 // F⊗k k̄

commutes and τ⊗1 is a k̄-algebra automorphism. Therefore the G-action on F extends to
a G-action on F⊗k k̄. Notice that

φ(τ(u)) = ∑
σ∈G

σ(τ(u))eσ

= ∑
γ∈G

γ(u)eγτ−1 .
(6.6)

Let ρτ : F⊗k k̄→ F⊗k k̄ be the “left multiplication by τ⊗1” homomorphism. Comparing
(6.4) and (6.6) we see that the G-action on the ring

⊕
σ∈G k̄eσ is defined on the basis

{eσ | σ ∈ G} by the rule ρτ(eσ ) = eστ−1 . By Example 5.6.11, this shows that F ⊗k k̄
together with the G-action inherited from F is isomorphic to the trivial G-Galois extension
of k̄. □

From (6.5) we see that the composite map φσ = πσ φ is one-to-one and factors through
σ : F → F . The diagram

F

σ

��

φσ // k̄eσ

F
⊆ // k̄

∼=

OO

commutes.

6.5. Exercises.

EXERCISE 5.6.13. In Definition 5.6.6 the trace map from A to R afforded by M, T A,M
R ,

was defined using a dual basis for M. Prove that the function T A,M
R is independent of the

choice of dual basis for M.
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EXERCISE 5.6.14. Let A be an R-algebra and M a left A-module which is a finitely
generated projective R-module. If M = M1⊕M2 as A-modules, prove that

T A,M
R = T A,M1

R +T A,M2
R .

EXERCISE 5.6.15. Let A be an R-algebra which is finitely generated and free as an
R-module. Show that the trace mapping T S

R defined in Exercise 1.7.26 is equal to the trace
mapping defined in Definition 5.6.6.

EXERCISE 5.6.16. Let k be a field and A a finite dimensional k-algebra. Suppose
α ∈ A and min.polyk(α) = xm +am−1xm−1 + · · ·+a1 +a0 is irreducible in k[x]. Prove that
T A

k (α) = ram−1 for some integer r.

EXERCISE 5.6.17. Let S be a commutative faithful R-algebra which is a finitely gen-
erated free R-module of rank n. Let λ1, . . . ,λn be a free basis for S over R. For each i, let
πi ∈ HomR(S,R) be the projection onto the coefficient of λi.

(1) The trace map is given by T S
R (z) = ∑

n
i=1 πi(zλi).

(2) The following are equivalent.
(a) S is separable over R.
(b) There exist µ1, . . . ,µn in S such that T S

R ·µi = πi.
(3) If S/R is separable, then the elements µ1, . . . ,µn appearing in (2) make up a free

R-basis for S and T S
R (µiλ j) = δi j (Kronecker’s delta).

EXERCISE 5.6.18. Let R be a commutative ring and P a finitely generated projective
R-module. By Lemma 2.8.1, θR : P∗⊗R P→HomR(P,P) is an isomorphism of R-modules,
where θR( f ⊗ p)(x) = f (x)p.

(1) Define T : P∗ ⊗R P → R by T ( f ⊗ p) = f (p). Show that T is an R-module
homomorphism.

(2) Assume P is free and finitely generated. Show that the map T induces a map
T : HomR(P,P)→ R which is equal to the trace map of Exercise 1.7.26 and the
trace map of Definition 5.6.6.

EXERCISE 5.6.19. Let S be a commutative faithful R-algebra which is finitely gener-
ated and projective as an R-module. Let A be a faithful S-algebra which is finitely generated
and projective as an S-module. Prove the following generalization of Exercise 1.7.28 (1):
For every a ∈ A, T A

R (a) = T S
R
(
T A

S (a)
)
.

EXERCISE 5.6.20. Let R be a connected commutative ring and S a commutative sep-
arable R-algebra that as an R-module is a progenerator of rank n. Then there exists a
commutative R-algebra T that satisfies:

(1) T is connected.
(2) T is separable over R.
(3) T is an R-module progenerator.
(4) S⊗R T ∼= T n.

(Hints: Start with the algebra T constructed in Proposition 5.6.10. By Exercise 3.4.15,
SpecT has only finitely many connected components. Show that T can be replaced with
one of its connected components.)

EXERCISE 5.6.21. This exercise generalizes Exercises 5.4.15 (5) and 5.4.16 (2). Let
n≥ 2 be an integer and R a commutative ring. Prove the following for S = R[x]/(xn−a).

(1) S is free of rank n as an R-module with basis 1,x, . . . ,xn−1.
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(2) If na is a unit of R, then x is a unit of S and S is a separable R-algebra. (Hint:
e = 1

n ∑
n−1
i=0 xi⊗ x−i is a separability idempotent.)

(3) If n is not a unit of R, then S is not separable over R.
(4) If a is not a unit of R, then S is not separable over R.





CHAPTER 6

The Integral Closure of a Commutative Ring

If A is an algebra over a field k, then an element α ∈ A is said to be algebraic over k
if there exists a nonzero polynomial p(x) ∈ k[x] such that p(α) = 0. If α is algebraic over
k, then the minimal polynomial of α is the monic polynomial p(x) of minimal degree such
that p(α)= 0. If A is an R-algebra, where R is a commutative ring, then this chapter focuses
on those algebraic elements α ∈ A such that α is the root of a monic polynomial p(x) ∈
R[x]. In this case, we say α is integral over R. We say A is an integral R-algebra if every α ∈
A is integral over R. Because we do not assume R is a field, elements of A that are algebraic
over R are not necessarily integral over R. For example, Q is algebraic over Z, but if α ∈Q
and α is integral over Z, then α ∈ Z. We say Z is integrally closed in Q. In Section 6.1 we
prove that the integral closure of R in A exists. A highlight of this section is Theorem 6.1.13
which gives sufficient conditions such that the integral closure of an integral domain R in
a finite extension of its quotient field is a finitely generated R-module. In Section 6.2
we prove that a polynomial ring over a commutative noetherian ring R is a noetherian
ring. Since the homomorphic image of a noetherian ring is noetherian, this implies that
a commutative ring S is noetherian if and only if there is a commutative noetherian ring
R such that S is a finitely generated R-algebra. This is the Hilbert Basis Theorem. We
prove Hilbert’s Nullstellensatz, in two forms. It says that if k is an algebraically closed
field and p(x1, . . . ,xn) is a polynomial of positive degree in k[x1, . . . ,xn], then there exists a
(α1, . . . ,αn) ∈ kn such that p(α1, . . . ,αn) = 0. In other words, over an algebraically closed
field, p(x1, . . . ,xn) has a nontrivial set of zeros. In Section 6.3 there is a proof of the so-
called Going Up and Going Down Theorems. These important theorems are concerned
with the correspondence between the prime ideals in a commutative ring R and prime
ideals in a commutative integral extension S of R.

1. Integral Extensions

1.1. Integral elements. Let R be a commutative ring and A an R-algebra. An element
a ∈ A is said to be integral over R in case there exists a monic polynomial p ∈ R[x] such
that p(a) = 0. If every element of A is integral over R, then we say A is integral over
R. The reader should verify that any homomorphic image of R is integral over R. The
R-algebra A comes with a structure homomorphism θ : R→ Z(A). Assume θ is one-to-
one, or equivalently, A is a faithful R-module. Then we identify R with θ(R) which is a
subring of A. In this case, if every element of A is integral over R, we say A/R is an integral
extension. If no element of A−R is integral over R, then we say R is integrally closed in A.

If A is an R-algebra which is R-faithful, and a ∈ A, then the R-subalgebra of A gen-
erated by a is denoted R[a]. Since R ⊆ Z(A), R[a] is commutative, and the substitution
homomorphism R[x]→ A defined by x 7→ a is an R-algebra homomorphism with image
R[a].

233
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EXAMPLE 6.1.1. Let R be a commutative ring. Let A = Mn(R), the ring of n-by-
n matrices over R. Let M ∈ Mn(R) and let p(x) = char.polyM(x) be the characteristic
polynomial of M. Then p(x) is a monic polynomial of degree n in R[x]. By Cayley-
Hamilton (Theorem 1.7.7) we know p(M) = 0. This shows A is integral over R.

In Proposition 6.1.2 we derive some useful necessary and sufficient conditions for an
element to be integral.

PROPOSITION 6.1.2. Let A be a faithful R-algebra, and a ∈ A. The following are
equivalent.

(1) a is integral over R.
(2) R[a] is a finitely generated R-module.
(3) There is an R-subalgebra B of A such that R[a] ⊆ B ⊆ A and B is a finitely gen-

erated R-module.
(4) There exists a faithful R[a]-module which is finitely generated as an R-module.

PROOF. (1) implies (2): Since a is integral over R, there exist elements r0,r1, . . . ,rn−1
in R such that an = r0 + r1a+ · · ·+ rn−1an−1. Let B be the R-submodule of R[a] generated
by 1,a,a2, . . . ,an−1. Then we have shown that an ∈ B. Inductively assume k > 0 and that
ai ∈ B for all i such that 0 ≤ i ≤ n+ k− 1. It follows that an+k = r0ak + r1ak+1 + · · ·+
rn−1an+k−1 is also in B, hence B = R[a].

(2) implies (3): For B take R[a].
(3) implies (4): Since B contains R[a] as a subring, B is a faithful R[a]-module.
(4) implies (1): Let M be a faithful R[a]-module. There are ring homomorphisms

R[a] α−→ HomR[a](M,M)
β−→ HomR(M,M)

where α is the left regular representation of Example 1.1.13. Since M is faithful, α is one-
to-one. Since R[a] is an R-algebra, β is one-to-one. If u ∈ R[a], then by Exercise 1.7.29,
βα(u) satisfies a monic polynomial p ∈ R[x]. Therefore, every u ∈ R[a] is integral over
R. □

If R is a subring of a commutative ring A, then Theorem 6.1.3 shows the existence of
the integral closure of R in A.

THEOREM 6.1.3. Let A be a commutative faithful R-algebra.
(1) If a1, . . . ,an ∈ A are integral over R, then R[a1, . . . ,an] is a finitely generated

R-module.
(2) Let S be the set of all a ∈ A such that a is integral over R. Then S is an R-

subalgebra of A. We say that S is the integral closure of R in A.
(3) (Integral over Integral is Integral) Let R ⊆ S ⊆ A be three rings such that A is

integral over S and S is integral over R. Then A is integral over R.
(4) Let S be the integral closure of R in A. Then S is integrally closed in A.

PROOF. (1): By Proposition 6.1.2 (2), R[a1] is a finitely generated R-module. Set
S = R[a1, . . . ,an−1]. Then an is integral over S, so S[an] is a finitely generated S-module.
Inductively assume S is a finitely generated R-module. By Proposition 2.1.13, S[an] =
R[a1, . . . ,an] is a finitely generated R-module.

(2): Given x,y ∈ S, by Part (1) it follows that R[x,y] is a finitely generated R-module
of A. By Proposition 6.1.2, S contains x+ y, x− y, xy. Since R⊆ S, S is an R-algebra.

(3): Let a ∈ A and p ∈ S[x] a monic polynomial such that p(a) = 0. Suppose p =
s0 + s1x+ · · ·+ sn−1xn−1 + xn. Set T = R[s0, . . . ,sn−1]. Then T is a finitely generated R-
module and p ∈ T [x], so a is integral over T . It follows that T [a] is finitely generated
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over T . By Proposition 2.1.13, T [a] = R[s0, . . . ,sn−1,a] is a finitely generated R-module.
Therefore a is integral over R.

(4): By the proof of Part (3), if a ∈ A is integral over S, then a is integral over R. □

If A is an integral R-algebra, then in Lemma 6.1.4 we derive useful necessary and
sufficient conditions for A to be a division ring.

LEMMA 6.1.4. Let A be a faithful integral R-algebra.
(1) If x ∈ R− (0), then x is invertible in A if and only if x is invertible in R.
(2) If A is a division ring, then R is a field.
(3) If R is a field and A has no zero divisors, then A is a division ring.

PROOF. (1): Assume x ∈ R− (0) and x−1 ∈ A. Then x−1 is integral over R. There
exist n≥ 1 and ri ∈ R such that

x−n + rn−1x1−n + · · ·+ r1x−1 + r0 = 0.

Multiply by xn−1 and get

x−1 + rn−1 + rn−2x+ · · ·+ r1xn−2 + r0xn−1 = 0

which shows x−1 ∈ R. We identify R with a subring of A, so the converse is obvious.
(2): This follows straight from (1).
(3): This follows from Exercise 1.8.14. □

1.2. Integrally Closed Domains. If R is an integral domain with quotient field K,
then we say R is integrally closed if R is integrally closed in K.

PROPOSITION 6.1.5. If R is a unique factorization domain (UFD) with quotient field
K, then R is integrally closed in K.

PROOF. Let n/d ∈ K where n,d ∈ R and we assume gcd(n,d) = 1. Suppose p(x) =
xm + rm−1xm−1 + · · ·+ r1x+ r0 is a monic polynomial in R[x] and p(n/d) = 0. It follows
from the Rational Root Theorem (for example, see [20, Theorem 3.7.1]) that d is a unit of
R. That is, n/d ∈ R. □

EXAMPLE 6.1.6. Applying Proposition 6.1.5, we list some examples.
(1) The ring of integers Z is integrally closed in Q.
(2) If k is a field, then the ring of polynomials k[x] is integrally closed.
(3) If R is a UFD, then the polynomial ring R[x1, . . . ,xn] is integrally closed.
(4) If D is a square free integer and D≡ 1 (mod 4), then the ring Z[

√
D] is an inte-

gral domain that is not integrally closed. (See [20, Example 3.7.9], for example.)

In Lemma 6.1.7 and Corollary 6.1.8 we see that the property of being integrally closed
is preserved by localization.

LEMMA 6.1.7. Suppose R ⊆ T is an extension of commutative rings and S is the
integral closure of R in T . If W is a multiplicative set in R, then SW is the integral closure
of RW in TW .

PROOF. By Exercise 6.1.14, SW = RW ⊗R S is integral over RW . Suppose t/w ∈ TW is
integral over RW . Let ( t

w

)n
+

rn−1

wn−1

( t
w

)n−1
+ . . .

r1

w1

t
w
+

r0

w0
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be an integral dependence relation where each ri ∈ R and wi ∈W . Let d = w0 . . .wn−1
and multiply through by (dw)n to get an integral dependence relation for dt over R. Then
dt ∈ S, so t/w = (dt)/(dw) ∈ SW . □

COROLLARY 6.1.8. Let R be an integral domain with quotient field K.

(1) If Λ is a commutative K-algebra, and S is the integral closure of R in Λ, then the
image of the natural map K⊗R S→ Λ is equal to the integral closure of K in Λ.

(2) If L/K is a finite dimensional extension of fields and S is the integral closure of
R in L, then L is equal to the quotient field of S.

PROOF. (1): Apply Lemma 6.1.7 with T = Λ and multiplicative set W = R− (0). By
Lemma 3.1.4 (6), SW is isomorphic to K⊗R S. Part (2) is a special case of Part (1). □

Proposition 6.1.9 shows that an integral domain is integrally closed if and only if it is
integrally closed when localized at each prime ideal.

PROPOSITION 6.1.9. Let R be an integral domain with quotient field K. The following
are equivalent.

(1) R is integrally closed in K.
(2) For each P ∈ SpecR, RP is integrally closed in K.
(3) For each P ∈MaxR, RP is integrally closed in K.

PROOF. Let S be the integral closure of R in K. Then R is integrally closed if and only
if R→ S is onto. By Lemma 6.1.7, SP is the integral closure of RP in K for each P∈ SpecR.
The rest follows from Exercise 3.5.16. □

If R is a UFD with quotient field K , then a primitive polynomial f ∈ R[x] is irreducible
in R[x] if and only if f is irreducible in K[x]. This is usually called Gauss’ Lemma (see, for
example, [20, Theorem 3.7.4]). Lemma 6.1.10 is a generalization to the case where R is an
integral domain that is integrally closed in its quotient field.

LEMMA 6.1.10. (Gauss’ Lemma) Let R be an integrally closed integral domain with
quotient field K. Let f ∈ R[x] be a monic polynomial, and suppose there is a factorization
f = gh, where g,h are monic polynomials in K[x]. Then both g and h are in R[x].

PROOF. By Proposition 1.8.1, let L/K be an extension of fields such that L is a split-
ting field for f over K. By Theorem 6.1.3 (2), let S be the integral closure of R in L. Since
f splits in L[x], so does g. Write g = ∏(x−αi). Each αi is a root of f , hence is integral
over R, hence lies in S. This shows that every coefficient of g is in S. So each coefficient
of g is in S∩K which is equal to R since R is integrally closed in K. So g ∈ R[x]. The same
argument applies to h. □

The rest of this section consists of three important applications of Gauss’ Lemma.

THEOREM 6.1.11. Let R be an integrally closed integral domain with quotient field
K. Let A be a finite dimensional K-algebra. An element α ∈ A is integral over R if and
only if min.polyK(α) ∈ R[x].

PROOF. Let f =min.polyK(α)∈K[x]. Assume α is integral over R. Then there exists
a monic polynomial g ∈ R[x] such that g(α) = 0. In this case, f divides g in K[x]. There
is a factorization g = f h for some monic polynomial h ∈ K[x]. By Gauss’ Lemma 6.1.10,
both f and h lie in R[x]. □
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COROLLARY 6.1.12. Let R be an integral domain which is integrally closed in its
quotient field K. Let L/K be a finite separable field extension and let S be the integral
closure of R in L. Then the trace and norm functions from L to K restrict to trace and norm
functions from S to R. That is, T L

K : S→ R, and NL
K : S→ R.

PROOF. Let α ∈ S and f =min.polyK(α). By Theorem 6.1.11, we know that f ∈R[x].
By Lemma 1.8.4 (3), the characteristic polynomial of ℓα : L→ L is a power of f . Since
T L

K (α) and NL
K(α) are coefficients of char.polyK(ℓα), they are elements of R. □

Theorem 6.1.13 is motivated by an important finiteness question. Start with an in-
tegrally closed integral domain R with quotient field K, let L/K be a finite dimensional
extension of fields, and let S be the integral closure of R in L. We ask whether S is finitely
generated as an R-module or not. This important theorem shows that the answer is yes, if
L/K is separable and if R is noetherian. Our proof is based on [4, Theorem 5.17].

THEOREM 6.1.13. Let R be an integral domain which is integrally closed in its quo-
tient field K. Let L/K be a finite separable field extension and let S be the integral
closure of R in L. There exist bases {λ1, . . . ,λn} and {µ1, . . . ,µn} for L/K such that
Rλ1 + · · ·+Rλn ⊆ S ⊆ Rµ1 + · · ·+Rµn. If R is noetherian, then S is a finitely generated
R-module.

PROOF. Every λ ∈ L is algebraic over K. There is an equation rmλ m+ · · ·+r1λ +r0 =
0, where each ri is in R. Multiply by rm−1

m to get (rmλ )m+ · · ·+r1rm−2
m (rmλ )+r0rm−1

m = 0.
This shows that rmλ is integral over R, hence is in S. There exists a basis λ1, . . . ,λn for L/K
such that each λi is in S. By Lemma 1.8.6 (3), there is a K-basis µ1, . . . ,µn for L such that
T L

K (µiλ j) = δi j (the Kronecker delta function). Let s be an arbitrary element of S. View s
as an element of L and write s = α1µ1 + · · ·+αnµn, where each αi ∈ K. Since λi ∈ S, we
have sλi ∈ S. By Corollary 6.1.12, T L

K (sλi) ∈ R. Then

T L
K (sλi) = T L

K

( n

∑
j=1

α jλiµ j

)
=

n

∑
j=1

T L
K (α jλiµ j) =

n

∑
j=1

α jT L
K (λiµ j) = αi

shows that each αi is in R. It follows that S ⊆ Rµ1 + · · ·+Rµn. If R is noetherian, then by
Corollary 4.1.12, S is a finitely generated R-module. □

In the terminology of Definition 12.1.2, Theorem 6.1.13 says that if L/K is a finite
separable extension, then S is an R-lattice in L. When R is a finitely generated algebra over
a field, see Theorem 10.3.11 for a stronger version of Theorem 6.1.13.

1.3. Exercises.

EXERCISE 6.1.14. Let A be an integral R-algebra and S a commutative R-algebra.
Show that S⊗R A is an integral S-algebra.

EXERCISE 6.1.15. Let A be an integral faithful R-algebra and I a two-sided ideal in
A. Show that A/I is an integral R/(I∩R)-algebra.

EXERCISE 6.1.16. Let R be a commutative ring and A = R[x] the polynomial ring in
one variable over R. Show that R is integrally closed in A if and only if RadR(0) = (0).

EXERCISE 6.1.17. Let S be a commutative faithfully flat R-algebra. Prove:
(1) If S is an integral domain, then R is an integral domain.
(2) If S is an integrally closed integral domain, then R is an integrally closed integral

domain. (Hint: If K is the quotient field of R, show that S is integrally closed in
S⊗R K.)
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(3) If S has the property that SQ is an integrally closed integral domain for each
Q∈ SpecS, then R has the property that RP is an integrally closed integral domain
for each P ∈ SpecR. In the terminology of Definition 11.1.4, this says if S is a
normal ring, then R is a normal ring.

EXERCISE 6.1.18. Let R be a commutative ring and A an R-algebra which is integral
over R. Show that A = lim−→Aα where Aα runs over the set of all R-subalgebras of A such
that Aα is finitely generated as an R-module.

EXERCISE 6.1.19. Let S be a commutative faithful integral R-algebra. Assume R is
an integral domain with quotient field K and S is an integral domain with quotient field L.
By Exercise 3.1.25, L can be viewed as a field extension of K. Prove that L is algebraic
over K.

EXERCISE 6.1.20. Let k be a field and A = k[x] the polynomial ring over k in one
variable. Let R = k[x2,x3] be the k-subalgebra of A generated by x2 and x3. We know from
Exercise 3.6.16 that A is a finitely generated R-module and R and A have the same quotient
field, namely K = k(x). Show that A is equal to the integral closure of R in K.

EXERCISE 6.1.21. This exercise is a generalization of Exercise 6.1.20. Let k be a
field, x an indeterminate, and n > 1 an integer. Let T = k[x], S = k[xn,xn+1], and R = k[xn].
For the tower of rings: R⊆ S⊆ T , prove the following.

(1) T is a finitely generated R-module.
(2) T and S have the same quotient field, namely K = k(x).
(3) T is equal to the integral closure of S in K.
(4) T is not a separable R-algebra.
(5) S is not a separable R-algebra.
(6) T is not a separable S-algebra.

EXERCISE 6.1.22. Let k be a field and A = k[x] the polynomial ring over k in one
variable. Let R = k[x2−1,x3− x] be the k-subalgebra of A generated by x2−1 and x3− x.
We know from Exercise 3.6.18 that R and A have the same quotient field, namely K = k(x).
Show that A is equal to the integral closure of R in K. For a continuation of this example,
see Section 12.4.2.

2. Some Theorems of Hilbert

In this section we prove the Hilbert Basis Theorem, Theorem 6.2.1 as well as the
two classical versions of Hilbert’s Nullstellensatz. Corollary 6.2.4 is commonly called the
Weak Form of the Nullstellensatz while Theorem 6.2.9 is essentially the theorem that was
originally proved by Hilbert. The Basis Theorem states sufficient conditions for a commu-
tative ring to be noetherian. The two forms of the Nullstellensatz are logically equivalent
and state that if k is an algebraically closed field, A = k[x1, . . . ,xn] the polynomial ring in n
variables, and f1, . . . , fm a set of polynomials in A, then the system of m polynomial equa-
tions f1 = 0, . . . , fm = 0 in n variables has a solution if and only if the ideal generated by
f1, . . . , fm in A is not the unit ideal.

2.1. The Hilbert Basis Theorem. To show that a commutative ring S is noetherian,
by Theorem 6.2.1, it is sufficient to show that S is a finitely generated algebra over a
noetherian ring R.

THEOREM 6.2.1. (Hilbert Basis Theorem) Let R be a commutative noetherian ring.
(1) The polynomial ring R[x] in the variable x over R is a noetherian ring.
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(2) The polynomial ring R[x1, . . . ,xn] over R in n variables is a noetherian ring.
(3) If R is a commutative noetherian ring and S is a finitely generated commutative

R-algebra, then S is noetherian.

PROOF. (1): By Corollary 4.1.7, it is enough to show every ideal of R[x] is finitely
generated. Let J be an ideal in R[x]. Let I be the set of all r ∈ R such that r is the leading
coefficient for some polynomial f ∈ J. Then I is an ideal in R, hence is finitely generated,
so we can write I = Ra1 + · · ·+Ram. For each ai there is some fi ∈ J such that ai is the
leading coefficient of fi. Let di = deg fi and let d be the maximum of {d1, . . . ,dm}. If J′

denotes the ideal of R[x] generated by f1, . . . , fm, then J′ ⊆ J. By Corollary 4.1.12 and
Corollary 4.1.10 it is enough to prove J/J′ is finitely generated. We prove that J/J′ is
finitely generated over R, which is a stronger statement.

Consider a typical polynomial p in J. Assume p has degree ν ≥ d and leading coeffi-
cient r. Since r ∈ I, write r = u1a1 + · · ·+umam. Then q = u1 f1xν−d1 + · · ·+um fmxν−dm is
in J′, has degree ν , and leading coefficient r. The polynomial p−q is in J and has degree
less than ν . By iterating this argument a finite number of steps, we can show that p is
congruent modulo J′ to a polynomial of degree less than d. If L is the R-submodule of R[x]
generated by 1,x, . . . ,xd−1, then we have shown that J/J′ is generated over R by images
from the set J∩L. But J∩L is an R-submodule of L, hence is finitely generated over R, by
Corollary 4.1.12.

(2): This follows from (1), by induction on n.
(3): For some n, S is the homomorphic image of the polynomial ring R[x1, . . . ,xn] in n

variables over R. It follows from (2) and Corollary 4.1.13 (1) that S is noetherian. □

Hilbert’s Nullstellensatz is a corollary to the following two propositions. Proposi-
tion 6.2.2 is due to Emil Artin and John Tate, [2].

PROPOSITION 6.2.2. Let A ⊆ B ⊆C be a tower of commutative rings and assume A
and B are subrings of C. Suppose

(1) A is noetherian,
(2) C is finitely generated as an A-algebra,
(3) and either

(a) C is finitely generated as a B-module, or
(b) C is integral over B.

Then B is finitely generated as an A-algebra.

PROOF. Assume (1), (2) and (3) (b) are all satisfied. Suppose C = A[x1, . . . ,xm]. In
this case, we also have C = B[x1, . . . ,xm] and x1, . . . ,xm are integral over B. By The-
orem 6.1.3 (1), C is finitely generated as a B-module, so (3)(a) is also satisfied. Let
C = By1 +by2 + · · ·+Byn. Each xi and each product yiy j is in C, so we can write

xi =
n

∑
j=1

bi jy j

yiy j =
n

∑
k=1

bi jkyk

(2.1)

for certain bi j ∈ B and bi jk ∈ B. Let B0 be the A-subalgebra of B generated by all of the bi j
and bi jk. By Theorem 6.2.1 (3), we know that B0 is noetherian. Let c = p(x1, . . . ,xm) be an
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arbitrary element in A[x1, . . . ,xm] =C. Using (2.1), the reader should verify that

c = p(
n

∑
j=1

b1 jy j,
n

∑
j=1

b2 jy j, . . .)

is in B0y1 + B0y2 + · · ·+ B0yn. Therefore C is finitely generated as a B0-module. By
Corollary 4.1.12, B is finitely generated as a B0-module. Since B0 is finitely generated as
an A-algebra, it follows that B is finitely generated as an A-algebra. □

PROPOSITION 6.2.3. Let F/k be an extension of fields. The following are equivalent.
(1) F is finitely generated as a k-algebra.
(2) F is finitely generated and algebraic as an extension field of k.
(3) dimk(F)< ∞.

PROOF. For a proof that (2) is equivalent to (3), see [20, Proposition 5.1.10], for
example. For (2) implies (1), see [20, Theorem 5.1.4], for example. To prove that (1)
implies (2) we use a proof by contradiction. By (1) we can write F = k[x1, . . . ,xn]. Since F
is an extension field of k, this implies F = k(x1, . . . ,xn). For contradiction’s sake, assume
not all of x1, . . . ,xn are algebraic over k. By Theorem 1.8.8, we can re-order and assume
for some 1 ≤ r ≤ n that {x1, . . . ,xr} is a transcendence base for F over k. Then F =
k(x1, . . . ,xr)[xr+1, . . . ,xn] is algebraic over the field K = k(x1, . . . ,xr) and K is isomorphic
to the field of rational functions over k in r variables. That is, K is the quotient field of
the polynomial ring k[x1, . . . ,xr]. Applying Proposition 6.2.2 to the tower of rings k ⊆
K ⊆ F , we conclude that K is finitely generated as a k-algebra. Write K = k[y1, . . . ,ys].
Viewing each yi as a rational function in k(x1, . . . ,xr), there exist polynomials fi,gi in
k[x1, . . . ,xr] such that yi = fi/gi. Set g = g1g2 · · ·gs. Without loss of generality assume
degg ≥ 1 and let h be any irreducible factor of g+ 1. Therefore, gcd(h,g) = 1. Consider
the element h−1 as an element of the field K = k[y1, . . . ,ys] = k[ f1/g1, . . . , fs/gs]. Then
h−1 = p( f1/g1, . . . , fs/gs) where p is a polynomial in s variables with coefficients in k. The
denominators involve only the polynomials g1, . . . ,gs. For some positive integer N, we get
an equation of polynomials gN = h f where f ∈ k[x1, . . . ,xr]. This is a contradiction. □

Historically, Hilbert’s Nullstellensatz, Theorem 6.2.9, was proved first and used to
prove Corollary 6.2.4. For this reason Corollary 6.2.4 is called the Weak Form of the
Nullstellensatz. This name is a misnomer because the two are logically equivalent. The
line of proof we use here is due to O. Zariski who in the article [61] proved a version of
Proposition 6.2.3 and applied it to prove Corollary 6.2.4. The Weak Nullstellensatz will be
applied below in the proof of the Nullstellensatz. In Exercise 6.2.28 the reader is asked to
prove that the Weak Form of the Nullstellensatz follows from the Nullstellensatz.

COROLLARY 6.2.4. (Hilbert’s Nullstellensatz, Weak Form) If k is a field, A is a com-
mutative finitely generated k-algebra, and m is a maximal ideal in A, then A/m is a finitely
generated algebraic extension field of k.

PROOF. Apply Proposition 6.2.3 to the field F = A/m. □

2.2. Hilbert’s Nullstellensatz. Algebraic geometry is the study of systems of alge-
braic equations in n variables over a field k. This section is an introduction to algebraic
geometry.

DEFINITION 6.2.5. Let k be any field. Let n≥ 0. Define affine n-space over k to be

An
k = {(a1, . . . ,an) | ai ∈ k}.
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We write simply An, if k is apparent. Let

A = k[x1, . . . ,xn]

and f ∈ A. The zero set of f is the set Z( f ) = {P ∈ An | f (P) = 0}. If T ⊆ A, then

Z(T ) = {P ∈ An | f (P) = 0 ∀ f ∈ T}.
If I is the ideal generated by T in A, then Z(I) = Z(T ). This is because any g ∈ I is a
linear combination of elements of T . Since A is noetherian, I is finitely generated, hence
Z(T ) can be expressed as the zero set of a finite set of polynomials. A subset Y ⊆ An is an
algebraic set if there exists T ⊆ A such that Y = Z(T ).

We apply the Weak Form of Hilbert’s Nullstellensatz to show that if k is algebraically
closed, then a finite set of polynomials T in A = k[x1, . . . ,xn] has a nonempty zero set if
and only if the ideal generated by T is not the unit ideal. If n = 1, then k[x1] is a principal
ideal domain, and this statement follows immediately from the definition of algebraically
closed field.

THEOREM 6.2.6. Let k be an algebraically closed field and A = k[x1, . . . ,xn].
(1) If M is a maximal ideal in A, then there exist elements a1,a2, . . . ,an in k such that

M = (x1−a1, . . . ,xn−an).
(2) If I is a proper ideal in A, then Z(I) is nonempty.

PROOF. (1): Since k is algebraically closed, Corollary 6.2.4 says the natural map
k→ A/M is onto. There exist a1, . . . ,an ∈ k such that ai+M = xi+M for i = 1, . . . ,n. That
is, xi−ai ∈M for each i. The reader should verify that the ideal J = (x1−a1, . . . ,xn−an)
is maximal. Because J is a subset of M, we see that J = M.

(2): Take any maximal ideal M which contains I. By Part (1), M = (x1−a1, . . . ,xn−
an) for elements a1,a2, . . . ,an in k. The reader should verify that Z(I) ⊇ Z(M) and that
Z(M) is the singleton set {(a1, . . . ,an)}. □

Next we show that the algebraic subsets of An
k are the closed sets for a topology.

PROPOSITION 6.2.7. Let An be affine n-space over the field k.
(1) The sets /0 and An are algebraic sets.
(2) The union of two algebraic sets is an algebraic set.
(3) The intersection of any family of algebraic sets is an algebraic set.
(4) The algebraic sets can be taken as the closed sets for a topology on An which is

called the Zariski topology.

PROOF. (1): Note that /0 = Z(1) and An = Z(0).
(2): If Y1 = Z(T1) and Y2 = Z(T2), then

Y1∪Y2 = Z(T1T2),

where T1T2 = { f1 f2 | f1 ∈ T1, f2 ∈ T2}. Prove this in two steps:
Step 1: Let P ∈ Y1. Then f1(P) = 0 for all f1 ∈ T1. Then ( f1 f2)(P) = 0. Similarly for

P ∈ Y2.
Step 2: Let P ∈ Z(T1T2) and assume P ̸∈ Y1. Then there exists f1 ∈ T1 such that

f1(P) ̸= 0. But for every f2 ∈ T2 we have ( f1 f2)(P) = 0 which implies f2(P) = 0. Thus
P ∈ Y2.

(3): Let {Yα = Z(Tα)} be a family of algebraic sets. Then⋂
Yα = Z(

⋃
Tα).
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To see this, proceed in two steps:
Step 1: If P ∈

⋂
Yα , the P is a zero of all of the Tα , hence is in Z(

⋃
Tα).

Step 2: If P is a zero of all of the Tα , then P is in all of the Yα .
(4): Follows from the first three parts. □

DEFINITION 6.2.8. Let k be any field. For any Y ⊆ An, we define the ideal of Y in
A = k[x1, . . . ,xn] by

I(Y ) = { f ∈ A | f (P) = 0 ∀ P ∈ Y}.
This is an ideal, as is easily checked. The reader should verify that I(Y ) = Rad(I(Y )).
Recall that any ideal that is equal to its radical is called a radical ideal. By default, I( /0) =A.

Now we prove the second version of Hilbert’s Nullstellensatz, and apply it to show that
when k is algebraically closed, the operators Z(·) and I(·) induce a one-to-one correspon-
dence between the set of closed subsets of An and the set of radical ideals in k[x1, . . . ,xn].

THEOREM 6.2.9. (Hilbert’s Nullstellensatz) Let k be an algebraically closed field and
J an ideal in A = k[x1, . . . ,xn]. Then Rad(J) = I(Z(J)).

PROOF. By Exercise 6.2.19, Rad(J) ⊆ I(Z(J)). Let f ∈ A−Rad(J). We prove that
there exists x ∈ Z(J) such that f (x) ̸= 0. By Lemma 3.3.7, there exists a prime ideal
P ∈ SpecA such that J ⊆ P and f ̸∈ P. If f̄ denotes the image of f in the integral domain
R = A/P, then f̄ ̸= 0. As a k-algebra, R is finitely generated. The localization R f̄ is
generated as an R-algebra by the element f̄−1, hence R f̄ is finitely generated as a k-algebra.
Let m be any maximal ideal in R f̄ . Since k is algebraically closed, Corollary 6.2.4 says the
natural map k→ R f̄ /m is onto. Let M be the kernel of the composition of natural maps

A→ R→ R f̄ → R f̄ /m.

Then M is a maximal ideal in A such that f ̸∈M and J ⊆ P⊆M. By Theorem 6.2.6, Z(M)
is a singleton set {x}. This shows x ∈ Z(J) and f (x) ̸= 0. □

PROPOSITION 6.2.10. Let k be an algebraically closed field and A = k[x1, . . . ,xn].
(1) If T1 ⊆ T2 are subsets of A, then Z(T1)⊇ Z(T2).
(2) If Y1 ⊆ Y2 are subsets of An, then I(Y1)⊇ I(Y2).
(3) For Y1,Y2 ⊆ An we have I(Y1∪Y2) = I(Y1)∩ I(Y2).
(4) For any ideal J ⊆ A, I(Z(J)) = Rad(J).
(5) For any subset Y ⊆ An, Z(I(Y )) = Ȳ , the closure of Y .

PROOF. (1), (2), (3): are obvious.
(4): is a restatement of Theorem 6.2.9.
(5) The proof of Lemma 3.3.8 applies. □

Corollary 6.2.11 below is the counterpart for the Zariski topology on An
k of Corol-

lary 3.3.9. The set of maximal ideals in the ring A = k[x1, . . . ,xn] is denoted MaxA. By
Theorem 6.2.6, when k is algebraically closed, maximal ideals in MaxA correspond to
points in kn. Since it is a subset of SpecA, MaxA inherits the Zariski topology. It follows
from Corollary 6.2.11 that the Zariski topology on MaxA agrees with the Zariski topology
on An

k .

COROLLARY 6.2.11. Let k be an algebraically closed field. There is a one-to-one
order-reversing correspondence between algebraic subsets of An and radical ideals in
A given by Y 7→ I(Y ) and J 7→ Z(J). Under this correspondence, an algebraic set Y is
irreducible if and only if I(Y ) is a prime ideal.
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PROOF. The first part follows from Proposition 6.2.10. The last part can be proved as
in Lemma 3.3.10. □

EXAMPLE 6.2.12. Let k be an algebraically closed field and A = k[x1, . . . ,xn]. The
zero ideal (0) is a prime ideal of A. By Corollary 6.2.11 this implies An

k is irreducible. By
Lemma 1.3.4, if U is a nonempty open subset of An

k , then U is irreducible and dense.

EXAMPLE 6.2.13. Let k be a field and A a k-algebra. Assume dimk(A) = n is finite.
Using the left regular representation, we can embed A as a k-subalgebra of Homk(A,A)
(see Example 1.1.13). As in [19, Example 1.2.3], the norm NA

k : A→ k is a homogeneous
polynomial function on A of degree n and the trace T A

k : A→ k is a homogeneous linear
polynomial function on A. Fix a k-basis α1, . . . ,αn for A. With respect to this basis, we
identify A with affine n-space over k (Definition 6.2.5). That is, an element a1α1 + · · ·+
anαn ∈ A corresponds to the point (a1, . . . ,an) ∈ An

k . With this identification, the norm
NA

k : A→ k corresponds to a homogeneous polynomial in k[x1, . . . ,xn] of degree n. Using
Exercise 1.7.26 we see that an element α in A is invertible if and only if NA

k (α) ̸= 0. The set
A∗ of invertible elements of A is therefore a proper open subset of An

k . If k is algebraically
closed, Example 6.2.12 implies A∗ is a dense open subset of An

k . If A is a division algebra
over k, then the norm defines a homogeneous polynomial in k[x1, . . . ,xn] of degree n with
no nontrivial zeros. We should advise the reader that the norm used in this example is not
the norm defined specifically for an Azumaya algebra (or central simple algebra) in [19,
Section 11.1.1].

EXAMPLE 6.2.14. Let k be a field and n≥ 1. Given any point P = (a1, . . . ,xn) in An
k ,

let M be the ideal in k[x1, . . . ,xn] generated by x1−a1, . . . ,xn−an. Then Z(M) = {P}, so
singleton sets are closed in the Zariski topology. In the terminology of Section 1.3, this
shows An

k is a T1-space.

EXAMPLE 6.2.15. Let k be an algebraically closed field and n ≥ 1. If M is a max-
imal ideal in A = k[x1, . . . ,xn], then by Theorem 6.2.6, there is a point P = (a1, . . . ,an)
in An

k such that M = (x1 − a1, . . . ,xn − an) and Z(M) is the singleton set {P}. Con-
versely, if P = (a1, . . . ,xn) is an arbitrary point in An

k , then I(P) is the maximal ideal in
k[x1, . . . ,xn] generated by x1− a1, . . . ,xn− an. Under the one-to-one correspondence of
Corollary 6.2.11, maximal ideals in A correspond to closed points in An

k .

COROLLARY 6.2.16. If k is an algebraically closed field and I is an ideal in A =
k[x1, . . . ,xn], then the radical of I is equal to the intersection of those maximal ideals of A
that contain I. That is,

Rad(I) =
⋂
{m |m ∈MaxA and I ⊆m}.

PROOF. By Lemma 3.3.7, Rad(I) =
⋂

P∈V (I)P. Hence Rad(I) is always a subset of⋂
{m | m ∈MaxA and I ⊆m}. Let α ∈ A and assume α belongs to every maximal ideal

m of A such that I ⊆ m. There is a one-to-one correspondence between points P ∈ Z(I)
and maximal ideals m in A such that I ⊆ m. Therefore, α(P) = 0 for every P ∈ Z(I). By
Theorem 6.2.9, α ∈ Rad(I). □

See Exercise 6.3.9 for a generalization of Corollary 6.2.16 to the case where the ground
field k is not algebraically closed.

2.3. A Nonsingular Affine Elliptic Curve. This section is devoted to an example of
an algebraic curve that is nonsingular and nonrational. Assume that the characteristic of k,
the base field, is not 2. Let A = k[x] be the polynomial ring in one variable over k. Then A



244 6. THE INTEGRAL CLOSURE OF A COMMUTATIVE RING

is a unique factorization domain and x is a prime in A. Let K = k(x) be the quotient field
of A. Consider the polynomial y2−x(x2−1) in A[y]. By Eisenstein’s Criterion, with prime
p = x, y2−x(x2−1) is irreducible in A[y]. By Gauss’ Lemma, y2−x(x2−1) is irreducible
in K[y] and F = K[y]/(y2− x(x2−1)) is a field. The separable quadratic extension F/K is
a Galois extension, AutK(F) = ⟨σ⟩ has order 2, and σ is defined by y 7→ −y.

In the following, cosets in the factor ring F are written without brackets or any extra
adornment. The polynomial ring A[y] = k[x,y] is a unique factorization domain. Therefore,
R = k[x,y]/(y2− x(x2−1)) is an integral domain. The diagram of ring homomorphisms

(2.2) A = k[x] //

��

K = k(x)

��
A[y] α //

η

��

K[y]

η

��
R = A[y]/(y2− x(x2−1))

φ // F = K[y]/(y2− x(x2−1))

commutes. The vertical maps are the natural maps. The map φ is induced by α and is
one-to-one.

PROPOSITION 6.2.17. In the above context, the following are true.
(1) The quotient field of R is F.
(2) As an A-module, R is free of rank 2. The set {1,y} is a free basis. The image of

φ is {p(x)+q(x)y | where p(x) and q(x) are in A = k[x]}.
(3) The homomorphism A→ R defined by sending x to its image in R is one-to-one.
(4) The automorphism σ ∈AutK(F) defined by y 7→−y restricts to an automorphism

σ : R→ R.
(5) For any a∈ R, define the norm of a to be N(a) = aσ(a). Then N(1) = 1, N : R→

A, and N is multiplicative.
(6) The map on groups of units k∗→ R∗ is an isomorphism. That is, the units of R

are precisely the units of k.
(7) x and y are irreducible elements of R.
(8) R is not a unique factorization domain.
(9) R is not a principal ideal domain.

PROOF. (1), (2), (3), (4), and (5): These follow from Exercise 1.8.12 and Exam-
ple 1.6.10 (2).

(6): The map k→ R is one-to-one because k is a field. We show that k∗→ R∗ is onto.
Let a,b ∈ R and assume ab = 1. Then N(a)N(b) = 1 in A. But A∗ = k∗. This proves
N(a) ∈ k. By (2), a has a unique representation in the form a = f +gy, for polynomials f
and g in A = k[x]. Then N(a) = f 2−g2x(x2−1) = u for some u∈ k∗. Then ( f (0))2 = u. If
g ̸= 0, then the leading term of f 2 which is even is equal to the leading term of g2x(x2−1),
which is odd, a contradiction. Therefore, g = 0 and a = f = f (0) is in k.

(7): If x is not irreducible, then there is a nontrivial factorization x = ab. By (5),
we have the factorization N(x) = x2 = N(a)N(b) in A = k[x]. Therefore, N(a) = x up to
associates. By (2), a has a representation in the form a = f +gy, for polynomials f and g
in A = k[x]. Then up to associates, N(a) = f 2−g2x(x2−1) = x. Then f 2 = g2x(x2−1)+x
which is impossible because the degree of the left hand is even and that of the right hand
side is odd. This proves x is not in the image of the norm map N : R→ A, hence x is
irreducible in R.
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If y is not irreducible in R, then there is a nontrivial factorization y = ab. By (5),
we have the factorization N(y) = x(x2 − 1) = N(a)N(b) in A = k[x]. Therefore, up to
associates, one of N(a) or N(b) is in {x,x+ 1,x− 1}. The same proof from above shows
that x+1 and x−1 are not in the image of N : R→ A. Therefore, y is irreducible in R.

(8): In R we have the identity y2 = x(x2−1). By the proof of (7), N(x)= x2 and N(y)=
x(x2−1). Therefore, x and y are not associates of each other. So unique factorization does
not exist.

(9): Consider the ideal m= (x,y). Then R/m= k[x,y]/(x,y) = k is a field, hence m is a
maximal ideal. If m= (a) is principal, then a | x and a | y. Since x and y are irreducible, by
Lemma 1.5.2, this implies x and y are associates of each other, a contradiction to (8). □

2.4. An Application to Characteristic Polynomials. We apply results from Sec-
tion 6.2.2 to show that the characteristic polynomial of AB is equal to the characteristic
polynomial of BA when A and B are two n-by-n matrices with entries in an integral domain
R.

THEOREM 6.2.18. Let R be an integral domain. If A and B are n-by-n matrices in
Mn(R), then char.polyR(AB) = char.polyR(BA).

PROOF. Let k be an algebraically closed field containing R as a subring. Let θ : R→ k
be the set containment map. Viewing the ring Mn(R) as a subring of Mn(k), it suffices to
prove the theorem for matrices in Mn(k). As a k-vector space, Mn(k) has dimension n2

and the set {ei j | 1 ≤ i ≤ n, 1 ≤ j ≤ n} of elementary matrices is a basis. We identify
Mn(k) with the point set An2

k . As in [19, Lemma 1.2.2], if C is a matrix in Mn(k) and the
characteristic polynomial of C is char.polyk(C) = xn +a1xn−1 + · · ·+an−1x+an, then for
each i= 1, . . . ,n, the assignment C 7→ (−1)iai defines a polynomial function Ni : Mn(k)→ k
which is homogeneous of degree i in n2 variables. Fix A in Mn(k) and define fi : Mn(k)→ k
by fi(B) = Ni(AB)−Ni(BA). Using the definition of multiplication of matrices we see that
f is a polynomial function which is homogeneous of degree i in n2 variables. The set
of zeros of fi is a closed subset of Mn(k). If B is an invertible matrix in Mn(k), then
BA = B(AB)B−1. Similar matrices have the same characteristic polynomial, so in this
case char.polyk(AB) = char.polyk(BA). For each 1 ≤ i ≤ n, this implies fi(B) = 0 for all
invertible matrices B in Mn(k). By Example 6.2.13, the set of invertible matrices in Mn(k)
is a dense open set. Since fi is zero on a dense set, fi is the zero function. Since k is
an infinite field, this implies fi is the zero polynomial. Since this is true for each i, we
conclude that char.polyR(AB) = char.polyR(BA) for all A and for all B. □

2.5. Exercises.

EXERCISE 6.2.19. Let k be any field and I an ideal in A = k[x1, . . . ,xn]. Prove:
(1) Z(I) = Z(Rad(I)).
(2) Rad(I)⊆ I(Z(I)).

EXERCISE 6.2.20. Let k be a field, I an ideal in A = k[x1, . . . ,xn], and S = A/I. A
point P = (a1, . . . ,an) in Z(I) is called a k-rational point on the algebraic set. Show that
the k-rational points on Z(I) correspond to k-algebra homomorphisms σ : S→ k.

EXERCISE 6.2.21. Let R be a commutative ring, I = ( f1, . . . , fm) an ideal in A =
R[x1, . . . ,xn] generated by m polynomials, and S = A/I. A point P = (a1, . . . ,an) in An

R is
called an R-rational point of S if fi(P) = 0 for 1≤ i≤ m. Show that the R-rational points
of S correspond to R-algebra homomorphisms σ : S→ R.
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EXERCISE 6.2.22. Let R be a commutative ring and φ : R[x1, . . . ,xm]→ R[y1, . . . ,yn]
an R-algebra homomorphism between two polynomial rings with coefficients in R.

(1) Let S ⊆ R be a finite subset which contains all of the coefficients of the polyno-
mials φ(x1), . . . ,φ(xm). View R as a Z-algebra. Let N be the Z-subalgebra of R
generated by S. Show that there is an N-algebra homomorphism φN such that the
diagram

N[x1, . . . ,xm]
φN //

��

N[y1, . . . ,yn]

��
R[x1, . . . ,xm]

φ // R[y1, . . . ,yn]

commutes, where the vertical maps are induced by N ⊆ R. Moreover, show that
the bottom row is obtained from the top by applying the functor ()⊗N R.

(2) Show that im(φ) = im(φN)⊗N R.
(3) Show that ker(φN) is a finitely generated ideal.
(4) Show that ker(φ) is a finitely generated ideal.

EXERCISE 6.2.23. The purpose of this exercise is to prove the converse of Exer-
cise 4.1.35 when R is commutative. Let k be a field and R a commutative artinian finitely
generated k-algebra. Prove that R is finite dimensional as a k-vector space. (Hints: Use
Theorem 4.5.6 to reduce to the case where R is local artinian. Consider the chain R⊇m⊇
m2 ⊇ ·· · ⊇mk ⊇ 0. Show that each factor mi/mi+1 is a finitely generated vector space over
k. For the first factor R/m, apply Corollary 6.2.4.)

EXERCISE 6.2.24. Let k be an algebraically closed field, I an ideal in A= k[x1, . . . ,xn],
and R = A/I. Prove that the following are equivalent.

(1) R is artinian.
(2) dimk(R)< ∞.
(3) Z(I) is a finite set.

Moreover, prove that dimk(R) is an upper bound on the number of points in Z(I).

EXERCISE 6.2.25. Let R be a commutative ring. Viewing R as a Z-algebra, show that
R = lim−→Rα , where {Rα} is a directed system of noetherian subrings of R.

EXERCISE 6.2.26. Let R be a commutative local ring with maximal ideal m. Show that
there is a directed system {Rα} of noetherian local subrings of R satisfying the following:

(1) The maximal ideal of Rα is mα =m∩Rα .
(2) R = lim−→Rα .
(3) m= lim−→mα .
(4) R/m= lim−→(Rα/mα).

EXERCISE 6.2.27. In the context of Proposition 6.2.17, consider the maximal ideal
m= (x,y). Show that m2 is principal.

EXERCISE 6.2.28. Let k be a field and A = k[x1, . . . ,xn] the polynomial ring over k
in n variables. Let m be a maximal ideal in A. The following is an outline of a proof that
Hilbert’s Nullstellensatz (Theorem 6.2.9) implies the Weak Form of the Nullstellensatz
(Corollary 6.2.4).

(1) Let Ω be an algebraic closure of k. View A as a subring of Ω[x1, . . . ,xn]. Using
Theorem 6.2.9, show that there exists a point P = (a1, . . . ,an) in An

Ω
such that P

is in Z(m), the zero set of m.
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(2) Let P = (a1, . . . ,an) be the point in An
Ω

from (1). Show that F = k(a1, . . . ,an) is
a finitely generated algebraic extension field of A/m.

(3) Use the above to prove Corollary 6.2.4.

EXERCISE 6.2.29. Let k be a field. Let A and B be finitely generated k-algebras and
assume A and B are integral domains. Suppose there exist p ∈ SpecA, q ∈ SpecB and a
k-algebra isomorphism φ : Ap→ Bq. Show that there exists α ∈ A−p, β ∈ B−q such that
φ restricts to a k-algebra isomorphism φ : Aα → Bβ . (Hint: Lemma 3.1.12.)

3. Integral Extensions and Prime Ideals

In this section we prove the Going Up and Going Down Theorems, which are also
known as the Cohen-Seidenberg Theorems. These are combined in Theorem 6.3.6. For an
integral extension of commutative rings A→ B these theorems relate the correspondence
between prime ideals in A and B.

3.1. Prime Ideals. The purpose of this section is to prove some necessary results on
prime ideals. The first, Lemma 6.3.2, is a result on rings that are not necessarily com-
mutative. In Definition 1.5.1 we defined the notion of prime ideal in a commutative ring.
Definition 6.3.1 below extends this definition to ideals in a general ring.

DEFINITION 6.3.1. If P is a two-sided ideal in a ring R, then we say P is prime in
case P ̸= R and for any two-sided ideals I and J, if IJ ⊆ P, then I ⊆ P or J ⊆ P. If R is a
commutative ring, Proposition 1.5.4 shows that this definition agrees with Definition 1.5.1.

LEMMA 6.3.2. Let R be a ring and assume I,P1,P2, . . . ,Pn are two-sided ideals. If
n≥ 3, then assume P3, . . . ,Pn are prime. If I ⊆ P1∪P2∪·· ·∪Pn, then I ⊆ Pk for some k.

PROOF. By removing any Pi which is contained in another Pj, we can assume that no
containment relation Pi ⊆ Pj occurs unless i = j. The proof is by induction on n. Assume
I ⊆ P1∪P2. For contradiction’s sake assume I is not contained in P1 or P2. Pick x2 ∈ I−P1
and x1 ∈ I−P2. Then x1 ∈ P1 and x2 ∈ P2. Since x1 +x2 ∈ I ⊆ P1∪P2, there are two cases.
If x1+x2 ∈ P1, then we get x2 ∈ P1 which is a contradiction. Otherwise, x1+x2 ∈ P2, which
says x1 ∈ P2 which is also a contradiction.

Inductively assume n > 2 and that the result holds for n−1. Assume Pn is prime and
that no containment relation Pi ⊆ Pn occurs unless i = n. Assume I ⊆ P1∪ ·· ·∪Pn and for
contradiction’s sake, assume I ̸⊆ Pi for all i. Then IP1 · · ·Pn−1 ̸⊆ Pn. Pick an element x in
IP1 · · ·Pn−1 which is not in Pn. If I ⊆ P1 ∪ ·· · ∪Pn−1, then by induction I ⊆ Pi for some i.
Therefore we assume S = I− (P1 ∪ ·· · ∪Pn−1) is not empty. So S ⊆ Pn. Pick s ∈ S and
consider s+ x which is in I because both s and x are. Then by assumption, s+ x is in one
of the ideals Pi. Suppose s+ x ∈ Pi and 1 ≤ i ≤ n− 1. Because x ∈ Pi, this implies s ∈ Pi
which is a contradiction. Therefore s+ x ∈ Pn. But s ∈ Pn implies x ∈ Pn which is again a
contradiction. □

LEMMA 6.3.3. Let P, I1, . . . , In be ideals in the commutative ring R and assume P is
prime.

(1) If P⊇
⋂n

i=1 Ii, then P⊇ Ii for some i.
(2) If P =

⋂n
i=1 Ii, then P = Ii for some i.

PROOF. (1): For contradiction’s sake, assume for each i that there exists xi ∈ Ii−P.
Let x = x1x2 · · ·xn. So x ̸∈ P but x ∈

⋂
Ii, a contradiction.

(2): Is left to the reader. □
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3.2. Going Up and Going Down Theorems. Let φ : A→ B be a homomorphism of
commutative rings. In this section we study the relation between prime ideals of A and
prime ideals of B. Prime ideals of A will be denoted p, p1, p2 and prime ideals of B will
be denoted q,q1,q2. For notational convenience, instead of φ−1(q), we will write q∩A.
In this case, p = q∩A is a prime ideal of A, and we say q lies over p. By pB we denote
the ideal of B generated by φ(p). As in Exercise 3.3.24, a minimal element of V (pB) is
called a minimal over-ideal of pB. The going up and going down terminology refers to set
containment and the existence of ideals in SpecB lying over a chain of ideals p1 ⊊ p2 in
SpecA. We say going down holds for φ , if for all such p1, p2, whenever there exists q2
lying over p2, then there also exists q1 lying over p1 such that q1 ⊊ q2. Proposition 6.3.4
provides an equivalent condition to going down. We say going up holds for φ , if for all
such p1, p2, whenever there exists q1 lying over p1, then there also exists q2 lying over p2
such that q1 ⊊ q2.

PROPOSITION 6.3.4. Let φ : A→ B be a homomorphism of commutative rings. The
following are equivalent.

(1) For any p1, p2 in SpecA such that p1 ⊊ p2, and for any q2 ∈ SpecB lying over
p2, there exists q1 ∈ SpecB lying over p1 such that q1 ⊊ q2.

(2) For any p in SpecA, if q is a minimal prime over-ideal in SpecB for pB, then
q∩A = p.

PROOF. (1) implies (2): Let p ∈ SpecA and assume q ∈ SpecB is minimal such that
q ⊇ pB. Then q∩A ⊇ p. Assume q∩A ̸= p. According to (1) there exists q1 ∈ SpecB
such that q1∩A = p and q1 ⊊ q. In this case pB ⊆ q1 ⊊ q which is a contradiction to the
minimal property of q.

(2) implies (1): Assume p1 ⊊ p2 are in SpecA and q2 ∈ SpecB such that q2∩A = p2.
By Exercise 3.3.24, pick any minimal prime over-ideal q1 for p1B such that p1B⊆ q1 ⊆ q2.
By (2), we have q1∩A = p1. □

Now we show that going down always holds if B is a flat A-algebra.

THEOREM 6.3.5. If φ : A→ B is a homomorphism of commutative rings such that B
is a flat A-algebra, then going down holds for φ .

PROOF. Let p1 ⊊ p2 in SpecA and q2 ∈ SpecB such that q2 ∩ A = p2. Then φ2 :
Ap2 → Bq2 is a local homomorphism of local rings. By Proposition 3.7.2, Bq2 is a flat
Ap2 -algebra. By Exercise 3.5.27, Bq2 is a faithfully flat Ap2 -algebra. By Lemma 3.5.5,
φ
♯
2 : SpecBq2 → SpecAp2 is onto. Let Q1 ∈ SpecBq2 be a prime ideal lying over p1Ap2 and

set q1 = Q1∩B. Then q1 ⊆ q2. The commutative diagram

SpecBq2

��

φ
♯
2 // SpecAp2

��
SpecB

φ ♯
// SpecA

shows that q1 is a prime ideal of B lying over p1. □

The following useful form of the Going Up and Going Down Theorem as well as its
proof are from [42, (5.E), Theorem 5].

THEOREM 6.3.6. Assume B is a commutative faithful integral A-algebra.
(1) The natural map θ ♯ : SpecB→ SpecA is onto.
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(2) If p ∈ SpecA and q1,q2 ∈ SpecB are two primes in B lying over p, then q1 is not
a subset of q2.

(3) (Going Up Holds) For any p1, p2 in SpecA such that p1 ⊊ p2, and for any q1 ∈
SpecB lying over p1, there exists q2 ∈ SpecB lying over p2 such that q1 ⊊ q2.

(4) If q ∈ SpecB and p = q∩A, then q is a maximal ideal of B if and only if p is a
maximal ideal of A.

For (5) and (6) assume A and B are integral domains, that K is the quotient field of A and
that A is integrally closed in K.

(5) (Going Down Holds) For any p1, p2 in SpecA such that p1 ⊊ p2, and for any
q2 ∈SpecB lying over p2, there exists q1 ∈SpecB lying over p1 such that q1 ⊊ q2.

(6) If L is a normal extension field of K, and B is equal to the integral closure of A
in L, then any two prime ideals of B lying over the same prime p ∈ SpecA are
conjugate to each other by some automorphism σ ∈ AutK(L).

PROOF. (4): We have B/q is a faithful integral A/p-algebra (Exercise 6.1.15). If
follows from Lemma 6.1.4 that A/p is a field if and only if B/q is a field. Or in other
words, q is a maximal ideal if and only if p is a maximal ideal.

(1) and (2): Let p ∈ SpecA. Tensoring the integral extension A→ B with ( )⊗A Ap we
get the integral extension Ap → B⊗A Ap. The prime ideals of B lying over p correspond
to the prime ideals of Bp lying over pAp. By (4), these are the maximal ideals of Bp. The
ring Bp contains at least one maximal ideal, by Zorn’s Lemma. This proves (1). Because
there is no inclusion relation between two maximal ideals, this proves (2).

(3): Suppose p1, p2 are in SpecA and p1 ⊊ p2. Assume q1 is in SpecB such that
p1 ∩A = p1. Then A/p1 → B/q1 is an integral extension of rings. By (1) there exists a
prime ideal q2/q1 in Spec(B/q1) lying over p2/p1. Then q2 ∈ SpecB lies over p2 and
q1 ⊊ q2.

(6): Let G=AutK(L) be the group of K-automorphisms of L. If σ ∈G, then σ restricts
to an A-automorphism of B. In particular, if q ∈ SpecB, then σ(q) is also in SpecB. Let
q,q′ ∈ SpecB and assume q∩A = q′∩A. We show that q′ = σ(q) for some σ ∈ G.

First we prove this under the assumption that (L : K) is finite. Then G = {σ1, . . . ,σn}
is finite as well. Let σi(q) = qi, for 1≤ i≤ n. For contradiction’s sake, assume q′ ̸= qi for
any i. By (2), q′ is not contained in any qi. By Lemma 6.3.2, there exists x ∈ q′ such that x
is not in any qi. Suppose ℓ is the characteristic of K. Set

y =

{
∏

n
i=1 σi(x) if ℓ= 0(

∏
n
i=1 σi(x)

)ℓν

if ℓ > 0

where ν is chosen to be a sufficiently large positive integer such that y is separable over K.
It follows that y ∈ K. Since σi(x) ̸∈ q for each i and q is a prime ideal, it follows that y ̸∈ q.
Notice that y ∈ B∩K, so y is integral over A. Since A is integrally closed in K we see that
y ∈ A. Since x ∈ q′, it follows that y ∈ q′∩A = q∩A. This is a contradiction.

Now assume L is infinite over K. Let F = LG be the subfield fixed by G. Then L is
Galois over F and F is purely inseparable over K.

If F ̸= K, let ℓ be the characteristic of K and let C be the integral closure of A in F . Let
p∈ SpecA and let S be the set of all x in C such that xℓ

ν ∈ p for some ν ≥ 0. Let q∈ SpecC
such that p = q∩A. Then clearly S ⊆ q. Conversely, if x ∈ q, then x ∈ F , so x is algebraic
and purely inseparable over K. So xℓ

ν ∈ K for some ν ≥ 0. Since x is integral over A, there
is a monic polynomial f (t) ∈ A[t] such that f (x) = 0. Then 0 = ( f (x))ℓ

ν

= f (xℓ
ν

) so xℓ
ν

is integral over A. Because A is integrally closed in K, xℓ
ν ∈ A∩q = p. This shows that S



250 6. THE INTEGRAL CLOSURE OF A COMMUTATIVE RING

is the unique prime ideal of C lying over p. Replace K with F , A with C and p with S. It is
enough to prove (6) under the assumption that L is Galois over K.

Assume L over K is a Galois extension and that B is the integral closure of A in L.
Let q,q′ ∈ SpecB and assume q∩A = q′ ∩A = p. Let S be the set of all finite Galois
extensions T of K contained in L. If T ∈S , let

F0(T ) = {σ ∈ AutK(T ) | σ(q∩T ) = q′∩T}.
By the finite version of (6) we know that F0(T ) is a nonempty closed subset of G. Let
F(T ) be the preimage of F0(T ) under the continuous mapping G→ AutK(T ). Then F(T )
is a nonempty closed subset of G. If T ⊆ T ′ are two such intermediate fields in S , then
F(T ) ⊇ F(T ′). For any finite collection {T1, . . . ,Tn} of objects in S , there is another
object T in S such that Ti ⊆ T for all i. Therefore, ∩n

i=1F(Ti)⊇ F(T ) ̸= /0. Because G is
compact, this means

F =
⋂

T∈S
F(T ) ̸= /0.

Let σ ∈ F . For every x ∈ q, there is some intermediate field T in S such that x ∈ q∩T .
Hence σ(x) ∈ q′∩T . Therefore σ(q) = q′.

(5): Let L1 be the quotient field of B and K the quotient field of A. Let L be a normal
extension of K containing L1. Let C be the integral closure of A in L. Then C is also the
integral closure of B in L. We are given p1, p2 ∈ SpecA such that p1 ⊊ p2 and q2 ∈ SpecB
such that p2 = q2∩A. Let Q1 be a prime ideal in SpecC lying over p1. By Part (3) applied
to A ⊆ C, there is Q2 ∈ SpecC lying over p2 such that Q1 ⊊ Q2. Let Q be in SpecC
lying over q2. Since p2 = Q∩A = Q2∩A, by Part (6) there exists σ ∈ AutK(L) such that
σ(Q2) =Q. Put q1 = σ(Q1)∩B. Then q1 ⊊ q2 and q1∩A= σ(Q1)∩A=Q1∩A= p1. □

COROLLARY 6.3.7. Let R be a local ring and S a commutative R-algebra which is
faithful and finitely generated as an R-module. Then S is semilocal.

PROOF. Let m be the maximal ideal of R. By Theorem 6.3.6 (4), the maximal ideals
of S correspond to the maximal ideals of S/mS. Because S/mS is finite dimensional over
R/m, it is artinian (Exercise 4.1.35). By Proposition 4.5.3, S/mS is semilocal. □

3.3. Exercises.

EXERCISE 6.3.8. Let S be a commutative faithful integral R-algebra. Let J(R) be the
Jacobson radical of R, and J(S) the Jacobson radical of S. Prove that J(R) = J(S)∩R.

EXERCISE 6.3.9. Prove the following generalization of Corollary 6.2.16. Let k be a
field and R a finitely generated k-algebra. Prove:

(1) The Jacobson radical of R, J(R), is equal to the nil radical of R, RadR(0). (Hints:
If k̄ is an algebraic closure of k, then R̄ = R⊗R k̄ is a faithfully flat integral R-
algebra. Exercise 6.3.8.)

(2) If α ∈ R and α is not a nilpotent element of R, then the basic open set U(α)
contains a closed point of SpecR. If U is a nonempty open subset of SpecR, then
U contains a closed point of SpecR.



CHAPTER 7

The Topological Completion of Rings and Modules

We define filtrations and completions for modules over a general ring, but for most
of this chapter, the ground ring is assumed to be commutative. A nonincreasing chain of
submodules {M0 ⊇M1 ⊇M2 ⊇ ·· ·} in an R-module M is called a filtration of M. Associ-
ated to a filtration is a topology on M. The completion of M with respect to the topology
defined by a filtration is denoted M∗. The subject of this chapter is the functor that maps
M to M∗. We study many of the functorial properties of completion of both rings and
modules. If I is an ideal of R, then the I-adic topology on M is defined by the filtration
{M ⊇ IM ⊇ I2M ⊇ I3M ⊇ ·· ·}. The completion of an R-module with respect to the topol-
ogy defined by a filtration is equal to an inverse limit. Therefore, the topics in this chapter
are extensions of those we studied in Section 2.7.

In Section 7.2 we study graded rings. There is a fundamental connection between
graded rings and the filtration of a ring R by ideals. The I-adic completion of a commutative
ring R is denoted R̂. We show R̂ is a flat R-algebra, if R is noetherian. The roles played by
graded rings are central to the proofs.

Modules which are separated and complete with respect to a topology play an impor-
tant role in commutative algebra. If I is contained in the Jacobson radical of R and M is
finitely generated, we prove that the I-adic completion of M is separated and complete.
This important result is a corollary to the Krull Intersection Theorem, which itself is a
corollary to the Artin-Rees Theorem. In Corollary 7.3.18, another highlight of this chap-
ter, we prove that the I-adic completion of a commutative noetherian ring is noetherian.

Section 7.4 contains some important properties of a ring R that is separated and com-
plete with respect to an I-adic topology. Most of the results in this section are motivated
by the question of which properties of R/I lift to the same properties for R. For example,
in Hensel’s Lemma, we ask whether the factorization of a polynomial over R/I implies the
existence of a corresponding factorization over R.

1. I-adic Topology and Completion

This section contains the basic definitions for the completion of an R-module with
respect to a filtration. We study the first properties of the functor which maps an R-module
M to its completion M∗ with respect to a filtration. The topological completion is shown
to be equal to an inverse limit. For most of the results of this section, the ground ring R is
a general ring.

1.1. Completion of a Linear Topological Module. Let R be a ring and M an R-
module. A filtration of M is a nonincreasing chain of submodules

M = M0 ⊇M1 ⊇M2 ⊇M3 · · · .

Using the set of submodules {Mn}n≥0 in a filtration, we define a topology on M. Given any
x ∈M, a base for the neighborhoods of x is the set {x+Mn | n ≥ 0}. The linear topology
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on M defined by the filtration {Mn}n≥0 is the smallest topology on M containing all of the
open sets {x+Mn | x∈M,n≥ 0}. If L is a submodule of M and η : M→M/L is the natural
map, then the chain {η(Mn)}n≥0 = {(Mn +L)/L}n≥0 is a filtration of M/L that induces a
linear topology on M/L. The chain of submodules {Mn ∩L}n≥0 is a filtration of L which
induces a linear topology on L. As in Section 1.3, we say that M is separated (that is,
Hausdorff ) if for any two distinct points x,y∈M, there are neighborhoods x∈U and y∈V
such that U ∩V = /0. If I is a two-sided ideal in R, the chain of ideals R⊇ I1 ⊇ I2 ⊇ I3 ⊇ . . .
is a filtration of R which defines the I-adic topology on R. This agrees with the terminology
of Definition 2.7.20. The chain of submodules M ⊇ I1M ⊇ I2M ⊇ I3M ⊇ . . . is a filtration
of M which defines the I-adic topology on M.

LEMMA 7.1.1. Let R be a ring, M an R-module with a filtration {Mn}n≥0, and L a
submodule. With respect to the linear topology defined by this filtration, the following are
true.

(1) Each set Mn is open and closed.
(2) Addition on M is continuous.
(3) The natural maps 0→ L ⊆−→M

η−→M/L→ 0 are continuous.
(4) For each n, M/Mn has the discrete topology, which is to say “points are open”.

PROOF. (1): By definition, each left coset (x+Mn) is open. The decomposition of M
into left cosets gives M−Mn =

⋃
x ̸∈Mn(x+Mn), which is open.

(2): Follows from the formula for addition of left cosets (x+ y)+Mn = (x+Mn)+
(y+Mn).

(3): Is left to the reader.
(4): M/Mn has the finite filtration M/Mn ⊇M1/Mn ⊇ ·· · ⊇Mn−1/Mn ⊇Mn/Mn = 0

which terminates with (0). □

LEMMA 7.1.2. Let {Mn}n≥0 be a filtration of the R-module M. Let N =
⋂

n≥0 Mn.
Then

(1) N is the closure of {0}.
(2) M is separated if and only if N = 0.
(3) If L is a submodule of M, then M/L is separated if and only if L is closed.

PROOF. (1): An element x is in the closure of {0} if and only if every neighborhood
of x contains 0. Since {x+Mn}n≥0 is a base for the neighborhoods of x, it follows that x is
in the closure of {0} if and only if x ∈ N.

(2): If x ∈ N and x ̸= 0, then every neighborhood of x contains 0 so M is not separated.
If x,y ∈M and x− y ̸∈ N, then for some n≥ 0, x− y ̸∈Mn. Then (x+Mn)∩ (y+Mn) = /0.
This says that M/N is separated, so if N = 0, then M is separated.

(3): Is left to the reader. □

DEFINITION 7.1.3. Let {Mn}n≥0 be a filtration of the R-module M. A sequence (xν)
of elements of M is a Cauchy sequence if for every open submodule U there exists n0 ≥ 0
such that xµ − xν ∈ U for all µ ≥ n0 and all ν ≥ n0. Since U is a submodule, this is
equivalent to xν+1− xν ∈U for all ν ≥ n0. A point x is a limit of a sequence (xν) if for
every open submodule U there exists n0 ≥ 0 such that x−xν ∈U for all ν ≥ n0. We say M
is complete if every Cauchy sequence has a limit. We say that two Cauchy sequences (xν)
and (yν) are equivalent and write (xν)∼ (yν) if 0 is a limit of (xν − yν).

LEMMA 7.1.4. In the setting of Definition 7.1.3, let C denote the set of all Cauchy
sequences in M.
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(1) The relation ∼ is an equivalence relation on C.
(2) If (xν) ∈C and (yν) ∈C, then (xν + yν) ∈C.
(3) If (xν)∼ (x′ν) ∈C and (yν)∼ y′ν) ∈C, then (xν + yν)∼ (x′ν + y′ν) ∈C.
(4) If (xν) ∈C and r ∈ R, then (rxν) ∈C.
(5) If (xν)∼ (x′ν) ∈C and r ∈ R, then (rxν)∼ (rx′ν) ∈C.

PROOF. Is left to the reader. □

DEFINITION 7.1.5. Let {Mn}n≥0 be a filtration of the R-module M. Let M∗ denote
the set of all equivalence classes of Cauchy sequences in M. We call M∗ the topological
completion of M. Then Lemma 7.1.4 says that M∗ is an R-module. For any x ∈ M, the
constant sequence (x) is a Cauchy sequence, so x 7→ (x) defines an R-module homomor-
phism η : M → M∗. The reader should verify that the kernel of η is the subgroup N of
Lemma 7.1.2. Therefore η is one-to-one if and only if M is separated. A Cauchy se-
quence is in the image of η if it has a limit in M, hence M is complete if the natural map
η : M→M∗ is onto. For M to be separated and complete it is necessary and sufficient that
η be an isomorphism, which is true if and only if every Cauchy sequence has a unique
limit in M.

LEMMA 7.1.6. In the setting of Definition 7.1.3, assume L is a submodule of M. If M
is complete, then M/L is complete.

PROOF. Let (xν +L) be a Cauchy sequence in M/L. For each ν there is a positive
integer i(ν) such that xν+1−xν ∈Mi(ν)+L for all ν ≥ i(ν). For each ν pick yν ∈Mi(ν) and
zν ∈ L such that xν+1− xν = yν + zν . Define a sequence s = (x1,x1 + y1,x1 + y1 + y2,x1 +
y1 + y2 + y3, . . .) in M. Since 0 is a limit for (yν), it follows that s is a Cauchy sequence
in M. Since M is complete, s has a limit, say s0. Notice that sν+1− xν+1 ∈ L. Therefore,
s0 +L is a limit for (xν +L) in M/L. □

1.2. Functorial Properties of Completion.

PROPOSITION 7.1.7. Let {Mn}n≥0 be a filtration of the R-module M and M∗ the topo-
logical completion. Then M∗ is isomorphic to lim←−M/Mn as R-modules.

PROOF. For any n the natural map ηn : M→M/Mn is continuous and maps a Cauchy
sequence (xν) in M to a Cauchy sequence (ηn(xν)) in M/Mn. As M/Mn has the discrete
topology, (ηn(xν)) is eventually constant, hence has a limit. Two equivalent Cauchy se-
quences will have the same limit in M/Mn, so there is a well defined continuous R-module
homomorphism fn : M∗ → M/Mn defined by (xν) 7→ lim−→(ηn(xν)). According to Defini-
tion 2.7.12, there is a unique R-module homomorphism β : M∗ → lim←−M/Mn. A Cauchy
sequence is in the kernel of β if and only if it is equivalent to 0. Therefore, β is one-to-one.
By Proposition 2.7.13, we can view the inverse limit as a submodule of the direct product.
If the inverse limit is given the topology it inherits from the direct product of the discrete
spaces ∏M/Mn, then β is continuous. An element of the inverse limit can be viewed as
(xn) ∈ ∏M/Mn such that xn = φn+1(xn+1) for all n, where φn+1 : M/Mn+1 → M/Mn is
the natural map. In this case, xn+1− xn ∈ Mn so (xn) is the image under η of a Cauchy
sequence in M. This shows β is onto, and therefore β is an isomorphism. □

Suppose that {An} is a filtration for the R-module A, and that {Bn} is a filtration for B.
A morphism from {An} to {Bn} is an R-module homomorphism α : A→ B such that for



254 7. THE TOPOLOGICAL COMPLETION OF RINGS AND MODULES

each n≥ 0, α(An)⊆ Bn. In this case α induces a commutative square

A/An+1
α //

φn+1

��

B/Bn+1

ψn+1

��
A/An

α // B/Bn

for each n≥ 0. Hence there is a morphism of inverse systems α : {A/An} → {B/Bn}. As
in Section 2.7, α induces a homomorphism lim←−A/An→ lim←−B/Bn.

PROPOSITION 7.1.8. If

{An}
α−→ {Bn}

β−→ {Cn}
is a sequence of morphisms of R-modules equipped with filtrations, such that for every
n≥ 0 the sequence

0→ An
α−→ Bn

β−→Cn→ 0
is an exact sequence of R-modules. Then

0→ lim←−A/An
←−
α−→ lim←−B/Bn

←−
β−→ lim←−C/Cn→ 0

is an exact sequence of R-modules.

PROOF. It follows from Theorem 2.5.2 that the sequence

0→ A/An
α−→ B/Bn

β−→C/Cn→ 0

is an exact sequence of R-modules for each n ≥ 0. Apply Proposition 2.7.19 to the exact

sequence of morphisms of inverse systems {A/An}
α−→ {A/Bn}

β−→ {C/Cn}. □

COROLLARY 7.1.9. Let {Bn} be a filtration for the R-module B. Suppose

0→ A α−→ B
β−→C→ 0

is an exact sequence of R-modules. Give A the filtration {An} = {α−1(Bn)} and C the
filtration {Cn}= {β (Bn)}. Then the sequence of completions

0→ A∗ α∗−→ B∗
β ∗−→C∗→ 0

is an exact sequence of R-modules.

PROOF. By construction,

0→ A/An
α−→ B/Bn

β−→C/Cn→ 0

is an exact sequence of R-modules. Now apply Proposition 7.1.8 and Proposition 7.1.7.
□

COROLLARY 7.1.10. Let {Mn} be a filtration for the R-module M and M∗ the topo-
logical completion.

(1) For each n≥ 0 we have M∗/M∗n ∼= M/Mn.
(2) With respect to the filtration {M∗n}, the R-module M∗ is complete and separated.

That is, M∗ ∼= (M∗)∗.

PROOF. (1): Apply Corollary 7.1.9 to the sequence 0→ Mn → M → M/Mn → 0.
Since M/Mn has the discrete topology, M/Mn ∼= (M/Mn)

∗.
(2): Take inverse limits in Part (1). □
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PROPOSITION 7.1.11. Let R be a ring and I a two-sided ideal in R such that R is
separated and complete with respect to the I-adic topology. Then

(1) 1+ x is a unit of R for every x ∈ I, and
(2) I is contained in J(R), the Jacobson radical of R.

PROOF. By Nakayama’s Lemma (Theorem 4.2.3), it is enough to prove that 1− x
is invertible for every x ∈ I. Since the I-adic topology on R is separated, ∩In = 0. The
sequence s = (1,1+ x,1+ x+ x2,1+ x+ x2 + x3, . . .) is a Cauchy sequence in R. Since R
is complete, s converges in R. Now (1− x)s = s(1− x) = 1− (x,x2,x3, . . .) is equal to 1
since the Cauchy sequence (x,x2,x3, . . .) converges to 0. □

COROLLARY 7.1.12. Let R be a commutative ring and m a maximal ideal in R. If
R̂ = lim←−R/mi is the m-adic completion, then R̂ is a local ring with maximal ideal m̂ =

lim←−m/mi.

PROOF. By Corollary 7.1.10 (1), R̂/m̂ ∼= R/m, so m̂ is a maximal ideal of R̂. By
Corollary 7.1.10 (2), R̂ is separated and complete with respect to the topology associated
to the filtration (mi)̂ . By Lemma 2.7.18, we can view m̂ as the set of all sequences
(x1,x2, . . .) ∈∏

∞
i=1 R/mi such that x1 ∈m and xi−xi+1 ∈mi for all i≥ 1. From this we see

that m̂i ⊆ (mi)̂ . The proof of Proposition 7.1.11 shows that m̂ is contained in the Jacobson
radical of R̂. Hence, R̂ has a unique maximal ideal and is a local ring. □

1.3. Exercises.

EXERCISE 7.1.13. Let R be a commutative ring, I an ideal in R, and

A α−→ B→ 0

an exact sequence of R-modules. Prove that the I-adic filtration {InB}n≥0 of B is equal to
the filtration {α(InA)}n≥0 of B inherited from A by the surjection α .

EXERCISE 7.1.14. Let R be a commutative ring and I an ideal in R. Prove:
(1) The I-adic completion of M = R⊕ R is isomorphic to R̂⊕ R̂. (Hint: Corol-

lary 7.1.9.)
(2) If M is a finitely generated free R-module, then the I-adic completion of M is a

finitely generated free R̂-module.

EXERCISE 7.1.15. Let R be a commutative ring and I a nilpotent ideal in R (IN = (0),
for some N ≥ 1).

(1) Show that lim←−R/Ii = R.
(2) If R is a commutative local artinian ring with maximal ideal m, show that R is

separated and complete with respect to the m-adic topology.

EXERCISE 7.1.16. Let R be a commutative ring and I an ideal in R. Let J be another
ideal of R such that I ⊆ J. Prove:

(1) In the I-adic topology on R, J is both open and closed.
(2) If Ĵ = lim←−J/In and R̂ = lim←−R/In, then R̂/Ĵ = R/J.
(3) J is a prime ideal if and only if Ĵ is a prime ideal.

EXERCISE 7.1.17. Let R be a commutative ring. Let I and J be ideals of R. Prove:
(1) The I-adic topology on R is equal to the J-adic topology on R if and only if there

exists m > 0 such that Im ⊆ J and Jm ⊆ I.
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(2) If the I-adic topology on R is equal to the J-adic topology on R, then there is an
isomorphism of rings lim←−R/Ik→ lim←−R/Jk. (Hint: Exercise 2.7.40.)

For a continuation of this exercise, see Exercise 9.1.11.

2. Graded Rings and Graded Modules

In this section all rings are commutative.

2.1. Definitions and First Principles. A graded ring is a commutative ring R which
under addition is the internal direct sum R =

⊕
∞
n=0 Rn of a set of additive subgroups

{Rn}n≥0 satisfying the property that RiR j ⊆ Ri+ j for all i, j ≥ 0. The reader should ver-
ify (Exercise 3.8.15) that R0 is a subring of R and each Rn is an R0-module. An element
of Rn is said to be homogeneous of degree n. The set R+ =

⊕
∞
n=1 Rn is an ideal of R

(Exercise 3.8.16), and is called the exceptional ideal of R.

EXAMPLE 7.2.1. Let R be any commutative ring and S = R[x1, . . . ,xm] the polynomial
ring over R in m variables x1, . . . ,xm. A monomial over R is any polynomial that looks
like rxe1

1 · · ·xem
m , where r ∈ R and each exponent ei is a nonnegative integer. The degree

of a monomial is −∞ if r = 0, otherwise it is the sum of the exponents e1 + · · ·+ em. A
polynomial in S is said to be homogeneous if it is a sum of monomials all of the same
degree. Let S0 = R be the set of all polynomials in S of degree less than or equal to 0. For
all n ≥ 1, let Sn be the set of all homogeneous polynomials in S of degree n. The reader
should verify that S is a graded ring.

Let R be a graded ring. A graded R-module is an R-module M which under addition
is the internal direct sum M =

⊕
n∈Z Mn of a set of additive subgroups {Mn}n∈Z and such

that RiM j ⊆Mi+ j for all pairs i, j. The reader should verify that each Mn is an R0-module
(Exercise 3.8.17). Any x ∈ Mn is said to be homogeneous of degree n. Every y ∈ M can
be written uniquely as a finite sum y = ∑

d
n=−d yn where yn ∈ Mn. We call the elements

y−d , . . . ,y0, . . . ,yd the homogeneous components of y. The set of homogeneous elements
of M is

Mh =
⋃

d∈Z
Md .

Let M and N be graded R-modules and θ : M→ N an R-module homomorphism. We say
θ is a homomorphism of graded R-modules if for every n ∈ Z we have θ(Mn)⊆ Nn.

PROPOSITION 7.2.2. Let R be a graded ring. The following are equivalent.
(1) R is a noetherian ring.
(2) R0 is a noetherian ring and R is a finitely generated R0-algebra.

PROOF. (2) implies (1): This follows straight from Theorem 6.2.1 (3).
(1) implies (2): By Corollary 4.1.13 (1), R0 = R/R+ is noetherian. By Corollary 4.1.7,

the ideal R+ is finitely generated. Write R+ = Rx1 + · · ·+Rxm. Assume without loss of
generality that each xi is homogeneous of degree di > 0. Let S be the R0-subalgebra of R
generated by x1, . . . ,xm. Inductively assume n > 0 and that S contains R0+R1+ · · ·+Rn−1.
We show that S contains Rn, which will finish the proof. Let y ∈ Rn. Write y = r1x1 +
· · ·+ rmxm. Each ri can be written as a sum of its homogeneous components. Because
y is homogeneous and each xi is homogeneous, after rearranging and re-labeling, we can
assume each ri is either zero or homogeneous of degree ei where ei + di = n. Because
di > 0, we have 0≤ ei < n, which says each ri is in R0 +R1 + · · ·+Rn−1. By the inductive
hypothesis, each ri is in S which says y ∈ S. □
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2.2. The Grading Associated to a Filtration.

EXAMPLE 7.2.3. Let R be a commutative ring. Suppose we have a filtration J =
{Jn}n≥0 of R by ideals

R = J0 ⊇ J1 ⊇ J2 ⊇ . . .

such that for all m,n ≥ 0 we have JmJn ⊆ Jm+n. Multiplication in R defines an R-module
homomorphism

µ0 : Jm⊗R Jn→
Jm+n

Jm+n+1

where µ0(x⊗ y) = xy (mod Jm+n+1). The kernel of µ0 contains the image of Jm+1⊗R Jn,
so µ0 factors through

µ1 :
Jm

Jm+1
⊗R Jn→

Jm+n

Jm+n+1
.

The kernel of µ1 contains the image of Jm
Jm+1
⊗R Jn+1, so µ1 factors through

µmn :
Jm

Jm+1
⊗R

Jn

Jn+1
→ Jm+n

Jm+n+1
.

The graded ring associated to this filtration is

grJ (R) =
∞⊕

n=0

Jn

Jn+1
=

R
J1
⊕ J1

J2
⊕·· ·⊕ Jn

Jn+1
⊕ . . .

where multiplication of two homogeneous elements xm,xn is defined to be µmn(xm⊗ xn).
The reader should verify that grJ (R) is a graded ring. When I is an ideal of R, the I-adic
filtration

R = I0 ⊇ I1 ⊇ I2 ⊇ . . .

has the associated graded ring grI (R)=
⊕

n≥0 In/In+1. The reader should verify that grI (R)
is an R/I-algebra which is generated by the set of homogeneous elements of degree one,
grI(R)1 = I/I2.

EXAMPLE 7.2.4. Let R be an integral domain. Let g be an element of R such that g is
nonzero and g is not invertible. Then there is a commutative diagram

0 // Rg //

��

R //

��

R/Rg //

��

0

0 // Rgi+1 // Rgi // Rgi/Rgi+1 // 0

of R-modules where the vertical maps are “multiply by gi”. If we set I = Rg, then Ii/Ii+1 is
a free R/I-module of rank 1 and is generated by the coset gi+ Ii+1. The R/I-algebra homo-
morphism δ : (R/I)[x]→ grI(R) =

⊕
i≥0 Ii/Ii+1 defined by x 7→ g+ I/I2 is an isomorphism

of graded rings.

EXAMPLE 7.2.5. Let R be a commutative ring and I an ideal of R. Let M be an R
module and F = {Mn}n≥0 an I-filtration of M. Set grF (M) =

⊕
∞
n=0 Mn/Mn+1. Using the

method of Example 7.2.3, the reader should verify that grF (M) is a graded grI(R)-module.
We call this the associated graded module for the I-filtration F of M. The graded grI(R)-
module associated to the I-adic filtration {InM}n≥0 is denoted grI(M).
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DEFINITION 7.2.6. Let R be a commutative ring and J = {Jn}n≥0 a filtration of R by
ideals. Let M be an R-module which also has a filtration {Mn}n≥0. We say that M is a
filtered R-module, or that the filtrations of R and M are compatible, if JiM j ⊆Mi+ j, for all
i≥ 0 and j≥ 0. If the filtration of R is defined by an ideal I, then M is a filtered R-module if
IMn ⊆Mn+1 for all n≥ 0. In this case, we also say the filtration {Mn}n≥0 is an I-filtration.
If IMn = Mn+1 for all sufficiently large n, then we say the filtration is a stable I-filtration.

EXAMPLE 7.2.7. Let R be a commutative ring and J = {Jn}n≥0 a filtration of R by
ideals. Let M be an R-module. The filtration of M inherited from R is defined by Mn = JnM.
The filtration {Mn}n≥0 makes M into a filtered R-module.

EXAMPLE 7.2.8. Let R be a commutative ring, and I an ideal in R. The I-adic filtration
of R and the I-adic filtration {InM} of M are compatible. Moreover, {InM} is a stable I-
filtration of M.

According to Proposition 7.1.7, the completion depends only on the topology, not
necessarily the filtration. In other words, different filtrations may give rise to the same
topology, and therefore the same completions.

PROPOSITION 7.2.9. Let R be a noetherian commutative ring and I an ideal of R. The
following are true.

(1) The associated graded ring grI(R) =
⊕

n≥0 In/In+1 is noetherian.
(2) Let M be a finitely generated R module and F = {Mn}n≥0 a stable I-filtration

of M. Then grF (M) =
⊕

n≥0 Mn/Mn+1 is a finitely generated graded grI(R)-
module.

PROOF. (1): Since R is noetherian, by Corollary 4.1.13, R/I is noetherian. By Corol-
lary 4.1.7, I is finitely generated. Therefore grI(R) is a finitely generated R/I-algebra and
by Proposition 7.2.2, grI(R) is noetherian.

(2): Since M is a finitely generated R-module and R is noetherian, Corollary 4.1.12
implies each Mn is finitely generated over R. Each Mn/Mn+1 is finitely generated over R
and annihilated by I, so Mn/Mn+1 is finitely generated over R/I. For any d > 0, M0/M1⊕
·· ·⊕Md/Md+1 is finitely generated over R/I.

For some d > 0 we have IMd+r = Md+r+1, for all r ≥ 0. By induction, IrMd = Md+r,
for all r ≥ 1. It follows that(

Ir/Ir+1)(Md/Md+1) = Md+r/Md+r+1

which shows that grF (M) is generated as a graded grI(R)-module by the set M0/M1⊕
·· ·⊕Md/Md+1. A finite set of generators for M0/M1⊕·· ·⊕Md/Md+1 over R/I will also
generate grF (M) as a graded grI(R)-module. □

2.3. The Artin-Rees Theorem.

LEMMA 7.2.10. Let R be a commutative ring and I an ideal of R. If {Mn} and {M′n}
are stable I-filtrations of the R-module M, then there exists an integer n0 such that Mn+n0 ⊆
M′n and M′n+n0

⊆Mn for all n≥ 0. All stable I-filtrations of M give rise to the same topology
on M, namely the I-adic topology.

PROOF. It is enough to show this for {M′n} = {InM}. For some n0 we have IMn =
Mn+1 for all n≥ n0. Then IMn0 = Mn0+1, I2Mn0 = IMn0+1 = Mn0+2, and iterating n times,
InMn0 = IMn0+n−1 = Mn0+n. Therefore InM ⊇ InMn0 = Mn+n0 . For the reverse direction,
start with IM = IM0 ⊆ M1. We get I2M ⊆ M2, and iterating n times we get InM ⊆ Mn.
Therefore In+n0 ⊆ InM ⊆Mn for all n≥ 0. □
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EXAMPLE 7.2.11. Let R be a commutative ring and I an ideal of R. Then S = R⊕
I⊕ I2⊕ I3⊕ . . . is a graded ring. If R is noetherian, then I is finitely generated so S is a
finitely generated R-algebra and is noetherian by Proposition 7.2.2. Let M be an R module
and M = M0 ⊇ M1 ⊇ M2 ⊇ . . . an I-filtration of M (Definition 7.2.6). For each i ≥ 0 we
have IMi ⊆Mi+1, hence I jMi ⊆Mi+ j. Therefore T = M0⊕M1⊕M2⊕M3⊕ . . . is a graded
S-module.

LEMMA 7.2.12. Let R be a commutative ring and I an ideal of R. Let M be an R
module and

M = M0 ⊇M1 ⊇M2 ⊇ . . .

an I-filtration of M such that for each i, Mi is a finitely generated R-module. The following
are equivalent.

(1) The I-filtration {Mn}n≥0 is stable. That is, there exists d > 0 such that IMn =
Mn+1 for all n≥ d.

(2) If S = R⊕ I⊕ I2⊕ I3⊕·· · and T = M0⊕M1⊕M2⊕M3⊕·· · , then T is a finitely
generated S-module.

PROOF. (2) implies (1): Assume T is finitely generated over S. Suppose U is a finite
subset of T which generates T over S. By making U larger (but still finite), we may
assume U consists of a finite set of homogeneous elements U = {x1, . . . ,xm} where xi has
degree di. Let d be the maximum of {d1, . . . ,dm}. Assume n ≥ d and y ∈ Mn. Write
y = r1x1 + · · ·+ rmxm. Each ri can be written as a sum of its homogeneous components.
Because y is homogeneous and each xi is homogeneous, after rearranging and re-labeling,
we may assume each ri is either zero or homogeneous of degree ei where ei +di = n. For
each i, ri ∈ In−di . This shows that

Mn =
m

∑
i=1

In−diMdi

for all n≥ d. It follows that

Mn+1 =
m

∑
i=1

In−di+1Mdi = I

(
m

∑
i=1

In−diMdi

)
= IMn.

(1) implies (2): If Mn+1 = IMn for all n≥ d, then T is generated over S by the set

C = M0⊕M1⊕M2⊕·· ·⊕Md .

A finite set of generators for C over R will also generate T over S. □

THEOREM 7.2.13. (Artin-Rees) Let R be a noetherian commutative ring, I an ideal in
R, M a finitely generated R-module, {Mn}n≥0 a stable I-filtration of M, and N a submodule
of M. Then

(1) {N∩Mn}n≥0 is a stable I-filtration of N.
(2) There exists an integer d > 0 such that

InM∩N = In−d(IdM∩N)

for all n > d.

PROOF. (1): Let S =
⊕

n≥0 In. Since R is noetherian, by Corollary 4.1.7, I is finitely
generated. But S is generated as an R-algebra by I, so Proposition 7.2.2 implies S is
noetherian. By Corollary 4.1.12, each Mn is finitely generated as an R-module. By
Lemma 7.2.12, T =

⊕
n≥0 Mn is finitely generated as an S-module. For each n ≥ 0 we

have I(N∩Mn)⊆ IN∩ IMn ⊆ N∩Mn+1. Therefore {N∩Mn}n≥0 is an I-filtration of N and
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U =
⊕

n≥0 N ∩Mn is an S-submodule of T . By Corollary 4.1.12, U is finitely generated
over S. We are done by Lemma 7.2.12.

Part (2) follows from Part (1) because the filtration {InM}n≥0 is a stable filtration of
M. □

COROLLARY 7.2.14. Let R be a noetherian commutative ring, I an ideal in R, M a
finitely generated R-module, and N a submodule of M. Then there exists an integer n0 such
that In+n0N ⊆ (InM)∩N and (In+n0M)∩N ⊆ InN for all n≥ 0. The I-adic topology of N
coincides with the topology induced on N by the I-adic topology of M.

PROOF. The filtration {InN}n≥0 is a stable filtration of N and by Theorem 7.2.13,
{(InM)∩Nn≥0} is a stable I-filtration of N. The rest comes from Lemma 7.2.10. □

COROLLARY 7.2.15. Let R be a noetherian commutative ring, I an ideal in R, and

0→ A α−→ B
β−→C→ 0

an exact sequence of finitely generated R-modules. The sequence

0→ Â→ B̂→ Ĉ→ 0

of I-adic completions is an exact sequence of R̂-modules.

PROOF. First give B the I-adic filtration {InB}n≥0. Give C the filtration {β (InB)}n≥0,
which is the same as the I-adic filtration on C, by Exercise 7.1.13. Give A the filtration
{α−1(InB)}n≥0. By Corollary 7.1.9, the sequence of completions

0→ A∗ α∗−→ B∗
β ∗−→C∗→ 0

is an exact sequence of R-modules. Because we started with I-filtrations, the homomor-
phisms are R̂-linear. We already know that B∗ = B̂ and C∗ = Ĉ. By Corollary 7.2.14,
A∗ = Â, so we are done. □

3. The Completion of a Noetherian Ring

This section contains some important theorems on I-adic completions of commutative
noetherian rings. If R is a commutative noetherian ring and I is an ideal in R, then in
Corollary 7.3.4 we show that R̂ is a flat R-algebra. In Corollary 7.3.18, we show that R̂ is
noetherian. The proof is an application of the Krull Intersection Theorem, which itself is a
corollary to the Artin-Rees Theorem.

3.1. The Completion of a Noetherian Ring is Flat. Let R be a commutative ring, I
an ideal in R, and M an R-module. Let R̂ be the I-adic completion of R and M̂ the I-adic
completion of M. Then R̂ is an R-algebra and M̂ is a module over both R̂ and R. The natural
maps R→ R̂, M→ M̂ and the multiplication map induce the R̂-module homomorphisms

R̂⊗R M→ R̂⊗R M̂→ R̂⊗R̂ M̂
∼=−→ M̂.

Taking the composition gives the natural R̂-module homomorphism R̂⊗R M→ M̂.

PROPOSITION 7.3.1. Let R be a commutative ring, I an ideal in R, and M a finitely
generated R-module. Let R̂ be the I-adic completion of R and M̂ the I-adic completion of
M.

(1) R̂⊗R M→ M̂ is onto.
(2) If M is finitely presented, then R̂⊗R M ∼= M̂.
(3) If R is noetherian, then R̂⊗R M ∼= M̂.
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PROOF. (1): By hypothesis, M is finitely generated. By Lemma 1.6.11, M is the
homomorphic image of a finitely generated free R-module F . There is an exact sequence

0→ K→ F →M→ 0

where K is the kernel. Apply the tensor functor R̂⊗R (·) and the I-adic completion functor
to this sequence to get the commutative diagram

R̂⊗R K

α

��

// R̂⊗R F

β

��

// R̂⊗R M

γ

��

// 0

0 // K̂ // F̂ // M̂ // 0

The top row is exact because tensoring is right exact. By Corollary 7.2.15, the bottom
row is exact. By Exercise 7.1.14, R̂⊗R F ∼= F̂ , so β is an isomorphism. It follows from
Theorem 2.5.2 that γ is onto. This proves (1).

(2): If M is finitely presented, then K is finitely generated and applying (1) to K we
see that α is onto. It follows from Theorem 2.5.2 that γ is an isomorphism.

(3): Follows from (2) and Corollary 4.1.12. □

COROLLARY 7.3.2. Let R be a commutative noetherian ring, I an ideal in R, and R̂
the I-adic completion of R. The following are true.

(1) R̂⊗R I ∼= Î = R̂I.
(2) În = (Î )n.
(3) R̂ is separated and complete for the Î-adic topology. Î is contained in the Jacob-

son radical of R̂.
(4) In/In+1 ∼= În/În+1 and the associated graded rings grI(R) and grÎ(R̂) are iso-

morphic as graded rings.

PROOF. (1): Since R is noetherian, I is finitely generated. The diagram

0 // R̂⊗R I

α

��

a // R̂⊗R R

β

��
0 // Î b // R̂

commutes and by Proposition 7.3.1, α and β are isomorphisms. The image of β ◦a is R̂I.
(2): The diagram

0 // R̂⊗R In

α

��

a // R̂⊗R R

β

��
0 // În b // R̂

commutes and by Proposition 7.3.1, α and β are isomorphisms. The image of β ◦ a is
R̂In = (R̂I)n, which by Part (1) is (Î )n.

(3): The first claim follows from Corollary 7.1.10 and Part (2). The second statement
follows from Proposition 7.1.11.

(4): By Corollary 7.1.10, for each n ≥ 0, R/In ∼= R̂/În. Now use the exact sequence
0→ In/In+1→ R/In+1→ R/In→ 0 and Part (2). □

COROLLARY 7.3.3. Let R be a commutative noetherian local ring with maximal ideal
m and R̂ the m-adic completion of R. Then R̂ is a local ring with maximal ideal m̂.
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PROOF. This follows from Corollary 7.1.12. □

COROLLARY 7.3.4. Let R be a commutative noetherian ring and I an ideal in R. Then
the I-adic completion R̂ is a flat R-module.

PROOF. Let 0→ A→ B be an exact sequence of finitely generated R-modules. By
Corollary 7.2.15, the sequence of completions 0→ Â→ B̂ is exact. By Proposition 7.3.1,
the sequence 0→ R̂⊗R A→ R̂⊗R B is exact. It follows from Proposition 3.7.3 that R̂ is flat
as an R-module. □

3.2. The Krull Intersection Theorem. When R is a commutative ring with ideal I,
and M is an R-module, the Krull Intersection Theorem, in conjunction with Nakayama’s
Lemma, provide useful criteria for the I-adic topology on M to be separated.

THEOREM 7.3.5. (Krull Intersection Theorem) Let R be a commutative noetherian
ring, I an ideal in R, and M a finitely generated R-module. If N =

⋂
n≥0 InM, then IN = N.

PROOF. By Theorem 7.2.13, there exists a positive integer d such that for all n > d,
InM∩N = In−d(IdM∩N). Fix n > d. Then In−d(IdM∩N)⊆ IN and N ⊆ InM. Putting all
of this together,

N ⊆ InM∩N ⊆ In−d(IdM∩N)⊆ IN ⊆ N,

so we are done. □

COROLLARY 7.3.6. The following are true for any commutative noetherian ring R
with ideal I.

(1) If I is contained in the Jacobson radical of R and M is a finitely generated R-
module, then

⋂
n≥0 InM = 0. The I-adic topology of M is separated.

(2) If I is contained in the Jacobson radical of R, then
⋂

n≥0 In = 0. The I-adic
topology of R is separated.

(3) If R is a noetherian integral domain and I is a proper ideal of R, then
⋂

n≥0 In = 0.
The I-adic topology of R is separated.

PROOF. (1): By Theorem 7.3.5, if N =
⋂

n≥0 InM, then IN = N. By Nakayama’s
Lemma, Theorem 4.2.3, N = 0.

(2): Follows from (1) with M = R.
(3): By Theorem 7.3.5, if N =

⋂
n≥0 In, then IN = N. By Nakayama’s Lemma,

Lemma 2.2.1, I + annihR(N) = R. Since I ̸= R and N ⊆ R and R is a domain we con-
clude that annihR(N) = R. That is, N = 0. □

THEOREM 7.3.7. Let R be a commutative noetherian ring and I an ideal in R. The
following are equivalent.

(1) Every ideal J in R is closed in the I-adic topology.
(2) I is contained in J(R), the Jacobson radical of R.
(3) The I-adic completion of R, R̂, is a faithfully flat R-algebra.
(4) If N is a finitely generated R-module, then the I-adic topology on N is separated.
(5) If N is a finitely generated R-module, then every submodule of N is closed in the

I-adic topology on N.

If R and I satisfy any of the equivalent conditions in Theorem 7.3.7, then we say R, I
is a Zariski pair.
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PROOF. (1) implies (2): Assume I is not contained in J(R). Let m be a maximal
ideal of R such that I is not a subset of m. Since m is prime, In ̸⊆ m for all n ≥ 1, by
Proposition 1.5.4. Then In +m= R for all n≥ 1. By Lemma 7.1.2, m is not closed.

(2) implies (3): By Corollary 7.3.4, R̂ is flat. Let m be a maximal ideal in R. By
Exercise 7.1.16, m̂ = lim←−m/Ii is a maximal ideal in R̂. Since mR̂ ⊆ m̂, it follows from
Lemma 3.5.1 (4) that R̂ is a faithfully flat R-algebra.

(3) implies (2): Let m be a maximal ideal of R. By Lemma 3.5.5, there is a maximal
ideal M in R̂ such that M ∩R = m. By Corollary 7.3.2 (3), IR̂ ⊆ M. It follows that I ⊆
IR̂∩R⊆M∩R =m. Therefore, I ⊆ J(R).

(2) implies (4): This is Corollary 7.3.6.
(4) implies (5): Apply Lemma 7.1.2.
(5) implies (1): Is trivial. □

3.3. Exercises.

EXERCISE 7.3.8. Let R be a commutative ring and S = R[x1, . . . ,xm] the polynomial
ring over R in m variables x1, . . . ,xm. Prove:

(1) If Sn is the set of homogeneous polynomials in S of degree n, then S = S0⊕S1⊕
S2⊕·· · is a graded ring and S0 = R.

(2) As an R-algebra, S is generated by S1.
(3) Let I = S+ = S1⊕S2⊕·· · be the exceptional ideal of S. Then In = Sn⊕Sn+1⊕

Sn+2⊕·· ·

EXERCISE 7.3.9. Let k be a field and A = k[x1, . . . ,xm] the polynomial ring in m
variables over k. As in Exercise 7.3.8, A = A0 ⊕ A1 ⊕ A2 ⊕ ·· · is a graded k-algebra
and A0 = k. Also, if I = A+ = A1 ⊕ A2 ⊕ ·· · is the exceptional ideal of A, then In =
An⊕An+1⊕An+2⊕·· · . Let R = A0⊕An⊕An+1⊕An+2⊕·· · . Prove:

(1) R is a graded k-subalgebra of A.
(2) In is an ideal in A, and an ideal in R.
(3) Prove that In is equal to R : A = {α ∈ A | αA ⊆ R}, the conductor ideal from A

to R (see Exercise 1.1.24).

EXERCISE 7.3.10. Let R =
⊕

∞
i=0 Ri be a graded ring.

(1) Show that Jn =
⊕

∞
i=n Ri is an ideal in R and J = {Jn}n≥0 is a filtration of R by

ideals.
(2) Give R the filtration J = {Jn}n≥0 defined in (1). Show that the natural map from

R to the associated graded ring grJ(R) is an isomorphism.
(3) If R∗ = lim←−R/Jn is the completion of R and P = {∑∞

i=0 xi | xi ∈ Ri}, show that
there is an R-module isomorphism R∗ ∼= P. (Hint: Use Proposition 7.1.7. An
element of the inverse limit can be viewed as a sequence (sn) such that sn+1− sn
is in Rn.)

EXERCISE 7.3.11. Let R be a commutative ring and S = R[x1, . . . ,xm] the polynomial
ring over R in m variables x1, . . . ,xm. Show that if I = Sx1 + · · ·+ Sxm, then the I-adic
completion of S is isomorphic to the power series ring R[[x1, . . . ,xm]]

EXERCISE 7.3.12. Let R be a commutative ring and I an ideal in R. Show that if M
is a finitely generated projective R-module, then the I-adic completion of M is a finitely
generated projective R̂-module.
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EXERCISE 7.3.13. Let R be a noetherian ring, I an ideal in R, and {a1, . . . ,an} a set of
generators of I. Show that the I-adic completion of R is isomorphic to R[[x1, . . . ,xn]]/(x1−
a1, . . . ,xn−an).

3.4. The Completion of a Noetherian Ring is Noetherian. Let R be any ring. Let
A and B be two R-modules, let {An} be a filtration for A, and let {Bn} be a filtration for
B. As in Section 7.1.2, a morphism from {An} to {Bn} is an R-module homomorphism
α : A→ B such that for each n≥ 0, α(An)⊆ Bn. For each n≥ 0 the diagram of R-modules

0 // An/An+1

γn

��

// A/An+1

βn+1
��

φn+1 // A/An

βn

��

// 0

0 // Bn/Bn+1 // B/Bn+1
ψn+1 // B/Bn // 0

commutes and the rows are exact. The three vertical arrows are induced by α . By the
universal mapping property of the inverse limit, α induces a homomorphism lim←−A/An→
lim←−B/Bn. By the isomorphism of Proposition 7.1.7, α induces a homomorphism on the
completions, α∗ : A∗→ B∗. The maps {γn}n≥0 define a graded homomorphism

gr(α) : gr(A)→ gr(B)

of graded R-modules. (Here the grading of R is trivial. Every element is homogeneous of
degree zero.)

LEMMA 7.3.14. In the above context, let α : {An} → {Bn} be a morphism of R-
modules equipped with filtrations. Let α∗ : A∗→ B∗ be the homomorphism of completions
and gr(α) : gr(A)→ gr(B) the graded homomorphism of graded R-modules. Then

(1) if gr(α) is one-to-one, then α∗ is one-to-one, and
(2) if gr(α) is onto, then α∗ is onto.

PROOF. The Snake Lemma (Theorem 2.5.2) applied to the previous diagram gives an
exact sequence

0→ kerγn→ kerβn+1
θn+1−−→ kerβn

∂−→ cokerγn→ cokerβn+1
ρn+1−−→ cokerβn→ 0.

(1): Assume kerγn = 0 for all n≥ 0. Since β0 = 0, an inductive argument shows that
kerβn = 0 for all n ≥ 0. By Proposition 7.1.8, the homomorphism on the inverse limits is
one-to-one.

(2): Assume cokerγn = 0 for all n ≥ 0. It is immediate that θn+1 : kerβn+1→ kerβn
is onto for all n ≥ 0. Since β0 = 0, an inductive argument shows that cokerβn = 0 for all
n ≥ 0. Applying Proposition 2.7.19 to the sequence of morphisms of inverse systems of
R-modules

{kerβn,θn+1}→ {A/An,φn+1}→ {B/Bn,ψn+1}

it follows that lim←−A/An→ lim←−B/Bn is onto. Hence α∗ : A∗→ B∗ is onto. □

DEFINITION 7.3.15. Suppose R =
⊕

i≥0 Ri is a commutative graded ring and M =⊕
i∈Z Mi is a graded R-module. Given any ℓ ∈ Z, define the twisted module M(−ℓ) to

be equal to M as a Z-module, but with the grading shifted by ℓ. That is, M(−ℓ) =⊕
d∈Z M(−ℓ)d , where M(−ℓ)d = Md−ℓ. The reader should verify that M(−ℓ) is a graded

R-module.
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DEFINITION 7.3.16. Let R be a commutative ring that has a filtration by ideals, J =
{Jn}n≥0. Given any ℓ≥ 0, define a filtration shifted by ℓ by:

J(−ℓ)n =

{
R if n < ℓ

Jn−ℓ if n≥ ℓ.

Denote this new filtration by J(−ℓ). The reader should verify that grJ(−ℓ)(R) and the
twisted module grJ(R)(−ℓ) defined in Definition 7.3.15 are isomorphic as graded grJ(R)-
modules.

PROPOSITION 7.3.17. Let R be a commutative ring with a filtration J = {Jn}n≥0 by
ideals under which R is complete. Let M be a filtered R-module with filtration {Mn}n≥0
under which M is separated.

(1) If the graded grJ(R)-module gr(M) is finitely generated, then the R-module M is
finitely generated.

(2) If every graded grJ(R)-submodule of gr(M) is finitely generated, then the R-
module M satisfies the ACC on submodules (in other words, M is noetherian).

PROOF. (1): Pick a finite generating set u1, . . . ,um for gr(M) as a graded grJ(R)-
module. After splitting each ui into its homogeneous components we assume each ui is
homogeneous of degree di. For each i pick vi ∈Mdi such that ui is the image of vi under the
map Mdi →Mdi/M1+di . By R(−di) we denote the R-module R with the twisted filtration
J(−di). The R-module homomorphism φi : R→M defined by 1 7→ vi defines a morphism
of filtrations {R(−di)n} → {Mn}. Let F = R(−d1)⊕·· ·⊕R(−dm) be the free R-module
with the filtration {Fn =

⊕m
i=1 R(−di)n}. Let φ : F →M be the sum φ1 + · · ·+φm where

each φi is applied to component i of the direct sum. So φ is a morphism of filtered R-
modules. There is a homomorphism gr(φ) : gr(F)→ gr(M) of graded grJ(R)-modules. By
construction, the image of gr(φ) contains a generating set so it is onto. By Lemma 7.3.14,
the map on completions φ̂ : F̂ → M̂ is onto. The square

F
φ //

α

��

M

β

��
F̂

φ̂ // M̂

commutes and φ̂ is onto. Because M is separated, β is one-to-one. Because R is complete,
so is each R(−di). Therefore, α is onto. The reader should verify that φ is onto. This
shows that M is generated as an R-module by v1, . . . ,vm.

(2): By Lemma 4.1.6 it is enough to show that every submodule L of M is finitely
generated. Give L the filtration Ln = Mn ∩L. Then this makes L into a filtered R-module
and

⋂
n≥0 Ln = 0. Since Ln+1 = Ln∩Mn+1, the induced map Ln/Ln+1→Mn/Mn+1 is one-

to-one. The graded homomorphism gr(L)→ gr(M) of graded grJ(R)-modules is also one-
to-one. By hypothesis, gr(L) is finitely generated. By Part (1), L is finitely generated. □

COROLLARY 7.3.18. Let R be a commutative noetherian ring.
(1) If I is an ideal of R, then the I-adic completion of R is noetherian.
(2) If S = R[[x1, . . . ,xm]] is the power series ring over R in m variables, then S is

noetherian.

PROOF. (1): By Corollary 7.3.2 and Proposition 7.2.9, the associated graded rings
grI(R) and grÎ(R̂) are isomorphic to each other and are noetherian. So every ideal of grÎ(R̂)
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is finitely generated. By Proposition 7.3.17, every ideal of R̂ is finitely generated and by
Corollary 4.1.7, R̂ is noetherian.

(2): By The Hilbert Basis Theorem (Theorem 6.2.1) A = R[x1, . . . ,xm] is noetherian.
By Exercise 7.3.11, S is the completion of A for the I-adic topology, where I = Ax1 + · · ·+
Axm. □

COROLLARY 7.3.19. Let R be a commutative ring with a filtration by ideals {Jn}n≥0.
Let M be a filtered R-module with filtration {Mn}n≥0. Assume that R is complete and that
M is separated. Let F be a finitely generated submodule of M. If Mk = Mk+1 + JkF for all
k ≥ 0, then F = M.

PROOF. Let {x1, . . . ,xm} be a generating set for the R-module F , which we view as a
subset of M = M0. Let ξi be the image of xi in M/M1. Let F1 be the kernel of F →M/M1.
For all k ≥ 0, JkF ⊆ Mk. By hypothesis, the natural map ηk : JkF → Mk/Mk+1 is onto.
Since JkF1 + Jk+1F ⊆Mk+1, (Jk/Jk+1)(F/F1)→Mk/Mk+1 is onto. Therefore, the graded
grJ(R)-module gr(M) is generated by the finite set {ξ1, . . . ,ξm}. By Proposition 7.3.17, M
is generated by {x1, . . . ,xm}. □

COROLLARY 7.3.20. Let R, I be a Zariski pair (Theorem 7.3.7). Let a be an ideal in
R. If aR̂ is a principal ideal, then a is a principal ideal.

PROOF. Assume aR̂ = αR̂, for some α ∈ R̂. By Corollary 7.3.18, R̂ is noetherian.
By Corollary 7.2.14 there exists n0 ≥ 1 such that αR̂∩ În0 ⊆ ÎαR̂. Write α = ∑

m
i=1 aiβi,

for some ai ∈ a and βi ∈ R̂. By Corollary 7.1.10 there exist elements bi in R such that
bi−βi ∈ În0 for each i. Set a = ∑i aibi. Then a∈ a⊆ αR̂. Also, a−α = ∑i ai(bi−βi)∈ În0

is in În0 ∩αR̂ ⊆ ÎαR̂. Therefore, αR̂ ⊆ aR̂+ ÎαR̂. By Corollary 7.3.2, Î ⊆ J(R̂). By
Nakayama’s Lemma (Corollary 2.2.5), αR̂= aR̂. Using Lemma 3.5.4, we get a= aR̂∩R=
αR̂∩R = aR̂∩R = aR. □

3.5. Exercises.

EXERCISE 7.3.21. Let R =
⊕

i≥0 R0 be a commutative graded ring and M =
⊕

i≥0 M0
a graded R-module. Prove that M(−ℓ) is a graded R-module, for any ℓ≥ 0.

EXERCISE 7.3.22. Let R be a commutative ring with ideal I. Given any ℓ ≥ 0 prove
that the twisted filtration {R(−ℓ)n}n≥0 is a stable I-filtration of the R-module R(−ℓ).

EXERCISE 7.3.23. In Exercise 7.3.22, show that the graded grI(R)-module associated
to the twisted filtration {R(−ℓ)n}n≥0 is the twisted module grI(R)(−ℓ). In other words,
show that the graded grI(R)-modules gr(R(−ℓ)) and grI(R)(−ℓ) are isomorphic.

EXERCISE 7.3.24. Let R be a commutative ring and I an ideal in R.
(1) Prove that if R/I is noetherian, and I/I2 is a finitely generated R/I-module, then

the associated graded ring grI(R) =
⊕

n≥0 In/In+1 is noetherian.
(2) Assume moreover that R is separated and complete for the I-adic topology. Prove

that R is noetherian.

4. Lifting of Idempotents and Hensel’s Lemma

As in Section 3.3.1, if R is a ring, then idemp(R) = {x ∈ R | x2− x = 0} denotes the
set of idempotents of R. The homomorphic image of an idempotent is an idempotent,
so given a homomorphism of rings A→ B, there is a function idemp(A)→ idemp(B).
If this function is onto, then we say idempotents of B lift to idempotents of A. In this
section we prove that when R is a ring and I is an ideal of R such that I ⊆ J(R) and R
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is separated and complete with respect to the I-adic topology, then idempotents of R/I
lift to idempotents in R. This is proved in the main result, Corollary 7.4.1, which is a
corollary to Nakayama’s Lemma (Theorem 4.2.3). We then proceed to give two important
applications of Corollary 7.4.1. In Proposition 7.4.3 we show that the change of base
functor from the category of finitely generated projective R-modules to the category of
finitely generated projective R/I-modules is essentially surjective. We end this section
with a second application of the main result to prove Corollary 7.4.4 which is a general
form of Hensel’s Lemma. In the classical Hensel’s Lemma, R is usually assumed to be a
complete local ring with maximal ideal m and residue field k. Then if f ∈ R[x] is a monic
polynomial such that f has a factorization f̄ = ḡ0h̄0 in k[x], where g0 and h0 are monic and
gcd(ḡ0, h̄0) = 1 in k[x], then the factorization lifts to a factorization over R. That is, there
exist monic polynomials g,h in R[x] such that f = gh, ḡ = ḡ0, h̄ = h̄0, and g and h generate
the unit ideal in R[x].

COROLLARY 7.4.1. Let R be a ring and I a two-sided ideal of R such that I ⊆ J(R).
If R is separated and complete with respect to the I-adic topology (that is, R→ lim←−R/In is
an isomorphism), then idemp(R)→ idemp(R/I) is onto.

PROOF. Let x̄ ∈ R/I be an idempotent. For n ≥ 1, I/In is nilpotent. By Corol-
lary 4.2.8 (2), idemp(R/In)→ idemp(R/I) is onto for n > 1. Set e1 = x. By induction,
there is a sequence (ēi) in ∏i R/Ii such that e2

n− en ∈ In and en+1− en ∈ In. So (ēi) is an
idempotent in R = lim←−R/In which maps to x̄ in R/I. □

COROLLARY 7.4.2. Let R be a commutative ring and I an ideal in R such that R is
separated and complete with respect to the I-adic topology (that is, R→ lim←−R/In is an
isomorphism). Let A be an R-algebra which is integral over R.

(1) If A is an R-module of finite presentation, then A is separated and complete in
the IA-adic topology, IA ⊆ J(A), and idemp(A)→ idemp(A⊗R (R/I)) is onto.
That is, an idempotent ē in A/IA lifts to an idempotent e in A.

(2) If A is commutative, then idemp(A)→ idemp(A⊗R (R/I)) is onto.

PROOF. (1): Assume that A is an R-module of finite presentation. We are given that
R→ lim←−R/In is an isomorphism. By Proposition 7.3.1, A→ lim←−A/(InA) is an isomor-
phism, so A is separated and complete in the IA-adic topology. By Proposition 7.1.11, IA
is contained in the Jacobson radical of A. The conclusion follows from Corollary 7.4.1 (3).

(2): First we reduce to the case where A is generated as an R-algebra by a single
element. Let a ∈ A be a preimage of ē. Let C be the R-subalgebra of A generated by a.
Then A is a faithful C-algebra which is integral over C. By Theorem 6.3.6, SpecA→ SpecC
is onto. The reader should verify that Spec Ā→ SpecC̄ is onto as well, where C̄ = C/IC.
Write ā for the image of a in C̄. Under the natural map C̄→ Ā, we have ā 7→ ē. The reader
should verify that SpecC̄ = V (ā)∪V (1− ā), so by Corollary 3.3.14 there is a unique
idempotent f̄ in C̄ such that V (ā) = V ( f̄ ). From this it follows that f̄ 7→ ē. If there exists
an idempotent f in C that lifts f̄ , then using C→ A, we get a lifting of ē.

Now assume A is generated as an R-algebra by a single element a. Then a is integral
over R. Let p ∈ R[x] be a monic polynomial such that p(a) = 0. Let C = R[x]/(p). Then C
is a finitely generated free R-module. Let J be the kernel of the natural projection C→ A.
Let {Jα} be the directed system of all finitely generated ideals in C such that Jα ⊆ J. Then
Cα = C/Jα is an R-module of finite presentation, for each α , and A = lim−→Cα . Therefore,
Ā = A/IA = lim−→Cα/ICα = lim−→C̄α . By Exercise 2.7.39, an idempotent ē in Ā comes from
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an idempotent ēα in C̄α , for some α . By (1) we can lift ēα to an idempotent eα ∈ Cα .
Using Cα → A, we get a lifting of ē to an idempotent in A. □

As an application of Corollary 7.4.1, we give sufficient conditions on a ring R and an
ideal I in R such that every finitely generated projective R/I-module lifts to a finitely gen-
erated projective R-module. If C is the category of finitely generated projective R-modules
and D is the category of finitely generated projective R/I-modules, then Proposition 7.4.3
shows that the functor ()⊗R (R/I) : C→D is essentially surjective.

PROPOSITION 7.4.3. Let R be a ring and I a two-sided ideal of R such that I ⊆ J(R)
and R is separated and complete with respect to the I-adic topology (that is, R→ lim←−R/In

is an isomorphism).

(1) If Q is a finitely generated projective R/I-module, then there is a finitely gener-
ated projective R-module P such that Q∼= P⊗R (R/I).

(2) If g : Q1→ Q2 is a homomorphism of finitely generated projective R/I-modules,
then g lifts to a homomorphism f : P1 → P2 of finitely generated projective R-
modules.

(3) If Q is an R/I-progenerator module, then there is an R-progenerator module P
such that Q∼= P⊗R (R/I).

PROOF. (1): For some m > 0, there is an isomorphism (R/I)m ∼= Q⊕Q0. Let ē be the
idempotent matrix in Mm(R/I) such that Q∼= im(ē) and Q0∼= ker(ē). Since lim←−Mn(R/In)=

Mn(lim←−R/In) = Mn(R), by Corollary 7.4.1, we can lift ē to an idempotent e ∈ Mn(R). If
we set P = im(e), then Q∼= P⊗R (R/I).

(2): Using (1), there are projective R-modules Pi such that Qi∼=Pi⊗R (R/I). Combined
with g, there is a diagram

P1 //

∃ f
��

Q1

g

��

// 0

P2 // Q2 // 0

where the rows are exact. Since P1 is a projective R-module, there exists a map f which
makes the diagram commutative (Proposition 2.1.1).

(3): Is left to the reader. □

As an application of Corollary 7.4.2, we prove the following form of Hensel’s Lemma.

COROLLARY 7.4.4. (Hensel’s Lemma) Let R be a commutative ring and I an ideal
of R such that R is separated and complete with respect to the I-adic topology (that is,
R→ lim←−R/In is an isomorphism). If there exist polynomials f ,g0,h0 ∈ R[x] such that

(1) f , g0 and h0 are monic,
(2) f −g0h0 ∈ IR[x], and
(3) R[x] = g0R[x]+h0R[x]+ IR[x],

then there exist polynomials g,h ∈ R[x] such that

(4) g and h are monic,
(5) R[x] = gR[x]+hR[x],
(6) g−g0 ∈ IR[x],
(7) h−h0 ∈ IR[x], and
(8) f = gh ∈ R[x].
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PROOF. Write R̄ for R/I and let f̄ , ḡ0, h̄0 denote the images of the polynomials in
R̄[x]. By (2) we have f̄ = ḡ0h̄0 and by (3), (ḡ0, h̄0) is the unit ideal of R̄[x]. If we set
S = R[x]/( f ), then S is a finitely generated free R-module and the rank of S is equal to
deg f = degg0+degh0, by Example 1.6.10 (2). Write S̄ for S/IS = S⊗R R̄. By the Chinese
Remainder Theorem, Theorem 1.1.7,

S̄ =
R̄[x]
( f̄ )

=
R̄[x]

(ḡ0h̄0)
=

R̄[x]
(ḡ0)
⊕ R̄[x]

(h̄0)
.

By Lemma 3.2.4, corresponding to the direct summands of S̄ are orthogonal idempotents
ē1, ē2 and 1 = ē1 + ē2. By Corollaries 7.4.2 and 7.4.1, the map idempS→ idemp S̄ is a
one-to-one correspondence. The idempotents ē1, ē2 lift to idempotents e1,e2 of S such that
e1e2 = 0 and e1 +e2 = 1. The decomposition of S̄ lifts to a decomposition S = R[x]/( f ) =
Se1⊕Se2. Let θ1 : R[x]→ Se1 be the composite map R[x]→ R[x]/( f )∼= S→ Se1. Denote
by n0 the degree of g0. In R[x] consider the R-submodule T = R · 1+Rx+ · · ·+Rxn0−1.
Consider the composite map

R[x]
θ1−→ Se1→

Se1

ISe1
∼=

R̄[x]
(ḡ0)

.

If x̄ denotes the coset x+ (ḡ0) in R̄[x]/(ḡ0), then the image of T in R̄[x]/(ḡ0) is the R̄-
submodule R̄ · 1+ R̄x̄+ · · ·+ R̄x̄n0−1, which is equal to R̄[x]/(ḡ0). Therefore, Se1 is gen-
erated as an R-module by θ1(T ) and ISe1. Nakayama’s Lemma (Corollary 2.2.5 (2)) says
that θ1(T ) = Se1. If we write y1 = θ1(x) = xe1, then yn0

1 ∈ θ1(T ). Hence there is a monic
polynomial g ∈ R[x] of degree n0 such that θ1(g) = g(y1) = 0. There is a map θ̃1 such that

R[x]
θ1 //

  

Se1

R[x]
(g)

θ̃1

??

is a commutative diagram. Tensoring θ̃1 with ()⊗R R̄, the diagram

R[x]
(g)

��

θ̃1 // Se1

��
R̄[x]
(ḡ)

θ̃1⊗1 // Se1
ISe1

∼= // R̄[x]
(ḡ0)

commutes. Therefore, in the ring R̄[x], ḡ is in the ideal (ḡ0). That is, ḡ0 divides ḡ. Since
both polynomials are monic of degree n0, the Division Algorithm implies that ḡ0 = ḡ.
This shows θ̃1⊗1 is an isomorphism of R̄-modules. Since Se1 is a direct summand of
S, Se1 is R-projective. By Example 1.6.10 (2), R[x]/(g) is a free R-module of rank n0. By
Exercise 4.2.15, it follows that θ̃1 is an isomorphism. Likewise there is a monic polynomial
h ∈ R[x] such that the degree of h is equal to the degree of h0, h̄ = h̄0, h(xe2) = 0, and
R[x]/(h) ∼= Se2. So the image of h under θ2 : R[x]→ Se2 is 0. Since gh is in the kernel of
the map R[x]→ R[x]/( f ) = S = Se1⊕Se2, it follows that f divides gh. Since gh and f are
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both monic of the same degree, it follows that f = gh. In the commutative diagram

R[x]
( f )

��

// R[x]
(g)
⊕ R[x]

(h)

��
S // Se1

⊕
Se2

all of the maps are isomorphisms. By Theorem 1.1.7, the ideal (g,h) is equal to R[x]. □

When R is a complete local ring with maximal ideal m, Lemma 7.4.5, which is due to
Azumaya [9], shows that simple roots have unique liftings modulo m.

LEMMA 7.4.5. Let R be a local ring with maximal ideal m and residue field k such
that R is separated and complete with respect to the m-adic topology. Let f ∈ R[x] be a
monic polynomial and a ∈ R. If ā ∈ k is a simple root of f̄ , then there exists a unique b ∈ R
such that f (b) = 0 and b−a ∈m.

PROOF. Assume ā is a simple root of f̄ . Then there exists a monic polynomial g0 ∈
R[x] such that f̄ = (x− ā)ḡ0 in k[x] and ḡ0(ā) ̸= 0. Therefore, x− ā and ḡ0 generate the
unit ideal in k[x]. By Corollary 7.4.4, there are b ∈ R, g ∈ R[x] such that f = (x− b)g,
b−a ∈ m and ḡ = ḡ0. This shows f (b) = 0. Now suppose c−a ∈ m and f (c) = 0. Then
(c−b)g(c) = 0. But g(c) ̸∈m because c̄ = ā is not a root of ḡ. Since R is a local ring, this
implies g(c) is an invertible element of R. Hence c−b = 0 and b is unique. □



CHAPTER 8

Homological Algebra

This chapter presents a self-contained introduction to homological algebra. The only
references are to results already proven in the earlier chapters. In Sections 8.1 and 8.2 the
goal is to derive the fundamental properties of the left derived and right derived groups of
a covariant or contravariant additive functor from a category of modules to the category
of abelian groups. Section 8.3 is an introduction to the Tor and Ext groups. These groups
arise when the theory developed in the first two sections is applied to the bifunctors defined
by tensor product and Hom.

In Section 8.4 the notions of projective dimension and injective dimension are in-
troduced for a module M. For a commutative ring R, the cohomological dimension is
defined and some of the first properties are proven. Section 8.5 is an introduction to group
cohomology. If G is a group, and A is a G-module, the cohomology groups of G with
coefficients in A are defined using the theory from Section 8.3. Section 8.6 contains an
introduction to the theory of faithfully flat descent. The starting point for this theory is
the Amitsur complex associated to a faithfully flat extension of commutative rings, S/R.
Hochschild cohomology is defined in Section 8.7. The Amitsur complex is the basis for
the Amitsur cohomology of Section 8.8. We show that Amitsur cohomology can be used
to parametrize the twisted forms of a module.

Throughout this chapter, R denotes an arbitrary ring. Unless otherwise specified, a
module will be a left R-module, a homomorphism will be a homomorphism of R-modules,
and a functor will be an additive functor from the category of R-modules to the category of
abelian groups. (See Example 8.1.2 for the definition of additive functor.)

The author acknowledges that the material in this chapter is based on various sources,
including [52], [42], [24], [37], [15], [31], and [48].

1. Homology Group Functors

1.1. Chain Complexes. A chain complex in RM is a sequence of R-modules {Ai | i∈
Z} and homomorphisms di : Ai→ Ai−1 such that di−1di = 0 for all i ∈ Z. The maps di are
called the boundary maps. The notation A• denotes a chain complex. If it is important to
reference the boundary maps, we will write (A•,d•). If the modules Ai are specified for
some range n0 ≤ i ≤ n1, then it is understood that Ai = 0 for i < n0 or i > n1. Let A• and
B• be chain complexes. A morphism of chain complexes is a sequence of homomorphisms
f = { fi : Ai→ Bi | i ∈ Z} such that for each i the diagram

Ai+1
di+1 //

fi+1

��

Ai
di //

fi
��

Ai−1

fi−1

��
Bi+1

di+1 // Bi
di // Bi−1

271
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commutes. In this case we write f : A•→B•. The reader should verify that the collection of
all chain complexes over R together with morphisms is a category. In some of the exercises
listed below the reader is asked to verify many of the important features of this category.

Suppose A• is a chain complex and n ∈ Z. Elements of An are called n-chains. The
module An contains the two submodules

Bn(A•) = imdn+1, and

Zn(A•) = kerdn.

Elements of Bn(A•) are called n-boundaries and elements of Zn(A•) are called n-cycles.
The condition didi+1 = 0 translates into Bn(A•) ⊆ Zn(A•). The nth homology module of
A• is defined to be the quotient

Hn(A•) = Zn(A•)/Bn(A•) = kerdn/ imdn+1.

EXAMPLE 8.1.1. (1) A short exact sequence 0→ A→ B→ C→ 0 is a chain
complex. It is understood that the sequence is extended with 0 terms.

(2) If M is an R-module, then a projective resolution

· · · → P1→ P0→M→ 0

of M is a chain complex (see Exercise 2.1.21). It is understood that the sequence
is extended with 0 terms.

(3) If A• is a chain complex, the reader should verify that the following are equivalent
(a) Hn(A•) = 0 for all n ∈ Z.
(b) A• is an exact sequence.

EXAMPLE 8.1.2. A covariant functor F : RM→ ZM is said to be additive in case for
every pair of R-modules A,B, the map F(·) : HomR(A,B)→ HomZ(F(A),F(B)) is a Z-
module homomorphism. In particular, under a covariant additive functor, the zero homo-
morphism is mapped to the zero homomorphism. It follows that if A• is a chain complex,
then F(A•) is a chain complex. It is for this reason that additive functors play an important
role in homological algebra. A contravariant functor F : RM→ ZM is said to be additive
in case for every pair of R-modules A,B, the map F(·) : HomR(A,B)→HomZ(F(B),F(A))
is a Z-module homomorphism.

LEMMA 8.1.3. Let n be an arbitrary integer.
(1) If f : A•→ B• is a morphism of chain complexes, then the assignment

zn +Bn(A•) 7→ fn(zn)+Bn(B•)

defines an R-module homomorphism

Hn( f ) : Hn(A•)→ Hn(B•).

(2) The assignment A• 7→ Hn(A•) defines a functor from the category of chain com-
plexes to the category of R-modules.

PROOF. (1): Given zn ∈ Zn(A•), we have dn fn(zn) = fn−1dn(zn) = fn−1(0) = 0. This
says that the composite map

fn : Zn(A•)→ Zn(B•)→ Hn(B•)

is well defined. Given an+1 ∈ An+1, fndn+1(an+1) = dn+1 fn+1(an+1). This implies that
fn(Bn(A•))⊆ Bn(B•), so Hn( f ) : Hn(A•)→ Hn(B•) is well defined.

(2): is left to the reader. □
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1.2. Exercises.

EXERCISE 8.1.4. For the category of chain complexes, the reader should give appro-
priate definitions for the following terminology.

(1) The kernel of a morphism.
(2) The cokernel of a morphism.
(3) The image of a morphism.
(4) A subchain complex of a chain complex and the quotient of a chain complex

modulo a subchain complex.
(5) monomorphism, epimorphism, and isomorphism.
(6) short exact sequence.

EXERCISE 8.1.5. Let A• be a chain complex. For each n ∈ Z there are short exact
sequences of R-modules.

(1) 0→ Bn(A•)→ Zn(A•)→ Hn(A•)→ 0
(2) 0→ Zn(A•)→ An→ Bn−1(A•)→ 0
(3) 0→ Hn(A•)→ An/Bn(A•)→ Bn−1(A•)→ 0

EXERCISE 8.1.6. Let A• be a chain complex. For each n∈Z there is an exact sequence
of R-modules.

0→ Hn(A•)→ An/Bn(A•)
dn−→ Zn−1(A•)→ Hn−1(A•)→ 0

EXERCISE 8.1.7. Let F be an exact covariant additive functor from RM to ZM. If A•
is a chain complex, then F(Hn(A•))∼= Hn(F(A•)). (Hint: Start with the exact sequences

0→ Bn(A•)→ Zn(A•)→ Hn(A•)→ 0

0→ Zn(A•)→ An→ Bn−1(A•)→ 0

and apply F.)

EXERCISE 8.1.8. Let J be an index set and {(A j)• | j ∈ J} a collection of chain
complexes.

(1) Show that

· · · ⊕dn+1−−−→
⊕
j∈J

(A j)n
⊕dn−−→

⊕
j∈J

(A j)n−1
⊕dn−1−−−→ ·· ·

is a chain complex, which is called the direct sum chain complex.
(2) Show that homology commutes with a direct sum. That is

Hn

(⊕
j∈J

(A j)•

)
∼=
⊕
j∈J

Hn
(
(A j)•

)
.

(Hint: Start with the exact sequences

0→ Bn((A j)•)→ Zn((A j)•)→ Hn((A j)•)→ 0

0→ Zn((A j)•)→ (A j)n→ Bn−1((A j)•)→ 0

and take direct sums.)

EXERCISE 8.1.9. Let {(A j)•,φ
i
j} be a directed system of chain complexes for a di-

rected index set I.
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(1) Show that

· · · d⃗n+1−−→ lim−→(A j)n
d⃗n−→ lim−→(A j)n−1

d⃗n−1−−→ ·· ·
is a chain complex, which is called the direct limit chain complex.

(2) Show that homology commutes with a direct limit. That is

Hn

(
lim−→(A j)•

)
∼= lim−→Hn

(
(A j)•

)
.

(Hint: Start with the exact sequences

0→ Bn((A j)•)→ Zn((A j)•)→ Hn((A j)•)→ 0

0→ Zn((A j)•)→ (A j)n→ Bn−1((A j)•)→ 0

and take direct limits.)

1.3. The Long Exact Sequence of Homology.

THEOREM 8.1.10. Let
0→ A•

f−→ B•
g−→C•→ 0

be an exact sequence of chain complexes. Then there is a long exact sequence of homology
modules

· · · → Hn(A•)
H( f )−−−→ Hn(B•)

H(g)−−→ Hn(C•)
∂−→ Hn−1(A•)

H( f )−−−→ Hn−1(B•)
H(g)−−→ ·· ·

PROOF. The idea for the proof is to reduce the problem into two applications of the
Snake Lemma (Theorem 2.5.2).

Step 1: For each n ∈ Z the sequences

0→ Zn(A•)
fn−→ Zn(B•)

gn−→ Zn(C•)

An/Bn(A•)
fn−→ Bn/Bn(B•)

gn−→Cn/Bn(C•)→ 0

are exact. To see this, start with the commutative diagram

0 // An
fn //

dn

��

Bn
gn //

dn

��

Cn //

dn

��

0

0 // An−1 // Bn−1 // Cn−1 // 0

and apply the Snake Lemma. For the first sequence, use the fact that Zn(X•) is the the
kernel of dn for X = A,B,C. For the second sequence, use the fact that Bn−1(X•) is the
image of dn for X = A,B,C and increment n by one.

Step 2: For each n ∈ Z there is an exact sequence

Hn(A•)
H( f )−−−→ Hn(B•)

H(g)−−→ Hn(C•)
∂−→ Hn−1(A•)

H( f )−−−→ Hn−1(B•)
H(g)−−→ Hn−1(C•)

of R-modules. To see this, start with the commutative diagram

An/Bn(A•)
fn //

dn
��

Bn/Bn(B•)
gn //

dn
��

Cn/Bn(C•) //

dn
��

0

0 // Zn−1(A•)
fn−1 // Zn−1(B•)

gn−1 // Zn−1(C•)

the rows of which are exact by Step 1. The exact sequence of Exercise 8.1.6 says that the
kernel of dn is Hn() and the cokernel is Hn−1(). Apply the Snake Lemma. □



1. HOMOLOGY GROUP FUNCTORS 275

THEOREM 8.1.11. In the context of Theorem 8.1.10, the connecting homomorphism
∂ : Hn(C•)→ Hn−1(A•) is natural. More specifically, if

0 // A•
f //

χ

��

B•
g //

ρ

��

C• //

σ

��

0

0 // A′•
f ′ // B′•

g′ // C′• // 0

is a commutative diagram of chain complexes with exact rows, then there is a commutative
diagram

Hn(A•)
H( f ) //

H(χ)

��

Hn(B•)
H(g) //

H(ρ)

��

Hn(C•)
∂ //

H(σ)

��

Hn−1(A•)

H(χ)

��
Hn(A′•)

H( f ′) // Hn(B′•)
H(g′) // Hn(C′•)

∂ ′ // Hn−1(A′•)

with exact rows for each n ∈ Z.

PROOF. Most of this follows straight from Lemma 8.1.3 and Theorem 8.1.10. It is
only necessary to check that the third square is commutative. For this, use the definition of
∂ given in the proof of Theorem 2.5.2. The gist of the proof is H(χ)∂ = χn−1 f−1

n−1dng−1
n =

f ′n−1
−1d′ng′n

−1
σn = ∂ ′H(σ). The details are left to the reader. □

1.4. Homotopy Equivalence. Let A• and B• be chain complexes. By Hom(A•,B•)
we denote the set of all morphisms f : A• → B•. For each i ∈ Z, fi : Ai → Bi is an R-
module homomorphism. The sum of two morphisms f ,g ∈ Hom(A•,B•) is defined to be
the sequence f + g = { fi + gi | i ∈ Z}. This binary operation turns Hom(A•,B•) into a
Z-module. Two morphisms f ,g are said to be homotopic if there exists a sequence of R-
module homomorphisms {ki : Ai→ Bi+1 | i ∈ Z} such that fn−gn = dn+1kn + kn−1dn for
each n∈Z. If f and g are homotopic, then we write f ∼ g and the sequence {ki} is called a
homotopy operator. The reader should verify that homotopy equivalence is an equivalence
relation on Hom(A•,B•).

THEOREM 8.1.12. Let A• and B• be chain complexes. For each n ∈ Z, the functor
Hn() is constant on homotopy equivalence classes. In other words, if f and g are homotopic
in Hom(A•,B•), then H( f ) is equal to H(g) in HomR(Hn(A•),Hn(B•)).

PROOF. We are given a homotopy operator {ki : Ai→ Bi+1 | i ∈ Z} such that for any
z ∈ Zn(A•)

( fn−gn)(z) = dn+1kn(z)+ kn−1dn(z)
for each n ∈ Z. But dn(z) = 0, which implies fn(z)−gn(z) = dn+1kn(z) ∈ Bn(B•). □

THEOREM 8.1.13. Let X• and Y• be chain complexes such that each Xi is a projective
R-module and Xi = Yi = 0 for all i < 0. Suppose M and N are R-modules and that there
exist R-module homomorphisms ε and π such that

· · · → X2→ X1→ X0
ε−→M→ 0

is a chain complex and
· · · → Y2→ Y1→ Y0

π−→ N→ 0
is a long exact sequence.

(1) Given any f ∈ HomR(M,N), there exists a morphism f : X• → Y• which com-
mutes with f on the augmented chain complexes. That is, f ε = π f0.
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(2) The morphism f is unique up to homotopy equivalence.

PROOF. (1): The morphism f is constructed recursively. To construct f0, consider the
diagram

X0

∃ f0
��

f ε

��
Y0

π // N // 0

with bottom row exact. Since X0 is projective, there exists f0 : X0→Y0 such that π f0 = f ε .
To construct f1, start with the commutative diagram

X1

∃ f1
��

d1 // X0

f0
��

ε // M

f
��

Y1
d1 // Y0

π // N

The top row is a chain complex, the bottom row is exact. Because π f0d1 = f εd1 = 0, it
follows that im( f0d1)⊆ ker(π) = im(d1). Consider the diagram

X1

∃ f1
��

f0d1

""
Y1

d1 // imd1 // 0

in which the bottom row is exact. Since X1 is projective, there exists f1 : X1→Y1 such that
d1 f1 = f0d1.

Recursively construct fn+1 using fn and fn−1. Start with the commutative diagram

Xn+1

∃ fn+1

��

dn+1 // Xn

fn
��

dn // Xn−1

fn−1

��
Yn+1

dn+1 // Yn
dn // Yn−1

The top row is a chain complex, the bottom row is exact. Since dn fndn+1 = fn−1dndn+1 = 0,
it follows that im( fndn+1)⊆ ker(dn) = im(dn+1). Consider the diagram

Xn+1

∃ fn+1

��

fndn+1

$$
Yn+1

dn+1 // imdn+1 // 0

in which the bottom row is exact. Since Xn+1 is projective, there exists fn+1 : Xn+1→Yn+1
such that dn+1 fn+1 = fndn+1. This proves Part (1).

(2): Assume that g : X•→Y• is another morphism such that gε = g0π . We construct a
homotopy operator {ki : Xi→ Yi+1} recursively. Start by setting ki = 0 for all i < 0.

To construct k0, start with the commutative diagram

X0

f0−g0
��

ε // M

f
��

Y1
d1 // Y0

π // N
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in which the bottom row is exact. Because π f0 = πg0 = f ε , it follows that im( f0−g0)⊆
ker(π) = im(d1). Consider the diagram

X0
∃k0

}}
f0−g0
��

Y1
d1 // imd1 // 0

in which the bottom row is exact. Since X0 is projective, there exists k0 : X0→Y1 such that
d1k0 = f0−g0.

Recursively construct kn using kn−1 and kn−2. Start with the commutative diagram

Xn

fn−gn

��

dn // Xn−1

fn−1−gn−1

��

kn−1

~~

dn−1 // Xn−2

kn−2

}}
Yn+1 dn+1

// Yn dn

// Yn−1

The top row is a chain complex, the bottom row is exact. Since

dn( fn−gn) = ( fn−1−gn−1)dn = (dnkn−1 + kn−2dn−1)dn = dnkn−1dn

it follows that im( fn−gn− kn−1dn)⊆ ker(dn) = im(dn+1). Consider the diagram

Xn

∃kn

vv
fn−gn−kn−1dn

��
Yn+1

dn+1 // imdn+1 // 0

in which the bottom row is exact. Since Xn is projective, there exists kn : Xn→ Yn+1 such
that dn+1kn = fn−gn− kn−1dn. This proves Part (2). □

1.5. Exercises.

EXERCISE 8.1.14. Suppose f and g are homotopic morphisms from A• to B• and F
is an covariant additive functor on R-modules. Prove that F( f ) and F(g) are homotopic
morphisms from F(A•) to F(B•).

EXERCISE 8.1.15. Let A• be a chain complex. A contracting homotopy is a homotopy
operator {ki : Ai→ Ai+1 | i ∈ Z} such that dn+1kn +kn−1dn is equal to the identity function
on An for each n ∈ Z. Show that if a contracting homotopy exists, then Hn(A•) = 0 for all
n.

EXERCISE 8.1.16. (Tensor defines an additive functor) Let M be a right R-module.
Show that M⊗R (·) is an additive functor RM→ ZM.

EXERCISE 8.1.17. (Hom defines an additive functor) Let M be an R-module. Prove
that HomR(M, ·) is a covariant additive functor and HomR(·,M) is a contravariant additive
functor.
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EXERCISE 8.1.18. Assume we are given a commutative diagram

// An

αn

��

fn // Bn

βn

��

gn // Cn

∼= γn

��

hn // An−1

αn−1

��

fn−1 // Bn−1

βn−1

��

gn−1 // Cn−1

∼= γn−1

��

//

// Xn
rn // Yn

sn // Zn
tn // Xn−1

rn−1 // Yn−1
sn−1 // Zn−1 //

where the rows are chain complexes. If the rows are exact sequences and γn is an isomor-
phism for every n, then there is an exact sequence

· · · → An
δn−→ Xn⊕Bn

εn−→ Yn
∂n−→ An−1

δn−1−−→ Xn−1⊕Bn−1
εn−1−−→ Yn−1

∂n−1−−→ ·· ·

where the maps are defined as follows: δn = (αn, fn), εn = rn−βn, and ∂n = hnγ−1
n sn. The

maps γn are called excision isomorphisms and the resulting long exact sequence is called a
Mayer-Vietoris sequence. (Hint: This can be proved directly by showing exactness at each
term.)

1.6. Left Derived Functors. Let F : RM→ ZM be a covariant additive functor. To
F we associate a sequence of functors LnF : RM→ ZM, one for each n≥ 0, called the left
derived functors of F. For any left R-module M, if P•→M→ 0 is a projective resolution of
M, define LnF(M) to be the nth homology group of the complex F(P•). In Theorem 8.1.19,
we show that this definition does not depend on the choice of P•. Given any R-module
homomorphism φ : M → N, let P• → M be a projective resolution of M and Q• → N a
projective resolution of N. According to Theorem 8.1.13 there is an induced morphism
of chain complexes φ : P•→ Q• which is unique up to homotopy equivalence. Applying
the functor, we get a morphism of chain complexes F(φ) : F(P•)→ F(Q•). According to
Exercise 8.1.14, this morphism depends only on the homotopy class of φ : P•→ Q•. This
morphism induces a Z-module homomorphism LnF(φ) : LnF(M)→ LnF(N) for each n.
In Theorem 8.1.19, we show that this definition does not depend on the choice of P• and
Q•.

THEOREM 8.1.19. Let F : RM→ ZM be an additive covariant functor. For each n≥ 0
there is an additive covariant functor LnF : RM→ ZM.

PROOF. First we show that the definition of left derived functors does not depend on
the choice of projective resolution. Let M be an R-module and suppose we are given two
projective resolutions P• → M and Q• → M. Starting with the identity map 1 : M→ M,
apply Theorem 8.1.13 (1) from both directions to get morphisms f : P•→Q• and g : Q•→
P•. Theorem 8.1.13 (2) (from both directions) says f g∼ 1 and g f ∼ 1. By Exercise 8.1.14,
F( f g)∼ 1 and F(g f )∼ 1. In conclusion, there is an isomorphism

ψ(P•,Q•) : Hn(F(P•))∼= Hn(F(Q•))

which is uniquely determined by the module M and the two resolutions P• and Q•. The
inverse function is ψ(Q•,P•).

Secondly, suppose φ : M→ N is any R-module homomorphism. We show that

LnF(φ) : LnF(M)→ LnF(N)

is well defined. Start with a projective resolution P•→M of M and a projective resolution
R• → N of N. In the paragraph preceding this theorem it was shown that φ , P• and R•
uniquely determine a homomorphism

φ(P•,R•) : Hn(F(P•))→ Hn(F(R•)).
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Suppose Q•→M is another projective resolution of M, and S•→ N is another projective
resolution of N, and

φ(Q•,S•) : Hn(F(Q•))→ Hn(F(S•))

is the associated homomorphism. By the first paragraph of this proof, there are isomor-
phisms ψ(P•,Q•) : Hn(F(P•)) ∼= Hn(F(Q•)) and ψ(R•,S•) : Hn(F(R•)) ∼= Hn(F(S•)). To
show that LnF(φ) is well defined, it suffices to show that the square

Hn(F(P•))
ψ(P•,Q•) //

φ(P•,R•)
��

Hn(F(Q•))

φ(Q•,S•)
��

Hn(F(R•))
ψ(R•,S•) // Hn(F(S•))

commutes. The Z-module homomorphisms in this square are uniquely determined by
morphisms in the category of chain complexes which make up a square

P•
α //

γ

��

Q•

δ

��
R•

β // S•

which is not necessarily commutative. Nevertheless, up to homotopy equivalence, this
square is commutative. That is, by Theorem 8.1.13, δα ∼ βγ .

The rest of the details are left to the reader. □

THEOREM 8.1.20. Let

· · · d3−→ P2
d2−→ P1

d1−→ P0
ε−→M→ 0

be a projective resolution of the R-module M. Define K0 = kerε , and for each n > 0, define
Kn = kerdn. If F : RM→ ZM is an additive covariant functor, then

Ln+1F(M) = Ln−iF(Ki)

for i = 0, . . . ,n−1.

PROOF. Notice that for each ℓ≥ 1

(1.1) · · · → Pn+1
dn+1−−→ Pn→ ···

dℓ+1−−→ Pℓ
dℓ−→ Kℓ−1→ 0

is a projective resolution for Kℓ−1. Define a chain complex P(−ℓ)• by truncating P• and
shifting the indices. That is, P(−ℓ)i = Pℓ+i and d(−ℓ)i = dℓ+i, for each i ≥ 0. Using this
notation, (1.1) becomes

(1.2) · · · → P(−ℓ)n−ℓ+1
d(−ℓ)n−ℓ+1−−−−−−→ P(−ℓ)n−ℓ→ ···

d(−ℓ)1−−−−→ P(−ℓ)0
d(−ℓ)0−−−−→ Kℓ−1→ 0

By Theorem 8.1.19 we may compute the (n− ℓ+1)th left derived of Kℓ−1 using the pro-
jective resolution (1.2). For ℓ ≥ 1 the sequences (1.1) and (1.2) agree, hence applying F
and taking homology yields

Ln−ℓ+1F(Kℓ−1) = Ln+1F(M)

as required. □
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1.7. The Long Exact Sequence.

LEMMA 8.1.21. Suppose

0→ A σ−→ B τ−→C→ 0

is a short exact sequence of R-modules, P•→ A is a projective resolution of A, and R•→C
is a projective resolution of C. Then there exists a projective resolution Q•→ B for B and
morphisms σ and τ such that

0→ P•
σ−→ Q•

τ−→ R•→ 0

is a short exact sequence of chain complexes. Moreover, for each n ≥ 0 the short exact
sequence

0→ Pn
σn−→ Qn

τn−→ Rn→ 0
is split exact.

PROOF. Start with the diagram

P0

α

��

R0

γ

��
0 // A

��

σ // B τ // C

��

// 0

0 0

where the horizontal row is exact, and P0 and R0 are projectives. Because R0 is projective,
there exists β2 : R0→ B such that τβ2 = γ . Let β1 = σα . Let β : P0⊕R0→ B be defined by
(x,y) 7→ β1(x)+β2(y). Let Q0 = P0⊕R0 and let σ0 and τ0 be the injection and projection
maps. The diagram

0 // P0
σ0 //

α

��

Q0

β

��

τ0 // R0

γ

��

// 0

0 // A

��

σ // B

��

τ // C

��

// 0

0 0 0

commutes and the rows and columns are exact. The Snake Lemma (Theorem 2.5.2) says
that

0→ kerα
σ−→ kerβ

τ−→ kerγ → 0
is a short exact sequence. The proof follows by induction. □

THEOREM 8.1.22. Suppose

0→ A σ−→ B τ−→C→ 0

is a short exact sequence of R-modules and F : RM→ ZM is an additive covariant functor.
(1) There exists a long exact sequence of left derived groups

· · · τ−→ Ln+1F(C)
∂−→ LnF(A)

σ−→ LnF(B)
τ−→ LnF(C)

∂−→ Ln−1F(A)→ ···

· · · ∂−→ L1F(A)
σ−→ L1F(B)

τ−→ L1F(C)
∂−→ L0F(A)

σ−→ L0F(B)
τ−→ L0F(C)→ 0.
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(2) The functor L0F is right exact.

PROOF. (1): Start with projective resolutions P• → A for A and R• → C for C. Use
Lemma 8.1.21 to construct a projective resolution Q•→ B for B and morphisms σ and τ

such that

0→ P•
σ−→ Q•

τ−→ R•→ 0

is a short exact sequence of chain complexes. Applying the functor,

(1.3) 0→ F(P•)
σ−→ F(Q•)

τ−→ F(R•)→ 0

is a short exact sequence of chain complexes because for each n

0→ Pn
σn−→ Qn

τn−→ Rn→ 0

is split exact. The result follows from Theorem 8.1.10 applied to (1.3).
(2): Because the chain complex A• is zero in degrees i < 0, the sequence

L0F(A)→ L0F(B)→ L0F(C)→ 0

is exact. □

LEMMA 8.1.23. (The Cube Lemma) Let

K a //

��

b

��

L

��

d

��

A //

α

��

��

B
β

��

��

E //

��

F

��
G // H

C

γ

??

// D
δ

__

M

??

c // N

__

be a diagram of R-module homomorphisms. The subdiagram made up of the 8 inner ver-
tices and 12 edges is called a cube. Let K,L,M,N be the kernels of α,β ,γ,δ respectively.
If the cube is commutative, then there exist unique homomorphisms a,b,c,d such that the
overall diagram commutes.

PROOF. There is a unique a : K→ L such that the diagram

0 // K

a
��

// A

��

α // E

��
0 // L // B

β // F



282 8. HOMOLOGICAL ALGEBRA

commutes. Likewise for b : K → M, c : M→ N, and d : L→ N. To finish the proof, we
show that the square

K

b
��

a // L

d
��

M c // N

commutes. Look at the composite homomorphism

K a−→ L d−→ N→ D

which factors into

K→ A→ B→ D

which factors into

K→ A→C→ D

which factors into

K b−→M→C→ D

which factors into

K b−→M c−→ N→ D.

Since N→ D is one-to-one, this proves da = cb. □

LEMMA 8.1.24. Suppose

0 // A σ //

a
��

B τ //

b
��

C //

c
��

0

0 // A′ σ ′ // B′ τ ′ // C′ // 0

is a commutative diagram of R-modules, with exact rows. Suppose we are given projective
resolutions for the four corners P•→ A, R•→C, P′•→ A′, and R′•→C′. Then there exist
projective resolutions Q•→ B and Q′•→ B′ and morphisms such that the diagram of chain
complexes

0 // P•
σ //

a
��

Q•
τ //

b
��

R• //

c
��

0

0 // P′•
σ ′ // Q′•

τ ′ // R′• // 0

is commutative with exact rows.

PROOF. The morphisms a : P• → P′• and c : R• → R′• exist by Theorem 8.1.13. The
projective resolutions Q• → B, Q′• → B′ and the remaining morphisms are constructed
iteratively. The reader should verify the inductive step, which is similar to the basis step
given below.
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Start with the commutative diagram

P0

a0

��
d

��

R0
c0

��
f

��

P′0

d′

��

R′0

f ′

��

A
a

~~

σ // B
b

��

τ // C
c

~~
A′ σ ′ // B′ τ ′ // C′

The maps d,d′, f , f ′,τ,τ ′ are onto and σ ,σ ′ are one-to-one. The R-modules P0,R0,P′0,R
′
0

are projective. Because R0 is projective, there exists e2 : R0 → B such that τe2 = f . Let
e1 = σd. Because R′0 is projective, there exists e′2 : R′0 → B′ such that τ ′e′2 = f ′. Let
e1 = σ ′d′. Consider the diagram

R0
e2

ww
f~~

c0

��

B

b
��

τ
// C

c
��

P′0
σ ′d′ // B′ τ ′ // C′

R′0

e′2

gg
f ′

__

which is not necessarily commutative. The row P′0→ B′→C′ is exact. By construction of
e2 and e′2, it follows that τ ′(be2−e′2c0) = 0. Since R0 is projective, there exists e3 : R0→ P′0
such that σ ′d′e3 = be2−e′2c0. Set Q0 = P0⊕R0 and define e : Q0→ B by (x,y) 7→ e1(x)+
e2(y). Set Q′0 = P′0⊕R′0 and define e′ : Q′0 → B′ by (x,y) 7→ e′1(x)+ e′2(y). Let σ0,σ

′
0 be

the injection maps and let τ0,τ
′
0 be the projection maps. The diagram

0 // P0
σ0 //

d
��

Q0

e
��

τ0 // R0

f
��

// 0

0 // A σ // B τ // C // 0

commutes, the top row is split exact and e is onto. The diagram

0 // P′0
σ ′0 //

d′

��

Q′0

e′

��

τ ′0 // R′0

f ′

��

// 0

0 // A′ σ ′ // B′ τ ′ // C′ // 0
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commutes, the top row is split exact, and e′ is onto. Define b0 : Q0→Q′0 by the assignment
(x,y) 7→ (a0(x)+ e3(y),c0(y)). The reader should verify that the diagram

Q0
b0 //

e
��

Q′0

e′

��
B b // B′

commutes. Let K,L,M be the kernels of d,e, f respectively. Let K′,L′,M′ be the kernels
of d′,e′, f ′ respectively. According to Lemma 8.1.23 there are unique homomorphisms
connecting the kernels to the rest of the diagram. The overall diagram

K

~~

��

// L //

��

}}

M

~~

��

K′ //

��

L′

��

// M′

��

P0

��

��

// Q0 //

��

~~

R0

��

��

P′0 //

��

Q′0

��

// R′0

��

A

~~

// B

}}

// C

~~
A′ // B′ // C′

commutes, which completes the basis step. The reader should verify the inductive step and
complete the proof. □

THEOREM 8.1.25. In the long exact sequence of Theorem 8.1.22, the connecting ho-
momorphisms ∂ are natural. That is, given a commutative diagram

0 // A σ //

a
��

B τ //

b
��

C //

c
��

0

0 // A′ σ ′ // B′ τ ′ // C′ // 0

of R-modules, with exact rows, the diagram

LnF(C)
∂ //

c
��

Ln−1F(A)

a
��

LnF(C′)
∂ // Ln−1F(A′)

commutes for all n≥ 1.

PROOF. Use Lemma 8.1.24 to get the two short exact sequences of projective resolu-
tions. The split exact rows remain exact after applying F. Use Theorem 8.1.11. □
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1.8. Exercises.

EXERCISE 8.1.26. If F : RM→ ZM is an exact additive functor, then for any left
R-module A, LiF(A) = 0 for all i≥ 1.

EXERCISE 8.1.27. Let F : RM→ ZM be a right exact additive functor.

(1) For any left R-module A, L0F(A) = F(A).
(2) For any short exact sequence of R-modules 0→ A→ B→C→ 0, there is a long

exact sequence of left derived groups

· · · ∂−→ L1F(A)→ L1F(B)→ L1F(C)
∂−→ F(A)→ F(B)→ F(C)→ 0

EXERCISE 8.1.28. If P is a projective R-module, and F : RM→ ZM is a covariant
additive functor, then LiF(P) = 0 for all i≥ 1.

1.9. Left Derived Groups of an Acyclic Resolution. Let F : RM→ ZM be a right
exact covariant additive functor. We say that the left R-module C is F-acyclic in case
LnF(C) = 0 for all n≥ 1. The next result says that the left derived groups LnF(M) may be
computed using a resolution of M by F-acyclic modules.

THEOREM 8.1.29. Let F : RM→ ZM be a right exact covariant additive functor. Let
M be a left R-module and C•→M→ 0 a resolution of M by F-acyclic modules. Then

LnF(M)∼= Hn(F(C•))

for all n≥ 0.

PROOF. If we take C−1 to be M and take K j to be ker{d j : C j →C j−1}, then there is
a short exact sequence

(1.4) 0→ K j→C j→ K j−1→ 0

for each j ≥ 0.
Step 1: Prove that there is an exact sequence

0→ H j+1(F(C•))→ FK j→ FC j→ FK j−1→ 0

for each j ≥ 0. Since F is right exact, (1.4) gives rise to the exact sequence

(1.5) 0→ X j→ FK j→ FC j→ FK j−1→ 0

where we take X j to be the group that makes the sequence exact. The goal is to prove
X j ∼= H j+1(F(C•)). The commutative diagram

C j+1

!!

d j+1 // C j

K j

  

??

0

==

0
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gives rise to the commutative diagram

FC j+1

""

d j+1 // FC j

FK j

""

==

0

Using this and (1.5) we see that

B j(FC•) = im{FK j→ FC j}= ker{FC j→ FK j−1}.

By Exercise 8.1.5 there is an exact sequence

(1.6) 0→ Z j(FC•)→ FC j→ B j−1(FC•)→ 0.

Combine (1.5) and (1.6) to get the commutative diagram with exact rows and columns

0

��

0

��
0 // B j(FC•) //

��

B j(FC•)

��

// 0

��
0 // Z j(FC•) //

��

FC j //

��

B j−1(FC•)

��
0 // X j−1

��

// FK j−1

��

// FC j−1

0 0

the first column of which shows H j(FC•)∼= X j−1 for each j ≥ 0. The reader should verify
that Step 1 did not use the fact that the modules C j are acyclic.

Step 2: By Theorem 8.1.22, the short exact sequence (1.4) gives rise to the long exact
sequence

(1.7) · · · → Ln+1F(C j)→ Ln+1F(K j−1)
∂−→ LnF(K j)→ LnF(C j)→ ··· .

Because the modules C j are acyclic, the boundary maps in (1.7) are isomorphisms

(1.8) Ln+1F(K j−1)∼= LnF(K j)

for all n≥ 1 and j ≥ 0. Iterate (1.8) to get

(1.9) Ln+1F(M) = Ln+1F(K−1)∼= LnF(K0)∼= Ln−1F(K1)∼= · · · ∼= L1F(Kn−1).

When n = 0, (1.7) looks like

(1.10) 0→ L1F(K j−1)→ FK j→ FC j→ FK j−1→ 0.

Comparing (1.10) and (1.9) with Step 1 we get

L j+1F(M)∼= H j+1(FC•)
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which finishes the proof. □

1.10. Bifunctors.

DEFINITION 8.1.30. Suppose A, B, and C are categories, and F : A×B → C is
a correspondence which maps a pair of objects (A,B) to the object F(A,B). Let A be
an object of A and B an object of B. Denote by F2(A, ·) the assignment B 7→ F(A,B)
which keeps the first variable fixed. Denote by F1(·,B) the assignment A 7→ F(A,B) which
keeps the second variable fixed. We call F a bifunctor if the following three properties are
satisfied.

(1) F1(·,B) is a covariant functor from A to C, and
(2) F2(A, ·) is a covariant functor from B to C.
(3) For any pair of morphisms φ : A1→ A2 in A, ψ : B1→ B2 in B, the diagram

F(A1,B1)
φ //

ψ

��

F(A2,B1)

ψ

��
F(A1,B2)

φ // F(A2,B2)

commutes in C,

A bifunctor may also be contravariant in one or both variables, in which case the reader
should make the necessary changes to the commutative square in number (3).

EXAMPLE 8.1.31. Let R be a ring. The assignment (A,B) 7→ A⊗R B is a bifunctor
from MR× RM to the category of Z-modules. This bifunctor is right exact covariant in
each variable (Lemma 2.3.18).

EXAMPLE 8.1.32. Let R be a ring. The assignment (A,B) 7→ HomR(A,B) is a bi-
functor from RM× RM to the category of Z-modules. If the second variable is fixed, the
functor is left exact contravariant in the first variable (Proposition 2.4.5). If the first variable
is fixed, the functor is left exact covariant in the second variable (Proposition 2.4.5).

LEMMA 8.1.33. Let F : MR×MR→ ZM be a bifunctor which in each variable is co-
variant right exact and additive. Let M be a fixed R-module. For any short exact sequence
of R-modules 0→ A→ B→C→ 0, there is a long exact sequence of groups

· · · ∂−→ L1F1(A,M)→ L1F1(B,M)→ L1F1(C,M)
∂−→ F(A,M)→ F(B,M)→ F(C,M)→ 0

The counterpart of this sequence is exact for the groups LiF2(M, ·).

PROOF. Follows straight from Exercise 8.1.27. □

THEOREM 8.1.34. Let F : MR×MR→ ZM be a bifunctor which in each variable is
covariant right exact and additive. Assume L1F2(P,B) = 0 and L1F1(A,P) = 0 for any
projective module P and any modules A and B. Then the two left derived groups LnF1(A,B)
and LnF2(A,B) are naturally isomorphic for all R-modules A and B and all n≥ 0.

PROOF. By Exercise 8.1.27 we know L0F1(A,B) = F(A,B) = L0F2(A,B). Let P•→
A→ 0 be a projective resolution for A and Q• → B→ 0 a projective resolution for B.
Define P−1 to be A and K j to be ker{d j : Pj → Pj−1}. Define Q−1 to be B and L j to be
ker{d j : Q j→ Q j−1}.
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For each pair (i, j), consider the two short exact sequences

0→ Ki→ Pi→ Ki−1→ 0(1.11)
0→ L j→ Q j→ L j−1→ 0(1.12)

To sequence (1.11) apply Lemma 8.1.33 three times to to get three exact sequences

L1F1(Pi,L j)→ L1F1(Ki−1,L j)
∂−→ F(Ki,L j)

α−→ F(Pi,L j)→ F(Ki−1,L j)→ 0

L1F1(Pi,Q j)→ L1F1(Ki−1,Q j)
∂−→ F(Ki,Q j)

β−→ F(Pi,Q j)→ F(Ki−1,Q j)→ 0

L1F1(Pi,L j−1)→ L1F1(Ki−1,L j−1)
∂−→ F(Ki,L j−1)

γ−→ F(Pi,L j−1)→ F(Ki−1,L j−1)→ 0

By assumption L1F1(Ki−1,Q j) = 0 because Q j is projective, hence β is one-to-one. By
Exercise 8.1.28, L1F1(Pi,L j) = 0 and L1F1(Pi,L j−1) = 0 because Pi is projective.

To sequence (1.12) apply Lemma 8.1.33 three times to to get three exact sequences

L1F2(Ki,Q j)→ L1F2(Ki,L j−1)
∂−→ F(Ki,L j)

σ−→ F(Ki,Q j)→ F(Ki,L j−1)→ 0

L1F2(Pi,Q j)→ L1F2(Pi,L j−1)
∂−→ F(Pi,L j)

τ−→ F(Pi,Q j)→ F(Pi,L j−1)→ 0

L1F2(Ki−1,Q j)→ L1F2(Ki−1,L j−1)
∂−→ F(Ki−1,L j)

ρ−→ F(Ki−1,Q j)→ F(Ki−1,L j−1)→ 0

By assumption L1F2(Pi,L j−1) = 0 because Pi is projective, hence τ is one-to-one. By
Exercise 8.1.28, L1F2(Ki,Q j) = 0 and L1F2(Ki−1,Q j) = 0 because Q j is projective. The
diagram

L1F1(Ki−1,L j)

��

0

��

L1F1(Ki−1,L j−1)

��
L1F2(Ki,L j−1) // F(Ki,L j)

α

��

σ // F(Ki,Q j)β

��

// F(Ki,L j−1)

γ

��
0 // F(Pi,L j)

��

τ // F(Pi,Q j) //

��

F(Pi,L j−1)

��
L1F2(Ki−1,L j−1) // F(Ki−1,L j) // F(Ki−1,Q j) // F(Ki−1,L j−1)

commutes, where the three rows and three columns are the exact sequences from above.
Apply the Snake Lemma (Theorem 2.5.2) to see that

(1.13) L1F1(Ki−1,L j−1)∼= L1F2(Ki−1,L j−1)

Since β and τ are one-to-one it follows that

(1.14) L1F1(Ki−1,L j) = L1F2(Ki,L j−1)

Combine (1.14) and (1.13) to get

L1F1(Ki−1,L j)∼= L1F2(Ki,L j−1)∼= L1F1(Ki,L j−1)

Iterate this n times to get

(1.15) L1F1(A,Ln−1)∼= L1F1(K−1,Ln−1)∼= L1F1(Kn−1,L−1)∼= L1F1(Kn−1,B)
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Combine (1.15) with (1.13) and Theorem 8.1.20 to get

Ln+1F1(A,B)∼= L1F1(Kn−1,B) (by Theorem 8.1.20)
∼= L1F1(A,Ln−1) (1.15)
∼= L1F2(A,Ln−1) (1.13)
∼= Ln+1F2(A,B) (by Theorem 8.1.20)

□

2. Cohomology Group Functors

2.1. Cochain Complexes. A cochain complex in RM is a sequence of R-modules
{Ai | i ∈ Z} and homomorphisms di : Ai → Ai+1 such that di+1di = 0 for all i ∈ Z. The
maps di are called the coboundary maps. The notation A• denotes a cochain complex. If
it is important to reference the coboundary maps, we will write (A•,d•). If the modules
Ai are specified for some range n0 ≤ i ≤ n1, then it is understood that Ai = 0 for i < n0
or i > n1. Let A• and B• be cochain complexes. A morphism of cochain complexes is a
sequence of homomorphisms f = { f i : Ai→ Bi | i ∈ Z} such that for each i the diagram

Ai−1 di−1
//

f i−1

��

Ai di
//

f i

��

Ai+1

f i−1

��
Bi−1 di−1

// Bi di
// Bi+1

commutes. In this case we write f : A•→ B•. The reader should verify that the collection
of all cochain complexes over R together with morphisms is a category. In some of the
exercises listed below the reader is asked to verify many of the important features of this
category.

Suppose A• is a cochain complex and n ∈ Z. Elements of An are called n-cochains.
The module An contains the two submodules

Bn(A•) = imdn−1, and

Zn(A•) = kerdn.

Elements of Bn(A•) are called n-coboundaries. Elements of Zn(A•) are called n-cocycles.
The condition di−1di = 0 translates into Bn(A•)⊆ Zn(A•). The nth cohomology module of
A• is defined to be the quotient

Hn(A•) = Zn(A•)/Bn(A•) = kerdn/ imdn−1.

EXAMPLE 8.2.1. (1) A short exact sequence 0 → A0 → A1 → A2 → 0 is a
cochain complex. It is understood that the sequence is extended with 0 terms.

(2) If M is an R-module, then an injective resolution

0→M→ E0→ E1→ E2→ ·· ·

of M is a cochain complex (see Exercise 2.6.16). It is understood that the se-
quence is extended with 0 terms.

(3) If A• is a cochain complex, the reader should verify that the following are equiv-
alent
(a) Hn(A•) = 0 for all n ∈ Z.
(b) A• is an exact sequence.
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EXAMPLE 8.2.2. As in Example 8.1.2, if A• is a cochain complex, and F : RM→ ZM
is a covariant additive functor, then F(A•) is a cochain complex. If A• is a chain complex,
and F : RM→ ZM is a contravariant additive functor, then F(A•) is a cochain complex.

LEMMA 8.2.3. Let n be an arbitrary integer.
(1) If f : A•→ B• is a morphism of cochain complexes, then the assignment

z+Bn(A•) 7→ f n(z)+Bn(B•)

defines an R-module homomorphism

Hn( f ) : Hn(A•)→ Hn(B•).

(2) The assignment A• 7→ Hn(A•) defines a functor from the category of cochain
complexes to the category of R-modules.

PROOF. Use Lemma 8.1.3. The details are left to the reader. □

2.2. Exercises.

EXERCISE 8.2.4. For the category of cochain complexes, the reader should give ap-
propriate definitions for the following terminology.

(1) The kernel of a morphism.
(2) The cokernel of a morphism.
(3) The image of a morphism.
(4) A subcochain complex of a cochain complex and the quotient of a cochain com-

plex modulo a subcochain complex.
(5) monomorphism, epimorphism, and isomorphism.
(6) short exact sequence.

EXERCISE 8.2.5. Let A• be a cochain complex. For each n ∈ Z there are short exact
sequences of R-modules.

(1) 0→ Bn(A•)→ Zn(A•)→ Hn(A•)→ 0
(2) 0→ Zn(A•)→ An→ Bn+1(A•)→ 0
(3) 0→ Hn(A•)→ An/Bn(A•)→ Bn+1(A•)→ 0

EXERCISE 8.2.6. Let A• be a cochain complex. For each n ∈ Z there is an exact
sequence of R-modules.

0→ Hn(A•)→ An/Bn(A•) dn
−→ Zn+1(A•)→ Hn+1(A•)→ 0

EXERCISE 8.2.7. Let F be an exact covariant functor from RM to ZM. If A• is a
cochain complex, then F(Hn(A•))∼= Hn(F(A•)).

EXERCISE 8.2.8. Let J be an index set and {(A j)
• | j ∈ J} a collection of cochain

complexes.
(1) Show that

· · · ⊕dn−1
−−−−→

⊕
j∈J

(A j)
n ⊕dn
−−→

⊕
j∈J

(A j)
n+1 ⊕dn+1
−−−−→ ·· ·

is a cochain complex, which is called the direct sum cochain complex.
(2) Show that cohomology commutes with a direct sum. That is

Hn
(⊕

j∈J

(A j)
•
)
∼=
⊕
j∈J

Hn((A j)
•).



2. COHOMOLOGY GROUP FUNCTORS 291

EXERCISE 8.2.9. Let {(A j)
•,φ i

j} be a directed system of cochain complexes for a
directed index set I.

(1) Show that

· · · d⃗n−1
−−→ lim−→(A j)

n d⃗n
−→ lim−→(A j)

n+1 d⃗n+1
−−→ ·· ·

is a cochain complex, which is called the direct limit cochain complex.
(2) Show that cohomology commutes with a direct limit. That is

Hn
(

lim−→(A j)
•
)
∼= lim−→Hn((A j)

•).
2.3. The Long Exact Sequence of Cohomology.

THEOREM 8.2.10. Let
0→ A•

f−→ B•
g−→C•→ 0

be an exact sequence of cochain complexes. Then there is a long exact sequence of coho-
mology modules

· · · → Hn(A•)
H( f )−−−→ Hn(B•)

H(g)−−→ Hn(C•) δ n
−→ Hn+1(A•)

H( f )−−−→ Hn+1(B•)
H(g)−−→ ·· ·

PROOF. Use Theorem 8.1.10. The details are left to the reader. □

THEOREM 8.2.11. In the context of Theorem 8.2.10, the connecting homomorphism
δ n : Hn(C•)→ Hn+1(A•) is natural. More specifically, if

0 // A•
f //

χ

��

B•
g //

ρ

��

C• //

σ

��

0

0 // D•
φ // E•

ψ // F• // 0

is a commutative diagram of cochain complexes with exact rows, then there is a commuta-
tive diagram

Hn(A•)
H( f ) //

H(χ)

��

Hn(B•)
H(g) //

H(ρ)

��

Hn(C•) δ n
//

H(σ)

��

Hn+1(A•)

H(χ)

��
Hn(D•)

H(φ) // Hn(E•)
H(ψ) // Hn(F•) δ n

// Hn+1(D•)

with exact rows for each n ∈ Z.

PROOF. Use Theorem 8.1.11. The details are left to the reader. □

2.4. Homotopy Equivalence. Let A• and B• be cochain complexes. By Hom(A•,B•)
we denote the set of all morphisms f : A• → B•. For each i ∈ Z, f i : Ai → Bi is an R-
module homomorphism. We can turn Hom(A•,B•) into a Z-module. Two morphisms
f ,g ∈Hom(A•,B•) are said to be homotopic if there exists a sequence of R-module homo-
morphisms {ki : Ai → Bi−1 | i ∈ Z} such that f n− gn = dn−1kn + kn+1dn for each n ∈ Z.
If f and g are homotopic, then we write f ∼ g and the sequence {ki} is called a homotopy
operator. The reader should verify that homotopy equivalence is an equivalence relation
on Hom(A•,B•).

THEOREM 8.2.12. Let A• and B• be cochain complexes. For each n ∈ Z, the func-
tor Hn() is constant on homotopy equivalence classes. In other words, if f and g are
homotopic in Hom(A•,B•), then H( f ) is equal to H(g) in HomR(Hn(A•),Hn(B•)).
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PROOF. Use Theorem 8.1.12. The details are left to the reader. □

THEOREM 8.2.13. Consider the diagram of R-modules

0 // M

f
��

ε // X0 d0
//

∃ f 0

��

X1 d1
//

∃ f 1

��

X2 d2
//

∃ f 2

��

· · ·

0 // N
ϕ // Y 0 d0

// Y 1 d1
// Y 2 d2

// · · ·
in which the following are satisfied.

(A) The top row is an exact sequence.
(B) The second row is a cochain complex and each Yi is an injective R-module.

Then the following are true.
(1) There exists a morphism f : X•→ Y • which commutes with f on the augmented

cochain complexes. That is, f 0ε = ϕ f .
(2) The morphism f is unique up to homotopy equivalence.

PROOF. (1): The morphism f is constructed recursively. To construct f 0, consider
the diagram

0 // M ε //

ϕ f   

X0

∃ f 0

��
Y 0

with top row exact. Since Y 0 is injective, there exists f 0 : X0→ Y 0 such that ϕ f = f 0ε .
To construct f 1, start with the commutative diagram

M

f

��

ε // X0

f 0

��

d0
// X1

∃ f 1

��
N

ϕ // Y 0 d0
// Y 1

The top row is exact, the bottom row is a cochain complex. Because d0 f 0ε = d0ϕ f = 0, it
follows that ker(d0) = im(ε)⊆ ker(d0 f 0). Consider the diagram

0 // X0/ im(ε)
d0
//

d0 f 0
$$

X1

∃ f 1

��
Y 1

with top row exact. Since Y 1 is injective, there exists f 1 : X1→Y 1 such that d0 f 0 = f 1d0.
Recursively construct f n+1 using f n and f n−1. Start with the commutative diagram

Xn−1

f n−1

��

dn−1
// Xn

f n

��

dn
// Xn+1

∃ f n+1

��
Y n−1 dn−1

// Y n dn
// Y n+1

The top row is exact, the bottom row is a cochain complex. Since the diagram commutes,
dn f ndn−1 = dndn−1 f n−1 = 0. It follows that ker(dn) = im(dn−1) ⊆ ker(dn f n). Consider
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the diagram

0 // Xn/ im(dn−1)
dn
//

dn−1 f n−1 &&

Xn+1

∃ f n+1

��
Y n+1

with top row exact. Since Y n+1 is injective, there exists f n+1 : Xn+1 → Y n+1 such that
dn f n = f n+1dn. This proves Part (1).

(2): Assume that g : X•→ Y • is another morphism such that g0ε = ϕ f . We construct
a homotopy operator {ki : X i→ Y i−1} recursively. Start by setting ki = 0 for all i≤ 0.

To construct k1, start with the commutative diagram

M

f
��

ε // X0

f 0−g0

��

d0
// X1

∃k1~~
N

ϕ
// Y 0

in which the top row is exact. Because f 0ε = g0ε = ϕ f , it follows that im(ε) = ker(d0)⊆
ker( f 0−g0). Consider the diagram

0 // X0/ker(d0)

f 0−g0

��

d0
// X1

∃k1
zz

Y 0

in which the top row is exact. Since Y 0 is injective, there exists k1 : X1 → Y 0 such that
k1d0 = f0−g0.

Recursively construct kn+1 using kn−1 and kn. Start with the commutative diagram

Xn−1

kn−1

}}
f n−1−gn−1

��

dn−1
// Xn

f n−gn

��

kn

}}

dn
// Xn+1

∃kn+1

}}
Y n−2

dn−2
// Y n−1

dn−1
// Y n

The top row is exact, the bottom row is a cochain complex. Since

( f n−gn)dn−1 = dn−1( f n−1−gn−1) = dn−1(kndn−1 +dn−2kn−1) = dn−1kndn−1

it follows that ker(dn) = im(dn−1)⊆ ker( f n−gn−dn−1kn). Consider the diagram

0 // Xn/ker(dn)

f n−gn−dn−1kn

��

dn
// Xn+1

∃kn+1
yy

Y n

in which the top row is exact. Since Y n is injective, there exists kn+1 : Xn+1→Y n such that
kn+1dn = f n−gn−dn−1kn). This proves Part (2). □
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2.5. Exercises.

EXERCISE 8.2.14. Suppose f and g are homotopic morphisms from A• to B• and F
is an additive covariant functor on R-modules. Prove that F( f ) and F(g) are homotopic
morphisms from F(A•) to F(B•).

EXERCISE 8.2.15. Suppose f and g are homotopic morphisms from A• to B• and F is
an additive contravariant functor on R-modules. Prove that F( f ) and F(g) are homotopic
morphisms from F(B•) to F(A•).

2.6. Right Derived Functors. The right derived functors are defined by taking coho-
mology groups of cochain complexes. The situation for right derived functors is different
than that for left derived functors. For right derived functors we consider both covariant
and contravariant functors.

2.6.1. Covariant Functors. Let F : RM→ ZM be an additive covariant functor. To F
we associate a sequence of functors RnF : RM→ ZM, one for each n≥ 0, called the right
derived functors of F. For any left R-module M, if 0→M→ I• is an injective resolution
of M, define RnF(M) to be the nth cohomology group of the cochain complex F(I•). In
Theorem 8.2.16, we show that this definition does not depend on the choice of I•. Given
any R-module homomorphism φ : M→ N, let M→ I• be an injective resolution of M and
N → J• an injective resolution of N. According to Theorem 8.2.13 there is an induced
morphism of cochain complexes φ : I•→ J• which is unique up to homotopy equivalence.
Applying the functor F, we get a morphism of cochain complexes F(φ) : F(I•)→ F(J•).
According to Exercise 8.2.14, this morphism preserves the homotopy class of φ : I•→ J•.
This morphism induces a Z-module homomorphism RnF(φ) : RnF(M)→ RnF(N) for
each n. In Theorem 8.2.16, we show that this definition does not depend on the choice of
I• and J•.

THEOREM 8.2.16. Let F : RM→ ZM be an additive covariant functor. For each n≥ 0
there is an additive covariant functor RnF : RM→ ZM.

PROOF. First we show that the definition of right derived functors does not depend on
the choice of injective resolution. Let M be an R-module and suppose we are given two
injective resolutions M→ I• and M→ J•. Starting with the identity map 1 : M→M, apply
Theorem 8.2.13 (1) from both directions to get morphisms f : I• → J• and g : J• → I•.
Theorem 8.2.13 (2) (from both directions) says f g ∼ 1 and g f ∼ 1. By Exercise 8.2.14,
F( f g)∼ 1 and F(g f )∼ 1. In conclusion, there is an isomorphism

ψ(I•,J•) : Hn(F(I•))∼= Hn(F(J•))

which is uniquely determined by the module M and the two resolutions I• and J•. The
inverse function is ψ(J•, I•).

Secondly, suppose φ : M→ N is any R-module homomorphism. We show that

RnF(φ) : RnF(M)→ RnF(N)

is well defined. Start with an injective resolution M→ I• of M and an injective resolution
N → K• of N. In the paragraph preceding this theorem it was shown that φ , I• and K•

uniquely determine a homomorphism

φ(I•,K•) : Hn(F(I•))→ Hn(F(K•)).

Suppose M → J• is another injective resolution of M, and N → L• is another injective
resolution of N, and

φ(J•,L•) : Hn(F(J•))→ Hn(F(L•))
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is the associated homomorphism. By the first paragraph of this proof, there are isomor-
phisms ψ(I•,J•) : Hn(F(I•)) ∼= Hn(F(J•)) and ψ(K•,L•) : Hn(F(K•)) ∼= Hn(F(L•)). To
show that RnF(φ) is well defined, it suffices to show that the square

Hn(F(I•))
ψ(I•,J•) //

φ(I•,K•)
��

Hn(F(J•))

φ(J•,L•)
��

Hn(F(K•))
ψ(K•,L•) // Hn(F(L•))

commutes. The Z-module homomorphisms in this square are uniquely determined by
morphisms in the category of cochain complexes which make up a square

I• α //

γ

��

J•

δ

��
K•

β // L•

which is not necessarily commutative. Nevertheless, up to homotopy equivalence, this
square is commutative. That is, by Theorem 8.2.13, δα ∼ βγ .

The rest of the details are left to the reader. □

THEOREM 8.2.17. Let

0→M ε−→ I0 d0
−→ I1 d1

−→ I2 d2
−→ ·· ·

be an injective resolution of the R-module M. Define Kn = kerdn, for each n ≥ 0. If
F : RM→ ZM is an additive covariant functor, then

RnF(M) = Rn−iF(Ki)

for 0≤ i < n.

PROOF. Suppose 0≤ ℓ < n. Notice that

(2.1) 0→ Kℓ→ Iℓ dℓ−→ Iℓ+1 dℓ+1
−−→ ·· · → In dn

−→ In+1→ ···

is an injective resolution for Kℓ. Define a cochain complex I(−ℓ)• by truncating I• and
shifting the indices. That is, I(−ℓ)i = Iℓ+i and d(−ℓ)i = dℓ+i, for each i ≥ 0. Using this
notation, (2.1) becomes

(2.2) 0→Kℓ→ I(−ℓ)0 d(−ℓ)0

−−−−→ I(−ℓ)1 d(−ℓ)1

−−−−→ ·· ·→ I(−ℓ)n−ℓ d(−ℓ)n−ℓ
−−−−−→ I(−ℓ)n−ℓ+1→·· ·

By Theorem 8.2.16 we may compute the (n− ℓ)th right derived of Kℓ using the injective
resolution (2.2). The sequences (2.1) and (2.2) agree if we ignore the indexes. Applying F
and taking cohomology yields

Rn−ℓF(Kℓ) = RnF(M)

as required. □
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2.6.2. Contravariant Functors. Let F : RM→ ZM be an additive contravariant func-
tor. To F we associate a sequence of contravariant functors RnF : RM→ ZM, one for each
n≥ 0, called the right derived functors of F. For any left R-module M, if

· · · → P3
d3−→ P2

d2−→ P1
d1−→ P0

ε−→M→ 0

is a projective resolution of M, define RnF(M) to be the nth cohomology group of the
cochain complex

0→ FP0
Fd1−−→ FP1

Fd2−−→ FP2
Fd3−−→ FP3→ ·· · .

That is,
RnF(M) = ker(Fdn+1)/ im(Fdn)

where the indices are shifted because the contravariant functor reversed the arrows. As in
the proof of Theorem 8.1.19, this definition does not depend on the choice of P•. Given
any R-module homomorphism φ : M→ N, let P•→M be a projective resolution of M and
Q• → N a projective resolution of N. According to Theorem 8.1.13 there is an induced
morphism of chain complexes φ : P•→ Q• which is unique up to homotopy equivalence.
Applying the functor F, we get a morphism of cochain complexes F(φ) : F(Q•)→ F(P•).
According to Exercise 8.2.15, this morphism preserves the homotopy class of φ : P•→Q•.
This morphism induces a Z-module homomorphism RnF(φ) : RnF(N)→ RnF(M) for
each n. As in the proof of Theorem 8.1.19, this definition does not depend on the choice
of P• and Q•.

THEOREM 8.2.18. Let F : RM→ ZM be an additive contravariant functor. For each
n≥ 0 there is an additive contravariant functor RnF : RM→ ZM.

PROOF. Use Theorem 8.1.19. The details are left to the reader. □

THEOREM 8.2.19. Let

· · · d3−→ P2
d2−→ P1

d1−→ P0
ε−→M→ 0

be a projective resolution of the R-module M. Define K0 = kerε , and for each n > 0, define
Kn = kerdn. If F : RM→ ZM is an additive contravariant functor, then

RnF(M) = Rn−iF(Ki−1)

for 0≤ i < n.

PROOF. Suppose 0 < ℓ≤ n. Notice that

(2.3) · · · → Pn+1
dn+1−−→ Pn→ ·· ·

dℓ+1−−→ Pℓ
dℓ−→ Kℓ−1→ 0

is a projective resolution for Kℓ−1. Define a chain complex P(−ℓ)• by truncating P• and
shifting the indices. That is, P(−ℓ)i = Pℓ+i and d(−ℓ)i = dℓ+i, for each i ≥ 0. Using this
notation, (2.3) becomes

(2.4) · · · → P(−ℓ)n−ℓ+1
d(−ℓ)n−ℓ+1−−−−−−→ P(−ℓ)n−ℓ→ ···

d(−ℓ)1−−−−→ P(−ℓ)0
d(−ℓ)0−−−−→ Kℓ−1→ 0

By Theorem 8.2.18, we may compute the (n− ℓ)th right derived group of Kℓ−1 using the
projective resolution (2.4). The sequences (2.3) and (2.4) agree if we ignore the indexes.
Applying F and taking cohomology yields

Rn−ℓF(Kℓ−1) = RnF(M)

as required. □
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2.7. The Long Exact Sequence.

LEMMA 8.2.20. Suppose

0→ A σ−→ B τ−→C→ 0

is a short exact sequence of R-modules, A→ I• is an injective resolution of A, and C→ K•

is an injective resolution of C. Then there exists an injective resolution B→ J• for B and
morphisms σ and τ such that

0→ I• σ−→ J• τ−→ K•→ 0

is a short exact sequence of cochain complexes. Moreover, for each n ≥ 0 the short exact
sequence

0→ In σn−→ Jn τn−→ Kn→ 0
is split exact.

PROOF. Start with the diagram

0

��

0

��
0 // A

α

��

σ // B τ // C

γ

��

// 0

I0 K0

where the horizontal row is exact, and I0 and K0 are injectives. Because I0 is injective,
there exists β 1 : B→ I0 such that β 1σ = α . Let β 2 = γτ . Let β : B→ I0⊕K0 be defined
by x 7→ (β 1(x),β 2(x)). Let J0 = I0⊕K0 and let σ0 and τ0 be the injection and projection
maps. The diagram

0

��

0

��

0

��
0 // A

α

��

σ // B

β

��

τ // C

γ

��

// 0

0 // I0 σ0
// J0 τ0

// K0 // 0
commutes and the rows are exact. Since α and γ are one-to-one and the diagram commutes,
β is one-to-one. The Snake Lemma (Theorem 2.5.2) says that

0→ cokerα
σ−→ cokerβ

τ−→ cokerγ → 0

is a short exact sequence. The proof follows by induction. □

THEOREM 8.2.21. Suppose

0→ A σ−→ B τ−→C→ 0

is a short exact sequence of R-modules and F : RM→ ZM is an additive functor.
(1) If F is covariant, then there exists a long exact sequence of right derived groups

0→ R0F(A) σ−→ R0F(B) τ−→ R0F(C)
δ 0
−→ R1F(A) σ−→ R1F(B) τ−→ R1F(C)

δ 1
−→ ·· ·

· · · τ−→ Rn−1F(C)
δ n−1
−−−→ RnF(A) σ−→ RnF(B) τ−→ RnF(C)

δ n
−→ Rn+1F(A)→ ··· .
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(2) If F is contravariant, then there exists a long exact sequence of right derived
groups

0→ R0F(C)
τ−→ R0F(B) σ−→ R0F(A) δ 0

−→ R1F(C)
τ−→ R1F(B) σ−→ R1F(A) δ 1

−→ ·· ·

· · · σ−→ Rn−1F(A) δ n−1
−−−→ RnF(C)

τ−→ RnF(B) σ−→ RnF(A) δ n
−→ Rn+1F(C)→ ··· .

(3) In either case, the functor R0F is left exact.

PROOF. (1): Start with injective resolutions A→ I• for A and C→ K• for C. Use
Lemma 8.2.20 to construct an injective resolution B→ J• for B and morphisms σ and τ

such that

0→ I• σ−→ J• τ−→ K•→ 0

is a short exact sequence of cochain complexes. Applying the functor,

(2.5) 0→ F(I•) σ−→ F(J•) τ−→ F(K•)→ 0

is a short exact sequence of cochain complexes because for each n

0→ In σn−→ Jn τn−→ Kn→ 0

is split exact. The result follows from Theorem 8.2.10 applied to (2.5).
(2): Start with projective resolutions P•→A for A and R•→C for C. Use Lemma 8.1.21

to construct a projective resolution Q•→ B for B and morphisms σ and τ such that

0→ P•
σ−→ Q•

τ−→ R•→ 0

is a short exact sequence of chain complexes. Applying the functor,

(2.6) 0→ F(R•)
σ−→ F(Q•)

τ−→ F(P•)→ 0

is a short exact sequence of cochain complexes because for each n

0→ Pn
σn−→ Qn

τn−→ Rn→ 0

is split exact. The result follows from Theorem 8.2.10 applied to (2.6).
(3): This follows from Theorem 8.2.10. The cochain complex A• is zero in degrees

i < 0, hence the sequence

0→ R0F(A)→ R0F(B)→ R0F(C)

is exact. □
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LEMMA 8.2.22. (The Cube Lemma) Let

A //

α

��

��

B
β

��

��

E //

  

��

F

��

��

K a //

b
��

L

d
��

M c // N

G

??

// H

__

C

γ

??

// D

δ

__

be a diagram of R-module homomorphisms. Let K,L,M,N be the cokernels of α,β ,γ,δ
respectively. If the outer cube is commutative, then there exist unique homomorphisms
a,b,c,d such that the overall diagram commutes.

PROOF. There is a unique a : K→ L such that the diagram

A

��

α // E

��

// K

a
��

// 0

B
β // F // L // 0

commutes. Likewise for b : K → M, c : M→ N, and d : L→ N. To finish the proof, we
show that the square

K

b
��

a // L

d
��

M c // N
commutes. Look at the composite homomorphism

E→ K a−→ L d−→ N

which factors into
E→ F → L d−→ N

which factors into
E→ F → H→ N

which factors into
E→ G→ H→ N

which factors into
E→ G→M c−→ N

which factors into
E→ K b−→M c−→ N.

Since E→ K is onto, this proves da = cb. □
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LEMMA 8.2.23. Suppose

0 // A σ //

a
��

B τ //

b
��

C //

c
��

0

0 // A′
σ′ // B′

τ′ // C′ // 0

is a commutative diagram of R-modules, with exact rows. Suppose we are given injective
resolutions for the four corners A→ I•, C→ K•, A′→ I′•, and C′→ K′•. Then there exist
injective resolutions B→ J• and B′→ J′• and morphisms such that the diagram of cochain
complexes

0 // I• σ //

a
��

J• τ //

b
��

K• //

c
��

0

0 // I•′
σ′ // J•′

τ′ // K•′ // 0

is commutative with exact rows.

PROOF. The morphisms a : I• → I•′ and c : K• → K•′ exist by Theorem 8.2.13. The
injective resolutions B→ J•, B′→ J•′ and the remaining morphisms are constructed itera-
tively. The reader should verify the inductive step, which is similar to the basis step given
below.

Start with the commutative diagram

A

d

��

a

��

σ // B
b

��

τ // C

f

��

c

~~
A′

d′

��

σ′ // B′
τ′ // C′

f′

��

I0

a0

��

K0

c0

~~
I0
′ K0

′

The maps d,d′, f , f′,σ ,σ′ are one-to-one and τ,τ′ are onto. The R-modules I0,K0, I0
′ ,K

0
′

are injective. Because I0 is injective, there exists e1 : B→ I0 such that e1σ = d. Let
e2 = f τ . Because I0

′ is injective, there exists e1
′ : B′→ I0

′ such that e1
′ σ′ = d′. Let e2

′ = f′τ′.
The diagram

I0

a0

��

A σ //
d

__

a
��

B

b
��

f τ //

e1

gg

K0

A′
d′

��

τ ′ // B′

e1
′ww

I0
′



2. COHOMOLOGY GROUP FUNCTORS 301

is not necessarily commutative. The row A→ B→ K0 is exact. Notice that

(a0e1− e1
′ b)σ = a0d− e1

′ τ′a

= a0d−d′a

= 0

so (a0e1− e1
′ b) : B/A→ I0

′ is well defined. Since I0
′ is injective, there exists e3 : K0→ I0

′
such that e3 f τ = a0e1−e1

′ b. Set J0 = I0⊕K0 and define e : B→ J0 by x 7→ (e1(x),e2(x)).
Set J0

′ = I0
′ ⊕K0

′ and define e′ : B′→ J0
′ by x 7→ (e1

′ (x),e
2
′ (y)). Let σ0,σ0

′ be the injection
maps and let τ0,τ0

′ be the projection maps. The diagram

0 // A

d
��

σ // B

e
��

τ // C //

f
��

0

0 // I0 σ0
// J0 τ0

// K0 // 0

commutes, the top row is split exact and e is one-to-one. The diagram

0 // A′

d′
��

σ′ // B′

e′
��

τ′ // C′

f′
��

// 0

0 // I0
′

σ0
′ // J0

′
τ0
′ // K0

′ // 0

commutes, the top row is split exact, and e′ is one-to-one. Define b0 : J0 → J0
′ by the

assignment (x,y) 7→ (a0(x)− e3(y),c0(y)). The reader should verify that the diagram

B

e
��

b // B′

e′
��

J0 b0
// J0
′

commutes. Let K,L,M be the cokernels of d,e, f respectively. Let K′,L′,M′ be the coker-
nels of d′,e′, f′ respectively. According to Lemma 8.2.22 there are unique homomorphisms
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connecting the cokernels to the rest of the diagram. The overall diagram

A

��

//

��

B //

��

~~

C

~~

��

A′ //

��

B′

��

// C′

��

I0

��

��

// J0 //

��

��

K0

~~

��

I0
′ //

��

J0
′

��

// K0
′

��

K

~~

// L

~~

// M

}}
K′ // L′ // M′

commutes, which completes the basis step. The reader should verify the inductive step and
complete the proof. □

THEOREM 8.2.24. In the long exact sequence of Theorem 8.2.21, the connecting ho-
momorphisms δ are natural. That is, given a commutative diagram

0 // A σ //

a
��

B τ //

b
��

C //

c
��

0

0 // A′
σ′ // B′

τ′ // C′ // 0

of R-modules, with exact rows the following are true.
(1) If F is covariant, the diagram

RnF(C)
δ n
//

c

��

Rn+1F(A)

a
��

RnF(C′)
δ n
// Rn+1F(A′)

commutes for all n≥ 0.
(2) If F is contravariant, the diagram

RnF(A) δ n
//

c

��

Rn+1F(C)

a
��

RnF(A′)
δ n
// Rn+1F(C′)

commutes for all n≥ 0.

PROOF. (1): Use Lemma 8.2.23 to get the two short exact sequences of injective
resolutions. The split exact rows remain exact after applying F. Use Theorem 8.2.11.
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(2) Use Lemma 8.1.24 to get the two short exact sequences of projective resolutions.
The split exact rows remain exact after applying F. Use Theorem 8.2.11. □

2.8. Exercises.

EXERCISE 8.2.25. If F : RM→ ZM is an exact covariant functor, then for any left
R-module A, RiF(A) = 0 for all i≥ 1.

EXERCISE 8.2.26. If F : RM→ ZM is an exact contravariant functor, then for any left
R-module A, RiF(A) = 0 for all i≥ 1.

EXERCISE 8.2.27. Let F : RM→ ZM be a left exact covariant functor.
(1) For any left R-module A, R0F(A) = F(A).
(2) For any short exact sequence of R-modules 0→ A→ B→C→ 0, there is a long

exact sequence of cohomology groups

0→ F(A)→ F(B)→ F(C)
δ 0
−→ R1F(A)→ R1F(B)→ R1F(C)

δ 1
−→ ·· ·

EXERCISE 8.2.28. Let F : RM→ ZM be a left exact contravariant functor.
(1) For any left R-module A, R0F(A) = F(A).
(2) For any short exact sequence of R-modules 0→ A→ B→C→ 0, there is a long

exact sequence of cohomology groups

0→ F(C)→ F(B)→ F(A) δ 0
−→ R1F(C)→ R1F(B)→ R1F(A) δ 1

−→ ·· ·

EXERCISE 8.2.29. If E is an injective R-module, and F : RM→ ZM is a covariant
functor, then RiF(E) = 0 for all i≥ 1.

EXERCISE 8.2.30. If P is a projective R-module, and F : RM→ ZM is a contravariant
functor, then RiF(P) = 0 for all i≥ 1.

2.9. Right Derived Groups of an Acyclic Resolution. Let F : RM→ ZM be a left
exact additive functor. We say that the left R-module C is F-acyclic in case RnF(C) = 0
for all n≥ 1. Theorem 8.2.31 says that the right derived groups RnF(M) may be computed
using a resolution of M by F-acyclic modules.

THEOREM 8.2.31. Let M be a left R-module and F : RM→ ZM a left exact functor.
(1) If F is covariant and 0→ M → C• is a resolution of M by F-acyclic modules,

then
RnF(M)∼= Hn(F(C•))

for all n≥ 0.
(2) If F is contravariant and C•→M→ 0 is a resolution of M by F-acyclic modules,

then
RnF(M)∼= Hn(F(C•))

for all n≥ 0.

PROOF. (1): Define K j to be ker{d j : C j →C j+1}, then K0 = M and there is a short
exact sequence

(2.7) 0→ K j→C j→ K j+1→ 0

for each j ≥ 0.
Step 1: There is an exact sequence

0→ FK j→ FC j→ FK j+1→ H j+1(F(C•))→ 0
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for each j ≥ 0. Since F is left exact, (2.7) gives rise to the exact sequence

0→ FK j→ FC j→ FK j+1→ X j→ 0

where we take X j to be the group that makes the sequence exact. The goal is to prove X j ∼=
H j+1(F(C•)). Apply the left exact functor F to the exact sequence 0→ K j →C j →C j+1

to get the exact sequence 0→ FK j → FC j → FC j+1. This shows FK j = Z j(FC•) for all
j ≥ 0. The commutative diagram

C j

!!

d j
// C j+1

K j+1

##

;;

0

<<

0

gives rise to the commutative diagram

FC j

##

d j
// FC j+1

FK j+1

::

0

;;

Using this we see that B j(FC•)⊆ im{FK j+1→ FC j+1}. Therefore the diagram

FC j //

$$

FK j+1 // X j // 0

B j+1(FC•)

%%

99

0

99

0

commutes. But FK j+1 = Z j+1(FC•), which shows X j ∼= H j+1(FC•) for each j ≥ 0. The
reader should verify that Step 1 did not use the fact that the modules C j are acyclic.

Step 2: By Theorem 8.2.21, the short exact sequence (2.7) gives rise to the long exact
sequence

(2.8) · · · → RnF(C j)→ RnF(K j+1)
δ n
−→ Rn+1F(K j)→ Rn+1F(C j)→ ·· · .

Because the modules C j are acyclic, the connecting homomorphisms in (2.8) are isomor-
phisms

(2.9) RnF(K j+1)∼= Rn+1F(K j)

for all n≥ 1 and j ≥ 0. Iterate (2.9) to get

(2.10) Rn+1F(M) = Rn+1F(K0)∼= RnF(K1)∼= Rn−1F(K2)∼= · · · ∼= R1F(Kn).
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When n = 0, (2.8) looks like

(2.11) 0→ FK j→ FC j→ FK j+1 δ 0
−→ R1FK j→ 0.

Comparing (2.11) and (2.10) with Step 1 we get

R j+1F(M)∼= H j+1(FC•)

which finishes the proof of Part (1).
(2): Assume F is contravariant and

· · · d3−→C2
d2−→C1

d1−→C0→M→ 0

is a long exact sequence of R-modules. Define C−1 to be M and take K j to be ker{d j : C j→
C j−1}. There are short exact sequences

(2.12) 0→ K j→C j→ K j−1→ 0,

one for each j ≥ 0.
Step 1: There is an exact sequence

0→ FK j−1→ FC j→ FK j→ H j+1(F(C•))→ 0

for each j ≥ 0. Since F is left exact, (2.12) gives rise to the exact sequence

0→ FK j−1→ FC j→ FK j→ X j→ 0

where we take X j to be the group that makes the sequence exact. The goal is to prove
X j ∼= H j+1(F(C•)). Apply the left exact contravariant functor F to the exact sequence

C j+1
d j+1−−→C j

d j−→ K j−1→ 0

to get the exact sequence

0→ FK j−1→ FC j
Fd j+1−−−→ FC j+1.

This shows
FK j−1 = ker(Fd j+1) = Z j(FC•)

for all j ≥ 0. The commutative diagram

C j+1

!!

d j+1 // C j

K j

  

??

0

==

0

gives rise to the commutative diagram

0

""
FK j

""
FC j

==

Fd j+1 // FC j+1
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Using this we see that im(Fd j+1) =B j+1(FC•)⊆ im{FK j→FC j+1}=Z j+1(FC•). There-
fore the diagram

FC j //

$$

FK j // X j // 0

B j+1(FC•)

%%

::

0

99

0

commutes. But FK j = Z j+1(FC•), which shows X j ∼= H j+1(FC•) for each j ≥ 0. The
reader should verify that Step 1 did not use the fact that the modules C j are acyclic.

Step 2: By Theorem 8.2.21, the short exact sequence (2.12) gives rise to the long exact
sequence

(2.13) · · · → RnF(C j)→ RnF(K j)
δ n
−→ Rn+1F(K j−1)→ Rn+1F(C j)→ ··· .

Because the modules C j are acyclic, the connecting homomorphisms δ n are isomorphisms

(2.14) RnF(K j)∼= Rn+1F(K j−1)

for all n≥ 1 and j ≥ 0. Iterate (2.14) to get

(2.15) Rn+1F(M) = Rn+1F(K−1)∼= RnF(K0)∼= Rn−1F(K1)∼= · · · ∼= R1F(Kn−1).

When n = 0, (2.13) looks like

(2.16) 0→ FK j−1→ FC j→ FK j
δ 0
−→ R1FK j−1→ 0.

Comparing (2.16) and (2.15) with the exact sequence of Step 1 we get

R j+1F(M)∼= H j+1(FC•)

which finishes the proof of Part (2). □

2.10. Bifunctors. The reader is referred to Definition 8.1.30 for the definition of a
bifunctor. In this section we restrict our attention to a bifunctor F : RM× RM→ ZM
which is left exact contravariant in the first variable and left exact covariant in the second
variable.

LEMMA 8.2.32. Let M be a fixed R-module. Suppose F : RM× RM→ ZM is a bi-
functor such that F1(·,M) is left exact contravariant and F2(M, ·) is left exact covariant.
For any short exact sequence of R-modules 0→ A→ B→ C→ 0, there are long exact
sequences of groups

0→ F(C,M)→ F(B,M)→ F(A,M)
δ 0
−→

R1F1(C,M)→ R1F1(B,M)→ R1F1(A,M)
δ 1
−→ ·· ·

and

0→ F(M,A)→ F(M,B)→ F(M,C)
δ 0
−→

R1F2(M,A)→ R1F2(M,B)→ R1F2(M,C)
δ 1
−→ ·· · .

PROOF. Follows straight from Exercises 8.2.27 and Exercises 8.2.28. □



2. COHOMOLOGY GROUP FUNCTORS 307

THEOREM 8.2.33. Suppose F : RM× RM→ ZM is a bifunctor which satisfies the
following.

(1) For any R-module M, F1(·,M) is left exact contravariant and R1F1(M, I) = 0
for any injective R-module I.

(2) For any R-module M, F2(M, ·) is left exact covariant and R1F2(P,M) = 0 for
any projective R-module P.

Then the two right derived groups RnF1(A,B) and RnF2(A,B) are naturally isomorphic
for all R-modules A and B and all n≥ 0.

PROOF. By Exercises 8.2.27 and Exercises 8.2.28, we know R0F1(A,B) = F(A,B) =
R0F2(A,B). Let P•→ A→ 0 be a projective resolution for A and 0→ B→Q• an injective
resolution for B. Define P−1 to be A and K j to be ker{d j : Pj → Pj−1}. Define L j to be
ker{d j : Q j→ Q j+1}. For each pair (i, j), consider the two short exact sequences

0→ Ki→ Pi→ Ki−1→ 0(2.17)

0→ L j→ Q j→ L j+1→ 0(2.18)

To sequence (2.17) apply Lemma 8.2.32 three times to get three exact sequences

0→ F(Ki−1,L j)→ F(Pi,L j)
α−→ F(Ki,L j)

δ−→ R1F1(Ki−1,L j)→ R1F1(Pi,L j)

0→ F(Ki−1,Q j)→ F(Pi,Q j)
β−→ F(Ki,Q j)

δ−→ R1F1(Ki−1,Q j)→ R1F1(Pi,Q j)

0→ F(Ki−1,L j+1)→ F(Pi,L j+1)
γ−→ F(Ki,L j+1)

δ−→ R1F1(Ki−1,L j+1)→ R1F1(Pi,L j+1)

By assumption, R1F1(Ki−1,Q j) = 0 because Q j is injective, hence β is onto. By Ex-
ercise 8.2.30, R1F1(Pi,L j) = R1F1(Pi,L j+1) = 0 because Pi is projective. To sequence
(2.18) apply Lemma 8.2.32 three times to get three exact sequences

0→ F(Ki−1,L j)→ F(Ki−1,Q j)
ρ−→ F(Ki−1,L j+1)

δ−→ R1F2(Ki−1,L j)→ R1F2(Ki−1,Q j)

0→ F(Pi,L j)→ F(Pi,Q j)
σ−→ F(Pi,L j+1)

δ−→ R1F2(Pi,L j)→ R1F2(Pi,Q j)

0→ F(Ki,L j)→ F(Ki,Q j)
τ−→ F(Ki,L j+1)

δ−→ R1F2(Ki,L j)→ R1F2(Ki,Q j)

By assumption R1F2(Pi,L j) = 0 because Pi is projective, hence σ is onto. By Exer-
cise 8.2.29, R1F2(Ki,Q j) = R1F2(Ki−1,Q j) = 0 because Q j is injective. The diagram

F(Ki−1,L j) //

��

F(Ki−1,Q j)
ρ //

��

F(Ki−1,L j+1) //

��

R1F2(Ki−1,L j)

F(Pi,L j)

α

��

// F(Pi,Q j)
σ //

β

��

F(Pi,L j+1)

γ

��

// 0

F(Ki,L j) //

��

F(Ki,Q j)
τ //

��

F(Ki,L j+1) //

��

R1F2(Ki,L j)

R1F1(Ki−1,L j) 0 R1F1(Ki−1,L j+1)
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commutes, where the three rows and three columns are the exact sequences from above.
Apply the Snake Lemma (Theorem 2.5.2) to see that

(2.19) R1F2(Ki−1,L j)∼= R1F1(Ki−1,L j).

Since β and σ are onto, it follows that

(2.20) R1F2(Ki,L j) = R1F1(Ki−1,L j+1).

Combine (2.20) and (2.19) to get

R1F1(Ki−1,L j+1)∼= R1F2(Ki,L j)∼= R1F1(Ki,L j).

Iterate this n times to get

(2.21) R1F1(A,Ln−1)∼= R1F1(K−1,Ln−1)∼= R1F1(Kn−2,L0)∼= R1F1(Kn−2,B).

Combine (2.21), (2.19), Theorem 8.2.17, and Theorem 8.2.19 to get

RnF2(A,B)∼= R1F2(A,Ln−1) (Theorem 8.2.17)
∼= R1F1(A,Ln−1) (2.19)
∼= R1F1(Kn−2,B) (2.21)
∼= RnF1(A,B) (Theorem 8.2.19).

□

3. Introduction to Tor and Ext Groups

3.1. Introduction to Tor groups. Throughout this section, R is an arbitrary ring.
Let A be a right R-module and B a left R-module. The assignment (A,B) 7→ A⊗R B is a
bifunctor T : MR× RM→ ZM which is covariant, additive (Exercise 8.1.16), and right
exact (Lemma 2.3.18) in both variables. If P is a projective right R-module, then T2(P, ·)
is an exact functor (Exercise 2.3.31). By Exercise 8.1.26, LnT2(P,B) = 0 for all n≥ 1 and
all B. Likewise, if Q is a projective left R-module, then LnT1(A,Q) = 0 for all n ≥ 1 and
all A.

DEFINITION 8.3.1. For n≥ 0 define

TorR
n (A,B) = LnT1(A,B)∼= LnT2(A,B)

where the last isomorphism is due to Theorem 8.1.34. More specifically, if P• → A is a
projective resolution for A and Q•→ B is a projective resolution for B, then

TorR
n (A,B) = Hn(P•⊗R B)

= Hn(A⊗R Q•).

PROPOSITION 8.3.2. Let M be a right R-module and N a left R-module.

(1) If M is flat or N is flat, then TorR
n (M,N) = 0 for all n≥ 1.

(2) If 0→ A→ B→C→ 0 is a short exact sequence of left R-modules, then

· · · → TorR
n (M,A)→ TorR

n (M,B)→ TorR
n (M,C)

∂−→ TorR
n−1(M,A)→ ···

· · · → TorR
1 (M,C)

∂−→M⊗R A→M⊗R B→M⊗R C→ 0

is a long exact sequence of abelian groups.
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(3) If 0→ A→ B→C→ 0 is a short exact sequence of right R-modules, then

· · · → TorR
n (A,N)→ TorR

n (B,N)→ TorR
n (C,N)

∂−→ TorR
n−1(A,N)→ ···

· · · → TorR
1 (C,N)

∂−→ A⊗R N→ B⊗R N→C⊗R N→ 0

is a long exact sequence of abelian groups.
(4) If C•→M→ 0 is a resolution of M by flat R-modules Ci and if D•→ N→ 0 is a

resolution of N by flat R-modules Di, then

TorR
n (M,N) = Hn(C•⊗R N)

= Hn(M⊗R D•).

(5) For all n≥ 0, TorR
n (M,N)∼= TorRo

n (N,M).
(6) For a fixed M, if TorR

1 (M,N) = 0 for all N, then M is flat.
(7) If I is an index set and {Mi} is a collection of right R-modules, then

TorR
n

(⊕
i

Mi,N
)
∼=
⊕

i

TorR
n (Mi,N)

for all n≥ 0.
(8) If I is a directed index set and {Mi} is a directed system of right R-modules, then

TorR
n
(
lim−→Mi,N

)∼= lim−→TorR
n (Mi,N)

for all n≥ 0.

PROOF. (1): Tensoring with a flat R-module defines an exact functor. This follows
from Exercise 8.1.26.

(2) and (3): Follow straight from Exercise 8.1.27.
(4): By Part (1) flat modules are acyclic for the tensor functor. This follows from

Theorem 8.1.29.
(5): Start with a projective resolution P•→M and use Lemma 2.3.16 to show

Hn(P•⊗R N)∼= Hn(N⊗Ro P•).

(6): Follows from Part (2).
(7): Let 0→ K → P→ N → 0 be a short exact sequence, where P is projective. By

Part (1) Torn(X ,P) = 0 for all X and for all n≥ 1. By Part (2), for each i ∈ I there is a long
exact sequence

(3.1) 0→ TorR
n+1(Mi,N)

∂−→ TorR
n (Mi,K)→ 0→ ···

· · · → 0→ TorR
1 (Mi,N)

∂−→Mi⊗R K→Mi⊗R P→M⊗R N→ 0

Another long exact sequence is

(3.2) 0→ TorR
n+1

(⊕
i

Mi,N
)

∂−→ TorR
n

(⊕
i

Mi,K
)
→ 0→ ···

· · · → 0→ TorR
1

(⊕
i

Mi,N
)

∂−→
⊕

i

Mi⊗R K→
⊕

i

Mi⊗R P→
⊕

i

Mi⊗R N→ 0.
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Take direct sums of (3.1) and combine with (3.2). In degrees one and zero, we get the
diagram

0 //⊕
i TorR

1 (Mi,N)
∂ //

γ

��

⊕
i

(
Mi⊗R K

)
//

α

��

⊕
i

(
Mi⊗R P

)
β

��
0 // TorR

1

(⊕
i Mi,N

)
∂ //⊕

i Mi⊗R K // ⊕
i Mi⊗R P

which is commutative and has exact rows. By Lemma 2.3.15, α and β are isomorphisms.
Therefore γ is an isomorphism. In degrees n+1 and n, we get the diagram

0 // ⊕
i TorR

n+1(Mi,N)
∂ //

γ

��

⊕
i TorR

n (Mi,K) //

α

��

0

0 // TorR
n+1

(⊕
i Mi,N

)
∂ // TorR

n

(⊕
i Mi,K

)
// 0

which is commutative and has exact rows. By induction on n we assume α is an isomor-
phism. Therefore γ is an isomorphism.

(8): Use the same notation as in the proof of Part (7). Another long exact sequence is

(3.3) 0→ TorR
n+1
(
lim−→Mi,N

) ∂−→ TorR
n
(
lim−→Mi,K

)
→ 0→ ···

· · · → 0→ TorR
1
(
lim−→Mi,N

) ∂−→ lim−→Mi⊗R K→ lim−→Mi⊗R P→ lim−→Mi⊗R N→ 0.

Take direct limits of (3.1) and combine with (3.3). By Theorem 2.7.6, in degrees one and
zero, we get the diagram

0 // lim−→TorR
1 (Mi,N)

∂ //

γ

��

lim−→
(
Mi⊗R K

)
//

α

��

lim−→

(
Mi⊗R P

)
β

��
0 // TorR

1
(
lim−→Mi,N

) ∂ // lim−→Mi⊗R K // lim−→Mi⊗R P

which is commutative and has exact rows. By Corollary 2.7.10, α and β are isomorphisms.
Therefore γ is an isomorphism. In degrees n+1 and n, we get the diagram

0 // lim−→TorR
n+1(Mi,N)

∂ //

γ

��

lim−→TorR
n (Mi,K) //

α

��

0

0 // TorR
n+1
(
lim−→Mi,N

) ∂ // TorR
n
(
lim−→Mi,K

)
// 0

which is commutative and has exact rows. By induction on n we assume α is an isomor-
phism. Therefore γ is an isomorphism. □

LEMMA 8.3.3. Let R be any ring and M a left R-module. The following are equivalent.
(1) M is a flat R-module.
(2) For every right ideal I of R, TorR

1 (R/I,M) = 0.
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(3) For every finitely generated right ideal I of R, TorR
1 (R/I,M) = 0.

(4) For every right R-module N, TorR
1 (N,M) = 0.

(5) For every finitely generated right R-module N, TorR
1 (N,M) = 0.

PROOF. Is left to the reader. □

LEMMA 8.3.4. Let R be a commutative ring and M and N two R-modules.

(1) TorR
n (M,N) is an R-module.

(2) TorR
n (M,N)∼= TorR

n (N,M).
(3) If R→ S is a homomorphism of commutative rings such that S is a flat R-algebra,

then

TorR
n (M,N)⊗R S = TorS

n(M⊗R S,N⊗R S)

for all n≥ 0.
(4) If P ∈ SpecR, then

TorR
n (M,N)P = TorRP

n (MP,NP)

for all n≥ 0.

PROOF. (1), (2) and (4): are left to the reader.
(3): Let P• → M → 0 be a projective resolution of M. Since S is a flat R-algebra,

()⊗R S is an exact functor. Therefore P•⊗R S→M⊗R S→ 0 is a projective resolution of
the S-module M⊗R S. It follows that

TorR
n (M,N)⊗R S = Hn(P•⊗R N)⊗R S

and

TorS
n(M⊗R S,N⊗R S) = Hn

(
(P•⊗R S)⊗S (N⊗R S)

)
= Hn

(
(P•⊗R N)⊗R S

)
.

By Exercise 8.1.7, Hn(P•⊗R N)⊗R S = Hn
(
(P•⊗R N)⊗R S

)
. □

LEMMA 8.3.5. Let R→ S be a homomorphism of commutative rings. Let M be an
S-module and N an R-module.

(1) For all n≥ 0, TorR
n (M,N) is an S-module.

(2) If R and S are noetherian, N is finitely generated over R, and M is finitely gener-
ated over S, then TorR

n (M,N) is finitely generated over S.
(3) If P ∈ SpecS and Q = P∩R, then

TorR
n (M,N)⊗S SP = TorRQ

n
(
MP,NQ

)
= TorR

n
(
MP,N

)
.

PROOF. (1): Let A•→ N be a projective resolution of N. The functor (·)⊗R M maps
the category MR to the category MS, so for each n, Hn(A•⊗R M) is an S-module.

(2): By Exercise 8.3.10, let A• → N be a resolution of N where each Ai is a finitely
generated free R-module. Then Ai ⊗R M is finitely generated over S. It follows from
Corollary 4.1.12 that Hn(A•⊗R M) is a finitely generated S-module for each n.

(3): Let A•→ N be a projective resolution of N. Then

TorR
n (M,N)⊗S SP = Hn(A•⊗R M)⊗S SP

= Hn
(
A•⊗R M⊗S SP

)
(by Exercise 8.1.7)

= TorR
n
(
MP,N

)
.
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Continue from the same starting point,

TorR
n (M,N)⊗S SP = Hn(A•⊗R M)⊗S SP

= Hn
(
A•⊗R M⊗S SP

)
(by Exercise 8.1.7)

= Hn
(
(A•⊗R RQ)⊗RQ (M⊗S SP)

)
= TorRQ

n
(
MP,NQ

)
where the last equality holds because A•⊗R RQ is a projective resolution of the RQ-module
N⊗R RQ. □

COROLLARY 8.3.6. Let R→ S be a homomorphism of commutative rings. Let M be
an S-module. The following are equivalent.

(1) M is flat when viewed as an R-module.
(2) MP is a flat RQ-module for all P ∈ SpecS, if Q = P∩R.
(3) Mm is a flat Rn-module for all m ∈MaxS, if n=m∩R.

PROOF. (1) implies (2): Let N be any RQ-module. Then NQ = N ⊗R RQ = N. By
Lemma 8.3.5, TorRQ

1

(
MP,NQ

)
=
(
TorR

1 (M,N)
)

P = 0.
(2) implies (3): is trivially true.
(3) implies (1): Let N be any R-module, m∈MaxS, and set n=m∩R. It follows from

Lemma 8.3.5 that
(
TorR

1 (M,N)
)
m
= TorRn

1

(
Mm,Nn

)
= 0. □

3.2. Tor and Torsion. In this section R is an integral domain and K is the field of
fractions of R. The reader is referred to Definition 1.7.13 for the definition of torsion
module.

LEMMA 8.3.7. Let R be an integral domain, K the field of fractions of R, and M an
R-module.

(1) TorR
n (K/R,M) = 0 for all n≥ 2.

(2) If M is torsion free, then TorR
1 (K/R,M) = 0.

(3) If M is a torsion R-module, then the connecting homomorphism induces a natural
isomorphism TorR

1 (K/R,M)∼= M of R-modules.

PROOF. (1): The exact sequence of R-modules 0→ R→ K→ K/R→ 0 gives rise to
the long exact sequence

(3.4) · · · → TorR
n (K,M)→ TorR

n (K/R,M)
∂n−→ TorR

n−1(K/R,M)→ . . .

· · · → TorR
1 (K,M)→ TorR

1 (K/R,M)
∂1−→ R⊗R M→ K⊗R M→ K/R⊗R M→ 0

of R-modules (Proposition 8.3.2). Clearly R is flat, and by Lemma 3.1.7, K is flat. It
follows from Lemma 8.3.3 that TorR

i (R,M) = TorR
i (K,M) = 0 for i≥ 1.

(2): Since TorR
1 (K,M) = 0, ∂1 is one-to-one. By Lemma 3.1.4, M→ K⊗R M is one-

to-one, so ∂1 = 0.
(3): By Exercise 2.3.45, K⊗R M = 0. The connecting homomorphism ∂1, which is

natural by Theorem 8.1.25, is an isomorphism. □

3.3. Exercises.

EXERCISE 8.3.8. Let 0→ A→ B→C→ 0 be a short exact sequence of R-modules.
If A and C are flat, then B is flat. If B and C are flat, then A is flat.

EXERCISE 8.3.9. Use Lemma 8.3.5 to give another proof of Proposition 3.7.2.



3. INTRODUCTION TO TOR AND EXT GROUPS 313

EXERCISE 8.3.10. If R is noetherian and M is a finitely generated R-module, then
there exists a resolution P• → M → 0 of M such that each Pi is a finitely generated free
R-module.

3.4. Introduction to Ext Groups. Throughout this section, R is an arbitrary ring.
The assignment (A,B) 7→HomR(A,B) is a bifunctor E : RM×RM→Z-modules. Let A and
B be left R-modules. By Proposition 2.4.5, the functor E1(·,B) is left exact contravariant
whereas the functor E2(A, ·) is left exact covariant. By Proposition 2.4.5, if P is a projective
R-module, the functor E2(P, ·) is exact. By Exercise 8.2.25, RnE2(P,B) = 0 for all n ≥ 1
and all B. By Theorem 2.6.2, if Q is an injective R-module, the functor E1(·,Q) is exact.
By Exercise 8.2.26, RnE1(A,Q) = 0 for all n≥ 1 and all A.

DEFINITION 8.3.11. Let A and B be left R-modules. For n≥ 0 define

ExtnR(A,B) = RnE1(A,B)∼= RnE2(A,B)

where the last isomorphism is due to Theorem 8.2.33. More specifically, if P• → A is a
projective resolution for A and B→ Q• is an injective resolution for B, then

ExtnR(A,B) = Hn(HomR(P•,B)
)

= Hn(HomR(A,Q•)
)
.

PROPOSITION 8.3.12. Let M and N be left R-modules.

(1) Ext0R(M, ·) = HomR(M, ·) and Ext0R(·,N) = HomR(·,N).
(2) If 0→ A→ B→C→ 0 is a short exact sequence of left R-modules, then there

are long exact sequences

0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C)
δ 0
−→ Ext1R(M,A)→ ···

· · · → ExtnR(M,A)→ ExtnR(M,B)→ ExtnR(M,C)
δ n
−→ Extn+1

R (M,A)→ ···

and

0→ HomR(C,N)→ HomR(B,N)→ HomR(A,N)
δ 0
−→ Ext1R(C,N)→ ·· ·

· · · → ExtnR(C,N)→ ExtnR(B,N)→ ExtnR(A,N)
δ n
−→ Extn+1

R (C,N)→ ·· ·

of abelian groups.
(3) If M is projective, then ExtnR(M,N)= 0 for all n≥ 1. Conversely, if Ext1R(M,N)=

0 for all N, then M is projective.
(4) If N is injective, then ExtnR(M,N)= 0 for all n≥ 1. Conversely, if Ext1R(M,N)= 0

for all M, then N is injective.
(5) If {Mi | i ∈ I} is a collection of R-modules, then

ExtnR
(⊕

i∈I

Mi,N
)
∼= ∏

i∈I
ExtnR(Mi,N)

for all n≥ 0.
(6) If {N j | j ∈ J} is a collection of R-modules, then

ExtnR
(

M,∏
j∈J

N j

)
∼= ∏

j∈J
ExtnR(M,N j)

for all n≥ 0.
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PROOF. (1): Follows straight from Exercise 8.2.27 (1) and Exercise 8.2.28 (1).
(2): Follows straight from Exercise 8.2.27y (2) and Exercise 8.2.28 (2).
(3): Follows straight from Exercise 8.2.30, Proposition 2.4.5 (2), and the exact se-

quence of Part (2).
(4): Follows straight from Exercise 8.2.29, Theorem 2.6.2, and the exact sequence of

Part (2).
(5): Let 0→ N → Q→ C→ 0 be a short exact sequence, where Q is injective. By

Part (4) ExtnR(X ,Q) = 0 for all X and for all n≥ 1. By Part (2), for each i ∈ I there is a long
exact sequence

(3.5) 0→ HomR(Mi,N)→ HomR(Mi,Q)→ HomR(Mi,C)
δ 0
−→ Ext1R(Mi,N)→ 0→

·· · → 0→ ExtnR(M j,C)
δ n
−→ Extn+1

R (M j,N)→ 0→ ·· ·

Another long exact sequence is

(3.6) 0→ HomR

(⊕
i∈I

Mi,N
)
→ HomR

(⊕
i∈I

Mi,Q
)
→

HomR

(⊕
i∈I

Mi,C
)

δ 0
−→ Ext1R

(⊕
i∈I

Mi,N
)
→ 0→

·· · → 0→ ExtnR
(⊕

i∈I

Mi,C
)

δ n
−→ Extn+1

R

(⊕
i∈I

Mi,N
)
→ 0→ ·· ·

Take direct products of (3.5) and combine with (3.6). In degrees zero and one we get the
diagram

HomR

(⊕
i∈I Mi,Q

)
//

α

��

HomR

(⊕
i∈I Mi,C

)
δ 0
//

β

��

Ext1R
(⊕

i∈I Mi,N
)

γ

��

// 0

∏i∈I HomR(Mi,Q) // ∏i∈I HomR(Mi,C)
δ 0

// ∏i∈I Ext1R(Mi,N) // 0

which commutes and has exact rows. By Proposition 2.4.8, α and β are isomorphisms.
Therefore γ is an isomorphism. In degrees n and n+1 we get the diagram

0 // ExtnR
(⊕

i∈I Mi,C
)

δ n
//

β

��

Extn+1
R

(⊕
i∈I Mi,N

)
γ

��

// 0

0 // ∏i∈I ExtnR(M j,C)
δ n
// ∏i∈I Extn+1

R (M j,N) // 0

which commutes and has exact rows. By induction on n we assume β is an isomorphism.
Therefore γ is an isomorphism.

(6): Start with a short exact sequence 0→ K → P→ M → 0 where P is projective.
Proceed as in Part (5). □

LEMMA 8.3.13. Let R be a commutative ring and M and N two R-modules.

(1) For all n≥ 0 ExtnR(M,N) is an R-module.
(2) If R is noetherian, and M and N are finitely generated R-modules, then for all

n≥ 0, ExtnR(M,N) is a finitely generated R-module.
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(3) If R is noetherian, M is a finitely generated R-module, and R→ S is a homomor-
phism of commutative rings such that S is a flat R-algebra, then

ExtnR(M,N)⊗R S = ExtnS(M⊗R S,N⊗R S)

for all n≥ 0. In particular, if P ∈ SpecR, then

ExtnR(M,N)P = ExtnRP
(MP,NP)

for all n≥ 0.

PROOF. (1) and (2): Are left to the reader.
(3): By Exercise 8.3.10 there exists a projective resolution P•→M→ 0 of M such that

each Pi is a finitely generated free R-module. Since (·)⊗R S is an exact functor, P•⊗R S→
M⊗R S→ 0 is a projective resolution of the S-module M⊗R S.

ExtnS(M⊗R S,N⊗R S) = Hn(HomS(P•⊗R S,N⊗R S))

= Hn(HomR(P•,N)⊗R S) (Proposition 3.5.8)

= Hn(HomR(P•,N))⊗R S (Exercise 8.2.7)

= ExtnR(M,N)⊗R S

□

LEMMA 8.3.14. Let A ∈ RM, B ∈ SMR and C ∈ SM.

(1) If A is a projective left R-module, then there are isomorphisms of Z-modules

ExtnS(B⊗R A,C)∼= HomR(A,ExtnS(B,C))

for all n≥ 0.
(2) If the functor B⊗R (·) : RM→ SM maps projective R-modules to projective S-

modules, then there are isomorphisms of Z-modules

ExtnS(B⊗R A,C)∼= ExtnR(A,HomS(B,C))

for all n≥ 0.

In both instances, the isomorphisms are induced by the adjoint isomorphisms of Theo-
rem 2.4.10.

PROOF. (1): Let C→ I• be an injective resolution of C. By the adjoint isomorphism,

(3.7) HomS(B⊗R A, I•)∼= HomR(A,HomS(B, I•))

is an isomorphism of complexes. Then ExtnS(B⊗R A,C) is the nth homology group of
the complex on the left hand side of (3.7). Since A is projective, HomR(A, ·) is an exact
covariant functor. Using Exercise 8.1.7, the nth homology group of the complex on the
right hand side of (3.7) is isomorphic to HomR(A,ExtnS(B,C)).

(2): Let P• → A be a projective resolution of the left R-module A. Then B⊗R P• →
B⊗R A is a projective resolution of the left S-module B⊗R A. By the adjoint isomorphism,

(3.8) HomS(B⊗R P•,C)∼= HomR(P•,HomS(B,C))

is an isomorphism of complexes. Then ExtnS(B⊗R A,C), which is the nth homology group
of the complex on the left hand side of (3.8), is isomorphic to ExtnR(A,HomS(B,C)), which
is the nth homology group of the complex on the right hand side of (3.8). □



316 8. HOMOLOGICAL ALGEBRA

4. Cohomological Dimension of a Ring

The results of this section will be applied when we study regular local rings in Sec-
tion 11.3.5. The material presented in this section is based on various sources, including
[52], [42], and [24].

Let R be a ring and M a left R-module. The projective dimension of M, written
proj.dimR M, is the length of a shortest projective resolution for M. If 0→ Pn → ··· →
P1→ P0→M→ 0 is a projective resolution of M, then proj.dimR(M)≤ n. It follows that
M is projective if and only if proj.dimR(M) = 0. The injective dimension of M, written
inj.dimR M, is the length of a shortest injective resolution for M.

LEMMA 8.4.1. (Schanuel’s Lemma) Let R be any ring and M a left R-module. Suppose
P and Q are projective R-modules such that the sequences

0→ K→ P→M→ 0

0→ L→ Q→M→ 0

are exact. The R-modules K⊕Q and L⊕P are isomorphic.

PROOF. Consider the diagram

0 // K
φ //

∃ρ
��

P
ψ //

∃η
��

M //

=

��

0

0 // L α // Q
β // M // 0

with rows given. By Proposition 2.1.1 (3), there exists a homomorphism η such that βη =
ψ because P is projective. Now βηφ = ψφ = 0 so imηφ ⊆ kerβ = imα . Since α is
one-to-one, there exists ρ making the diagram commute. Define δ : K→ P⊕L by δ (x) =
(φ(x),ρ(x)). Since φ is one-to-one, so is δ . Define π : P⊕L→Q by π(u,v)=η(u)−α(v).
Since the diagram commutes, πδ = 0. The reader should verify that the sequence

(4.1) 0→ K δ−→ P⊕L π−→ Q→ 0

is exact. Since Q is projective, sequence (4.1) splits. □

DEFINITION 8.4.2. Let R be any ring and M a left R-module. Let P• → M be a
projective resolution of M. Define Kn−1 to be the kernel of dn−1. Then

0→ Kn−1→ Pn−1→ ···
d1−→ P0

ε−→M→ 0

is exact. Let K0 be the kernel of ε . We say Kn is the nth syzygy of M with respect to the
projective resolution P•.

DEFINITION 8.4.3. If R is a ring and M and N are two left R-modules, then we say
M and N are projectively equivalent in case there exist projective R-modules P and Q such
that M⊕P∼= N⊕Q.

THEOREM 8.4.4. Let R be any ring and M a left R-module. Given a projective resolu-
tion P•→M with syzygies {Kn} and another projective resolution Q•→M with syzygies
{Ln}, for each n≥ 0, Kn and Ln are projectively equivalent.

PROOF. Use induction on n. For n = 0, this is Lemma 8.4.1. The rest is left to the
reader. □
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THEOREM 8.4.5. Let R be any ring and M a left R-module. For any n≥ 0, the follow-
ing are equivalent.

(1) proj.dimR(M)≤ n.
(2) For all R-modules N, ExtkR(M,N) = 0 for all k ≥ n+1.
(3) For all R-modules N, Extn+1

R (M,N) = 0.
(4) There exists a projective resolution P•→M with syzygies {Kn} such that Kn−1 is

projective.
(5) For any projective resolution P•→M with syzygies {Kn}, Kn−1 is projective.

PROOF. (1) implies (2): Use a projective resolution for M of length n to compute
ExtkR(M,N) = 0 for all k ≥ n+1.

(2) implies (3): Is trivial.
(3) implies (4): Let P•→M be a projective resolution of M with syzygies {Kn}. Then

(4.2) 0→ Kn−1→ Pn−1→ ···
d1−→ P0

ε−→M→ 0

is exact. By Theorem 8.2.19, the groups Extn+1
R (M,N) and Ext1R(Kn−1,N) are naturally

isomorphic. By (3), both groups are zero and by Proposition 8.3.12 (3), Kn−1 is a projective
R-module.

(4) implies (5): Suppose we are given a projective resolution P• → M with syzygies
{Kn} such that Kn−1 is projective. Let Q•→M be another projective resolution with syzy-
gies {Ln}. By Theorem 8.4.4, there exist projectives P and Q such that Kn−1⊕P∼= Ln−1⊕
Q. Being a direct summand of a projective, Ln−1 is projective by Proposition 2.1.1 (1).

(5) implies (1): Let P•→M be a projective resolution with syzygies {Kn}. Then Kn−1
is projective. It follows that (4.2) is a projective resolution of M of length less than or equal
to n. □

LEMMA 8.4.6. Let R be a commutative ring and M an R-module. For any n≥ 0, the
following are equivalent.

(1) inj.dimR(M)≤ n.
(2) For every ideal I of R, Extn+1

R (R/I,M) = 0.

PROOF. (1) implies (2): Follows from Exercise 8.4.17.
(2) implies (1): Let M→ E• be an injective resolution of the R-module M. Define Kn

to be the kernel of dn. The sequence

0→M ε−→ E0 d0
−→ E1 d1

−→ ·· · → En−1→ Kn→ 0

is exact. Let I be an ideal of R. By Theorem 8.2.17, Extn+1
R (R/I,M) is naturally isomorphic

to Ext1R(R/I,Kn). By (2), Extn+1
R (R/I,M) = 0. By Exercise 8.4.18, Kn is an injective R-

module. There exists an injective resolution of M of length less than or equal to n. □

LEMMA 8.4.7. Let R be a noetherian ring and M a finitely generated left R-module.
The following are equivalent.

(1) M is a projective R-module.
(2) Ext1R(M,N) = 0 for all finitely generated left R-modules N.

PROOF. (1) implies (2): Follows from Proposition 8.3.12 (3).
(2) implies (1): By Corollary 4.1.12, M is finitely presented, so there exists an exact

sequence

(4.3) 0→ A α−→ B→M→ 0



318 8. HOMOLOGICAL ALGEBRA

such that B is a finitely generated free R-module and A is a finitely generated R-module.
By (2), Ext1R(M,A) = 0. The long exact sequence of Proposition 8.3.12 (2) degenerates
into the short exact sequence

0→ HomR(M,A)→ HomR(B,A)
Hα−−→ HomR(A,A)→ 0.

There exists φ ∈ HomR(B,A) such that φα is the identity map on A. The sequence (4.3)
splits, so M is projective by Proposition 2.1.1 (1). □

LEMMA 8.4.8. Let R be a commutative noetherian ring and M a finitely generated
R-module. For any n≥ 0, the following are equivalent.

(1) proj.dimR(M)≤ n.
(2) For every ideal I of R, Extn+1

R (M,R/I) = 0.

PROOF. (1) implies (2): Follows from Exercise 8.4.17.
(2) implies (1): Let N be an arbitrary finitely generated R-module. By Exercise 8.4.22,

it suffices to show Extn+1
R (M,N) = 0. Proceed by induction on the number of generators

of N. Suppose N = Rx1 + · · ·+Rxm. Let N0 = Rx1. By (2), Extn+1
R (M,N0) = 0 and by

induction on m, Extn+1
R (M,N/N0) = 0. The long exact sequence of Proposition 8.3.12 (2)

becomes

· · · → Extn+1
R (M,N0)→ Extn+1

R (M,N)→ Extn+1
R (M,N/N0)→ . . .

which proves Extn+1
R (M,N) = 0. □

COROLLARY 8.4.9. Let R be a commutative noetherian ring.
(1) For any R-module M,

inj.dimR(M) = sup{inj.dimRP
(M⊗R RP) | P ∈ Spec(R)}

= sup{inj.dimRm
(M⊗R Rm) |m ∈Max(R)}.

(2) For any finitely generated R-module M,

proj.dimR (M) = sup{proj.dimRP
(M⊗R RP) | P ∈ SpecR}

= sup{proj.dimRm
(M⊗R Rm) |m ∈MaxR}.

PROOF. (1): Suppose inj.dimR(M) ≤ n. Let P be a prime ideal of R. Every ideal
of RP is of the form IRP for some ideal I of R. By Lemma 8.4.6 and Lemma 8.3.13,
0 = Extn+1

R (R/I,M)P = Extn+1
RP

(RP/IRP,MP). Lemma 8.4.6 implies inj.dimRP
(MP)≤ n.

Suppose n = inj.dimR(M) is finite. By Lemma 8.4.6, there exists an ideal I in R
such that ExtnR(R/I,M) ̸= 0. By Proposition 3.1.9 there exists a maximal ideal m ∈MaxR
such that ExtnR(R/I,M)m = ExtnRm

(Rm/IRm,Mm) ̸= 0. In follows from Lemma 8.4.6,
inj.dimRm

(Mm)≥ n.
(2): Is left to the reader. □

PROPOSITION 8.4.10. Let R be a commutative noetherian local ring with maximal
ideal m and residue field k = R/m. Let M be a finitely generated R-module.

(1) If TorR
1 (M,k) = 0, then M is a free R-module.

(2) For all n≥ 0, proj.dim(M)≤ n if and only if TorR
n+1(M,k) = 0.

(3) If M is of finite projective dimension, then

proj.dimR(M/aM) = proj.dimR(M)+1

for any M-regular element a ∈m.
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PROOF. (1): By Exercise 8.4.20, there exists a free R-module Rν and an exact se-
quence

0→ K→ Rν f−→M→ 0
such that f ⊗1 is an isomorphism. The long exact sequence of Proposition 8.3.2 (3) is

TorR
1 (M,k)→ K⊗R k→ kν f−→M⊗R k→ 0.

Therefore, K⊗R k = 0. By Corollary 2.2.2, K = 0, hence M is free.
(2): Assume n≥ 0 and TorR

n+1(M,k) = 0. If n = 0, this is Part (1). Assume n > 0. By
Exercise 8.3.10, let P•→M be a projective resolution of M such that each Pi is finitely gen-
erated. Let Kn−1 = kerdn−1. By Theorem 8.1.20, 0 = TorR

n+1(M,k) = TorR
1 (Kn−1,k). Since

R is noetherian, by Part (1) applied to the finitely generated R-module Kn−1, it follows that
Kn−1 is free. Therefore, proj.dim(M)≤ n. The converse is Exercise 8.4.17.

(3): By definition, left multiplication by a is one-to-one, so the sequence

0→M ℓa−→M→M/aM→ 0

is exact. By Proposition 8.3.2 (3) and Lemma 8.3.4 (1), there is a long-exact sequence

. . .
ℓa−→ TorR

n+1(M,k)→ TorR
n+1(M/aM,k) ∂−→

TorR
n (M,k) ℓa−→ TorR

n (M,k)→ TorR
n (M/aM,k) ∂−→

of R-modules. Left multiplication by a annihilates k, hence the long-exact sequence breaks
down into short exact sequences

(4.4) 0→ TorR
n+1(M,k)→ TorR

n+1(M/aM,k) ∂−→ TorR
n (M,k) ℓa−→ 0.

Let d = proj.dimR(M). By Part (2) and Exercise 8.4.17,

TorR
n (M,k)

{
= 0 if n > d
̸= 0 if n = d.

By (4.4),

TorR
n (M/aM,k)

{
= 0 if n > d +1
̸= 0 if n = d +1.

By Part (2), proj.dimR(M/aM) = d +1. □

LEMMA 8.4.11. Let R be a commutative noetherian ring. The following are equiva-
lent, for any finitely generated R-module M.

(1) proj.dimR(M)≤ n.
(2) TorR

n+1(M,R/m) = 0 for all m ∈MaxR.

PROOF. By Corollary 8.4.9, (1) is equivalent to proj.dimRm
(Mm) ≤ n for all m ∈

MaxR. By Proposition 8.4.10, this is equivalent to TorRm
n+1(Mm,Rm/mRm) = 0 for all

m ∈MaxR. By Lemma 8.3.4 this is equivalent to (2). □

PROPOSITION 8.4.12. (M. Auslander) Let R be a commutative ring and n ≥ 0. The
following are equivalent.

(1) proj.dimR(M)≤ n for all R-modules M.
(2) proj.dimR(M)≤ n for all finitely generated R-modules M.
(3) inj.dimR(M)≤ n for all R-modules M.
(4) Extn+1

R (M,N) = 0 for all R-modules M and N.
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PROOF. (1) implies (2): Is trivial.
(2) implies (3): Let M be an R-module. As in the proof of Lemma 8.4.6, let M→ E•

be an injective resolution of the R-module M. Define Kn to be the kernel of dn. Let I be
an ideal of R. By Theorem 8.2.17, Extn+1

R (R/I,M) = Ext1R(R/I,Kn). Since R/I is finitely
generated, by (2) and Exercise 8.4.17, Extn+1

R (R/I,M) = 0. By Exercise 8.4.18, Kn is an
injective R-module. This proves (3).

(3) implies (4): Follows from Exercise 8.4.17.
(4) implies (1): Follows from Theorem 8.4.5. □

DEFINITION 8.4.13. Let R be a commutative ring. The global cohomological dimen-
sion of R (or cohomological dimension of R, or global dimension of R) is defined to be

coh.dim(R) = sup{proj.dimR(M) |M ∈ RM}
= sup{inj.dimR(M) |M ∈ RM}

where the last equality follows from Proposition 8.4.12.

LEMMA 8.4.14. Let R be a commutative noetherian ring.
(1) The following are equivalent.

(a) coh.dim(R)≤ n.
(b) proj.dimR(M)≤ n for all finitely generated R-modules M.
(c) inj.dimR(M)≤ n for all finitely generated R-modules M.
(d) Extn+1

R (M,N) = 0 for all finitely generated R-modules M and N.
(e) TorR

n+1(M,N) = 0 for all finitely generated R-modules M and N.
(2) coh.dim(R)= sup{coh.dim(RP) |P∈SpecR}= sup{coh.dim(Rm) |m∈MaxR}.

PROOF. (1): (a) is equivalent to (b), by Proposition 8.4.12.
(b) implies (c), by Proposition 8.4.12.
(c) implies (d): Follows from Exercise 8.4.17.
(b) implies (e): Follows from Exercise 8.4.17.
(e) implies (b): Follows from Lemma 8.4.11.
(d) implies (b): Follows from Exercise 8.4.22.
(2): Follows from Part (1) and Corollary 8.4.9. □

THEOREM 8.4.15. Let R be a commutative noetherian local ring with maximal ideal
m and residue field k = R/m.

(1) For a nonnegative integer n, the following are equivalent.
(a) coh.dimR≤ n.
(b) TorR

n+1(k,k) = 0.
(2) coh.dimR = proj.dimR (k).

PROOF. (1): (a) implies (b): Follows directly from Definition 8.4.13.
(b) implies (a): Assume TorR

n+1(k,k)= 0. By Proposition 8.4.10 (2), proj.dimR(k)≤ n.
By Exercise 8.4.17, TorR

n+1(M,k) = 0. By Proposition 8.4.10 (2), proj.dimR(M) ≤ n. By
Lemma 8.4.14, coh.dimR≤ n.

(2): Is left to the reader. □

PROPOSITION 8.4.16. Let φ : R→ S be a local homomorphism of commutative noe-
therian local rings. If S is a flat R-module, then coh.dim(R)≤ coh.dim(S).

PROOF. Let M and N be arbitrary finitely generated R-modules. By Lemma 8.3.4,

(4.5) TorR
n (M,N)⊗R S = TorS

n(M⊗R S,N⊗R S)
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for all n ≥ 0. If coh.dim(S) = d is finite, then by Lemma 8.4.14, the groups in (4.5) are
zero for n> d. By Exercise 3.5.27, S is a faithfully flat R-module, hence TorR

d+1(M,N) = 0.
By Lemma 8.4.14, coh.dim(R)≤ d. □

4.1. Exercises.

EXERCISE 8.4.17. Let R be a commutative ring, F : RM→ ZM a covariant additive
functor, and M an R-module.

(1) If proj.dimR(M)≤ n, then LiF(M) = 0 for all i > n.
(2) If inj.dimR(M)≤ n, then RiF(M) = 0 for all i > n.

EXERCISE 8.4.18. Let R be a commutative ring and E an R-module. Then E is injec-
tive if and only if Ext1R(R/I,E) = (0) for all ideals I in R.

EXERCISE 8.4.19. Let R be a commutative local ring with maximal ideal m and
residue field k = R/m. Let M and N be finitely generated R-modules and f ∈HomR(M,N).
The following are equivalent.

(1) f ⊗1 : M⊗R k→ N⊗R k is an isomorphism.
(2) ker f ⊆mM and f is onto.

EXERCISE 8.4.20. Let R be a commutative local ring with maximal ideal m and
residue field k = R/m. Let M be a finitely generated R-module. Show that there exists
an exact sequence

0→ K→ Rn f−→M→ 0
such that f ⊗1 : kn→M⊗R k is an isomorphism.

EXERCISE 8.4.21. Let R be a noetherian commutative local ring with maximal ideal
m and residue field k = R/m. Let M be a finitely generated R-module. Show that there
exists a resolution

· · · d3−→ F2
d2−→ F1

d1−→ F0
ε−→M→ 0

such that for all i≥ 0, Fi is a finitely generated free R-module and imdi+1 ⊆mFi.

EXERCISE 8.4.22. Let R be a commutative noetherian ring, n a nonnegative integer,
and M a finitely generated R-module. The following are equivalent.

(1) proj.dimR(M)≤ n.
(2) Extn+1

R (M,N) = 0 for all finitely generated R-modules N.

EXERCISE 8.4.23. Let k be a field. Prove that coh.dim(k) = 0.

EXERCISE 8.4.24. Let R be a PID. Prove that coh.dim(R)≤ 1. Prove that R is a field
if and only if coh.dim(R) = 0.

EXERCISE 8.4.25. Let R be a commutative ring and M an R-module. If S is a sub-
module of M which is a direct summand of M, then proj.dimR(S)≤ proj.dimR(M).

5. Group Cohomology

Let G be a group, written multiplicatively, with identity element denoted 1. Let ZG
denote the group ring, as defined in Example 1.1.4. A left ZG-module is also called a
G-module. The augmentation map ε : ZG→ Z is the homomorphism of rings induced
by G→ ⟨1⟩. Via ε , any Z-module A can be made into a trivial G-module. In this case,
for every x ∈ A and σ ∈ G we have σx = x. That is, every σ ∈ G acts as the trivial
automorphism of A. In particular, ε induces the trivial left ZG-module structure on Z.
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DEFINITION 8.5.1. Let G be a group and A a left G-module. For n≥ 0, the nth coho-
mology group of G with coefficients in A is defined to be Hn(G,A) = ExtnZG(Z,A), where
Z has the trivial left ZG-module structure. By Definition 8.3.11, the groups Hn(G,A) are
isomorphic to the right derived groups of the left exact contravariant functor HomZG(·,A),
as well as the right right derived groups of the left exact covariant functor HomZG(Z, ·).
Exercise 8.5.26 shows that the groups Hn(G,A) are also isomorphic to the right derived
groups of the left exact covariant functor A 7→ AG.

The goal of Sections 8.5.1 and 8.5.2 is to describe Hn(G,A) for n = 0,1,2,3. We
do this by presenting formulas for generators and relations for the groups. First, in Sec-
tion 8.5.1 we derive two free resolutions for the ZG-module Z. These are called the stan-
dard resolution and the bar resolution, respectively. In Section 8.5.2, starting from the stan-
dard resolution we apply the functor HomZG(·,A) to get a cochain complex from which
formulas for cocycles and coboundaries in low degrees are derived. After that, from the bar
resolution of Z, we repeat this process to get a cochain complex that leads us to the familiar
normalized factor sets that are useful for the crossed product construction, for example.

In Section 8.5.3 some of the basic functorial properties of group cohomology are
proved.

EXAMPLE 8.5.2. Suppose G = ⟨1⟩ is the trivial group and A is a Z-module. Then
Hn(G,A) = ExtnZ(Z,A). From Proposition 8.3.12 we find

Hn(G,A) =

{
A if n = 0,
0 if n > 0.

5.1. The Resolutions of Z by Free G-Modules. Throughout this section, G denotes
a group. The group ring ZG is a free Z-module on the index set G (see Example 1.6.10).
For any r ≥ 1, let Gr = ∏

r
i=1 G be the product of r copies of G. Elements of Gr are written

as (σ1, . . . ,σn), or sometimes as (σ0, . . . ,σn−1).

DEFINITION 8.5.3. By Pn we denote the free Z-module on the index set Gn+1. The
diagonal map δ : G→ Gn+1, which is defined by σ 7→ (σ , . . . ,σ) is a homomorphism
of groups. By virtue of δ , G acts as a group of permutations of Gn+1 by σ(σ0, . . . ,σn) =
(σσ0, . . . ,σσn). By this action, Pn is a left ZG-module. For 0≤ i≤ n, the projection homo-
morphism πn,i : Gn+1→ Gn is defined by reducing modulo the ith factor. We signify this
projection map on n+1-tuples by the “hat” notation: πn,i(σ0, . . . ,σn)= (σ0, . . . , σ̂i, . . . ,σn).
For n ≥ 1 define a boundary map ∂n : Pn→ Pn−1 by specifying its value on a Z-basis ele-
ment to be

∂n(σ0, . . . ,σn) =
n

∑
i=0

(−1)i
πn,i(σ0, . . . ,σn).

Theorem 8.5.4 shows that when augmented by ε , we have a resolution

· · · → Pn
∂n−→ Pn−1

∂n−1−−→ ·· · → P1
∂1−→ P0

ε−→ Z→ 0

of Z by free ZG-modules. This complex will be denoted P•.

THEOREM 8.5.4. In the above context,
(1) πn,i induces a ZG-module epimorphism πn,i : Pn→ Pn−1.
(2) Pn is a free ZG-module with basis {(1,σ1, . . . ,σn) | σi ∈ G}.
(3) ∂n is a ZG-module homomorphism.
(4) ∂n−1∂n = 0.
(5) The sequence P• of Definition 8.5.3 is a free resolution of the ZG-module Z.
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PROOF. (1), (2), (3): Are left to the reader.
(4): The reader should verify that

πn−1, jπn,i(σ0, . . . ,σn) =

{
(σ0, . . . , σ̂i, . . . , σ̂ j+1, . . . ,σn) if 0≤ i≤ j < n
(σ0, . . . , σ̂ j, . . . , σ̂i, . . . ,σn) if 0≤ j < i≤ n.

We have

∂n−1∂n(σ0, . . . ,σn) =
n

∑
i=0

(−1)i
∂n−1(πn,i(σ0, . . . ,σn))

=
n

∑
i=0

(−1)i
n−1

∑
j=0

(−1) j
πn−1, jπn,i(σ0, . . . ,σn)

= ∑
i≤ j

(−1)i+ j
πn−1, jπn,i(σ0, . . . ,σn)+∑

i> j
(−1)i+ j

πn−1, jπn,i(σ0, . . . ,σn)

and

∑
i≤ j

(−1)i+ j
πn−1, jπn,i(σ0, . . . ,σn) = ∑

i≤ j
(−1)i+ j(σ0, . . . , σ̂i, . . . , σ̂ j+1, . . . ,σn)

=
n−1

∑
i=0

n

∑
k=i+1

(−1)i+k+1(σ0, . . . , σ̂i, . . . , σ̂k, . . . ,σn)

and

∑
i> j

(−1)i+ j
πn−1, jπn,i(σ0, . . . ,σn) = ∑

i> j
(−1)i+ j(σ0, . . . , σ̂ j, . . . , σ̂i, . . . ,σn)

=
n−1

∑
j=0

n

∑
ℓ= j+1

(−1) j+ℓ(σ0, . . . , σ̂ j, . . . , σ̂ℓ, . . . ,σn)

from which (4) follows.
(5): It follows from (4) and the fact that ε(σ) = 1, that P• is a complex. To show

that P• is exact, we construct a contracting homotopy and apply Exercise 8.1.15. If n ≥
0, define kn : Pn → Pn+1 by specifying its value on a Z-basis element: kn(σ0, . . . ,σn) =
(1,σ0, . . . ,σn). Define k−1 : Z→ P0 by k−1(n) = (n · 1). Notice that kn is a Z-module
homomorphism, not a ZG-module homomorphism. Nevertheless, to prove (5), this is
sufficient. Extending the complex with 0 and taking ∂0 = ε , we must verify that ∂n+1kn +
kn−1∂n is the identity map on Pn, for all n. The first non-trivial case is n =−1. Since

εk−1(n) = ε(n ·1) = n

the identity holds. For n≥ 0 we check the identity on a typical basis element. Then

(∂n+1kn + kn−1∂n)(σ0, . . . ,σn) = ∂n+1(1,σ0, . . . ,σn)+ kn−1

n

∑
i=0

(−1)i(σ0, . . . , σ̂i, . . . ,σn)

= (σ0, . . . ,σn)+
n

∑
j=0

(−1) j+1(1,σ0, . . . , σ̂i, . . . ,σn)

+
n

∑
i=0

(−1)i(1,σ0, . . . , σ̂i, . . . ,σn)

= (σ0, . . . ,σn)

which completes the proof. □
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DEFINITION 8.5.5. For n ≥ 1, we define Qn to be the free ZG-module on the index
set Gn. To distinguish the basis elements of Qn from those of Pn (see Definition 8.5.3), we
use brackets instead of parentheses. The basis for Qn is the set {[σ1, . . . ,σn] | σi ∈ G}. For
consistency, define Q0 to be the free ZG-module on the singleton set {[ ]}. For n≥ 1 define
a boundary map dn : Qn→ Qn−1 by specifying its value on a typical basis element:

dn[σ1, . . . ,σn] = σ1[σ2, . . . ,σn]+
n−1

∑
i=1

(−1)i[σ1, . . . ,σi−1,σiσi+1,σi+2, . . . ,σn]

+ (−1)n[σ1, . . . ,σn−1].

Theorem 8.5.6 shows that when augmented by ε , we have a resolution of Z by free ZG-
modules. This complex will be denoted Q• and is called the unnormalized, or homoge-
neous, standard resolution.

THEOREM 8.5.6. The sequence

· · · → Qn
dn−→ Qn−1

dn−1−−→ ·· · → Q1
d1−→ Q0

ε−→ Z→ 0

is a free resolution of the ZG-module Z.

PROOF. The proof consists in showing that Q• is isomorphic to the free resolution P•.
Define fn : Pn→ Qn by the formula

fn(σ0, . . . ,σn) = σ0[σ
−1
0 σ1,σ

−1
1 σ2, . . . ,σ

−1
n−1σn].

Define gn : Qn→ Pn by the formula

gn[σ1, . . . ,σn] = (1,σ1,σ1σ2,σ1σ2σ3, . . . ,σ1σ2 · · ·σn).

The reader should verify that fn and gn are ZG-module homomorphisms and that they are
inverses to each other. The square

Pn
∂n //

fn
��

Pn−1

fn−1

��
Qn

dn // Qn−1

commutes for all n≥ 1 since
fn−1∂ngn[σ1, . . . ,σn] = fn−1∂n(1,σ1,σ1σ2, . . . ,σ1σ2 · · ·σn)

=
n

∑
i=0

(−1)i fn−1(1,σ1,σ1σ2, . . . ,σ1σ2 · · ·σn)

= σ1[σ2, . . . ,σn]+
n−1

∑
i=1

(−1)i[σ1, . . . ,σi−1,σiσi+1,σi+2, . . . ,σn]

+ (−1)n[σ1, . . . ,σn−1]

= dn[σ1, . . . ,σn].

Therefore, Q• is a complex, and f : P• → Q• is an isomorphism of complexes. The rest
follows from Lemma 8.2.3. □

DEFINITION 8.5.7. Let G1 =G−⟨1⟩= {σ ∈G | σ ̸= 1}. For n≥ 1 define Bn to be the
ZG-submodule of Qn (see Definition 8.5.5) generated by those basis elements [σ1, . . . ,σn]
which belong to Gn

1. We take B0 = Q0, the free module on [ ]. The set inclusion map
Gn

1 ⊆ Gn induces an idempotent ηn ∈ HomZG(Qn,Qn) which projects Qn onto Bn. The
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boundary map dn : Bn→ Bn−1 is defined to be the inclusion map Bn ⊆ Qn followed by the
boundary map dn : Qn→ Qn−1 of Definition 8.5.5 followed by ηn−1. By construction, the
diagram

Bn
dn //

⊆
��

Bn−1

⊆
��

Qn
dn // Qn−1

ηn−1 // Qn−1

commutes. Theorem 8.5.8 shows that when augmented with ε : B0→ Z, this is a free ZG-
module resolution of Z. This complex is denoted B•, and is called the bar resolution, or
normalized standard resolution.

THEOREM 8.5.8. In the context of Definition 8.5.7,

· · · → Bn
dn−→ Bn−1

dn−1−−→ ·· · → B1
d1−→ B0

ε−→ Z→ 0

is a free resolution of the ZG-module Z.

PROOF. We must show that dn−1dn = 0, and that the homology of the complex is
(0). Take B−1 to be Z and d0 to be ε . Define Z-module homomorphisms hn : Bn→ Bn+1
for each n ≥ −1. The map h−1 : Z→ B0 is induced by the natural homomorphism of
rings Z→ ZG. For n ≥ 0, Bn is generated as a free Z-module by elements of the form
σ [σ1, . . . ,σn], where σ ∈ G, and [σ1, . . . ,σn] ∈ Gn

1. The map hn is defined by

hn(σ [σ1, . . . ,σn]) = ηn+1[σ ,σ1, . . . ,σn].

First we check that the contracting homotopy relations

dn+1hn +hn−1dn = 1Bn

are satisfied. For n = 0 we get

d0h−1(1) = d0[ ] = ε(1) = 1

For n = 1,

(d1h0 +h−1d0)(σ [ ]) = d0η1[σ ]+ ε(σ) =

{
ε(1) = [ ] if σ = 1
d1[σ ] = σ [ ] if σ ̸= 1

Now suppose n > 1. First assume σ = 1. The reader should verify that

dn+1hn[σ1, . . . ,σn] = 0

and
hn−1dn[σ1, . . . ,σn] = [σ1, . . . ,σn]

so the formula holds. Now assume σ ̸= 1. Then

dn+1hn(σ [σ1, . . . ,σn]) = dn+1[σ ,σ1, . . . ,σn]

= σ [σ1, . . . ,σn]− [σσ1,σ2, . . . ,σn]

+
n−1

∑
i=1

(−1)i+1[σ ,σ1, . . . ,σiσi+1, . . . ,σn]

+ (−1)n+1[σ ,σ1, . . . ,σn−1]
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and

hn−1dn(σ [σ1, . . . ,σn]) = hn−1

(
σσ1[σ2, . . . ,σn]+

n−1

∑
i=1

(−1)i
σ [σ1, . . . ,σiσi+1, . . . ,σn]

+ (−1)n
σ [σ1, . . . ,σn−1]

)
= [σσ1,σ2, . . . ,σn]+

n−1

∑
i=1

(−1)i[σ ,σ1, . . . ,σiσi+1, . . . ,σn]

+ (−1)n[σ ,σ1, . . . ,σn−1]

From this we get dn+1hn + hn−1dn = 1Bn . To finish, we must show dndn+1 = 0. The
proof is by induction on n. The basis step follows from d0d1[σ ] = εσ [ ] = 0, since σ ̸= 1.
Notice that the image of hn contains a ZG-basis for Bn+1. Inductively assume n > 0 and
dn−1dn = 0. Using the identity dn+1hn +hn−1dn = 1Bn , we get

dndn+1hn = dn(1Bn −hn−1dn)

= dn1Bn −dnhn−1dn)

= dn− (1Bn −hn−2dn−1)dn

= dn−dn +hn−2dn−1dn

= 0.

Applying Exercise 8.1.15 completes the proof. □

5.2. Cocycle and Coboundary Groups in Low Degree. Let A be a ZG-module. So
A is an abelian group with binary operation written additively, and G acts as a group on
A. The cohomology groups Hn(G,A) are defined to be ExtnZG(Z,A). If Q• → Z is the
standard (homogeneous) resolution from Definition 8.5.5, and B•→Z is the bar resolution
from Definition 8.5.7, then by Definition 8.3.11, we have

Hn(G,A) = ExtnZG(Z,A)
= Hn(HomZG(Q•,A))

= Hn(HomZG(B•,A)).

Notice that Hn(HomZG(Q•,A)) is an abelian group, where functions are added point-wise:
( f + g)(x) = f (x)+ g(x). Since Q0 = ZG, we have HomZG(Q0,A) = A (Lemma 2.4.7).
For n ≥ 1, because Qn is the free ZG-module on Gn, we can identify HomZG(Qn,A) with
Map(Gn,A), the set of all functions mapping Gn to A. The cochain map

HomZG(Qn−1,A)
dn−1
−−→ HomZG(Qn,A)

is defined by dn−1( f ) = f dn. Using the formula for the boundary dn in Definition 8.5.5,
on a typical basis element of Qn we have

(5.1) dn−1( f )[σ1, . . . ,σn] = f dn[σ1, . . . ,σn]

= σ1 f [σ2, . . . ,σn]+
n−1

∑
i=1

(−1)i f [σ1, . . . ,σiσi+1, . . . ,σn]+ (−1)n f [σ1, . . . ,σn−1].

In the first summand, we have used the fact that f is ZG-linear. For all n≥ 0,

Hn(G,A) = Zn(G,A)/Bn(G,A)

where Zn(G,A) = kerdn, and Bn(G,A) = imdn−1. By convention, d−1 = 0 and B0(G,A) =
0.
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PROPOSITION 8.5.9. In the above context,

(1) H0(G,A) = Z0(G,A) = AG is the subset of A fixed by G.
(2) Z1(G,A) is the set of all functions f : G→ A such that

f (στ) = f (σ)+σ f (τ),

for all (σ ,τ) ∈ G2.
(3) B1(G,A) is the set of all functions f : G→ A such that there exists x ∈ A and

f (σ) = σ(x)− x, for all σ ∈ G.
(4) Z2(G,A) is the set of all functions f : G×G→ A such that

f (ρ,σ)+ f (ρσ ,τ) = ρ f (σ ,τ)+ f (ρ,στ),

for all (ρ,σ ,τ) ∈ G3.
(5) B2(G,A) is the set of all functions f : G×G→ A such that there exists g : G→ A

and f (σ ,τ) = σg(τ)−g(στ)+g(σ), for all (σ ,τ) ∈ G2.

PROOF. Follows straight from (5.1) and the definitions. □

COROLLARY 8.5.10. In the above context, the normalized cocycles and coboundaries
in degrees 1 and 2 are:

(1) Z1(G,A) is the set of all functions f : G→ A such that f (1) = 0, and

f (στ) = f (σ)+σ f (τ),

for all (σ ,τ) ∈ G2.
(2) Z2(G,A) is the set of all functions f : G×G→ A such that

f (ρ,σ)+ f (ρσ ,τ) = ρ f (σ ,τ)+ f (ρ,στ),

and f (1,τ) = f (σ ,1) = 0, for all (ρ,σ ,τ) ∈ G3.
(3) B2(G,A) is the set of all functions f : G×G→ A such that there exists g : G→ A

where g(1) = 0 and f (σ ,τ) = σg(τ)−g(στ)+g(σ), for all (σ ,τ) ∈ G2.

PROOF. Use the bar resolution B•→ Z. In (5.1), dn is zero whenever 1 appears in the
n-tuple. Notice that elements of B1(G,A) are always normalized. □

REMARK 8.5.11. For the record, we mention that the group Z3(G,A) is the set of all
f : G3→ A such that the 3-cocycle identity

f (σ1σ2,σ3,σ4)+ f (σ1,σ2,σ3σ4) = f (σ1,σ2,σ3)+σ1 f (σ2,σ3,σ4)+ f (σ1,σ2σ3,σ4)

is satisfied for all (σ1,σ2,σ3,σ4) ∈ G4. Moreover, to compute H3(G,A), normalized co-
cycles can be used. That is, f (σ1,σ2,1) = f (σ1,1,σ3) = f (1,σ2,σ3) = 0. The set of
3-coboundaries, B3(G,A), consists of all f : G3→ A for which there exists g : G×G→ A
and

f (ρ,σ ,τ) = ρg(σ ,τ)−g(ρσ ,τ)+g(ρ,στ)−g(σ ,τ)

for all (ρ,σ ,τ) ∈ G3.
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5.3. Applications and Computations. Some of the basic functorial properties of
group cohomology are proved. In general Hn(G,A) is a covariant functor in the second
variable, and a contravariant functor in the first variable. Many of the theorems and defi-
nitions are stated in the context where H is a subgroup of G and A is an H-module. Then
HomZH(ZG,A) is called the induced G-module. Shapiro’s Lemma shows that the coho-
mology of A as an H-module is equal to the cohomology of the induced G-module. If A
is a G-module and H is a subgroup of G, then there are the restriction and corestriction
homomorphisms. If H is normal, there is also an inflation homomorphism. If G is a finite
cyclic group, we derive formulas for the cohomology of a G-module A in terms of the norm
and difference maps on A. We prove Hilbert’s Theorem 90, when G is a finite group of
automorphisms of a field F .

DEFINITION 8.5.12. Let G be a group.
(1) If θ : G→ K is a homomorphism of groups, and A is a ZK-module, then the ring

homomorphism θ : ZG→ ZK makes A into a ZG-module.
(2) If H is a subgroup of G and A is a ZH-module, then HomZH(ZG,A) is a left

ZG-module (see Lemma 2.4.1(1)) which is called the induced G-module.

THEOREM 8.5.13. (Shapiro’s Lemma) Let G be a group, H a subgroup of G, and A a
ZH-module. There are isomorphisms

Hn(H,A)∼= Hn(G,HomZH(ZG,A))

which are induced by the adjoint isomorphism of Theorem 2.4.10.

PROOF. Since ZG is a free left ZH-module, this follows directly from the isomor-
phism

ExtnZH(ZG⊗ZG Z,A)∼= ExtnZG(Z,HomZH(ZG,A))

of Lemma 8.3.14 (2). It is also of interest to know how this map is defined on cochains.
Let Q• → Z be the standard resolution of Z as a ZG-module. By Proposition 2.1.13 (5),
Q•→ Z is also a free resolution of Z as a ZH-module. The adjoint isomorphism

HomZH(Qn,A)
φ−→ HomZG(Qn,HomZH(ZG,A))

maps an n-cochain f to φ f . If y ∈ Qn, then (φ f )(y) is the element of HomZH(ZG,A)
defined by (φ f )(y)(x) = f (xy). The details are left to the reader. □

LEMMA 8.5.14. Let G be a group and A a ZG-module.
(1) If ψ : A→ B is a homomorphism of ZG-modules, then ψ induces a homomor-

phism
Hn(G,A)→ Hn(G,B)

of abelian groups, for each n≥ 0.
(2) If θ : H→ G is a homomorphism of groups, then θ induces a homomorphism

Hn(G,A)→ Hn(H,A)

of abelian groups, for each n≥ 0.

PROOF. (1): Follows from the fact that ExtnZG(Z, ·) is a covariant functor (see Sec-
tion 8.3.4).

(2): Let (QG)•→ Z be the standard resolution for the ZG-module Z, and (QH)•→ Z
the counterpart for the ZH-module. The homomorphism θ : H → G induces a homomor-
phism Hn → Gn, for each n. For each n, (QH)n is free on Hn and (QH)n is free on Gn.
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Hence there is an induced morphism

(5.2) θ : (QG)•→ (QH)•

of complexes. Now suppose A is a ZG-module, which is made into a ZH-module by virtue
of θ : ZH→ ZG. There are morphisms of complexes

HomZG((QG)•,A)→ HomZG((QH)•,A)→ HomZH((QH)•,A)

where the first morphism is induced by the functor HomZG(·,A) applied to the morphism
(5.2) and the second is induced by the map defined in Exercise 1.1.20. The rest follows
from Lemma 8.1.3. □

Given a group G, a G-module A, and a subgroup H, there are two standard homomor-
phisms on cohomology groups. These are the restriction and corestriction maps described
in Definition 8.5.15. When H is a normal subgroup, there is a third homomorphism, called
the inflation map.

DEFINITION 8.5.15. Let G be a group and A a ZG-module.

(1) If H is a subgroup of G, then the homomorphism of abelian groups

Res : Hn(G,A)→ Hn(H,A)

defined in Lemma 8.5.14 (2) is called the restriction homomorphism. Suppose
f : Gn→ A is an n-cocycle in Zn(G,A). Viewing Hn as a subset of Gn, the restric-
tion of f defines g : Hn→ A which is an n-cocycle in Zn(H,A). The restriction
homomorphism maps the cohomology class f̄ to ḡ.

(2) If N is a normal subgroup of G, then AN can be made into a Z(G/N)-module.
The multiplication rule is induced by (gN)x = gx. The natural map η : G→G/N
and the set inclusion ι : AN → A induce homomorphisms

Hn(G/N,AN)

η ''

Inf // Hn(G,A)

Hn(G,AN)

ι

88

and the composite map, Inf , is called the inflation homomorphism. Suppose
f : (G/H)n → AH is an n-cocycle in Zn(G/H,AH). Define g : Gn → A by the
rule g(σ1, . . . ,σn) = f (σ̄1, . . . , σ̄n), where σ̄i is the coset represented by σi in
G/H. Then g is an n-cocycle in Zn(G,A), and the inflation homomorphism maps
the cohomology class f̄ to ḡ.

(3) Suppose H is a subgroup of G of finite index [G : H] = m and x1, . . . ,xm is a full
set of left coset representatives for H. Let A be a left ZG-module. The reader
should verify that the map

HomZH(ZG,A)
ψ−→ A

defined by ψ( f ) = ∑
m
i=1 xi f (x−1

i ) is a homomorphism of ZG-modules and does
not depend on the choices of x1, . . . ,xm. This defines a homomorphism on coho-
mology groups

Hn(G,HomZH(ZG,A))
ψ−→ Hn(G,A).
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The corestriction homomorphism, denoted Cor, is defined by composing ψ with
the isomorphism from Shapiro’s Lemma (Theorem 8.5.13). By definition, the
diagram

Hn(H,A) Cor //

∼= ((

Hn(G,A)

Hn(G,HomZH(ZG,A))

ψ

66

commutes. Using the description of the isomorphism in the proof of Theo-
rem 8.5.13, we can describe the corestriction map on n-cocycles. Say f is a cocy-
cle in HomZH(Qn,A) defining a cohomology class c in Hn(H,A). Then Cor( f )
is a cocycle in HomZG(Qn,A) which represents a cohomology class Cor(c) in
Hn(G,A). If y ∈ Qn, then

Cor( f )(y) =
m

∑
i=1

xiφ( f )(y)(x−1
i ) =

m

∑
i=1

xi f (x−1
i y).

For example, consider the n = 0 case. From Proposition 8.5.9, Z0(H,A) = AH .
Then f is a constant valued function, say f (x)= a. In this case, Cor( f ) is the con-
stant valued function ∑

m
i=1 xia. For a Galois extension of fields K/k with group

G, the corestriction homomorphism in degree zero is the trace of Section 1.8.2,
when A = K+, and it is the norm map when A = K∗.

THEOREM 8.5.16. Let H be a subgroup of G of finite index [G : H] = m. If A is a left
ZG-module, then

CorResHn(G,A) = mHn(G,A).

PROOF. Use the description of the corestriction given in Definition 8.5.15. Let f be a
cocycle in HomZH(Qn,A) defining a cohomology class c in Hn(H,A). If f is in the image
of Res : Hn(G,A), then f is ZG-linear. For any y ∈ Qn,

Cor( f )(y) =
m

∑
i=1

xi f (x−1
i y)

m

∑
i=1

xix−1
i f (y) = m f (y)

which proves the claim. □

COROLLARY 8.5.17. If G is a finite group of order m and A is any ZG-module, then
mHn(G,A) = 0 for all n≥ 1.

PROOF. If H = ⟨1⟩, then [G : H] = m. By Theorem 8.5.16, the diagram

Hn(G,A) m //

Res %%

Hn(G,A)

Hn(H,A)
Cor

99

commutes, where the horizontal map is “multiplication by m”. By Proposition 8.3.12(3),
the group ExtnZ(Z,A) = Hn(⟨1⟩,A) is trivial for n≥ 1. □

If [G : H] is finite, we prove in Lemma 8.5.18 that the induced module is isomorphic
to the tensor product ZG⊗ZH A.
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LEMMA 8.5.18. Let H be a subgroup of G of finite index [G : H] = m and x1, . . . ,xm
a full set of left coset representatives for H. If A is a left ZH-module, then there is an
isomorphism of ZG-modules

HomZH(ZG,A)
ψ−→ ZG⊗ZH A

defined by ψ( f ) = ∑
m
i=1 xi⊗ f (x−1

i ).

PROOF. The reader should verify that the map ψ does not depend on the choices for
x1, . . . ,xm. Notice that ZG∼=

⊕m
i=1 xiZH as right ZH-modules. By Lemma 2.3.15,

ZG⊗ZH A∼=
m⊕

i=1

xi⊗ZH A

as left Z-modules. Also, ZG∼=
⊕m

i=1ZHx−1
i as left ZH-modules. By Proposition 2.4.8,

HomZH(ZG,A)∼=
m⊕

i=1

HomZH(ZHx−1
i ,A)

as left Z-modules. The reader should verify that f in HomZH(ZHx−1
i ,A) is mapped by ψ

to xi⊗ f (x−1
i ) and hence ψ is bijective. We check that ψ is ZG-linear. Let g ∈ G. Right

multiplication by g is a permutation of the right cosets of H. For each i, there is a unique
i′ and hi ∈ H such that x−1

i g = hix−1
i′ , or equivalently xihi = gxi′ . Let f ∈ HomZH(ZG,A).

For x ∈ ZG, (g f )(x) = f (xg). Therefore, ψ(g f ) = ∑xi⊗ f (x−1
i g) = ∑xi⊗ f (hix−1

i′ ) =

∑xihi⊗ f (x−1
i′ ) = ∑gxi′ ⊗ f (x−1

i′ ) = gψ( f ). □

5.3.1. Cohomology of a Finite Cyclic Group. When G is a finite cyclic group, we see
in Lemma 8.5.19 that Z has a free ZG-resolution where each term is free of rank one.

LEMMA 8.5.19. Let G = ⟨σ⟩ be a finite cyclic group of order m. In ZG, let D =
σ − 1, and N = 1+σ + · · ·+σm−1. Then multiplication by D and N, together with the
augmentation map ε define an exact sequence

· · · N−→ ZG D−→ ZG N−→ ZG D−→ ZG
ρ−→ Z→ 0

which is a free resolution of the trivial ZG-module Z.

PROOF. The maps are ZG-module homomorphisms because G is abelian. The kernel
of ε is equal to the image of D, by Example 1.1.4. The sequence is a complex, since
DN = ND = 0. Let x = ∑aiσ

i be a typical element of ZG. Then

x = a0 +a1σ +a2σ
2 + · · ·+am−1σ

m−1

σx = am−1 +a0σ +a1σ
2 + · · ·+am−2σ

m−1

σ
2x = am−2 +am−1σ +a0σ

2 + · · ·+am−3σ
m−1

...

σ
m−1x = a1 +a2σ +a3σ

2 + · · ·+a0σ
m−1

(5.3)

If x = σx, then (5.3) shows that a0 = a1 = · · ·= am−1, hence x = Na0. Thus kerD = imN.
It follows from (5.3) that Nx = (∑i ai)N. If Nx = 0, then ∑i ai = 0. Hence, the kernel of N
is equal to the kernel of ε . Thus kerN = imD. □
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Let G = ⟨σ⟩ be a finite cyclic group of order m. In ZG, let D = σ − 1, and N =
1+σ + · · ·+σm−1. Because G is abelian, for any ZG-module A, left multiplication by D
and N define ZG-module endomorphisms in HomZG(A,A). We call D the difference map
on A, and N the norm map on A. The images are denoted DA and NA, respectively. The
kernel of D is AG, and the kernel of N is denoted NA = {x∈ A |Nx = 0}. The reader should
verify that the groups DA, NA and NA do not depend on the choice of σ .

THEOREM 8.5.20. Let G be a finite cyclic group. For any ZG-module A,

Hn(G,A) =


AG if n = 0,

NA/DA if n is odd,
AG/NA if n > 0 is even.

PROOF. Apply the functor HomZG(·,A) to the resolution of Z in Lemma 8.5.19. □

COROLLARY 8.5.21. If G is a finite cyclic group of order m and A is a trivial ZG-
module, then

Hn(G,A) =


A if n = 0,

mA if n is odd,
A/mA if n > 0 is even,

where mA = {x ∈ A | mx = 0}, and mA = {mx | x ∈ A}.

PROOF. The map D is the zero operator on A, and N is the multiplication by m oper-
ator. □

COROLLARY 8.5.22. Let G = ⟨σ⟩ be a finite cyclic group of order n and A a ZG-
module (written multiplicatively). If m | n, τ = σn/m, and H = ⟨τ⟩ is the subgroup of order
m, then the image of the inflation homomorphism (Definition 8.5.15 (2))

Inf : H2(G/H,AH)→ H2(G,A)

is divisible by m. That is, for any z ∈ H2(G/H,AH), there exists y ∈ H2(G,A) such that
Inf(z) = ym.

PROOF. Let z̄ ∈ H2(G/H,AH). Write σ̄ for the coset represented by σ in G/H. By
Exercise 8.5.33, there is a ∈ AG such that z̄ is represented by a 2-cocycle z : (G/H)×
(G/H)→ AH of the form

z(σ̄ i, σ̄ j) =

{
1 if i+ j < n/m
a if i+ j ≥ n/m

for 0≤ i, j < n/m. The image of z̄ under the inflation homomorphism is represented by the
2-cocycle ξ : G×G→ A defined by ξ (σ i,σ j) = z(σ̄ i, σ̄ j). By Exercise 8.5.33, there is an
isomorphism H2(G,A)→ AG/NA which is induced by ξ 7→ aξ , where

aξ =
n−1

∏
j=0

ξ (σ j,σ)

=
m−1

∏
k=0

n/m−1

∏
i=0

ξ

(
(σn/m)k

σ
i,σ
)

= am.
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By Exercise 8.5.33, ξ is cohomologous to χm
a , where

χa(σ
i,σ j) =

{
1 if i+ j < n
a if i+ j ≥ n

for 0≤ i, j < n. □

5.3.2. Application to Galois Cohomology of Fields. Let F be a field and G a finite
group of automorphisms of F . Write F+ for the additive group of F , and F∗ for the group
of units. Theorem 8.5.23 is a generalization of [20, Theorem 5.5.4].

THEOREM 8.5.23. Let F be a field and G a finite group of automorphisms of F.
(1) (Hilbert’s Theorem 90) H1(G,F∗) = ⟨1⟩.
(2) For all n≥ 1, Hn(G,F+) = ⟨0⟩.

PROOF. (1): Let f ∈ Z1(G,F∗) be a 1-cocycle. By Proposition 8.5.9, we can assume
f : G→ F∗ and f (στ) = f (σ)σ f (τ). By [20, Lemma 5.3.7], there exists x ∈ F such that

α = ∑
τ∈G

f (τ)τ(x) ̸= 0.

In other words, α is a unit in F . For any σ ∈ G we have σ(α) = ∑τ∈G σ f (τ)στ(x).
By the 1-cocycle identity, σ(α) = (∑τ∈G σ f (στ)στ(x)) f (σ)−1 = α f (σ)−1. Therefore,
f (σ) = α/σ(α), for all σ ∈ G, which proves f is the 1-coboundary defined by α .

(2): By Exercise 8.5.27, F+ ∼= ZG⊗Z k+. This follows from Exercise 8.5.29 (1). □

COROLLARY 8.5.24. Let F be a finite field, G a group of automorphisms of F, and
k = FG. Then

Hn(G,F∗) =

{
k∗ if n = 0,
⟨1⟩ if n > 0.

PROOF. By Theorem 1.8.7, G is a finite cyclic group. If n = 0 or n is odd, this follows
from Theorem 8.5.23 and Theorem 8.5.20. If n is even, then by Exercise 1.8.13, NF∗ = k∗,
and this follows from Theorem 8.5.20. □

5.4. Exercises.

EXERCISE 8.5.25. Let Fn = (ZG)⊗(n+1) be the tensor product of n+ 1 copies of the
Z-module ZG. Make Fn into a left ZG-module by acting on the left factor: σ(σ0⊗σ1⊗
·· ·⊗σn) = σσ0⊗σ1⊗·· ·⊗σn. Prove that Fn is isomorphic as a ZG-module to Pn.

EXERCISE 8.5.26. Let G be a group.
(1) Show that the assignment FG(A) = AG defines a left exact covariant functor from

ZGM to ZM.
(2) For every A∈ ZGM, the assignment f 7→ f (1) induces an isomorphism of abelian

groups HomZG(Z,A)∼= AG.
(3) Show that the functors FG and HomZG(Z, ·) are naturally equivalent.
(4) The cohomology groups Hn(G,A) are isomorphic to the right derived groups

RnFG(A).

EXERCISE 8.5.27. Let F/k be a Galois extension of fields with finite group G.
(1) Show that the additive group F+ is a ZG-module.
(2) Show that there is an isomorphism of ZG-modules φ : ZG⊗Z k+→ F+. (Hint:

By the Primitive Element Theorem (Theorem 5.5.8), F = k(α) for some element
α . Define φ(σ ⊗a) = σ(α)a.)
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EXERCISE 8.5.28. Let G = AutR(C) be the Galois group of C/R. Prove that

Hn(G,C∗) =


R∗ if n = 0,
⟨1⟩ if n is odd,
⟨−1⟩ if n is even.

EXERCISE 8.5.29. Let G be a finite group.
(1) Prove that the induced ZG-module ZG⊗Z A has trivial cohomology, for any

abelian group A. That is, Hn(G,ZG⊗Z A) = (0), for all n > 0. (Hint: Use
Lemma 8.5.18, Theorem 8.5.13, and Example 8.5.2.)

(2) In [55], a ZG-module M is said to be relatively projective if M is a ZG-module
direct summand of an induced G-module ZG⊗Z A for some Z-module A. Prove
that Hn(G,M) = (0), for all n > 0, if M is relatively projective. The reader is
also referred to [15] where such modules are called weakly projective. (Hint:
Proposition 8.3.12 (6).)

EXERCISE 8.5.30. Let G be a finite group and {Ai | i∈ I} a collection of ZG-modules.
If H1(G,Ai) = 0 for each i ∈ I, then H1(G,

⊕
i Ai) = 0.

EXERCISE 8.5.31. Let G be a finite group and {Ai | i∈ I} a collection of ZG-modules.
Then for all r ≥ 0, Hr(G,

⊕
i Ai) =

⊕
i Hr(G,Ai). (Hint: Apply Exercise 2.7.38 to the bar

resolution of Z.)

EXERCISE 8.5.32. Let G = ⟨σ⟩ be a finite cyclic group of order n. Let A be a left
ZG-module (written multiplicatively). In this exercise we outline a proof that H1(G,A)∼=
NA/DA (Theorem 8.5.20) by exhibiting the isomorphism on normalized 1-cocycles. Let
Z1(G,A) be the normalized 1-cocycles and B1(G,A) the normalized 1-coboundaries, as
defined in Corollary 8.5.10. Define a function θ : Z1(G,A) → A by the rule θ(ξ ) =
ξ (σ). Define another function χ : NA→Map(G,A) by the rule b 7→ χb, where χb(σ

i) =
bσ(b) · · ·σ i−1(b), for all 0 < i. Prove the following.

(1) θ induces a homomorphism of groups H1(G,A)→ NA/DA.
(2) χ induces a homomorphism of groups NA/DA→ H1(G,A).
(3) The homomorphisms of (1) and (2) are inverses of each other.

EXERCISE 8.5.33. Let G = ⟨σ⟩ be a finite cyclic group of order n. Let A be a left
ZG-module (written multiplicatively). In this exercise we outline a proof that H2(G,A)∼=
AG/NA (Theorem 8.5.20) by exhibiting the isomorphism on normalized 2-cocycles. Let
Z2(G,A) be the normalized 2-cocycles and B2(G,A) the 2-coboundaries, as defined in
Corollary 8.5.10. Define a function θ : Z2(G,A)→ A by the rule

θ(ξ ) = aξ =
n−1

∏
j=0

ξ (σ j,σ).

Define another function φ : AG→Map(G×G,A) by the rule φ(a) = φa, where

φa(σ
i,σ j) =

{
1 if i+ j < n
a if i+ j ≥ n

for all 0≤ i, j ≤ n−1. Prove the following.
(1) θ and φ are homomorphisms of groups.
(2) The image of θ is contained in AG.
(3) If ξ ∈ B2(G,A), then aξ is in NA.
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(4) θ induces a homomorphism of groups H2(G,A)→ AG/NA.
(5) If a∈ AG, then φa(σ

i,σ j)φa(σ
i+ j,σ k) = φa(σ

j,σ k)φa(σ
i,σ j+k). Therefore, the

image of φ is contained in Z2(G,A).
(6) Let b ∈ A, and assume a = bσ(b) · · ·σn−1(b) = N(b). Define χ : G→ A by

χ(σ i) =

{
1 i = 0
bσ(b) · · ·σ i−1(b) 0 < i < n.

Then φa is the 2-coboundary defined by χ .
(7) φ induces a homomorphism of groups AG/NA→ H2(G,A).
(8) The homomorphisms of (4) and (7) are inverses of each other, hence H2(G,A)∼=

AG/NA.

EXERCISE 8.5.34. Let G be a group, H a normal subgroup of G, and A a left ZG-
module.

(1) If n≥ 1, show that Res◦ Inf : Hn(G/H,AH)→ Hn(H,A) is the zero map. (Hint:
Use normalized cocycles and the descriptions of Res and Inf given in Defini-
tion 8.5.15.)

(2) Show that the sequence

0→ H1(G/H,AH)
Inf−→ H1(G,A) Res−−→ H1(H,A)

is exact.

EXERCISE 8.5.35. In this exercise we construct an example of a Z/n-module which is
not free. Let G = ⟨σ⟩ be a finite cyclic group of order n and M = Z(n−1) the free Z-module
of rank n−1 with standard basis e1, . . . ,en−1. Let C be the (n−1)-by-(n−1) companion
matrix of the cyclotomic polynomial xn−1 + xn−2 + · · ·+ x+ 1. Let σ : M → M be the
homomorphism defined by C with respect to the standard basis. Show that this makes M
into a left ZG-module and

Hr(G,M) =

{
0 if r is even,
Z/n if r is odd.

6. Theory of Faithfully Flat Descent

Generally, a faithfully flat descent theorem for modules refers to the following ques-
tion. If S is a commutative faithfully flat R-algebra, and M is an S-module, then does there
exist an R-module N such that M is isomorphic to S⊗R N? Faithfully flat descent tries
to exhibit necessary and sufficient conditions on M such that the answer to this question
is true. In addition to descent of modules, we also consider descent of elements in an
S-algebra, the descent of homomorphisms of S-modules, and the descent of S-algebras.

The theory of faithfully flat descent was developed by A. Grothendieck in a series
of Bourbaki seminars over the period 1959 – 1962. The typewritten lecture notes make
up much of the book [26]. The lectures were later rewritten and published as [27, Ex-
poseé VIII] (see also [28]). For the most part, our approach follows that of [37]. Most of
the material in this section has been published in [19, Section 5.3]. Two applications of
faithfully flat descent appear in Section 8.6.6.
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6.1. The Amitsur Complex. Let θ : R→ S be a homomorphism of commutative
rings. Let {Mi | i ∈ I} be a family of R-modules. For any n+1-tuple (i0, . . . , in) in I(n+1),
and for any j such that 0≤ j ≤ n+1, there is an R-module homomorphism

Mi0 ⊗R · · ·⊗R Min
e j−→Mi0 ⊗R · · ·⊗R Mi j−1 ⊗R S⊗R Mi j ⊗R · · ·⊗R Min

(x0⊗·· ·⊗ xn) 7→ x0⊗·· ·⊗ x j−1⊗1⊗ x j⊗·· ·⊗ xn.

By S⊗r we denote S⊗R · · ·⊗R S, the tensor product of r copies of S. The Amitsur complex
for S/R is

0→ R θ−→ S d0
−→ S⊗2 d1

−→ S⊗3 d2
−→ ·· ·

where the coboundary map dr : S⊗(r+1)→ S⊗(r+2) is defined to be dr = ∑
r+1
i=0 (−1)iei. De-

note this complex by C•(S/R). The reader should verify that e jei = ei+1e j for all j ≤ i,
and that this is a complex of R-modules.

Now we prove that the Amitsur complex is an exact sequence when S is a faithfully
flat R-algebra. This fundamental result is the basis for the theory of faithfully flat descent.

PROPOSITION 8.6.1. Let S be a commutative faithfully flat R algebra.

(1) The Amitsur complex C•(S/R) is an exact sequence.
(2) If M is any R-module, then the complex M⊗R C•(S/R)

0→M 1⊗θ−−→M⊗R S 1⊗d0
−−−→M⊗S⊗2 1⊗d1

−−−→M⊗S⊗3 1⊗d2
−−−→ ·· ·

is an exact sequence.

PROOF. (1): Step 1: Show that C•(S/R) is exact if there exists an R-module homo-
morphism σ : S→ R which is a splitting map for the structure homomorphism θ : R→ S.
This is true for example, if S is faithful and R · 1 is an R-direct summand of S. Define a
homotopy operator kr : S⊗(r+2)→ S⊗(r+1) by kr(x0⊗·· ·⊗xr+1) = σ(x0)x1⊗·· ·⊗xr+1. It
follows from

krdr(x0⊗·· ·⊗ xr) = kr
r

∑
i=0

(−1)rei(x0⊗·· ·⊗ xr)

= x0⊗·· ·⊗ xr−σ(x0)⊗ x1⊗·· ·⊗ xr +σ(x0)x1⊗1⊗·· ·⊗ xr + · · ·

and

dr−1kr−1(x0⊗·· ·⊗ xr) = dr−1(σ(x0)x1⊗·· ·⊗ xr)

= 1⊗σ(x0)x1⊗·· ·⊗ xr−σ(x0)x1⊗1⊗·· ·⊗ xr + · · ·

that krdr +dr−1kr−1 is the identity map on S⊗(r+1). By Exercise 8.1.15, the complex is an
exact sequence.

Step 2: If T is another commutative R-algebra, then C•(S⊗R T/T ), the Amitsur
complex for S⊗R T over T , is obtained by applying the functor (·)⊗R T to the complex
C•(S/R). This is because S⊗r⊗R T ∼= (S⊗R T )⊗r.

Step 3: Let ρ : S→ S⊗R S by a 7→ a⊗ 1. Define µ : S⊗R S→ S by µ(a⊗ b) = ab.
Then µ is a splitting map for ρ and by Step 1 the Amitsur complex C•(S⊗R S/S) for
ρ : S→ S⊗R S is exact. Since C•(S⊗R S/S) is exact and S is faithfully flat, by Step 2
applied to S, it follows that C•(S/R) is exact.

(2): As in (1), assume there is a section and construct a contracting homotopy. The
rest is left to the reader. □
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6.2. The Descent of Elements. Example 8.6.2 considers the Amitsur complex de-
fined by the faithfully flat R-algebra associated with a finite cover of SpecR by basic open
sets.

EXAMPLE 8.6.2. Let R be a commutative ring and α1, . . . ,αn a set of n elements of R
such that R = Rα1 + · · ·+Rαn. For the localization of R with respect to the multiplicative
set {αn | n≥ 0}, write Rα instead of R[α−1]. By Lemma 3.3.3, U(α1), . . . ,U(αn) is an open
cover for the Zariski topology on SpecR. By Exercise 3.5.28, S =

⊕n
i=1 Rαi is faithfully

flat over R. Using Lemma 3.1.4, we identify Rαi ⊗R Rα j with Rαiα j . Then the Amitsur
complex C•(S/R) looks like

0→ R θ−→
⊕
i∈In

Rαi
d0
−→

⊕
(i, j)∈I2

n

Rαiα j
d1
−→

⊕
(i, j,k)∈I3

n

Rαiα jαk
d2
−→ ·· ·

where In = {1, . . . ,n}. By Proposition 8.6.1, this sequence is exact, so we know that an
element y ∈ R is completely determined by a set of local data x = (x1, . . . ,xn) ∈ S such that
xi = x j in Rαiα j .

The element y can be constructed from the local data x and the elements αi. For some
p ≥ 0 there exist y1, . . . ,yn in R such that xi = yiα

−p
i . Assuming d0(x) = 0, there exists

q≥ 0 such that for all i, j pairs

(αiα j)
q(α p

j yi−α
p
i y j) = 0.

Since R = Rα
q+p
1 + · · ·+Rα

q+p
n , there exist gi ∈ R such that 1 = g1α

q+p
1 + · · ·+gnα

q+p
n .

Set y = g1α
q
1 y1+ · · ·+gnα

q
n yn. The reader should verify that y = y jα

−p
j = x j in Rα j , hence

θ(y) = x.

In Example 8.6.3, the technique introduced in Example 8.6.2 is applied to define the
characteristic polynomial of an endomorphism φ on a finitely generated projective R-
module P. The important observation is that P is locally free of finite rank. Hence the
characteristic polynomial of φ is locally defined. So the characteristic polynomial exists
upon restriction to a faithfully flat R-algebra.

EXAMPLE 8.6.3. Let R be a commutative ring, P a finitely generated projective R-
module, and φ ∈HomR(P,P). In this example, we show how to construct the characteristic
polynomial of φ . Let α1, . . . ,αn be a set of n elements of R such that R = Rα1 + · · ·+Rαn
and Pαi = P⊗R Rαi is free of finite rank over Rαi . Let S =

⊕n
i=1 Rαi and as in Exam-

ple 8.6.2 identify S⊗2 =
⊕

(i, j) Rαiα j . Then S[x] = S⊗R R[x] =
⊕n

i=1 Rαi [x] and S⊗2[x] =⊕
(i, j) Rαiα j [x]. The Amitsur complex C•(S[x]/R[x]) becomes

0→ R[x] θ−→
⊕
i∈In

Rαi [x]
d0
−→

⊕
(i, j)∈I2

n

Rαiα j [x]
d1
−→ ·· ·

which is an exact sequence, because S[x] is faithfully flat over R[x].
For each i, let φi = φ ⊗ 1 ∈ HomRαi

(Pαi ,Pαi). By Definition 1.7.6, the characteris-
tic polynomial pi(x) = char.polyRαi

(φi) can be computed as a determinant of x− φi and
does not depend on the choice of a basis of Pαi . The polynomial pi(x) is an element of
Rαi [x]. We remark that the determinant operator commutes with change of base ring. In
other words, if θ : A→ B is a homomorphism of commutative rings and M is a matrix in
Mn(A), then det(θ(M)) = θ(det(M)). This follows straight from the determinant formula
Definition 1.7.4. Therefore, if φi j = φ ⊗ 1 ∈ HomRαiα j

(Pαiα j ,Pαiα j), then in Rαiα j [x] we
have the equalities char.polyRαi

(φi) = char.polyRαiα j
(φi j) = char.polyRα j

(φ j). This says
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d0(p1(x), . . . , pn(x)) = 0. Therefore, the local data (p1(x), . . . , pn(x)) descend to a polyno-
mial p(x) in R[x]. The polynomial p(x) is usually denoted by char.polyR(φ) and is called
the characteristic polynomial of φ .

Now we show that the polynomial char.polyR(φ) just constructed does not depend on
the open cover of SpecR. Let β1, . . . ,βm be another set of elements in R that generated
the unit ideal and such that Pβ j is free over Rβ j for each j. Let T =

⊕m
j=1 Rβ j and by

the above method, let q(x) be the characteristic polynomial of φ constructed using the
faithfully flat R-algebra T . We show that q(x) is equal to the polynomial p(x) which was
constructed initially. Notice that S⊗R T is a faithfully flat R-algebra and we can identify
S⊗R T =

⊕
(i, j) Rαiβ j . The image of p(x) in Rαiβ j [x] is equal to the image of q(x) in Rαiβ j [x].

Since the Amitsur complex C•(S⊗R T [x]/R[x]) is exact, this proves p(x) = q(x).
Now we prove the Cayley-Hamilton theorem applies to p(x) = char.polyR(φ). Since

S is faithfully flat over R, by Proposition 8.6.1, the sequence

0→ HomR(P,P)
θ−→ HomR(P,P)⊗R S

is exact. We identify HomR(P,P)⊗R S with
⊕n

i=1 HomRαi
(Pαi ,Pαi). The image of p(φ)

under θ is (p1(φ1), . . . , pn(φn)). By The Cayley-Hamilton Theorem, Theorem 1.7.7, this
image is (0, . . . ,0), which means p(φ) = 0.

If RankR(P) = n is defined, then the characteristic polynomial will have constant de-
gree n. Let char.polyR(φ) = xn + an−1xn−1 + · · ·+ a1x+ a0. Following Exercise 1.7.25,
we define the determinant of φ to be det(φ) = (−1)na0 and the trace of φ to be trace(φ) =
−an−1. The reader should verify that det(φψ) = det(φ)det(ψ).

6.3. Descent of Homomorphisms. Let S be a commutative R-algebra and M and
N a pair of R-modules. The goal is to find sufficient conditions on a homomorphism
g ∈ HomS(M⊗R S,N⊗R S) such that g = f ⊗1 for some f ∈ HomR(M,N). The maps ei :
S→ S⊗R S defined by e0(s) = 1⊗ s and e1(s) = s⊗1 are both R-algebra homomorphisms.
Therefore, S⊗R S is an S-algebra in two different ways. Tensoring ei with (M⊗R S)⊗S ()
we get the maps of Paragraph 8.6.1

ei : M⊗R S→ (M⊗R S)⊗S (S⊗R S)∼= M⊗R S⊗R S

where e0(x⊗ s) = x⊗ 1⊗ s and e1(x⊗ s) = x⊗ s⊗ 1. Assign the appellation Fi to the
functor “tensoring with the S-algebra ei : S→ S⊗R S”. There is a commutative square

M⊗R S
ei //

g
��

M⊗R S⊗R S

Fi(g)
��

N⊗R S
ei // N⊗R S⊗R S

for i = 0,1 and Fi(g) is an S⊗R S-module homomorphism.

PROPOSITION 8.6.4. Let R be a commutative ring, S a faithfully flat commutative
R-algebra, and M and N a pair of R-modules. The sequence

0→ HomR(M,N)
F−→ HomS(M⊗R S,N⊗R S)

F0−F1−−−−→ HomS⊗RS(M⊗R S⊗R S,N⊗R S⊗R S)

is exact, where F( f ) = f ⊗1 and F0, F1 are defined in the previous paragraph.
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PROOF. Since each Fi is an additive functor, F0−F1 is a Z-module homomorphism.
If f ∈ HomR(M,N), then the diagram

0 // M //

f
��

M⊗R S

f⊗1
��

d0
// M⊗R S⊗R S

f⊗1⊗1
��

0 // N // N⊗R S d0
// N⊗R S⊗R S

commutes and the rows are exact. Therefore, F is one-to-one and f ⊗ 1⊗ 1 = 0. To
complete the proof, we show ker(F0−F1) ⊆ im(F). Let g ∈ HomS(M⊗R S,N⊗R S) and
assume F0(g) = F1(g). Given m ∈M we have e0(m⊗1) = e1(m⊗1), so

e0g(m⊗1) = F0(g)e0(m⊗1) = F0(g)e1(m⊗1) = F1(g)e1(m⊗1) = e1g(m⊗1).

By Proposition 8.6.1, this proves that g(m⊗ 1) ∈ N⊗R 1. Define f : M→ N by f (m) =
g(m⊗1). Then g = F( f ). □

EXAMPLE 8.6.5. Let R be a commutative ring and P a finitely generated projective
R-module. By Lemma 2.8.1, θR : P∗⊗R P→HomR(P,P) is an isomorphism of R-modules,
where θR( f ⊗ p)(x) = f (x)p. Define T : P∗⊗R P→ R by T ( f ⊗ p) = f (p). By Exer-
cise 5.6.18, this induces an R-module homomorphism T : HomR(P,P)→ R which is equal
to the trace map of Exercise 1.7.26 and the trace map of Definition 5.6.6, when P is free.
As in Example 8.6.2, let R→ S be a faithfully flat R-algebra such that P⊗R S is free. Upon
change of base, T ⊗ 1 : HomS(P⊗R S,P⊗R S)→ S is the trace map of Exercise 1.7.26.
By Proposition 8.6.4, the map T is equal to the trace map of Definition 5.6.6. Assuming
RankR(P) is defined, we also see that T is equal to the trace defined in Example 8.6.3 using
the characteristic polynomial.

6.4. Descent of Modules. If S is a faithfully flat R-algebra, then Theorem 8.6.7,
which is fundamental, gives sufficient conditions on an S-module M such that M descends
to an R-module N. That is, such that M is isomorphic to N⊗R S for some R-module N.

Let θ : R→ S be a homomorphism of commutative rings. Given S-modules A, B, C and
D and an S⊗R S-module homomorphism f : A⊗R B→C⊗R D, there are three S⊗R S⊗R S-
module homomorphisms

f1 : S⊗R A⊗R B→ S⊗R C⊗R D

f2 : A⊗R S⊗R B→C⊗R S⊗R D

f3 : A⊗R B⊗R S→C⊗R D⊗R S

where fi is obtained by tensoring f with the identity map on S in position i. We employ this
construction in the following setting. Start with any S-module M. Then S⊗R M and M⊗R S
are two S⊗R S-modules. Then an S⊗R S-module homomorphism g : S⊗R M → M⊗R S
gives rise to three S⊗R S⊗R S-module homomorphisms

g1 : S⊗R S⊗R M→ S⊗R M⊗R S

g2 : S⊗R S⊗R M→M⊗R S⊗R S

g3 : S⊗R M⊗R S→M⊗R S⊗R S.

The ring homomorphism θ induces θ : M→ S⊗R M, where x 7→ 1⊗x. Let µ : M⊗R S→M
be the multiplication map, where x⊗ s 7→ sx. The composition

S⊗R M
g−→M⊗R S

µ−→M θ−→ S⊗R M
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upon restriction to imθ induces an S-module homomorphism which will be denoted by
ḡ : 1⊗R M→ 1⊗R M. Then ḡ(1⊗m) = 1⊗µg(1⊗m).

PROPOSITION 8.6.6. Let θ : R→ S be a homomorphism of commutative rings, M an
S-module and g : S⊗R M→M⊗R S an S⊗R S-module homomorphism. The following are
equivalent.

(1) ḡ is the identity map on 1⊗R M and g2 = g3g1.
(2) g is an isomorphism of S⊗R S-modules and g2 = g3g1.

PROOF. (1) implies (2): Let τ : M⊗R S→ S⊗R M be the twist map defined by x⊗s 7→
s⊗ x. The reader should verify that g̃ = t−1gτ is an S⊗R S-module homomorphism. We
show that g̃ is the inverse of g. Let m ∈ M. Then 1⊗m is a typical generator for the
S⊗R S-module S⊗R M. If we write g(1⊗m) = ∑i mi⊗ si, then since ḡ is the identity map,

1⊗m = ḡ(1⊗m) = 1⊗∑
i

misi.

Next write g(1⊗mi) = ∑ j mi j⊗ ti j. We have

g̃
(
g(1⊗m)

)
= g̃
(
∑

i
mi⊗ si

)
= ∑

i
g̃(mi⊗ si)

= ∑
i
(1⊗ si)g̃(mi⊗1)

= ∑
i
(1⊗ si)∑

j
ti j⊗mi j

= ∑
i

∑
j

ti j⊗ simi j.

Let ω : M⊗R S⊗R S→ S⊗R M be the function x⊗a⊗b 7→ a⊗xb which multiplies the two
extreme factors. Since g2 = g3g1,

ω (g2(1⊗1⊗m)) = ω

(
∑

i
mi⊗1⊗ si

)
= 1⊗∑

i
misi = 1⊗m

is equal to

ωg3g1(1⊗1⊗m) = ∑
i

ωg3(1⊗mi⊗ si) = ∑
i

∑
j

ω(mi j⊗ ti j⊗ si) = ∑
i

∑
j

ti j⊗mi jsi

which is equal to g̃g(1⊗m). This proves that g̃g is the identity map on S⊗R M. The reader
should verify that gg̃ is the identity map on M⊗R S.

(2) implies (1): We are given an isomorphism g : S⊗R M→M⊗R S. Let m ∈M and
write g(1⊗m) = ∑i mi⊗ si. Then

ḡ(1⊗m) = 1⊗µg(1⊗m) = 1⊗∑
i

misi.

Since g is one-to-one, it is enough to show g(1⊗m) = g
(
1⊗∑i misi

)
. Write g(1⊗mi) =

∑ j mi j⊗ ti j. We have

g
(
1⊗∑

i
misi

)
= ∑

i
g(1⊗mi)(1⊗ si) = ∑

i
∑

j
mi j⊗ ti jsi.
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Let ω : M⊗R S⊗R S→M⊗R S be the function x⊗a⊗b 7→ x⊗ab which multiplies the last
two factors. Since g2 = g3g1,

ωg2(1⊗1⊗m) = ω

(
∑

i
mi⊗1⊗ si

)
= ∑

i
mi⊗ si

is equal to

ωg3g1(1⊗1⊗m) = ∑
i

ωg3(1⊗mi⊗ si) = ∑
i

∑
j

ω(mi j⊗ ti j⊗ si) = ∑
i

∑
j

mi j⊗ ti jsi.

It follows from these computations that g(1⊗m) = g
(
1⊗∑i misi

)
. □

If one of the equivalent properties of Proposition 8.6.6 is satisfied, then we say g is a
descent datum for M over S.

THEOREM 8.6.7. (The Theorem of Faithfully Flat Descent) Let S be a commutative
faithfully flat R-algebra. Let M be an S-module and g : S⊗R M→M⊗R S a descent datum
for M over S. Then there exists an R-module N and an isomorphism ν : N⊗R S→ M of
S-modules such that the diagram of S⊗R S-modules

S⊗R N⊗R S
1⊗ν //

τ

��

S⊗R M

g
��

N⊗R S⊗R S
ν⊗1 // M⊗R S

(6.1)

commutes, where τ(a⊗b⊗ c) = b⊗a⊗ c. Up to isomorphism, these properties uniquely
determine the module N and the isomorphism ν .

PROOF. (Existence.) Set N = {x ∈M | x⊗1 = g(1⊗ x)} and let ν : N⊗R S→M be
the multiplication map ν(x⊗ s) = xs. We show that N and ν have the desired properties.
Notice that N is the kernel of the R-module homomorphism ge0−e1 : M→M⊗R S, hence
the sequence

(6.2) 0→ N→M
ge0−e1−−−−→M⊗R S

is exact and N is an R-module. Over S⊗R S, the module S⊗R N ⊗R S is generated by
elements of the form 1⊗ x⊗1, for x ∈ N. Diagram (6.1) commutes since

g
(
(1⊗ν)(1⊗ x⊗1)

)
= g(1⊗ x) = x⊗1 = (ν⊗1)(x⊗1⊗1) = (ν⊗1)

(
τ(1⊗ x⊗1)

)
.

The diagram of S-module homomorphisms

S⊗R M
1⊗e1 //

g
��

S⊗R M⊗R S

g3=g⊗1
��

M⊗R S
1⊗e1=e2 // M⊗R S⊗R S

(6.3)

commutes, since

g3
(
(1⊗ e1)(a⊗ x)

)
= g3(a⊗ x⊗1) = g(a⊗ x)⊗1 = e2

(
g(a⊗ x)

)
.

Since g2 = g3g1, it follows that

g3
(
(1⊗ge0)(a⊗ x)

)
= g3

(
a⊗g(1⊗ x)

)
= g3g1(a⊗1⊗ x) = g2(a⊗1⊗ x) = e1g(a⊗ x).
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Therefore, the diagram of S-module homomorphisms

S⊗R M
1⊗ge0 //

g
��

S⊗R M⊗R S

g3=g⊗1
��

M⊗R S
1⊗e0=e1 // M⊗R S⊗R S

(6.4)

commutes. Consider the diagram of S-module homomorphisms

0 // S⊗R N //

φ

��

S⊗R M
1⊗(ge0−e1) //

g
��

S⊗R M⊗R S

g3

��
0 // M

1⊗θ // M⊗R S
1⊗(e0−e1) // M⊗R S⊗R S

(6.5)

The top row of (6.5) is exact, because it is obtained by applying the exact functor S⊗R ()
to the exact sequence (6.2). The bottom row of (6.5) is exact by Proposition 8.6.1. The
diagram (6.5) commutes because it is constructed from the commutative diagrams (6.3)
and (6.4). Since g and g3 are isomorphisms, the S-module homomorphism φ exists and is
an isomorphism, by Theorem 2.5.2. For x ∈ N, φ(1⊗ x) = x, hence φ agrees with ν . This
proves ν is an isomorphism.

(Uniqueness.) Suppose K is another R-module and κ : K⊗R S→M the corresponding
S-module isomorphism. Consider the commutative diagram

S⊗R K⊗R S
1⊗κ //

τ

��

S⊗R M

g
��

S⊗R N⊗R S
1⊗νoo

τ

��
K⊗R S⊗R S

κ⊗1 // M⊗R S N⊗R S⊗R S
ν⊗1oo

In the notation of Proposition 8.6.4, this says

F0(ν
−1

κ) = τ

(
(1⊗ν

−1
κ)
(
τ
−1(x⊗a⊗b)

))
is equal to

F1(ν
−1

κ) =
(
(ν−1

κ)(x⊗a)
)
⊗b.

By Proposition 8.6.4, there exists λ ∈ HomR(K,N) such that ν−1κ = λ ⊗ 1. Since S is
faithfully flat over R and ν−1κ is an isomorphism, λ : K→N is an R-module isomorphism.
Lastly, κ = ν(λ ⊗1). □

REMARK 8.6.8. Theorem 8.6.7 is sometimes stated from the opposite point of view.
That is, the role of the descent datum is played by the function h = g−1. Then h : M⊗R S→
S⊗R M is an S⊗R S-module isomorphism which satisfies the 1-cocycle identity h1h3 = h2.
Then N = {x ∈M | h(x⊗1) = 1⊗x}, ν : N⊗R S→M is the multiplication map ν(x⊗ s) =
xs, and h = (1⊗ν)(ν⊗1)−1.

EXAMPLE 8.6.9. Let R be a commutative ring and α1, . . . ,αn a set of n elements
of R such that R = Rα1 + · · ·+Rαn. For the localization of R with respect to the multi-
plicative set {αn | n ≥ 0}, write Rα instead of R[α−1]. By Exercise 3.5.28, S =

⊕n
i=1 Rαi

is faithfully flat over R. Using Lemma 3.1.4, we identify Rαi ⊗R Rα j with Rαiα j . Then
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S⊗R S =
⊕

(i, j)∈I2
n

Rαiα j , where In = {1, . . . ,n}. Suppose for each i that Mi is an Rαi -
module. Then M =

⊕n
i=1 Mi is an S-module. We have

S⊗R M =
⊕

(i, j)∈I2
n

Rαi ⊗R M j

and
M⊗R S =

⊕
(i, j)∈I2

n

Mi⊗R Rα j .

A descent datum g : S⊗R M → M⊗R S consists of a collection of Rαiα j -module isomor-
phisms

Rαi ⊗R M j
gi j−→Mi⊗R Rα j

where (i, j) ∈ I2
n . The identity g2 = g3g1 is equivalent to the statement that the diagram of

Rαiα jαk -module homomorphisms

Rαi ⊗R Rα j ⊗R Mk
gik⊗1 //

g jk⊗1 ))

Mi⊗R Rα j ⊗R Rαk

Rαi ⊗R M j⊗R Rαk

gi j⊗1

55

commutes for all triples (i, j,k) ∈ I3
n . If a descent datum exists, then by Theorem 8.6.7,

there is an R-module N and for each i an isomorphism Mi ∼= N⊗R Rαi of Rαi -modules.

6.5. Descent of Algebras. Let R be a commutative ring and S a faithfully flat com-
mutative R-algebra. Let N be an R-module such that the S-module NS =N⊗R S has a multi-
plication operation which is defined by an S-module homomorphism µ : NS⊗S NS→NS. If
we identify NS⊗S NS with N⊗R N⊗R S, then µ belongs to HomS(N⊗R N⊗R S,N⊗R S). By
Proposition 8.6.4, the homomorphism µ descends to a unique R-module homomorphism
N ⊗R N → N if and only if F0(µ) and F1(µ) induce equal multiplication operations on
N⊗R S⊗R S.

THEOREM 8.6.10. Let S be a commutative faithfully flat R-algebra. Let B be an S-
algebra and g : S⊗R B→B⊗R S a descent datum for B over S such that g is an isomorphism
of S⊗R S-algebras. Then there exists an R-algebra A and an isomorphism ν : A⊗R S→ B
of S-algebras.

PROOF. The existence and uniqueness of the R-module A and the S-module isomor-
phism ν : A⊗R S→ B are guaranteed by Theorem 8.6.7. The diagram

S⊗R A⊗R S
1⊗ν //

τ

��

S⊗R B

g
��

A⊗R S⊗R S
ν⊗1 // B⊗R S

(6.6)

commutes, where τ(a⊗ b⊗ c) = b⊗ a⊗ c. The counterpart of (6.6) for A⊗R A⊗R S ∼=
B⊗S B is the commutative square

S⊗R (A⊗R A)⊗R S
1⊗(ν⊗Sν) //

τ

��

S⊗R (B⊗R B)

g⊗Sg
��

(A⊗R A)⊗R S⊗R S
(ν⊗Sν)⊗1 // (B⊗R B)⊗R S

(6.7)
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Because g is an S⊗R S-algebra isomorphism, the diagram

S⊗R B⊗R B = (S⊗R B)⊗S (S⊗R B) //

g⊗Sg
��

S⊗R B

g

��
B⊗R B⊗R S = (B⊗R S)⊗S (B⊗R S) // B⊗R S

(6.8)

commutes, where the horizontal arrows are the multiplication maps. The multiplication µ

on AS = A⊗R S is defined by the multiplication operation on B and the S-algebra isomor-
phism ν . By definition of µ , the diagram

A⊗R A⊗R S = AS⊗S AS
µ //

ν⊗Sν

��

AS

ν

��
B⊗S B // B

(6.9)

commutes, where the bottom arrow is multiplication in B. As was mentioned in the para-
graph preceding the theorem, it suffices to show that F0(µ) and F1(µ) induce equal mul-
tiplication operations on A⊗R S⊗R S. Apply either functor Fi to the commutative square
(6.9) to get the commutative square

(A⊗R A)⊗R S⊗R S
Fi(µ) //

(ν⊗Sν)⊗1
��

A⊗R S⊗R S

ν⊗1
��

B⊗S B⊗R S // B⊗R S

(6.10)

Combine diagrams (6.6), (6.7), (6.8), and (6.10) to get the commutative diagram

(A⊗R A)⊗R S⊗R S
Fi(µ) //

(ν⊗Sν)⊗1

��

(1⊗(ν⊗Sν))τ−1

&&

A⊗R S⊗R S

ν⊗1

��

(1⊗ν))τ−1

{{
S⊗R B⊗R B //

g⊗Sg

��

S⊗R B

g

��
B⊗R B⊗R S // B⊗R S

This diagram commutes with either F0(µ) or F1(µ) in the top row. Therefore the mul-
tiplication on AS descends to a multiplication on A. The associative, commutative and
distributive laws hold in A because they hold in AS. □

6.6. Applications. The results of Section 8.6 are applied to prove two important theo-
rems. The first result gives a complete classification for involutions of quadratic extensions
of a commutative ring. The second application is a criterion due to H. Bass for a module
over a commutative ring to be a progenerator.
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6.6.1. Quadratic Extensions. Let R be a commutative ring and A an R-algebra. An
R-algebra involution of A is a function σ : A→ A satisfying

σ(x+ y) = σ(x)+σ(y), if x,y ∈ A

σ(xy) = σ(y)σ(x), if x,y ∈ A

σ(σ(x)) = x, if x ∈ A

σ(x) = x, if x ∈ R

Associated to an involution σ are the trace T A
R : A→ A and the norm NA

R : A→ A, defined
by

T A
R (x) = x+σ(x)

NA
R (x) = xσ(x)

Notice that

(6.11) x2− xT A
R (x)+NA

R (x) = 0

for all x∈ A. We call σ a standard involution in case T S
R (x)∈ R and NS

R(x)∈ R for all x∈ S.
If σ is a standard involution, the reader should verify

NS
R(x) = xσ(x) = σ(x)x

and
NA

R (xy) = NA
R (x)N

A
R (y)

for all x,y ∈ A.
Propositions 8.6.11 and 8.6.12 below are based on [36, (1.3.4) and (1.3.6)].

PROPOSITION 8.6.11. If S is an R-algebra which as an R-module is a progenerator,
then there exists at most one standard involution on S.

PROOF. Suppose σ1 and σ2 are standard involutions of S. By Proposition 3.6.2, there
exist f1, . . . , fn in R such that S fi is a free R fi module of of finite rank and

⊕n
i=1 S fi is a

faithfully flat S-algebra. It suffices to show that σ1 = σ2 upon restriction to S fi , for each
i. Therefore we assume from now on that S is free. By Proposition 3.5.6, R · 1 is an R-
module direct summand of S. Let b1, . . . ,bn be a free R-basis for S and assume b1 = 1.
Write Ti and Ni for the trace and norm associated to σi. Then T1(b1) = T2(b1). By (6.11),
b2

j = b jT1(b j)−N1(b j) = b jT2(b j)−N2(b j), from which it follows that T1(b j) = T2(b j)
for 2≤ j ≤ n. □

A quadratic extension of R is an R-algebra S which is an R-progenerator of rank two.
By Exercise 3.6.13, a quadratic extension is commutative.

PROPOSITION 8.6.12. A quadratic extension S/R has a unique standard involution.

PROOF. Case 1: Assume S is a free R-module of rank two. As in the proof of Propo-
sition 8.6.11, assume S = R ·1+R ·β . There exist a,b ∈ R such that β 2 = a+bβ . Define
σ : S→ S by 1 7→ 1 and β 7→ b−β . Then σ(x+ yβ ) = x+ yb− yβ . The reader should
verify that σ is a standard involution.

Case 2: S is locally free of rank two. As in the proof of Proposition 8.6.11, there
exist f1, . . . , fn in R such that S fi is a free R fi module of of finite rank, R =

⊕n
i=1 R fi is a

faithfully flat R-algebra, and S =
⊕n

i=1 S fi is a faithfully flat S-algebra. By Case 1 there
exist R fi-algebra involutions σi on S fi and σ = ⊕σi is an R-involution on S . Let σi j
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denote the restriction of σi to S fi f j . By Proposition 8.6.11, σi j = σ ji. By Example 8.6.2,
the right-most square of the diagram

0 // S //

∃σ

��

⊕
i S fi

d0
//

⊕σi

��

⊕
(i, j) S fi f j

⊕σi j

��
0 // S // ⊕

i S fi
d0

// ⊕
(i, j) S fi f j

commutes. The rows are exact, so σ defines an involution on S. The reader should verify
that σ is a standard involution. □

6.6.2. A Theorem of Bass. In this short section we prove a theorem of H. Bass (The-
orem 8.6.14) which was stated without proof in [19, Theorem 14.2.1]. The proof given in
[10, Proposition (4.6), p. 476] is K-theoretic, whereas the proof given below is based on
the method suggested in the paragraph immediately preceding [43, Theorem III.17] and
utilizes only theorems proven in this book. The main idea for the proof is the following
lemma.

LEMMA 8.6.13. Let R be a ring and M a left R-module. For any n > 0, the assignment

HomR(M,M)
∆−→ HomR(M(n),M(n))

that maps a homomorphism ϕ in HomR(M,M) to the corresponding diagonal homomor-
phism ∆(ϕ) =⊕n

i=1ϕ in HomR(M(n),M(n)) defines a monomorphism of rings. If R is com-
mutative, ∆ is an R-algebra homomorphism.

PROOF. The proof is left to the reader. □

THEOREM 8.6.14. (H. Bass) Let R be a commutative ring and M an R-module. Then
M is an R-progenerator if and only if there exists an R-module P such that P⊗R M ∼= R(s)

for some s > 0.

PROOF. If there exists an R-module P such that P⊗R M ∼= R(s), then by Proposi-
tion 2.3.25, both M and P are R-progenerators.

Assume M is an R-progenerator. First we show how to reduce to the case where M
has constant rank. Assume M does not have constant rank. As in Corollary 3.4.8, let
e1, . . . ,et be the structure idempotents of M in R. Write Ri for Rei and Mi for Mei. Then
R = R1⊕·· ·⊕Rt , M = M1⊕·· ·⊕Mt , and Mi is an Ri-progenerator of constant rank. For
each i, assume there exists an integer si > 0 and an Ri-module Pi such that Mi⊗Ri Pi ∼= R(si)

i .
Let s be the least common multiple of {s1, . . . ,st}. Then M⊗R

(
P(s/s1)

1 ⊕ ·· ·⊕P(s/st )
t

) ∼=
R(s).

Assume from now on that M has constant rank r. If M is free, then there is nothing
to prove. Assume N is an R-progenerator such that M⊕N is free of rank rn and n ≥ 2.
By Exercises 3.6.14 and 3.5.28, there exists a commutative faithfully flat R-algebra S such
that M⊗R S and N⊗R S are isomorphic to the free S-modules S(r) and S(rn−r), respectively.
Then (M⊕N)⊗R S can be written as a direct sum ⊕n

i=1S(r), which is isomorphic to the
direct sum (M⊗R S)(n). Applying Lemma 8.6.13 to this direct sum decomposition defines
the homomorphism ∆ : HomS(M⊗R S,M⊗R S)→HomS((M⊕N)⊗R S,(M⊕N)⊗R S). By
Lemma 2.8.1 (1),

M∗⊗R M
θR−→ HomR(M,M)
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is an isomorphism of HomR(M,M)-modules, hence is an isomorphism of R-modules. By
Corollary 2.8.3 (6), M∗ is an R-progenerator. By Proposition 2.3.24, HomR(M,M) is an
R-progenerator module. By Proposition 3.5.6, HomR(M,M) is a faithfully flat R-algebra.
Therefore, the natural map HomR(M,M)→HomR(M,M)⊗R S is one-to-one. By Proposi-
tion 3.5.8, HomR(M,M)⊗R S is isomorphic to HomS((M⊕N)⊗R S,(M⊕N)⊗R S). Sim-
ilarly, the natural map HomR(M⊕N,M⊕N)→ HomS((M⊕N)⊗R S,(M⊕N)⊗R S) is
one-to-one. Consider the diagram

HomS(M⊗R S,M⊗R S) ∆ // HomS((M⊕N)⊗R S,(M⊕N)⊗R S)

HomR(M,M)⊗R S

∼=

OO

HomR(M⊕N,M⊕N)⊗R S

∼=

OO

HomR(M,M)

⊆

OO

∃δ // HomR(M⊕N,M⊕N)

⊆

OO
(6.12)

of homomorphisms of R-algebras. Next we show that ∆ restricts to a homomorphism
δ : HomR(M,M)→ HomR(M⊕N,M⊕N). The proof is by faithfully flat descent. Start
with a basis {b1, . . . ,br} for the S-module M⊗R S and extend it to a basis for (M⊕N)⊗R
S. With respect to these bases, interpret HomS(M⊗R S,M⊗R S) as r-by-r matrices over
S (denoted Mr(S)) and HomS((M⊕N)⊗R S,(M⊕N)⊗R S) as rn-by-rn matrices over S
(denoted Mrn(S)). We see that ∆ : Mr(S)→Mrn(S) sends a matrix A to the block diagonal
matrix A⊕·· ·⊕A. Let e0 : S→ S⊗R S be defined by s 7→ 1⊗s. Likewise, let e1 : S→ S⊗R S
be defined by s 7→ s⊗1. Then each ei is an R-algebra homomorphism. Let Fi be the functor
from S-modules to S⊗R S-modules induced by tensoring with ei. From the description of ∆

above we see that F0(∆) is equal to F1(∆). By Proposition 8.6.4, there exists an R-algebra
homomorphism δ such that diagram (6.12) commutes. By the homomorphism δ , we can
view HomR(M,M) as a ring of endomorphisms of the R-module M⊕N. By the Morita
Theorem 2.8.2, there is an R-module P and a left HomR(M,M)-module isomorphism σ :
P⊗R M→ M⊕N. Since HomR(M,M) is an R-algebra, σ is an R-module isomorphism.
Since M⊕N is a free R-module of rank s = rn, we are finished. □

7. Hochschild Cohomology

Hochschild cohomology groups first appeared in [30] and were applied to study sepa-
rable algebras over a field. In Theorem 10.1.16 below we derive a criterion for separability
based on Hochschild cohomology. A general reference for this section is [15, Chapter IX].

DEFINITION 8.7.1. Let R be a commutative ring, A an R-algebra, and Ae =A⊗R Ao the
enveloping algebra (Definition 5.1.1). If M is a two-sided A/R-module (Definition 5.1.4),
then the nth Hochschild cohomology group of A with coefficients in M is defined to be

Hn(A,M) = ExtnAe(A,M)

where we make M into a left Ae-module by a⊗b · x = axb

7.1. The Standard Complex. Let R be a commutative ring and A an R-algebra. We
construct a chain complex S•(A)→ A of Ae-modules. When A is a projective R-module,
S•(A) is a projective resolution of A as a left Ae-module, and is called the standard reso-
lution. The standard resolution is applied to compute the Hochschild cohomology groups
(Definition 8.7.1).
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For n≥ 0, define left Ae-modules by

(7.1) Sn(A) =

{
Ae = A⊗R Ao if n = 0,
A⊗R (A⊗n)⊗R A if n > 0.

Where A⊗n denotes the tensor product of n copies of A, and Sn(A) is a left Ae-module by
a⊗ b · x = axb. For notational convenience, we define S−1(A) to be A. For n ≥ 0 and for
0≤ i≤ n, let µn,i : Sn→ Sn−1 be define by

µn,i(x0⊗·· ·⊗ xi⊗·· ·⊗ xn+1) = x0⊗·· ·⊗ xixi+1⊗·· ·⊗ xn+1.

Then µn,i is defined by tensoring the multiplication map µ : Ae→ A in the ith factor with
the identity map elsewhere. Define boundary maps dn : Sn→ Sn−1 by

dn =
n

∑
i=0

(−1)n
µn,i.

Since µ is an Ae-module homomorphism, it follows that µn,i and dn are Ae-module homo-
morphisms.

LEMMA 8.7.2. In the above context,

· · · → Sn(A)
dn−→ Sn−1(A)→ ·· · → S1

d1−→ S0
µ−→ A→ 0

is an exact sequence. If A is projective as an R-module, then S•(A)→ A is a projective
resolution of A as a left Ae-module.

PROOF. By a slight variation of Theorem 2.3.23, we see that if A is a projective R-
module, then Sn(A) is a projective Ae-module. We must show that dn−1dn = 0, and that the
homology of the complex is (0). For n≥−1 define kn : Sn(A)→ Sn+1(A) by kn(x) = 1⊗x.
For all n≥ 0 and x ∈ Sn(A), we see that

dn+1kn(x) = dn+1(1⊗ x)

= x+
n+1

∑
i=1

(−1)i
µn+1,i(1⊗ x)

= x−
n

∑
i=0

(−1)i1⊗µn,i(x)

and

kn−1dn(x) = kn+1

n

∑
i=0

(−1)i
µn,i(x)

=
n

∑
i=0

(−1)i1⊗µn,i(x).

Therefore, the contracting homotopy relations

dn+1kn(x)+ kn−1dn = 1

are satisfied. Now we show that dn−1dn = 0. For n = 1,

µd1(x⊗ y⊗ z) = µ(xy⊗ z− x⊗ yz) = (xy)z− x(yz) = 0

by the associative property for multiplication in A. By induction on n and the contract-
ing homotopy relations, it follows that dn−1dn = 0 for all n ≥ 1 (see the proof of Theo-
rem 8.5.8). Applying Exercise 8.1.15 completes the proof. □
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7.2. Cocycle and Coboundary Groups in Low Degree. Let A be an R-algebra which
is projective as an R-module. Let M be a left Ae-module. The Hochschild cohomology
groups Hn(A,M) are defined to be ExtnAe(A,M) (Definition 8.7.1). The projective reso-
lution S•(A)→ A of Lemma 8.7.2 is called the standard complex of A. From (7.1) we
have

Sn(A) = A⊗R
(
A⊗n)⊗R A = Ae⊗R

(
A⊗n) .

Then the Adjoint Isomorphism (Theorem 2.4.10 (1)) implies

HomAe(Sn(A),M)∼= HomAe
(
Ae⊗R

(
A⊗n) ,M)

∼= HomR
(
A⊗n,HomAe(Ae,M)

)
∼= HomR(A⊗n,M).

By Definition 8.3.11, the cohomology groups are the homology groups of the truncated
complex HomAe(S•(A),M). The terms of low degree are

(7.2) 0→M δ 0
−→ HomR(A,M)

δ 1
−→ HomR(A⊗R A,M)

δ 2
−→ HomR(A⊗R A⊗R A,M)

δ 3
−→ HomR(A⊗4,M)→ ··· .

A tedious computation involving (7.2), the boundary maps dn of Lemma 8.7.2, the Adjoint
Isomorphism, and the Hom functor results in a formula for the coboundary maps. Let
f ∈ HomR(A⊗n,M) be an n-cochain. Then

(7.3) (δ n f )(x1⊗·· ·⊗ xn+1) = x1 f (x2⊗ . . .xn+1)

+
n

∑
i=1

(−1)i f (x1⊗·· ·⊗ xixi+1⊗·· ·⊗ xn+1)

+(−1)n+1 f (x1⊗·· ·⊗ xn)xn+1.

8. Amitsur Cohomology

First we define the Amitsur cohomology groups in Section 8.8.1. Then we show in
Section 8.8.2 that the twisted forms of an R-module are parametrized by a certain Amitsur
cohomology group of degree one.

Amitsur cohomology was first used in [1]. It is the basis of the Čech cohomology
which was introduced by Grothendieck and Cartier for schemes. The results presented
here are taken from various sources, including [31], [37], [48], and [35]. Most of the
material in this section has been published in [19, Section 5.5].

8.1. The Definition and First Properties. Let S be a commutative R-algebra. By
S⊗r we denote S⊗R · · ·⊗R S, the tensor product of r copies of S. As in Section 8.6.1, for
0≤ j ≤ n+1, there is an R-algebra homomorphism

S⊗(n+1) e j−→ S⊗(n+2)

(x0⊗·· ·⊗ xn) 7→ x0⊗·· ·⊗ x j−1⊗1⊗ x j⊗·· ·⊗ xn.

Let F be a covariant functor from the category of commutative R-algebras to the category
of abelian groups. The Amitsur complex for S/R with coefficients in F is

(8.1) 1→ F(S) d0
−→ F(S⊗2)

d1
−→ F(S⊗3)

d2
−→ ·· ·
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where the coboundary map dr : F(S⊗(r+1))→ F(S⊗(r+2)) is defined to be

dr =
r+1

∏
i=0

F(ei)
(−1)i

.

Denote this complex by C•(S/R,F). Since e jei = ei+1e j for all j ≤ i, the reader should
verify that (8.1) is a complex of abelian groups.

DEFINITION 8.8.1. In the cochain complex (8.1), the kernel of dn is the group of
n-cocycles, Zn(S/R,F) = kerdn. The image of dn−1 is the group of n-coboundaries,
Bn(S/R,F) = imdn−1. The group of cocycles modulo the coboundaries is

Hn(S/R,F) = Zn(S/R,F)/Bn(S/R,F)

which is called the nth Amitsur cohomology group of S/R with coefficients in F.

EXAMPLE 8.8.2. In degrees 0 and 1, we have

Z0(S/R,F) = H0(S/R,F)

= {α ∈ F(S) | F(e0)(α) = F(e1)(α)}

B1(S/R,F) = {F(e0)(α)F(e1)(α
−1) | α ∈ F(S)}

Z1(S/R,F) = {α ∈ F(S⊗R S) | F(e2)(α)F(e0)(α) = F(e1)(α)}.

(8.2)

EXAMPLE 8.8.3. For any commutative R-algebra S, let Ga(S) be the additive abelian
group of S. If S is faithfully flat, then by Proposition 8.6.1,

Hn(S/R,Ga) =

{
Ga(R) if n = 0
0 if n≥ 1.

DEFINITION 8.8.4. When F is nonabelian, the cohomology is defined using the rela-
tions of (8.2). In this case, the result is not a group, but a pointed set. Let F be a functor
from the category of commutative R-algebras to the category of groups. We define

H0(S/R,F) = {α ∈ F(S) | F(e0)(α) = F(e1)(α)}

with base point being the group identity of F(S). We define

Z1(S/R,F) = {α ∈ F(S⊗R S) | F(e2)(α)F(e0)(α) = F(e1)(α)}

with base point being the group identity of F(S⊗R S). Define a relation on Z1(S/R,F) by
α ∼ β if there exists γ ∈ F(S) such that

α = F(e1)(γ)βF(e0)(γ
−1).

The reader should verify that ∼ is an equivalence relation. We define H1(S/R,F) to be
the set of equivalence classes Z1(S/R,F)/ ∼, with base point being the equivalence class
containing the group identity of F(S⊗R S). When the functor F takes its values in the
category of abelian groups, it is clear that this definition agrees with Definition 8.8.1 for
n = 0,1.

THEOREM 8.8.5. Suppose

S
f // S′

R

θ

OO

φ // R′
θ ′

OO
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is a commutative diagram of homomorphisms of commutative R-algebras. Let F be a
functor from the category of commutative R-algebras to the category of abelian groups.
Then f induces homomorphisms

f ∗ : Hn(S/R,F)→ Hn(S′/R′,F)

for n ≥ 0. Moreover, f ∗ is independent of f . That is, if g : S→ S′ is another such homo-
morphism, then f ∗ = g∗. If F is a functor that takes its values in the category of nonabelian
groups, then the above is true for n = 0,1, where f ∗ is a morphism of pointed sets.

PROOF. Since F is a functor, and the diagram of algebra homomorphisms commutes,
f induces a morphism of cochain complexes f : F(S⊗n)→ F((S′)⊗n). Consequently, there
are homomorphisms f ∗ : Hn(S/R,F)→ Hn(S′/R′,F).

Case 1: Assume F is abelian and use additive notation in the groups F(·). By The-
orem 8.2.12, it is enough to show that the two morphisms f and g between F(S⊗n) and
F((S′)⊗n) are homotopic. We define kn : F(S⊗(n+1))→ F((S′)⊗n) and show that

(8.3) ( f ∗)n− (g∗)n = dn−1kn + kn+1dn

for n≥ 1. For 0≤ i < n define kn
i : S⊗(n+1)→ (S′)⊗n by

(8.4) kn
i (s0⊗·· ·⊗ sn) = f (s0)⊗·· ·⊗ f (si)g(si+1)⊗·· ·⊗g(sn).

Then each kn
i is an R-algebra homomorphism (Exercises 2.3.35 and 2.3.43). The homo-

topy operator is defined by kn = ∑
n−1
i=0 (−1)iF(kn

i ). We define auxiliary R-algebra homo-
morphisms hn

i : S⊗(n+1)→ (S′)⊗(n+1) by

(8.5) hn
i (s0⊗·· ·⊗ sn) =


g(s0)⊗·· ·⊗g(sn) if i = 0
f (s0)⊗·· ·⊗ f (si−1)⊗g(si)⊗·· ·⊗g(sn) if 1≤ i≤ n
f (s0)⊗·· ·⊗ f (sn) if i = n+1.

The reader should verify the relations

(8.6) kn+1
j ei =


ei−1kn

j if j < i−1
hn

i if i−1≤ j ≤ i
eikn

j−1 if i < j.

Starting with the right-most term in (8.3),

kn+1dn =
n

∑
j=0

n+1

∑
i=0

(−1) j(−1)iF(kn+1
j )F(ei)

=
n

∑
j=0

n+1

∑
i=0

(−1) j+iF(kn+1
j ei)
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Using (8.6), we get

kn+1dn =
n+1

∑
i=2

i−2

∑
j=0

(−1) j+iF(ei−1kn
j )

+
n+1

∑
i=1

(−1)i−1+iF(hi)+
n

∑
i=0

(−1)i+iF(hi)

+
n−1

∑
i=0

n

∑
j=i+1

(−1) j+iF(eikn
j−1))

=
n+1

∑
i=2

i−2

∑
j=0

(−1) j+iF(ei−1kn
j )

+F(h0)−F(hn+1)

+
n−1

∑
i=0

n

∑
j=i+1

(−1) j+iF(eikn
j−1))

=
n−1

∑
j=0

(−1) j+n+1F(enkn
j )

+
n−1

∑
i=1

(
i−1

∑
j=0

(−1) j+i+1F(eikn
j ))+

n−1

∑
j=i

(−1) j+i+1F(eikn
j ))

)

+
n−1

∑
j=0

(−1) jF(e0kn
j ))

+F(h0)−F(hn+1)

= (g∗)n− ( f ∗)n−
n

∑
i=0

n−1

∑
j=0

(−1) j+iF(eikn
j ))

= (g∗)n− ( f ∗)n−dn−1kn

Which proves the theorem when F is abelian.
Case 2: Assume F is non-abelian (written multiplicatively) and n = 0. Let k1

0 : S⊗R

S→ S′ be as in (8.4). Note that k1
0e0 = g and k1

0e1 = f . If α ∈ Z0(S/R,F), then F(g)α =

F(k1
0e0)α = F(k1

0)F(e0)α = F(k1
0)F(e1)α = F(k1

0e1)α = F( f )α .
Case 3: Assume F is non-abelian (written multiplicatively) and n= 1. Let k2

0 and k2
1 be

the R-algebra homomorphisms defined in (8.4). If α ∈ Z1(S/R,F), then on the one hand,

F( f ⊗g)(α) = F(h1
1)(α) (by (8.5))

= F(k2
0e1)(α) (by (8.6))

= F(k2
0e2)(α)F(k2

0e0)(α) (since α ∈ Z1(S/R,F))

= F(e1k1
0)(α)F(h1

0)(α) (by (8.6))

= F(e1k1
0)(α)F(g⊗g)(α) (by (8.5)).

(8.7)
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On the other hand,

F( f ⊗g)(α) = F(h1
1)(α) (by (8.5))

= F(k2
1e1)(α) (by (8.6))

= F(k2
1e2)(α)F(k2

1e0)(α) (since α ∈ Z1(S/R,F))

= F(h1
2)(α)F(e0k1

0)(α) (by (8.6))

= F( f ⊗ f )(α)F(e0k1
0)(α) (by (8.5)).

(8.8)

Set γ = F(k1
0)(α). Combining (8.7) and (8.8),

F( f ⊗ f )(α) = F(e1)(γ)F(g⊗g)(α)F(e0)(γ
−1)

which shows F( f ⊗ f )∼ F(g⊗g). □

8.2. Twisted Forms. Let R be a commutative ring and Cfl(R) the category of isomor-
phism classes of faithfully flat R-algebras. If A is an R-module (or R-algebra), let Aut(A)
denote the functor from Cfl(R) to the category of groups defined by S 7→ AutS(A⊗R S).

DEFINITION 8.8.6. Let R be a commutative ring and A a fixed R-module (or R-
algebra). Given an R-module (or R-algebra) B and a faithfully flat R-algebra S, we say
B is a twisted form of A for the extension S/R if there exists an isomorphism of S-algebras
B⊗R S∼= A⊗R S.

PROPOSITION 8.8.7. In the above context, the pointed set H1(S/R,Aut(A)) classifies
up to R-module (or R-algebra) isomorphism the twisted forms of A for the extension S/R.

PROOF. Suppose B is a twisted form of A for the extension S/R, and β : B⊗R S→
A⊗R S is an S-module isomorphism. In a switch from the notation of Proposition 8.6.4,
we write βi instead of Fi(β ). Define θ ∈AutS⊗RS(A⊗R S⊗R S) by θ = β1β

−1
0 . So θ is the

map that makes the diagram

A⊗R S⊗R S

θ

��

B⊗R S⊗R S

β0
77

β1 ''
A⊗R S⊗R S

commute. The reader should verify the identities: (β0)0 = (β0)1, (β0)2 = (β1)0, (β1)1 =

(β1)2. Therefore, θ2θ0 =(β1β
−1
0 )2(β1β

−1
0 )0 =(β1)2(β

−1
0 )2(β1)0(β

−1
0 )0 =(β1)1(β

−1
0 )1 =

(β1β
−1
0 )1 = θ1. So θ is a 1-cocycle. To show that the cohomology class of θ depends only

on B, suppose α : B⊗R S→ A⊗R S is another S-module isomorphism, and φ = α1α
−1
0 .

Set γ = αβ−1. Then γ is an S-module automorphism of A⊗R S. We have γ1θγ
−1
0 =

γ1(β1β
−1
0 )γ−1

0 = α1β
−1
1 (β1β

−1
0 )β0α

−1
0 = α1α

−1
0 = φ . Therefore, φ is cohomologous to

θ .
Let θ ∈AutS⊗RS(A⊗R S⊗S). Assume θ is a 1-cocycle in Z1(S/R,Aut(A)). In a switch

from the notation of Section 8.8.1, write θi instead of F(ei)(θ). Then θ2θ0 = θ1. As in
Section 8.6.3, for i = 0,1 there are R-module homomorphisms ei : A⊗R S→ A⊗R S⊗R S.
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Define

B =
{
∑ai⊗ si ∈ A⊗R S | θ

(
∑ai⊗1⊗ si

)
= ∑ai⊗ si⊗1

}
= ker{θe0− e1 : A⊗R S→ A⊗R S⊗R S} .

Then B is an R-module. Define β : B⊗R S→A⊗R S to be the multiplication map, β ((∑ai⊗
si)⊗ s) = ∑ai⊗ sis. As in the proof of Theorem 8.6.7, the reader should verify that β is
an isomorphism of S-modules and θ = β1β

−1
0 . Therefore B is a twisted form of A for the

extension S/R.
To see that B depends only on the cohomology class of θ , suppose φ is a 1-cocycle

that is cohomologous to θ . Then there is γ ∈ Aut(A⊗R S) such that γ1θγ
−1
0 = φ . Since φ

is a descent datum, there is an R-module C, and an isomorphism α : C⊗R S→ A⊗R S such
that φ = α1α

−1
0 . It follows from

φ = γ1θγ
−1
0

α1α
−1
0 = γ1β1β

−1
0 γ

−1
0

α
−1
0 γ0β0 = α

−1
1 γ1β1

that (α−1γβ )0 = (α−1γβ )1. In the notation of Proposition 8.6.4, we see that F0(α
−1γβ ) =

F0(α
−1γβ ). This implies the isomorphism α−1γβ : B⊗R S→C⊗R S of S-modules comes

from an isomorphism B∼=C of R-modules. □

8.2.1. Twisted Form of a Finitely Generated Free Module. Let R be a commutative
ring and denote by Rn the direct sum of n copies of R. Let S be a commutative faithfully
flat R-algebra. A free module of rank n is a projective module of rank n. It follows from
Lemma 3.5.12 that a twisted form of Rn for S/R is a projective module of rank n. The group
AutS(Rn⊗R S) = AutS(Sn) is isomorphic to the group of invertible matrices in Mn(S). The
group of invertible n-by-n matrices over S is also denoted GLn(S) and is called the general
linear group. We also denote by GLn the functor from Cfl to the category of groups defined
by S 7→ GLn(S).

COROLLARY 8.8.8. Let S be a commutative faithfully flat R-algebra.

(1) The twisted forms of the free R-module of rank n for S/R are classified up to
isomorphism by the pointed set H1(S/R,GLn).

(2) If R is a ring for which finitely generated projective modules are free, then
H1(S/R,GLn) = {1}. This is true, for instance, if R is a local ring (Proposi-
tion 3.4.3), or a PID (Example 2.1.6).

For n = 1, the general linear group GL1(S) is equal to S∗ = Gm(S), the group of
invertible elements of S. Since S is commutative, Gm(S) is an abelian group and the pointed
set H1(S/R,GLn) is a group. By Corollary 8.8.8, H1(S/R,Gm) classifies the group of rank
one projective R-modules P such that P⊗R S∼= S. This and Proposition 3.6.8 proves

COROLLARY 8.8.9. In the above context, the group H1(S/R,Gm) is isomorphic to the
kernel of the natural homomorphism PicR→ PicS.

8.2.2. Twisted Form of a Finitely Generated Free Algebra. Let Rn = R⊕·· ·⊕R be the
trivial commutative separable extension of R of rank n. Let S be a commutative faithfully
flat R-algebra. It follows from Proposition 5.6.10 that if B is a twisted form of Rn for S/R,
then B is a separable R-algebra which is an R-module progenerator of constant rank n.
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8.2.3. Twisted Form of Matrices. If S is a commutative R-algebra, then the S-algebra
Mn(R)⊗R S is naturally isomorphic to Mn(S). Let Aut(Mn) denote the functor from Cfl, the
category of faithfully flat R-algebras, to the category of groups defined by the assignment
S 7→ AutS(Mn(S)). Now let S be a commutative faithfully flat R-algebra. It follows from
Proposition 8.8.7 that H1(S/R,Aut(Mn)) classifies the twisted forms of Mn(R) for S/R.





CHAPTER 9

Prime Ideals in Commutative Rings

This chapter consists of more results on the subject of Commutative Algebra. For the
most part, the topics involve prime ideals in noetherian commutative rings. The notions
of prime ideals, primary ideals, and more generally primary submodules of an R-module
are closely tied to the notion of zero divisors, and in particular to the notion of nilpotency.
In a commutative ring R, an ideal P is prime if if P is not the unit ideal and R/P has no
zero divisors. The ideal P is primary if P is not the unit ideal and any zero divisor in
R/P is nilpotent. If M is an R-module and P ∈ SpecR, then P is an associated prime of
M if there is a cyclic submodule of M isomorphic to R/P. A primary submodule of M
is a submodule N such that M/N has a unique associated prime. An ideal P is a primary
ideal in R if and only if P is a primary submodule of R. The main result on this subject
is the Primary Decomposition Theorem, which says that every submodule N of a finitely
generated module M over a noetherian ring R can be written as an intersection of primary
submodules. This is proved in Theorem 9.3.8 below. A graded version of this theorem is
proved in Theorem 9.5.6. Theorem 9.5.13 states sufficient conditions on a graded module
for the existence of the Hilbert polynomial.

Zariski’s Main Theorem can be summarized by saying a quasi-finite morphism factors
into an open immersion followed by a finite morphism (see Corollary 9.4.16).

The Krull dimension of a commutative ring is defined in terms of the lengths of chains
of prime ideals in SpecR. We prove the fundamental properties of this dimension. The
Krull dimension of a polynomial ring in n indeterminates over a field k is equal to n.

We end this chapter with a proof of the Krull-Akizuki Theorem, which shows that
the integral closure of a noetherian integral domain with Krull dimension one in a finite
algebraic extension of its quotient field is also a noetherian integral domain with Krull
dimension one.

1. Primary Ideals in a Commutative ring

In this section, R is a commutative ring. An ideal I in R is a primary ideal if I is not the
unit ideal, and any zero divisor in R/I is nilpotent. A prime ideal is a primary ideal. The
nil radical of a primary ideal is a prime ideal. A general reference for this section is [4].

LEMMA 9.1.1. Let R be a commutative ring and I an ideal of R. The following are
equivalent.

(1) I ̸= R and if xy ∈ I, then either x ∈ I or yn ∈ I for some n > 0.
(2) R/I ̸= 0 and any zero divisor in R/I is nilpotent.

PROOF. Is left to the reader. □

An ideal that satisfies one of the equivalent conditions in Lemma 9.1.1 is called a
primary ideal. In Definition 9.3.2, the more general notion of primary submodule is intro-
duced. By Definition 1.5.1, an ideal I in a commutative ring R is prime if and only if R/I

357
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is an integral domain. Therefore, a prime ideal satisfies Lemma 9.1.1 (2) and we see that a
prime ideal is a primary ideal.

By Proposition 9.1.2 (1), the nil radical of a primary ideal is a prime ideal. For a given
prime ideal P, an ideal I is said to be P-primary, if I is a primary ideal and Rad(I) = P.

PROPOSITION 9.1.2. Let R be a commutative ring and I an ideal of R.
(1) If I is a primary ideal, then P = Rad(I) is a prime ideal. Hence I is P-primary.
(2) If m= Rad(I) is a maximal ideal, then I is m-primary.
(3) If I =mn where m is a maximal ideal and n > 0, then I is m-primary.

PROOF. (1): Assume xy ∈ Rad(I). For some n > 0, (xy)n = xnyn ∈ I. If xn ̸∈ I, then
ynm is in I for some m > 0. Therefore, one of x or y is in Rad(I).

(2): By Lemma 3.3.7, there is only one prime ideal that contains I, namely m. There-
fore, R/I is a local ring and the Jacobson radical is m/I, which is equal to the nil radical.
Then every element of R/I is either a unit, or a nilpotent. Every zero divisor of R/I is
nilpotent.

(3): This is Exercise 9.1.6. □

PROPOSITION 9.1.3. Let R be a commutative noetherian ring.
(1) The nil radical RadR(0) is nilpotent.
(2) Let I be an ideal of R and let N = Rad(I). For some n > 0, Nn ⊆ I.

PROOF. (1): Assume N = RadR(0) is generated by x1, . . . ,xm. For each i, there exists
ei > 0 such that xei

i = 0. Take n = e1 + · · ·+ em. Then Nn is generated by elements of the
form xd1

1 · · ·xdm
m where d1 + · · ·+dm = n. For at least one i we have di ≥ ei, so Nn = 0.

(2): Apply (1) to the ring R/I. □

COROLLARY 9.1.4. Let R be a commutative noetherian ring, m a maximal ideal of R.
For an ideal I of R, the following are equivalent.

(1) I is m-primary.
(2) Rad(I) =m.
(3) For some n > 0, mn ⊆ I ⊆m.

PROOF. (1) is equivalent to (2): Follows from Proposition 9.1.2.
(2) implies (3): Follows from Proposition 9.1.3.
(3) implies (2): Follows from Exercise 3.3.20. □

1.1. Exercises.

EXERCISE 9.1.5. Let f : R→ S be a homomorphism of commutative rings. Show that
if I is a primary ideal of S, then f−1(I) is a primary ideal of R.

EXERCISE 9.1.6. Show that if m is a maximal ideal in the commutative ring R, then
mn is m-primary, for any positive integer n.

EXERCISE 9.1.7. Let R be a commutative ring and W ⊆ S a multiplicative set. Let P
be a prime ideal in R and let I be a P-primary ideal. Prove:

(1) If P∩W ̸= /0, then W−1I =W−1R.
(2) If P∩W = /0, then (W−1I)∩R = I.
(3) Rad(W−1I) =W−1 Rad(I).
(4) If P∩W = /0, then W−1I is W−1P-primary.
(5) There is a one-to-one correspondence between primary ideals in W−1R and pri-

mary ideals I of R such that I ⊆ R−W .
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EXERCISE 9.1.8. Let k be a field and A = k[x,y] the polynomial ring in two variables
over k. Let I = (x,y2). Show that every zero divisor in A/I is nilpotent. Conclude that I is
m-primary, where m= (x,y) = Rad(I).

EXERCISE 9.1.9. Let k be a field and A = k[x,y] the polynomial ring in two variables
over k. Let R be the k-subalgebra of A generated by x2,xy,y2. In R, let P = (x2,xy).

(1) Prove that P is prime, P2 = (x4,x3y,x2y2), and Rad(P2) = P. Show that y2 is a
zero divisor in R/P2 which is not nilpotent. Conclude that P2 is not a primary
ideal.

(2) In R, let I = (x2). Prove that I is P-primary. (Hint: show that RP is a principal
ideal domain and P2RP is a primary ideal. Show that x2 ∈ P2RP.)

EXERCISE 9.1.10. Let k be a field and A = k[x,y] the polynomial ring in two variables
over k. Let R be the k-subalgebra of A generated by x2,xy,y2,x3,x2y,xy2,y3. In R, let
P = (x2,xy,x3,x2y,xy2) and I = (x3). Prove:

(1) P is prime. (Hint: R/P∼= k[y2,y3].)
(2) P = Rad(I).
(3) In R/I the elements y2 and y3 are zero divisors, but not nilpotent. Conclude that

I is not a primary ideal.

EXERCISE 9.1.11. Let R be a noetherian commutative ring. Let I be an ideal of R and
N = Rad(I) the nil radical of I. Prove that the I-adic topology on R is equal to the N-adic
topology on R and the I-adic completion of R is isomorphic to the N-adic completion of R.
(Hint: Exercise 7.1.17 and Proposition 9.1.3.)

2. The Associated Primes of a Module

In this section R is a commutative noetherian ring. General references for the material
in this section are [13] and [42].

LEMMA 9.2.1. Let R be a commutative noetherian ring, M an R-module, and P ∈
SpecR. The following are equivalent.

(1) There exists an element x ∈M such that annihR(x) = P.
(2) M contains a submodule isomorphic to R/P.

PROOF. Is left to the reader. □

If P ∈ SpecR satisfies one of the conditions of Lemma 9.2.1, then P is called an asso-
ciated prime of M. The set of all associated primes of M in SpecR is denoted AssocR(M),
or simply Assoc(M). If r ∈ R and ℓr : M→M is “left multiplication by r”, then we say r
is a zero divisor for M in case ℓr is not one-to-one. If r is not a zero divisor for M, then we
say r is M-regular.

PROPOSITION 9.2.2. Let R be a commutative noetherian ring and M an R-module.
(1) If P is a maximal member of the set of ideals C = {annihR(x) | x ∈ M− (0)},

then P is an associated prime of M.
(2) M = 0 if and only if Assoc(M) = /0.
(3) The set of zero divisors of M is equal to the union of the associated primes of M.
(4) If P is a prime ideal of R, then AssocR(R/P) = {P}.
(5) If N is a submodule of M, then

Assoc(N)⊆ Assoc(M)⊆ Assoc(N)∪Assoc(M/N).



360 9. PRIME IDEALS IN COMMUTATIVE RINGS

(6) Suppose I is an index set and {Mα | α ∈ I} is a family of submodules of M such
that M =

⋃
α Mα . Then

AssocR(M) =
⋃
α∈I

AssocR(Mα).

PROOF. (1): Suppose P = annih(x) is a maximal member of C . Assume a,b ∈ R,
ab∈P, and b ̸∈P. Then bx ̸= 0 and abx= 0. But P= annih(x)⊆ annih(bx). By maximality
of P, we conclude a ∈ P.

(2): If M = 0, then clearly Assoc(M) = /0. If M is nonzero, then in Part (1) we see
that C is nonempty. Because R is noetherian, C contains a maximal member which is an
associated prime of M.

(3): If r ∈ R, x ∈ M− (0) and rx = 0, then r ∈ annih(x). By Parts (1) and (2), there
exists a prime ideal P which contains r and which is an associated prime of M. Conversely,
if P is an associated prime, every element of P is a zero divisor of M.

(4): If x+P ̸= P, then in the integral domain R/P, the principal ideal Rx+P is a free
R/P-module.

(5): The inclusion Assoc(N) ⊆ Assoc(M) follows straight from Lemma 9.2.1. Let
P ∈ Assoc(M) and let S ⊆ M be a submodule that is isomorphic to R/P. If S∩N = (0),
then S is isomorphic to a submodule of M/N, so P ∈ Assoc(M/N). If x ∈ S∩N, x ̸= 0,
then by Part (4) the cyclic submodule Rx is isomorphic to R/P. In this case, P∈Assoc(N).

(6): Is left to the reader. □

COROLLARY 9.2.3. Let R be a commutative noetherian ring and {Mα | α ∈ I} a
family of R-modules, where I is an index set. If M =

⊕
α∈I Mα is the direct sum, then

AssocR(M) =
⋃

α∈I AssocR(Mα).

PROOF. If I is a singleton set, then there is nothing to prove.
Step 1: Assume I = {α,β} has cardinality two. Since the sequence 0→Mα →M→

Mβ → 0 is split exact, Proposition 9.2.2 (5) applied twice gives Mα ∪Mβ ⊆M ⊆Mα ∪Mβ .
Step 2: Assume n ≥ 2 and I is a finite set of cardinality n. Then by Mathematical

Induction and Step 1, AssocR(M) =
⋃

α∈I AssocR(Mα).
Step 3: Assume I is infinite. Let F = {S⊆ I | S is a finite subset of I and |S| ≥ 1}. By

Proposition 9.2.2 (6) and Step 2,

AssocR(M) =
⋃

S∈F

AssocR

(⊕
α∈S

Mα

)
=
⋃

S∈F

⋃
α∈S

AssocR (Mα)

=
⋃
α∈I

AssocR (Mα) .

□

PROPOSITION 9.2.4. Let R be a commutative noetherian ring, M an R-module, and
Φ a subset of Assoc(M). Then there exists a submodule N of M such that Assoc(N) =
Assoc(M)−Φ and Assoc(M/N) = Φ.

PROOF. Let S be the set of all submodules S of M such that Assoc(S)⊆Assoc(M)−
Φ. Since (0) ∈ S, S ̸= /0. We partially order S by set inclusion. If {Sα} is a chain in
S, then by Proposition 9.2.2 (6), the union

⋃
Sα is also in S. By Zorn’s Lemma, there

exists a maximal element, say N, in S. By Proposition 9.2.2 (5), to finish the proof it
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suffices to show Assoc(M/N)⊆Φ. Let p ∈Assoc(M/N). Then there is a submodule F/N
of M/N such that F/N is isomorphic to R/p. By Proposition 9.2.2 (2), we know N ⊊ F .
By Proposition 9.2.2 (4) and (5), Assoc(F)⊆Assoc(N)∪Assoc(F/N)⊆Assoc(N)∪{p}.
Since N is a maximal member of S, we know Assoc(F) ̸⊆ Assoc(N). Therefore, p ∈
Φ. □

See Corollary 9.3.12 for a generalization of Lemma 9.2.5.

LEMMA 9.2.5. Let R be a commutative noetherian ring and M an R-module. Let
W ⊆ R be a multiplicative set and θ : R→W−1R the localization. Let Φ = {P ∈ SpecR |
P∩W = /0}. Then

θ
♯(AssocW−1R(W

−1M)) = AssocR(M)∩Φ

= AssocR(W−1M).

PROOF. By Exercise 3.3.25, the continuous map θ ♯ : Spec(W−1R)→ SpecR is one-
to-one and has image equal to Φ.

Step 1: Suppose P ∈ AssocR(M)∩Φ. By Lemma 9.2.1, there exists x ∈M such that
P = annihR(x). The diagram

0 // P //

��

R 17→x //

θ

��

Rx //

��

0

0 // W−1P // W−1R
17→x/1 // (W−1R)(x/1) // 0

commutes and has exact rows. This proves W−1P is equal to annihW−1R(x/1). Since
P = θ ♯(W−1P), we have

AssocR(M)∩Φ⊆ θ
♯(AssocW−1R(W

−1M)).

Step 2: Suppose P ∈ Φ and W−1P is an associated prime of W−1M. Then W−1P =
annihW−1R(x/t) for some x ∈ M, t ∈ W . Then annihR(x/t) = W−1P∩ R = P, so P ∈
AssocR(W−1M). That is,

θ
♯(AssocW−1R(W

−1M))⊆ AssocR(W−1M).

Since R is noetherian, P is finitely generated. Write P = Ra1+ · · ·+Ran for some elements
ai ∈ P. For each ai we have (ai/1)(x/t) = 0. That is, there exists wi ∈W such that wiaix =
0. Let w = w1w2 · · ·wn. Given any y = ∑i riai ∈ P, it follows that ywx = ∑i riwaix = 0.
This proves P⊆ annihR(wx). For the reverse inclusion, suppose u ∈ R and uwx = 0. Then
(u/1)(x/t) = 0 so u/1 is in annihW−1R(x/t) = W−1P. This proves P = annihR(wx) is an
associated prime of M, so

θ
♯(AssocW−1R(W

−1M))⊆ AssocR(M)∩Φ.

Step 3: Suppose P ∈ AssocR(W−1M). Then P = annihR(x/t) for some x ∈M, t ∈W .
If w ∈ P∩W , then w(x/t) = 0 implies x/t = 0. Therefore, P ∈Φ. The diagram

0 // P //

��

R
17→x/t //

θ

��

R(x/t) //

��

0

0 // W−1P // W−1R
17→x/t // (W−1R)(x/t) // 0
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commutes and the rows are exact. Therefore, W−1P = annihW−1R(x/t). It follows that
W−1P ∈ AssocW−1R(W

−1M). Since θ ♯(W−1P) = P, this proves

AssocR(W−1M)⊆ θ
♯(AssocW−1R(W

−1M)),

which completes the proof. □

PROPOSITION 9.2.6. Let R be a noetherian commutative ring and M an R-module.
Let W ⊆ R be a multiplicative set. Let Ψ = {p ∈ AssocR(M) | p∩W = /0}. If K is the
kernel of the localization homomorphism θ : M→W−1M, then K is the unique submodule
of M such that AssocR(K) = AssocR(M)−Ψ and AssocR(M/K) = Ψ.

PROOF. Let N be any submodule of M such that AssocR(N) = AssocR(M)−Ψ and
AssocR(M/N) = Ψ. There exists at least one such N, by Proposition 9.2.4. The proof
consists in showing N = kerθ . Let π : M→M/N be the natural projection. The sequence

0→W−1N→W−1M 1⊗π−−→W−1(M/N)→ 0

is exact because W−1R is a flat R-module (Lemma 3.1.7). If p ∈ AssocR(N), then p∩
W ̸= /0. By Lemma 9.2.5, AssocR(W−1N) = /0. By Proposition 9.2.2 (2), W−1N = (0),
hence 1⊗ π is one-to-one. Now consider the localization map β : M/N →W−1(M/N).
We have AssocR(kerβ ) ⊆ AssocR(M/N) ⊆ Ψ. For contradiction’s sake, suppose p ∈
AssocR(kerβ ). Then there is some x ∈ kerβ and p= annihR(x). Since β (x) = 0, p∩W =
annihR(x)∩W ̸= /0. In other words, p ̸∈Ψ. This contradiction implies AssocR(kerβ ) = /0,
and therefore kerβ = (0). In the commutative diagram

M

θ

��

π // M/N

β

��
W−1M

1⊗π // W−1(M/N)

the maps β and 1⊗π are one-to-one. Therefore, K = kerθ = kerπ = N. □

Let M be a module over the commutative ring R. If P ∈ SpecR, then the stalk of M at
P is the localization MP of M with respect to the multiplicative set R−P. The support of
M is the set of all points in SpecR for which the stalk of M is nontrivial,

SuppR(M) = {P ∈ SpecR |MP ̸= 0}.

If R is understood, we write simply Supp(M).

THEOREM 9.2.7. Let R be a noetherian commutative ring and M an R-module.
(1) Assoc(M)⊆ Supp(M).
(2) If P ∈ Supp(M), then P contains a member of Assoc(M). If P is a minimal

member of Supp(M), then P ∈ Assoc(M).
(3) The sets Assoc(M) and Supp(M) have the same minimal elements.
(4) If I is an ideal in R, then the minimal associated primes of the R-module R/I are

precisely the minimal prime over-ideals of I.

PROOF. (1): Let P ∈ Assoc(M) and set W = R−P. By Lemma 9.2.5, W−1P is an
associated prime of W−1M = MP. By Proposition 9.2.2, it follows that MP ̸= 0.

(2): Let P ∈ Supp(M). Then MP ̸= 0. By Proposition 9.2.2, MP has an associated
prime in RP. By Lemma 9.2.5, elements of AssocRP(MP) correspond bijectively to ele-
ments of AssocR(M) that are contained in P. This proves that P contains an element of
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AssocR(M). If P is a minimal member of Supp(M), then Supp(MP) contains only one
prime, namely PRP. In this case, it follows that P is a minimal element in Assoc(M).

(3): Follows from the arguments in (1) and (2).
(4): By Exercise 9.2.12, the support of the module R/I is V (I). □

PROPOSITION 9.2.8. Let R be a noetherian commutative ring. Then the following are
true.

(1) The set of zero divisors of R is equal to the union of the associated primes of R.
(2) If P1, . . . ,Pn are the minimal prime over-ideals of (0), then {P1, . . . ,Pn} is a subset

of Assoc(R).
(3) The nil radical of R, RadR(0), is equal to the intersection of the associated primes

of R.
(4) If R is an integral domain, then Assoc(R) = {(0)}.
(5) If R is a commutative artinian ring, then Assoc(R) = SpecR.

PROOF. Part (1) follows from Proposition 9.2.2 (3). Part (2) follows from Theo-
rem 9.2.7 (4). Part (3) follows from (2) and Lemma 3.3.7. Part (4) is immediate from
(1). Part (5) follows from Theorem 4.5.6 and (1). □

DEFINITION 9.2.9. Let R be a noetherian commutative ring and M an R-module. If
P∈Assoc(M) and P is not a minimal member of Assoc(M), then we say P is an embedded
prime of M.

THEOREM 9.2.10. Let R be a noetherian commutative ring and M a nonzero finitely
generated R-module.

(1) There exists a filtration 0 = M0 ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mn = M of M and a set of
prime ideals Pi ∈ SpecR such that Mi/Mi−1 ∼= R/Pi for i = 1, . . . ,n.

(2) If P1, . . . ,Pn are the primes mentioned in Part (1), then Assoc(M)⊆{P1, . . . ,Pn}⊆
Supp(M).

(3) Assoc(M) is a finite set.

PROOF. (1): Assume M ̸= (0). By Proposition 9.2.2, Assoc(M) ̸= /0, so there exists
a submodule S of M isomorphic to R/P for some prime P. Define C to be the set of
all submodules S ⊆ M such that S has the kind of filtration specified in Part (1). Since
C is nonempty and R is noetherian, C has a maximal member, say N. If N ̸= M, then by
Proposition 9.2.2, Assoc(M/N) ̸= /0. By Lemma 9.2.1 applied to M/N there is a submodule
S of M such that N ⊊ S⊆M and S/N ∼= R/P for some prime P. Therefore, S ∈ C which is
a contradiction. This proves Part (1).

(2): By Proposition 9.2.2 (4), Assoc(Mi/Mi−1) = {Pi}. Proposition 9.2.2 (5), applied
n−1 times, yields

Assoc(M)⊆ Assoc(M1)∪Assoc(M2/M1)∪·· ·∪Assoc(Mn/Mn−1)

⊆ {P1, . . . ,Pn}.

By Exercise 9.2.12, the support of the R-module R/Pi is V (Pi), which contains Pi. By
Exercise 9.2.13, Pi ∈ Supp(Mi)⊆ Supp(M). This proves Part (2).

(3): This follows straight from Part (2). □

EXAMPLE 9.2.11. Let R =Z/36, a principal ideal ring of order 36. Then R is isomor-
phic to the direct sum Z/4⊕Z/9 and R has exactly two prime ideals, namely P = 2R and
Q = 3R. So R/P is a field of order 2 and R/Q is a field of order 3. Note that P is the annihi-
lator of the coset containing 18, and Q is the annihilator of the coset containing 12. Since
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R is artinian, Proposition 9.2.8 (4) implies Assoc(R) = SpecR = Supp(R) = {P,Q}. We
illustrate the conclusion of Theorem 9.2.10, where we take M to be R, the free R-module
of rank one. Set M0 = (0), M1 = 18R, M2 = 9R, M3 = 3R, M4 = R. Now we determine the
sequence of primes Pi, 1≤ i≤ 4. We have M1 ∼= R/P, so P1 = P. Likewise, M2/M1 ∼= R/P,
so P2 = P, M3/M2 ∼= R/Q, so P3 = Q, and M4/M3 ∼= R/Q, so P4 = Q.

2.1. Exercises.

EXERCISE 9.2.12. Let R be a commutative ring and I an ideal in R. Let P ∈ SpecR.
Prove that (R/I)P ̸= 0 if and only if I ⊆ P. Conclude that Supp(R/I) is equal to V (I). In
particular, Supp(R) = SpecR.

EXERCISE 9.2.13. Let R be a commutative ring, M an R-module and N a submodule.
Show that

Supp(M) = Supp(N)∪Supp(M/N).

(Hint: Localize the exact sequence 0→ N→M→M/N→ 0.)

EXERCISE 9.2.14. Let R be a commutative ring, M an R-module and {Mα | α ∈ I} a
collection of submodules such that ∑α∈I Mα = M. Show that

Supp(M) =
⋃
α∈I

Supp(Mα).

(Hint: Use Exercise 9.2.13 and the exact sequence
⊕

α∈I Mα →M→ 0.)

EXERCISE 9.2.15. Let R be a commutative ring, M an R-module and {xα | α ∈ I} a
set of generators for M. Show that

Supp(M) =
⋃
α∈I

Supp(Rxα)

=
⋃
α∈I

V
(
annih(xα)

)
.

(Hint: Use Exercise 9.2.12, Exercise 9.2.14, and the isomorphism Rxα
∼= R/annih(xα).)

EXERCISE 9.2.16. Let R be a commutative ring and I1, . . . , In some ideals in R. Show
that

V (I1∩·· ·∩ In) =V (I1 · · · In) =V (I1)∪·· ·∪V (In).

(Hint: Use Lemma 6.3.3 and Lemma 3.3.3.)

EXERCISE 9.2.17. Let R be a commutative ring and M a finitely generated R-module.
Show that Supp(M) =V

(
annih(M)

)
. Conclude that Supp(M) is a closed subset of SpecR.

(Hint: annih(M) =
⋂n

i=1 annih(xi) where x1, . . . ,xn is a generating set for M. Use Exer-
cise 9.2.15 and Exercise 9.2.16.)

EXERCISE 9.2.18. Let R be a noetherian commutative ring, M a finitely generated
R-module and I an ideal of R such that Supp(M)⊆V (I). Show that there exists n > 0 such
that InM = 0. (Hint: Show that Rad(I)⊆ Rad(annih(M)). Use Proposition 9.1.3.)

EXERCISE 9.2.19. Let R be a commutative ring and M a finitely generated R-module.
Show that the minimal associated primes of M are precisely the minimal prime over-ideals
of annih(M).



2. THE ASSOCIATED PRIMES OF A MODULE 365

EXERCISE 9.2.20. Let R be a commutative noetherian ring and P1, . . . ,Pn the complete
list of distinct minimal primes of the zero ideal. Prove that the kernel of the natural map

R
φ−→

n⊕
i=1

R/Pi

is equal to the nil radical of R.

EXERCISE 9.2.21. Let A and R be as in Exercise 9.1.10. In R, let I = (x3) and m =
(x2,xy,y2,x3,x2y,xy2,y3). Prove:

(1) m is a maximal ideal.
(2) x4m⊆ I.
(3) m ∈ AssocR(R/I).

EXERCISE 9.2.22. Let R be a noetherian commutative ring, M a finitely generated
R-module and N an arbitrary R-module. Prove:

(1) Supp(HomR(M,N))⊆ Supp(M).
(2) For any n≥ 1, AssocR(N) = AssocR(

⊕n
i=1 N).

(3) If Rn→M→ 0 is an exact sequence, then 0→ HomR(M,N)→ HomR(Rn,N) is
an exact sequence.

(4) If p ∈ AssocR(HomR(M,N)), then p ∈ AssocR(N)∩Supp(M).

EXERCISE 9.2.23. Let R be a noetherian commutative ring, M a finitely generated
R-module, and N an arbitrary R-module. Let p ∈ AssocR(N)∩Supp(M). Follow the steps
below to prove that p ∈ AssocR(HomR(M,N)).

(1) M⊗R k(p) ̸= 0, where k(p) = Rp/pRp is the residue field.
(2) The natural map Homk(p)(M⊗R k(p),k(p))→ HomRp(M⊗R k(p),k(p)) is one-

to-one, hence both modules are nonzero.
(3) The natural map HomRp(M⊗R k(p),k(p))→ HomRp(Mp,k(p)) is one-to-one,

hence both modules are nonzero.
(4) HomR(M,R/p) is nonzero.
(5) p is an associated prime of HomR(M,R/p).
(6) p is an associated prime of HomR(M,N).

EXERCISE 9.2.24. Let R be a noetherian integral domain and M a finitely generated
nonzero R-module. Prove that the following are equivalent.

(1) M is torsion free (see Definition 1.7.13).
(2) AssocR(M) = {(0)}.
(3) HomR(M,M) is torsion free.

(Hint: Exercises 9.2.22, and 9.2.23.)

EXERCISE 9.2.25. Let R be a noetherian commutative local ring with maximal ideal
m. Let C be a finitely generated nonzero R-module and assume AssocR(C) = {m}. Prove
that if M is a finitely generated nonzero R-module, then HomR(M,C) is nonzero. (Hint:
Exercise 9.2.23.)

EXERCISE 9.2.26. Let R be an integral domain and M and N two R-modules. Prove
that if N is torsion free (Definition 1.7.13), then HomR(M,N) is torsion free. (Hint: Prove
this directly, it does not require any theorem from this chapter.)

EXERCISE 9.2.27. Let R be a commutative noetherian ring which decomposes into an
internal direct sum R = Re1⊕·· ·⊕Ren, where {e1, . . . ,en} is a set of orthogonal idempo-
tents. For each i, let Pi = annihR(ei). Assume each ring Rei is an integral domain. Prove:
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(1) Assoc(R) = {P1, . . . ,Pn}.
(2) The chain of ideals (0) ⊊ Re1 ⊊ Re1⊕Re2 ⊊ · · · ⊊ Re1⊕Re2⊕ ·· · ⊕Ren is a

filtration of R such that together with the primes {P1, . . . ,Pn}, the conclusion of
Theorem 9.2.10 is satisfied.

3. Primary Decomposition Theorem

Throughout this section R is a commutative noetherian ring. We prove in Theo-
rem 9.3.8 below that if M is a finitely generated module over R, then any submodule N
has a primary decomposition. For instance, if I is a proper ideal in R, then Theorem 9.3.8
states that I has a unique representation as an intersection of primary ideals in R. Gener-
ally, an ideal I does not have a factorization as a product of prime ideals, or even a product
of primary ideals. We will see in Section 12.3 below that if R is an integrally closed noe-
therian integral domain such that every nonzero prime ideal in R is maximal, then I has a
unique factorization into a product of prime ideals (Theorem 12.3.2). General references
for the material in this section are [13] and [42].

3.1. Primary Submodules.

PROPOSITION 9.3.1. If R is a noetherian commutative ring and M is an R-module,
then (1) and (2) are equivalent.

(1) Assoc(M) = {P}. In words, M has exactly one associated prime.
(2) (a) M ̸= 0, and

(b) if r ∈ R is a zero divisor for M, then for every x ∈M there exists n > 0 such
that rnx = 0.

PROOF. (1) implies (2): Suppose r is a zero divisor for M. By Proposition 9.2.2 (3),
r ∈ P. Given any x ∈ M− (0), Rx ̸= 0. Therefore /0 ̸= Assoc(Rx) ⊆ Assoc(M) = {P},
which implies Assoc(Rx) = {P}. By Theorem 9.2.7 (3), P is the unique minimal mem-
ber of Supp(Rx). By Exercise 9.2.17, P is the unique minimal member of V (annih(Rx)).
Therefore, P = Rad(annih(Rx))). There exists n > 0 such that rn ∈ annih(Rx).

(2) implies (1): Let P be the set of all zero divisors in R for M. By (2), if r ∈ P and
x ∈M, then there exists n > 0 such that rnx = 0. The reader should verify that P is an ideal
in R. Let Q ∈ Assoc(M). There exists x ∈M such that Q = annih(x). Every element of Q
is a zero divisor, so Q ⊆ P. Given r ∈ P, there exists n > 0 such that rn ∈ annih(x) = Q.
Since Q is prime, this implies r ∈ Q. So P⊆ Q. □

DEFINITION 9.3.2. Let R be a noetherian commutative ring and M an R-module.
Suppose N is a submodule of M and M/N satisfies the equivalent conditions of Proposi-
tion 9.3.1. That is, assume Assoc(M/N) = {P}. Then we say N is a P-primary submodule
of M. Suppose I is an ideal of R. Comparing Lemma 9.1.1 and Proposition 9.3.1 we see
that I is a primary submodule of R if and only if I is a primary ideal of R and in this case,
AssocR(R/I) = Rad(I).

LEMMA 9.3.3. Let R be a noetherian commutative ring, M an R-module, and P a
prime ideal of R. If S,T are P-primary submodules of M, then S∩T is a P-primary sub-
module of M.

PROOF. The sequence

0→M/(S∩T )→M/S⊕M/T

is exact. By Proposition 9.2.2 (5), Assoc(M/(S∩ T )) ⊆ Assoc(M/S)∪Assoc(M/T ) =
{P}. Since M/(S∩T ) ̸= 0, it follows that P is the only associated prime of M/(S∩T ). □
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3.2. Primary Decomposition.

DEFINITION 9.3.4. Let R be a noetherian commutative ring, M an R-module, and N
a submodule of M. A primary decomposition of N is a representation of the form N =
Y1∩Y2∩ ·· ·∩Yn where each Yi is a primary submodule of M. Let Pi denote the associated
prime of M/Yi. The primary decomposition N =Y1∩Y2∩·· ·∩Yn is called reduced in case

(1) P1, . . . ,Pn are distinct prime ideals and
(2) for j = 1,2, . . . ,n we have Yj ̸⊇

⋂
i̸= j Yi.

A primary decomposition can always be simplified to a reduced one. In fact, any submod-
ule Yj for which (2) fails is redundant hence can be removed. Furthermore, Lemma 9.3.3
says that we can merge by intersection all of the Yi that have the same associated prime.

LEMMA 9.3.5. Let R be a noetherian commutative ring, M an R-module, and N a
submodule of M. Suppose N = Y1∩Y2∩ ·· ·∩Yn is a reduced primary decomposition. For
each i, let Pi be the associated prime ideal of M/Yi. Then

(1) Assoc(M/N) = {P1, . . . ,Pn}.
(2) In a reduced primary decomposition of N, the set of associated prime ideals is

uniquely determined by N.

PROOF. This proof uses Proposition 9.2.2, Parts (2) and (5). The sequence

0→ N→M→
n⊕

i=1

M/Yi

is exact. Therefore Assoc(M/N)⊆ Assoc(M/Y1)∪·· ·∪Assoc(M/Yn) = {P1, . . . ,Pn}. Fix
j and let N j =

⋂
i ̸= j Yi. Then N j ∩Yj = N, so the sequence

0→ N→ N j→M/Yj

is exact. Therefore Assoc(N j/N) ⊆ Assoc(M/Yj) = {Pj}. Since the decomposition of N
is reduced, N j/N ̸= 0, and Assoc(N j/N) ̸= /0. Thus Pj ∈ Assoc(N j/N). Because

0→ N→ N j→M/N

is exact, we conclude that Pj ∈ Assoc(N j/N)⊆ Assoc(M/N). □

PROPOSITION 9.3.6. Let R be a noetherian commutative ring, P,Q ∈ SpecR, M an
R-module and N a P-primary submodule of M. Let θ : M→MQ be the localization.

(1) If P ̸⊆ Q, then NQ = MQ.
(2) If P⊆ Q, then N = M∩NQ. That is, N = θ−1(NQ).

PROOF. (1): By assumption, AssocR(M/N) = {P}. Let Φ = {x ∈ SpecR | x ⊆ Q}.
Then AssocR(M/N)∩Φ = /0. By Lemma 9.2.5, AssocR

(
(M/N)Q

)
= /0. But Proposi-

tion 9.2.2 (2) implies MQ/NQ = (M/N)Q = 0.
(2): By Proposition 9.3.1, the set of all zero divisors for M/N is equal to P, which

is contained in Q. The set R−Q does not contain any zero divisors for M/N, so the
localization map M/N→ (M/N)Q = MQ/NQ is one-to-one. □

COROLLARY 9.3.7. Let R be a noetherian commutative ring, M an R-module and N a
submodule of M which possesses a reduced primary decomposition, N = Y1∩·· ·∩Yn. Let
Pi denote the associated prime of M/Yi.

(1) If Pi is a minimal member of Assoc(M/N), then Yi = M∩NPi .
(2) In a reduced primary decomposition of N, a primary component belonging to a

minimal associated prime is uniquely determined by N and the prime.
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PROOF. (1): If i ̸= j, then by Proposition 9.3.6 applied with N =Yj, P = Pj, Q = Pi, it
follows that (Yj)Pi =MPi . On the other hand, M∩(Yi)Pi =Yi. Together with Exercise 3.1.15,
we get

M∩NPi = M∩ (Y1∩·· ·∩Yn)Pi

= M∩
(
(Y1)Pi

∩·· ·∩ (Yn)Pi

)
= M∩ (Yi)Pi

= Yi

(2): Follows from (1). □

THEOREM 9.3.8. Let R be a noetherian commutative ring and M an R-module.

(1) For each P ∈ Assoc(M) there exists a P-primary submodule YP of M such that
(0) =

⋂
P∈Assoc(M)YP.

(2) If M is finitely generated and N is a submodule of M, then there exists a primary
decomposition N =

⋂
P∈Assoc(M/N)YP, where YP is a P-primary submodule of M.

PROOF. (1): Fix P∈Assoc(M). Let C be the set of all submodules S of M such that P
is not an associated prime of S. Because (0) ∈ C , this is a nonempty set. Given a linearly
ordered subset {Si | i ∈ I} ⊆ C , let S =

⋃
i∈I Si. Then S is a submodule of M and P ̸∈

Assoc(S). Therefore, S ∈ C . By Zorn’s Lemma, Proposition 1.2.4, there exists a maximal
member, say Y , in C . Because P ∈ Assoc(M) and P ̸∈ Assoc(Y ), Proposition 9.2.2 (5)
implies P ∈ Assoc(M/Y ). To show that Y is P-primary, suppose P′ ∈ Assoc(M/Y ) and
P′ ̸= P. Then there exists a submodule Y ⊊ Y ′ ⊆ M such that Y ′/Y ∼= R/P′. Therefore
Assoc(Y ′/Y ) = {P′} and by Proposition 9.2.2 (5), P ̸∈Assoc(Y ′)⊆Assoc(Y )∪{P′}. Then
Y ′ ∈ C which contradicts the maximal choice of Y . We have shown that YP = Y is P-
primary. Since

Assoc

( ⋂
P∈Assoc(M)

YP

)
⊆

⋂
P∈Assoc(M)

Assoc(YP) = /0,

it follows from Proposition 9.2.2 (2) that
⋂

P∈Assoc(M)YP = (0). This proves (1).
(2): Apply Part (1) to the module M/N. The set Assoc(M/N) is finite, by Theo-

rem 9.2.10. □

3.3. Exercise.

EXERCISE 9.3.9. Let R be a commutative noetherian ring, P ∈ SpecR, and n ≥ 1.
Prove:

(1) P is the unique minimal associated prime of Pn.
(2) The P-primary component of Pn is uniquely determined by P and n. The P-

primary component of Pn is denoted P(n) and is called the nth symbolic power of
P.

(3) P(n) = PnRP∩R.

3.4. Flat Algebras and Associated Primes. Throughout this section R and S will be
commutative rings. Usually R and S will be noetherian. Let f : R→ S be a homomorphism
of rings, and f ♯ : SpecS→ SpecR the continuous map of Exercise 3.3.19. Let P ∈ SpecR.
The residue field at P is k(P) =RP/PRP. The fiber over P of the map f ♯ is Spec(S⊗R k(P)),
which is homeomorphic to ( f ♯)−1(P), by Exercise 3.4.12. By Exercise 3.4.11, if Q is a
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prime ideal of S lying over P, then the corresponding prime ideal of S⊗R k(P) is Q⊗R k(P)
and the local ring is SQ⊗R k(P) = SQ/PSQ.

PROPOSITION 9.3.10. Let f : R→ S be a homomorphism of commutative noetherian
rings, and M an S-module. Then

f ♯ (AssocS(M)) = AssocR(M).

PROOF. Step 1: Show f ♯ (AssocS(M)) ⊆ AssocR(M). Suppose Q ∈ AssocS(M). By
Lemma 9.2.1, there exists x ∈M such that Q = annihS(x). Now annihR(x) = annihS(x)∩
R = Q∩R = f ♯(Q), which proves Step 1.

Step 2: We show that f ♯ (AssocS(M)) ⊇ AssocR(M). Suppose P ∈ AssocR(M). By
Lemma 9.2.1, there exists x ∈M such that P = annihR(x). Set N = annihS(x). By Theo-
rem 9.3.8 there exists a reduced primary decomposition N =Y1∩Y2∩·· ·∩Yn. For each i, Yi
is a primary ideal in S. By Proposition 9.1.2, let Qi =RadS(Yi) be the associated prime ideal
of S/Yi. Then AssocS(S/N) = {Q1, . . . ,Qn}, by Lemma 9.3.5. The cyclic submodule Sx
of M is isomorphic to S/N. By Proposition 9.2.2, each Qi is in AssocS(M). The proof will
be complete if we show P = Qi∩R = f ♯(Qi) for some i. For contradiction’s sake, assume
P ̸= Qi∩R for each i. We have P = annihR(x) = annihS(x)∩R = N∩R⊆ Yi∩R⊆ Qi∩R.
So for each i there exists yi ∈ Qi ∩R−P. Since Qi = RadS(Yi), there exists αi > 0 such
that yαi

i ∈ Yi∩R. Then y = yα1
1 · · ·yαn

n ∈ Y1 · · ·Yn∩R⊆ Y1∩·· ·∩Yn∩R = N∩R = P. Since
P is a prime ideal, yi ∈ P for some i. This is a contradiction. □

THEOREM 9.3.11. Let f : R → S be a homomorphism of commutative noetherian
rings, B an S-module that is flat as an R-module. Then the following are true.

(1) For each P ∈ SpecR,

f ♯ (AssocS(B/PB)) = AssocR(B/PB)

=

{
{P} if B/PB ̸= (0)
/0 if B/PB = (0).

(2) If A is any R-module, then

AssocS(A⊗R B) =
⋃

P∈AssocR(A)

AssocS(B/PB).

PROOF. (1): By Proposition 9.2.2 (2)) we can assume B/PB ̸= (0), otherwise all of
the sets are empty. By Theorem 2.3.23, B/PB= B⊗R R/P is a flat R/P-module. Since R/P
is an integral domain, B/PB is a torsion free R/P-module, by Exercise 3.7.13. Applying
Proposition 9.3.10 twice,

f ♯ (AssocS(B/PB)) = AssocR(B/PB)

= η
♯
(
AssocR/P(B/PB)

)
= η

♯ ({(0)})
= {P}

where η : R→ R/P is the natural homomorphism.
(2): First we show the right hand side is contained in the left. We remark that this part

of the proof does not require R to be noetherian. Let P ∈ AssocR(A). There exists x ∈ A
and R/P is isomorphic to the cyclic submodule Rx ⊆ A. Tensoring with B which is a flat
R-module, we see that R/P⊗R B = B/PB is isomorphic to the S-submodule Rx⊗R B of
A⊗R B. By Proposition 9.2.2 (5), AssocS(A⊗R B)⊇ AssocS(B/PB).
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Now we show the left hand side is contained in the right. This part of the proof is split
into three cases.

Case 1: We show that the result is true if A is a finitely generated R-module and
AssocR(A) = {P} is a singleton set. Let x1, . . . ,xm be a generating set for A over R. For
any r ∈ P, there is n > 0 such that rnxi = 0 for all i (Proposition 9.3.1). For any a ∈ A,
rna = 0. Let Q ∈ AssocS(A⊗R B). Then there is z = ∑

t
i=1 ai ⊗ bi ∈ A⊗R B such that

Q = annihS(z). Since rnai = 0 for each i, rn ∈ Q. Since Q is a prime ideal, r ∈ Q. This
shows Q∩R ⊇ P. Given r ∈ R−P, r is not a zero divisor for M. That is, ℓr : A→ A is
one-to-one. Since B is R-flat, ℓr⊗ 1 : A⊗R B→ A⊗R B is one-to-one. Therefore, r is not
in Q. Hence Q∩R⊆ P. We have shown that f ♯ (AssocS(A⊗R B)) = AssocR(A) = {P}.

Now apply Theorem 9.2.10 to get a filtration 0 = A0 ⊊ A1 ⊊ A2 ⊊ · · · ⊊ An = A of A
and a set of prime ideals Pi ∈ SpecR such that Ai/Ai−1 ∼= R/Pi for i = 1, . . . ,n. Since B is
R-flat, 0 = A0⊗R B ⊊ A1⊗R B ⊊ A2⊗R B ⊊ · · ·⊊ An⊗R B = A⊗R B is a filtration of A⊗R B
and Ai⊗R B/Ai−1⊗R B∼= R/Pi⊗R B = B/PiB for i = 1, . . . ,n. Proposition 9.2.2 (5), applied
n−1 times, yields

AssocS(A⊗R B)⊆
n⋃

i=1

AssocS(B/PiB).

By Part (1), if Q ∈ AssocS(B/PiB), then Q∩R = Pi. By what we proved in the first para-
graph of Case 1, if Pi ̸= P, then Q ̸∈ AssocS(A⊗R B). This proves AssocS(A⊗R B) ⊆
AssocS(B/PB).

Case 2: We prove (2) is true if A is a finitely generated R-module. By Theorem 9.3.8,
for each P ∈ AssocR(M) there is a P-primary submodule Y (P) of A such that (0) =⋂

P∈AssocR(A)Y (P). Then the sequence of R-modules

0→ A→
⊕

P∈AssocR(A)

A/Y (P)

is exact. Since B is R-flat,

0→ A⊗R B→
⊕

P∈AssocR(A)

A/Y (P)⊗R B

is an exact sequence of S-modules. By Case 1, AssocS(A/Y (P)⊗R B) = AssocS(B/PB).
Applying Proposition 9.2.2 (5),

AssocS(A⊗R B)⊆
⋃

P∈AssocR(A)

AssocS(A/Y (P)⊗R B)

⊆
⋃

P∈AssocR(A)

AssocS(B/PB)

which proves (2) in this case.
Case 3: Let A be an R-module. Given any Q ∈ AssocS(A⊗R B), there is z ∈ A⊗R B

such that Q = annihS(z). Write z = ∑
n
i=1 ai ⊗ bi for some elements ai ∈ A and bi ∈ B.

Let Z = ∑
n
i=1 Rai be the R-submodule of A generated by a1, . . . ,an. Since z is in the S-

submodule Z⊗R B of A⊗R B, it follows that Q ∈ AssocS(Z⊗R B). By Case 2, there is P ∈
AssocR(Z) such that Q ∈ AssocS(B/PB). Since AssocR(Z) ⊆ AssocR(A), this completes
the proof. □

The following corollary of Theorem 9.3.11 is a generalization of Lemma 9.2.5.

COROLLARY 9.3.12. Let f : R→ S be a homomorphism of commutative noetherian
rings and assume S is flat as an R-module. Then the following are true.
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(1) AssocS(S) =
⋃

P∈AssocR(R) AssocS(S/PS)
(2) f ♯ (AssocS(S)) = {P ∈ AssocR(R) | S ̸= PS}.
(3) If S is faithfully flat over R, then f ♯ (AssocS(S)) = AssocR(R).

4. Zariski’s Main Theorem

Throughout this section all rings are commutative. Let B be a finitely generated com-
mutative A-algebra with structure homomorphism f : A → B. If p ∈ SpecA and kp =
Ap/pAp is the residue field at p, then the fiber over p of f is B⊗A kp. If B⊗A kp is finite
dimensional over kp for all p ∈ SpecA, then we say B is quasi-finite over A (see Defini-
tion 9.4.4). As we see in Proposition 9.4.3 below, this is equivalent to the property that for
every p ∈ SpecA, the fiber Spec(B⊗A kp) is a discrete set. While the thrust of Zariski’s
Main Theorem itself can be somewhat difficult for one to grasp on first encounter, there is
one important application that can be readily stated here. In Corollary 9.4.16 we show that
if B is a quasi-finite A-algebra, then there is an A-subalgebra R of B such that R is finitely
generated as an A-module and SpecB→ SpecR is an open immersion (see Exercise 3.5.33).
In other words, this says that a quasi-finite morphism f ♯ : SpecB→ SpecA factors into an
open immersion SpecB→ SpecR followed by a finite morphism SpecR→ SpecA. The
proof we give is from [49, Chapter IV].

4.1. Quasi-finite Algebras.

PROPOSITION 9.4.1. Let k be a field, B a finitely generated commutative k-algebra,
and q ∈ SpecB. The following are equivalent.

(1) q is an isolated point in SpecB.
(2) Bq is a finite dimensional k-algebra.

PROOF. (1) implies (2): If the point q is isolated in the Zariski topology, then it is
an open set. There exists f ∈ B such that q = SpecB−V ( f ) = SpecB f . Since B f is
noetherian and has only one prime ideal, B f is artinian by Proposition 4.5.4. Since B f
has only one prime ideal, B f is local with maximal ideal qB f . By Exercise 6.2.23, B f is
finite dimensional over k. Since B f is local, B f = (B f )q = Bq, which shows Bq is finite
dimensional over k.

(2) implies (1): Suppose Bq is finite dimensional over k. Let K and C be the kernel
and cokernel of the localization map B→ Bq. Consider the sequence of B-modules

0→ K→ B→ Bq→C→ 0.

Then Kq =Cq = 0. Since B is noetherian, K is finitely generated over B. Since Bq is finite
dimensional over k, C is finite dimensional over k hence finitely generated over B. By
Lemma 3.1.10, there exists f ∈ B−q such that K f =C f = 0. Therefore B f = Bq. But Bq
is local and finite dimensional over k, hence is artinian. So SpecBq = q = SpecB f . So q is
isolated. □

PROPOSITION 9.4.2. Let B be a finitely generated commutative A-algebra, q∈ SpecB,
and p = q∩A. The following are equivalent.

(1) q is an isolated point in the fiber Spec(B⊗A kp) = Spec(B⊗A (Ap/pAp)).
(2) Bq/pBq is finite dimensional over kp.

PROOF. By kp we denote the residue field of A at the prime p. That is, kp = Ap/pAp.
Then B⊗A kp = B⊗A Ap ⊗Ap kp = Bp ⊗Ap kp. Also, Bq = (Bp)q, from which we get
Bq/pBq = (Bp)q/p(Bp)q. It is enough to prove the proposition when A is a local ring
with maximal ideal p. In this case, B/pB = B⊗A kp is a finitely generated algebra over the
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field A/p = kp and (B/pB)q = Bq/pBq. Apply Proposition 9.4.1 to the algebra B/pB over
kp. □

If A and B are as in Proposition 9.4.2 and either (1) or (2) is satisfied, then we say B is
quasi-finite over A at q.

PROPOSITION 9.4.3. Let B be a finitely generated commutative A-algebra. The fol-
lowing are equivalent.

(1) B is quasi-finite over A for all q ∈ SpecB.
(2) For all p ∈ SpecA, B⊗A kp is a finite dimensional kp-algebra.

PROOF. It is enough to prove the proposition when A = k is a field. Assume that B is
a finitely generated k-algebra.

(2) implies (1): Assume B is a finite dimensional k-algebra. Therefore, B is artinian
(Exercise 4.1.35) and semilocal (Proposition 4.5.3). By Theorem 4.5.6, the natural homo-
morphism B→

⊕
Bq is an isomorphism, where q runs through the finite set SpecB. Each

Bq is finite dimensional over k. By Proposition 9.4.1, each q is isolated in SpecB.
(1) implies (2): For each q ∈ SpecB, q is isolated. So SpecB is a disjoint union

∪q∈SpecB SpecB f (q), where SpecB f (q) = q. Only finitely many of the f (q) are required to
generate the unit ideal, so the union is finite. Therefore B is a finite direct sum of the local
rings B f (q) = Bq. Each Bq is finite dimensional over k, by Proposition 9.4.1. Therefore B
is finite dimensional over k. □

DEFINITION 9.4.4. Let B be a commutative finitely generated A-algebra. If either
Part (1) or (2) of Proposition 9.4.3 is satisfied, then we say B is quasi-finite over A.

LEMMA 9.4.5. Let A ⊆C ⊆ B be three rings. Assume B is finitely generated over A
and q ∈ SpecB. If B is quasi-finite over A at q, then B is quasi-finite over C at q.

PROOF. Let p = q∩A and r = q∩C. The fiber over r is a subset of the fiber over p.
If q is isolated in the fiber over p, then q is isolated in the fiber over r. □

EXAMPLE 9.4.6. (1) If B is a commutative A-algebra that is finitely generated as an
A-module, then B is quasi-finite over A (Exercise 9.4.20).

(2) Let A be a commutative ring, f ∈ A, and B = A f . If q ∈ SpecB, and p = q∩A, then
Bq = Ap. Therefore, A f is quasi-finite over A.

4.2. Zariski’s Main Theorem.

LEMMA 9.4.7. Let A⊆ B be commutative rings, q ∈ SpecB and p = q∩A. Assume

(1) A is integrally closed in B,
(2) B = A[x] is generated by one element as an A-algebra, and
(3) B is quasi-finite over A at q.

Then Bp = Ap.

PROOF. The first step is to reduce to the case where A is a local ring with maximal
ideal p. Clearly Bp = A[x]⊗A Ap is finitely generated over Ap and Bp is quasi-finite over
Ap. Let us check that Ap is integrally closed in Bp. Let b ∈ B and f ∈ A− p and assume
b/ f is integral over Ap. Then

bn

f n +
an−1

yn−1

bn−1

f n−1 + · · ·+ a0

y0
= 0
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for some ai ∈ A and yi ∈ A− p. Multiply both sides by f n to get

bn +
f an−1

yn−1
bn−1 + · · ·+ f na0

y0
.

Let y = y0 · · ·yn−1 and multiply both sides by yn to get

ynbn +
f yan−1

yn−1
yn−1bn−1 + · · ·+ f nyna0

y0
= 0

(yb)n +αn−1(yb)n−1 + · · ·+α0 = 0

for some αi ∈ A. So yb is integral over A, hence b ∈ Ap.
From now on we assume

(1) A is integrally closed in B,
(2) B = A[x],
(3) A is local with maximal ideal p, and if q ∈ SpecB lies over p, then B is quasi-

finite over A at q.
Out goal is to prove that A = B. It is enough to show that x is integral over A. Let k = A/p.
Since B is quasi-finite over A at q, B/pB = A[x]⊗A k = k[x̄] is the fiber over p and q is
isolated in Speck[x̄]. Throughout the rest of the proof, if b ∈ B, then the image of b in
B/pB will be denoted by b̄. By Exercise 9.4.19, x̄ is algebraic over k. There exists a monic
polynomial f (t) ∈ A[t] of degree greater than or equal to one, such that f̄ (x̄) = 0 in k[x̄].
That is, f (x) ∈ pB. Let y = 1+ f (x). We have the inclusion relations A⊆ A[y]⊆ A[x] and
because x is integral over A[y], the map Speck[x]→ Speck[y] is onto by Theorem 6.3.6.
Let ȳ denote the image of y in k[y]⊗A k = k[ȳ]. Under the map k[ȳ]→ k[x̄], the image of ȳ
is 1. Because ȳ generates the unit ideal of k[x̄], we see that ȳ does not belong to any prime
ideal of k[ȳ]. Therefore, ȳ is a unit of k[ȳ]. Since Speck[x̄] is finite, it follows that Speck[ȳ]
is finite. That is to say, k[ȳ] is finite dimensional over k.

Now we show that y ∈ A. Since ȳ is algebraic over k, there exist ai ∈ A such that

ȳn + ān−1ȳn−1 + · · ·+ ā0 = 0

where n≥ 1 and ā0 ̸= 0. Therefore

yn +an−1yn−1 + · · ·+a0 ∈ pA[y],

which says there exist bi ∈ p such that

yn +an−1yn−1 + · · ·+a0 = bmym + · · ·+b1y+b0.

After adding some zero terms we can suppose m = n. Subtracting,

(am−bm)ym + · · ·+(a1−b1)y+(a0−b0) = 0.

But A is local and a0 is not in p, so a0−b0 is a unit. There exist ci ∈ A such that

1+(c0 + c1y+ · · ·+ cm−1ym−1)y = 0

which shows y is invertible in A[y]. The last equation yields

y−1 + c0 +(c1 + · · ·+ cm−1ym−2)y = 0

and
y−2 + c0y−1 + c1(c2 + · · ·+ cm−1ym−3)y = 0.

Iterating we get
y−m + c0y1−m + · · ·+ cm−2y−1 + cm−1 = 0

which shows that y−1 is integral over A. Since A is integrally closed in B, y−1 ∈ A. Since
y−1 is invertible in B, y−1 is not in q. Therefore, y−1 is not in p = q∩A. Thus y−1 is



374 9. PRIME IDEALS IN COMMUTATIVE RINGS

invertible in A and y is in A. We have A = A[y] ⊆ A[x] = B and x is integral over A. So
A = B. □

LEMMA 9.4.8. Assume B is an integral domain which is an integral extension of the
polynomial ring A[T ]. Let q be a prime ideal of B. Then B is not quasi-finite over A at q.

PROOF. Let p = q∩A and kp = Ap/pAp the residue field. Choose q to be maximal
among all primes lying over p. We will show q is not minimal, which will prove that q is
not isolated in the fiber B⊗A kp, hence B is not quasi-finite over A at q.

Assume A is integrally closed in its quotient field. Let r = q∩A[T ]. Since B is integral
over A[T ], Theorem 6.3.6 (3) says that r is maximal among the set of prime ideals of A[T ]
lying over p. That is, r⊗A kp is a maximal ideal of A[T ]⊗A kp = kp[T ]. This says r properly
contains the prime ideal pA[T ]. By Theorem 6.3.6 (5), there is a prime ideal q1 ∈ SpecB
such that q1 ⊊ q and q1 ∩A[T ] = pA[T ]. This proves q is not a minimal prime lying over
p.

For the general case, let Ã be the integral closure of A in its field of quotients and B̃ the
integral closure of B in its field of quotients. Then B̃ is integral over Ã[T ]. Let q̃ be a prime
ideal of B̃ lying over q. Let p̃ = q̃∩ Ã. By Theorem 6.3.6 (2), q̃ is maximal among primes
lying over p̃. By the previous paragraph, there is q̃1 in Spec B̃ such that q̃1 ⊊ q̃ and q̃1 lies
over p̃. By Theorem 6.3.6 (2), q̃1∩B ⊊ q so q is not a minimal prime lying over p. □

LEMMA 9.4.9. Let A⊆ A[x]⊆ B be three rings such that

(1) B is integral over A[x],
(2) A is integrally closed in B, and
(3) there exists a monic polynomial F(T ) ∈ A[T ] such that F(x)B ⊆ A[x]. That is,

F(x) is in the conductor from B to A[x] (see Exercise 1.1.24).

Then A[x] = B.

PROOF. Let b ∈ B. Our goal is to show b ∈ A[x]. We are given that F(x)b ∈ A[x], so
F(x)b = G(x) for some G(T ) ∈ A[T ]. Since F is monic, we can divide F into G. There
exist Q(T ),R(T )∈ A[T ] such that G(T ) = F(T )Q(T )+R(T ) and 0≤ degR < degF . Note
that G(x) = F(x)b = Q(x)F(x)+R(x), hence (b−Q(x))F(x) = R(x). Set y = b−Q(x). It
is enough to show that y ∈ A[x].

Let θ : B→ B[y−1] be the localization of B. Let Ā, ȳ, x̄, etc. denote the images of
A, y, x, etc. under θ . Then yF(x) = R(x) implies that F̄(x̄) = y−1R̄(x̄) in B[y−1]. Since
degR < degF , this implies that x̄ is integral over Ā[y−1]. But y ∈ B, so y is integral over
A[x]. Hence ȳ is integral over Ā[x̄]. Since integral over integral is integral, ȳ is integral
over Ā[y−1]. There exists P(T ) ∈ Ā[y−1][T ] such that (ȳ)n +P(ȳ) = 0 and degP(T ) < n.
By clearing denominators, we see that for some m > 0, (ȳ)n+m +(ȳ)mP(ȳ) = 0 is a monic
polynomial equation in ȳ over Ā. Therefore, ȳ is integral over Ā and there exists a monic
polynomial H̄(T )∈ Ā[T ] such that H̄(ȳ)= 0. Let H ∈A[T ] be a monic polynomial such that
θ(H(T )) = H̄(T ). Since θ(H(y)) = 0 in B[y−1], there exists u > 0 such that yuH(y) = 0
in B. This shows that y is integral over A, hence y ∈ A. □

LEMMA 9.4.10. Let A⊆ R⊆ B be three rings and p ∈ SpecA. Assume

(1) B is a finitely generated R-module,
(2) c is the conductor from B to R, and
(3) c′ is the conductor from Bp to Rp.

Then c′ = cp.
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PROOF. Let α/β ∈ cp, where α ∈ c, β ∈ A− p. Then

(α/β )Bp ⊆ (αB)p ⊆ Rp

shows that α/β ∈ c′.
Let α/β ∈ c′ where α ∈ R and β ∈ A− p. If b ∈ B and z ∈ A− p, then

(α/1)(b/z) = (α/β )((βb)/z) ∈ Rp

So α/1 ∈ c′. Let b1, . . . ,bn be a generating set for B over R. Then (α/1)(bi/1) ∈ Rp so
there exists xi ∈ A− p such that αbixi ∈ R. Therefore αx1 · · ·xn ∈ c and since βx1 · · ·xn ∈
A− p it follows that α/β ∈ cp. □

LEMMA 9.4.11. Let A⊆ A[x]⊆ B be three rings, q ∈ SpecB and p = q∩A. Assume

(1) B is finitely generated as a module over A[x],
(2) A is integrally closed in B, and
(3) B is quasi-finite over A at q.

Then Ap = Bp.

PROOF. Let
c = {α ∈ A[x] | αB⊆ A[x]}

be the conductor from B to A[x].
Case 1: c ̸⊆ q. Let r = q∩A[x]. There exists α ∈ c−r, hence A[x]r =B⊗A[x]A[x]r =Br.

It follows that Br is a local ring and Br = Bq. Since r∩A = q∩A = p, and B is quasi-finite
over A at q, we have

Bq/pBq = A[x]r/pA[x]r
is finite dimensional over kp. This says A[x] is quasi-finite over A at r. Apply Lemma 9.4.7
to get A[x]p = Ap. But B is finitely generated as a module over A[x], so Bp is finitely
generated over Ap = A[x]p. Since A is integrally closed in B, Ap is integrally closed in Bp
and Ap = Bp.

Case 2: c ⊆ q. Let n be a minimal element of the set {z ∈ SpecB | c ⊆ z ⊆ q} and
let m = n∩ A. First we show that the image of x in the residue field kn = Bn/nBn is
transcendental over the subfield km = Am/mAm. To prove this, it is enough to assume A
is local with maximal ideal m. Lemma 9.4.10 says the conductor c is preserved under
this localization step. Suppose that image of x in kn is algebraic over km = A/m. Then
n∩A[x] is a prime ideal, so the integral domain A[x]/(n∩A[x]) is a finite integral extension
of the field km = A/m. Therefore, A[x]/(n∩A[x]) is a field so n∩A[x] is a maximal ideal.
Since B is integral over A[x], by Theorem 6.3.6, it follows that n is a maximal ideal of
B and B/n = kn. By assumption, there exists a monic polynomial F(T ) ∈ A[T ] such that
F(x) ∈ n. But n is minimal with respect to prime ideals of B containing c. In Bn, nBn is
the only prime ideal containing cn and the radical of cn is equal to nBn. Let F̄(x̄) denote
the image of F(x) in Bn. There exists ν > 0 such that (F̄(x̄))ν ∈ cn. There exists y ∈ B−n
such that y(F(x))ν ∈ c. This implies y(F(x))ν B ⊆ A[x]. Let B′ = A[x][yB]. Clearly F(x)ν

is in the conductor from B′ to A[x]. Apply Lemma 9.4.9 to A ⊆ A[x] ⊆ B′ with the monic
polynomial Fν . Then A[x] = B′ which implies yB ⊆ A[x]. This says y ∈ c ⊆ n, which
contradicts the choice of y.

For the rest of the proof, let B̄ = B/n and Ā = A/m and assume the image x̄ of x in B̄
is transcendental over Ā. We have Ā ⊆ Ā[x̄] ⊆ B̄. Let q̄ denote the image of q in B̄. Since
B is quasi-finite over A at q, it follows that B̄ is quasi-finite over Ā at q̄. This contradicts
Lemma 9.4.8, so Case 2 cannot occur. □
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PROPOSITION 9.4.12. Let A ⊆ C ⊆ B be three commutative rings, q ∈ SpecB and
p = q∩A. Assume

(1) C is finitely generated as an A-algebra,
(2) B is finitely generated as a C-module,
(3) A is integrally closed in B, and
(4) B is quasi-finite over A at q.

Then Bp = Ap.

PROOF. Proceed by induction on the number n of generators for the A-algebra C. If
n = 0, then B is integral over A and by assumption, A = B.

Assume n > 0 and suppose the proposition is true when C is generated by n− 1 ele-
ments over A. Let C = A[x1, . . . ,xn]. Let Ã be the integral closure of R = A[x1, . . . ,xn−1]
in B. Then B is finitely generated as a module over Ã[xn] and Ã ⊆ Ã[xn] ⊆ B. Since B is
quasi-finite over A at q, by Lemma 9.4.5, B is quasi-finite over Ã at q. We are in the setting
of Lemma 9.4.11, so if p̃ = q∩ Ã, then Ãp̃ = Bp̃.

Since Ã is integral over R = A[x1, . . . ,xn−1], Ã is the direct limit Ã = lim−→α
Aα over all

subalgebras Aα where R ⊆ Aα ⊆ Ã and Aα is finitely generated as a module over R. For
any such Aα , let pα = q∩Aα = p̃∩Aα .

Let r = q∩R. Since B is finitely generated as an R-algebra, Bp̃ = Ãp̃ is finitely gener-
ated as an Rr-algebra. Pick a generating set z1/y1, . . . ,zm/ym for the Rr-algebra Ã p̃ where
zi ∈ Ã and yi ∈ Ã− p̃. Since Ã is integral over R, it follows that A1 = R[z1, . . . ,zm,y1, . . . ,ym]
is finitely generated as a module over R. Let p1 = q∩A1. For each i, we have zi/yi ∈ (A1)p1

so the natural map (A1)p1 → Ãp̃ = Bp̃ is an isomorphism. Therefore, (A1)p1
∼= Ã p̃ = Bp̃ =

Bq. By the induction hypothesis applied to A ⊆ R ⊆ A1, we have Ap = (A1)p = (A1)p1 .
This shows Ap = Bp. □

THEOREM 9.4.13. (Zariski’s Main Theorem) Let B be a finitely generated commuta-
tive A-algebra, Ã the integral closure of A in B and q ∈ SpecB. If B is quasi-finite over A
at q, then there exists f ∈ Ã such that f ̸∈ q and Ã f = B f .

PROOF. By Lemma 9.4.5, B is quasi-finite over Ã at q. Let p̃ = q∩ Ã. By Proposi-
tion 9.4.12, Ãp̃ = Bp̃. Let b1, . . . ,bn be a generating set for the Ã-algebra B. For each i
there exists ai/xi ∈ Ãp̃ such that ai/xi = bi/1 in Bp̃. Let f = x1 · · ·xn. Then f ∈ Ã− p̃. The
inclusion Ã f ⊆ B f is an equality. □

COROLLARY 9.4.14. Let A be a ring, B a finitely generated commutative A-algebra.
The set of all q in SpecB such that B is quasi-finite over A at q is an open subset of SpecB.

PROOF. Let q ∈ SpecB and assume B is quasi-finite over A at q. Let Ã be the integral
closure of A in B. By Theorem 9.4.13 (Zariski’s Main Theorem), there exists f ∈ Ã−q such
that Ã f =B f . Since Ã is integral over A, we can write Ã as the direct limit of all subalgebras
Aα such that f ∈ Aα and Aα is finitely generated as a module over A. Therefore

Ã = lim−→Aα

which implies
B f = Ã f =

(
lim−→Aα

)
f
= lim−→(Aα) f .

But B is finitely generated as an A-algebra, hence B f is too. Let a1/ f ν , . . . ,am/ f ν be a set
of generators of Ã f over A. For some α , {a1, . . . ,am} ⊆ Aα . It follows that B f = (Aα) f
for this α . By Example 9.4.6, (Aα) f is quasi-finite over A. The open set V = SpecB f is a
neighborhood of q. □
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EXAMPLE 9.4.15. Let A→ B→C be homomorphisms of rings. Assume B is finitely
generated as an A-module, C is finitely generated as a B-algebra and SpecC→ SpecB is an
open immersion (Exercise 3.5.33). Then C is quasi-finite over A. The next corollary says
every quasi-finite homomorphism factors in this way.

COROLLARY 9.4.16. Let B be a commutative A-algebra which is finitely generated as
an A-algebra and which is quasi-finite over A. If Ã is the integral closure of A in B, then

(1) SpecB→ Spec Ã is an open immersion and
(2) there exists an A-subalgebra R of Ã such that R is finitely generated as an A-

module and SpecB→ SpecR is an open immersion.

PROOF. By Corollary 9.4.14 there are a finite number of fi ∈ Ã such that B fi
∼= Ã fi

and { fi} generate the unit ideal of B. The open sets Ui = SpecB fi are an open cover of
SpecB, so SpecB→ Spec Ã is an open immersion. By the argument of Corollary 9.4.14,
the finite set { fi} of elements in Ã belongs to a subalgebra R ⊆ Ã such that R is finitely
generated as a module over A and R fi

∼= B fi for each i. Therefore SpecB→ SpecR is an
open immersion. □

4.3. Exercises.

EXERCISE 9.4.17. (Quasi-finite over quasi-finite is quasi-finite) If B is quasi-finite
over A, and C is quasi-finite over B, then C is quasi-finite over A.

EXERCISE 9.4.18. If S is a commutative finitely generated separable R-algebra, then
S is quasi-finite over R.

EXERCISE 9.4.19. Show that if k is a field and x an indeterminate, then Speck[x] has
no isolated point. (Hint: Show that Speck[x] is infinite and that a proper closed subset is
finite.)

EXERCISE 9.4.20. Let B be a commutative A-algebra. Prove that if B is finitely gen-
erated as an A-module, then B is quasi-finite over A.

5. Graded Rings and Modules

Throughout this section all rings are commutative. We refer the reader to Section 3.8
for the definitions of graded rings and modules. A graded version of the Primary Decom-
position Theorem is proved in Theorem 9.5.6. Numerical polynomials are defined and their
fundamental properties are derived in Section 9.5.2. Theorem 9.5.13 states sufficient con-
ditions on a graded module for the existence of the Hilbert polynomial. General references
for this section are [29, Section I.7] and [42, § 10].

5.1. Associated Prime Ideals of a Graded Module.

LEMMA 9.5.1. Let R = ⊕∞
n=0Rn be a graded ring and M = ⊕n∈ZMn a graded R-

module. If N is an R-submodule of M, then the following are equivalent.
(1) N =

⊕
n∈Z (N∩Mn)

(2) N is generated by homogeneous elements.
(3) if x = xp + xp+1 + · · ·+ xp+m is in N where each xi is in Mi, then each xi is in N.

PROOF. Is left to the reader. □

If N satisfies the equivalent properties of Lemma 9.5.1, then we say N is a graded
submodule of M. A homogeneous ideal of R is an ideal which is a graded submodule of
the free R-module R.
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LEMMA 9.5.2. Let R =⊕∞
n=0Rn be a graded ring and I a homogeneous ideal in R.

(1) I is a prime ideal if and only if for all homogeneous a,b ∈ Rh, if ab ∈ I, then
a ∈ I, or b ∈ I.

(2) Rad(I) is a homogeneous ideal.
(3) If {I j | j ∈ J} is a family of homogeneous ideals in R, then ∑ j∈J I j and

⋂
j∈J I j

are homogeneous ideals.
(4) If p is a prime ideal in R and q is the ideal generated by the homogeneous ele-

ments in p, then q is a prime ideal.

PROOF. (1): Suppose x = ∑
p
i=0 xi and y = ∑

q
j=0 y j are in R and xy ∈ I and y ̸∈ I. Prove

that x∈ I. Suppose ym ̸∈ I and that y j ∈ I for all j > m. The homogeneous component of xy
in degree p+m is zp+m = xpym+∑

p
i=1 xp−iym+i. Therefore, xpym = zp+m−∑

p
i=1 xp−iym+i ∈

I and by hypothesis we get xp ∈ I. Subtract to get (x− xp)y ∈ I. Descending induction on
p shows xi ∈ I for each i≥ 0.

(2): Suppose x = ∑
p
i=0 xi ∈ Rad(I). For some n > 0, xn ∈ I. The homogeneous com-

ponent of xn of degree np is xn
p, which is in I because I is homogeneous. This implies

xp ∈Rad(I). Subtract to get x−xp ∈Rad(I). Descending induction on p shows xi ∈Rad(I)
for each i≥ 0.

(3) and (4): Are left to the reader. □

LEMMA 9.5.3. Let R = ⊕∞
n=0Rn be a noetherian graded ring and M = ⊕n∈ZMn a

graded R-module.

(1) annihR(M) is a homogeneous ideal.
(2) If P is a maximal member of the set of ideals C = {annihR(x) | x ∈ Mh− (0)},

then P is an associated prime of M.
(3) If P is an associated prime of M, then

(a) P is a homogeneous ideal,
(b) there exists a homogeneous element x ∈M of degree n such that P is equal

to annihR(x), the annihilator of x in R, and
(c) the cyclic submodule Rx is isomorphic to (R/P)(−n).

(4) If I is a homogeneous ideal of R and P is a minimal prime over-ideal of I, then P
is homogeneous.

PROOF. (1): Is left to the reader.
(2): Is left to the reader. Mimic the proof of Proposition 9.2.2 (1).
(3): There exists x = xp + · · ·+ xp+q in M such that P = annihR(x) and each xi is

homogeneous of degree i. Let f be an arbitrary element of P and write f in terms of its
homogeneous components, f = f0 + · · ·+ fr. The idea is to show each fi is in P and apply
Lemma 9.5.1 (3). Start with

0 = f x =
r

∑
i=0

q

∑
j=0

fixp+ j

=
r+q

∑
k=0

∑
i+ j=k

fixp+ j
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Comparing homogeneous components we get ∑i+ j=k fixp+ j = 0 for each k = 0, . . . ,r+q.
For k = r+q, this means frxp+q = 0. For k = r+q−1, it means

0 = frxp+q−1 + fr−1xp+q

= f 2
r xp+q−1 + fr−1 frxp+q

= f 2
r xp+q−1.

Inductively, we see that 0 = frxp+q = f 2
r xp+q−1 = · · ·= f j

r xp+q− j+1 for any j ≥ 1. There-
fore f q+1

r x = 0, which implies fr ∈ P. By descending induction on r, we see that fi ∈ P for
each i. This proves P satisfies Lemma 9.5.1 (3), so P is homogeneous.

For (b), suppose we are given a homogeneous element h ∈ Ph, since 0 = hx = hxp +
· · ·+ hxp+q, it follows that hx j = 0 for each x j. Since P is generated by homogeneous
elements, this proves that P⊆ annih(x j) for each j. We have

P⊆
p+q⋂
j=p

annih(x j)⊆ annih(x) = P.

Because P is prime, Lemma 6.3.3 says P = annih(x j) for some j.
(c): Assume x∈Mn and P= annih(x). Then 1 7→ x defines a function (R/P)(−n)→Rx

which is an isomorphism of graded R-modules.
(4): By Theorem 9.2.7 (4), a minimal prime over-ideal P of an ideal I is an associated

prime of R/I. Part (3) (a) says P is homogeneous. □

The next result is the graded counterpart of Theorem 9.2.10.

THEOREM 9.5.4. Let R = ⊕∞
n=0Rn be a noetherian graded ring and M = ⊕n∈ZMn a

finitely generated graded R-module.
(1) There exists a filtration 0 = S0 ⊊ S1 ⊊ S2 ⊊ · · · ⊊ Sr = M of M by graded sub-

modules, a set of homogeneous prime ideals Pi ∈ SpecR, and integers ni such
that Si/Si−1 ∼= (R/Pi)(−ni) for i = 1, . . . ,r.

(2) The filtration in (1) is not unique, but for any such filtration we do have:
(a) If P is a homogeneous prime ideal of R, then

P⊇ annihR (M)⇔ P⊇ Pi

for some i. In particular, the minimal elements of the set {P1, . . . ,Pr} are the
minimal prime over-ideals of annihR M.

(b) For each minimal prime over-ideal P of annihR M, the number of times
which P occurs in the set {P1, . . . ,Pr} is equal to the length of MP over
the local ring RP, hence is independent of the filtration.

PROOF. Assume M ̸= (0). By Proposition 9.2.2, Assoc(M) ̸= /0. By Lemma 9.5.3
there exists a graded submodule S of M isomorphic to (R/P)(−n) for some homogeneous
prime P and some integer n. Define C to be the set of all graded submodules S ⊆M such
that S has the kind of filtration specified in Part (1). Since C is nonempty and M is a
finitely generated module over the noetherian ring R, C has a maximal member, say N. If
N ̸= M, then by Proposition 9.2.2, Assoc(M/N) ̸= /0. By Lemma 9.5.3 applied to M/N
there is a graded submodule S of M such that N ⊊ S⊆M and S/N ∼= (R/P)(−n) for some
homogeneous prime P and integer n. Therefore, S ∈ C . But N is maximal in C , which is
a contradiction. This proves Part (1).

(2) We have annih
(
Si/Si−1

)
= annih

(
(R/Pi)(−ni)

)
= Pi. Because S0 = (0), x ∈

∏
r
i=1 Pi implies x ∈ annih(M). Thus ∏

r
i=1 Pi ⊆ annih(M). If x ∈ annih(M), then x ∈
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⋂r
i=1 Pi. Therefore annih(M) ⊆

⋂r
i=1 pi. Let P be a homogeneous prime ideal in R. If

P⊇ annih(M), then we have P⊇∏
r
i=1 Pi. By Proposition 1.5.4, we have P⊇ Pi for some

i. Conversely, if P⊇ Pi for some i, then P⊇
⋂r

i=1 Pi ⊇ annih(M). This proves (a).
For (b), localize at P. Consider

(5.1)
(
Si/Si−1

)
P =

(
(R/Pi)(−ni)

)
P.

If P = Pi, then the right-hand side of (5.1) is (R/P)P = RP/PRP which has length one as an
RP-module, since PRP is the maximal ideal of RP. Since P is a minimal prime over-ideal
of annih(M), if P ̸= Pi, then there exists some x ∈ Pi which is not in P. In this case, the
right-hand side of (5.1) is (0). That is, (Si−1)P = (Si)P. We have shown that MP has a
filtration of length equal to the number of times P occurs in {P1, . . . ,Pr}. □

DEFINITION 9.5.5. If R is a noetherian graded ring, M is a finitely generated graded
R-module, and P is a minimal prime over-ideal of annihR(M), then the length of MP over
the local ring RP is called the multiplicity of M at P and is denoted µP(M). In Algebraic
Geometry, it plays an important role in the definition of intersection multiplicity of two
hypersurfaces along a subvariety.

The next result is the counterpart of Theorem 9.3.8 for a graded ring and module.

THEOREM 9.5.6. Let R = ⊕∞
n=0Rn be a noetherian graded ring and M = ⊕n∈ZMn a

graded R-module.
(1) For each P∈Assoc(M) there exists a P-primary graded submodule YP of M such

that (0) =
⋂

P∈Assoc(M)YP.
(2) If M is finitely generated and N is a graded submodule of M, then there exists a

primary decomposition N =
⋂

P∈Assoc(M/N)YP, where YP is a P-primary graded
submodule of M.

PROOF. Is left to the reader. (Mimic the proof of Theorem 9.3.8, substituting graded
submodules.) □

5.2. Numerical Polynomials.

DEFINITION 9.5.7. A numerical polynomial is a polynomial p(x) ∈ Q[x] with the
property that there exists N > 0 such that p(n) ∈ Z for all integers n greater than N. If r is
a nonnegative integer, the binomial coefficient function is defined to be(

x
r

)
=

1
r!

x(x−1) · · ·(x− r+1)

which is clearly a polynomial of degree r in Q[x]. For any polynomial p ∈Q[x], define the
difference polynomial to be

∆p(x) = p(x+1)− p(x).

LEMMA 9.5.8. In the context of Definition 9.5.7,
(1) For any integer x,

(x
r

)
is an integer.

(2) The binomial coefficient function is a numerical polynomial of degree r.
(3) The set {

(x
i

)
| i = 0, . . . ,r} is linearly independent over Q.

(4) The set {
(x

i

)
| i = 0, . . . ,r} is a Q-basis for { f ∈Q[x] | deg f ≤ r}.

(5)
(

z+1
r

)
−
(

z
r

)
=

(
z

r−1

)
(6) For all integers d > 0,

(
z+d

r

)
−
(

z
r

)
=

(
z+d−1

r−1

)
+ · · ·+

(
z

r−1

)
.
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(7) ∆

(
z
r

)
=

(
z

r−1

)
.

PROOF. Is left to the reader. □

PROPOSITION 9.5.9. In the context of Definition 9.5.7,

(1) If p(x) ∈Q[x] is a numerical polynomial, then there exist integers ci such that

p(x) = c0

(
x
r

)
+ c1

(
x

r−1

)
+ · · ·+ cr.

In particular, p(n) ∈ Z for all n ∈ Z.
(2) If f : Z→ Z is any function, and if there exists a numerical polynomial q(x) ∈

Q[x] such that the difference function ∆ f = f (n+1)− f (n) is equal to q(n) for
all sufficiently large integers n, then there exists a numerical polynomial p(x)
such that f (n) = p(n) for all sufficiently large integers n.

PROOF. (1): The proof is by induction on r = deg p. If r = 0, then (1) is obvious.
Assume r > 0 and assume (1) is true for all numerical polynomials of degree less than r.
By Lemma 9.5.8 (4), write p as a linear combination of the binomial coefficient functions

p(x) = c0

(
x
r

)
+ c1

(
x

r−1

)
+ · · ·+ cr

where ci ∈Q. Using Lemma 9.5.8 (5),

∆p(x) = c0

(
x

r−1

)
+ c1

(
x

r−2

)
+ · · ·+ cr−1

is a numerical polynomial of degree r− 1. It follows from the induction hypothesis and
Lemma 9.5.8 (3) that c0, . . . ,cr−1 are integers. Since p(n) ∈ Z for all sufficiently large
integers n, it follows that cr is an integer.

(2): Applying Part (1) to q,

q(x) = c0

(
x
r

)
+ c1

(
x

r−1

)
+ · · ·+ cr

for integers ci. Setting

p(x) = c0

(
x

r+1

)
+ c1

(
x
r

)
+ · · ·+ cr

(
x
1

)
,

we see that ∆p = q. Therefore ∆( f −q)(n) = 0 for all sufficiently large integers n. Hence
( f − p)(n) = c is constant for all sufficiently large integers n. Then f (n) = p(n)+c for all
sufficiently large n. The desired polynomial is p(x)+ c. □

5.3. The Hilbert Polynomial.

EXAMPLE 9.5.10. Let A be a commutative artinian ring. By Proposition 4.5.4, A is an
A-module of finite length, say ℓ(A). If S = A[x0, . . . ,xr], then S is a graded ring, where S0 =
A and each indeterminate xi is homogeneous of degree 1. The homogeneous component
Sd is a free A-module of rank ρ(d), where ρ(d) is equal to the number of monomials of
degree d in the variables x0, . . . ,xr. The reader should verify that RankA(Sd) = ρ(d) =
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d

)
=
(r+d

r

)
. By Exercise 4.5.10, the length of the A-module Sd is equal to

ℓ(Sd) = ρ(d)ℓ(A)

=

(
r+d

d

)
ℓ(A)

=
(r+d)!

r!d!
ℓ(A)

=
ℓ(A)

r!
(d + r) · · ·(d +1)

which is a numerical polynomial in Q[d] of degree r and with leading coefficient ℓ(A)/r!.

EXAMPLE 9.5.11. Let A be a commutative artinian ring and S = A[x0, . . . ,xr]. Let
M = ⊕∞

j=0M j be a finitely generated graded S-module. Then M is generated over S by a
finite set of homogeneous elements. Let {ξ1, . . . ,ξm} ⊆Mh be a generating set for M and
suppose di = deg(ξi). Let S(−di) be the twisted S-module. The map φi : S(−di)→ M
defined by 1 7→ ξi is a graded homomorphism of graded S-modules. Let φ :⊕m

i=1S(−di)→
M be the sum map. So φ is a graded homomorphism of graded S-modules, and φ is onto
because the image of φ contains a generating set for M. For all d ≥ 0, there is an exact
sequence

m⊕
i=1

S(−di)d →Md → 0.

By Proposition 4.1.30, ℓ(Md)≤∑
m
i=1 ℓ(Sd−di). By Example 9.5.10, it follows that ℓ(Md) is

finite.

DEFINITION 9.5.12. Let A be a commutative artinian ring and S = A[x0, . . . ,xr]. Let
M =⊕∞

j=0M j be a finitely generated graded S-module. The Hilbert function of M is defined
to be ϕM(d) = ℓ(Md). By Example 9.5.11, ϕM(d) ∈ Z for all d.

THEOREM 9.5.13. (Hilbert-Serre) Let A be a commutative artinian ring and S =
A[x0, . . . ,xr]. Let M = ⊕∞

j=0M j be a finitely generated graded S-module. There exists a
unique numerical polynomial PM(z) ∈ Q[z] such that ϕM(d) = PM(d) for all sufficiently
large integers d. The polynomial PM is called the Hilbert polynomial of M.

PROOF. A polynomial in Q[z] is determined by its values on a finite set, so PM(z) is
clearly unique, if it exists. Since A is noetherian, so is S.

Step 1: If S = S0 = A, is concentrated in degree 0, then since M is finitely generated it
follows that Md = 0 for all sufficiently large d. The polynomial is PM(z) = 0. Proceed by
induction on the number r+1 of generators for S over S0 = A. Assume r ≥ 0.

Step 2: For any short exact sequence of graded S-modules

0→ J→ K→ L→ 0

Proposition 4.1.30 implies ϕK = ϕJ +ϕL. If the Theorem is true for the S-modules J and L,
then it is true for K. By Theorem 9.5.4 there is a filtration of M by graded submodules such
that the consecutive factors are isomorphic to graded S modules of the form (S/P)(−d),
where P is a homogeneous prime ideal of S, and d is an integer. The twist corresponds
to a change of variables z 7→ z− d on the Hilbert polynomials, so it suffices to prove the
Theorem for S-modules of the form M = S/P. Assume that M = S/P, where P is a homo-
geneous prime ideal in the graded ring S = A[x0, . . . ,xr].
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Step 3: Assume P contains the exceptional ideal (x0, . . . ,xr). Then M = S/P is con-
centrated in degree 0, so ϕM(d) = ℓ(Md) = 0 for all d > 0. The desired polynomial is
PM(z) = 0.

Step 4: Assume P does not contain the exceptional ideal (x0, . . . ,xr). Without loss of
generality, assume x0 ̸∈ P. Consider the S-module map λ : S/P→ S/P which is defined by
1 7→ x0. Then λ is “left multiplication by x0”. Since P is a prime ideal and x0 ∈ S−P, x0
is not a zero divisor. The sequence

0→M λ−→M→M′→ 0

is exact, where M′ = S/(P+(x0)). Since deg(x0) = 1, there is an exact sequence

0→Md−1
λ−→Md →M′d → 0

for each d > 0. Proposition 4.1.30 implies ϕM(d) = ϕM(d−1)+ϕM′(d). In the notation of
Proposition 9.5.9, we have ϕM′(d) = (∆ϕM)(d− 1). Since M′ is a graded S/(x0)-module
and S/(x0) = A[x1, . . . ,xr] is generated over A by r elements, our induction hypothesis
applies to M′. By Proposition 9.5.9, PM(z) exists. □

6. Krull Dimension of a Commutative Noetherian Ring

The Krull dimension of a commutative ring is defined as the supremum of the lengths
of all chains of prime ideals. The fundamental properties of this dimension are derived in
this section. General references for this section are [42, § 12 and § 13] and [4, Chapter 11].

6.1. Definitions. Let R be a commutative ring. Suppose

P0 ⊋ P1 ⊋ · · ·⊋ Pn

is a chain of n+1 distinct prime ideals in SpecR. We say this is a prime chain of length n.
If P ∈ SpecR, the height of P, denoted ht(P), is the supremum of the lengths of all prime
chains with P = P0. Let I be a proper ideal of R. The height of I, denoted ht(I), is defined
to be the infimum of the heights of all prime ideals containing I, ht(I) = inf{ht(P) | P ∈
SpecR,P ⊇ I}. The Krull dimension, or simply dimension of R is the supremum of the
heights of all prime ideals in R, dim(R) = sup{ht(P) | P ∈ SpecR}.

EXAMPLE 9.6.1. Let R be a commutative ring.

(1) If R is artinian, then by Proposition 4.5.3, every prime ideal is maximal, so
dim(R) = 0.

(2) If R is a PID, then by Theorem 1.5.8, dim(R)≤ 1. If R is not a field, dim(R) = 1.
(3) If P is a minimal prime over-ideal of (0), then ht(P) = 0.
(4) If R is a UFD with Krull dimension one, then by Theorem 1.5.8, R is a PID.

LEMMA 9.6.2. Let R be a commutative ring.

(1) If P ∈ SpecR, then ht(P) = dim(RP).
(2) If I is not the unit ideal, then dim(R/I)+ht(I)≤ dim(R).
(3) Let R be an integral domain of finite Krull dimension and P a prime ideal in R.

If dim(R/P) and dim(R) are equal, then P = (0).
(4) If W ⊆ R is a multiplicative set, then dim(W−1R)≤ dim(R).

PROOF. Is left to the reader. □
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DEFINITION 9.6.3. Let R be a commutative ring and M an R-module. The Krull
dimension of M is defined by

dimR(M) =

{
dim(R/annihR(M)) if M ̸= (0)
−1 otherwise.

If the ring R is unambiguous, then we write dim(M) instead of dimR(M).

LEMMA 9.6.4. Let R be a commutative noetherian ring and M a finitely generated
nonzero R-module. The following are equivalent.

(1) The length of the R-module M is finite, ℓ(M)< ∞.
(2) The ring R/annihR(M) is artinian.
(3) The Krull dimension of M is zero, dim(M) = 0.

PROOF. (2) is equivalent to (3): Follows from Proposition 4.5.4.
(2) implies (1): Follows from Proposition 4.1.29 and Exercise 4.1.19.
(1) implies (3): Prove the contrapositive. Replace R with R/annih(M) and assume

annih(M) = (0). Assume dim(R) > 0. Let P be a minimal prime over-ideal of 0 such
that P is not maximal. Since annih(M) = 0 and M is finitely generated, Lemma 3.1.10
says MP ̸= (0). Therefore P ∈ Supp(M) and because P is minimal, Theorem 9.2.7 says
P∈Assoc(M). By Lemma 9.2.1, M contains a submodule isomorphic to R/P. The integral
domain R/P contains a nonzero prime ideal, so by Proposition 4.5.4, the R-module R/P
has infinite length. Therefore ℓ(M) = ∞. □

6.2. The Krull Dimension of a Noetherian Semilocal Ring.

DEFINITION 9.6.5. Let R be a commutative noetherian semilocal ring with Jacobson
radical J = J(R). Let I be an ideal which is contained in J. By Exercise 4.5.14, R/I is
artinian if and only if there exists ν > 0 such that Jν ⊆ I ⊆ J. If this is true, we call I an
ideal of definition for R.

EXAMPLE 9.6.6. Let R be a commutative noetherian local ring and I ⊆ m an ideal
contained in the maximal ideal of R. By Corollary 9.1.4, I is an ideal of definition for R if
and only if I is m-primary.

PROPOSITION 9.6.7. Let R be a commutative noetherian semilocal ring, M a finitely
generated R-module and I an ideal of definition for R.

(1) For d ≥ 0, M/IdM is an R/I-module of finite length.
(2) For all sufficiently large d, ℓ(M/IdM) is a numerical polynomial. This poly-

nomial, denoted χM,I(x), is called the Hilbert polynomial of M with respect to
I.

(3) If d(M) denotes the degree of the Hilbert polynomial χM,I , then d(M) is indepen-
dent of the choice of I.

(4) d(M) is bounded above by the number of elements in a generating set for I.

PROOF. As in Example 7.2.3, the associated graded ring for the I-adic filtration of R
is R∗ = grI(R) =

⊕
n≥0 In/In+1. As in Example 7.2.5, the associated graded R∗-module

for the I-adic filtration of M is M∗ = grI(M) =
⊕

n≥0 InM/In+1M. By Proposition 7.2.9,
M∗ is a finitely generated R∗-module. Because I is finitely generated, we can write I =
Ru0 + · · ·+ Rum. Let S = (R/I)[x0, . . . ,xm]. The assignments xi 7→ ui define a graded
homomorphism of graded R/I-algebras S → R∗ which is onto. In degree d the length
of the modules satisfy ℓ(Id/Id+1) ≤ ℓ(Sd). As computed in Example 9.5.10, the Hilbert
polynomial of S, PS(x), has degree m. Therefore, the Hilbert polynomial of R∗, PR∗(x), has
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degree less than or equal to m. In Example 9.5.11 we computed PM∗(d)= ℓ(IdM/Id+1M)≤
∑PR∗(d) where the sum is finite. It follows that the Hilbert polynomial PM∗(x) has degree
less than or equal to m. From the filtration IdM ⊆ Id−1M ⊆ ·· · ⊆ IM ⊆M, we compute

ℓ(M/IdM) =
d−1

∑
j=0

ℓ(I jM/I j+1M)

is finite, and is a polynomial of degree less than or equal to m for all sufficiently large d.
This proves Parts (1), (2) and (4).

(3): Suppose J is another ideal of definition for R. There exists ν > 0 such that
Jν ⊆ I. For all d ≥ 0 we have ℓ(M/IdM) ≤ ℓ(M/JνdM). That is, χM,I(x) ≤ χM,J(νx) for
all sufficiently large x. Since ν is constant, we conclude that deg(χM,I(x))≤ deg(χM,J(x)).
By symmetry, we see that d(M) is independent of the choice of I. □

PROPOSITION 9.6.8. Let R be a commutative noetherian semilocal ring and I an ideal
of definition for R. Let

0→ A→ B→C→ 0
be an exact sequence of finitely generated R-modules. Then

(1) d(B) is equal to the maximum of d(A) and d(C).
(2) The degree of the polynomial χB,I−χA,I−χC,I is less than d(B).

PROOF. Since C/InC = B/(A+ InB), we have

ℓ(C/InC) = ℓ(B/(A+ InB))≤ ℓ(B/InB)

hence d(C)≤ d(B). From the exact sequence

0→ (A+ InB)/InB→ B/InB→ B/(A+ InB)→ 0

and (A+ InB)/InB = A/(A∩ InB), we have

χB,I(n)−χC,I(n) = ℓ(B/InB)− ℓ(B/(A+ InB))

= ℓ((A+ InB)/InB)

= ℓ(A/(A∩ InB)).

By Artin-Rees, Corollary 7.2.14, there exists an integer n0 such that In+n0A⊆ A∩ (InB)⊆
In−n0A for all n > n0. This implies

ℓ(A/In+n0A)≥ ℓ(A/(A+ InB))≥ ℓ(A/In−n0A)

for n > n0. Taken together, this says the polynomials χB,I − χC,I and χA,I have the same
degree and the same leading coefficient. □

PROPOSITION 9.6.9. Let R be commutative noetherian ring.
(1) If R is a semilocal ring, then the Krull dimension of R is finite.
(2) If R is a semilocal ring, then dim(R)≤ d(R).
(3) If P ∈ SpecR, then ht(P) is finite.
(4) R satisfies the DCC on prime ideals.

PROOF. (2): Let J = J(R). The proof is by induction on d(R). If d(R) = 0, then
there exists N > 0, such that ℓ(R/Jd) is constant for all d ≥ N. By Corollary 7.3.6, this
implies JN = (0). By Proposition 4.5.2, R is artinian and as we have seen in Example 9.6.1,
dim(R) = 0.

Inductively suppose d(R) > 0 and that the result is true for any semilocal ring S such
that d(S)< d(R). If dim(R)= 0, then the result is trivially true. Assume R has a prime chain
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P0 ⊋ · · ·⊋ Pr−1 ⊋ Pr = P of length r > 0. Let x∈ P−Pr−1. Then dim(R/(xR+P))≥ r−1.
Since P is a prime ideal, if λ is “left multiplication by x”, then

0→ R/P λ−→ R/P→ R/(xR+P)→ 0

is an exact sequence. Apply Proposition 9.6.8 to get d(R/(xR+P))< d(R/P). We always
have d(R/P) ≤ d(R). By the induction hypothesis, d(R/(xR+P)) ≥ dim(R/(xR+P)).
Take together, this proves r−1≤ dim(R/(xR+P))≤ d(R/(xR+P))< d(R/P)≤ d(R).

The rest is left to the reader. □

LEMMA 9.6.10. Let R be a commutative noetherian semilocal ring, x ∈ J(R), and M
a nonzero finitely generated R-module.

(1) d(M)≥ d(M/xM)≥ d(M)−1.
(2) If the Krull dimension of M is r, then there exist elements x1, . . . ,xr in J(R) such

that M/(x1M+ · · ·+ xrM) is an R-module of finite length.

PROOF. (1): Let I be an ideal of definition for R which contains x. By Proposi-
tion 9.6.8, d(M)≤ d(M/xM). From the short exact sequence

0→ (xM+ InM)/InM→M/InM→M/(xM+ InM)→ 0

we get
ℓ
(
(xM+ InM)/InM

)
= ℓ(M/InM)− ℓ

(
M/(xM+ InM)

)
.

The kernel of the natural map M→ xM/(xM∩ InM) is {m ∈M | xm ∈ InM} = (InM : x).
Therefore,

(xM+ InM)/InM = xM/(xM∩ InM) = M/(InM : x).

Since x ∈ I, xIn−1M ⊆ InM, hence In−1M ⊆ (InM : x). Therefore

ℓ(M/In−1M)≥ ℓ
(
M/(InM : x)

)
= ℓ(M/InM)− ℓ

(
M/(xM+ InM)

)
,

or
ℓ
(
M/(xM+ InM)

)
≥ ℓ(M/InM)− ℓ(M/In−1M),

which is true for all sufficiently large n. Since M/xM⊗R/In = M/(xM + InM), we can
compare the Hilbert polynomials

χM/xM,I(n)≥ χM,I(n)−χM,I(n−1).

Comparing degrees, we get d(M/xM)≥ d(M)−1.
(2): The proof is by induction on r = dim(M). Lemma 9.6.4 says that M is of finite

length when r = 0. Inductively, assume r > 0 and that the result holds for any module of
dimension less than r. Since R is noetherian and M ̸= (0), Theorem 9.3.8 says annih(M)
has a primary decomposition. By Theorem 9.2.7, there are only finitely many minimal
prime over-ideals of annih(M). Suppose P1, . . . ,Pt are those minimal prime over-ideals
of annih(M) such that dim(R/Pi) = r. Assume Max(R) = {m1, . . . ,mu}, so that J(R) =⋂u

j=1m j. Since r > 0, we know that for all i, j, there is no containment relation m j ⊆ Pi.
By Lemma 6.3.3, for all i there is no containment relation J(R) ⊆ Pi. By Lemma 6.3.2,
J(R) is not contained in the union P1 ∪ ·· · ∪Pt . Pick x ∈ J(R)− (P1 ∪ ·· · ∪Pt). Consider
annih(M/xM) ⊇ xR+ annih(M). If P ∈ Spec(R) and annih(M) ⊆ P, then by choice of x
we know P is not in the set {P1, . . . ,Pt}. Consequently, dim(R/P) ≤ r− 1. This proves
dim(M/xM) ≤ r−1. By the induction hypothesis applied to M/xM, there exist x2, . . . ,xr
in J(R) such that M/(xM+ x2M+ · · ·+ xrM) is an R-module of finite length. □
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Let R be a commutative noetherian semilocal ring with Jacobson radical J = J(R). Let
M be a nonzero finitely generated R-module. Let S be the set of all cardinal numbers
r such that there exist elements x1, . . . ,xr in J(R) satisfying M/(x1M + · · ·+ xrM) is an
R-module of finite length. By Lemma 9.6.10 (2), S is nonempty. By the Well Ordering
Principle, there is a minimum r ∈S , which we denote by δ (M) in the next theorem.

THEOREM 9.6.11. Let R be a commutative noetherian semilocal ring with Jacobson
radical J = J(R). Let M be a nonzero finitely generated R-module. The three integers

(1) d(M)
(2) dim(M)
(3) δ (M)

are equal.

PROOF. If x1, . . . ,xr are in J(R) and M/(x1M + · · ·+ xrM) is an R-module of finite
length, then by Exercise 9.6.16, d(M/(x1M + · · ·+ xrM) = 0 and by Lemma 9.6.10 (1),
d(M/(x1M + · · ·+ xr−1M) ≤ 1. Iterate this argument to get d(M) ≤ r, which implies
d(M) ≤ δ (M). By Lemma 9.6.10 (2) we have δ (M) ≤ dim(M). To finish, it is enough
to prove dim(M)≤ d(M).

By Theorem 9.2.10 there exists a filtration 0 = M0 ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mn = M of
M and a set of prime ideals Pi ∈ SpecR such that Mi/Mi−1 ∼= R/Pi for i = 1, . . . ,n. Also
Assoc(M)⊆ {P1, . . . ,Pn} ⊆ Supp(M). By Exercise 9.2.19, every minimal prime over-ideal
of annih(M) is included in the set {P1, . . . ,Pn}. By Proposition 9.6.8, d(Mi) is equal to the
maximum of d(Mi−1) and d(R/Pi). Iterate this n times to show that d(M) is equal to the
maximum number in the set {d(R/Pi) | 1 ≤ i ≤ n}. By Proposition 9.6.9, it follows that
d(M) is greater than or equal to the maximum number in the set {dim(R/Pi) | 1 ≤ i ≤ n}.
A chain of prime ideals in Spec(R/annih(M)) corresponds to a chain in Spec(R) of prime
ideals containing annih(M). If such a chain has maximal length, then it terminates at a
minimal member of the set {P1, . . . ,Pn}. Therefore, dim(M) is equal to the maximum
number in the set {dim(R/Pi) | 1≤ i≤ n}. This completes the proof. □

COROLLARY 9.6.12. Let R be a commutative noetherian ring and x,x1, . . . ,xn ele-
ments of R.

(1) If P is a minimal prime over-ideal of Rx1 + · · ·+Rxn, then ht(P)≤ n.
(2) (Krull’s Hauptidealsatz) If x is not a zero divisor or a unit, and P is a minimal

prime over-ideal of Rx, then ht(P) = 1.

PROOF. (1): Let I = Rx1 + · · ·+Rxn and assume P is a minimal prime over-ideal of
I. There is the containment of sets I ⊆ P⊆ R. Localizing gives rise to the containment of
sets IRP ⊆ PRP ⊆ RP. Therefore RP/IRP has only one prime ideal, so RP/IRP is artinian.
By Theorem 9.6.11, n≥ δ (RP) = dim(RP). By Lemma 9.6.2, ht(P) = dim(RP).

(2): By Part (1), ht(P) ≤ 1. If ht(P) = 0, then P is a minimal prime in Spec(R).
By Theorem 9.2.7 and Proposition 9.2.2, every element of P is a zero divisor. This is a
contradiction, since x ∈ P. □

COROLLARY 9.6.13. Let R be a commutative noetherian local ring with maximal
ideal m= J(R).

(1) The numbers
(a) dim(R), the Krull dimension of R.
(b) d(R), the degree of the Hilbert polynomial χR,m(n) = ℓ(R/mn).
(c) δ (R), the minimum number r such that there exists a m-primary ideal with

a generating set consisting of r elements.
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are equal.
(2) dim(R)≤ dimR/m(m/m2).
(3) If x ∈m is not a zero divisor, then dim(R/xR) = dim(R)−1.
(4) Let R̂ be the m-adic completion of R. Then dim(R) = dim(R̂).

PROOF. (1): Follows straight from Theorem 9.6.11.
(2): Let x1, . . . ,xt be elements of m that restrict to a R/m-basis for m/m2. It follows

from Lemma 3.4.1 that Rx1 + · · ·+Rxt =m. By Part (1), dim(R) = δ (R)≤ t.
(3): By Corollary 9.6.12 (2), ht(Rx) = 1. By Lemma 9.6.2, dim(R/xR)≤ dim(R)−1.

The reverse inequality follows from Lemma 9.6.10 (1) and Part (1).
(4): By Corollary 7.3.2, R/mn = R̂/m̂n, so the Hilbert polynomials χR,m and χR̂,m̂ are

equal. □

DEFINITION 9.6.14. Let R be a commutative noetherian local ring with maximal
ideal m and assume dim(R) = d. According to Corollary 9.6.13 (1) there exists a sub-
set {x1, . . . ,xd} ⊆ m such that the ideal Rx1 + · · ·+Rxd is m-primary. In this case, we say
x1, . . . ,xd is a system of parameters for R. If Rx1+ · · ·+Rxd =m, then we say R is a regular
local ring and in this case we call x1, . . . ,xd a regular system of parameters.

PROPOSITION 9.6.15. Let R be a commutative noetherian local ring with maximal
ideal m and x1, . . . ,xd a system of parameters for R. Then

dim
(
R/(Rx1 + · · ·+Rxi)

)
= d− i = dim(R)− i

for each i such that 1≤ i≤ d.

PROOF. Let Ii = Rx1 + · · ·+Rxi, Ri = R/Ii, mi = m/Ii. Let η : R→ R/Ii. Then Ri
is a noetherian local ring with maximal ideal mi and η(xi+1), . . . ,η(xd) generate a mi-
primary ideal in Ri. Therefore dim(Ri) = δ (Ri) ≤ d− i. Suppose we are given a system
of parameters η(z1), . . . ,η(ze) for Ri. Then Rx1 + · · ·+Rxi +Rz1 + · · ·+Rze is m-primary.
This means δ (R) = d ≤ i+ e, or e = dim(Ri)≥ d− i. □

6.3. Exercises.

EXERCISE 9.6.16. Let R be a commutative noetherian semilocal ring and M a nonzero
R-module of finite length. Then d(M) = 0.

EXERCISE 9.6.17. Let R be a commutative noetherian local ring with maximal ideal
m. Then dim(R) = dimR/m(m/m2) if and only if R is a regular local ring.

EXERCISE 9.6.18. Let R be a commutative ring and I an ideal of R. Then dim(R/I) =
dim(R/Rad(I)).

EXERCISE 9.6.19. Let R be a commutative noetherian ring. Let I be a proper ideal in
R such that ht(I) = h > 0.

(1) Let P1, . . . ,Pt be the complete list of minimal prime over-ideals of (0) in R. Show
that there exists x ∈ I−

⋃t
j=1 Pj and that ht(Rx) = 1.

(2) If 1≤ r < h, and x1, . . . ,xr is a sequence of elements of I such that ht(x1, . . . ,xr)=
r, show that there exists an element xr+1 in I such that ht(x1, . . . ,xr,xr+1) = r+1.

(3) Show that there exists a sequence x1, . . . ,xh of elements of I such that if 1≤ i≤ h,
then ht(x1, . . . ,xi) = i.

EXERCISE 9.6.20. Let R be a commutative ring and M an R-module.
(1) If N is a submodule of M, then dim(N)≤ dim(M) and dim(M/N)≤ dim(M).
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(2) If W ⊆ R is a multiplicative set and M is finitely generated, then

dimW−1R(W
−1M)≤ dimR(M).

(Hint: Corollary 3.7.10.)

6.4. The Krull Dimension of a Fiber of a Morphism. Let f : R→ S be a homo-
morphism of commutative rings, and f ♯ : SpecS→ SpecR the continuous map of Exer-
cise 3.3.19. Let P ∈ SpecR. The fiber over P of the map f ♯ is Spec(S⊗R kp), which is
homeomorphic to ( f ♯)−1(P), by Exercise 3.4.12. By Exercise 3.4.11, if Q is a prime ideal
of S lying over P, then the corresponding prime ideal of S⊗R kp is Q⊗R kP and the local
ring is SQ⊗R kP.

THEOREM 9.6.21. Let f : R → S be a homomorphism of commutative noetherian
rings. Let Q ∈ SpecS and P = Q∩R. Then

(1) ht(Q)≤ ht(P)+ht(Q/PS).
(2) dim(SQ)≤ dim(RP)+dim(SQ⊗R kP) where kP = RP/PRP is the residue field.
(3) If going down holds for f , then equality holds in Parts (1) and (2).
(4) If going down holds for f and f ♯ : SpecS→ SpecR is surjective, then

(a) dim(S)≥ dim(R), and
(b) for any ideal I ⊆ R, ht(I) = ht(IS).

PROOF. (1): Follows from (2) by Lemma 9.6.2 and Exercise 3.4.11.
(2): Replace R with RP, S with SQ. Assume (R,P) and (S,Q) are local rings and

f : R→ S is a local homomorphism of local rings. The goal is to prove that dim(S) ≤
dim(R)+ dim(S/PS). Let x1, . . . ,xn be a system of parameters for R and set I = Rx1 +
· · ·+Rxn. There exists ν > 0 such that Pν ⊆ I. Therefore Pν S ⊆ IS ⊆ PS and the ideals
IS and PS have the same nil radicals. By Exercise 9.6.18, dim(S/IS) = dim(S/PS). Let
η : S→ S/IS and let η(y1), . . . ,η(yr) be a system of parameters for S/IS. Then Sy1+ · · ·+
Syr +Sx1 + · · ·+Sxn is a Q-primary ideal. Then dim(S)≤ r+n = dim(S/PS)+dim(R).

(3): Continue to use the same notation as in Part (2). Assume ht(Q/PS) = r and
ht(P) = n. There exists a chain Q = Q0 ⊋ Q1 ⊋ · · ·⊋ Qr in SpecS such that Qr ⊇ PS. Then
P = Q∩R ⊇ Qi ∩R ⊇ P. This implies each Qi lies over P. In SpecR there exists a chain
P ⊋ P1 ⊋ · · · ⊋ Pn. By going down, Proposition 6.3.4, there exists a chain Qr ⊋ Qr+1 ⊋
· · ·⊋Rr+n in SpecS such that Qr+i∩R=Pi for i= 0, . . . ,n. The chain Q⊋Q1 ⊋ · · ·⊋Qr+n
shows that ht(Q)≥ r+n.

(4): (a): Let m be a maximal prime in R such that ht(m) = dim(R). Let n be a maximal
prime in S lying over m. By Part (3), dim(S)≥ dim(Sn)≥ dim(Rm) = dim(R).

(b): Let Q be a minimal prime over-ideal of IS such that ht(Q) = ht(IS). If P =
Q∩R, then P ⊇ I and Q ⊇ PS ⊇ IS. By the choice of Q, ht(Q/PS) = 0. By Part (3),
ht(IS) = ht(Q) = ht(P) ≥ ht(I). Conversely, let P be a minimal prime over-ideal of I
such that ht(P) = ht(I). Let Q be a prime ideal in S lying over P. Then Q ⊇ PS ⊇ IS.
By Proposition 9.6.9 (4) we can assume Q is a minimal prime over-ideal of PS. Then
ht(Q/PS) = 0. By Part (3), ht(I) = ht(P) = ht(Q)≥ ht(IS). □

THEOREM 9.6.22. Let f : R→ S where R and S are commutative noetherian rings.
Assume S is a faithful integral R-algebra.

(1) dim(R) = dim(S).
(2) If Q ∈ Spec(S), then ht(Q)≤ ht(Q∩R).
(3) If going down holds for f , then for any ideal J of S, ht(J) = ht(J∩R).
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PROOF. We can assume f is the set inclusion map and view R as a subring of S.
(1): It follows from Theorem 6.3.6 (2) that a chain Q0 ⊊ Q1 ⊊ · · ·⊊ Qn of length n in

Spec(S) gives rise to a chain Q0∩R ⊊ Q1∩R ⊊ · · ·⊊ Qn∩R of length n in Spec(R). Thus
dim(S)≤ dim(R). By Theorem 6.3.6 (3), a chain of length n in Spec(R) lifts to a chain of
length n in Spec(S). Thus dim(S)≥ dim(R).

(2): We have Q⊆ (Q∩R)S and by Theorem 6.3.6 (2), Q is a minimal prime over-ideal
of (Q∩R)S. Apply Theorem 9.6.21 (1).

(3): Since going down holds for R→ S, by Theorem 9.6.21 (3), equality holds in
Part (2). Pick Q to be a minimal prime over-ideal of J such that ht(Q) = ht(J). Then
ht(J) = ht(Q) = ht(Q∩R)≥ ht(J∩R). Pick P to be a minimal prime over-ideal for J∩R.
By Exercise 6.1.15, S/J is an integral extension of R/(J∩R). By Theorem 6.3.6 (1), there
exists Q ∈ Spec(S) such that Q ⊇ J and Q∩R = P. Then ht(J ∩R) = ht(P) = ht(Q) ≥
ht(J). □

THEOREM 9.6.23. Let f : R→ S where R and S are commutative noetherian rings,
and assume going up holds for f . If p,q ∈ SpecR such that p ⊇ q, then dim(S⊗R kp) ≥
dim(S⊗R kq).

PROOF. Let n = dim(S⊗R kq). Then there exists a chain Q0 ⊊ · · · ⊊ Qn in SpecS
such that Qi ∩ R = q for all i = 0, . . . ,n. Let m = ht(p/q). Then there exists a chain
q = p0 ⊊ · · · ⊊ pm = p in SpecR. Since going up holds, there exists a chain Qn ⊊ · · · ⊊
Qn+m in SpecS such that Qn+i ∩R = pi for all i = 0, . . . ,m. The chain Q0 ⊊ · · · ⊊ Qn+m
shows ht(Qn+m/Q0)≥ n+m. Apply Theorem 9.6.21 to R/q→ S/Q0 with the prime ideals
Qn+m/Q0 and p/q playing the roles of Q and P. Then

n+m≤ ht(Qn+r/Q0)

≤ ht(p/q)+ht(Qn+m/(Q0 + pS))

≤ ht(p/q)+ht(Qn+m/pS)

≤ ht(p/q)+dim(S⊗R kp).

From which it follows that dim(S⊗R kq)≤ dim(S⊗R kp). □

7. The Krull-Akizuki Theorem

This short section is devoted to a proof of Theorem 9.7.5, which is commonly known
as the Krull-Akizuki Theorem. The proof we give follows [13, Chapter VII, § 2.5].
Throughout this section, all rings are commutative. Given an R-module M, if M has a
composition series, then we say M has finite length and ℓ(M) denotes the length of any
composition series for M (Definition 4.1.27). If R is an integral domain with field of frac-
tions K and M is a torsion free R-module, then the natural mapping R⊗R M → K⊗R M
is one-to-one (Lemma 3.1.4). We identify M with the R-submodule 1⊗R M of K⊗R M.
The rank of M is defined to be dimK(K⊗R M). If M is finitely generated, then by Theo-
rem 2.3.23, M has finite rank. We mention however that the converse is false. For example,
if we assume R is not a field, then K is not a finitely generated R-module (Lemma 6.1.4),
but K has rank 1 since K⊗R K = K.

The Krull-Akizuki Theorem is concerned with the finiteness of the integral closure S
of a noetherian integral domain R in a finite algebraic field extension L of the quotient field
K of R. When R is integrally closed in K and L/K is separable, Theorem 6.1.13 applies.
When R is a finitely generated algebra over a field k, there is a stronger result proved below
in Theorem 10.3.11. The main difference between these theorems and Theorem 9.7.5
below is that we assume only that R is noetherian with Krull dimension one, and we show



7. THE KRULL-AKIZUKI THEOREM 391

that S is also noetherian and has dimension one. Also, in Corollary 9.7.6 we see that the
fibers of SpecS→ SpecR are finite. Before restricting to the case where R is noetherian,
we prove in Lemma 9.7.1 that the fiber over the generic point of SpecR is the generic point
of S.

LEMMA 9.7.1. Let R be an integral domain with quotient field K. Let L be a finitely
generated algebraic extension field of K and S a subring of L containing R. Then the
following are true.

(1) There is an R-algebra homomorphism γ : K⊗R S→ L defined by x⊗ y 7→ xy which
maps K⊗R S isomorphically onto a subfield of L containing K and S.

(2) S is an R-module of finite rank.
(3) If q is a prime ideal of S such that q∩R = (0), then q= (0).

PROOF. (1): Consider W = R− (0) which is a multiplicative subset of S contained
in R. We can identify the localization W−1S with an R-subalgebra of L containing both
K and S (Lemma 3.1.2). Since W−1S is finite dimensional over K, W−1S is a field by
Lemma 6.1.4. Hence W−1S is isomorphic to the quotient field of S. By Lemma 3.1.4, γ

maps K⊗R S isomorphically onto W−1S.
Part (2) follows from the fact that K⊗R S is finite dimensional over K. Part (3) follows

from Exercise 3.3.25. □

LEMMA 9.7.2. Let R be a noetherian integral domain with dim(R) = 1. If M is a
finitely generated torsion R-module, then the length of M is finite, ℓ(M)< ∞.

PROOF. Since M is torsion, annihR(M) is a proper ideal of R. Then dim(M) =
dim(R/annihR(M)) = 0. By Lemma 9.6.4, M has finite length. □

LEMMA 9.7.3. Let R be a commutative ring, M an R-module, and {Mi | i ∈ I} a
directed system of submodules of M ordered by set inclusion and indexed by a directed set
I. If M =

⋃
i∈I Mi, then ℓ(M) = sup{ℓ(Mi) | i ∈ I}.

PROOF. By Proposition 4.1.28, ℓ(Mi) ≤ ℓ(M) for each i. If the set {ℓ(Mi) | i ∈ I}
is unbounded, then ℓ(M) = sup{ℓ(Mi) | i ∈ I} = ∞. Assume N ∈ N and N = sup{ℓ(Mi) |
i ∈ I}. Therefore, there exists j ∈ I such that ℓ(M j) = N. The family of submodules is
directed, hence given any pair i, j in I, there is k ∈ I such that Mi ∪M j ⊆ Mk. So for all
k≥ j we have ℓ(M j) = ℓ(Mk) = N. Since the union of the Mi is M, we have N = ℓ(M). □

LEMMA 9.7.4. Let R be a noetherian integral domain with dim(R) = 1. Let M be a
torsion free R-module of finite rank n. If α is a nonzero element of R, then R/αR is an
R-module of finite length and

ℓ(M/αM)≤ nℓ(R/αR).

PROOF. Since R/αR is a torsion R-module, by Lemma 9.7.2, it is an R-module of
finite length.

Step 1: We prove that the inequality holds if M is a finitely generated R-module. By
Exercise 3.1.27, there is a free R-submodule F ⊆M such that F has rank n and M/F is a
finitely generated torsion R-module. By Lemma 9.7.2, ℓ(M/F) is finite. Since M is torsion
free, if i ≥ 0, then multiplication by α i defines an isomorphism M/αM→ α iM/α i+1M.
Fix m≥ 1. By Theorem 1.1.12 (2), Proposition 4.1.30 and induction on m,

(7.1) ℓ(M/α
mM) = mℓ(M/αM).
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Since F is free of rank n, we have

(7.2) ℓ(F/α
mF) = mℓ(F/αF) = nmℓ(R/αR).

Consider the commutative diagram

0 // F

αm

��

// M

αm

��

// M/F

αm

��

// 0

0 // F

η1

��

// M

η2

��

// M/F

η3

��

// 0

F/αmF
φ // M/αmM // (M/F)/(αm(M/F)) // 0

(7.3)

where η1,η2,η3 are the natural maps and are onto. The bottom row of (7.3) is exact by
Theorem 2.5.2. Viewing F as a submodule of M, the image of φ is η2(F). By Theo-
rem 1.1.12 (2),

(7.4) F/α
mF

φ−→ F/(F ∩α
mM)→ 0

is exact. Applying Proposition 4.1.30 to the bottom row of (7.3), (7.4), and the rightmost
column of (7.3), we have

ℓ(M/α
mM) = ℓ(imφ)+ ℓ((M/F)/(αm(M/F)))

≤ ℓ(F/α
mF)+ ℓ((M/F)/(αm(M/F)))

≤ ℓ(F/α
mF)+ ℓ(M/F).

(7.5)

Combining (7.5) with (7.1) and (7.2) yields

(7.6) ℓ(M/αM)≤ nℓ(R/αR)+m−1 ℓ(M/F).

Since ℓ(M/F) is finite and (7.6) holds for all m≥ 1, this completes Step 1.
Step 2: Assume M is not finitely generated. Let {Mi | i ∈ I} be the directed system

of finitely generated submodules Mi ⊆M ordered by set inclusion and where each Mi has
rank n. By Step 1, ℓ(Mi/αMi) ≤ nℓ(R/αR) for each i. Using a diagram similar to (7.3),
we see that for each i, the image of Mi/αMi→M/αM is Mi/(Mi∩αM). Therefore,

ℓ(Mi/(Mi∩αM))≤ ℓ(Mi/αMi)

≤ nℓ(R/αR).
(7.7)

By Lemma 9.7.3 applied to M/αM and the directed system {Mi/(Mi ∩αM) | i ∈ I} of
submodules, we conclude that ℓ(M/αM)≤ nℓ(R/αR). □

THEOREM 9.7.5. (Krull-Akizuki) Let R be a noetherian integral domain with dim(R)=
1. Let K be the quotient field of R, L a finitely generated algebraic extension of K, and S a
subring of L containing R. Then S is noetherian. If S is not a field, then dim(S) = 1, and
for every nonzero ideal A in S, S/A is a finitely generated R-module.

PROOF. Since a field is noetherian, assume from now on that S is not a field. By
Lemma 9.7.1, S is an R-module of finite rank.

Let A be a nonzero nonunit ideal of S. To show S is noetherian, it suffices to show that
A is finitely generated as an S-module. To show S/A is finitely generated as an R-module,
it suffices to show S/A is an R-module of finite length.
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Let u ∈ A− (0) and let f (x) = Irr.polyK(u) be the irreducible polynomial for u in
K[x]. Then f (u) = 0 and after clearing denominators by multiplying by some element of
R, we get an equation

rnun + · · ·+ r2u2 + r1u+ r0 = 0
where r0, . . . ,rn are elements in R. Since u is invertible in L, r0 ̸= 0. This shows r0 ∈
Su⊆ A. Apply Lemma 9.7.4 with M = S and α = r0. Then S/r0S is an R-module of finite
length. Since S/r0S→ S/A is onto, this implies S/A is an R-module of finite length.

By Exercise 4.1.36, S/r0S is an S-module of finite length. Since A/r0S→ S/r0S is
one-to-one, it follows that A/r0S is an S-module of finite length. Hence A/r0S is a finitely
generated S-module. The exact sequence

0→ r0S→ A→ A/r0S→ 0

shows that A is a finitely generated S-module (Lemma 3.1.13). If p is a nonzero prime
ideal of S, then S/p is an integral domain and an S-module of finite length. By Proposi-
tion 4.1.29, S/p is artinian. By Exercise 4.1.23, S/p is a field. Therefore, p is a maximal
ideal. □

COROLLARY 9.7.6. Let R, K, L and S be as in Theorem 9.7.5. If p is a prime ideal of
R, then there are only finitely many prime ideals of S lying over p.

PROOF. If p= (0), then by Lemma 9.7.1 there is only one prime ideal of S lying over
p. If p ̸= (0), then by Theorem 9.7.5, S⊗R R/p is a finitely generated R-module. Therefore,
S⊗R R/p is a finitely generated vector space over the field R/p. By Exercise 3.4.12 there
is a one-to-one correspondence between prime ideals of S lying over p and prime ideals of
S⊗R R/p. By Exercise 4.1.35 and Proposition 4.5.3, Spec(S⊗R R/p) is finite. □





CHAPTER 10

Derivations, Differentials

This chapter introduces two powerful methods for studying separable algebras over
commutative rings. These new tools are the module of R-derivations on an R-algebra, and
the module of Kähler differentials. Applying results about derivations allows us to prove
theorems on faithfully flat descent of separability, the separability at the stalks criteria, and
the residue field tests for separability. Applying results on Kähler differentials, we derive
separability criteria for commutative R-algebras. For example, the vanishing of the module
of Kähler differentials leads to a separability criterion for a finitely generated commutative
algebra. Differentials are applied to prove jacobian criteria for separability in Section 10.2,
and for regularity in Section 11.6.

Noether’s Normalization Lemma is proved in Theorem 10.3.3. In summary this lemma
states that if A is a finitely generated k-algebra, then A contains a subalgebra Z isomorphic
to a polynomial ring in n indeterminates, where A is integral over Z and n is equal to the
Krull dimension of A. When the ground field k is infinite, a second version is proved in
Corollary 10.3.3. As an application, a theorem on the finiteness of the integral closure of
an integral domain is proved (Theorem 10.3.11).

The useful Local Criteria for Flatness are proved in Theorem 10.4.13 and the Theorem
on Generic Flatness is proved in Theorem 10.4.21.

The last section of this chapter concludes with Corollary 10.5.4. This useful result
specifies sufficient criteria such that the direct limit of a directed system of noetherian
local rings is again a noetherian local ring.

1. Derivations

This section contains an introduction to R-derivations on an R-algebra with coefficients
in a two-sided module. General references for the material in this section are [15], [37],
[42], [33], [35], and [19].

1.1. The Definition and First Results. Let R be a commutative ring and A an R-
algebra. The enveloping algebra is Ae = A⊗R Ao. A left right A-bimodule M is called a
two-sided A/R-module if the left and right R-actions agree (Definition 5.1.1). If M is a left
Ae-module, then we can make M into a two-sided A/R-module by defining ax = a⊗ 1 · x
and xa = 1⊗a · x. In particular, Ae is a left Ae-module, hence is a two-sided A/R-module.

If M is any two-sided A/R-module, then an R-derivation from A to M is an R-module
homomorphism ∂ : A→M satisfying

∂ (ab) = a∂ (b)+∂ (a)b

for all a,b ∈ A. The set of all R-derivations from A to M is denoted DerR(A,M). The
reader should verify that DerR(A,M) is an R-submodule of HomR(A,M) and that if ∂ is
any R-derivation, then ∂ (1) = 0.

395
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EXAMPLE 10.1.1. Let R be any ring, x an indeterminate, and A = R[x] the polynomial
ring. The usual derivative with respect to x is a Z-derivation ∂ : A→ A.

There is an exact sequence of Ae-modules

(1.1) 0→ JA/R→ Ae µ−→ A→ 0

where µ is defined by a⊗b 7→ ab and JA/R is defined to be the kernel of µ (Definition 5.1.1).
By Definition 5.1.3, A is separable over R if and only if (1.1) is split exact as a sequence
of Ae-modules. By Exercise 5.1.11, JA/R is generated as a left ideal in Ae by the set of all
elements of the form a⊗1−1⊗a.

LEMMA 10.1.2. Let R be a commutative ring, A an R-algebra and S a commutative
R-algebra. Then the following are true.

(1) The sequence (1.1) is a split exact sequence of A-modules and hence a split exact
sequence of R-modules.

(2) Ae⊗R S = (A⊗R S)e.
(3) JA⊗RS/S = JA/R⊗R S.

PROOF. (1): By Exercise 2.3.35, there is an R-algebra homomorphism ρ : A→ A⊗R
Ao defined by ρ(a) = a⊗1. Using ρ we view each term in (1.1) as a left A-module. The
reader should verify that µρ = 1 and that both ρ and µ are left A-module homomorphisms.
Therefore, (1.1) is split exact as a sequence of left A-modules.

(2): This is left to the reader.
(3): This follows from (2) by tensoring the split exact sequence (1.1) with ()⊗R S. □

EXAMPLE 10.1.3. Define an R-module homomorphism δ : A→ JA/R by

δ (a) = a⊗1−1⊗a.

If a,b ∈ A, then
δ (ab) = ab⊗1−1⊗ab

= ab⊗1−a⊗b+a⊗b−1⊗ab

= (a⊗1)(b⊗1−1⊗b)+(1⊗b)(a⊗1−1⊗a)

= aδ (b)+δ (a)b.

Therefore δ : A→ JA/R is an R-derivation.

LEMMA 10.1.4. If δ : A→ JA/R is from Example 10.1.3, then Aδ (A) = JA/R. That is,
the image of δ generates JA/R as a left A-module.

PROOF. A typical element of JA/R is x=∑i xi⊗yi such that ∑i xiyi = 0. Then ∑i xi(1⊗
yi− yi⊗1) = ∑i xi⊗ yi−

(
∑i xiyi

)
⊗1 = x. □

LEMMA 10.1.5. Let R be a commutative ring and A an R-algebra.
(1) If A is commutative and is generated as an R-algebra by the set X = {xi}i∈I , then

JA/R is generated as an Ae-module by the set δ (X) = {xi⊗1−1⊗ xi}i∈I .
(2) If A is finitely generated as an R-module, then JA/R is finitely generated as an

R-module.
(3) Assume either

(a) A is a finitely generated R-module, or
(b) A a finitely generated commutative R-algebra.

Then JA/R is a finitely generated left ideal of Ae and A is an Ae-module of finite
presentation.
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PROOF. (1): A typical element of A can be written as a finite sum a = ∑rimi, where
ri ∈ R and mi is a monomial in X . Since δ is R-linear, it is enough to show δ (x1 · · ·xn) is in
Aeδ (X), where x1, . . . ,xn represent any elements (not necessarily distinct) of X . Because
δ is an R-derivation, this follows from the generalized product rule, Exercise 10.1.8.

(2): By Proposition 2.3.24, Ae is a finitely generated R-module. The sequence (1.1) is
split exact as a sequence of R-modules, hence JA/R is a homomorphic image of Ae.

(3): In both cases, JA/R is finitely generated over Ae. The exact sequence (1.1) shows
that A is of finite presentation as a left Ae-module. □

Given any f ∈ HomAe(JA/R,M), let α f : A→M be defined by

α f (a) = f (δ (a)).

The reader should verify that α f ∈ DerR(A,M) and that there is a homomorphism of R-
modules α : HomAe(JA/R,M)→ DerR(A,M) defined by f 7→ α f . Given any m ∈ M, let
τm : A→M be defined by

τm(a) = am−ma.

The reader should verify that τm ∈ DerR(A,M) and that there is a homomorphism of R-
modules τ : M→ DerR(A,M) defined by m 7→ τm.

PROPOSITION 10.1.6. In the notation developed above, there is a commutative dia-
gram of R-modules

0 // HomAe(A,M) //

γ ∼=
��

HomAe(Ae,M)
σ //

β ∼=
��

HomAe(JA/R,M)

α ∼=
��

0 // MA // M τ // DerR(A,M)

such that the three vertical maps are isomorphisms and the rows are exact.

PROOF. Applying the left exact functor HomAe(·,M) to the exact sequence (1.1) yields
the top row. Clearly the kernel of τ is MA, so the bottom row is exact. The isomorphism β

comes from Lemma 2.4.7 and is defined by the action f 7→ f (1). The isomorphism γ comes
from Lemma 5.1.5. We check that ασ = τβ . Suppose f ∈ HomAe(Ae,M), f (1) = m, and
a ∈ A. Then

α(σ( f ))(a) = f (δ (a))

= δ (a) f (1)

= (a⊗1−1⊗a)m

= am−ma

= τ(β ( f ))(a).

Next we verify that α is one-to-one. Suppose α f = 0. Then f (δ (A)) = 0. It follows from
Lemma 10.1.4 that f (JA/R) = 0. Now we show that α is onto. Let ∂ ∈ DerR(A,M). We
must show that there exists h∈HomAe(JA/R,M) such that ∂ = h◦δ . The reader should ver-
ify that the assignment x⊗ y 7→ −x∂ (y) defines an R-module homomorphism h : Ae→M
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and h(δ (a)) = h(a⊗ 1− 1⊗ a) = −a∂ (1)+ ∂ (a) = ∂ (a). To show that h is a homomor-
phism of Ae-modules, let x = ∑i xi⊗ yi be a typical element of JA/R and a⊗b ∈ Ae. Then

h(a⊗b · x) = h
(

a⊗b∑
i

xi⊗ yi

)
= h
(
∑

i
axi⊗ yib

)
=−∑

i
axi∂ (yib)

=−∑
i

axi
(
yi∂ (b)+∂ (yi)b

)
=−a

(
∑

i
xiyi

)
∂ (b)−a

(
∑

i
xi∂ (yi)

)
b

= a⊗b ·h(x)
completes the proof. □

The image of τ : M → DerR(A,M) is denoted Inn.DerR(A,M) and is called the set
of inner derivations. Because the diagram of Proposition 10.1.6 commutes, under the
isomorphism α , the set of inner derivations corresponds to the set of f ∈ HomAe(JA/R,M)
such that f extends to Ae→M.

PROPOSITION 10.1.7. Let A and C be commutative R-algebras and

u : A→C

a homomorphism of R-algebras. Let I be an ideal in C such that I2 = 0. Consider the map
on sets

β : HomR-alg(A,C)→ HomR-alg(A,C/I)
which is induced by the natural map η : C→C/I on R-algebras. Let ū = β (u) = ηu. Make
I into an A-module using the homomorphism u. That is, a · x = u(a)x.

(1) If D : A→ I is an R-derivation, then u+D : A→ C is an R-algebra homomor-
phism in β−1(ū).

(2) If v : A→C is in β−1(ū), and D = v−u, then D : A→ I is an R-derivation.
(3) The mapping D 7→ u+D defines a one-to-one correspondence

DerR(A, I)→{v ∈ HomR-alg(A,C) | β (v) = β (u)}.
PROOF. (1): Because

(u+D)(ab) = u(ab)+D(ab)

= u(a)u(b)+u(a)D(b)+u(b)D(a)

is equal to
(u(a)+D(a))(u(b)+D(b)) = u(a)u(b)+u(a)D(b)+u(b)D(a)+D(a)D(b)

= u(a)u(b)+u(a)D(b)+u(b)D(a),

u+D is multiplicative. The rest is left to the reader.
(2): For a ∈ A, D(a) = u(a)− v(a) is in I. The computation

v(ab) = v(a)v(b)

= (u(a)+D(a))(u(b)+D(b))

= u(a)u(b)+u(a)D(b)+u(b)D(a)+D(a)D(b)

= u(a)u(b)+u(a)D(b)+u(b)D(a),
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shows that D(ab) = u(a)D(b)+u(b)D(a).
Part (3) follows from (1) and (2). □

1.2. Exercises.

EXERCISE 10.1.8. (Generalized Product and Power Rules) Suppose A is an R-algebra,
M is a two-sided A/R-module, ∂ ∈ DerR(A,M) and x,x1, . . . ,xn ∈ A. Prove that

∂ (x1x2 · · ·xn) = ∂ (x1)x2 · · ·xn + x1∂ (x2)x3 · · ·xn + · · ·+ x1 · · ·xn−1∂ (xn)

and if n≥ 1, then ∂ (xn) = ∑
n−1
i=0 xi∂ (x)xn−1−i.

EXERCISE 10.1.9. (Chain Rule) Suppose A is a commutative R-algebra and M is an
A-module. Prove that if a ∈ A and f (x) ∈ R[x], then for any ∂ ∈ DerR(A,M), ∂ ( f (a)) =
f ′(a)∂ (a).

EXERCISE 10.1.10. Let A be an R-algebra. Show that M 7→ DerR(A,M) defines a co-
variant functor from the category of two-sided A/R-modules to the category of R-modules.

EXERCISE 10.1.11. Suppose S is a commutative R-algebra and A is any S-algebra.
Let M be a two-sided A/S-module. Show that there is an exact sequence of abelian groups

0→ DerS(A,M)
a−→ DerR(A,M)

b−→ DerR(S,M).

EXERCISE 10.1.12. Let R be a commutative ring and S a commutative R-algebra. Let
A = S[x] be the polynomial ring over S in one variable and let M be any A-module. Show
that DerR(A,M)→ DerR(S,M) is onto. (Hint: If ∂ : S→M is an R-derivation, show that
the assignment axi 7→ xi∂ (a) defines an R-derivation D : A→M.)

EXERCISE 10.1.13. (The Extension of a Ring by a Module) Let A be an R-algebra
and N a two-sided A/R-module (Definition 5.1.1). Define a multiplication on the two-
sided A/R-module A⊕N by the formula (a,x)(b,y) = (ab,ay+xb), for all a,b in A and all
x,y in N.

(1) Show that the multiplication rule defined above turns the A-module A⊕N into
an R-algebra with unit element (1,0). Denote this R-algebra by A∗N.

(2) Show that the subset {(0,x) | x ∈ N} is an ideal in A ∗N satisfying N2 = 0 and
that there is a split exact sequence of two-sided A/R-modules 0→ N→ A∗N→
A→ 0. The ring A∗N is called the trivial, or split extension of A by N.

(3) Show that the map a 7→ (a,0) defines an R-algebra homomorphism σ : A→ A∗N
which is a section to the natural map η : A∗N→ A (that is, ησ = 1).

(4) Let D ∈ DerZ(A,N). Define u : A→ A∗N by u(a) = (a,D(a)). Show that u is a
ring homomorphism which is a section to the natural map η : A∗N→ A.

(5) Prove the converse to (4). That is, show that if u : A→ A ∗N is a Z-algebra
section to η , then u(a)−σ(a) : A→ N is a Z-derivation.

(6) Let B be a commutative R-algebra and I an ideal in B satisfying I2 = 0. Let
A=B/I. Show that there is an exact sequence of A-modules 0→ I→B→A→ 0.
We say that B is an extension of A by I. Show that B is isomorphic to A ∗ I as
R-algebras if and only if there is an R-algebra homomorphism σ : A→ B which
is a section to the natural map B→ A (in this case the extension is also said to be
trivial, or split).

EXERCISE 10.1.14. Let A be an R-algebra and D ∈ DerR(A,A). View DerR(A,A) as
an R-submodule of the ring HomR(A,A) of A-module endomorphisms of A. Let Di denote
the composition map where D is applied i times. Then Di is an element of HomR(A,A),
but not necessarily an element of DerR(A,A). Prove:
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(1) (Leibniz Formula) For all a,b ∈ A and n≥ 0,

Dn(ab) =
n

∑
i=0

(
n
i

)
Di(a)Dn−i(b).

(2) If R has characteristic p, a prime number, then Dp ∈DerR(A,A) is an R-derivation
on A.

1.3. More Tests for Separability. Now we apply the above results on derivations to
establish separability criteria for algebras. The main results are the vanishing of the first
Hochschild cohomology criterion, the theorems on faithfully flat descent, the separability
at the stalks criteria, and the residue field tests.

Let R be a commutative ring, A an R-algebra, and Ae =A⊗R Ao the enveloping algebra.
If M is a two-sided A/R-module, then the nth Hochschild cohomology group of A with
coefficients in M is defined to be Hn(A,M) = ExtnAe(A,M) (Definition 8.7.1).

LEMMA 10.1.15. In the above context, the following are true.
(1) H0(A,M) = MA = {x ∈M | ax = xa, for all a ∈ A}.
(2) H1(A,M) = DerR(A,M)/ Inn.DerR(A,M).

PROOF. The sequence of left Ae-modules

0→ JA/R→ Ae µ−→ A→ 0

is exact (Eq. (1.5)). Consider the associated long exact sequence

0→ HomAe(A,M)→ HomAe(Ae,M)→ HomAe(JA/R,M)
δ 0
−→

Ext1Ae(A,M)→ Ext1Ae(Ae,M)→ Ext1Ae(JA/R,M)→
of abelian groups (Proposition 8.3.12 (2)). Since Ae is projective over Ae, it follows from
Proposition 8.3.12 (3) that Ext1Ae(Ae,M)= 0. The rest follows from Proposition 10.1.6. □

THEOREM 10.1.16. Let R be a commutative ring and A an R-algebra. The following
are equivalent.

(1) A is a separable R-algebra.
(2) H1(A,M) = 0 for every two-sided A/R-module M.
(3) The sequence

0→MA→M τ−→ DerR(A,M)→ 0

is exact, for every two-sided A/R-module M.

PROOF. (1) is equivalent to (2): Let Ae = A⊗R Ao be the enveloping algebra. By Defi-
nition 5.1.3, A is R-separable if and only if A is projective as a left Ae-module. By Proposi-
tion 8.3.12 (3), A is projective as a left Ae-module if and only if H1(A,M) = Ext1Ae(A,M) =
0 for every two-sided A/R-module M.

(2) is equivalent to (3): This follows from an application of Proposition 10.1.6 and
Lemma 10.1.15. □

We now prove a faithfully flat descent theorem for separability.

THEOREM 10.1.17. Let A be an R-algebra and S a commutative faithfully flat R-
algebra. Assume A⊗R S is separable over S and either

(1) A is a finitely generated R-module, or
(2) A a finitely generated commutative R-algebra.
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Then A is separable over R.

PROOF. By Lemma 10.1.5, A is finitely presented as an Ae-module. By Proposi-
tion 3.5.9, the functors HomAe(A, ·)⊗R S and HomAe⊗RS(A⊗R S,(·)⊗R S) are isomorphic.
By Corollary 5.1.8, the functor HomAe⊗RS(A⊗R S, ·) is exact. Since S is faithfully flat, it
follows that HomAe(A, ·) is exact. By Corollary 5.1.8 again, A is separable over R. □

The next theorem provides sufficient conditions allowing us to prove that an algebra
is separable if it is separable when localized at every prime.

THEOREM 10.1.18. Let R be a commutative ring and A an R-algebra which satisfies
either

(a) A is a finitely generated R-module, or
(b) A a finitely generated commutative R-algebra.

Then the following are equivalent.

(1) A is a separable R-algebra.
(2) A⊗R RP is a separable RP-algebra for every prime ideal P of R.
(3) A⊗R Rm is a separable Rm-algebra for every maximal ideal m of R.

PROOF. (1) implies (2): This follows straight from Corollary 5.3.2.
(2) implies (3): This is trivial.
(3) implies (1): By Proposition 5.1.2 (2), it suffices to show that sequence

0→ JA/R→ Ae µ−→ A→ 0

of left Ae-modules is split exact. By Exercise 2.4.24, it is enough to show that µ ◦ () :
HomAe(A,Ae)→ HomAe(A,A) is onto. By Lemma 10.1.5, A is of finite presentation as
a left Ae-module. Let m be any maximal ideal of R. Denote by Am the tensor product
A⊗R Rm. By Lemma 10.1.2, Ae⊗R Rm = Ae

m. The diagram

HomAe(A,Ae)⊗R Rm
µ◦()⊗1 //

��

HomAe(A,A)⊗R Rm

��
HomAe

m
(Am,Ae

m)
µ◦() // HomAe

m
(Am,Am)

commutes. The vertical maps are isomorphisms, by Proposition 3.5.9. By Corollary 5.1.8,
the second horizontal map µ ◦ () is onto. Hence the top horizontal map is onto. By Exer-
cise 3.5.16, µ ◦ () : HomAe(A,Ae)→ HomAe(A,A) is onto. □

For an R-algebra A that is a finitely generated R-module, the next theorem and its
corollaries show that separability of A over R can be reduced to the same question for cer-
tain algebras over fields. Separable algebras over fields are described by the decomposition
theorems of Section 5.5.

THEOREM 10.1.19. Let R be a commutative ring and A an R-algebra which is finitely
generated as an R-module. The following are equivalent.

(1) A is a separable R-algebra.
(2) A/mA is a separable R/m-algebra for every maximal ideal m of R.

PROOF. (1) implies (2): This follows straight from Corollary 5.3.2.
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(2) implies (1): Let m be any maximal ideal of R. Since Rm/mRm
∼= R/m we have

(A⊗R Rm)/m(A⊗R Rm)∼= A⊗R (Rm/mRm)

∼= A⊗R (R/m)

∼= A/mA.

Since we already proved that (3) implies (1) in Theorem 10.1.18, it is enough to prove (2)
implies (1) when R is a local ring.

Assume R is a local ring with maximal ideal m and A is an R-algebra which is finitely
generated as an R-module and such that A/mA is separable over R/m. For the remainder
of this proof, we write simply JA/mA instead of J(A/mA)/(R/m) and JA rather than JA/R. Let
δ : A/mA→ JA/mA be the derivation defined by ā 7→ ā⊗1−1⊗ ā. By Theorem 10.1.16,
δ = τz̄ for some z̄ ∈ JA/mA. In other words, for each ā ∈ A/mA, δ (ā) = āz̄− z̄ā = (ā⊗1−
1⊗ ā)z̄ = δ (ā)z̄. By Lemma 10.1.4, it follows that

JA/mA = (A/mA)δ (A/mA) = (A/mA)δ (A/mA)z̄ = JA/mAz̄.

By Lemma 10.1.2, JA/mA = JA/(mJA). If z∈ JA is a preimage of z̄, then JA = JAz+mJA. In
Lemma 10.1.5 it was shown that JA is finitely generated over R. By Nakayama’s Lemma
(Theorem 4.2.3), it follows that JA = JAz. Define a homomorphism φ in HomAe(Ae,JA) by
φ(x) = xz. Then φ(JA) = JAz = JA. By Corollary 2.4.2, φ : JA→ JA is an automorphism of
Ae-modules. Therefore sequence (1.1) is split exact as Ae-modules. □

EXAMPLE 10.1.20. Let R be a commutative ring and f ∈ R[x] a monic polynomial.
We proved in Proposition 5.6.2 that S = R[x]/( f ) is separable over R if and only if ( f , f ′) =
R[x]. In this example, we apply the Residue Field Criterion to give another proof that S/R
is separable if ( f , f ′) = R[x]. Since f is monic, S is a free R-module of finite rank. By
Theorem 10.1.19, S/R is separable if and only if S⊗R km = km[x]/( f ) is separable over km
for every maximal ideal m in R, where km denotes the residue field R/m. By Exercise ??,
km[x]/( f ) is separable over km if and only if ( f , f ′) is the unit ideal in km[x]. If ( f , f ′) is
the unit ideal in R[x], then for every maximal ideal m, ( f , f ′) is the unit ideal in km[x] and
we are done.

COROLLARY 10.1.21. Let R be a local ring with maximal ideal m and residue field k.
The change of base functor ( )⊗R k from the category of commutative separable R-algebras
which are finitely generated free R-modules and the category of commutative separable k-
algebras is essentially surjective.

PROOF. A commutative separable k-algebra is a direct sum F1⊕·· ·⊕Fn, where each
Fi is a finite separable field extension of k (Corollary 5.5.9). Let F/k be a finite separable
field extension. To show ( )⊗R k is essentially surjective, it is enough to show that F =
S⊗R k, for an appropriate extension S/R. By Theorem 5.5.8, and Corollary 5.6.3, we are
done. □

1.4. Exercises.

EXERCISE 10.1.22. This exercise is based on [27, Proposition I.3.1, p. 2] and [45,
Proposition I.3.5] Let R be a commutative ring and S a commutative finitely generated
R-algebra. Show that the following are equivalent.

(1) S is a separable R-algebra.
(2) The homomorphism of R-algebras µ : Se→ S makes S into a flat Se-module.
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(3) For every q ∈ SpecS, if p = µ−1(q), then µ : (Se)p→ Sq is an isomorphism. In
the terminology of Algebraic Geometry, the diagonal morphism µ♯ : SpecS→
SpecSe is said to be an open immersion (Exercise 3.5.33).

(Hint: Exercise 3.2.6 and Proposition 3.7.2.)

EXERCISE 10.1.23. Let R be a commutative ring and S a commutative R-algebra. In
Algebraic Geometry, the morphism µ♯ : SpecS→ SpecS⊗R S associated to µ : S⊗R S→ S
is called the diagonal morphism.

(1) For every q ∈ SpecS, show that µ−1(q) is the ideal q⊗S+S⊗q+ JS/R.
(2) Let k be an algebraically closed field. Let α ∈ k and let q be the maximal ideal

in k[x] generated by x−α . Show that under the diagonal map µ♯ : Speck[x]→
Speck[x]⊗k k[x], the image of q is the maximal ideal in k[x]⊗k k[x] generated by
(x−α)⊗1 and 1⊗ (x−α).

EXERCISE 10.1.24. (An Open Immersion is Separable) Let f : R→ S be a homomor-
phism of commutative rings. Show that if the continuous map f ♯ : SpecS→ SpecR is an
open immersion (see Exercise 3.5.33), then S is separable over R. (Use Corollary 3.5.37 to
show S is a finitely generated R-algebra.)

2. Differentials

This section contains an introduction to the module of Kähler differentials associated
to a commutative R-algebra. The module of differentials is defined and its fundamental
properties are proved. These results are applied in Section 10.2.2 to derive new tests for
separability, in Section 10.3.2 to study separably generated field extensions, and in Sec-
tion 11.6 to derive new tests for regularity.

2.1. The Definition and Fundamental Exact Sequences. A general reference for
this section is [42]. Let A be a commutative R-algebra and Ae = A⊗R A. The multi-
plication map a⊗ b 7→ ab induces a homomorphism of R-algebras µ : A⊗R A→ A (see
Exercise 2.3.36). As in Eq. (1.5), the kernel of µ is denoted JA/R and there is an exact
sequence of Ae-modules

0→ JA/R→ Ae µ−→ A→ 0.

Using the R-algebra homomorphism ρ : A→ Ae defined by a 7→ a⊗ 1, we turn Ae into a
left A-module. Consequently JA/R and J2

A/R are also A-modules. Let ΩA/R be defined by
the exact sequence

0→ J2
A/R→ JA/R

π−→ΩA/R→ 0.

The left A-module ΩA/R is called the module of Kähler differentials. As in Example 10.1.3,
there is an R-derivation δ : A→ JA/R defined by a 7→ a⊗ 1− 1⊗ a. Let dA/R = πδ . The
reader should verify that dA/R : A→ΩA/R is an R-derivation. The derivation dA/R, together
with the module of Kähler differentials satisfies a universal mapping property. In Theo-
rem 10.2.1, a left A-module is made into a two-sided A/R-module by making the right
multiplication agree with the left multiplication. An R-module homomorphism ∂ : A→M
is an R-derivation of A, if ∂ (ab) = a∂ (b)+b∂ (a), for all a,b ∈ A.

THEOREM 10.2.1. Let A be a commutative R-algebra. For any left A-module M, if
∂ : A→ M is an R-derivation of A, then there exists a unique A-module homomorphism
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f : ΩA/R→M such that the diagram

A

dA/R !!

∂ // M

ΩA/R

∃ f

==

commutes. There is an isomorphism of A-modules HomA(ΩA/R,M)∼= DerR(A,M) defined
by the assignment f 7→ f dA/R.

PROOF. The exact sequence

JA/R
π−→ΩA/R→ 0

gives rise to the exact sequence

0→ HomA(ΩA/R,M)→ HomA(JA/R,M).

Let f ∈ HomA(ΩA/R,M). For any a,b,x ∈ A,

( f π)
(
(a⊗b)(x⊗1−1⊗ x)

)
= ( f π)

((
a(1⊗b−b⊗1)

+ab⊗1
)
(x⊗1−1⊗ x)

)
= ( f π)

(
a(1⊗b−b⊗1)(x⊗1−1⊗ x)

+ab(x⊗1−1⊗ x)
)

= f
(
ab(x⊗1−1⊗ x)

)
= ab f (x⊗1−1⊗ x).

This means f π is in HomAe(JA/R,M), so the sequence

0→ HomA(ΩA/R,M)
ζ−→ HomAe(JA/R,M)

is exact. Let g ∈ HomAe(JA/R,M). For all a,b ∈ A,

g
(
(a⊗1−1⊗a)(b⊗1−1⊗b)

)
= g
(
a⊗1(b⊗1−1⊗b)

)
−g
(
1⊗a(b⊗1−1⊗b)

)
= ag(b⊗1−1⊗b)−g(b⊗1−1⊗b)a

= 0.

Since g annihilates J2
A/R, there exists f : ΩA/R→M such that g = f π . This proves ζ is an

isomorphism. Combined with Proposition 10.1.6, this shows that there is an isomorphism
HomA(ΩA/R,M)∼= DerR(A,M) which is defined by f 7→ f πδ . Because A is commutative,
the maps are A-linear. □

PROPOSITION 10.2.2. Let S be a commutative R-algebra which is generated as an
R-algebra by the set X = {xi}i∈I . Then

(1) ΩS/R is generated as an S-module by dS/R(X) = {dS/Rxi}i∈I .
(2) If S is a polynomial ring over R (that is, if X is a set of indeterminates), then

ΩS/R is a free S-module with basis dS/R(X).
(3) If S is a finitely generated R-algebra, then ΩS/R is a finitely generated S-module.
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PROOF. Part (3) follows directly from Part (1).
(1): By Lemma 10.1.5, JS/R is generated as an Se-module by the set δ (X) = {xi⊗1−

1⊗ xi}i∈I . Let π : JS/R→ JS/R/J2
S/R be the natural map. Given any a,b ∈ S and x ∈ X ,

π
(
a⊗b(x⊗1−1⊗ x)

)
= π

(
(a(1⊗b−b⊗1)+(ab⊗1))(x⊗1−1⊗ x)

)
= π

(
a(1⊗b−b⊗1)(x⊗1−1⊗ x)

)
+π
(
(ab⊗1)(x⊗1−1⊗ x)

)
= π

(
(ab⊗1)(x⊗1−1⊗ x)

)
.

It follows from this that ΩS/R = JS/R/J2
S/R is generated as a left S-module by the set

πδ (X) = dS/R(X).
(2): For each i ∈ I, let ∂i : S→ S represent the “partial derivative with respect to xi”

function. By the Universal Mapping Property (Theorem 10.2.1), there exists a unique
bi ∈ HomS(ΩS/R,S) such that for all j ∈ I

bidS/Rx j = ∂ix j =

{
1 if i = j,
0 if i ̸= j.

Suppose ∑ j s jdS/Rx j = 0 is a finite dependence relation in ΩS/R where each s j ∈ S. Apply-
ing bi we see that si = 0. □

2.1.1. The Fundamental Exact Sequences. Now we derive the so-called fundamental
exact sequences for the module of differentials.

THEOREM 10.2.3. (The First Fundamental Exact Sequence) Let S be a commutative
R-algebra and A a commutative S-algebra.

(1) There is an exact sequence of natural homomorphisms of A-modules

ΩS/R⊗S A a−→ΩA/R
b−→ΩA/S→ 0.

(2) There is a split exact sequence of natural homomorphisms of A-modules

0→ΩS/R⊗S A a−→ΩA/R
b−→ΩA/S→ 0

if and only if given any A-module M and any R-derivation ∂ : S→M, there exists
an R-derivation D : A→M such that the diagram

S ∂ //

��

M

A
D

??

commutes.

PROOF. (1): Step 1: Define the map a. By Exercise 10.2.10, the commutative diagram
of commutative rings

R

��

// R

��
S // A

induces a natural homomorphism of A-modules a : ΩS/R⊗S A→ΩA/R.
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Step 2: Define the map b. Again, by Exercise 10.2.10, the commutative diagram of
commutative rings

R

��

// S

��
A // A

induces a natural homomorphism of A-modules b : ΩA/R→ΩA/S.
Step 3: b is onto. A generating set for A as an R-algebra is a generating set for A as an

S-algebra. It is evident that b is onto, by Proposition 10.2.2.
Step 4: The sequence is a complex. In the commutative diagram

S

dS/R

��

// A

dA/S

��
ΩS/R

c // ΩA/S

c is the zero map. Therefore, ba = 0.
Step 5: kerb = ima. By Lemma 2.4.6, this is true if

(2.1) 0→ HomA(ΩA/S,M)
Hb−→ HomA(ΩA/R,M)

Ha−→ HomA(ΩS/R⊗S A,M)

is exact for all A-modules M. By the adjoint isomorphism of Theorem 2.4.10 and Theo-
rem 10.2.1, (2.1) is naturally isomorphic to

0→ DerS(A,M)→ DerR(A,M)→ DerR(S,M)

which is exact, by Exercise 10.1.11.
(2): By Exercise 2.4.17, there is a left inverse for a if and only if for all all A-modules

M, the map Ha in (2.1) is onto. Equivalently, DerR(A,M)→ DerR(S,M)→ 0 is exact, for
all A-modules M. □

Let R be a commutative ring and S a commutative R-algebra. Let I be an ideal of S
and set A = S/I. Define a function γ : I → ΩS/R⊗S A by x 7→ dS/Rx⊗ 1. If x,y ∈ I, then
γ(xy) = xdS/Ry⊗1+ ydS/Rx⊗1 = dS/Ry⊗ x+dS/Rx⊗ y = 0. Therefore, γ factors through
I2 and we have the A-module homomorphism (also denoted by γ)

γ : I/I2→ΩS/R⊗S A.

THEOREM 10.2.4. (The Second Fundamental Exact Sequence) Let S be a commuta-
tive R-algebra, I an ideal in S, and A = S/I. The sequence of A-modules

I/I2 γ−→ΩS/R⊗S A a−→ΩA/R→ 0

is exact.

PROOF. Step 1: a is onto and the sequence is a complex. By Exercise 10.2.10, the
diagram

S

dS/R

��

θ // A

dA/R

��
ΩS/R

a // ΩA/R

commutes. Since θ is onto and the vertical maps are onto, a is onto. If x ∈ I, then
dA/Rθ(x) = 0, hence imγ ⊆ kera.



2. DIFFERENTIALS 407

Step 2: imγ = kera. As in the proof of Theorem 10.2.3, it suffices to prove

0→ HomA(ΩA/R,M)
Ha−→ HomA(ΩS/R⊗S A,M)

Hγ−→ HomA(I/I2,M)

is exact, for every A-module M. By the adjoint isomorphism of Theorem 2.4.10 and The-
orem 10.2.1, this last sequence is isomorphic to

0→ DerR(A,M)→ DerR(S,M)→ HomS(I,M).

The reader should verify that this last sequence is exact. □

2.2. More Tests for Separability. In this section ideas from Section 10.2 are applied
to derive separability criteria for commutative R-algebras. For example, for a finitely gen-
erated algebra, the vanishing of the module of Kähler differentials is equivalent to being
separable (Theorem 10.2.5). As an application, we prove the Jacobian Criterion for Sep-
arability (Proposition 10.2.7). General references for the material in this section are [19],
[37] and [49].

THEOREM 10.2.5. Let S be a commutative finitely generated R-algebra. The following
are equivalent.

(1) S is a separable R-algebra.
(2) DerR(S,M) = 0 for every left S-module M.
(3) ΩS/R = 0.

PROOF. (3) implies (2): This follows from Theorem 10.2.1.
(2) implies (3): If DerR(S,ΩS/R)= 0, then HomS(ΩS/R,ΩS/R)= 0, by Theorem 10.2.1.

From this we conclude that ΩS/R = 0.
(1) implies (3): By Proposition 5.1.2, JS/R is an idempotent generated ideal in Se.

Therefore, J2
S/R = JS/R, by Exercise 2.2.7 (1).

(3) implies (1): This is the only part of the proof where we need to assume S is finitely
generated. By Lemma 10.1.5, JS/R is a finitely generated ideal of Se. We are given that
J2

S/R = JS/R. It follows from Exercise 2.2.7 (2) and Proposition 5.1.2 that S/R is separable.
□

THEOREM 10.2.6. Let S be a commutative finitely generated R-algebra with structure
homomorphism θ : R→ S. The following are equivalent.

(1) S is a separable R-algebra.
(2) For every p ∈ SpecR, if kp = Rp/(pRp), then S⊗R kp is a separable kp-algebra.
(3) For every p∈ SpecR, and every q∈ SpecS such that p= θ−1(q), pSq = qSq, and

kq = Sq/(qSq) is a finite separable extension of the field kp = Rp/(pRp).
(4) For every algebraically closed field F and homomorphism of rings φ : R→ F,

S⊗R F is a separable F-algebra.

PROOF. (1) implies (2): This follows directly from Corollary 5.3.2.
(1) implies (4): This follows directly from Corollary 5.3.2.
(4) implies (2): Let p ∈ SpecR. Let F be the algebraic closure of kp = Rp/(pRp) and

φ : R→ F the natural map. By assumption, S⊗R F is separable over F . Corollary 5.3.5
implies S⊗R kp is separable over kp.

(2) implies (1): By Proposition 10.2.2, ΩS/R is a finitely generated S-module. By
Theorem 10.2.5, to finish the proof it is enough to show ΩS/R = 0. By Proposition 3.1.9,
it is enough to show ΩS/R⊗S Sq = 0 for every q ∈ SpecS. Fix q ∈ SpecS and let p =
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q∩R. Since
(
ΩS/R

)
q
= ΩS/R⊗S Sq is finitely generated over Sq and mp ⊆ mq, by The-

orem 4.2.3 (Nakayama’s Lemma), it is enough to show
(
ΩS/R

)
q
/mp

(
ΩS/R

)
q
= 0. By

Exercise 10.2.11, ΩS/R⊗R kp = ΩS⊗Rkp/kp , and by Theorem 10.2.5, ΩS⊗Rkp/kp = 0. The
reader should verify that(

ΩS/R
)
q
/mp

(
ΩS/R

)
q
=
(
ΩS/R

)
q
⊗Rp Rp/mp

=
(
ΩS/R

)
q
⊗R kp

∼= Sq⊗S ΩS/R⊗R kp
∼= Sq⊗S ΩS⊗Rkp/kp

= 0.

(1) implies (3): Assume S is R-separable, q ∈ SpecS and p= q∩R. By Exercise 5.4.9,
Sq is separable over Rp. By Exercise 5.5.15, mpSq =mq and kq = Sq⊗R kp is a separable
field extension of kp.

(3) implies (2): Fix p∈ SpecR such that there exists some q∈ SpecS and p= q∩R. By
Exercise 3.1.25, qp = q⊗R Rp is a prime ideal of Sp = S⊗R Rp and the local ring of Sp at
qp is Sq. By Exercise 3.1.20, Sp/qp is an integral domain with quotient field kq = Sq/mq.
The diagram

Sp/qp // kq

Rp/mp

OO

= // kp

OO

commutes. By hypothesis, kq/kp is a finite dimensional field extension. It follows from
Lemma 6.1.4 that Sp/qp is a field. That is, qp is a maximal ideal in Sp. It follows
from Exercise 3.4.11 that every prime ideal in S⊗R kp is a maximal ideal, and moreover
each maximal ideal is of the form q⊗R kp for some q lying over p. Because S⊗R kp
is finitely generated as a kp-algebra, S⊗R kp is noetherian by the Hilbert Basis Theo-
rem (Theorem 6.2.1). By Proposition 4.5.4, S⊗R kp is artinian. By Theorem 4.5.6, if
Max(S⊗R kp) = {n1, . . . ,nn}, then S⊗R kp = (S⊗R kp)n1 ⊕ ·· · ⊕ (S⊗R kp)nn . Suppose
ni = qi⊗R kp is an arbitrary maximal ideal of S⊗R kp. By Exercise 3.4.11,

(S⊗R kp)ni = (S⊗R kp)qi⊗Rkp = Sqi/mpSqi = Sqi/mqi = kqi .

This proves that S⊗R kp ∼= kq1 ⊕·· ·⊕ kqn and by Corollary 5.5.9, we are done. □

We conclude this section with a proof of a jacobian criterion for separability. For com-
putations it turns out to be one of the most useful tests for separability. Proposition 10.2.7
is a generalization of Proposition 5.6.2.

PROPOSITION 10.2.7. Let R be a commutative ring. Let I = ( f1, . . . , fn) be an ideal
in S = R[x1, . . . ,xn] generated by a set of n polynomials in n indeterminates. Then S/I is
separable over R if and only if the determinant of the jacobian matrix (∂ fi/∂x j) maps to
a unit in S/I.

PROOF. Let A = S/I. We use the notation of Theorem 10.2.4. The sequence

I/I2 γ−→ΩS/R⊗S A a−→ΩA/R→ 0
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is exact. By Theorem 10.2.5, A/R is separable if and only if γ is onto. By Proposi-
tion 10.2.2, ΩS/R⊗S A is a free A-module on the basis {dx1, . . . ,dxn}. For each i,

γ( fi) =
n

∑
j=1

∂ fi

∂x j
dx j.

Thus, ΩA/R is isomorphic to the cokernel of the A-module homomorphism

A(n) J−→ A(n)

where J denotes multiplication by the jacobian matrix (∂ fi/∂x j). The matrix J is invertible
if and only if the determinant of J is a unit (Lemma 1.7.5). By Corollary 2.4.2, if J is onto,
then J is invertible. □

2.3. An Application to Algebraic Varieties. Let k be a field and B a finitely gener-
ated k-algebra such that B is an integral domain with Krull dimension one. Let q be a max-
imal ideal of B such that the local ring Bq is a PID with maximal ideal m(q) and residue
field k(q). Using Exercise 3.1.31 we see that there exists π ∈ B such that m(q) = πBq.
Hence π is a local parameter for Bq (see Theorem 11.2.11). Proposition 10.2.8 is from [56,
Proposition II.1.4, p. 18].

PROPOSITION 10.2.8. Let k be a field and B a finitely generated k-algebra such that
B is an integral domain with Krull dimension one and quotient field L. Let q be a maximal
ideal in B such that Bq is a PID with maximal ideal m(q) and residue field k(q). Let π ∈ B
such that m(q) = πBq. Then π is transcendental over k, k(π) is a subfield of L, and if k(q)
is a separable extension of k, then L is a separable field extension of k(π).

PROOF. Since π ∈ q, π is not invertible in Bq. Therefore, the map k[x]→ Bq defined
by x 7→ π , maps k[x] isomorphically onto k[π]. So π is transcendental over k. Let A =
k[π]⊆ B. Let R be the local ring Ap, where p= πA. Then Ap is a local PID with maximal
ideal πAp. We have the commutative diagram of subrings:

L

Bq

==

k(π)

OO

B

;;

Ap

==OO

A = k[π]

OO ;;

Since B is a finitely generated k-algebra, L is a finitely generated field extension of k(π). By
Corollary 10.3.3, L has transcendence degree 1 over k. Therefore, L is a finitely generated
algebraic extension of k(π). Let S = B⊗A R the localization of B in L with respect to the
multiplicative set A− p. Then S is a finitely generated R-algebra. Consider the tower of
subrings B⊆ S⊆ Bq ⊆ L. By Corollary 9.7.6, SpecS is finite, and by Corollary 3.5.38, Bq
is a finitely generated S-algebra. It follows that Bq is a finitely generated R-algebra. By
Theorem 10.2.6, Bq is a separable R-algebra. Then by Exercise 5.4.9, L is separable over
k(π). □

Now we prove a converse to Proposition 10.2.8.
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PROPOSITION 10.2.9. Let k be a field, S/R an extension of finitely generated commu-
tative k-algebras. Assume S and R are integral domains and let L/K be the corresponding
extension of the fields of fractions. If L is a finitely generated separable extension field of
K, then there exists a maximal ideal m ∈MaxS such that Sm is separable over R.

PROOF. Let U be the set of all points P in SpecS such that SP is a separable R-algebra.
By Exercise 10.2.14, U is an open subset of SpecS. By Exercise 5.1.10, Proposition 5.5.6,
and Theorem 5.4.2, L is separable over R. Therefore, U is an open neighborhood of (0).
By Exercise 6.3.9, U contains a closed point of SpecS. □

2.4. Exercises.

EXERCISE 10.2.10. Let
R

��

// S

��
A θ // B

be a commutative diagram of commutative rings. Show that there exists a unique homo-
morphism ψ such that the diagram

A

dA/R

��

θ // B

dB/S

��
ΩA/R

∃ψ // ΩB/S

of A-modules commutes. Show that ψ induces a homomorphism ΩA/R⊗A B→ ΩB/S of
B-modules.

EXERCISE 10.2.11. Suppose A and S are commutative R-algebras. Show that there
exists a unique isomorphism φ such that the diagram

A⊗R S

dA⊗RS/S $$

dA/R⊗1
// ΩA/R⊗R S

ΩA⊗RS/S

∃φ

99

of S-modules commutes. (Hint: The inverse of φ is constructed in Exercise 10.2.10.)

EXERCISE 10.2.12. Let A be a commutative R-algebra and W ⊆ A a multiplicative
set. Let AW denote the localization W−1A. Show that there exists an isomorphism of
AW -modules ΩAW /R

∼= ΩA/R⊗A AW =W−1ΩA/R. (Hint: Construct ΩA/R⊗A AW →ΩAW /R
using Exercise 10.2.10.)

EXERCISE 10.2.13. Let R be a commutative ring and S a commutative R-algebra. Let
A = S[x1, . . . ,xn] be the polynomial ring over S in n variables. Show that the sequence

0→ΩS/R⊗S A a−→ΩA/R
b−→ΩA/S→ 0

is split exact.

EXERCISE 10.2.14. Let S be a finitely generated commutative R-algebra. Let U be
the set of all points P in SpecS such that SP is a separable R-algebra. Prove that U is an
open (possibly empty) subset of SpecS. (Hint: Apply Exercise 9.2.17 to ΩS/R.)
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3. Noether Normalization

This section is devoted to proving Emmy Noether’s Normalization Lemma. We actu-
ally prove two different versions. The first form appears in Corollary 10.3.3. In summary,
it says that if A is a finitely generated commutative algebra over a field k with Krull di-
mension dim(A) = m, then there is a subring S of A which is isomorphic to a polynomial
ring in m variables over k and A is integral over S. Section 10.3.2 contains an introduction
to the notion of separably generated field extensions. We prove a strong version of the
Noether Normalization Lemma (Theorem 10.3.10) and apply it to prove the theorem on
the finiteness of the integral closure of a finitely generated k-algebra (Theorem 10.3.11).
General references for this section are [19], [42] and [62].

3.1. First Form of the Normalization Lemma.
THEOREM 10.3.1. Let R be a commutative noetherian ring and x1, . . . ,xn some inde-

terminates.
(1) dim(R[x1, . . . ,xn]) = dim(R)+n.
(2) If R is a field, dim(R[x1, . . . ,xn]) = n and the ideal (x1, . . . ,x j) is a prime ideal of

height j for all j = 1, . . . ,n.

PROOF. (2): Is left to the reader.
(1): It is enough to prove dim(R[x]) = dim(R)+1. For notational simplicity, write S =

R[x]. Since S is a free R-module, it is a faithfully flat R-module. Therefore SpecS→ SpecR
is onto and going down holds. Let P∈ SpecR and choose Q∈ SpecS to be maximal among
all primes lying over P. The prime ideals lying over P are in one-to-one correspondence
with the elements of the fiber over P. But the fiber over P is Spec(R[x]⊗R kP), which
we can identify with Spec(kP[x]). The ring kP[x] is a PID, so a maximal ideal has height
one. This proves ht(Q/PS) = 1. If we pick P ∈ Spec(R) such that ht(P) = dim(R), then
by Theorem 9.6.21, dim(S) ≥ dim(SQ) = dim(RP) + 1 = dim(R) + 1. Conversely, pick
Q ∈ Spec(S) such that ht(Q) = dim(S). Set P = Q∩R. By Theorem 9.6.21, dim(S) =
dim(SQ) = dim(RP)+1≤ dim(R)+1. □

THEOREM 10.3.2. Let k be a field and A = k[x1, . . . ,xn]. Let I be a nonunit ideal of A
such that I has height r. There exist y1, . . . ,yn in A such that

(1) the set {y1, . . . ,yn} is algebraically independent over k,
(2) A is integral over k[y1, . . . ,yn],
(3) I∩ k[y1, . . . ,yn] = (y1, . . . ,yr), and
(4) y1, . . . ,yn can be chosen in such a way that for 1 ≤ j ≤ n− r, yr+ j = xr+ j +

h j(x1, . . . ,xr), where h j is a polynomial in the image of Z[x1, . . . ,xr]→ A. More-
over, if chark = p> 0, then h j can be chosen to be in the image of Z[xp

1 , . . . ,x
p
r ]→

A.

PROOF. The proof is by induction on r. If r = 0, then I = (0) because A is an integral
domain. Take each yi to be equal to xi.

Step 1: r = 1. Pick y1 = f (x1, . . . ,xn) to be any nonzero element in I. Write

y1 = f (x1, . . . ,xn) =
t

∑
i=1

ai fi

as a sum of distinct monomials, where each ai is an invertible element of k and fi =
xe1i

1 · · ·x
eni
n . The exponents e ji define t distinct monomials, hence they also define t dis-

tinct polynomials qi(z) = e1i + e2iz2 + · · ·+ enizn in Z[z]. For some sufficiently large pos-
itive integer v, the values q1(v), . . . ,qt(v) are distinct. Define a weight function µ on the
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set of monomials in k[x1, . . . ,xn] by the rule µ(xe1
1 · · ·xen

n ) = e1 + e2v2 + · · ·+ envn. So
µ( f1), . . . ,µ( ft) are distinct positive integers. Without loss of generality, assume µ( f1) is
maximal. Set y2 = x2− xv2

1 , . . . ,yn = xn− xvn

1 . Consider

y1 = f (x1,y2 + xv2

1 , . . . ,yn + xvn

1 )

=
t

∑
i=1

ai fi(x1,y2 + xv2

1 , . . . ,yn + xvn

1 )

=
t

∑
i=1

aix
e1i
1 (y2 + xv2

1 )e2i · · ·(yn + xvn

1 )eni

=
t

∑
i=1

ai
(
xµ( fi)

1 +gi(x1,y2, . . . ,yn)
)

where each gi is a polynomial in k[x1,y2, . . . ,yn] and the degree of gi in x1 is less than µ( fi).
Assuming µ( f1) is maximal, we can write

(3.1) y1 = a1xµ( fi)
1 +g(x1,y2, . . . ,yn)

where g is a polynomial in k[x1,y2, . . . ,yn], and the degree of g in x1 is less than µ( fi).
Equation (3.1) shows that x1 is integral over k[y1, . . . ,yn]. It follows that A = k[x1, . . . ,xn] =
k[y1, . . . ,yn][x1] is integral over k[y1, . . . ,yn]. Therefore the extension of quotient fields
k(x1, . . . ,xn)/k(y1, . . . ,yn) is algebraic. By Theorem 1.8.8, the set {y1, . . . ,yn} is alge-
braically independent over k. Up to isomorphism, the ring B = k[y1, . . . ,yn] is a poly-
nomial ring in n variables over k, hence is integrally closed in its field of quotients. By
Theorem 6.3.6 (5), going down holds between B and A. By Theorem 10.3.1, the ideal
(y1) in k[y1, . . . ,yn] is prime of height one. By Theorem 9.6.22, ht(I) = ht(I ∩B). Since
(y1)⊆ I∩B, putting all this together proves that (y1) = I∩B.

Step 2: r > 1. By Exercise 9.6.19, let J ⊆ I be an ideal such that the height of J is
equal to r− 1. By induction on r, there exist z1, . . . ,zn in A such that A is integral over
B = k[z1, . . . ,zn] and J∩B = (z1, . . . ,zr−1) ⊆ I ∩B. Write I′ = I ∩B. By Theorem 9.6.22,
ht(I) = ht(I′) = r. There exists a polynomial f in I′− (z1, . . . ,zr−1) and by subtracting
off an element of (z1, . . . ,zr−1), we can assume f is a nonzero polynomial in k[zr, . . . ,zn].
Set y1 = z1, . . . ,yr−1 = zr−1. Set yr = f . Proceed as in Step 1. Let v be a positive integer
and set yr+1 = zr+1− zvr+1

r , . . . ,yn = zn− zvn
r . For a sufficiently large v, B is integral over

C = k[y1, . . . ,yn]. The set {y1, . . . ,yn} is algebraically independent over k. The height of
I ∩C is equal to the height of I. Since (y1, . . . ,yr) is a prime ideal of height r which is
contained in I∩C, the two ideals are equal. □

COROLLARY 10.3.3. (E. Noether’s Normalization Lemma) Let k be a field and A a
finitely generated commutative k-algebra. There exist z1, . . . ,zm in A such that

(1) the set {z1, . . . ,zm} is algebraically independent over k,
(2) A is integral over k[z1, . . . ,zm],
(3) dim(A) = m, and
(4) if A is an integral domain with quotient field K, then tr.degk(K) = m.

PROOF. Let α1, . . . ,αn be a generating set for A as a k-algebra. The assignments
xi 7→ αi define an epimorphism φ : k[x1, . . . ,xn]→ A. Let I be the kernel of φ . Assume
ht(I) = r. By Theorem 10.3.2, there exist y1, . . . ,yn in k[x1, . . . ,xn] which are algebraically
independent over k such that k[x1, . . . ,xn] is integral over k[y1, . . . ,yn] and I∩k[y1, . . . ,yn] =
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(y1, . . . ,yr). The diagram

k[y1, . . . ,yn]
ψ //

��

k[x1, . . . ,xn]

φ

��
k[yr+1, . . . ,yn]

θ // A = k[x1, . . . ,xn]/I

commutes. The vertical maps are onto. The horizontal maps ψ and θ are one-to-one. Since
A is integral over k[y1, . . . ,yn], θ is integral. Let m = n− r and set z1 = θ(yr+1), . . . ,zm =
θ(yn). The set {z1, . . . ,zm} is algebraically independent over k and A is integral over
k[z1, . . . ,zm]. By Theorem 9.6.22, it follows that dim(A) = m. If A is an integral domain,
then the quotient field of A is algebraic over k(z1, . . . ,zm), so Part (4) follows from results
in Section 1.8.4. □

COROLLARY 10.3.4. Let k be a field and A an integral domain which is a finitely
generated commutative k-algebra.

(1) If p ∈ SpecA, then dim(A/p)+ht(p) = dim(A).
(2) If p and q are in SpecA such that p⊇ q, then ht(p/q) = ht(p)−ht(q).

PROOF. (1): By Corollary 10.3.3, there exist y1, . . . ,yn in A such that A is integral over
B = k[y1, . . . ,yn] and n = dim(B) = dim(A). By Theorem 6.3.6 (5) and Theorem 9.6.22 (3),
ht(p∩B) = ht(p). Since A/p is integral over B, we have A/p is integral over B/p∩B. By
Theorem 9.6.22 (1), dim(A/p) = dim(B/p∩B). By Theorem 10.3.2, if r = ht(p∩B), then
there exist z1, . . . ,zn in B such that B is integral over C = k[z1, . . . ,zn], p∩C = (z1, . . . ,zr)
and dim(B/p∩B) = dim(C/p∩C) = n− r. This proves (1).

(2): By Part (1), dim(A/p) + ht(p) = dim(A) = dim(A/q) + ht(q), which implies
ht(p)− ht(q) = dim(A/q)− dim(A/p). By Part (1) applied to the prime ideal p/q in
Spec(A/q), dim(A/p)+ht(p/q) = dim(A/q). Combine these results to get (2). □

3.2. Separably Generated Extension Fields. This section contains an introduction
to the notion of separably generated field extensions.

LEMMA 10.3.5. Let k⊆K ⊆ F be a tower of field extensions. If F = K(α) is a simple
algebraic extension of K, then

dimK ΩK/k ≤ dimF ΩF/k ≤ 1+dimK ΩK/k.

PROOF. Let f ∈ K[x] be the irreducible polynomial of α . Let I be the principal ideal
in K[x] generated by f . By Theorem 10.2.4,

I/I2 γ−→ΩK[x]/k⊗K[x] F
a−→ΩF/k→ 0

is an exact sequence of F-vector spaces. By Exercise 10.2.13 and Proposition 10.2.2,
ΩK[x]/k is a free K[x]-module of rank 1+ dimK ΩK/k. The image of γ is generated over F
by γ( f ), hence has dimension less than or equal to one. □

Let F/k be a finitely generated extension of fields. Let Ξ⊆ F be a transcendence base
for F/k. We say Ξ is a separating transcendence base of F/k in case F is a separable
algebraic extension of k(Ξ). We say F/k is separably generated if there exists a separating
transcendence base for F/k.

THEOREM 10.3.6. Let F be a finitely generated extension field of k.
(1) dimF ΩF/k ≥ tr.degk F.
(2) dimF ΩF/k = tr.degk F if and only if F/k is separably generated.
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(3) ΩF/k = 0 if and only if F is separable over k.

PROOF. (3): This part follows from Theorem 10.2.5, Corollary 5.5.3, and Proposi-
tion 5.5.6.

(1): A transcendence base ξ1, . . . ,ξn exists for F/k, by Theorem 1.8.8. If we set
K = k(ξ1, . . . ,ξn), then F/K is finite dimensional. Applying Lemma 10.3.5 iteratively,
we get dimF ΩF/k ≥ dimK ΩK/k. Note that K is the quotient field of k[ξ1, . . . ,ξn]. By
Proposition 10.2.2 and Exercise 10.2.12, dimK ΩK/k = n = tr.degk F .

(2): Assume ξ1, . . . ,ξn is a transcendence base and K = k(ξ1, . . . ,ξn). If F/K is sepa-
rable, then ΩF/K = 0, by Theorem 10.2.5. Theorem 10.2.3 implies

ΩK/k⊗K F a−→ΩF/k→ 0

is exact. Therefore, equality holds in Part (1). Conversely, suppose in Part (1) that equality
holds. Let n = tr.degk F and choose ξ1, . . . ,ξn in F such that the set dF/k(ξ1), . . . ,dF/k(ξn)

is a basis for the F-vector space ΩF/k. Let K = k(ξ1, . . . ,ξn). The diagram

K

dK/k

��

// F

dF/k

��
ΩK/k

ψ // ΩF/k

commutes. The image of ψ contains a generating set for ΩF/k, hence a : ΩK/k⊗R F →
ΩF/k is onto. By Theorem 10.2.3, ΩF/K = 0. By Part (3), F/K is separable and finite
dimensional. By Theorem 1.8.8, the set {ξ1, . . . ,ξn} contains a transcendence base for
F/k. Since n = tr.degk F , Theorem 1.8.8 implies that the set ξ1, . . . ,ξn is a transcendence
base for F/k. □

PROPOSITION 10.3.7. (S. MacLane) Let k be a field and F = k(a1, . . . ,an) a finitely
generated extension field of k. If F/k is separably generated, then there exists a subset of
{a1, . . . ,an} which is a separating transcendence base for F/k.

PROOF. Let r = tr.degk(F). Let S = k[x1, . . . ,xn] be the polynomial ring over k in n
indeterminates. Define φ : S→ F by xi 7→ ai. Since the image of φ is k[a1, . . . ,an], an
integral domain, the kernel of φ is a prime ideal P of S. The ideal P is finitely generated,
hence we can write P = ( f1, . . . , fm). Let A = S/P. Then F is the quotient field of A. The
sequence

(3.2) P/P2 γ−→ΩS/k⊗S A a−→ΩA/k→ 0

of Theorem 10.2.4 is exact, ΩS/k⊗S A is a free A-module, and {dx1, . . . ,dxn} is a free basis.
For each i,

γ( fi) =
n

∑
j=1

∂ fi

∂x j
dx j.

Tensor (3.2) with ( )⊗A F . The sequence

F(m) J−→ F(n)→ΩF/k→ 0

is exact, where J is multiplication by the jacobian matrix J = (∂ fi/∂x j). Since F/k is
separably generated, by Theorem 10.3.6, the rank of J is n− r. This implies there exists
an (n− r)-by-(n− r) submatrix of J which also has rank n− r. Relabel the xi if necessary
and assume the rank of the submatrix

(∂ fi/∂x j | 1≤ i≤ n− r,r+1≤ j ≤ n)
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is n− r. The proof of Theorem 10.3.6 shows the set {dF/k(a1), . . . ,dF/k(ar)} is a basis for
ΩF/k over F and a1, . . . ,ar is a separating transcendence base for F/k. □

LEMMA 10.3.8. Let k be a field and F = k(a1, . . . ,an) a finitely generated extension
field of k. If tr.degk F = r and F/k is not separably generated, then upon relabeling the ai,
the field k(a1, . . . ,ar+1) is of transcendence degree r over k, and is not separably generated
over k.

PROOF. The proof is by induction on n. If n = r+ 1, then there is nothing to prove.
Assume n > r + 1 and that the result is true for n− 1. Relabel the ai and assume a1 is
algebraically dependent on a2, . . . ,an over k. Then k(a2, . . . ,an) has transcendence degree
r over k. If k(a2, . . . ,an) is not separably generated over k, then by induction we are done.
Assume k(a2, . . . ,an) is separably generated over k. By Proposition 10.3.7, we can relabel
the ai and assume a2, . . . ,ar+1 is a separating transcendence base for k(a2, . . . ,an) over k.
Then k(a2, . . . ,an) is separable and finite dimensional over k(a2, . . . ,ar+1). It follows that
k(a1,a2, . . . ,an) is separable and finite dimensional over k(a1,a2, . . . ,ar+1). By the transi-
tive property of separable field extensions, Theorem 5.4.2, it follows that k(a1,a2, . . . ,ar+1)
is not separably generated over k. □

THEOREM 10.3.9. Let k be a perfect field, and F/k a finitely generated extension of
fields.

(1) (F. K. Schmidt) F/k is separably generated.
(2) (Primitive Element Theorem) If r = tr.degk F, then there exists a transcendence

base Ξ = {ξ1, . . . ,ξr} for F/k, an element u ∈ F which is separable over k(Ξ),
and F = k(Ξ)[u].

PROOF. (1): Let r = tr.degk F and assume F = k(a1, . . . ,an). For contradiction’s sake,
assume F/k is not separably generated. Let p = chark. By Lemma 10.3.8, we reduce to
the case where n = r+1. Let S = k[x1, . . . ,xn] be the polynomial ring over k in n indeter-
minates. Define φ : S→ F by xi 7→ ai. Since the image of φ is k[a1, . . . ,an], an integral
domain, the kernel of φ is a prime ideal P of S. By Noether’s Normalization Lemma
(Corollaries 10.3.3 and 10.3.4), P has height one. Since S is a unique factorization domain,
there exists an irreducible polynomial f in S such that P = ( f ). View f (a1, . . . ,ar,xr+1)
as an element of k(a1, . . . ,ar)[xr+1]. Since ar+1 is not separable over k(a1, . . . ,ar), it fol-
lows that f is a polynomial in k[x1, . . . ,xr][x

p
r+1]. Iterate this argument r+ 1 times. Then

f ∈ k[xp
1 , . . . ,x

p
r ,x

p
r+1]. Since k is perfect, f = gp for some g ∈ S, a contradiction.

(2): This follows from Part (1), Proposition 10.3.7, and Theorem 5.5.8, the Primitive
Element Theorem. □

3.3. Second Form of the Normalization Lemma. We prove a second version of
Emmy Noether’s Normalization Lemma (Corollary 10.3.3). It requires the ground field to
be infinite. The advantage of this version is that it allows us to construct the underlying
polynomial ring in such a way that it contains a separating transcendence base. As an
application, we derive in Theorem 10.3.11 sufficient conditions for the integral closure of
an integral domain A to be a finitely generated A-module.

THEOREM 10.3.10. (Emmy Noether’s Normalization Lemma) Let k be an infinite field
and A a finitely generated commutative k-algebra. Assume A is an integral domain with
field of fractions K. Then there exist z1, . . . ,zm in A such that

(1) the set {z1, . . . ,zm} is algebraically independent over k,
(2) A is integral over k[z1, . . . ,zm],
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(3) dim(A) = m,
(4) tr.degk(K) = m, and
(5) if A is generated as a k-algebra by x1, . . . ,xn, then there are elements ai j in k such

that zi = ∑
n
j=1 ai jx j.

(6) If K is separably generated over k, then {z1, . . . ,zm} can be chosen in such a way
that K is separable over k(z1, . . . ,zm).

PROOF. We prove (6). The other cases are left to the reader. Our proof is based on
[62, I, Chapter V, Theorem 8, p. 266]. Let x1, . . . ,xn be a generating set for A as a k-algebra.
By Proposition 10.3.7, resort the list and assume {x1, . . . ,xm} is a separating transcendence
base for K over k. Proceed by induction on n. If m = n, then take zi = xi, for 1 ≤ i ≤ m,
and stop. Otherwise, assume n > m and assume the claim is true for any algebra on n−1
generators. Then each of xm+1, . . . ,xn is algebraic over k(x1, . . . ,xm).

Let A′ = k[x1, . . . ,xn−1], and K′ the field of fractions of A′. By assumption, xn is
separable over K′. Starting with the minimum polynomial for xn over K′, we can find
a polynomial P in k[X1, . . . ,Xn] such that P(x1, . . . ,xn−1,Xn) is a separable polynomial in
K′[Xn] and such that P(x1, . . . ,xn−1,xn) = 0. Write P as a sum

(3.3) P(X1, . . . ,Xn) =
q

∑
i=0

Pi(X1, . . . ,Xn)

where Pi(X1, . . . ,Xn) is a homogeneous polynomial of degree i in the polynomial ring
k[X1, . . . ,Xn], and Pq ̸= 0. Introduce new indeterminates Z1, . . . ,Zn−1, Λ1, . . . ,Λn−1 and
define an embedding of k-algebras

θ : k[X1, . . . ,Xn]→ k[Z1, . . . ,Zn−1,Λ1, . . . ,Λn−1,Xn]

X1 7→ Z1 +Λ1Xn

...
Xn−1 7→ Zn−1 +Λn−1Xn.

If we denote by F the image of P under θ , then

F = F(Z1, . . . ,Zn−1,Λ1, . . . ,Λn−1,Xn)

= P(Z1 +Λ1Xn, . . . ,Zn−1 +Λn−1Xn,Xn)

=
q

∑
i=0

Pi(Z1 +Λ1Xn, . . . ,Zn−1 +Λn−1Xn,Xn).

(3.4)

Because each Pi is homogeneous of degree i, if we expand F as a polynomial in Xn, the
highest degree term is

(3.5) Xq
n Pq(Λ1, . . . ,Λn−1,1).

By An−1
k we denote affine n−1-space over k with the Zariski topology (Section 6.2.2). The

zero set of Pq(Λ1, . . . ,Λn−1,1) in An−1
k is a closed subset, call it V1. Because the polynomial

Pq(Λ1, . . . ,Λn−1,1) is nonzero and k is infinite, we know that V1 ̸= An−1
k . There exists a

point (λ1, . . . ,λn−1) ∈ An−1
k such that if we set z1 = x1−λ1xn,zn−1 = xn−1−λn−1xn, then

(3.6) F(z1, . . . ,zn−1,λ1, . . . ,λn−1,Xn)

is a polynomial of degree q in k[z1, . . . ,zn−1][Xn] and the leading coefficient is a nonzero
element of k. Since F(z1, . . . ,zn−1,λ1, . . . ,λn−1,xn) = P(x1, . . . ,xn) = 0, this shows xn is
integral over k[z1, . . . ,zn−1]. To finish the proof, we show that there exists a choice for
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(λ1, . . . ,λn−1) such that xn is a simple root of the polynomial in (3.6). In (3.4), compute
the derivative of F with respect to Xn:

(3.7)
∂F
∂Xn

=
n−1

∑
i=1

Λi
∂P
∂Xi

+
∂P
∂Xn

.

Substituting X1 = x1, . . . ,Xn = xn, we have

(3.8)
∂F
∂Xn

(x1, . . . ,xn) =
n−1

∑
i=1

Λi
∂P
∂Xi

(x1, . . . ,xn)+
∂P
∂Xn

(x1, . . . ,xn).

which is a linear polynomial in k[Λ1, . . . ,Λn−1]. The polynomial (3.8) is not identically
zero, because for Λ1 = 0, . . . , Λn−1 = 0 it evaluates to ∂P/∂Xn(x1, . . . ,xn) which is nonzero
since xn is separable over K′. The zero set of (3.8) in An−1

k is a proper closed subset, call it
V2. Since V1∪V2 is the zero set of a nonzero polynomial in k[Λ1, . . . ,Λn−1], it is a proper
closed subset. Therefore, there is a point (λ1, . . . ,λn−1) such that (3.8) is nonzero and xn is
a simple root of the polynomial (3.6). □

As an application, we get the following finiteness theorem for the integral closure of
an integral domain in an extension of its quotient field. Theorem 10.3.11, which requires
A to be a finitely generated algebra over a field, is a strong version of Theorem 6.1.13.

THEOREM 10.3.11. Let A be an integral domain which is a finitely generated algebra
over a field k. Let K be the quotient field of A, and let L be a finitely generated algebraic
extension of K. If S is the integral closure of A in L, then S is a finitely generated A-module,
and is also a finitely generated k-algebra.

PROOF. Our proof is based on [62, I, Chapter V, Theorem 9, p. 267]. By the proof of
Theorem 6.1.13, there are elements λ1, . . . ,λn in S which generate L as a vector space over
K. Let B be the A-subalgebra of L generated by λ1, . . . ,λn. Then B is finitely generated
as an A-module, finitely generated as a k-algebra, L is the field of fractions of B, and S is
the integral closure of B in L. After replacing A with B and K with L, we assume S is the
integral closure of A in K. It is enough to show S is finitely generated as an A-module.

Let Ω be an algebraically closed field containing K. For the remainder of this proof,
every k-algebra is tacitly assumed to be a subring of Ω. Assume A is generated as a k-
algebra by x1, . . . ,xn. Let k̄ be the algebraic closure of k, and Ā the k̄-algebra generated
by x1, . . . ,xn. Let K̄ be the field of fractions of Ā. By Theorem 10.3.9, K̄ is separably
generated over k̄. By Theorem 10.3.10, there are elements z1, . . . ,zm in Ā which satisfy:

(a) k̄[z1, . . . ,zm] is a polynomial subring of Ā,
(b) Ā is integral over k̄[z1, . . . ,zm],
(c) there are elements ai j in k̄ such that zi = ∑

n
j=1 ai jx j, for 1≤ i≤ m,

(d) K̄ is separable over k̄(z1, . . . ,zm).

Let Pj be the minimum polynomial for x j over k̄(z1, . . . ,zm). By Theorem 6.1.11, Pj is
a polynomial with coefficients in k̄[z1, . . . ,zm]. Let F be the subfield of k̄ generated by
adjoining to k all of the elements ai j of (c), and all of the k̄-coefficients that appear in
P1, . . . ,Pn. Let A′ be the F-algebra generated by x1, . . . ,xn and let K′ be the field of fractions
of A′. By construction, we have:

(e) F [z1, . . . ,zm] is a polynomial subring of A′,
(f) A′ is integral over F [z1, . . . ,zm], and
(g) K′ is separable over F(z1, . . . ,zm).
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Let T be the integral closure of F [z1, . . . ,zm] in K′. By Theorem 6.1.13, T is a finitely
generated F [z1, . . . ,zm]-module. By (f), T contains A′, hence T is a finitely generated A′-
module. Since dimk(F) is finite, A′ is a finitely generated A-module. Therefore, T is a
finitely generated A-module. Since S = T ∩K, S is an A-submodule of T . Since A is
noetherian, S is a finitely generated A-module (Corollary 4.1.12). □

4. More Flatness Criteria

In this section we prove some necessary results on flatness. The material in this section
is from various sources, including [42], [23], [41], and [49].

4.1. Constructible Sets. Let X be a topological space and Z ⊆ X . We say Z is locally
closed in X if Z is an open subset of Z̄, the closure of Z in X .

LEMMA 10.4.1. The following are equivalent for a subset Z of a topological space X.

(1) Z is locally closed.
(2) For every point x ∈ Z, there exists an open neighborhood Ux such that Z∩Ux is

closed in Ux.
(3) There exists a closed set F in X and an open set G in X such that Z = F ∩G.

PROOF. Is left to the reader. □

We say that Z is a constructible set in X if Z is a finite union of locally closed sets in
X . By Lemma 10.4.1, a constructible set Z has a representation

Z =
r⋃

i=1

(Ui∩Fi)

where each Ui is open in X and each Fi is closed in X .

LEMMA 10.4.2. If Y and Z are constructible in X, then so are Y ∪Z, Y−Z, Y c =X−Y ,
and Y ∩Z.

PROOF. Write Y = (U1∩E1)∪·· ·∪(Ur∩Er) and Z = (V1∩F1)∪·· ·∪(Vs∩Fs) where
Ui,Vj are open and E j,Fj are closed for all i and j. Using the identity

U ∩E−V ∩F =U ∩E ∩ (V ∩F)c

=U ∩E ∩ (V c∪Fc)

= (U ∩E ∩V c)∪ (U ∩E ∩Fc)

=
(
U ∩ (E ∩V c)

)
∪
(
(U ∩Fc)∩E

)
the reader should verify that Y −V1∩F1 is constructible. Now use induction on s to prove
Y − Z is constructible. This also proves Y c = X −Y and Zc = X − Z are constructible.
Hence Y ∩Z = (Y c∪Zc)c is constructible. □

PROPOSITION 10.4.3. Let X be a noetherian topological space and Z a subset of X.
The following are equivalent.

(1) Z is constructible in X.
(2) For each irreducible closed set Y in X, either Y ∩Z is not dense in Y , or Y ∩Z

contains a nonempty open set of Y .
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PROOF. (1) implies (2): Write Z = (U1 ∩E1)∪ ·· · ∪ (Ur ∩Er). Since Y is closed, by
Proposition 1.3.7 we can decompose each Y ∩Ei into its irreducible components. There-
fore, we can write Y ∩ Z = (V1 ∩F1)∪ ·· · ∪ (Vs ∩Fs) where each Vi is open in X , each
Fi is closed and irreducible in X , and Vi ∩Fi is nonempty for each i. By Lemma 1.3.4,
Vi∩Fi = Fi. Therefore, Y ∩Z = F1∪·· ·∪Fs. If Y ∩Z is dense in Y , then Y = F1∪·· ·∪Fs,
so that for some i we have Y = Fi. Then Ui ∩Y = Ui ∩Fi is a nonempty open subset of Y
contained in Y ∩Z.

(2) implies (1): Let S be the set of all closed sets of the form Z̄ where Z is a subset
of X that satisfies (2) but not (1). For contradiction’s sake, assume S is nonempty. By
Lemma 1.3.5 (4), let Z be a subset of X satisfying (2) but not (1) such that Z̄ is minimal in
S . The empty set is constructible, so Z ̸= /0. Let Z̄ = Z1 ∪ ·· · ∪Zr be the decomposition
into irreducible closed components. Then Z ∩Z1 ̸= /0 and Z∩Z1 is a closed subset of Z1.
Since Z1 = Z∩Z1∪ (Z1∩Z2) · · ·∪ (Z1∩Zr), it follows that Z∩Z1 = Z1. By (2) there exists
a nonempty open U ⊆ Z1 such that U ⊆ Z. Notice that U is locally closed in X . The set
Z′1 = Z1−U is a proper closed subset of Z1. Write Z∗ = Z′1∪Z2∪·· ·∪Zr, a proper closed
subset of Z̄. We have Z∩Z∗ ⊆ Z∗ ⊊ Z̄.

We next show Z ∩Z∗ satisfies (2). To this end, assume Y is an irreducible closed in
X such that Y ∩Z∩Z∗ = Y . In this case, the closed set Z∗ contains Y , hence Y ∩Z∩Z∗ =
Z∩Y . Since Z satisfies (2), Z∩Y contains a nonempty open set of Y . This proves Z∩Z∗

satisfies (2). Since Z̄ was a minimal member of S , Z ∩ Z∗ is constructible. Therefore
Z =U ∪ (Z∩Z∗) is constructible, a contradiction. □

4.1.1. Chevalley’s Theorem.

LEMMA 10.4.4. Let θ : R→ S be a homomorphism of commutative rings and θ ♯ :
SpecS→ SpecR the continuous map of Exercise 3.3.19. The following are equivalent.

(1) The image of θ ♯ is dense in SpecR.
(2) kerθ ⊆ RadR(0).

In particular, if RadR(0), then the image of θ ♯ is dense if and only if θ is one-to-one.

PROOF. The image of θ ♯ is imθ ♯ = {θ−1(Q) | Q ∈ SpecS}. By Lemma 3.3.8, the
closure of imθ ♯ is V (I), where I is the ideal

I =
⋂

Q∈SpecS

θ
−1(Q) = θ

−1

( ⋂
Q∈SpecS

Q

)
= θ

−1 (RadS(0)) .

It is clear that kerθ ⊆ I.
(1) implies (2): If V (I) = SpecR, then I ⊆ RadR(0), and this implies (2).
(2) implies (1): The reader should verify that if x ∈ R and θ(x) ∈ RadS(0), then

x ∈ Rad(kerθ). By (2), I = θ−1 (RadS(0)) ⊆ RadR(0). Therefore, V (I) = SpecR, which
implies (1). □

LEMMA 10.4.5. Let R be a noetherian integral domain and S a commutative faithful
finitely generated R-algebra with structure map θ : R→ S. There exists an element a ∈
R− (0) such that the basic open set U(a) = SpecR−V (a) is contained in the image of the
natural map θ ♯ : SpecS→ SpecR.

PROOF. Since θ is one-to-one, we assume R ⊆ S. Find x1, . . . ,xn in S such that S =
R[x1, . . . ,xn]. Further, assume x1, . . . ,xr are algebraically independent over R, while each
of the elements xr+1, . . . ,xn satisfies an algebraic relation over T = R[x1, . . . ,xr]. For each
j = r+1, . . . ,n find a polynomial f j(x) ∈ T [x] satisfying
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(1) f j(x j) = 0,
(2) f j has degree d j ≥ 1, and
(3) the leading coefficient of f j is f j0, an element of T .

Then f = ∏
n
j=r+1 f j0 is a nonzero element of T . Let a be any nonzero coefficient of f ,

where we view f as a polynomial over R in the variables x1, . . . ,xr. We show that this a
is satisfactory. Let P be an arbitrary element of U(a). Then P ∈ SpecR and a ̸∈ P. We
show that P ∈ imθ ♯. The reader should verify that PT = P[x1, . . . ,xr] is a prime ideal in
T . Since f ̸∈ PT , each x j is integral over TPT . Therefore SPT is integral over TPT . By
Theorem 6.3.6, there exists a prime ideal Q in SPT lying over (PT )TPT . On the left side of
this diagram

SPT = S⊗T TPT

S TPT

T = R[x1, . . . ,xr]

R

Q

Q∩S (PT )TPT

Q∩T = PT

P

is the lattice of subrings, on the right, the lattice of prime ideals. We have Q∩R = Q∩T ∩
R = PT ∩R = P. Therefore, P = Q∩R = Q∩S∩R = θ ♯(Q∩S). □

LEMMA 10.4.6. Let R be a commutative noetherian ring and Z a constructible set in
SpecR. There exists a finitely generated R-algebra S such that the image of the natural
map SpecS→ SpecR is Z.

PROOF. Case 1: Z =U(a)∩V (I), where I is an ideal of R and U(a)= SpecR−V (a) is
a basic open set, for some a∈ R. By Exercise 3.3.25, SpecR[a−1] maps homeomorphically
onto U(a). By Exercise 3.3.24, SpecR/I maps homeomorphically onto V (I). The reader
should verify that S = R/I⊗R R[a−1] is satisfactory.

Case 2: Z is an arbitrary constructible set. Then Z is a finite union of sets of the
form U ∩Y where U is open and F is closed. An arbitrary open is of the form R−V (I),
where I is a finitely generated ideal in the noetherian ring R. Therefore, U can be written
as a finite union of basis open sets. We can write Z =

⋃n
i=1 U(ai)∩V (Ii). By Case 1,

U(ai)∩V (Ii) is the image of SpecSi for some finitely generated R-algebra Si. Let S be the
finitely generated R-algebra S1⊕·· ·⊕Sn. By Exercise 3.3.22, SpecS decomposes into the
disjoint union SpecS1∪·· ·∪SpecSn. The image of SpecS is Z. □

THEOREM 10.4.7. (Chevalley) Let R be a commutative noetherian ring and S a finitely
generated R-algebra. Under the natural map θ ♯ : SpecS→ SpecR, the image of a con-
structible set is a constructible set.

PROOF. Step 1: imθ ♯ is a constructible set. Let Y be an irreducible closed in SpecR.
In order to apply Proposition 10.4.3, assume imθ ♯ ∩Y is dense in Y . By Lemma 3.3.10,
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Y =V (P) for some prime ideal P in R. Consider the two commutative diagrams.

S // S/PS

R

θ

OO

η // R/P

θ̄

OO
SpecS

θ ♯

��

Spec(S/PS)

θ̄ ♯

��

oo

SpecR⊇ Y Spec(R/P)
η♯
oo

The map η♯ maps SpecR/P homeomorphically onto Y . The set imθ ♯ ∩Y is equal to the
image of η♯θ̄ ♯. By Lemma 10.4.4, θ̄ is one-to-one. By Lemma 10.4.5, imθ ♯∩Y contains
a nonempty open subset of Y . Proposition 10.4.3 implies imθ ♯ is constructible.

Step 2: Let Z be a constructible set in SpecS. By Lemma 10.4.6 there exists a finitely
generated S-algebra T with structure homomorphism φ : S→ T such that the image of
the natural map φ ♯ : SpecT → SpecS is equal to Z. Notice that T is a finitely generated
R-algebra with structure homomorphism φθ : R→ T and the image of θ ♯φ ♯ is equal to
θ ♯(Z). By Step 1 applied to T , the image of θ ♯φ ♯ constructible. □

4.1.2. Submersive morphisms. Let X be a noetherian topological space. A subset Z
of X is said to be pro-constructible if there exists a family {Zi | i ∈ I} of constructible sets
such that Z =

⋂
i∈I Zi. We say Z is ind-constructible if such a family of constructible sets

exists and Z =
⋃

i∈I Zi.

PROPOSITION 10.4.8. Let R be a noetherian commutative ring and S a commutative
R-algebra with structure homomorphism θ : R→ S. The image of θ ♯ : SpecS→ SpecR is
a pro-constructible set in SpecR.

PROOF. By Exercise 2.7.26, S = lim−→α
Sα , where Sα runs through the set of all finitely

generated R-subalgebras of S. For each α , let φα : R→ Sα be the structure homomorphism
and let ψα : Sα → S be the set inclusion map. For each α , we have θ ♯ = φ

♯
α ψ

♯
α . Therefore,

im(θ ♯)⊆
⋂

α im(φ ♯
α). To show that these sets are equal, suppose P ∈ SpecR− im(θ ♯). Let

SP = S⊗R RP. The reader should verify that PSP = SP. We can write 1∈PSP as a finite sum,
1 = ∑

n
i=1 aisiw−1, where w ∈ R−P and for each i, ai ∈ P and si ∈ S. Let T = R[s1, . . . ,sn]

be the R-subalgebra of S generated by s1, . . . ,sn. Then PTP = TP, so P is not in the image
of SpecT → SpecR. This proves im(θ ♯) =

⋂
α im(φ ♯

α). By Theorem 10.4.7, the image of
θ ♯ is pro-constructible. □

Let R be a commutative ring and P,Q ∈ SpecR. If P ⊆ Q, then we say that Q is a
specialization of P and P is a generalization of Q. The set of all specializations of P is equal
to the irreducible closed set V (P). If Z ⊆ SpecR we say Z is stable under specialization if
Z contains all specializations of every point in Z. We say Z is stable under generalization
if Z contains all generalizations of every point in Z. The reader should verify that a closed
set is stable under specialization and an open set is stable under generalization.

LEMMA 10.4.9. Let R be a commutative noetherian ring.
(1) Let Z be a subset of SpecR which satisfies

(a) Z is pro-constructible and
(b) Z is stable under specialization.

Then Z is closed.
(2) Let U be a subset of SpecR which satisfies

(a) U is stable under generalization and
(b) if P ∈U, then U contains a nonempty open subset of the irreducible closed

set V (P).
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Then U is open.

PROOF. (1): Write Z =
⋂

α∈I Zα , where each Zα is constructible. Let Z̄ =Y1∪·· ·∪Ym
be the decomposition into irreducible closed components. Fix i such that 1≤ i≤ m. Then
Yi = V (Pi), where Pi is the generic point of Yi. As in the proof of Proposition 10.4.3,
Yi ∩Z is a dense subset of Yi. For each α , Yi ∩Zα is dense in Yi. By Proposition 10.4.3,
Yi ∩Zα contains a nonempty open subset of Yi. Therefore, P ∈ Yi ∩Zα for each α . Hence
Pi ∈

⋂
α∈I Zα = Z. Since Z is stable under specialization, Yi = V (Pi) ⊆ Z. Since i was

arbitrary, Z̄ ⊆ Z, so Z is closed.
(2): Let Z = SpecR−U and let Z̄ =Y1∪·· ·∪Ym be the decomposition into irreducible

closed components. Fix i such that 1 ≤ i ≤ m. Then Yi = V (Pi), where Pi is the generic
point of Yi. For contradiction’s sake, assume Pi ∈U . By (b) there exists a nonempty set
V ⊆ Yi such that V is open in Yi and V ⊆ Yi ∩U . Since Yi ̸⊆ Yj if i ̸= j, W = V −

⋃
j ̸=i Yj

is a nonempty open subset of Yi, W is open in Z̄, and W ⊆ U . Then Z̄−W is a closed
set containing Z which is a proper closed subset of Z̄, a contradiction. We conclude that
Pi ∈ Z. If P is a specialization of Pi, then by (a), P ∈ Z. That is, Yi ⊆ Z. This proves Z̄ ⊆ Z,
so Z is closed. □

We say that a homomorphism of commutative rings φ : R→ S is submersive if φ ♯ :
SpecS→ SpecR is onto and the topology on SpecR is equal to the quotient topology of
SpecS. That is, Y ⊆ SpecR is closed if and only if (φ ♯)−1(Y ) is closed.

THEOREM 10.4.10. Let R be a commutative noetherian ring and S a commutative R-
algebra with structure homomorphism φ : R→ S. If one of the following three conditions
is satisfied, then φ is submersive.

(1) S is a faithfully flat R-module.
(2) R is an integrally closed integral domain and S is an integral domain which is a

faithful integral R-algebra.
(3) φ ♯ : SpecS→ SpecR is onto, and going down holds for φ .

PROOF. If condition (1) is satisfied, then by Theorem 6.3.5, going down holds and by
Lemma 3.5.4, φ ♯ is onto. This case reduces to (3).

If condition (2) is satisfied, then by Theorem 6.3.6, so is condition (3).
Assume (3) is satisfied. Let Y be any subset of SpecR such that (φ ♯)−1(Y ) is closed

in SpecS. It suffices to show that Y is closed. There exists an ideal J in S such that
(φ ♯)−1(Y ) = V (J). Since φ ♯ is onto, φ ♯(φ ♯)−1(Y ) = Y . Let η : S→ S/J be the natural
map. The image of φ ♯η♯ is equal to Y , so by Proposition 10.4.8, Y is pro-constructible.
By Lemma 10.4.9, if we show that Y is stable under specialization, the proof is complete.
Assume P1 ∈ Y and P2 is a specialization of P1 in SpecR such that P1 ⊊ P2. It suffices to
show P2 ∈ Y . Since φ ♯ is onto, there exists Q2 ∈ SpecS lying over P1. Since going down
holds, by Proposition 6.3.4, there exists Q1 ∈ SpecS lying over P1 such that Q1 ⊊ Q2. So
Q2 is a specialization of Q1. Since Q1 is in the closed set (φ ♯)−1(Y ), so is Q2. Therefore
P2 = φ ♯(Q2) ∈ φ ♯(φ ♯)−1(Y ) = Y . □

THEOREM 10.4.11. Let R be a commutative noetherian ring and S a commutative
finitely generated R-algebra with structure homomorphism φ : R→ S. Assume going down
holds for φ . Then φ ♯ : SpecS→ SpecR is an open map.

PROOF. Start with U an open in SpecS and show that φ ♯(U) is open in SpecR. By
Theorem 10.4.7, φ ♯(U) is constructible in SpecR. Let P2 ∈ φ ♯(U). There exists Q2 ∈U
lying over P2. Assume P1 is a generalization of P2, P1 ⊆ P2. By Proposition 6.3.4, since
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going down holds, there exists Q1 ∈ SpecS lying over P1 such that Q1 ⊆ Q2. Therefore
Q1 ∈U , since Q1 is a generalization of Q2 and U is open. Hence P1 ∈ φ ♯(U), which proves
φ ♯(U) is stable under generalization. By Lemma 10.4.9, SpecR−φ ♯(U) is closed. □

4.2. Local Criteria for Flatness. References for the material in this section are [42,
Chapter 8, Section 20], [23, Chapitre 0, § 10], and [41].

Let R be a commutative ring and I an ideal of R. Let M be an R-module. In Exam-
ple 7.2.3 and Example 7.2.5 we defined the associated graded ring

grI (R) =
⊕
n≥0

In/In+1

and the associated graded module

grI(M) =
∞⊕

n=0

InM/In+1M.

Then grI (M) is a graded grI(R)-module. For the following, set R0 = grI (R)0 = R/I and
M0 = grI (M)0 = M/I. The ring grI (R) is an R0-algebra, and M0 is an R0-module. For all
n≥ 0, the multiplication map

µn0 :
In

In+1 ⊗R0 M0→
InM

In+1M
is onto. Taking the direct sum, there is a surjective degree-preserving homomorphism

µ : grI (R)⊗R0 M0→ grI (M)

of R0-modules. We say that M is ideal-wise separated for I if for each finitely generated
ideal J of R, the R-module J⊗R M is separated in the I-adic topology.

EXAMPLE 10.4.12. Some examples of modules that are ideal-wise separated are listed
here.

(1) Let S be a commutative R-algebra and M a finitely generated S-module. Suppose
S is noetherian and I is an ideal of R such that IS ⊆ J(S). Let J be any ideal of
R. The reader should verify that the I-adic topology on J⊗R M is equal to the
I⊗R S-adic topology, which is equal to the IS-adic topology. Since J⊗R M is a
finitely generated S-module, Corollary 7.3.6 (1) says J⊗R M is separated in the
I-adic topology. Therefore M is ideal-wise separated for I.

(2) Let R be a commutative ring and M a flat R-module. If J is an ideal of R, then
0→ J⊗R M → M → M/JM → 0 is exact. That is, J⊗R M = JM. If I is an
ideal of R and M is separated for the I-adic topology, then InJM ⊆ InM so JM is
separated for the I-adic topology. Therefore M is ideal-wise separated for I.

(3) Let R be a principal ideal domain. Let I and J be ideals of R and M an R-module.
If w ∈ In(J⊗R M), then w can be written in the form 1⊗ z where z ∈ InM. If M
is separated in the I-adic topology, then M is ideal-wise separated for I.

THEOREM 10.4.13. (Local Criteria for Flatness) Let R be a commutative ring, I an
ideal of R, and M an R-module. Let grI (M) be the associated graded grI(R)-module. Set
R0 = R/I and M0 = M/I. Assume

(A) I is nilpotent, or
(B) R is noetherian and M is ideal-wise separated for I.

Then the following are equivalent.
(1) M is a flat R-module.
(2) TorR

1 (N,M) = 0 for all R0-modules N.



424 10. DERIVATIONS, DIFFERENTIALS

(3) M0 is a flat R0-module and 0→ I⊗R M→ IM is an exact sequence.
(4) M0 is a flat R0-module and TorR

1 (R0,M) = 0.
(5) M0 is a flat R0-module and the multiplication maps

µn0 :
In

In+1 ⊗R0 M0→
InM

In+1M
are isomorphisms for all n≥ 0.

(6) Mn = M/In+1M is a flat Rn = R/In+1-module for each n≥ 0.

PROOF. Notice that (A) or (B) is used to prove that (6) implies (1). The rest of the
proof is valid for an arbitrary module M.

Throughout the proof we will frequently make use of the natural isomorphism

N⊗R M = N⊗R/J (R/J)⊗R M = N⊗R/J (M/JM)

for any ideal J of R and any R/J-module N.
(1) implies (2): If N is an R0-module, then N is an R-module. This follows from

Lemma 8.3.3.
(2) implies (3): Start with an exact sequence

0→ A→ B→C→ 0

of R0 = R/I-modules. The sequence

TorR
1 (C,M)→ A⊗R0 M0→ B⊗R0 M0→C⊗R0 M0→ 0

is also exact. But TorR
1 (C,M) = 0, so we conclude that M0 is a flat R0-module.

(3) implies (4): Follows easily from the exact sequence

TorR
1 (R,M)→ TorR

1 (R/I,M)→ I⊗R M→M.

(4) implies (2): Let N be an R0-module and write N as a quotient of a free R0-module
F ,

0→ K→ F → N→ 0.
By Proposition 8.3.2 (7) and hypothesis (4) TorR

1 (F,M) =
⊕

α TorR
1 (R0,M) = 0. The se-

quence
0→ TorR

1 (N,M)→ K⊗R0 M0→ F⊗R0 M0→ N⊗R0 M0→ 0

is exact. But M0 is a flat R0-module, so we conclude that TorR
1 (N,M) = 0.

(2) implies (5): Start with the exact sequence of R-modules

0→ In+1→ In→ In/In+1→ 0

where n ≥ 0. The multiplication homomorphisms combine to make up a commutative
diagram

0 // In+1⊗R M //

γn+1

��

In⊗R M //

γn

��

In/In+1⊗R0 M0 //

µn0

��

0

0 // In+1M // InM // InM/In+1M // 0

The top row is exact because of hypothesis (2). The second row is clearly exact. The
multiplication maps γn+1, γn, µn0 are all onto. For n = 0, µn0 is an isomorphism. For
n = 1, γn is an isomorphism by the proof of (2) implies (3). By induction on n, we see that
γn is an isomorphism for all n ≥ 0. By the Snake Lemma (Theorem 2.5.2) it follows that
µn0 is an isomorphism for all n≥ 0.
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(5) implies (6): Fix an integer n > 0. For each i = 1,2, . . . ,n there is a commutative
diagram

Ii+1/In+1⊗R M //

αi+1

��

Ii/In+1⊗R M //

αi

��

Ii/Ii+1⊗R0 M0 //

µi0

��

0

0 // Ii+1M/In+1M // IiM/InM // IiM/Ii+1M // 0

with exact rows. By hypothesis, µi0 is an isomorphism for all i. For i = n, the diagram
collapses and we see immediately that αn is an isomorphism. By descending induction on
i we see that each αi is an isomorphism. In particular, α1 is an isomorphism. That is,

I/In+1⊗R M
α1 //

=

��

IM/In+1M

=

��
IRn⊗Rn Mn

∼= // IMn

commutes and the arrows are all isomorphisms. This proves that hypothesis (3) is satisfied
for the ring Rn, the ideal IRn and the module Mn. Because (3) implies (2), TorRn

1 (N,Mn) = 0
for all R0-modules N. Say 1≤ j ≤ n and A is an R j = R/I j+1-module. Then IA and A/IA
are R/I j-modules. From the exact sequence

0→ IA→ A→ A/IA→ 0

we get the exact sequence

TorRn
1 (IA,Mn)→ TorRn

1 (A,Mn)→ TorRn
1 (A/IA,Mn).

If j = 1, this implies TorRn
1 (A,Mn) = 0. Induction on j shows TorRn

1 (A,Mn) = 0 for any
Rn-module A. This implies Mn is a flat Rn-module.

(1) implies (6): The attribute of being flat is preserved under change of base (Theo-
rem 2.3.23).

(6) and (A) implies (1): If I is nilpotent, then In = 0 for some n. In this case, M/InM =
M is a flat R/In = R-module.

(6) and (B) implies (1). Let J be any finitely generated ideal of R. By Corollary 3.7.4
it is enough to show

0→ J⊗R M
µ−→M→M/JM

is an exact sequence. We are assuming (B), which implies
⋂

n In(J⊗R M) = 0. It is enough
to show ker(µ)⊆ In(J⊗R M) for each n > 0. By Corollary 7.2.14 there exists ν ≥ n such
that J∩ Iν ⊆ InJ. Consider the commutative diagram

J⊗R M

µ

��

φ //
(
J/(J∩ Iν)

)
⊗R M

τ

��

ψ //
(
J/InJ

)
⊗R M

��
M // M/Iν M // M/InM

(4.1)

The kernel of the composition ψφ is ker(ψφ)= InJ⊗R M = In(J⊗R M). By hypothesis (6),
M/Iν M is a flat module over R/Iν . Since J/(J∩ Iν) is an ideal in R/Iν , by Corollary 3.7.4,
the sequence

0→
(
J/(J∩ Iν)

)
⊗R/Iν

(
M/Iν M

)
→M/Iν M
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is exact. Since
(
J/J∩ Iν

)
⊗R/Iν

(
M/Iν M

)
=
(
J/J∩ Iν

)
⊗R M, this implies the sequence

0→
(
J/J∩ Iν

)
⊗R M τ−→M/Iν M

is exact. In (4.1), since τ is one-to-one it follows that ker(µ)⊆ ker(ψφ) = In(J⊗R M). □

As an application of Theorem 10.4.13 we prove the following generalization of Corol-
lary 3.4.4.

PROPOSITION 10.4.14. Assume all of the following are satisfied.
(A) R is a noetherian local ring with maximal ideal m and residue field k(m).
(B) S is a noetherian local ring with maximal ideal n and residue field k(n).
(C) f : R→ S is a local homomorphism of local rings (that is, f (m)⊆ n).
(D) A and B are finitely generated S-modules, σ ∈ HomS(A,B), and B is a flat R-

module.
Then the following are equivalent.

(1) The sequence
0→ A σ−→ B→ coker(σ)→ 0

is exact and coker(σ) is a flat R-module.
(2) The sequence

0→ A⊗R k(m)
σ⊗1−−→ B⊗R k(m)→ coker(σ)⊗R k(m)→ 0

is exact.

PROOF. (1) implies (2): Start with the short exact sequence in (1). Apply the functor
()⊗R k(m). The long exact Tor sequence includes these terms

· · · → TorR
1 (coker(σ),k(m))→ A⊗R k(m)

σ⊗1−−→ B⊗R k(m)→ coker(σ)⊗R k(m)→ 0.

Use the fact that coker(σ) is flat to get (2).
(2) implies (1): For any R-module M, identify M⊗R k(m) with M/mM. The diagram

mA

��

mB

��

mcokerσ

��
A

α

��

σ // B //

β

��

cokerσ

γ

��

// 0

0 // A/mA τ // B/mB // cokerσ/mcokerσ // 0

commutes. The rows and columns are exact. The three vertical arrows α,β ,γ are onto.
Step 1: Show that ker(σ) = 0. If x ∈ ker(σ), then x ∈mA. The idea is to show

x ∈
⋂
n≥1

mnA⊆
⋂
n≥1

nnA,

which proves x = 0, by Corollary 7.3.6. Fix n ≥ 1 and assume x ∈ mnA. Since mn is
finitely generated over R, the vector space mn/mn+1 is finite dimensional over k(m). Let
π1, . . . ,πr be a set of generators for mn which restricts to a k(m)-basis for mn/mn+1. Write
x = ∑

r
i=1 πixi where xi ∈ A. Then 0 = σ(x) = ∑πiσ(xi) in the flat R-module B. By Corol-

lary 3.7.4 there exist an integer s, elements {bi j | 1≤ i≤ r,1≤ j≤ s} in R, and y1, . . . ,ys in
B satisfying ∑i πibi j = 0 for all j and σ(xi) = ∑ j bi jy j for all i. Since π1, . . . ,πr are linearly
independent over k(m), each bi j is in m. This implies each σ(xi) is in mB. Since τ is
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one-to-one, this implies each xi is in mA. We conclude that x ∈mn+1A. As stated already,
this proves x = 0.

Step 2: Show that coker(σ) is a flat R-module. By Step 1, the sequence

0→ A σ−→ B→ coker(σ)→ 0

is exact. Apply the functor ()⊗R k(m). Since B is a flat R-module, the long exact Tor
sequence reduces to the exact sequence

0→ TorR
1 (coker(σ),k(m))→ A⊗R k(m)

σ⊗1−−→ B⊗R k(m)→ coker(σ)⊗R k(m)→ 0.

By assumption, σ⊗1 is one-to-one, so TorR
1 (coker(σ),k(m)) = 0. By Example 10.4.12 (1)

the hypotheses of Theorem 10.4.13 (4) are satisfied. Therefore coker(σ) is a flat R-module.
□

COROLLARY 10.4.15. Assume all of the following are satisfied.
(1) R is a noetherian commutative ring.
(2) S is a noetherian commutative R-algebra.
(3) M is a finitely generated S-module which is a flat R-module and f ∈ S.
(4) For each maximal ideal m ∈MaxS,

0→M/(m∩R)M
ℓ f−→M/(m∩R)M

is exact, where ℓ f is left multiplication by f .
Then

0→M
ℓ f−→M→M/ f M→ 0

is exact and M/ f M is a flat R-module.

PROOF. Let m ∈MaxS and n = m∩R. Then Mm is a finitely generated Sm-module.
By Corollary 8.3.6, Mm is a flat Rn-module. By assumption,

0→M⊗R (R/n)
ℓ f−→M⊗R (R/n)

is exact. Since Sm is a flat S-module,

0→Mm⊗R (R/n)
ℓ f−→Mm⊗R (R/n)

is exact. By Exercise 3.1.20, Rn/(nRn) is a flat R/n-module. Therefore,

0→Mm⊗Rn (Rn/nRn)
ℓ f−→Mm⊗Rn (Rn/nRn)

is exact. We are in the context of Proposition 10.4.14 with the rings being Rn, Sm, and σ

being ℓ f : Mm→Mm. We have shown that Proposition 10.4.14 condition (2) is satisfied.
Therefore, the sequence

0→Mm
ℓ f−→Mm→Mm/ f Mm→ 0

is exact, and (M/ f M)⊗S Sm = Mm/ f Mm is a flat Rn-module. By Proposition 3.1.9, ℓ f :
M→M is one-to-one. By Corollary 8.3.6, M/ f M is a flat R-module. □

COROLLARY 10.4.16. Let R be a commutative noetherian ring and S = R[x1, . . . ,xn]
the polynomial ring over R in n indeterminates. Let f ∈ S and assume the coefficients of f
generate the unit ideal in R. Then f is not a zero divisor of S and S/ f S is a flat R-algebra.

PROOF. Let m ∈ MaxS and n = m∩ R. Then R/n is an integral domain and f ̸∈
n[x1, . . . ,xn]. Moreover, S/nS = S⊗R R/n= (R/n)[x1, . . . ,xn], so ℓ f : S/nS→ S/nS is one-
to-one. The rest follows from Corollary 10.4.15. □
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COROLLARY 10.4.17. Let θ : R→ S be a local homomorphism of commutative noe-
therian local rings. Let M be a finitely generated S-module which is flat over R. Let m
be the maximal ideal of R and k(m) the residue field. For any f ∈ S, let ℓ f be the left
multiplication by f map. Then the following are equivalent.

(1) The sequence

0→M
ℓ f−→M→M/ f M→ 0

is exact, and M/ f M is flat over R.
(2) The sequence

0→M⊗R k(m)
ℓ f−→M⊗R k(m)

is exact.

PROOF. Apply Proposition 10.4.14. □

In Corollary 10.4.18, the reader is referred to Definition 11.3.1 for the definition of a
regular sequence for an R-module contained in an ideal of R.

COROLLARY 10.4.18. Let θ : R→ S be a local homomorphism of commutative noe-
therian local rings. Let M be a finitely generated S-module which is flat over R. Let m be
the maximal ideal of R and k(m) the residue field. Let n be the maximal ideal of S, and
( f1, . . . , fr) a regular sequence for M⊗R k(m) in n. Then ( f1, . . . , fr) is a regular sequence
for M and M/( f1, . . . , fr)M is flat over R.

PROOF. Use Corollary 10.4.17 and induction on r. □

4.3. Theorem of Generic Flatness.

THEOREM 10.4.19. Let R be a noetherian integral domain and S a finitely generated
commutative R-algebra. For any finitely generated S-module M, there exists a nonzero
element f in R such that the localization M[ f−1] = M⊗R R[ f−1] is a free R[ f−1]-module.

PROOF. Step 1: If M is not a faithful R-module, then we can take f to be a nonzero
element of annihR(M). From now on we assume S is an extension ring of R and M is a
faithful R-module.

Step 2: By Theorem 9.2.10, there exists a filtration 0=M0 ⊊M1 ⊊M2 ⊊ · · ·⊊Mn =M
of M and a set of prime ideals Pi ∈ SpecS such that Mi/Mi−1 ∼= S/Pi for i = 1, . . . ,n. If

0→ A→ B→C→ 0

is an exact sequence of R-modules where A and C are free, then so is B. It is enough to
prove the theorem for the case where M = S/P, for a prime ideal P in S. From now on
assume M = S and S is an integral domain which is an extension ring of R.

Step 3: Let K be the quotient field of R and L the quotient field of S. Consider SK =
S⊗R K, the K-subalgebra of L generated by S. Since S is a finitely generated R-algebra,
SK is a finitely generated K-algebra. The Krull dimension of SK, n = dim(SK), is finite.
The proof is by induction on the integer n.

Step 4: Assume n = 0. That is, SK = L is the quotient field of S. Let s1, . . . ,sk be
a set of generators for S as an R-algebra. Each si is integral over K, so there exists a
polynomial pi(x) ∈ K[x] such that pi(si) = 0. There exists a nonzero element α in R− (0)
such that α pi(x)∈ R[x] for all i. Therefore, R[α−1]⊆ S[α−1] is a finitely generated integral
extension of integral domains. By Theorem 6.1.3 (1), S1 = S[α−1] is finitely generated
as an R1 = R[α−1]-module. Let u1, . . . ,uν be a maximal subset in S1 which is linearly
independent over R1. Define φ : R(ν)

1 → S1 by (a1, . . . ,aν) 7→ ∑aiui. Let C = cokerφ .
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Then C is a finitely generated torsion R1-module. Let γ ∈ annihR1(C). Tensor φ with
R1[γ

−1] to get R1[γ
−1]∼= S1[γ

−1]. Take f to be αγ .
Step 5: Assume n≥ 1. By Noether’s Normalization Lemma (Corollary 10.3.3), there

exist y1, . . . ,yn in SK which are algebraically independent over K and such that SK is inte-
gral over K[y1, . . . ,yn]. For some element β of R− (0), βyi ∈ S. Re-label if necessary, and
assume R[y1, . . . ,yn]⊆ S. There exist s1, . . . ,sk such that S=R[s1, . . . ,sk]. Each si is integral
over K[y1, . . . ,yn], so there exists a polynomial pi(x) ∈ K[y1, . . . ,yn][x] such that pi(si) = 0.
There exists a nonzero element α in R− (0) such that α pi(x) ∈ R[y1, . . . ,yn][x] for all i.
Therefore, R[α−1][y1, . . . ,yn] ⊆ S[α−1] is an integral extension of integral domains. Let
R1 = R[α−1], S1 = S[α−1], and T = R1[y1, . . . ,yn]. Then S1 is a finitely generated in-
tegral extension of T , so by Theorem 6.1.3 (1), S1 is finitely generated as a T -module.
Let u1, . . . ,uν be a maximal subset in S1 which is linearly independent over T . Define
φ : T (ν) → S1 by (a1, . . . ,aν) 7→ ∑aiui. Let C = cokerφ . Then C is a finitely generated
T -module. As in Step 2, there is a filtration of the T -module C. Since C is a torsion T -
module, for each prime ideal P of T that occurs in the filtration, ht(P) ≥ 1. Consider one
such prime P ∈ SpecT . By Step 1, assume T/P is an extension of R1. Then

T/P⊗R K =
T ⊗R K
P⊗R K

.

Since P⊗R K is a nonzero prime ideal in T ⊗R K, dimK(T/P⊗R K) < n. By induction,
there exists g ∈ R1− (0) such that T/P⊗R1 R1[g−1] is a free R1[g−1]-module. Since R1 is
an integral domain, we can find one g ∈ R1− (0) such that C⊗R1 R1[g−1] is a free R1[g−1]-
module. Since T is a free R1-module, this proves S1⊗R1 R1[g−1] = S⊗R R[ f−1] is a free
R[ f−1]-module for f = αg. □

COROLLARY 10.4.20. Let R be a noetherian integral domain and S a faithful finitely
generated commutative R-algebra. There exists a nonzero element f in R such that S[ f−1]
is a faithful R[ f−1]-algebra which is free as an R[ f−1]-module.

In the language of Algebraic Geometry, Corollary 10.4.20 has the following interpre-
tation. Let φ : R→ S be the structure homomorphism. Then over the nonempty open
subscheme U = U( f ) = SpecR−V ( f ), φ ♯ is faithfully flat. That is, if V = (φ ♯)−1(U),
then the restriction of φ ♯ to V →U is a faithfully flat morphism.

THEOREM 10.4.21. Let R be a commutative noetherian ring, S a finitely generated
commutative R-algebra, and M a finitely generated S-module. Let U be the set of all points
P in SpecS such that MP = M⊗S SP is a flat R-module. Then

(1) U is an open (possibly empty) subset of SpecS.
(2) If going down holds for R→ S (in particular, if S is flat over R), then the image

of U in SpecR is open.

PROOF. The idea is to apply Lemma 10.4.9 (2) to show that U is open. If U is empty,
there is nothing to prove.

Step 1: First we show that U is stable under generalization. Let P ∈U and assume
Q is a generalization of P. The functor (·)⊗R MP from MR to MSP is exact since P ∈U .
The functor (·)⊗SP SQ from MSP to MSQ is exact since SQ is a localization of SP. Thus
(·)⊗R MP⊗SP SQ = (·)⊗R MQ is exact. This shows Q ∈U .

Step 2: Assume P ∈ U and prove that U contains a nonempty open subset of the
irreducible closed set V (P). Let I = P∩R and let Q ∈ V (P). Then ISQ ⊆ QSQ, so by Ex-
ample 10.4.12 (1), MQ is ideal-wise separated for I. Let R0 = R/I and (MQ)0 = MQ/IMQ.
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By the local criteria for flatness (Theorem 10.4.13), MQ is a flat R-module if and only if
(MQ)0 is a flat R0-module and TorR

1 (MQ,R0) = (0).
Step 2.1: By Theorem 10.4.19 applied to R0, S0 = S/IS, and M0 = M/IM, there exists

f ∈ (R− I)⊆ (S−P) such that M0[ f−1] is a free R0[ f−1]-module. Let

W = (SpecS−V ( f ))∩V (P).

Since W consists of those specializations of P that do not contain f , W is an open subset of
V (P) which contains P. For Q ∈W , SQ is a localization of S[ f−1], so by Exercise 3.1.21,
SQ/ISQ is a localization of S0[ f−1]. It follows from these observations that the functor
(·)⊗R0 M0[ f−1] from MR0 to MS0[ f−1] is exact, and the functor (·)⊗S0[ f−1] (SQ/ISQ) from
MS0[ f−1] to MSQ/ISQ is exact. Combining the two, it follows that (·)⊗R0 M0[ f−1]⊗S0[ f−1]

(SQ/ISQ) = (·)⊗R0 (MQ)0 is exact. This shows (MQ)0 is R0-flat for all Q in the nonempty
open W ⊆V (P).

Step 2.2: Since P ∈U , TorR
1
(
MP,R0

)
= 0. By Lemma 8.3.5, TorR

1 (M,R0)⊗S SP = 0.
Again by Lemma 8.3.5, TorR

1 (M,R0) is a finitely generated S-module. By Lemma 3.1.10,
there exists an open neighborhood T of P in SpecS such that TorR

1 (M,R0)⊗S SQ = 0 for all
Q ∈ T . By Lemma 8.3.5, TorR

1
(
MQ,R0

)
= 0 for all Q in the nonempty open T ⊆V (P).

Step 2.3: If W is from Step 2.1 and T is from Step 2.2, then for all Q in W ∩T , MQ is
flat over R. Therefore U contains W ∩T which is a nonempty open subset of V (P). □

5. Complete I-adic Rings and Inverse Limits

The main result of this section, Corollary 10.5.4, provides sufficient conditions on a
directed system of noetherian local rings such that the direct limit is again a noetherian
local ring. The proof is a compilation of results from all of the following sources: [42],
[13], [49], and [23].

PROPOSITION 10.5.1. Let {Ai,φ
j

i } be an inverse system of discrete commutative rings
for the index set {0,1,2, . . .}. Let {Mi,ψ

j
i } be an inverse system of modules over the inverse

system of rings {Ai,φ
j

i }. For each 0 ≤ i ≤ j, define n j to be the kernel of φ
j

0 : A j → A0,
assume φ i

i : Ai→ Ai is the identity mapping, and

0→ ni+1
j → A j

φ
j

i−→ Ai→ 0

and

0→ ni+1
j M j→M j

ψ
j

i−→Mi→ 0

are exact sequences. If A = lim←−Ai and M = lim←−Mi, then the following are true.

(1) A is a separated and complete topological ring, M is a separated and complete
topological A-module, and the natural maps α j : A→ A j, β j : M→M j, are onto.

(2) If M0 is a finitely generated A0-module, then M is a finitely generated A-module.
More specifically, if S is a finite subset of M and β0(S) is a generating set for M0,
then S is a generating set for M.

PROOF. (1): This follows from Proposition 7.1.7, Corollary 7.1.10, and the definition
of inverse limit (Definition 2.7.12).
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(2): For all ℓ≤ k, the diagram

0 // ni+1
i+ℓ

��

// Ai+ℓ

φ
i+ℓ
i+k

��

φ
i+ℓ
i // Ai

φ i
i

��

// 0

0 // ni+1
i+k

// Ai+k
φ

i+k
i // Ai // 0

commutes and the vertical arrows are onto. By Proposition 2.7.19, if we define mi+1 to be
the kernel of αi : A→ Ai, then

mi+1 = lim←−
k
ni+1

i+k .

Similarly, if we set Ni+1 to be the kernel of βi : M→Mi, then

Ni+1 = lim←−
k
ni+1

i+kMi+k.

It follows from the commutative diagram

0 // mi+k+1

��

// A

=

��

αi+k // Ai+k

φ
i+k
i
��

// 0

0 // mi+1 // A
αi // Ai // 0

that

(5.1) αi+k(mi+1) = kerφ
i+k
i = ni+1

i+k .

Likewise,

(5.2) βi+k(Ni+1) = ni+1
i+kMi+k.

For i≥ 1 and j ≥ 1,

βi+ j−1(miN j) = αi+ j−1(mi)βi+ j−1(N j)

= ni
i+ j−1n

j
i+ j−1Mi+ j−1

= ni+ j
i+ j−1Mi+ j−1

= 0

since ni+ j
i+ j−1 is the kernel of α

i+ j
i+ j . This shows that miN j ⊆ kerβi+ j−1 = Ni+ j. Similarly,

one checks that mim j ⊆mi+ j. Defining m0 = A, and N0 = M, {mi} is a filtration on A and
{Ni} is a compatible filtration on M. The reader should verify that the topologies on A and
M are those defined by the filtrations {mi} and {Ni}.

Let S be a finite subset of M and assume β0(S) is a generating set for M0. Let M′ be
the submodule of M generated by S. Let a be an ideal in A such that α1(a) = n1. We are
going to prove

(5.3) Ni = aiM′+Ni+1

for all i ≥ 0. Define ai = αi(a) and M′i = βi(M′). Since Ni+1 = kerβi, to prove (5.3) it
suffices to prove

(5.4) βi(Ni) = βi(a
iM′) = αi(a

i)βi(M′) = ai
iM
′
i .
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Since β0(N0) = β0(M) = M0 is equal to M′0 = β0(M′) = M0, we see that (5.4) is satisfied
for i = 0. For i≥ 1, the diagram

0 // ni

��

// Ai

φ i
1
��

φ i
0 // A0

=

��

// 0

0 // n1 // A1
φ1

0 // A0 // 0

commutes and the vertical arrows are onto. Therefore, φ i
1(ni) = n1. Since the diagram

A

αi ��

α1 // A1

Ai

φ i
1

OO

commutes, φ i
1(ni) = n1 = α1(a) = φ i

1αi(a) = φ i
1(ai). Since n2

i = kerφ i
1, it follows that

ni = ai +n2
i . For i≥ 1 the diagram

M

βi   

β0 // M0

Mi

ψ i
0

OO

commutes and ψ i
0 is onto. Therefore, ψ i

0(M
′
i)=ψ i

0βi(M′)= β0(M′)=M0 =ψ i
0(Mi). Since

niMi = kerψ i
0, it follows that Mi = M′i +niMi. Combining these results, we have

(5.5) ni
iMi = (ai +n2

i )
i(M′i +niMi).

For 0≤ k≤ i we have ak
i n

i+1−k
i ⊆ ni+1

i = 0. From this and (5.2), we see that (5.5) collapses
to

βi(Ni) = ni
iMi = ai

iM
′
i .

Together with (5.4), this proves (5.3).
From (5.1), m1 = α

−1
1 (n1). Therefore, a ⊆ m1, and ai ⊆ mi

1 ⊆ mi. From (5.3), this
shows Ni ⊆ miM′+Ni+1. On the other hand, miM ⊆ Ni, from which it follows that

Ni = miM′+Ni+1.

It follows from Corollary 7.3.19 that M′ = M. □

COROLLARY 10.5.2. In the context of Proposition 10.5.1, assume M0 is a finitely
generated A0-module and that the ideal n1 of A1 is finitely generated. Let m1 be the kernel
of α0 : A→ A0. Then the following are true.

(1) The topologies on A and M are the m1-adic topologies.
(2) For all i≥ 0, the sequences

0→mi+1
1 → A

αi−→ Ai→ 0

and

0→mi+1
1 M→M

βi−→Mi→ 0

are exact.
(3) m1/m

2
1 is a finitely generated A-module.
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PROOF. We retain the notation established in the proof of Proposition 10.5.1. Since
n1 is a finitely generated ideal in A1, we assume a is a finitely generated ideal in A such
that α1(a) = n1. Let i≥ 0 be any integer. Since a and M are finitely generated A-modules,
so is aiM. For all j ≥ 0, it follows from (5.3) that

Ni+ j = a j(aiM)+Ni+ j+1 ⊆m j(a
iM)+Ni+ j+1.

On the other hand, m j(a
iM)⊆m jmiM ⊆mi+ jM ⊆ Ni+ j. This shows

Ni+ j =m j(a
iM)+Ni+ j+1.

Define a filtration {Ni j} j∈Z on Ni by

Ni j =

{
Ni if j < 0
Ni+ j if j ≥ 0.

Applying Corollary 7.3.19, we obtain Ni = aiM. Since ai ⊆mi
1 ⊆mi, we have Ni ⊆mi

1M⊆
miM ⊆ Ni. Hence, Ni = mi

1M. If we take Mi = Ai, this shows mi = mi
1, and the proof of

(1) is complete. Part (2) follows from (1) and the definitions for mi and Ni. By (5.3),
m1 = a+m2

1, which proves Part (3). □

EXAMPLE 10.5.3. Let R be a commutative ring and I an ideal in R such that I/I2

is a finitely generated R/I-module. Let R̂ = lim←−n
R/In be the separated completion of R.

With respect to the filtration {În}, R̂ is separated and complete (Corollary 7.1.10). The
reader should verify that the inverse system of rings {R/In} satisfies the hypotheses of
Corollary 10.5.2, hence the topology on R̂ is the Î-adic topology. Moreover, Î/Î2 ∼= I/I2 is
finitely generated over R̂/Î.

COROLLARY 10.5.4. Let {Ai,φ
i
j} be a directed system of commutative local rings for

a directed index set I. Let mi denote the maximal ideal of Ai. For each i ≤ j, assume
φ i

j : Ai→ A j is a local homomorphism of local rings. If A = lim−→Ai, then the following are
true.

(1) A is a local ring with maximal ideal m= lim−→i
mi, each homomorphism αi : Ai→A

is a local homomorphism of local rings, and the residue field of A is lim−→i
Ai/mi.

(2) If m j =miA j, for each i≤ j, then miA =m.
(3) For each i ≤ j, assume m j = miA j and A j is a faithfully flat Ai-module. If each

Ai is noetherian, then A is noetherian.

PROOF. (1): Let m =
⋃

i αi(mi). The reader should verify that m is the unique maxi-
mal ideal of A. Take the direct limit of the exact sequences

0→mi→ Ai→ Ai/mi→ 0

and apply Theorem 2.7.6 to get the exact sequence

0→m→ A→ A/m→ 0.

(2): The sequence mi⊗Ai A j → m j → 0 is exact. The functor lim−→ j
( ) is exact (The-

orem 2.7.6) and commutes with tensor products (Proposition 2.7.8). Hence the sequence
mi⊗Ai A→m→ 0 is exact.

(3): By Exercise 2.7.30 and Exercise 3.5.27, A is faithfully flat over each Ai. Therefore,
0→mn

i ⊗Ai A→ Ai⊗Ai A is exact, and mn
i ⊗Ai A→mn

i A=mn is an isomorphism. It follows
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that
mn/mn+1 ∼= (mn

i A)/
(
mn+1

i A
)

∼=
(
mn

i /m
n+1
i
)
⊗Ai A

∼=
(
mn

i /m
n+1
i
)
⊗Ai/mi (Ai/mi⊗Ai A)

∼=
(
mn

i /m
n+1
i
)
⊗Ai/mi A/m

are isomorphisms of A/m-vector spaces. Since Ai is noetherian, mn
i /m

n+1
i is a finite di-

mensional Ai/mi-vector space. Therefore, mn/mn+1 is finite dimensional over A/m. Let
Â = lim←−A/mn. By (2), Â = lim←−A/mn

i A, for each i. By Example 10.5.3 and Proposi-
tion 7.2.2, Â is noetherian.

The maximal ideal of Â is m̂. By Proposition 7.3.1, we have m̂=mÂ =miÂ, for each
i. Because A is flat over Ai, (Ai/mi

n)⊗Ai A is flat over Ai/m
n
i . Therefore,

Â/mi
nÂ = A/mi

nA = Ai/m
n
i ⊗Ai A

is flat over Ai/m
n
i . In the terminology of Example 10.4.12 (1), the Ai-module Â is ideal-

wise separated for mi. By (6) implies (1) of Theorem 10.4.13, it follows that Â is flat over
Ai. By Exercise 3.5.27, Â is faithfully flat over Ai. By Exercise 2.7.31, Â is faithfully flat
over A. By Exercise 4.1.24, A is noetherian. □



CHAPTER 11

Normal Integral Domains

A commutative ring R is called a normal ring in case RP is an integrally closed local
integral domain, for every P ∈ SpecR. The commutative ring R is called a regular ring in
case RP is a regular local ring, for every P ∈ SpecR.

Let R be a commutative noetherian local ring with maximal ideal m and residue field k.
In Theorem 11.1.8 we show that R is regular of Krull dimension n if and only if the graded
ring grm(R) is isomorphic to a polynomial ring k[x1, . . . ,xn]. In two important corollaries,
we show that if R is regular, then R is normal. Also, the completion of R, R̂, is noetherian,
and R̂ is regular if and only if R is regular.

Section 11.2 contains an introduction to valuations on a field F and the valuation ring
associated to a valuation. A valuation ring is a normal integral domain, and if R is any
subring of F , the integral closure of R in F is shown to be the intersection of the valuation
rings of F that contain R. An important and useful type of valuation on a field is a discrete
valuation. In this case, the associated valuation ring is a local principal ideal domain.

The subject of Section 11.3 are Cohen-Macaulay local rings. This class of rings prop-
erly contains the class of regular local rings.

The subject of Section 11.4 are noetherian normal integral domains. If R is a noether-
ian normal integral domain with field of fractions K, we show that for every height one
prime P of R, the local ring RP is a discrete valuation ring of K. The discrete valuation
on K∗ defined by the height one prime P is denoted νP. The free abelian group on the set
of all height one primes of R, denoted Div(R), is called the group of Weil divisors of R.
The divisor of α ∈ K∗, denoted Div(α), is the element of Div(R) which in coordinate P
has coefficient νP(α). The set of all such Div(α) is a subgroup of Div(R) and the quotient
group, denoted Cl(R), is called the class group of R. The class group of R is trivial if and
only if R is a unique factorization domain.

The context of Section 11.5 is a faithfully flat extension f : R→ S of commutative
noetherian rings. We consider which properties of R are inherited by S. Conversely, we
ask “If S has a certain property, does R also have that property?”

In Section 11.6 we derive some useful sets of sufficient criteria for a ring to be regular.

1. Normal Rings and Regular Rings

An integral domain R is said to be normal if R is integrally closed in its quotient field
K. A commutative ring R is called normal if RP is a normal local integral domain, for
each prime P in SpecR. A commutative ring R is called regular, if RP is a regular local
integral domain, for each prime P in SpecR. We show that if R is normal, then R[x] is
normal. When I is an ideal of R contained in the Jacobson radical of R, important tests
in terms of the graded ring grI(R) are derived for normality of R (Theorems 11.1.7 and
11.1.8). One corollary of this is that a regular local ring is normal (Corollary 11.1.9).
Another corollary is that a noetherian local ring R is regular if and only if the completion
R̂ is regular (Corollary 11.1.10). A general reference for this section is [42, §17].

435
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1.1. Normal Integral Domains.

DEFINITION 11.1.1. Let R be an integral domain with quotient field K. If R is inte-
grally closed in K, then we say R is normal. Let u ∈ K. We say u is almost integral over
R in case there exists r ∈ R− (0) such that run ∈ R for all n > 0. We say R is completely
normal in case the set of all elements in K that are almost integral over R is equal to R
itself.

LEMMA 11.1.2. Let R be an integral domain with quotient field K.
(1) If u ∈ K and u is integral over R, then u is almost integral over R.
(2) If u,v ∈ K are both almost integral over R, then u+ v and uv are almost integral

over R.
(3) If R is noetherian and u ∈ K, then u is almost integral over R if and only if u is

integral over R.

PROOF. (1): By Proposition 6.1.2, there exists m≥ 1 such that R[u] is generated as an
R-module by 1,u,u2, . . . ,um−1. Write u = a/b for some a,b ∈ R. For i = 1, . . . ,m− 1 we
have bm−1ui ∈ R. The rest is left to the reader.

(2): Is left to the reader.
(3): Assume u is almost integral and r ∈ R− (0) such that run ∈ R for all n > 0.

Consider r−1R, which is a principal R-submodule of K. Hence R[u] is an R-submodule of
the finitely generated R-module r−1R. By Corollary 4.1.12, R[u] is finitely generated. By

Proposition 6.1.2, u is integral over R. The converse follows from Part (1). □

EXAMPLE 11.1.3. If R is a noetherian normal integral domain, then Lemma 11.1.2 (3)
implies that R is completely normal. In particular, if R is a UFD, then R is normal by
Example 6.1.6. If R is a noetherian UFD, then R is completely normal. If k is a field, then
k[x] and k[[x]] are completely normal.

DEFINITION 11.1.4. Let R be a commutative ring. We say R is a normal ring in case
RP is a normal local integral domain for each P ∈ SpecR. We say R is a regular ring in
case RP is a regular local ring (see Definition 9.6.14) for each P ∈ SpecR.

LEMMA 11.1.5. Let R be a commutative noetherian ring with the property that Rm

is an integral domain, for each maximal ideal m ∈ MaxR. Let P1, . . . ,Pn be the distinct
minimal primes of R.

(1) The natural map

R
φ−→ R/P1⊕·· ·⊕R/Pn

is an isomorphism.
(2) The nil radical of R, Rad(0), is equal to (0).
(3) R is a normal ring if and only if each ring R/Pi is a normal integral domain.

PROOF. By Corollary 4.1.15, there are only finitely many minimal prime over-ideals
of (0).

(1) and (2): For each maximal ideal m ∈MaxR, the local ring Rm is an integral do-
main. If I = Rad(0) is the nil radical of R, then Im = 0 for each m. By Proposition 3.1.9,
I = 0. By Exercise 9.2.20, P1 ∩ ·· · ∩Pn = (0). Suppose m is a maximal ideal such that
Pi +Pj ⊆m. The integral domain Rm has a unique minimal prime ideal, namely (0). This
means PiRm = PjRm = (0). By Exercise 3.3.25, we conclude i = j. If n > 1, then the
minimal prime ideals of R are pairwise comaximal. The rest follows from the Chinese
Remainder Theorem, Theorem 1.1.7.

(3): Is left to the reader. □
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LEMMA 11.1.6. Let R be a commutative ring.
(1) If R is a completely normal integral domain, then so is R[x1, . . . ,xn].
(2) If R is a completely normal integral domain, then so is R[[x1, . . . ,xn]].
(3) If R is a normal ring, then so is R[x1, . . . ,xn].

PROOF. (1): It is enough to prove R[x] is completely normal. Let K be the quotient
field of R. We have the tower of subrings R[x]⊆ K[x]⊆ K(x) and K(x) is the quotient field
of R[x] as well as K[x]. By Example 11.1.3, K[x] is completely normal. Let u ∈ K(x) and
assume u is almost integral over R[x]. Then u is almost integral over K[x], hence u ∈ K[x].
Let f ∈ R[x] and assume f un ∈ R[x] for all n. Write u = utxt + ut+1xt+1 + · · ·+ uT xT ,
where ui ∈ K, t ≥ 0, and ut ̸= 0. Write f = fsxs + fs+1xs+1 + · · ·+ fSxS, where fi ∈ R,
s ≥ 0, and fs ̸= 0. Since R is an integral domain, in f un, the coefficient of the lowest
degree monomial is equal to fsun

t . Therefore, ut is almost integral over R, hence ut ∈ R. By
Lemma 11.1.2 (2) we see that u−utxt = ut+1xt+1 + · · ·+uT xT is almost integral over R[x].
By a finite iteration, we can prove that every coefficient of u is in R.

(2): Mimic the proof of Part (1). The proof is left to the reader.
(3): It is enough to prove R[x] is normal. Let Q be a prime ideal in R[x]. We need to

show R[x]Q is a normal integral domain. Let P = Q∩R. Then R[x]Q is a localization of
RP[x]. By assumption, RP is a normal integral domain. By Proposition 6.1.9, it is enough
to prove the result when R is a local normal integral domain. Let K be the quotient field of
R. Let u ∈ K(x) and assume u is integral over R[x]. Then u is integral over K[x] and K[x] is
integrally closed, so u ∈ K[x]. We can write u = urxr + · · ·+ u1x+ u0 where each ui ∈ K.
Each ui can be represented as a fraction ui = ti/bi, for some ti,bi ∈ R. There is a monic
polynomial f (y)∈R[x][y] such that f (u) = 0. Write f (y) = ym+ fm−1ym−1+ · · ·+ f1y+ f0,
where each fi ∈ R[x]. Let S be the subring of R generated by 1, b0, . . . ,br, t0, . . . , tr, together
with all of the coefficients of all of the polynomials f0, . . . , fm−1. Since S is a finitely
generated Z-algebra, S is noetherian, by the Hilbert Basis Theorem (Theorem 6.2.1). Also,
S is an integral domain and S[x] ⊆ R[x]. If F is the quotient field of S, then F ⊆ K and
u ∈ F [x]. Therefore, u is integral over S[x]. By the proof of Part (1), each coefficient of
u is almost integral over S. By Lemma 11.1.2 (3), each coefficient of u is integral over S.
Therefore, each coefficient of u is integral over R. Since R is integrally closed, this proves
u ∈ R[x]. □

Let R be a commutative ring and I an ideal of R such that the I-adic topology of R is
separated. In this case,

⋂
n In = (0). As in Example 7.2.3, let grI(R) =

⊕
n≥0 In/In+1 be

the graded ring associated to the I-adic filtration R = I0 ⊃ I1 ⊇ I2 ⊃ . . . . For notational
simplicity, set grn(R) = In/In+1. Then grI(R) = gr0(R)⊕ gr1(R)⊕ gr2(R)⊕ ·· · . Given
x ∈ R− (0), there exists a unique nonnegative integer n such that x ∈ In and x ̸∈ In+1.
This integer n is called the order of x with respect to I, and is written ord(x). Define
ord(0) = ∞. The reader should verify that ord(xy) ≥ ord(x) + ord(y) and ord(x+ y) ≥
min(ord(x),ord(y)).

If x ̸= 0 and n = ord(x), then the image of x in grn(R) = In/In+1 is denoted λ (x). We
call λ (x) the least form of x. Define λ (0) = 0.

THEOREM 11.1.7. Let R be a commutative ring and I an ideal of R such that the
I-adic topology of R is separated.

(1) If grI(R) is an integral domain, then R is an integral domain and for any x,y ∈ R,
ord(xy) = ord(x)+ord(y) and λ (xy) = λ (x)λ (y).

(2) If R is noetherian, I is contained in the Jacobson radical of R, and grI(R) is a
normal integral domain, then R is a normal integral domain.
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PROOF. (1): Let x and y be nonzero elements of R. Write m = ord(x) and n = ord(y).
Then λ (x)∈ grm(R) is nonzero and λ (y)∈ grn(R) is nonzero. Since λ (x)λ (y) is a nonzero
element of grm+n(R), we have xy ∈ Im+n and xy ̸∈ Im+n+1. This proves xy ̸= 0. This also
proves ord(xy) = ord(x)+ord(y) and λ (xy) = λ (x)λ (y).

(2): By Part (1), R is an integral domain. Let a/b be an element of the quotient field
of R which is integral over R. We must prove that a ∈ bR. By Corollary 7.3.6, the I-adic
topology of R/bR is separated. In other words, bR = ∩n(bR+ In), and it suffices to prove
a ∈ bR+ In for all n≥ 0. The n = 0 case is trivially true, since I0 = R. Inductively assume
n > 0 and that a ∈ bR+ In−1. Write a = bx+ c, for some c ∈ In−1 and x ∈ R. It is enough
to prove c ∈ bR+ In. Assume c ̸= 0, otherwise the proof is trivial. Since c/b = a/b+ x is
integral over R, c/b is almost integral over R, by Lemma 11.1.2. There exists d ∈ R− (0)
such that d(c/b)m ∈ R for all m > 0. Therefore, dcm ∈ bmR for all m > 0. By Part (1),
λ is multiplicative, so λ (d)λ (c)m ∈ λ (b)m grI(R), for all m. This implies λ (c)/λ (b) is
almost integral over grI(R). By Proposition 7.2.9, grI(R) is noetherian. By Lemma 11.1.2,
λ (c)/λ (b) is integral over grI(R). By hypothesis, grI(R) is integrally closed, hence λ (c)∈
λ (b)grI(R). Since λ (c) is homogeneous, there exists a homogeneous element λ (e) ∈
grI(R) such that λ (c) = λ (b)λ (e). By Part (1), λ (c) = λ (be). By definition of λ , this
implies ord(c)< ord(c−be). By choice of c we have n−1 < ord(c)< ord(c−be). Thus,
c−be ∈ In, which proves c ∈ bR+ In. □

1.2. Regular Local Rings. A generalization of Theorem 11.1.8 for the ideal gener-
ated by a regular sequence in a commutative noetherian ring is proved in Corollary 11.3.7.

THEOREM 11.1.8. Let R be a noetherian local ring with maximal ideal m, and residue
field k = R/m. Then R is a regular local ring of Krull dimension n if and only if the graded
ring grm(R) associated to the m-adic filtration is isomorphic as a graded k-algebra to a
polynomial ring k[t1, . . . , tn].

PROOF. Assume that R is regular. By Definition 9.6.14, m is generated by a regu-
lar system of parameters, say m = x1R+ · · ·+ xnR. By Example 7.2.3, grm(R) = R/m⊕
m/m2⊕m2/m3⊕·· · is a k = R/m-algebra which is generated by λ (x1), . . . ,λ (xn). As in
the proof of Proposition 9.6.7, let S = k[t1, . . . , tn] and define θ : S→ grm(R) by θ(ti) =
λ (xi). Then θ is a graded homomorphism of graded k-algebras and θ is onto. Let I denote
the kernel of θ . Then I is a graded ideal, hence is generated by homogeneous polynomi-
als. If I = (0), then we are done. For contradiction’s sake, assume f is a homogeneous
polynomial of degree N in I. The sequence of graded S-modules

0→ S(−N)
ℓ f−→ S→ S/ f S→ 0

is exact, where S(−N) is the twisted module. If m > N, the components of degree m give
the sequence

0→ Sm−N
ℓ f−→ Sm→ (S/ f S)m→ 0

which is still exact. By Example 9.5.10,
m

∑
d=0

ℓ(Sd) =

(
n
n

)
+ · · ·+

(
m−1+n

n

)
=

(
m+n

n

)
,

and
m−N

∑
d=0

ℓ(Sd) =

(
n
n

)
+ · · ·+

(
m−N−1+n

n

)
=

(
m−N +n

n

)
.
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Since

(S/ f S)0⊕ (S/ f S)1⊕·· ·⊕ (S/ f S)m
θ−→ R/m⊕m/m2⊕·· ·⊕mm/mm+1

is onto, applying the length function, we have(
m+n

n

)
−
(

m−N +n
n

)
≥ ℓ
(
R/mm+1) .

The left hand side is a numerical polynomial in m of degree n−1, by Lemma 9.5.8. At the
same time, Theorem 9.6.11 says the function ℓ(A/mm+1) is a polynomial in m of degree n.
This contradiction implies I = (0).

Conversely, assume grm(R) is isomorphic to a polynomial ring k[t1, . . . , tn]. The Hilbert
function of R is therefore ℓ(R/mm+1) =

(m+n
n

)
, a polynomial in m of degree n. Corol-

lary 9.6.13 says R has Krull dimension n. Also, dimk m/m2 = dimk(kt1 + · · ·+ ktn) = n.
By Exercise 9.6.17, R is regular. □

COROLLARY 11.1.9. If R is a commutative noetherian regular local ring, then R is a
normal integral domain.

PROOF. This follows from Theorem 11.1.7 and Theorem 11.1.8. □

COROLLARY 11.1.10. Let R be a commutative noetherian local ring with maximal
ideal m. Let R̂ = lim←−R/mn be the completion of R with respect to the m-adic topology.

(1) R̂ is a noetherian local ring with maximal ideal m̂=mR̂.
(2) The Krull dimension of R is equal to the Krull dimension of R̂.
(3) R→ R̂ is faithfully flat.
(4) R is a regular local ring if and only if R̂ is a regular local ring.

PROOF. (1): Follows from Corollary 7.1.12 and Corollary 7.3.18.
(2): This is Corollary 9.6.13 (4).
(3): Follows from Theorem 7.3.7.
(4): By Corollary 7.3.2, the associated graded rings grm(R) and grm̂(R̂) are isomorphic

as graded rings. Part (4) follows from Theorem 11.1.8. □

1.3. Exercise.

EXERCISE 11.1.11. Let k be an algebraically closed field of characteristic different
from 2 and 3 and let x and y be indeterminates. Let f = y2− x2 + x3 and R = k[x,y]/( f ).
Define α : k[x]→ R by x 7→ x.

(1) Show that α is one-to-one.
(2) Show that R is a finitely generated k[x]-module.
(3) Show that R is not a separable k[x]-module.
(4) Show that R is an integral domain.
(5) Show that R is not a normal integral domain.

2. Valuations and Valuation Rings

As an introduction to the subject of valuations and valuation rings we consider an
example. Let R be a unique factorization domain with quotient field K. Let p be an
irreducible element of R and P = Rp the prime ideal generated by p. By Corollary 9.6.12,
P has height one. If RP is the local ring of R at P, then every α ∈ RP can be represented as
a fraction α = x/y, where x ∈ R and y ∈ R−Rp. Since R is a unique factorization domain
and y is not divisible by p, α has a unique representation in the form α = upa, where a≥ 0
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and u is an invertible element of RP. This implies RP is a unique factorization domain.
By Theorem 1.5.8, RP is a principal ideal domain. By Exercise 3.1.31, every invertible
element z in K∗ has a unique representation in the form z = vpn, where v is a unit in R∗P and
n is an integer in Z. Using this unique representation, we define a function νP : K∗→ Z,
the so-called P-adic valuation on K∗. It is routine to verify the following.

(1) For all x,y ∈ K∗, νP(xy) = νP(x) + νP(y) and if x + y ̸= 0, then νP(x + y) ≥
min(νP(x),νP(y)).

(2) RP = {0}∪{z ∈ K∗ | νP(z)≥ 0}.
(3) For all z ∈ K∗, either z ∈ RP, or z−1 ∈ RP.

The definitions and results that follow are motivated by this example. General references
for the material in this section are [4] and [13].

2.1. Valuation Rings. In this section we employ the notation R∗ to designate the
group of invertible elements of a ring.

LEMMA 11.2.1. Let R be an integral domain with quotient field K. The following are
equivalent.

(1) For all x ∈ K∗, either x ∈ R, or x−1 ∈ R.
(2) For all a, b in R, either a | b, or b | a.

PROOF. Is left to the reader. □

If R is an integral domain that satisfies the equivalent parts of Lemma 11.2.1, then we
say R is a valuation ring of K.

Let G be an abelian group, written additively. We say G is an ordered group, if there is
a partial order on G that preserves the binary operation. In other words, if u≤ v and x≤ y,
then u+ x≤ v+ y. We say G is a totally ordered group, if the partial order is a chain.

EXAMPLE 11.2.2. The set R is partially ordered by the usual “less than” relation.
Under addition, R is a totally ordered group. The subgroup Z is also a totally ordered
group.

A valuation on a field F is a function ν : F∗→G, for a totally ordered group G which
satisfies

(1) ν(xy) = ν(x)+ν(y), and
(2) if x+ y ̸= 0, then ν(x+ y)≥min(ν(x),ν(y)).

The reader should verify that ν(1) = 0.

LEMMA 11.2.3. Suppose F is a field and ν : F∗→ G is a valuation on F. Let

R = {0}∪{x ∈ F∗ | ν(x)≥ 0}.
Then R is a valuation ring of F which we call the valuation ring associated to ν . Con-
versely, if R is a valuation ring of F, then there exists a valuation v : F∗ → H for some
totally ordered group H such that R is the valuation ring of v.

PROOF. Is left to the reader (see Exercise 11.2.8). □

Let F be a field and R⊆ S subrings of F . Assume R and S are local rings and that the
inclusion homomorphism R→ S is a local homomorphism of local rings (or, equivalently,
the maximal ideal of S contains the maximal ideal of R). In this case, we say S dominates
R. The reader should verify that this defines a partial order on the set of all local subrings
of F .



2. VALUATIONS AND VALUATION RINGS 441

LEMMA 11.2.4. Let F be a field and ν : F∗ → G a valuation on F. Let R be the
valuation ring of ν .

(1) R is a local ring with maximal ideal mR = {0}∪{x ∈ F∗ | ν(x)> 0}.
(2) If R ⊆ A ⊆ F is a tower of local subrings of F such that A dominates R, then

R = A. In other words, R is a maximal local subring with respect to the relation
“dominates”.

(3) R is integrally closed in F.

PROOF. (1) and (2): Are left to the reader.
(3): Let x ∈ F and assume x is integral over R. We prove x ∈ R. Assume the contrary.

By Lemma 11.2.1, x−1 ∈ R. Since x is integral over R, there are elements r0, . . . ,rn−1 in R
such that

xn + rn−1xn−1 + · · ·+ r1x+ r0 = 0

where n > 0. Multiply by x1−n and solve for x. Then

x =−(x−1)n−1(rn−1xn−1 + · · ·+ r1x+ r0)

=−(rn−1 + · · ·+ r1x2−n + r0x1−n)

is in R, a contradiction. □

Let F be a field and Ω an algebraically closed field. Consider the set

C (Ω) = {(R, f ) | R is a subring of F and f : R→Ω is a homomorphism of rings}.

If (R,F) and (S,g) are in C , then we say (S,g) extends (R, f ), in case R ⊆ S and the
diagram

R

��

f // Ω

S
g

??

commutes. The reader should verify that this defines a partial order on C (Ω).

LEMMA 11.2.5. Let F be a field, R a local subring of F which is maximal with respect
to the relation “dominates”. Let mR be the maximal ideal of R and kR = R/m the residue
field. Let k̄ be an algebraic closure of kR and η : R→ k̄ the natural map. Then (R,η) is a
maximal element of C (k̄).

PROOF. Assume R⊆ A⊆ F is a tower of subrings of F and h : A→ k̄ is a homomor-
phism that extends η . The diagram

R

��

η // k̄

A
h

@@

commutes. If P denotes the kernel of h, then it is easy to see that P∩R =mR. Then R→ AP
is a local homomorphism of local rings and AP dominates R. By hypothesis, R is equal to
AP. We conclude that R = A. □

LEMMA 11.2.6. Let F be a field, Ω an algebraically closed field, and (R, f ) a maximal
element of C (Ω). Then R is a valuation ring of F.
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PROOF. Step 1: R is a local ring, with maximal ideal m= kerg. Since the image of f
is a subring of the field Ω, we know that m= kerg is a prime ideal of R. Consider the tower
of subrings of F , R ⊆ RP ⊆ F . By Theorem 3.1.6, f extends uniquely to g : RP→ Ω. By
maximality of (R, f ), we conclude that R = RP. Therefore, R is local and m is the maximal
ideal.

Step 2: For any nonzero α ∈ F , either mR[α] ̸= R[α], or mR[α−1] ̸= R[α−1]. Assume
the contrary. Then m[α] = R[α] and m[α−1] = R[α]. There exist elements a0, . . . ,am ∈ m
such that

(2.1) 1 = a0 +a1α + · · ·+amα
m.

Among all such relations, pick one such that m is minimal. Likewise, there is a relation

(2.2) 1 = b0 +b1α
−1 + · · ·+bnα

−n

where b0, . . . ,bn ∈m and n is minimal. Without loss of generality assume m≥ n. Multiply
(2.2) by αn and rearrange to get

(1−b0)α
n = b1α

n−1 + · · ·+bn.

By Step 1, R is a local ring, so 1−b0 is invertible in R. Solve for αn and we can write

α
n = c1α

n−1 + · · ·+ cn

for some c1, . . . ,cn ∈m. Multiply by αm−n to get αm = c1αm−1 + · · ·+cnαm−n. Substitut-
ing this in (2.1), we get a relation with degree less than m, a contradiction.

Step 3: Let α ∈ F∗ and prove that either α ∈ R, or α−1 ∈ R. Without loss of generality
we assume by Step 2 that mR[α] ̸= R[α]. Let M be a maximal ideal of R[α] such that
mR[α]⊆M. Now M∩R is a prime ideal of R which contains the maximal ideal m. Hence
M ∩R = m and we can view R[α]/M as an extension field of R/m. The field R[α]/M
is generated as an algebra over R/m by the image of α . Therefore, R[α]/M is a finitely
generated algebraic extension of R/m. By Corollary 1.8.3, there exists a homomorphism
R[α]→ Ω which extends f : R→ Ω. Since (R, f ) is maximal, we conclude that R =
R[α]. □

THEOREM 11.2.7. Let F be a field and R a subring of F.

(1) Let Ω be an algebraically closed field and f : R→Ω a homomorphism of rings.
Then there exists a valuation ring A of F and a homomorphism g : A→ Ω such
that (A,g) extends (R, f ) and the kernel of g is equal to the maximal ideal of A.

(2) If R is a local ring, then there exists a valuation ring A of F such that A dominates
R.

(3) The integral closure of R in F is equal to the intersection of the valuation rings
of F that contain R.

(4) If R is a local ring, then the integral closure of R in F is equal to the intersection
of the valuation rings of F that dominate R.

PROOF. (2): Take Ω to be an algebraic closure of the residue field of R and let η :
R→Ω be the natural map. Apply Part (1).

(1): Let C be the subset of C (Ω) consisting of those pairs (A,g) that extend (R, f ).
Then C contains (R, f ), hence is nonempty. Suppose {(Ai, fi)} is a chain in C. The reader
should verify that the union ∪ fi : ∪Ai → Ω is also in C. By Zorn’s Lemma, Proposi-
tion 1.2.4, C contains a maximal member, say (A,g). By Lemma 11.2.6, A is a valuation
ring of F and the kernel of f is the maximal ideal of A.
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(3): Let R̃ be the integral closure of R in F . Let A be a valuation ring of F which
contains R. By Lemma 11.2.4 (3), A is integrally closed. Therefore R̃ ⊆ A. Conversely,
suppose α ∈ F− R̃. The reader should verify that α ̸∈ R[α−1], so α−1 is not invertible in
R[α−1]. There exists a maximal ideal M of R[α−1] such that α−1 ∈M. By Part (2), there
exists a valuation ring A of F which dominates the local ring R[α−1]M . Because α−1 is an
element of the maximal ideal of A, A does not contain α .

(4): In the proof of Part (3), notice that the diagram

R
φ

&&��
R[α−1]

η // R[α−1]/M

commutes. Since η(α−1) = 0, the image of φ is equal to the image of η . Therefore, φ is
onto and the kernel of φ is a maximal ideal of R. If R is local with maximal ideal m, this
proves M∩R =m. The rest is left to the reader. □

2.2. Exercise.

EXERCISE 11.2.8. This exercise outlines a proof to the last part of Lemma 11.2.3. Let
F be a field and R a valuation ring of F . Define G to be the factor group F∗/R∗. There is
a natural homomorphism of groups ν : F∗→ G. The group G is an abelian group, written
multiplicatively. If x ∈ F∗, the coset represented by x is denoted ν(x).

(1) Define a binary relation on G by the rule ν(x) ≥ ν(y) if and only if xy−1 ∈ R.
Prove the following.
(a) ≥ is a well defined binary relation on G.
(b) ≥ is a partial order on G.
(c) ≥ preserves the group law on G, hence G is an ordered group.
(d) ≥ is a chain, hence G is a totally ordered group.

(2) ν : F∗→ G is a valuation on F .
(3) The valuation ring of ν is R.

2.3. Discrete Valuation Rings. If F is a field, a discrete valuation on F is a valuation
ν : F∗→ Z such that ν is onto. The valuation ring of ν is R = {0}∪{x ∈ F∗ | ν(x)≥ 0}.
Then R is a valuation ring of F . In particular, Lemma 11.2.4 implies that R is a local ring
with maximal ideal m = {0}∪{x ∈ F∗ | ν(x) > 0}, F is the field of fractions of R, and R
is integrally closed in F . Since ν is onto, we see that m ̸= (0), so dimR ≥ 1. An integral
domain A is called a discrete valuation ring (DVR for short), if there exists a discrete
valuation on the field of fractions of A such that A is the associated valuation ring.

EXAMPLE 11.2.9. Let R be a unique factorization domain with quotient field K. Let p
be an irreducible element of R and P = Rp the principal prime ideal generated by p. As we
saw in the opening paragraph of Section 11.2, the P-adic valuation is a discrete valuation
on K and the local ring RP is a discrete valuation ring.

LEMMA 11.2.10. Let F be a field and ν a discrete valuation on F. Let R be the
associated DVR, with maximal ideal m.

(1) R is a PID.
(2) R is noetherian.
(3) For any element π ∈ R such that ν(π) = 1, m= πR. A complete list of the ideals

of R is (0),Rπ,Rπ2, . . . ,R.



444 11. NORMAL INTEGRAL DOMAINS

(4) dimR = 1.

PROOF. (1): Let I be a proper ideal in R. Then I ⊆m. Consider the set S = {ν(x) | x∈
I− (0)}. This is a nonempty subset of Z which has a lower bound. By the Well Ordering
Principle, there exists a least element, say ν(z). For any x ∈ I, we have ν(x/z) ≥ 0, so
x/z ∈ R. Therefore, x = z(x/z) ∈ Rz. This proves that I = Rz is principal.

(2): Follows from (1) and the fact that a principal ideal domain is noetherian (see
Theorem 1.5.6).

(3): If x,y ∈ R, then x and y are associates if and only if Rx = Ry, if and only if
xy−1 ∈ R∗, if and only if ν(x) = ν(y). Since ν : F∗→ Z is onto, there exists π ∈ R such
that ν(π) = 1. Let I be a proper ideal of R. By Part (1), I = Rz for some z ∈ R. Since I
is proper, ν(z) = k > 0. Then ν(z) = ν(πk), so Rz = Rπk. This proves every ideal of R is
represented in the list. For i≥ 0, the ideals Rπ i are distinct, since π i and π j are associates
if and only if i = j.

(4): See Example 9.6.1. □

THEOREM 11.2.11. Let R be a noetherian local integral domain with field of fractions
K, maximal ideal m and residue field k =R/m. If dim(R) = 1, the following are equivalent.

(1) R is a DVR.
(2) R is a PID.
(3) R is regular.
(4) R is normal.
(5) m is a principal ideal.
(6) There exists an element π ∈ R such that every ideal of R is of the form Rπn, for

some n≥ 0. We call π a local parameter for R.

PROOF. (1) implies (2): This is Lemma 11.2.10.
(2) implies (1): There exists π ∈ R such that m= Rπ . The only prime ideals of R are

m and (0). By Exercise 3.1.31, any x ∈K∗ can be factored uniquely as x = uπν(x) for some
integer ν(x) and u ∈ R∗. The reader should verify that the function ν : K∗→ Z is a discrete
valuation on K, R is the valuation ring associated to ν , and the function ν does not depend
on the choice of π .

(2) implies (3): There exists π ∈ R such that m = Rπ . Then π is a regular system of
parameters and R is regular, by Definition 9.6.14.

(3) implies (4): Corollary 11.1.9.
(4) implies (5): Let x ∈m− (0). Since dim(R) = 1, the only prime ideal that contains

Rx is m. Therefore, Rad(Rx)=m. By Corollary 9.1.4, there exists n> 0 such that mn⊆Rx.
If m= Rx, then we are done. Otherwise pick n such that mn−1 ̸⊆ Rx. Let y∈mn−1−Rx and
set π = xy−1 ∈ K. Then ym⊆mn ⊆ Rx implies π−1m= yx−1m⊆ R. Since π−1x = y ̸∈ Rx
it follows that π−1 ̸∈ R. Since R is integrally closed in K, it follows that π−1 is not integral
over R. If π−1m ⊆ m, then m is a faithful R[π−1]-module which is finitely generated as
an R-module. Proposition 6.1.2 implies π−1 is integral over R, a contradiction. Therefore,
π−1m is an ideal in R which is not contained in m. This means π−1m = R, π ∈ m, and
m= Rπ .

(5) implies (6): Let I be a proper ideal of R. Then I ⊆ m. Since dim(R) = 1, R is
not artinian. By Proposition 4.5.5, for all n ≥ 1, mn+1 ⊊ mn. There exists n ≥ 1 such
that I ⊆ mn and I ̸⊆ mn+1. Pick y ∈ I such that y ∈ mn and y ̸∈ mn+1. There exists π ∈ R
such that m = Rπ . For some u ∈ R, we can write y = uπn. Since y ̸∈ mn+1, we know that
u ∈ R−m. That is, u ∈ R∗. It follows that πn = u−1y ∈ I, so I =mn.

(6) implies (2): Is trivial. □
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2.3.1. Completion of a Discrete Valuation Ring.

THEOREM 11.2.12. Let R be a DVR with field of fractions K and maximal ideal m=
πR. Let R̂ = lim←−R/mn be the completion of R with respect to the m-adic topology.

(1) R̂ is a DVR with maximal ideal m̂= πR̂.
(2) K is equal to the localization R[π−1].
(3) The quotient field of R̂ is K̂ = R̂⊗R K.
(4) K̂ is equal to the localization R̂[π−1].
(5) R̂∩K = R.
(6) Given a ∈ R̂ and p > 0 there exists b ∈ R such that a−b ∈mp.
(7) Given a ∈ K̂ and p > 0 there exists b ∈ K such that a−b ∈ m̂p.

PROOF. (1) – (4): By Corollary 11.1.10, R̂ is a DVR with maximal ideal m̂ = πR̂
and R→ R̂ is faithfully flat. It follows from Theorem 11.2.11 that K is generated as an
R-algebra by π−1. By the same argument, the field of fractions of R̂ is generated by π−1.
Consider the exact sequence R[x]→ K→ 0 where x 7→ π−1. Tensor with R̂ to get the exact
sequence R̂[x]→ K̂→ 0. Therefore, K̂ is generated as a R̂-algebra by π−1, so K̂ is equal to
the field of fractions of R̂.

(5): Let a ∈ R̂∩K. Since a ∈ R̂, ν(a)≥ 0. Then a is in the valuation ring of K, which
is equal to R.

(6): Since R̂ is the completion of R with respect to the m-adic topology, the open set
a+mp has a nontrivial intersection with R.

(7): Is left to the reader. □

3. Some Local Algebra

The central focus of this section are Cohen-Macaulay local rings. This class of rings
is related to regular local rings. In Theorem 11.3.31 we show that a regular local ring is
Cohen-Macaulay. The converse is not true, in fact a Cohen-Macaulay ring is not necessar-
ily normal (see Corollary 11.4.9). The most intuitive way to see the connection between
the definitions for Cohen-Macaulay local rings and regular local rings involves the notion
of regular sequences. For this reason, the section begins with the definition of a regular
sequence. Consider a noetherian local ring R with maximal ideal m. We show below that
if a regular system of parameters exists for m, then it is also a regular sequence for R in m.
If R is not a regular local ring, then of course a regular system of parameters does not exist.
So the idea of a regular sequence is more general than a regular system of parameters.
The length of a regular sequence for R in m is bounded by the Krull dimension of R. The
maximal length of all regular sequences for R in m is called the depth of R. If the depth
of R is equal to the Krull dimension of R, then R is called a Cohen-Macaulay local ring.
General references for the material in this section are [42, Sections 15, 16, 17 and 18] and
[24, § 17.3].

3.1. Regular Sequences. Let R be a commutative ring, M an R-module, and a1, . . . ,an
some elements of R. We denote by (a1, . . . ,an) = Ra1+ · · ·+Ran the ideal which they gen-
erate and in the same fashion (a1, . . . ,an)M = Ra1M+ · · ·+RanM.

DEFINITION 11.3.1. Let a1, . . . ,ar be elements of R. We say a1, . . . ,ar is a regular
sequence for M in case the following are satisfied.

(1) a1 is not a zero divisor for M,
(2) for k = 2, . . . ,r, ak is not a zero divisor for M/(a1, . . . ,ak−1)M, and
(3) M ̸= (a1, . . . ,ar)M.
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If this is true, and if I is an ideal of R such that (a1, . . . ,ar)⊆ I, then we say a1, . . . ,ar is a
regular sequence for M in I. A regular sequence a1, . . . ,ar is maximal if there is no b ∈ I
such that a1, . . . ,ar,b is a regular sequence for M in I.

EXAMPLE 11.3.2. Let R be a regular local ring of dimension n and maximal ideal
m. By Definition 9.6.14, m is generated by a regular system of parameters, say m =
x1R+ · · ·+ xnR. We will show in Theorem 11.3.31 (1) that x1, . . . ,xn is a regular sequence
for R in m.

LEMMA 11.3.3. Suppose a1, . . . ,ar is a regular sequence for M. If ξ1, . . . ,ξr are
elements of M and ∑

r
i=1 aiξi = 0, then for all i, ξi ∈ (a1, . . . ,ar)M.

PROOF. If r = 1, then a1ξ1 = 0 implies ξ1 = 0. Inductively assume r > 1 and that the
result is true for a regular sequence of length r−1. We have arξr ∈ (a1, . . . ,ar−1)M, which
implies ξr ∈ (a1, . . . ,ar−1)M. Write ξr =∑

r−1
i=1 aiζi, for some ζi ∈M. Hence 0=∑

r−1
i=1 aiξi+

ar ∑
r−1
i=1 aiζi. By the induction hypothesis, for each 1 ≤ i < r, ξi +arζi ∈ (a1, . . . ,ar−1)M.

Consequently each ξi is in (a1, . . . ,ar)M. □

Let S=R[x1, . . . ,xn] be the polynomial ring in n variables with coefficients in R. Give S
the usual grading, where S0 = R and deg(xi) = 1, for each i. By M[x1, . . . ,xn] we denote the
R-module M⊗R R[x1, . . . ,xn]. An element f of M[x1, . . . ,xn] can be viewed as a polynomial
f (x1, . . . ,xn) with coefficients in M. Give T = M[x1, . . . ,xn] the grading where T0 = M
and deg(xi) = 1, for each i. If (a1, . . . ,an) ∈ Rn, then f (a1, . . . ,an) ∈ (a1, . . . ,an)M. Let
I = (a1, . . . ,an) and grI(M) =

⊕
∞
k=1 IkM/Ik+1M the graded module associated to the I-adic

filtration of M. Given a homogeneous polynomial f ∈ Tk, f (a1, . . . ,an) ∈ IkM. There is an
evaluation mapping

φk : Tk→ IkM/Ik+1M
which maps f to the coset of f (a1, . . . ,an). The reader should verify that φk is onto. Sum
over all k to get a graded homomorphism φ : T → grI(M). If f ∈ IM[x1, . . . ,xn] is homo-
geneous of degree k, then f (a1, . . . ,an) ∈ Ik+1M. So φ factors into

φ : M/IM[x1, . . . ,xn]→ grI(M)

which is a surjective graded homomorphism. If φ is an isomorphism, then a1, . . . ,an is
called a quasi-regular sequence for M.

LEMMA 11.3.4. Let R be a commutative ring, M an R-module, a1, . . . ,an ∈ R, I =
(a1, . . . ,an). The following are equivalent.

(1) a1, . . . ,an is a quasi-regular sequence for M.
(2) If f ∈ M[x1, . . . ,xn] is a homogeneous polynomial and f (a1, . . . ,an) = 0, then

f ∈ IM[x1, . . . ,xn].

PROOF. (1) implies (2): Suppose f is homogeneous of degree k and f (a1, . . . ,an) = 0.
Since φ is one-to-one, f is in IM[x1, . . . ,xn].

(2) implies (1): Suppose f is homogeneous of degree k and that f (a1, . . . ,an)∈ Ik+1M.
If k = 0, then this implies f ∈ IM and we are done. Suppose k ≥ 1. Since Ik+1M =
IkIM, there is a homogeneous polynomial g ∈ IM[x1, . . . ,xn] such that f (a1, . . . ,an) =
g(a1, . . . ,an). If f = g, then we can stop. Otherwise, f − g is a homogeneous polyno-
mial of degree k such that ( f − g)(a1, . . . ,an) = 0. Then f − g ∈ IM[x1, . . . ,xn], hence
f ∈ IM[x1, . . . ,xn]. □

DEFINITION 11.3.5. Let R be a commutative ring and M an R-module. If S is a
submodule of M and I is an ideal of R, then the module quotient of S over I is defined to
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be S : I = {x ∈M | Ix⊆ S}. If M is R and S is an ideal of R, this definition agrees with the
module quotient defined in Exercise 1.1.19. If A is a commutative ring containing R as a
subring, then R : A is called the conductor ideal from A to R (see Exercise 1.1.24).

THEOREM 11.3.6. Let R be a commutative ring, M an R-module, a1, . . . ,an ∈ R, I =
(a1, . . . ,an).

(1) Assume a1, . . . ,an is a quasi-regular sequence for M and x is an element of R
such that IM : x = IM. Then IkM : x = IkM for all k > 0.

(2) If a1, . . . ,an is a regular sequence for M, then a1, . . . ,an is a quasi-regular se-
quence for M.

(3) Assume
(a) M, M/(a1)M, M/(a1,a2)M, . . . , M/(a1, . . . ,an−1)M are separated for the

I-adic topology, and
(b) a1, . . . ,an is a quasi-regular sequence for M.

Then a1, . . . ,an is a regular sequence for M.

PROOF. (1): Inductively assume k > 1 and that the result is true for k− 1. Suppose
xξ ∈ IkM = IIk−1M ⊆ Ik−1M. By the induction hypothesis, ξ ∈ Ik−1M. There exists
a homogeneous polynomial f (x1, . . . ,xn) in M[x1, . . . ,xn] of degree k− 1 such that ξ =
f (a1, . . . ,an). Thus xξ = x f (a1, . . . ,an) is in IkM. By quasi-regularity, the polynomial
x f is in IM[x1, . . . ,xn], which implies the coefficients of f are in IM : x = IM. So ξ =
f (a1, . . . ,an) is in IkM.

(2): The proof is by induction on n. The basis step, n = 1, is left to the reader. As-
sume n > 1 and that the result is true for a regular sequence of length n− 1. Let f in
M[x1, . . . ,xn] be a homogeneous polynomial of degree k and assume f (a1, . . . ,an) = 0. By
Lemma 11.3.4, it suffices to show f is in IM[x1, . . . ,xn]. If k = 0 this is trivial. If k = 1,
this is Lemma 11.3.3. Proceed by induction on k. Assume k > 1 and that for any such
homogeneous polynomial of degree k−1, its coefficients are in IM. Write

f (x1, . . . ,xn) = xng(x1, . . . ,xn)+h(x1, . . . ,xn−1)

where g and h are homogeneous polynomials of degrees k− 1 and k respectively. Then
f (a1, . . . ,an) = ang(a1, . . . ,an) + h(a1, . . . ,an−1) = 0, which says g(a1, . . . ,an) is in the
set (a1, . . . ,an−1)

kM : an. Because a1, . . . ,an is a regular sequence, (a1, . . . ,an−1)M : an
is equal to (a1, . . . ,an−1)M. By our induction hypothesis, a1, . . . ,an−1 is quasi-regular.
Part (1) implies that g(a1, . . . ,an) is in (a1, . . . ,an−1)

kM ⊆ IkM. Now g is homogeneous of
degree k−1 and by induction on k and the proof of Lemma 11.3.4, this implies g(x1, . . . ,xn)
is in IM[x1, . . . ,xn]. Because g(a1, . . . ,an) is in (a1, . . . ,an−1)

kM, there exists a homoge-
neous polynomial p(x1, . . . ,xn−1) of degree k such that g(a1, . . . ,an) = p(a1, . . . ,an−1).
Look at the polynomial

q(x1, . . . ,xn−1) = h(x1, . . . ,xn−1)+an p(x1, . . . ,xn−1)

which is either 0 or homogeneous of degree k in n−1 variables. Because q(a1, . . . ,an−1) =
f (a1, . . . ,an) = 0, the induction hypothesis on n says q(x1, . . . ,xn−1) is in IM[x1, . . . ,xn−1].
This implies q(a1, . . . ,an−1) is in Ik+1M. Now p(a1, . . . ,an−1) = g(a1, . . . ,an) is in IkM,
from which it follows that an p(a1, . . . ,an−1) is in Ik+1M. This shows h(a1, . . . ,an−1) is in
Ik+1M. By induction on n and the proof of Lemma 11.3.4, this implies the coefficients of
h are in IM. We conclude that the coefficients of f are in IM.

(3): We must show conditions (1), (2) and (3) of Definition 11.3.1 are satisfied. Since
M is separated for the I-adic topology we have

⋂
k>0 IkM = (0). In particular, M ̸= IM.
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Step 1: Show that a1 is not a zero divisor for M. Suppose ξ ∈M and a1ξ = 0. Consider
f (x) = ξ x1, a homogeneous linear polynomial in M[x1, . . . ,xn]. Since f (a1, . . . ,an) = 0, by
quasi-regularity ξ is in IM. There exists a homogeneous linear polynomial f1 = ∑

n
i=1 mixi

in M[x1, . . . ,xn] such that f1(a1, . . . ,an) = ξ . In this case, a1 f1(a1, . . . ,an) is equal to
f (a1, . . . ,an) = 0, so the coefficients of the homogeneous quadratic x1 f1(x1, . . . ,xn) are
in IM. That is, for each mi there exists a homogeneous linear polynomial fi2 such that
mi = fi2(a1, . . . ,an). Consider the homogeneous quadratic polynomial

f2 =
n

∑
i=1

fi2xi.

Then f2(a1, . . . ,an) = ξ is in I2M. Moreover, a1 f2(a1, . . . ,an) = 0, so the coefficients of
f2 are in IM. By an obvious iterative argument, we conclude that ξ ∈ IkM for all k ≥ 1.
Since M is separated in the I-adic topology, this proves ξ = 0.

Step 2: Show that a2, . . . ,an is a quasi-regular sequence for M/a1M. For this, ap-
ply Lemma 11.3.4 (2). Let f be a homogeneous polynomial of degree k in M[x2, . . . ,xn].
Assume f (a2, . . . ,an) ∈ a1M. For some ξ ∈M, we can write f (a2, . . . ,an) = a1ξ . Since⋂

IiM = (0), there exists i ≥ 0 such that ξ ∈ IiM− Ii+1M. There is a homogeneous poly-
nomial g in M[x1, . . . ,xn] with degree i such that ξ = g(a1, . . . ,an). For contradiction’s
sake, suppose i < k− 1. Then IkM ⊆ Ii+2M. Notice that x1g(x1, . . . ,xn) is homogeneous
of degree i + 1 and under the evaluation map, a1g(a1, . . . ,an) is in Ii+1M/Ii+2M. But
a1g(a1, . . . ,an) = f (a2, . . . ,an) ∈ IkM. Because a1, . . . ,an is a quasi-regular sequence for
M the coefficients of g are in IM. Then ξ = g(a1, . . . ,an) is in Ii+1M, a contradiction.
Consequently, we know i = k−1. Set

h(x1, . . . ,xn) = f (x2, . . . ,xn)− x1g(x1, . . . ,xn),

a homogeneous polynomial of degree k. Since h(a1, . . . ,an) = 0, by quasi-regularity, the
coefficients of h are in IM. h(0,x2, . . . ,xn) = f (x2, . . . ,xn), each coefficient of f is in IM.
Under the map M[x2, . . . ,xn]→ (M/a1M)[x2, . . . ,xn] the image of f is in the submodule
(a2, . . . ,an)(M/a1M)[x2, . . . ,xn]. That completes Step 2.

Step 3: To complete Part (3), we must show that for all k = 2, . . . ,n, ak is not a zero
divisor for M/(a1, . . . ,ak−1)M. We prove a stronger statement. For n = 1, Step 1 shows
Part (3) is true. Therefore, assume n ≥ 2 and that the statement of Part (3) is true for any
sequence of length n−1. By Step 2, a2, . . . ,an is a quasi-regular sequence for M/a1M. By
the induction hypothesis we conclude a2, . . . ,an is a regular sequence for M/a1M. From
this it follows that ak is not a zero divisor for M/(a1, . . . ,ak−1)M. □

COROLLARY 11.3.7. Let R be a noetherian commutative ring, M a finitely generated
R-module, and a1, . . . ,an elements of the Jacobson radical of R. Then a1, . . . ,an is a regular
sequence for M if and only if a1, . . . ,an is a quasi-regular sequence for M.

PROOF. Is left to the reader. □

COROLLARY 11.3.8. Let R =
⊕

n≥0 Rn be a commutative graded ring, M =
⊕

n≥0 Mn
a graded R-module, and a1, . . . ,an elements of R. Assume each ai is homogeneous of
positive degree. Then a1, . . . ,an is a regular sequence for M if and only if a1, . . . ,an is a
quasi-regular sequence for M.

PROOF. There exists a positive integer N such that IkM ⊆ ∑n≥kN Mn. The rest is left
to the reader. □
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THEOREM 11.3.9. Let R be a commutative noetherian ring and M a finitely generated
R-module. Let I be an ideal of R such that IM ̸= M and n a positive integer. The following
are equivalent.

(1) There exists a regular sequence a1, . . . ,an for M in I.
(2) For all i < n and for all finitely generated R-modules N such that Supp(N) ⊆

V (I), we have ExtiR(N,M) = (0).
(3) ExtiR(R/I,M) = (0) for all i < n.
(4) There exists a finitely generated R-module N such that Supp(N) = V (I) and

ExtiR(N,M) = (0) for all i < n.

PROOF. (2) implies (3): Is trivial. (3) implies (4): Is trivial.
(4) implies (1): Step 1: Show that there exists an element a1 ∈ R such that a1 is not

a zero divisor for M. There exists a finitely generated R-module N such that Supp(N) =
V (I) and ExtiR(N,M) = (0) for all i < n. In particular, if i = 0, HomR(N,M) = (0). For
contradiction’s sake, assume every element of I is a zero divisor for M. Then I is a subset
of the union of the associated primes of M. By Lemma 6.3.2, there exists P ∈ AssocR(M)
such that I ⊆ P. By Lemma 9.2.1, M contains an element x such that

0→ P→ R
ρx−→M

is exact, where ρx(1) = x. Localize at P. Let mP denote the maximal ideal PRP and kP the
residue field RP/mP. Then ρx : kP → MP is one-to-one, where 1 7→ x. Since P ∈ V (I) =
Supp(N), NP ̸= (0). By Corollary 2.2.2, NP⊗RP kP ̸= (0). Since NP⊗RP kP is a nonzero
finitely generated kP-vector space, there exists a nonzero RP-module homomorphism

NP→ NP⊗RP kP→ kP
ρx−→MP.

That is, HomR(N,M)⊗R RP = HomRP(NP,MP) ̸= (0), a contradiction.
Step 2: The induction step. By Step 1, let a1 be an element of I which is not a zero

divisor for M. If n = 1, then we are done. Otherwise, assume (4) implies (1) is true for
n−1. Start with the short exact sequence of R-modules

(3.1) 0→M
ℓa1−−→M→M/a1M→ 0.

By Proposition 8.3.12 (2) there is a long exact sequence

(3.2) · · · → ExtiR(N,M)
ℓa1−−→ ExtiR(N,M)→ ExtiR(N,M/a1M)

δ i
−→ Exti+1

R (N,M)→ . . .

from which it immediately follows ExtiR(N,M/a1M) = (0) for 0 ≤ i < n− 1. By the
induction hypothesis, there exists a regular sequence a2, . . . ,an for M/a1M in I.

(1) implies (2): Since a1 is not a zero divisor for M, the sequence (3.1) is exact. Let
N be a finitely generated R-module with Supp(N) ⊆ V (I). In degree zero, the long exact
sequence (3.2) is

0→ Ext0R(N,M)
ℓa1−−→ Ext0R(N,M).

For any r > 0, “left multiplication” by ar
1 is one-to-one on Ext0R(N,M). By Exercise 9.2.18,

Supp(N) ⊆ V (I) implies there exists r > 0 such that ar
1 ∈ annihR(N). That is, “left mul-

tiplication” by ar
1 is the zero map. Applying the functor Ext0R(·,M) to ℓar

1
: N → N,

“left multiplication” by ar
1 is the zero map on Ext0R(N,M). Taken together, this implies

Ext0R(N,M) = (0). Proceed by induction on n. Assume n > 1 and that (1) implies (2)
is true for a regular sequence of length n− 1. Then a2, . . . ,an is a regular sequence for



450 11. NORMAL INTEGRAL DOMAINS

M/a1M in I and ExtiR(N,M/a1M) = (0) for i = 0, . . . ,n−2. The long exact sequence (3.2)
reduces to the exact sequence

0→ ExtiR(N,M)
ℓa1−−→ ExtiR(N,M)

for i = 0, . . . ,n−1. The rest of the proof is left to the reader. □

DEFINITION 11.3.10. Let R be a noetherian commutative ring and M a finitely gener-
ated R-module. Let I be a proper ideal in R. The I-depth of M, denoted depthI(M), is the
least element of the set {i | ExtiR(R/I,M) ̸= (0)}. By Theorem 11.3.9, depthI(M) is equal
to the length of any maximal regular sequence for M in I. If R is a local ring with maximal
ideal m, then we sometimes write depth(M) instead of depthm(M).

On the subject of depth, the terminology and notation appearing in the literature is
inconsistent. In [24] Grothendieck calls depth(M) the “profondeur de M” and writes
prof(M). In [6] and [8] Auslander, Buchsbaum and Goldman call depth(M) the “codi-
mension of M” and write codim(M). Our terminology and notation agree with that used
by Matsumura (see [42, p. 102]).

LEMMA 11.3.11. Let R be a noetherian commutative local ring with maximal ideal
m. Let M and N be nonzero finitely generated R-modules. For all i less than depth(M)−
dim(N), ExtiR(N,M) = (0).

PROOF. Set n = dim(N). By definition, n = dim(R/annihR(N)). The proof is by in-
duction on n. If n = 0, then R/annihR(N)) is a local artinian ring and Supp(N) = {m}. By
Part (1) implies (2) of Theorem 11.3.9, ExtiR(N,M) = (0) for all i < depth(M). Inductively
assume n > 0 and that the lemma is true for any module L such that 0 ≤ dim(L) < n. By
Theorem 9.2.10 there exists a filtration 0 = N0 ⊊ N1 ⊊ N2 ⊊ · · ·⊊ Nt = N of N and a set of
prime ideals Pj ∈ SpecR such that N j/N j−1 ∼= R/Pj for j = 1, . . . , t. Moreover, for each j,
Pj ∈ Supp(M), hence annihR(M)⊆ Pj. Then dim(R/Pj)≤ dim(N). For each j we have a
short exact sequence

0→ N j−1→ N j→ R/Pj→ 0
and a long exact sequence

· · · → Exti(N j−1,M)→ Exti(N j,M)→ Exti(R/Pj,M)→ . . . .

Therefore, it is enough to prove that ExtiR(R/Pj,M) = (0) for 1≤ j≤ t and i < depth(M)−
dim(N). Assume P ∈ Spec(R) and n = dim(R/P). Then P ̸=m so there exists a ∈m−P.
Denote by S the quotient R/(P+(a)). In the integral domain R/P, a is not a zero divisor,
so the sequence

0→ R/P ℓa−→ R/P→ S→ 0
is exact. By Corollary 9.6.13, dim(S) = n−1. If i< depth(M)−n, then i+1< depth(M)−
(n− 1). By the induction hypothesis, Exti+1

R (S,M) = (0). From the long exact sequence
of Ext groups, left multiplication by a is an isomorphism

0→ Exti(R/P,M)
ℓa−→ Exti(R/P,M)→ 0

for all i < depth(M)− n. Tensoring ℓa with R/m it becomes the zero map. Therefore, by
Corollary 2.2.2, Exti(R/P,M) = (0). □

COROLLARY 11.3.12. Let R be a noetherian commutative local ring and M a nonzero
finitely generated R-module.

(1) depth(M)≤ dim(R/P) for every associated prime ideal P ∈ AssocR(M).
(2) depth(M)≤ dim(M).
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PROOF. (1): If P ∈ AssocR(M), then HomR(R/P,M) ̸= (0). By Lemma 11.3.11,
depth(M)−dim(R/P)≤ 0.

(2): Is left to the reader. □

LEMMA 11.3.13. Let R be a commutative noetherian local ring, m the maximal ideal
of R, M a nonzero finitely generated R-module, and a1, . . . ,ar a regular sequence for M in
m. Then dim(M/(a1, . . . ,ar)M) = dim(M)− r.

PROOF. Let t = dim(M)= dim(R/annihR(M)). Then t is the supremum of the lengths
of all prime chains annihR(M) ⊆ Q0 ⊊ Q1 ⊊ · · · ⊊ Qt ⊊ R. A minimal prime over-ideal
Q0 of annihR(M) is in the support of M, hence by Theorem 9.2.7, Q0 is an associated
prime of M. Then every element of Q0 is a zero divisor of M, hence a1 ̸∈ Q0. By
Exercise 11.3.19, Supp(M/a1M) = Supp(M)∩ Supp(R/(a1)). Let s = dim(M/a1M) =
dim(R/annihR(M/a1M)). Then s is the supremum of the lengths of all prime chains
annihR(M/a1M) ⊆ P0 ⊊ P1 ⊊ · · · ⊊ Ps ⊊ R. Since a1 ∈ P0, this proves s < t. Iterate this
argument r times to see that dim(M/(a1, . . . ,ar)M)≤ dim(M)−r. For the reverse inequal-
ity, dim(M) ≥ dim(M/a1M) ≥ dim(M)− 1, by Lemma 9.6.10. Iterate r times to see that
dim(M/(a1, . . . ,ar)M)≥ dim(M)− r. □

3.2. Exercises.

EXERCISE 11.3.14. Let R be a noetherian commutative ring, I a proper ideal of R, M
an R module, and a1, . . . ,ar a regular sequence for M in I.

(1) There exists n ≥ r and elements ar+1, . . . ,an such that a1, . . . ,an is a maximal
regular sequence for M.

(2) depthI(M/(a1, . . . ,ar)M) = depthI(M)− r.

EXERCISE 11.3.15. Let R be a noetherian commutative local ring with maximal ideal
m. Let M be a finitely generated R-module. Then depthm(M) = 0 if and only if m is an
associated prime of M.

EXERCISE 11.3.16. Let R be a noetherian commutative ring and P ∈ Spec(R). Let
M be a finitely generated R-module. Let mP = PRP be the maximal ideal of RP and let
MP = M⊗R RP. The following are equivalent.

(1) depthmP
(MP) = 0.

(2) mP ∈ AssocRP(MP).
(3) P ∈ AssocR(M).

EXERCISE 11.3.17. Let R be a noetherian commutative ring and P ∈ Spec(R). Let
M be a finitely generated R-module. Let mP = PRP be the maximal ideal of RP and let
MP = M⊗R RP. Then depthmP

(MP)≥ depthP(M).

EXERCISE 11.3.18. Let R be a commutative local ring. Let M and N be nonzero
finitely generated R-modules. Show that M⊗R N is nonzero.

EXERCISE 11.3.19. Let R be a commutative ring. Let M and N be nonzero finitely
generated R-modules. Show that Supp(M⊗R N) = Supp(M)∩Supp(N).

3.3. Cohen-Macaulay Modules.

DEFINITION 11.3.20. Let R be a commutative noetherian local ring with maximal
ideal m. Let M be a finitely generated R-module. By Corollary 11.3.12, if M is nonzero,
then depthm(M)≤ dim(M). We say that M is a Cohen-Macaulay module in case M = (0),
or depthm(M) = dim(M). If depthm(R) = dim(R), then we say R is a Cohen-Macaulay
local ring.
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THEOREM 11.3.21. Let R be a noetherian commutative local ring with maximal ideal
m, and M a finitely generated R-module. If P ∈ Spec(R), then we write mP for PRP and
MP for M⊗R RP.

(1) If M is a Cohen-Macaulay module and P ∈ AssocR(M), then depth(M) is equal
to dim(R/P). The associated primes of M all have the same height, or in other
words, M has no embedded prime ideals (see Definition 9.2.9).

(2) If a1, . . . ,ar is a regular sequence for M in m, then M is a Cohen-Macaulay
module if and only if M/(a1, . . . ,ar)M is a Cohen-Macaulay module.

(3) If M is a Cohen-Macaulay module and P is a prime ideal in Spec(R), then MP is
a Cohen-Macaulay RP-module. If MP ̸= (0), then depthmP

(MP) = depthP(M).

PROOF. (1): Since P is an associated prime of M, M is nonzero and depth(M) =
dim(M). By Corollary 11.3.12, depth(M) ≤ dim(R/P). Since AssocR(M) ⊆ Supp(M),
annihR(M)⊆ P. Then dim(M) = dim(R/annihR(M))≥ dim(R/P).

(2): Since (a1, . . . ,ar)⊆m, by Corollary 2.2.2, M/(a1, . . . ,ar)M is nonzero if and only
if M is nonzero. Assume M is nonzero. Then dim(M/(a1, . . . ,ar)M) = dim(M)− r, which
follows from Lemma 11.3.13. Consequently, depth(M/(a1, . . . ,ar)M) = depth(M)− r, by
Exercise 11.3.14.

(3): Assume MP ̸= (0), hence annihR(M) ⊆ P. By Exercise 11.3.17, depthP(M) ≤
depthmP

(MP). By Corollary 11.3.12, depthmP
(MP) ≤ dim(MP). To finish the proof, we

show depthP(M) = dim(MP). The proof is by induction on n = depthP(M).
For the basis step, assume depthP(M) = 0. Then every element of P is a zero di-

visor of M. It follows from Proposition 9.2.2 and Lemma 6.3.2 that P ⊆ Q for some
Q ∈ AssocR(M). By Exercise 9.2.19 and Part (1), Q is a minimal prime over-ideal of
annihR(M). Because annihR(M) ⊆ P ⊆ Q, we conclude P = Q. Then mP is a minimal
prime over-ideal for annihRP(MP). By Lemma 9.6.4, dim(MP) = 0.

Inductively, assume n = depthP(M)> 0 and that the result holds for n−1. Let a be a
nonzero divisor of M in P. The sequence

0→M ℓa−→M→M/aM→ 0

is exact. Since RP is a flat R-module, the sequence

0→MP
ℓa−→MP→ (M/aM)P→ 0

is also exact and a is a nonzero divisor of MP in mP. Also, (M/aM)P = MP/(aMP), so by
Lemma 11.3.13, dim((M/aM)P) = dim(MP)−1. By Exercise 11.3.14, depthP(M/aM) =
depthP(M)− 1. By Part (2), M/aM is a Cohen-Macaulay R-module. By induction on n,
dim((M/aM)P) = depthP(M/aM) which completes the proof. □

THEOREM 11.3.22. Let R be a noetherian commutative Cohen-Macaulay local ring.
Let m denote the maximal ideal of R.

(1) Let a1, . . . ,ar be a sequence of elements in m. The following are equivalent.
(a) a1, . . . ,ar is a regular sequence for R in m.
(b) ht(a1, . . . ,ai) = i for all i such that 1≤ i≤ r.
(c) ht(a1, . . . ,ar) = r.
(d) If n = dim(R), then there exist ar+1, . . . ,an in m such that a1, . . . ,an is a

system of parameters for R.
(2) Let I be a proper ideal of R. Then ht(I) = depthI(R) and ht(I)+ dim(R/I) =

dim(R).
(3) If P and Q are in SpecR such that P⊇ Q, then ht(P/Q) = ht(P)−ht(Q).
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PROOF. (1): The reader should verify that the proofs of the implications (a) implies
(b) implies (c) implies (d) are all true without the Cohen-Macaulay hypothesis.

(a) implies (b): Since a1, . . . ,ar is a regular sequence, ht(a1) = 1, by Corollary 9.6.12.
Inductively, assume i > 1 and that ht(a1, . . . ,ai−1) = i− 1. Let I = (a1, . . . ,ai) and I1 =
(a1, . . . ,ai−1). By Corollary 9.6.12, ht(I)≤ i. For contradiction’s sake, assume there exists
a prime ideal P containing I such that ht(P) = i− 1. Since I1 ⊆ P, it follows that P is a
minimal prime over-ideal of I1. Thus P is an associated prime of R/I1, which implies ai is
a zero divisor of R/I1, a contradiction.

(b) implies (c): is trivial.
(c) implies (d): Let I = (a1, . . . ,ar). We are given that ht(I) = r. If r = n = dim(R),

then ht(m) = r, which means m is a minimal prime over-ideal of I. Therefore, I is m-
primary and a1, . . . ,ar is a system of parameters for R. If dim(R) > r, then by Exer-
cise 9.6.19, there exists an element ar+1 ∈m such that ht(a1, . . . ,ar+1) = r+1. Iterate this
process to construct a1, . . . ,an such that ht(a1, . . . ,an) = n = dim(R).

(d) implies (a): Let R be a Cohen-Macaulay local ring and x1, . . . ,xn a system of pa-
rameters for R. We show that x1, . . . ,xn is a regular sequence for R. By Proposition 9.6.15,
dim(R/(x1)) = n− 1. If P is an associated prime of (0), then dim(R/P) = n, by Theo-
rem 11.3.21 (1). This implies x1 is not in P. By Proposition 9.2.2, x1 is not a zero divisor
of R. By Theorem 11.3.21 (2), R/(x1) is a Cohen-Macaulay local ring. Moreover, the im-
ages of x2, . . . ,xn make up a system of parameters for R/(x1). By induction on n, x2, . . . ,xn
is a regular sequence for R/(x1) in m.

(2): Step 1: Show that depthI(R) = ht(I). Let ht(I) = h. By Exercise 9.6.19, there
exist elements x1, . . . ,xh in I such that ht(x1, . . . ,xi) = i for 1≤ i≤ h. By Part (1), x1, . . . ,xh
is a regular sequence for R in I. This proves ht(I) ≤ depthI(R). On the other hand, if
a1, . . . ,ar is a regular sequence for R in I, then by Part (1), r = ht(a1, . . . ,ar) ≤ ht(I), so
depthI(R)≤ ht(I).

Step 2: Show that ht(P)+dim(R/P) = dim(R) for all prime ideals P. Let ht(P) = r.
By Step 1, depthP(R) = r. Start with a maximal regular sequence a1, . . . ,ar for R in P and
put J = (a1, . . . ,ar). By Theorem 11.3.21 (2), R/I is Cohen-Macaulay. Every element of P
is a zero divisor for R/I, so P is an associated prime of R/I. By Theorem 11.3.21 (1), R/I
has no embedded primes, so P is a minimal prime over-ideal of I. Therefore, dim(R/I) =
dim(R/P). By Lemma 11.3.13, dim(R/I) = dim(R)− r.

Step 3: ht(I)+dim(R/I) = dim(R). By definition, ht(I) = inf{ht(P) | P ∈V (I)}. By
Step 2, this becomes

ht(I) = inf{dim(R)−dim(R/P) | P ∈V (I)}
= dim(R)− sup{dim(R/P) | P ∈V (I)}.

The reader should verify that dim(R/I) = sup{dim(R/P) | P ∈V (I)}, so we are done.
(3): By Theorem 11.3.21 (3), RP is a Cohen-Macaulay ring. By Part (2), dimRP =

ht(QRP)+dim(RP/QRP). By Lemma 9.6.2, and Exercise 3.3.25, ht(P)= ht(Q)+ht(P/Q).
□

DEFINITION 11.3.23. A commutative ring R is said to be a Cohen-Macaulay ring if
R is noetherian and RP is a Cohen-Macaulay local ring, for every prime ideal P in R. By
Theorem 11.3.21, a noetherian commutative ring R is Cohen-Macaulay if Rm is Cohen-
Macaulay for every maximal ideal m of R.

THEOREM 11.3.24. Let R be a noetherian commutative ring. The following are equiv-
alent.
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(1) R is a Cohen-Macaulay ring.
(2) For every r ≥ 0, if I = (a1, . . . ,ar) is an ideal generated by r elements in R such

that ht(I) = r, then R/I has no embedded primes.
(3) For every maximal ideal m of R, and for every r≥ 0, if J = (a1, . . . ,ar) is an ideal

generated by r elements in Rm such that ht(J) = r, then Rm/J has no embedded
primes.

PROOF. (2) implies (1): Let P be a prime ideal in R and assume ht(P) = r. We must
prove that RP is Cohen-Macaulay. If r = 0, then RP is a field and by Exercise 11.3.26, RP
is Cohen-Macaulay. Assume r > 0. By Exercise 9.6.19, there exist elements a1, . . . ,ar in P
such that ht(a1, . . . ,ai) = i for all i= 1, . . . ,r. By (2), the ideal (0) has no embedded primes.
Since ht(a1) = 1, a1 belongs to no associated prime of (0). So a1 is not a zero divisor
of R. For 1 ≤ i < r, R/(a1, . . . ,ai) has no embedded primes. Since ht(a1, . . . ,ai+1) =
i+ 1, ai+1 belongs to no associated prime of (a1, . . . ,ai). So ai+1 is not a zero divisor
of R/(a1, . . . ,ai). This shows a1, . . . ,ar is a regular sequence for R in P. We have r ≤
depthP(R) ≤ depthPRP

(RP), by Exercise 11.3.17. By Corollary 11.3.12, depthPRP
(RP) ≤

dimRP, which is equal to ht(P) = r, by Lemma 9.6.2. This proves RP is Cohen-Macaulay.
(1) implies (3): Let m be a maximal ideal of R. By definition, Rm is a Cohen-Macaulay

local ring. By Theorem 11.3.21, the zero ideal of Rm has no embedded primes. Let r > 0
and J = (a1, . . . ,ar) an ideal generated by r elements in Rm such that ht(J) = r. By The-
orem 11.3.22, the sequence a1, . . . ,ar is a regular sequence for Rm in mRm. By Theo-
rem 11.3.21, Rm/J is Cohen-Macaulay and has no embedded primes.

(3) implies (2): Let I be a nonunit ideal in R. Let P be an associated prime of R/I in
SpecR and assume P is an embedded prime. Let m be a maximal ideal of R containing P.
By Lemma 9.2.5, PRm is an associated prime of Rm/IRm which is an embedded prime.

□

THEOREM 11.3.25. If R is a Cohen-Macaulay ring, then so is R[x] for an indetermi-
nate x.

PROOF. Let Q be a prime ideal in S = R[x] and let P = Q∩R. We must show that SQ is
a Cohen-Macaulay local ring. But RP is a Cohen-Macaulay local ring, by Theorem 11.3.21.
Since (R− P) ⊆ (S−Q), SQ is the localization of S⊗R RP = RP[x] at the prime ideal
Q⊗R RP. From now on assume R is a Cohen-Macaulay local ring with maximal ideal P
and residue field k = R/P. Moreover assume Q is a prime ideal of S = R[x] and Q∩R = P.
Then S/PS = k[x]. The reader should verify that S is a flat R-module. Consequently, SQ is
a flat R-module. By Theorem 6.3.5, going down holds for R→ S.

Suppose dim(R) = r and a1, . . . ,ar is a regular sequence for R in P. If ℓa1 : R→
R is left multiplication by a1, then ℓa1 is one-to-one. Upon tensoring with the flat R-
algebra SQ, ℓa1 is still one-to-one. In the same way, upon tensoring ℓai : R/(a1, . . . ,ai−1)→
R/(a1, . . . ,ai−1) with the flat R-algebra SQ, ℓai is still one-to-one. Therefore, a1, . . . ,ar is a
regular sequence for SQ in QSQ. This proves r ≤ depth(SQ).

A prime ideal of k[x] is principal and is either equal to the zero ideal, or is generated
by a monic irreducible polynomial in k[x]. Since Q is a prime ideal of S containing PS, Q
is equal to PS+gS, where g is either 0, or a monic polynomial in S = R[x] which restricts
to an irreducible polynomial in k[x]. There are two cases.

Case 1: Q = PS. Theorem 9.6.21 says dim(SQ) = dim(R) = r. This implies SQ is
Cohen-Macaulay.

Case 2: Q = PS+ gS. In this case, the fiber SQ⊗R k is equal to the localization of
k[x] = S⊗R k at the prime ideal Q/PS. The local ring SQ⊗R k is a PID, hence has Krull
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dimension one. By Theorem 9.6.21, dim(SQ) = dim(R) + 1 = r + 1. But g is a monic
polynomial in R[x] so g is not a zero divisor for R/(a1, . . . ,ar)[x]. Therefore, depthQ(S)≥
r+1. This implies SQ is Cohen-Macaulay. □

3.4. Exercises.

EXERCISE 11.3.26. Let F be a field. If F is viewed as a local ring with maximal ideal
(0), then F is a Cohen-Macaulay local ring.

EXERCISE 11.3.27. Let R be a local PID. Then R is a Cohen-Macaulay local ring.

EXERCISE 11.3.28. Let R be a Cohen-Macaulay local ring with maximal ideal m, and
x1, . . . ,xr a set of elements of m. Then x1, . . . ,xr is a regular sequence for R in m if and
only if dim(R/(x1, . . . ,xr) = dimR− r.

EXERCISE 11.3.29. Let k be a field. As in Exercises 9.1.10, 9.2.21, and 7.3.9, let
A = k[x,y] and R = k[x2,xy,y2,x3,x2y,xy2,y3]. Prove:

(1) R and A have the same quotient field, namely k(x,y), and A is equal to the integral
closure of R in k(x,y).

(2) dim(R) = 2.
(3) Let M be the maximal ideal in A generated by x and y. Let m= M∩R. Then m

is generated by x2,xy,y2,x3,x2y,xy2,y3, and ht(m) = 2.
(4) In R, ht(x3) = 1, and dim(R/(x3)) = 1.
(5) depth(Rm/(x3) = 0 and Rm is not Cohen-Macaulay.

EXERCISE 11.3.30. Let k be a field and R the localization of k[x,y] at the maximal
ideal (x,y). Show that the rings R, R/(xy), R/(xy,x− y) are Cohen-Macaulay.

3.5. Cohomological Theory of Regular Local Rings.

THEOREM 11.3.31. Let R be a regular local ring with maximal ideal m, residue field
k, and regular system of parameters x1, . . . ,xr. The following are true.

(1) x1, . . . ,xr is a regular sequence for R in m.
(2) R is a Cohen-Macaulay local ring.
(3) For each i, Pi = (x1, . . . ,xr) is a prime ideal of R of height i, and R/Pi is a regular

local ring of Krull dimension r− i.
(4) If P is a prime ideal of R such that R/P is a regular local ring of dimension

r− i, then there exists a regular system of parameters y1, . . . ,yr for R such that
P = (y1, . . . ,yi).

(5) dim(R) = r = coh.dim(R).

PROOF. (1): By Theorem 11.1.8, k[t1, . . . , tr] ∼= grm(R). The sequence x1, . . . ,xr is a
quasi-regular sequence for R in m. By Corollary 11.3.7, x1, . . . ,xr is a regular sequence for
R in m.

(2): By Part (1), depth(R)≥ r = dim(R).
(3): By Proposition 9.6.15, dim(R/Pi) = r− i. Since m/Pi is generated by xi+1, . . . ,xr,

R/Pi is a regular local ring. By Corollary 11.1.9, R/Pi is a normal integral domain. Thus
Pi is a prime ideal.

(4): Let m̄ = m/P. By Exercise 9.6.17, r = dim(R) = dimk(m/m2) and r− i =
dim(R/P) = dimk(m̄/m̄2). But m̄/m̄2 = m/(m2 +P). Consider the tower of ideals m2 ⊆
m2 +P⊆m. Then r− i = dimk(m/(m2 +P)) = dimk(m/m2)−dimk((m

2 +P)/m2), from
which it follows that dimk((m

2 +P)/m2) = i. Choose i elements y1, . . . ,yi in P such that
modulo m2, y1, . . . ,yi are linearly independent over k. Choose r− i elements yi+1, . . . ,yr
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in m such that modulo m2, y1, . . . ,yr are linearly independent over k. Then y1, . . . ,yr is a
regular system of parameters for R. By Part (3), Q = (y1, . . . ,yi) is a prime ideal of height
i. By Theorem 11.3.22, ht(P) = dim(R)−dim(R/P) = i. Since Q⊆ P, this proves Q = P.

(5): Let x1, . . . ,xd be a regular system of parameters for R. By Proposition 8.4.10
applied recursively to k = R/(x1, . . . ,xd), proj.dimR(k) = proj.dim(R)+d = d. By Theo-
rem 8.4.15, coh.dim(R) = d. □

THEOREM 11.3.32. Let R be a commutative regular ring. If x is an indeterminate,
then R[x] is a regular ring.

PROOF. As in the proof of Theorem 11.3.25, we can reduce to the case where R is
a regular local ring with maximal ideal P, k = R/P, Q is a prime ideal of S = R[x] and
Q∩R = P. Moreover, S/PS = k[x] and going down holds for R→ S. A prime ideal of
k[x] is principal and is either equal to the zero ideal, or is generated by a monic irreducible
polynomial in k[x]. Since Q is a prime ideal of S containing PS, Q is equal to PS+ gS,
where g is either 0, or a monic polynomial in S = R[x] which restricts to an irreducible
polynomial in k[x].

Suppose dim(R) = r. Then P is generated by r elements. There are two cases. If
Q = PS, then Q is generated by r elements. In this case, Theorem 9.6.21 says dim(SQ) =
dim(R) = r, hence SQ is regular. For the second case, assume Q = PS+gS and g ̸= 0. Then
Q is generated by r+1 elements. In this case, the fiber SQ⊗R k is equal to the localization
of k[x] = S⊗R k at the prime ideal Q/PS. The local ring SQ⊗R k is a PID, hence has Krull
dimension one. By Theorem 9.6.21, dim(SQ) = dim(R)+1 = r+ 1. Hence SQ is regular
in this case as well. □

COROLLARY 11.3.33. (Hilbert’s Syzygy Theorem) Let k be a field and x1, . . . ,xn a set
of indeterminates. Then k[x1, . . . ,xn] has cohomological dimension n.

PROOF. By Theorem 10.3.1, R = k[x1, . . . ,xn] has dimension n. Let m be a maximal
ideal of R. By Theorem 11.3.32, Rm is a regular local ring of dimension n. By Theo-
rem 11.3.31, coh.dim(RP) = n. By Lemma 8.4.14 (2), coh.dim(R) = n. □

LEMMA 11.3.34. Let R be a commutative noetherian local ring with maximal ideal
m. If every element of m−m2 is a zero divisor of R, then m an associated prime of R.

PROOF. If m2 =m, then by Nakayama’s Lemma (Theorem 4.2.3), m= 0. In this case,
R is a field and the result is trivially true. Assume m−m2 is nonempty. Let {P1, . . . ,Pn} be
the set of associated primes of R. By Proposition 9.2.2,

m−m2 ⊆ P1∪·· ·∪Pn.

Since m is not a subset of m2, it follows from Lemma 6.3.2 that m ⊆ Pi for some i. Since
m is maximal, m is equal to Pi. □

LEMMA 11.3.35. Let R be a commutative noetherian local ring with maximal ideal
m. Let a be an element of m−m2. The natural map m/am→m/aR splits.

PROOF. Without loss of generality, assume m ̸=m2. In the R/m-vector space m/m2,
the image of a is nonzero. Extend the image of a to a basis of m/m2, and lift this basis
to elements a,b1, . . . ,bn in m−m2. Let B = Rb1 + · · ·+Rbn. Consider an element ax in
the intersection aR∩B, where x ∈ R. Then ax = ∑ribi for some ri ∈ R. We have linear
independence of a,b1, . . . ,bn modulo m2, hence ax ∈ m2. By choice of a, if x ∈ R−m,
then ax ̸∈ m2. Therefore x ∈ m. This proves aR∩B⊆ am, so the natural map B→ m/am
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factors through B/(aR∩B). Let α be the inverse of the natural isomorphism B/(aR∩B)→
(aR+B)/aR. The reader should verify that the composition

m

aR
=−→ aR+B

aR
α−→ B

aR∩B
→ m

am
→ m

aR
is the identity map. □

LEMMA 11.3.36. Let R be a commutative noetherian local ring with maximal ideal
m. Let M be a finitely generated R-module of finite projective dimension. If a is an element
in m which is both M-regular and R-regular, then

(1) M/aM is an R/aR-module of finite projective dimension, and
(2) proj.dimR/aR(M/aM)≤ proj.dimR(M).

PROOF. Let proj.dimR(M) = n. If n = 0, then M is a projective R-module and M/aM
is a projective R/aR-module. This implies proj.dimR/aR(M/aM) = 0. Inductively, suppose
n > 0 and that the result holds for any finitely generated R-module of projective dimension
less than n. By Exercise 8.3.10, there exists a projective resolution P•→M such that each
Pi is finitely generated. Since R is a local ring, each Pj is free. Let K be the kernel of
ε : P0→M. Consider the exact sequence

0→ K→ P0→M→ 0.

The reader should verify that proj.dimR(K) = proj.dimR(M)−1. Since R is noetherian, K
is finitely generated. The diagram

0 // K

α

��

// P0

β

��

// M

γ

��

// 0

0 // K // P0 // M // 0

commutes, where the three vertical maps are “left multiplication” by a. Since a is R-regular
and P0 is free, β is one-to-one. Since a is M-regular, γ is one-to-one. The Snake Lemma
(Theorem 2.5.2) implies α is one-to-one, and the sequence

0→ K/aK→ P0/aP0→M/aM→ 0

is exact. Since P0/aP0 is a free R/aR-module, this proves

proj.dimR/aR(M/aM)≤ proj.dimR/aR(K/aK)+1.

Since α is one-to-one, a is K-regular. Applying the induction hypothesis to K, it follows
that proj.dimR/aR(K/aK)≤ n. In conclusion, proj.dimR/aR(M/aM)≤ n+1. □

THEOREM 11.3.37. (Hilbert-Serre) Let R be a commutative noetherian local ring.
The following are equivalent

(1) R has finite cohomological dimension.
(2) R is regular.

If either condition is satisfied, coh.dim(R) = dim(R).

PROOF. Let m denote the maximal ideal of R and k = R/m the residue field.
(2) implies (1): This follows from Theorem 11.3.31. It also follows that the equation

coh.dim(R) = dim(R) is satisfied.
(1) implies (2): Let n = coh.dim(R).
Step 1: Prove that m−m2 contains an R-regular element. For contradiction’s sake,

assume m−m2 is nonempty and consists of zero divisors. By Lemma 11.3.34, m is an
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associated prime of R. By Lemma 9.2.1, there exists x ∈ R− (0) such that xm = (0). In
other words, m is not faithful, hence not free. By Proposition 3.4.3, m is not a projective
R-module. By Definition 8.4.13, coh.dim(R) ≥ proj.dimR(m) ≥ 1. By Theorem 8.4.15,
proj.dimR(k) = coh.dim(R) ≥ 1. By Proposition 8.4.10, TorR

n+1(R/xR,k) = 0. The exact
sequence of R-modules

0→m→ R ℓx−→ R→ R/xR→ 0

can be shortened to

0→ k→ R→ R/xR→ 0.

Since TorR
i (R,k) = 0 for i≥ 1, the associated long exact sequence of Proposition 8.3.2 (3)

implies the boundary map ∂ : TorR
n+1(R/xR,k)→ TorR

n (k,k) is an isomorphism. This im-
plies TorR

n (k,k) = 0, which is a contradiction to Theorem 8.4.15.
Step 2: The proof is by induction on d = dim(R). If d = 0, then R is regular, by

Definition 9.6.14. Assume d > 0 and that the result is true for a ring of dimension d− 1.
By Step 1 we can assume there exists an element a ∈ m−m2 such that a is R-regular.
Then a is also m-regular. Consider the local ring R/aR, which has maximal ideal m/aR.
By Corollary 9.6.13 (3), dim(R/aR) = d− 1. By (1), proj.dimR(m) ≤ coh.dim(R) is fi-
nite. By Lemma 11.3.36, m/am is an R/aR-module of finite projective dimension. By
Lemma 11.3.35, m/aR is an R/aR-module direct summand of m/am. By Exercise 8.4.25,
m/aR is an R/aR-module of finite projective dimension. By the induction hypothesis,
R/aR is a regular local ring. By Exercise 11.3.40, R is regular. □

COROLLARY 11.3.38. If R is a regular local ring and P a prime ideal of R, then RP
is a regular local ring.

PROOF. Is left to the reader. □

PROPOSITION 11.3.39. If R is a regular local ring and M a nonzero finitely generated
R-module, then the following are true.

(1) depth(M)+proj.dim(M) = dim(R).
(2) M is a free R-module if and only if depth(M) = dim(R).

PROOF. Let n = dim(R), m the maximal ideal of R, and k = R/m the residue field.
Since R is regular, coh.dim(R) = n (Theorem 11.3.31 (5)). Therefore, proj.dimR(M) ≤ n
(Definition 8.4.13) and proj.dimR(k) = n (Theorem 8.4.15). The proof is by induction on
d = depth(M). First assume d = 0. By Exercise 11.3.15, there is an R-submodule N ⊆M
such that N is isomorphic to k. The short exact sequence 0→ N→M→M/N→ 0 yields

· · · → TorR
n+1(M/N,k) ∂−→ TorR

n (N,k)→ TorR
n (M,k)→ ·· ·

(Proposition 8.3.2). By Proposition 8.4.10 (2), TorR
n+1(M/N,k)= 0 and by Theorem 8.4.15,

TorR
n (N,k) ̸= 0. Since TorR

n (M,k) ̸= 0, Proposition 8.4.10 (2) implies proj.dim(M)≥ n. We
have shown that proj.dim(M) = n.

Inductively, assume d > 0 and that the statement is true for any module of depth d−
1. Let x be an M-regular element in m. Then depth(M/xM) = depth(M)− 1 = d − 1
(Exercise 11.3.14) and proj.dim(M/xM) = proj.dim(M)+ 1 (Proposition 8.4.10 (3)). By
induction, we are done. □
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3.6. Exercises.

EXERCISE 11.3.40. Let R be a commutative noetherian local ring with maximal ideal
m and let a be an R-regular element in m. Prove that if R/aR is regular, then R is regular
and a ̸∈m2.

EXERCISE 11.3.41. Let S be a commutative faithfully flat R-algebra. Prove that if R
and S are both noetherian, and S is regular, then R is regular.

EXERCISE 11.3.42. Let R be a commutative noetherian ring. Prove R is regular if and
only if Rm is a regular local ring for every m ∈MaxR.

4. Noetherian Normal Integral Domains

This section has two main goals. The first is to define the class group of noetherian
normal integral domain R in terms of the Weil divisors of R. The groundwork for this defi-
nition is done in Section 11.4.1 and the definition itself is in Section 11.4.3. The important
theorem of Serre which states necessary and sufficient conditions for a commutative noe-
therian ring R to be normal is proved in Theorem 11.4.8. Lastly, in Theorem 11.4.17 we
prove that in a certain sense, a divisor is “close to” a principal divisor. General references
for this section are [42, §17], [63, Chapter VI], [25], [29, Chapter II], and [22].

4.1. A Noetherian Normal Integral Domain is a Krull Domain. Let R denote a
noetherian integral domain and K the field of fractions. By X1(R) we denote the subset
of Spec(R) consisting of primes of height one. The main results of this section are Theo-
rem 11.4.3 and Corollary 11.4.4. If P is a prime ideal of R in X1(R), then RP is a discrete
valuation domain and the valuation associated to RP on K∗ is denoted νP. We show that
there is a homomorphism of groups K∗→

⊕
P∈X1(R)ZP defined by α 7→ ∑P∈X1(R) νP(α)P

and the kernel is equal to R∗.
First we introduce some new notation. Given an ideal I of R, let

I−1 = {x ∈ K | xI ⊆ R}.
Then R⊆ I−1 and I−1is an R-submodule of K. The reader should verify that I ⊆ I−1I ⊆ R
and I−1I is an ideal of R.

LEMMA 11.4.1. Let R be a noetherian integral domain, x a nonzero noninvertible
element of R, and P ∈ AssocR(R/xR). Then P−1 ̸= R.

PROOF. By Lemma 9.2.1, there exists y∈R−xR such that P=(xR : y). Then yP⊆ xR,
or in other words, yx−1P⊆ R. This implies yx−1 ∈ P−1 and yx−1 ̸∈ R because y ̸∈ xR. □

LEMMA 11.4.2. Let R be a noetherian local integral domain with maximal ideal m.
If m ̸= (0) and m−1m= R, then m is a principal ideal and R is a DVR.

PROOF. By Exercise 4.1.23, R is not artinian. By Proposition 4.5.5, m ̸= m2. Pick
π ∈ m−m2. Then πm−1 ⊆ R. Hence πm−1 is an ideal in R. If πm−1 ⊆ m, then πR =
πm−1m⊆m2, which contradicts the choice of π . Since πm−1 is an ideal of R which is not
contained in m, we conclude that πm−1 = R. That is, πR = πm−1m = m, which proves
that m is principal. By Corollary 9.6.13, dimR = 1. By Theorem 11.2.11, R is a DVR. □

Let R be a noetherian normal integral domain with field of fractions K. Let X1(R)
denote the subset of SpecR consisting of all prime ideals P such that ht(P) = 1. If P ∈
X1(R), then RP is a one-dimensional noetherian normal local integral domain. By The-
orem 11.2.11, RP is a DVR of K. Denote by mP the maximal ideal of RP and by πP a
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generator of mP. Then πP is unique up to associates in RP. Let νP : K→ Z be the valuation
on K defined as in the proof of (2) implies (1) of Theorem 11.2.11.

THEOREM 11.4.3. Let R be a noetherian normal integral domain with field of frac-
tions K.

(1) Let x be a nonzero, noninvertible element of R. If P is an associated prime of Rx,
then the height of P is equal to one.

(2) Let P be a prime ideal of height one in R and I a P-primary ideal. Then there
exists a unique ν > 0 such that I is equal to P(ν), the ν th symbolic power of P.

(3) If dim(R)≤ 2, then R is Cohen-Macaulay.

PROOF. (1): Let P ∈AssocR(R/xR). By Lemma 9.6.2, it suffices to prove dim(RP) =
1. By this observation and Lemma 9.2.5, we assume from now on that R is a local nor-
mal integral domain with maximal ideal P and that P is an associated prime of a nonzero
principal ideal xR and x is noninvertible. By Lemma 11.4.1 we have R ⊊ P−1. For contra-
diction’s sake, assume ht(P)> 1. Lemma 11.4.2 says P−1P = P. Given α ∈ P−1, we have
αP⊆ P, and for all n > 0,

α
nP = α

n−1
αP⊆ α

n−1P⊆ ·· · ⊆ αP.

Therefore, αn ∈ P−1 for all n > 0, and R[α] ⊆ P−1. Since x ̸= 0, P ̸= (0), so there exists
x1 ∈ P− (0). Then for all y ∈ P−1, x−1

1 y ∈ R. So y ∈ x−1
1 R, which shows P−1 is a subset

of the principal R-module x−1
1 R. Since R is noetherian, P−1 is finitely generated as an

R-module. Since R[α] ⊆ P−1, it follows that R[α] is finitely generated as an R-module.
By Proposition 6.1.2, α , and hence P−1, is integral over R. Since R is integrally closed, it
follows that P−1 ⊆ R, which is a contradiction.

(2): By Theorem 11.2.11, RP is a DVR and every proper ideal is equal to PmRP, for
some m > 0. By Exercise 9.1.7, there is a unique ν such that I = Pν RP∩R, which is equal
to P(ν), by Exercise 9.3.9.

(3): This follows from Part (1), and Theorem 11.3.24. □

In the terminology of [22], Corollary 11.4.4 says that R is a Krull domain.

COROLLARY 11.4.4. Let R be a noetherian normal integral domain with field of frac-
tions K. Let α ∈ K∗.

(1) νP(α) = 0 for all but finitely many P ∈ X1(R).
(2) α ∈ R if and only if νP(α)≥ 0 for all P ∈ X1(R).
(3) α ∈ R∗ if and only if νP(α) = 0 for all P ∈ X1(R).
(4) R =

⋂
P∈X1(R) RP.

PROOF. Step 1: Assume α ∈ R− (0). By Theorem 11.4.3, the reduced primary de-
composition of Rα is

αR = P(n1)
1 ∩·· ·∩P(ns)

s

where s ≥ 0, P1, . . . ,Ps are height one primes of R, ni ≥ 1, and s = 0 if and only if α is
invertible in R. The integers s,n1, . . . ,ns and the primes P1, . . . ,Ps are unique. By Exer-
cise 3.1.15,

αRP =

{
mni

Pi
if P ∈ {P1, . . . ,Ps}

RP if P ̸∈ {P1, . . . ,Ps}.
It follows that

νP(α) =

{
ni if P ∈ {P1, . . . ,Ps}
0 if P ̸∈ {P1, . . . ,Ps}.
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This proves that
αR =

⋂
P∈X1(R)

P(νP(α)).

Step 2: Assume α = uv−1 ∈ K∗, where u,v ∈ R− (0). We can apply Step 1 to both
u and v. That is, uR =

⋂
P∈X1(R) P(νP(u)) and vR =

⋂
P∈X1(R) P(νP(v)) where νP(u) ≥ 0 and

νP(v)≥ 0 for all P ∈ X1(R). For each P ∈ X1(R), νP(uv−1) = νP(u)−νP(v) is zero for all
but finitely many P. This proves Part (1). If νP(uv−1) ≥ 0 for all P, then uR ⊆ vR, hence
uv−1R ⊆ R which implies uv−1 ∈ R. This proves Part (2). Parts (3) and (4) are left to the
reader. □

4.2. Serre’s Criteria for Normality. We prove an important theorem of Serre (Theo-
rem 11.4.8) which states necessary and sufficient conditions for a commutative noetherian
ring R to be normal. Our proof is based on [25, Théorème (5.8.6)].

DEFINITION 11.4.5. Let R be a commutative noetherian ring and i ∈ N. We say R
has property (Si), if for every prime ideal P in R depth(RP) ≥ inf(i,ht(P)). We say R has
property (Ri), if for every prime ideal P in R such that ht(P)≤ i, RP is a regular local ring.

EXAMPLE 11.4.6. Some important cases of properties (Si) are listed here.
(1) Any commutative noetherian ring R has property (S0).
(2) By Exercise 11.3.16, R has property (S1) if and only if R has no embedded

primes.
(3) The commutative noetherian ring R has properties (Si) for all i≥ 0 if and only if

for every P ∈ SpecR, depth(RP) = dim(RP) = ht(P). This is true if and only if R
is Cohen-Macaulay.

PROPOSITION 11.4.7. Let R be a commutative noetherian ring. Then R has properties
(S1) and (R0) if and only if RadR(0) = (0). The ring R is said to be reduced.

PROOF. Assume R is reduced, that is, assume RadR(0) = (0). Let P1, . . . ,Pn be the
complete list of distinct minimal primes of the zero ideal. By Theorem 9.2.7, AssocR(R)⊇
{P1, . . . ,Pn}. By Exercise 9.2.20, the natural homomorphism of rings

R
φ−→

n⊕
i=1

R/Pi

is one-to-one. By Corollary 9.2.3, we have AssocR (
⊕n

i=1 R/Pi) = {P1, . . . ,Pn}. These re-
sults, together with Proposition 9.2.2 (4), prove AssocR(R) = {P1, . . . ,Pn}. Therefore every
associated prime of R is minimal. Given P ∈ Spec(R), if ht(P)≥ 1, then depth(P)≥ 1, by
Exercise 11.3.16. Therefore, R has property (S1). If ht(P) = 0, then by Exercise 3.3.27,
the nil radical of RP is (0). Since RP has dimension 0, by Lemma 4.5.2, RP is artinian.
Proposition 4.5.3 implies RP is a field. This proves R has property (R0).

Conversely, assume RadR(0) ̸= (0) and R has property (S1). We show R does not
have property (R0). By Proposition 9.2.2 (1), there exists a nonzero nilpotent element
x ∈ RadR(0) and a prime ideal P ∈ Spec(R) such that P = annihR(x). Then P ∈AssocR(R)
and by property (S1), ht(P) = 0. By Exercise 11.4.19, the image of x in RP is a nonzero
nilpotent. Therefore, RP is not a field, so R does not have property (R0). □

THEOREM 11.4.8. (Serre’s Criteria for Normality) Let R be a commutative noetherian
ring. Then R is normal if and only if the following two properties are satisfied.

(R1) For every prime ideal P in R such that ht(P)≤ 1, RP is a regular local ring.



462 11. NORMAL INTEGRAL DOMAINS

(S2) For every prime ideal P in R,

depth(RP)≥

{
1 if ht(P) = 1
2 if ht(P)≥ 2.

PROOF. Assume R is normal and P ∈ Spec(R). By definition, RP is an integrally
closed integral domain. If ht(P) = 1, then Theorem 11.2.11 says RP is a regular local
ring. Suppose ht(P) ≥ 2. By Exercise 9.6.19, there exist elements a1,a2 in PRP such
that ht(a1) = 1 and ht(a1,a2) = 2. Therefore, a1 is not a zero divisor for RP. By Theo-
rem 11.4.3 (1), RP/(a1) has no embedded primes, so a2 is not a zero divisor for RP/(a1).
This proves a1,a2 is a regular sequence for RP in PRP, hence depth(RP)≥ 2.

The converse is a series of four steps. Assume R has properties (R1) and (S2).
Step 1: Show that the nil radical of R is trivial. If P ∈ SpecR and ht(P) ≥ 1, then by

(S2), depth(RP) ≥ 1 and by Exercise 11.3.16, P is not an associated prime of R. That is,
Assoc(R) contains no embedded primes. By Proposition 11.4.7 we know that RadR(0) =
(0).

Step 2: Show that the localization of R with respect to the set of all nonzero divisors
decomposes into a sum of fields. Let P1, . . . ,Pn be the distinct minimal primes of R. Then
RPi is a field, and by Exercise 3.1.20, RPi is the quotient field of R/Pi. Since Assoc(R) =
{P1, . . . ,Pn}, by Proposition 9.2.2, the set of nonzero divisors in R is equal to W = R−⋃n

i=1 Pi. Then W is a multiplicatively closed set and Spec(RW−1) = {P1W−1, . . . ,PnW−1}.
Since each prime ideal in RW−1 is maximal, RW−1 is artinian. By Exercise 3.3.27,
RadRW−1(0) = (0). By Proposition 4.5.3 and Theorem 4.3.3, RW−1 is semisimple. By
Theorem 4.4.3 (2) RW−1 decomposes into a direct sum

RW−1 =
n⊕

i=1

RW−1

PiW−1 =
n⊕

i=1

(R/Pi)W−1

where each ring (R/Pi)W−1 is a field. Since W ⊆ R−Pi for each i, there is a natural map
RW−1→

⊕n
i=1 RPi . This gives a homomorphism

(R/Pi)W−1 =
RW−1

PiW−1
φi−→ RPi

for each i. For each i, the kernel of the natural map R→ (R/Pi)W−1 is the prime ideal Pi.
Hence R/Pi→ (R/Pi)W−1 is one-to-one and factors through the quotient field RPi ,

RPi

ψi−→ (R/Pi)W−1

for each i. The maps φi and ψi are inverses of each other, so the natural map

RW−1 ∼=
n⊕

i=1

RPi

is an isomorphism.
Step 3: Show that R is integrally closed in its total ring of quotients RW−1. Suppose

rw−1 ∈ RW−1, u≥ 1, and a1, . . . ,au−1 ∈ R such that

(4.1) (rw−1)u +au−1(rw−1)u−1 + · · ·+a1(rw−1)+a0 = 0

in RW−1. The objective is to show r ∈ wR, so assume w is not a unit in R. If Q is a
prime ideal that contains w, then the image of w is a nonzero divisor of RQ in mQ =
QRQ. By Corollary 9.6.12, ht(Q) ≥ 1. If ht(Q) ≥ 2, then by (S2), depth(RQ) ≥ 2. By
Exercise 11.3.14, depth(RQ/wRQ) ≥ 1 and by Exercise 11.3.16, Q is not an associated
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prime of R/wR. That is, Assoc(R/wR) consists only of minimal prime over-ideals of wR.
Let Q ∈ Assoc(R/wR). By (R1), RQ is an integral domain which is integrally closed in its
field of fractions. By (4.1), the image of rw−1 in the quotient field of RQ is integral over RQ.
In other words, rw−1 ∈ RQ, or r ∈ wRQ∩R. If I is a Q-primary ideal in R, then IRQ =mν

Q,
for some ν > 0. By Exercise 9.1.7, I = Qν RQ∩R = Q(ν), the ν-th symbolic power of Q.
The reduced primary decomposition of wR can be written in the form wR = Q(ν1)

1 ∩ ·· · ∩
Q(νs)

s . In this case, wRQi = Qνi
i RQi and we already showed that r is in wRQi ∩R = Q(νi)

i .
This proves r ∈ wR.

Step 4: Show that R is normal. Let e1, . . . ,en be the orthogonal idempotents in RW−1

corresponding to the direct sum decomposition of Step 2. Each ei satisfies the monic
polynomial x2− x over R, hence belongs to R, by Step 3. This proves the natural map

R→ R/P1⊕·· ·⊕R/Pn

is onto, hence it is an isomorphism. The ideals P1, . . . ,Pn are pairwise co-maximal. Every
prime ideal Q of R contains exactly one of the ideals P1, . . . ,Pn. Each of the integral do-
mains R/Pi satisfies the two properties (R1) and (S2). By Step 3, R/Pi is integrally closed
in its quotient field RPi . By Lemma 11.1.5, R is a normal ring. □

COROLLARY 11.4.9. If R is a Cohen-Macaulay ring, then R is normal if and only if
RP is regular for all P such that ht(P)≤ 1.

PROOF. For every prime ideal P in R, depth(RP) = dim(RP) = ht(P), so condition
(S2) of Theorem 11.4.8 is satisfied. Therefore, R is normal if and only condition (R1) is
satisfied. □

4.2.1. Local Complete Intersection Criteria.

PROPOSITION 11.4.10. Let R be a commutative noetherian ring. Let a1, . . . ,ar be a
sequence of elements of R such that I = (a1, . . . ,ar) is not the unit ideal in R. Assume for
every maximal ideal M of R such that I ⊆M that RM is a Cohen-Macaulay local ring and
ht(IRM) = r. Then

(1) R/I is Cohen-Macaulay, and
(2) R/I is normal if and only if (R/I)P is regular for all P ∈ Spec(R/I) such that

ht(P)≤ 1.

PROOF. (1): Since RM is Cohen-Macaulay and ht(a1RM + · · ·+ arRM) = r, by The-
orem 11.3.22, a1, . . . ,ar is a regular sequence for RM in MRM . By Theorem 11.3.21,
RM/IRM = (R/I)M/I is Cohen-Macaulay. By Definition 11.3.23, R/I is Cohen-Macaulay.

(2): Follows by Corollary 11.4.9 and Part (1). □

4.3. Divisor Classes of Integral Domains. The class group of a noetherian normal
integral domain R with quotient field K is defined as the group of Weil divisors modulo the
subgroup of principal Weil divisors. In Section 12.4 below, we show that the class group of
R is isomorphic to the group of reflexive fractional ideals of R in K modulo the subgroup of
principal fractional ideals. The first main result, Theorem 11.4.12 and its corollary, shows
that R is a unique factorization domain if and only if the class group of R is trivial. We
then prove Nagata’s Theorem which is an important tool for computing class groups. This
method is illustrated in a nontrivial example, Example 11.4.15.
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DEFINITION 11.4.11. Let R be a noetherian normal integral domain with field of
fractions K. Let X1(R) be the subset of SpecR consisting of those prime ideals of height
one. The free Z-module on X1(R),

DivR =
⊕

P∈X1(R)

ZP

is called the group of Weil divisors of R. According to Corollary 11.4.4, there is a homo-
morphism of groups Div : K∗→ Div(R) defined by

Div(α) = ∑
P∈X1(R)

νP(α)P,

and the kernel of Div() is equal to the group R∗. The class group of R is defined to be the
cokernel of Div(), and is denoted Cl(R). The sequence

0→ R∗→ K∗ Div−−→ Div(R)→ Cl(R)→ 0

is exact. The image of Div : K∗ → DivR is denoted PrinR and is called the group of
principal Weil divisors. In other words, Cl(R) is the group of Weil divisors modulo the
principal Weil divisors.

THEOREM 11.4.12. Let R be a noetherian integral domain. Then R is a UFD if and
only if every prime ideal of height one is principal.

PROOF. Suppose R has the property that every height one prime is principal. Let p be
an irreducible element of R. By Exercise 1.5.9, it suffices to show that p is a prime element
of R. By Lemma 1.5.2, it is enough to show that the principal ideal (p) is a prime ideal.
Let P be a minimal prime over-ideal of (p). By Corollary 9.6.12 (Krull’s Hauptidealsatz),
ht(P) = 1. By hypothesis, P = (π) is principal. Then π divides p and since p is irreducible,
it follows that π and p are associates. This implies P = (p). The converse follows from
Exercise 1.5.10. □

COROLLARY 11.4.13. Let R be a noetherian normal integral domain. Then R is a
UFD if and only if Cl(R) = (0).

PROOF. The proof is left to the reader. □

THEOREM 11.4.14. (Nagata’s Theorem) Let R denote a noetherian normal integral
domain with field of fractions K. Let f be a nonzero noninvertible element of R with divisor
Div( f ) = ν1P1 + · · ·+νnPn. The sequence of abelian groups

1→ R∗→ R[ f−1]∗
Div−−→

n⊕
i=1

ZPi→ Cl(R)→ Cl(R[ f−1])→ 0

is exact.

PROOF. There is a tower of subgroups R∗ ⊆ R[ f−1]∗ ⊆K∗. There exists a map α such
that the diagram

1 // R∗ //

δ

��

K∗ Div //

ε

��

PrinR //

α

��

0

1 // R[ f−1]∗ // K∗ Div // PrinR[ f−1] // 0
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is commutative, where δ is set inclusion and ε is set equality. Clearly, α is onto. By the
Snake Lemma (Theorem 2.5.2), cokerδ ∼= kerα . Hence

(4.2) 1→ R∗→ R[ f−1]∗→ kerα → 0

is exact. Using Exercise 3.3.25, X1(R[ f−1]) is the subset of X1(R) consisting of those
primes of height one in R that do not contain f . We can view Div(R[ f−1]) as the free
Z-submodule of Div(R) generated by primes in X1(R[ f−1]). Let β be the projection map
onto this subgroup defined by P1 7→ 0, . . . , Pn 7→ 0. This diagram

0 // Prin(R) //

α

��

Div(R) //

β

��

Cl(R)

γ

��

// 0

0 // Prin(R[ f−1]) // Div(R[ f−1]) // Cl(R[ f−1]) // 0

commutes and the rows are exact. Since β is onto, so is γ . The group DivR is free on
X1(R). The only height one primes that contain f are P1, . . . ,Pn. Therefore, the kernel of β

is the free subgroup ZP1⊕·· ·⊕ZPn. By the Snake Lemma (Theorem 2.5.2),

(4.3) 0→ kerα → kerβ → kerγ → 0

is exact. Combine (4.2) and (4.3) to complete the proof. □

EXAMPLE 11.4.15. Let k be a field with characteristic not equal to 3. Let

R =
k[x,y,z]

(z3− y(y− x)(x+1))
.

The reader should verify that R is an integrally closed noetherian integral domain. This can
be done using the method outlined in Exercise 11.4.20. Let K be the quotient field of R. In
this example we compute the class group Cl(R) and the group of invertible elements, R∗.
To compute the class group Cl(R), we first show that there exists a localization of R which
is factorial. The transformation we use is based on the blowing-up of the maximal ideal
(x,y,z). The reader is referred to [29, pp. 28–29] for more details. Start with the equation

(4.4) z3− y(y− x)(x+1)) = 0

in K. Divide both sides of (4.4) by x3 and substitute v = y/x and w = z/x to get

(4.5) w3− v(v−1)(1+ x−1) = 0.

Solve (4.5) for x to get

(4.6) x =
v2− v

w3− v2 + v
.

Now treat v,w as indeterminates and define

(4.7) R =
k[x,y,z]

(z3− y(y− x)(x+1))
φ−→ k[v,w][(w3− v2 + v)−1]

by φ(x) = (v2− v)(w3− v2 + v)−1, φ(y) = vφ(x), and φ(z) = wφ(x). The reader should
verify that φ is a well-defined k-algebra homomorphism and that if we adjoin (xy(y−x))−1

to R and (v2− v)−1 to the ring on the right hand side of (4.7), then

(4.8) R[x−1,y−1,(y− x)−1]
φ−→ k[v,w][v−1,(v−1)−1,(w3− v2 + v)−1]

is a k-algebra homomorphism which is onto. Since the domain and range of φ are both noe-
therian integral domains with Krull dimension two, φ is an isomorphism (Corollary 10.3.4).
Since k[v,w] is a unique factorization domain, it follows from Theorem 11.4.14 that the
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group of units in the ring on the right hand side of (4.8) decomposes into the internal direct
product

(4.9) k∗×⟨v⟩×⟨v−1⟩×⟨w3− v2 + v⟩.

Using the isomorphism (4.8) we see that the group of units in R[x−1,y−1,(y− x)−1] is
generated by k∗, x, y, y− x. Since z3− y2 is irreducible, R/(x) ∼= k[y,z]/(z3− y2) is an
integral domain of Krull dimension one. Also, R/(y,z) ∼= k[x] and R/(y− x,z) ∼= k[x].
From this it follows that

p0 = (x)

p1 = (y,z)

p2 = (y− x,z)
(4.10)

are each height one prime ideals of R. Using the identity (4.4) we see that z is a local
parameter for each of the two local rings: Rp1 and Rp2 . From this we compute the divisors:

Div(x) = p0

Div(y) = 3p1

Div(y− x) = 3p2.

(4.11)

Since R[x−1,y−1,(y− x)−1] is factorial, the exact sequence of Nagata (Theorem 11.4.14)
is

(4.12) 1→ R∗→ R[(xy(y− x))−1]∗
Div−−→

2⊕
i=0

Zpi→ Cl(R)→ 0.

From (4.12) and (4.11), it follows that Cl(R) ∼= Z/3⊕Z/3 and is generated by the prime
divisors p1 and p2. We remark that from (4.9) and (4.12) it follows that R∗ = k∗.

4.4. The Approximation Theorem. Let R be a noetherian integrally closed integral
domain with quotient field K. If D = ∑P∈X1(R) nPP is a divisor in DivR, the support of D
is the set of primes P in X1(R) such that the coefficient nP is nonzero. If nP ≥ 0 for all
P, then we say D is an effective divisor. In the terminology of Section 11.4.3, if α ∈ K∗,
then Div(α) is called a principal divisor. It follows from Corollary 11.4.4 that the set of
all principal divisors is a subgroup of DivR. The Approximation Theorem shows that in
a certain sense D is “close to” a principal divisor. Specifically, there exists α ∈ K∗ such
that Div(α)−D is an effective divisor, and the support of Div(α)−D is disjoint from the
support of D.

LEMMA 11.4.16. Let R be a noetherian integrally closed integral domain. Let r ≥ 1
and p,p1, . . . ,pr a set of r+ 1 distinct primes in X1(R). Then there exists t ∈ R such that
νp(t) = 1 and for 1≤ i≤ r, νpi(t) = 0.

PROOF. Let πp be an element in R which maps to a local parameter for Rp. If πp ̸∈⋃r
i=1 pi, then set t = πp and stop. Otherwise rearrange the list p1, . . . ,pr and assume that

πp ∈
⋂s

i=1 pi and πp ̸∈
⋃r−s

j=1 ps+ j for some s ≥ 1. Applying Lemma 6.3.2, since p2 ̸⊆⋃s
i=1 pi, pick f0 ∈ p2−

⋃s
i=1 pi. Likewise, for 1 ≤ j ≤ r− s, since ps+ j ̸⊆

⋃s
i=1 pi, pick

f j ∈ ps+ j−
⋃s

i=1 pi. Set t = πp− f0 f1 · · · fr−s. Then t ∈ p−
⋃r

i=1 pi. Thus νpi(t) = 0 for
1≤ i≤ r. Now f0 f1 · · · fr−s ∈ p2Rp and since πp is a local parameter for Rp, t ∈ pRp−p2Rp.
Thus νp(t) = 1. □
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THEOREM 11.4.17. (The Approximation Theorem) Let R be a noetherian integrally
closed integral domain with field of fractions K. Let r ≥ 1 and p1, . . . ,pr a set of distinct
primes in X1(R). Let n1, . . . ,nr ∈ Z. Then there exists α ∈ K such that

νp(α) =

{
ni if p ∈ {p1, . . . ,pr}
≥ 0 otherwise.

PROOF. Using Lemma 11.4.16, pick t1, . . . , tr in R such that νpi(t j) = δi, j (Kronecker
delta). In K∗, let β = tn1

1 · · · tnr
r . If there is no height one prime p in X1(R)−{p1, . . . ,pr}

such that νp(β ) < 0, then we take α = β and stop. Otherwise, let q1, . . . ,qs be those
height one primes in X1(R)− {p1, . . . ,pr} such that νq j(β ) < 0 for 1 ≤ j ≤ s. Using
Lemma 11.4.16, pick u1, . . . ,us in R such that

νp(u j) =


1 if p= q j,
0 if p= qi, for some i ̸= j,
0 if p ∈ {p1, . . . ,pr}.

Let m j = νq j(β ) for 1≤ j ≤ s. Then α = tn1
1 · · · tnr

r u−m1
1 · · ·u−ms

s satisfies the conclusion of
the theorem. □

COROLLARY 11.4.18. Let R be a noetherian integrally closed integral domain with
field of fractions K. If D is a divisor in DivR, then there exists an effective divisor E in
DivR such that the support of E is disjoint from the support of D and modulo PrinR the
divisors E and D are congruent to each other.

PROOF. By applying Theorem 11.4.17 to−D, there exists α ∈K∗ such that Div(α)+
D is an effective divisor with support that is disjoint from the support of D. □

4.5. Exercises.

EXERCISE 11.4.19. Let R be a commutative ring and assume RadR(0) is nonzero. Let
x be a nonzero nilpotent element in R and let P be a prime ideal of R containing annihR(x).
Show that the image of x in the local ring RP is nonzero and nilpotent.

EXERCISE 11.4.20. Let k be a field and n≥ 2 an integer which is invertible in k. Let
f ∈ k[x,y,z] be the polynomial zn− xy and let R be the quotient k[x,y,z]/( f ). In R we
prefer not to use special adornment for cosets. That is, write simply x, or z for the coset
represented by that element.

(1) Show that R is a noetherian integral domain and dim(R) = 2.
(2) Let P = (x,z) be the ideal in R generated by x and z. Show that P is a prime ideal

of height one.
(3) Let I = (x) be the principal ideal generated by x in R. Show that Rad(I) = P.
(4) Show that RP is a DVR and z generates the maximal ideal mP.
(5) Show that νP(x) = n and Div(x) = nP.
(6) Show that R[x−1]∼= k[x,z][x−1] and R[y−1]∼= k[y,z][y−1]. Show that Rp is regular

if p ∈U(x)∪U(y).
(7) Show that the only prime ideal containing both x and y is the maximal ideal m=

(x,y,z), which has height 2. Show that depth(Rm) = 2. Apply Theorem 11.4.8
to show that R is integrally closed.

(8) Show that Cl(R[x−1]) = 0. (Hint: R[x−1] is a UFD.)
(9) Cl(R) is cyclic of order n.
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EXERCISE 11.4.21. Let S = R[x,y]/( f ), where f = x2 + y2−1. By Exercise 2.1.19,
S is not a UFD. This exercise is an outline of a proof that Cl(S), the class group of S, is
cyclic of order two.

(1) Let R be the R-subalgebra of S[x−1] generated by yx−1 and x−1. Show that
R = R[yx−1,x−1]/(1+(yx−1)2− (x−1)2) is a PID.

(2) Show that R[x] = S[1/x] is a PID.
(3) Let P1 = (x,y−1) and P2 = (x,y+1). Show that SP1 and SP2 are local principal

ideal domains. Conclude that S is normal.
(4) Show that Div(x) = P1 +P2 and Div(y−1) = 2P1.
(5) Use Theorem 11.4.14 to prove that that Cl(S) is generated by P1 and has order

two.

EXERCISE 11.4.22. (Nagata’s Theorem) Let R be a noetherian normal integral domain
with field of fractions K. Let W ⊆ R−{0} be a multiplicative set. Modify the proof of
Theorem 11.4.14 to show that there is an epimorphism of groups γ : Cl(R)→ Cl(W−1R)
and that the kernel of γ is generated by the classes of those prime divisors P ∈ X1(R)−
X1(W−1R).

EXERCISE 11.4.23. This exercise is a continuation of Exercise 11.4.20. Let k be a
field and n ≥ 2 an integer which is invertible in k. Let f ∈ k[x,y,z] be the polynomial
zn−xy and let R be the quotient k[x,y,z]/( f ). Let m be the maximal ideal (x,y,z) in R, and
R̂ the m-adic completion of R.

(1) Show that R̂∼= k[[x,y]][z]/( f ).
(2) Follow the procedure outlined in Exercise 11.4.20 to show that R̂ is a noetherian

normal integral domain and Cl(R̂) is a cyclic group of order n generated by the
class of the prime ideal P = (x,z).

In Algebraic Geometry, the ring R is the affine coordinate ring of the surface X = Z(zn−xy)
in A3

k and the point p = (0,0,0) is called a singular point of X . It follows from [18, A5]
and [40] that p is a rational double point of type An−1.

EXERCISE 11.4.24. Let k be a field such that chark ̸= 2. For the ring

R =
k[x,y,z]

(z2− (y2− x2)(x+1))
follow the method of Example 11.4.15 to prove the following:

(1) R[x−1,(y2− x2)−1] is a UFD.
(2) The group of invertible elements in R[x−1,(y2 − x2)−1] is generated by x,y−

x,y+ x.
(3) q1 = (x,z−y), q2 = (x,z+y), p1 = (y−x,z), p2 = (y+x,z), are height one prime

ideals in R.
(4) Div(x) = q1 +q2, Div(y− x) = 2p1, Div(y+ x) = 2p2.
(5) Cl(R)∼= Z⊕Z/2⊕Z/2.

EXERCISE 11.4.25. Let k be a field and n> 1 an integer that is invertible in k. Assume
moreover that k contains a primitive nth root of unity, say ζ . Let a1, . . . ,an be distinct
elements of k. For 1≤ i≤ n, define linear polynomials ℓi(x,y) = y−aix in k[x,y], and set
f (x,y) = ℓ1(x,y) · · ·ℓn(x,y). For the ring

R =
k[x,y,z]

(zn− f (x,y)(x+1))
follow the method of Example 11.4.15 to prove the following:



5. FIBERS OF A FAITHFULLY FLAT MORPHISM 469

(1) R[x−1, f (x,y)−1] is a UFD.
(2) The group of invertible elements in R[x−1, f (x,y)−1] is generated by x, ℓ1, . . . , ℓn.
(3) Let qi = (x,z−ζ iy), for i = 0, . . . ,n−1. Let p j = (ℓ j,z), for j = 1, . . . ,n. Then

q0, . . . ,qn−1, p1, . . . ,pn are height one prime ideals in R.
(4) Div(x) = q0 + · · ·+qn−1, and Div(ℓ j) = np j, for j = 1, . . . ,n.
(5) Cl(R)∼= (Z)(n−1)⊕ (Z/n)(n).

Notice that for n = 2, this agrees with computation carried out in Exercise 11.4.24. The
ring R was the focus of the article [21] where many other interesting properties of R were
studied.

EXERCISE 11.4.26. Let k be a field and n > 2 an integer that is invertible in k. Let
a1, . . . ,an−1 be distinct elements of k. For 1≤ i≤ n−1, define linear polynomials ℓi(x,y) =
y−aix in k[x,y], and set f (x,y) = ℓ1(x,y) · · ·ℓn−1(x,y). For the ring

R =
k[x,y,z]

(zn− f (x,y)(x+1))

follow the method of Example 11.4.15 to prove the following:

(1) R[x−1, f (x,y)−1] is a UFD.
(2) The group of units in the ring R[x−1, f (x,y)−1] is generated by x, ℓ1, . . . , ℓn−1 and

the units in k.
(3) Let p0 = (x), and for i = 1, . . . ,n−1, let pi = (ℓi,z). Then p0, . . . ,pn−1, are height

one prime ideals in R.
(4) Div(x) = p0, and Div(ℓ j) = np j, for j = 1, . . . ,n−1.
(5) Cl(R)∼= (Z/n)(n−1).

Notice that for n = 3, this agrees with computation carried out in Example 11.4.15.

5. Fibers of a Faithfully Flat Morphism

This section is divided into three parts each with its own somewhat different context.
First we consider a faithfully flat extension f : R→ S of commutative noetherian rings.
The point of view we take is to determine which properties of R are inherited by S, and
conversely. The second main result is a proof of [23, Proposition 10.3.1] which states
the following. Let R be a noetherian local ring with maximal ideal m and residue field
k = R/m. Then we show that if K/k is an extension of fields, then there exists a noetherian
local ring S and a faithfully flat local homomorphism θ : R→ S such that S/mS = K.
In the last part, our context is an extension of commutative rings defined by adjoining
the nth root of an element. Specifically, let R be a commutative ring, n ≥ 2, a ∈ R, and
S = R[x]/(xn− a). Among other results, we derive sufficient conditions on n and a such
that if R is a noetherian normal integral domain, then so is S. General references for this
section are [42, §21], [23] and [19, Section 9.4].

Throughout this section R and S will be commutative rings. Usually R and S will be
noetherian. Let f : R→ S be a homomorphism of rings, and f ♯ : SpecS→ SpecR the
continuous map of Exercise 3.3.19. Let P ∈ SpecR. The residue field at P is k(P) =
RP/PRP. The fiber over P of the map f ♯ is Spec(S⊗R k(P)), which is homeomorphic
to ( f ♯)−1(P), by Exercise 3.4.12. By Exercise 3.4.11, if Q is a prime ideal of S lying
over P, then the corresponding prime ideal of S⊗R k(P) is Q⊗R k(P) and the local ring is
SQ⊗R k(P) = SQ/PSQ.
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5.1. Flat Algebras and Depth.

THEOREM 11.5.1. Assume all of the following are satisfied.
(1) R is a noetherian local ring with maximal ideal m.
(2) S is a noetherian local ring with maximal ideal n.
(3) f : R→ S is a local homomorphism of local rings.
(4) A is a finitely generated R-module and B is a finitely generated S-module which

is a flat R-module.
Then

depthS(A⊗R B) = depthR(A)+depthS⊗RR/m(B⊗R R/m)

= depthR(A)+depthS/mS(B/mB).

PROOF. The proof is by induction on n = depthR(A)+depthS(B/mB). If n = 0, then
by Exercise 11.3.15 we have m ∈AssocR(A) and n ∈AssocS(B/mB). By Theorem 9.3.11,

AssocS(A⊗R B) =
⋃

P∈AssocR(A)

AssocS(B⊗R R/P).

We have n in the right hand side, hence n is in AssocS(A⊗R B). By Exercise 11.3.15,
depthS(A⊗R B) = 0. Now assume n > 0 and that the equation holds for modules A′, B′

such that depthR(A
′)+depthS(B

′/mB′)< n.
Case 1: Suppose depthR(A) > 0. Let α be a regular element for A in m. Since B is

R-flat, f (α) is a regular element for A⊗R B in n. By our Induction Hypothesis, the equation
depthS(A/αA⊗R B) = depthR(A/αA)+depthS/mS(B/mB) holds for A/αA and B. Adding
1 to both sides shows the equation holds for A and B.

Case 2: Assume depthR(A) = 0 and depthS(B/mB) > 0. Let β be a regular element
for B/mB = B⊗R R/m in n. Start with the sequence of S-modules

(5.1) 0→ B
ℓβ−→ B→ B/βB→ 0

where ℓβ is the “left multiplication by β” homomorphism. Applying the functor ( )⊗R R/m
to (5.1), we get the sequence

(5.2) 0→ B⊗R R/m
ℓβ⊗1
−−−→ B⊗R R/m→ (B/βB)⊗R R/m→ 0.

By choice of β , (5.2) is exact. By Proposition 10.4.14, (5.1) is exact and B/βB is a flat
R-module. Upon tensoring (5.1) with A⊗R ( ) we get

(5.3) 0→ A⊗R B
1⊗ℓβ−−−→ A⊗R B→ A⊗R (B/βB)→ 0

which is an exact sequence, by Proposition 8.3.2. This means β is a regular element for
A⊗R B in n. Therefore depthS (A⊗R (B/βB)) = depthS(A⊗R B)− 1. Since (5.2) is an
exact sequence of S/mS-modules, β is a regular element for B/mB in nS/mS. Therefore
depthS/mS((B/βB)⊗R R/m) = depthS/mS(B⊗R R/m)− 1. By our Induction Hypothesis,
the equation

depthS (A⊗R (B/βB)) = depthR(A)+depthS/mS((B/βB)⊗R R/m)

holds for A and B/βB. Adding 1 to both sides shows the equation holds for A and B. □

COROLLARY 11.5.2. Assume f : R→ S is a local homomorphism of noetherian local
rings making S into a flat R-algebra. If the maximal ideal of R is m, then the following are
true.

(1) depth(S) = depth(R)+depth(S/mS).
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(2) S is Cohen-Macaulay if and only if R and S/mS are both Cohen-Macaulay.

PROOF. (1): Follows straight from Theorem 11.5.1.
(2): By Theorems 6.3.5 and 9.6.21, dim(S) = dim(R)+ dim(S/mS). It follows from

Corollary 11.3.12 that the depth of a noetherian local ring is always less than or equal to
its Krull dimension. Part (2) follows from these facts and Part (1). □

COROLLARY 11.5.3. Assume f : R→ S is a faithfully flat homomorphism of commu-
tative noetherian rings. Let i be a positive integer. Then the following are true.

(1) If S satisfies property (Si) of Definition 11.4.5, then so does R.
(2) If R satisfies property (Si) and for each P ∈ SpecR, S⊗R k(P) satisfies (Si), then

S satisfies property (Si).

PROOF. (1): Let P∈ SpecR. By Lemma 3.5.4, f ♯ : SpecS→ SpecR is onto. By Exer-
cise 3.3.24 there exists Q ∈ SpecS which is a minimal prime over-ideal of PS and f ♯(Q) =
P. Then dim(SQ⊗R k(P)) = depth(SQ⊗R k(P)) = 0. By Theorem 11.5.1, depth(SQ) =
depth(RP). It follows that

depth(RP) = depth(SQ)

≥ inf(i,dim(SQ))

= inf(i,dim(RP))

which shows R has property (Si).
(2): Let Q ∈ SpecS and set P = Q∩R. Applying Theorems 11.5.1 and 9.6.21, we get

depth(SQ) = depth(RP)+depth(SQ⊗R k(P))

≥ inf(i,dim(RP))+ inf(i,dim(SQ⊗R k(P)))

≥ inf(i,dim(RP)+dim(SQ⊗R k(P)))

= inf(i,dim(SQ))

which shows S has property (Si). □

THEOREM 11.5.4. Let R be a noetherian local ring with maximal ideal m, S a noe-
therian local ring with maximal ideal n, and f : R→ S a local homomorphism of local
rings. Then the following are true.

(1) If S is a flat R-algebra and regular, then R is regular.
(2) If

(a) dim(S) = dim(R)+dim(S/mS),
(b) R is regular, and
(c) S/mS is regular,

then S is a flat R-algebra and S is regular.
(3) If

(a) S is a flat R-algebra,
(b) S is a separable R-algebra, and
(c) R is regular,

then dim(S) = dim(R) and S is regular.

PROOF. (1): This is Exercise 11.3.41. To prove it, apply Proposition 8.4.16 and The-
orem 11.3.37.

(2): By (b), there exists {a1, . . . ,am} ⊆m which is a regular system of parameters for
R. By (c), there exists {b1, . . . ,bn} ⊆ n which maps onto a regular system of parameters for
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S/mS. Then { f (a1), . . . , f (am),b1, . . . ,bn} generate the ideal n. By (a), dim(S) = m+ n.
Therefore, S is regular.

To prove that S is a flat R-algebra, we utilize (5) implies (1) of Theorem 10.4.13. It
suffices to show that grm(R)⊗R/m S/mS ∼= grmS(S). In the notation from above, there is
a regular system of parameters {a1, . . . ,am} ⊆ m for R such that { f (a1), . . . , f (am)} is a
regular sequence for S in n. By Theorem 11.3.6 (2),

grmS(S) = (S/mS)[t1, . . . , tm] = (R/m)[t1, . . . , tm]⊗R/m S/mS = grm(R)⊗R/m S/mS

which completes the proof of (2).
(3): By Exercise 5.5.15, mS = n. By Theorem 6.3.5, going down holds for f . By

Theorem 9.6.21, dim(R) = dim(S). As in the proof of Part (2), if {a1, . . . ,am} is a system
of parameters for R, then { f (a1), . . . , f (am)} is a regular system of parameters for S. □

COROLLARY 11.5.5. Assume f : R→ S is a faithfully flat homomorphism of commu-
tative noetherian rings. Let i≥ 0 be a natural number. Then the following are true.

(1) If S satisfies property (Ri) of Definition 11.4.5, then so does R.
(2) If R satisfies property (Ri) and for each P ∈ SpecR, S⊗R k(P) satisfies (Ri), then

S satisfies property (Ri).

COROLLARY 11.5.6. Assume f : R→ S is a faithfully flat homomorphism of commu-
tative noetherian rings.

(1) If S is a normal ring, then R is a normal ring. Conversely, if R is a normal ring
and for each P ∈ SpecR, S⊗R k(P) is a normal ring, then S is a normal ring.

(2) Part (1) is true if “normal ring” is replaced with “Cohen-Macaulay ring”.
(3) Part (1) is true if “normal ring” is replaced with “reduced ring”.

PROOF. (1): If S is a normal ring, then R is a normal ring, by Exercise 6.1.17 (3).
Notice that this is true without the hypothesis that the rings R and S are noetherian. By
Theorem 11.4.8, a commutative noetherian ring is normal if and only if the properties (R1)
and (S2) are satisfied. Therefore, the “conversely” statement in (1) follows from Corollar-
ies 11.5.5 and 11.5.3.

(2): By Example 11.4.6 (3), a commutative noetherian ring is Cohen-Macaulay if and
only if the properties (Si) are satisfied for all i ≥ 1. Therefore, (2) follows from Corol-
lary 11.5.3.

(3): By Proposition 11.4.7, a commutative noetherian ring is reduced if and only if the
properties (R0) and (S1) are satisfied. Therefore, (3) follows from Corollaries 11.5.5 and
11.5.3. □

5.2. Existence of a Flat Extension. Let R be a noetherian local ring with maximal
ideal m and residue field k = R/m. Let K/k be an extension of fields. The purpose of
this section is to prove that there exists a noetherian local ring S and a faithfully flat local
homomorphism θ : R→ S such that S/mS = K. This result appears as Theorem 11.5.7
below. All of the results in this section are based on [23, Proposition 10.3.1] and its proof.

THEOREM 11.5.7. Let R be a noetherian local ring with maximal ideal m and residue
field k = R/m. Let K/k be an extension of fields. Then there exists a noetherian local
ring S and a local homomorphism of local rings θ : R→ S such that S/mS = K and S is a
faithfully flat R-algebra.

PROOF. The method of proof is to reduce to the case where K is a simple extension
of k. To accomplish this, we write K as a direct limit of subfields over a well ordered index
set.
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Step 1: Assume K = k(t) is a transcendental extension of k of degree one. Let Q be
the kernel of the natural map R[t]→ R[t]⊗R k = k[t]. Then Q is equal to the ideal m[t].
Let S be the local ring of R[t] at the prime ideal Q. By Exercise 3.1.20, the residue field
S/QS is equal to the quotient field of R[t]/Q, which we identify with K = k(t). Since Q
is generated by m, we have R→ S is a local homomorphism of local rings and mS = QS.
Since S is flat over R[t] and R[t] is flat over R, we have S is faithfully flat over R. Since R is
noetherian, by Theorem 6.2.1 and Corollary 4.1.13, the ring S is noetherian.

Step 2: Assume K = k(t) is a finite dimensional algebraic extension of k generated by
the primitive element t. Let f = min.polyk(t) be the minimal polynomial of t in k[x]. Let
F ∈R[x] be a monic polynomial which maps onto f under the natural map R[x]→R[x]⊗R k.
Let S = R[x]/(F). By Corollary 5.6.3, S is a local ring with maximal ideal mS, residue field
S/mS = K, and S is finitely generated and free as an R-module. Therefore, S is a faithfully
flat R-algebra. Since R is noetherian, by Theorem 6.2.1, the ring S is noetherian.

Step 3: We will omit the details, but the reader should verify that the proof of Propo-
sition 4.1.31 can be modified to show that there exists a well ordered set I and a family
{Kξ | ξ ∈ I} of subfields of K indexed by I satisfying the following.

(1) If 1 is the least element of I, then K1 = k.
(2) If α and β are in I and α ≤ β , then k ⊆ Kα ⊆ Kβ ⊆ K.
(3) For each β ∈ I, if β has an immediate predecessor, say α , then there exists

xβ ∈ Kβ such that Kβ = Kα(xβ ) is a simple extension. If β has no immediate
predecessor, then Kβ =

⋃
ξ∈(−∞,β ) Kξ .

(4) K =
⋃

ξ∈I Kξ .

By Transfinite Induction, Proposition 1.2.3, we define a direct limit system of local rings
{Sξ | ξ ∈ I} over the index set I. First we set S1 = R. Inductively, assume δ ∈ I, 1 < δ .
Assume for the well ordered set (−∞,δ ) that there is a direct limit system {Sξ ,φ

α

β
} where

(A) S1 = R.
(B) Each Sξ is a noetherian local ring with maximal ideal mξ and residue field

Sξ/mξ = Kξ .
(C) If α ≤ β < δ , then φ α

β
: Sα → Sβ is a local homomorphism of local rings, mβ =

mα Sβ , and Sβ is a faithfully flat Sα -algebra.

To define Sδ there are two cases. If δ has an immediate predecessor, say β , then Kδ is a
simple extension of Kβ . By Step 1 or Step 2 there exists a noetherian local ring Sδ which is
a faithfully flat Sα -algebra with maximal ideal mδ and residue field Kδ . For any α ≤ β the
homomorphism φ α

δ
is taken to be φ

β

δ
◦φ α

β
. If δ has no immediate predecessor, then Kδ =⋃

ξ∈(−∞,δ ) Kξ . In this case we define Sδ to be the direct limit over the well ordered index
set (−∞,δ ). By Exercise 2.7.30 and Corollary 10.5.4, Sδ = lim−→ξ∈(−∞,δ )

Sξ is a noetherian
local ring which is a faithfully flat R-algebra with maximal ideal mδ = lim−→ξ

mξ = mξ Sδ ,
and residue field Kδ . Definition 2.7.2, the natural homomorphisms φ α

δ
: Sα → Sδ exist and

we have φ α

δ
= φ

β

δ
◦ φ α

β
whenever α ≤ β < δ . By Transfinite Induction, the direct limit

system {Sξ ,φ
α

β
} exists over the index set I. By Exercise 2.7.30 and Corollary 10.5.4, if we

define S to be the limit Sδ = lim−→ξ∈I
Sξ , then S is a noetherian local ring which is a faithfully

flat R-algebra with maximal ideal mδ = lim−→ξ
mξ =mξ S, and residue field K =

⋃
ξ∈I Kξ .

□
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COROLLARY 11.5.8. Let R be a noetherian local ring with maximal ideal m and
residue field k = R/m. Let C be the category whose objects are the noetherian local faith-
fully flat R-algebras S such that S⊗R R/m is a field. The morphisms of C are R-algebra
homomorphisms. Let D be the category whose objects are field extensions of k and whose
morphisms are k-algebra homomorphisms. Then the functor ()⊗R k : C→D is essentially
surjective.

PROOF. This is a restatement of Theorem 11.5.7. □

COROLLARY 11.5.9. Let R be a noetherian local ring with maximal ideal m and
residue field k = R/m. Let K/k be a finite dimensional extension of fields. Then there
exists a noetherian local ring S and a local homomorphism of local rings θ : R→ S such
that S/mS = K and S is a finitely generated faithfully flat R-module.

PROOF. In Step 3 of the proof of Theorem 11.5.7, the index set I can be taken to be
finite. For the induction step, Step 2 is applied to get the ring Sδ , hence Sδ is a finitely
generated free R-module. □

COROLLARY 11.5.10. Let R be a local ring with maximal ideal m and residue field
k = R/m. Let K/k be an extension of fields. Then there exists a local ring S and a local
homomorphism of local rings θ : R→ S such that S/mS = K and S is a faithfully flat
R-algebra.

PROOF. Notice that in Steps 1 and 2 of Theorem 11.5.7 the hypothesis that R is noe-
therian was only used to prove that S is noetherian. In Step 3 the hypothesis that each Sξ is
noetherian was only used when Corollary 10.5.4 was applied to prove that the direct limit
is noetherian. □

5.3. Ramified Radical Extensions. As another application of Theorem 11.5.1, we
study the important class of finite extensions of commutative rings defined by adjoining an
nth root of an element. Let R be a commutative ring, n≥ 2, a ∈ R, and set S = R[x]/(xn−
a). We say S/R is a radical extension of degree n. In this section, the emphasis is on
radical extensions which are not separable over R. Such an extension is also said to be a
ramified extension. Our goal is to derive necessary and sufficient conditions on n and a
such that if R is a noetherian normal integral domain, then so is S. Necessary conditions
are provided by Lemma 11.5.12 (2). Sufficient conditions are stated in Lemma 11.5.13
and Theorem 11.5.14. For reference, we state sufficient conditions for S to be a separable
R-algebra. The results of this section are based on [19, Section 9.4].

LEMMA 11.5.11. Let R be a commutative ring, n≥ 2, and a ∈ R. Then the following
are true for the radical extension S = R[x]/(xn−a).

(1) S is an R-algebra which is a finitely generated free R-module of rank n with basis
1,x, . . . ,xn−1.

(2) S is separable over R if and only if a and n are both invertible in R.
(3) Let θ : R→ S be the structure homomorphism. Then θ ♯ : SpecS→ SpecR is onto

and the closed set V (x) ⊆ SpecS is mapped homeomorphically onto the closed
set V (a)⊆ SpecR.

(4) If Q ∈ SpecS and P = Q∩R, then
(a) ht(Q) = ht(P),
(b) dim(SQ/PSQ) = 0, and
(c) depth(SQ) = depth(RP).

(5) For i≥ 1, S satisfies property (Si) of Definition 11.4.5 if and only if R does.
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PROOF. (1) and (2): These follow from Example 1.6.10 (2) and Exercise 5.6.21, re-
spectively.

(3): By (1), S is faithfully flat and integral over R. By Lemma 3.5.4, θ ♯ is onto. Let
η : S→ S/(x) be the natural map. Then ηθ(a) = 0, so there is a commutative diagram

R θ //

��

S = R[x]/(xn−a)

η

��
R/(a) θ̄ // S/(x)

and the reader should verify that θ̄ is an isomorphism. By Exercise 3.3.21, there is a
commutative diagram

V (x) θ̄ ♯
//

⊆
��

V (a)

⊆
��

SpecS θ ♯
// SpecR

and θ̄ ♯ is a homeomorphism.
(4) and (5): Part (4) follows from Theorems 6.3.5, 9.6.22, and Corollary 11.5.2.

Part (5) follows from Part (4). □

LEMMA 11.5.12. Let R be a commutative ring and a an element of R that is not a
zero divisor. If n ≥ 2 and e ≥ 1, then the following are true for the radical extension
S = R[x]/(xn−ae).

(1) a and x are not zero divisors in S.
(2) If a is not a unit in R and e≥ 2, then S is not integrally closed in Q(S), the total

ring of quotients of S.

PROOF. (1): Since S is a free R-module (Lemma 11.5.11), a is not a zero divisor of
S. Suppose a0, . . . ,an−1 are elements of R and (a0 + a1x+ · · ·+ an−1xn−1)x = 0. Then
a0x+a1x2 + · · ·+an−2xn−1 +an−1a = 0 implies 0 = a0 = · · ·= an−1. Therefore, x is not a
zero divisor in S.

(2): Let w = ax−1 and v = xa−1, which are elements of Q(S). If n ≥ e, then wn =
an(xn)−1 = an−e ∈ S. Therefore, w is integral over S. For contradiction’s sake, assume
w ∈ S. Then there are elements ai of R such that a0 +a1x+ · · ·+an−1xn−1 = ax−1. Then
a0x+a1x2+ · · ·+an−2xn−1+an−1xn = a, which implies 0= a0 = · · ·= an−2, and an−1ae =
a. This is a contradiction, since a is not a zero divisor and not invertible. If n < e, then a
similar argument shows v is integral over S, and v ̸∈ S. □

Now we derive sufficient conditions for a radical extension of a noetherian normal
integral domain R to be a noetherian normal integral domain. Let a be a nonzero element
of R and assume the divisor of a is

Div(a) = n1P1 + · · ·+nvPv

(Definition 11.4.11). If P1, . . . ,Pv are distinct height one primes in X1(R) and n1 = n2 =
· · ·= nv = 1, then we say that Div(a) is a reduced effective divisor.

LEMMA 11.5.13. Let R be a DVR with maximal ideal m= (π). Let S = R[x]/(xn−π),
where n≥ 2. Then S is a DVR with maximal ideal M = (x).
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PROOF. Since R is a UFD, so is R[x]. By Eisenstein’s Criterion, xn−π is irreducible in
R[x]. Therefore, S is an integral domain. By the Hilbert Basis Theorem (Theorem 6.2.1),
S is noetherian. Since S/(x) = R/(π) is a field, M = (x) is a maximal ideal in S. By
Theorem 6.3.6 (4) every maximal ideal of S contains π . Since xn = π , this implies M is the
unique maximal ideal, so S is a local ring. By Krull’s Hauptidealsatz (Corollary 9.6.12 (2)),
ht(M) = 1. Therefore, dim(S) = 1 and by Theorem 11.2.11, S is a DVR. □

THEOREM 11.5.14. Let R be a noetherian normal integral domain with quotient field
K. Let a be a nonzero element of R and assume Div(a) is a reduced effective divisor and
n≥ 2 is invertible in R. If S = R[x]/(xn−a) and L = K[x]/(xn−a), then the following are
true.

(1) L is a field.
(2) S is a noetherian integral domain.
(3) L is the quotient field of S.
(4) Let Q∈ SpecS, P = Q∩R, and assume that a ̸∈ P. Then RP is regular if and only

if SQ is regular.
(5) S is a noetherian normal integral domain.
(6) S is the integral closure of R in L.

PROOF. (1): By Section 11.4.1, for each P ∈ X1(R), RP is a DVR with valuation νP.
Let Div(a) = P1 + · · ·+Pv, where P1, . . . ,Pv are the distinct minimal primes of a in X1(R).
For each i, νPi(a) = 1, so a is a local parameter for RPi . By Lemma 11.5.13, xn− a is
irreducible in RPi [x]. By Gauss’ Lemma (Lemma 6.1.10), xn− a is irreducible in K[x],
which implies L is a field.

(2): By Lemma 11.5.11, S is a free R-module of rank n and 1,x, . . . ,xn−1 is a basis.
The natural mapping S = S⊗R R→ S⊗R K = L is one-to-one since S is a flat R-module.
Hence S is a subring of L and consequently an integral domain. By Theorem 6.2.1, S is
noetherian.

(3): Let Q(S) denote the quotient field of S. By Theorem 3.1.6, there is a homo-
morphism Q(S)→ L which is onto since the natural mapping S→ L is a localization of
S.

(4): Since a ̸∈ P, the image of a in k(P) is invertible. By Lemma 11.5.11, S⊗R RP
is separable over RP. By Exercise 5.4.9, SQ is separable over RP. By Exercise 5.5.15, if
k(P) is the residue field of RP, then SQ⊗R k(P) is a separable field extension of k(P). By
Theorem 11.5.4, RP is regular if and only if SQ is regular.

(5): We apply the Serre Criteria, Theorem 11.4.8. By Lemma 11.5.11 (5) it suffices
to show S has property (R1). Let Q ∈ SpecS. Assume ht(Q) = 1 and set P = Q∩R. By
Part (4) we can assume a ∈ P. By Lemma 11.5.11 (3), the prime ideals of S containing x
correspond bijectively with the prime ideals of R containing a. Under this correspondence,
a prime ideal Q ∈ SpecS corresponds to P = Q∩R. A prime ideal P ∈ SpecR corresponds
to Q = PS+(x). The prime ideals of height one in R that contain a are P1, . . . ,Pv. For
1 ≤ i ≤ v, the height one prime of S lying over Pi is Qi = PiS + (x). We have SQi =
S⊗R RPi = RPi [x]/(x

n−1). Since a is a local parameter for RPi , Lemma 11.5.13 shows that
SQi is a DVR with local parameter x. We have shown that S is regular in codimension one.

(6): S is integral over R and S is integrally closed in L. □

For more results related to ramified radical extensions, see Corollaries 12.5.11 and
12.5.16, and Example 11.6.6.
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6. Tests for Regularity

In this section, all rings are commutative. Suppose R is a local ring with maximal
ideal m and residue field k = R/m. If R is noetherian and has Krull dimension dim(R) = d,
then R is regular if and only if m = Rx1 + · · ·+Rxd for a regular system of parameters
x1, . . . ,xd . By Exercise 9.6.17, R is a regular local ring if and only if dimk(m/m2) = d. In
two important cases, we derive sets of necessary and sufficient conditions such that R is a
regular local ring. In both cases, R is a localization of a finitely generated algebra over a
field. The first criterion for regularity is based on the module of Kähler differentials, the
second is in terms of the jacobian matrix associated to a set of generators and relations for
R. A general reference for this section is [29, Sections I.5 and II.8].

6.1. A Differential Criterion for Regularity. As above, let R be a local ring with
maximal ideal m. A coefficient field of R is a subfield k of R which is mapped onto R/m
under the natural map R→ R/m. In this case, R is a k-algebra, and k→ R/m is a k-algebra
isomorphism. The reader should verify that if k is a coefficient field of R, then every x ∈ R
has a unique representation in the form x = y+ z, where y ∈ k and z ∈m.

PROPOSITION 11.6.1. Let R be a local ring with maximal ideal m and assume R
contains a coefficient field k. Then the k-linear map

m/m2 γ−→ΩR/k⊗R k

of Theorem 10.2.4 is an isomorphism.

PROOF. The cokernel of γ is Ωk/k which is 0, so γ is onto. To show γ is one-to-one, it
is enough to apply the exact functor Homk(·,k) and show that

Homk(ΩR/k⊗R k,k)
Hγ−→ Homk(m/m2,k)

is onto. As in the proof of Theorem 10.2.4, the map Hγ is isomorphic to

Derk(R,k)
ρ−→ HomR(m,k)

where ρ is defined by ∂ 7→ ∂ |m. It suffices to show ρ is onto. Let h ∈ HomR(m,k). Given
x ∈ R, write x = y+ z, where y ∈ k and z ∈ m. This representation is unique. Define
∂ : R→ k by ∂ (x) = h(z). It is easy to see that ∂ is a well defined function that extends h,
and ∂ (k) = 0. The reader should verify that ∂ is a k-derivation on R. □

THEOREM 11.6.2. Let R be a local ring with maximal ideal m and assume R contains
a coefficient field k which is a perfect field. Assume R is a localization of a finitely generated
k-algebra. The following are equivalent.

(1) R is regular.
(2) ΩR/k is a free R-module of rank d = dim(R).

PROOF. By Theorem 6.2.1 and Corollary 4.1.13, R is noetherian. By Theorem 10.3.1
and Lemma 9.6.2, R is of finite Krull dimension.

(2) implies (1): By Proposition 11.6.1, dimk(m/m2) = d and R is regular.
(1) implies (2): Assume dimk(m/m2) = d. By Proposition 11.6.1, it follows that

dimk(ΩR/k⊗R k) = d. By Corollary 11.1.9, R is a normal integral domain. Let K be the
quotient field of R. By Exercise 10.2.12, ΩR/k ⊗R K = ΩK/k. By Theorem 10.3.9 and
Theorem 10.3.6, dimK(ΩK/k) = tr.degk(K). By Noether’s Normalization Lemma (Corol-
lary 10.3.3), d = tr.degk(K). By Proposition 10.2.2 and Exercise 10.2.12, ΩR/k is a finitely
generated R-module. By Corollary 3.6.3, ΩR/k is a free R-module of rank d. □
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COROLLARY 11.6.3. Let k be an algebraically closed field and R an integral domain
that is a finitely generated k-algebra. Let n = dim(R). The following are equivalent.

(1) R is regular.
(2) Rm is a regular local ring for every m ∈MaxR.
(3) ΩRm/k is a free Rm-module of rank n for every m ∈MaxR.
(4) ΩR/k is a finitely generated projective R-module of rank n.

PROOF. By Theorem 6.2.1, R is noetherian. By Proposition 10.2.2, ΩR/k is a finitely
generated R-module. By Exercise 10.2.12, ΩRm/k = ΩR/k⊗R Rm. (1) and (2) are equiv-
alent by Exercise 11.3.42. (2) and (3) are equivalent by Theorem 11.6.2. (3) and (4) are
equivalent, by Proposition 3.6.2. □

COROLLARY 11.6.4. Let k be an algebraically closed field and R an integral domain
that is a finitely generated k-algebra. If

RegR = {p ∈ SpecR | Rp is a regular local ring}
is the subset of SpecR consisting of all prime ideals p for which the local ring Rp is regular,
then

(1) RegR∩MaxR ̸= /0, and
(2) for every m ∈ RegR∩MaxR, there exists an open dense U ⊆ SpecR such that

m ∈U ⊆ RegR.

PROOF. Let K be the quotient field of R. By Theorem 10.3.9, K is separably generated
over k. By Corollary 10.3.3, if n = dimR, then n = tr.degk(K). By Theorem 10.3.6,
dimK ΩK/k = n. By Exercise 10.2.12, ΩK/k = ΩR/k⊗R K. By Proposition 10.2.2, ΩR/k is
a finitely generated R-module and by Lemma 3.1.14, there exists α ∈ R− (0) such that
ΩR/k⊗R Rα is a free Rα -module. By Corollary 11.6.3, Rα is regular and the basic open
set U(α) is a subset of RegR. It follows from Hilbert’s Nullstellensatz that the Jacobson
radical of R is (0) (see Corollary 6.2.16). Consequently, there exists m ∈MaxR such that
α is not in m. Thus m ∈U(α)∩MaxR, which proves (1).

To prove (2), let m be a maximal ideal of R and assume Rm is a regular local ring.
Then ΩRm/k = ΩR/k⊗R Rm is free of rank n, by Theorem 11.6.2. By Lemma 3.1.14, there
exists β ∈ R−m such that ΩR/k⊗R Rβ is a free Rβ -module. By Corollary 11.6.3, Rβ is
regular and the basic open set U(β ) is a subset of RegR. The open set U(β ) is dense in
SpecR since it contains the generic point (0). □

6.2. A Jacobian Criterion for Regularity. Throughout this section, k is an alge-
braically closed field, and all rings are commutative. From a utilitarian point of view, the
jacobian criterion of Theorem 11.6.5 is one of the most useful and powerful methods for
showing that a finitely generated k-algebra R is regular.

First we review some terminology and notation from Section 6.2.2. Affine n-space
over k is denoted An

k and is equal to the set {(a1, . . . ,an) | ai ∈ k}. For any subset Y ⊆ An
k ,

the ideal of Y in A = k[x1, . . . ,xn] is defined by

I(Y ) = { f ∈ A | f (P) = 0, for all P ∈ Y}.
If T ⊆ A is a set of polynomials, then the set of zeros of T

Z(T ) = {P ∈ An
k | f (P) = 0, for all f ∈ T}

is an affine algebraic set. By Hilbert’s Nullstellensatz (Corollary 6.2.11), there is a one-to-
one correspondence between the algebraic sets in An

k and the radical ideals in A defined by
the assignments Y 7→ I(Y ) and I 7→ Z(I).



6. TESTS FOR REGULARITY 479

If Y ⊆ An
k is a affine algebraic set, then the affine coordinate ring of Y is O(Y ) =

A/I(Y ). Now assume I is a radical ideal in A, and Y = Z(I) is the associated affine algebraic
set. Then I = I(Y ) and O(Y ) = A/I. By Hilbert’s Nullstellensatz (see Example 6.2.15),
the maximal ideals in O(Y ) = A/I are in one-to-one correspondence with the points P∈Y .
A point P = (a1, . . . ,an) ∈ Y , corresponds to the maximal ideal m in O(Y ) generated by
x1− a1, . . . ,xn− an. The localization of O(Y ) at the maximal ideal m is called the local
ring at P on Y and is denoted OP,Y . Theorem 11.6.5 is a jacobian criterion for OP,Y to be a
regular local ring.

THEOREM 11.6.5. Let k be an algebraically closed field, Y ⊆ An
k an affine algebraic

set and f1, . . . , ft a set of generators for I(Y ). Let P ∈ Y and assume the Krull dimension
of the local ring OP,Y is r. Then the jacobian matrix

J =

(
∂ fi

∂x j
(P)
)

has rank n− r if and only if OP,Y is a regular local ring.

PROOF. Let A = k[x1, . . . ,xn], I = I(Y ) = ( f1, . . . ,xt), and R = O(Y ) = A/I. Let p
denote the maximal ideal of R corresponding to the point P ∈ Y . Then OP,Y = Rp. Let
m = pRp be the maximal ideal of Rp. Since k is algebraically closed, the residue field
Rp/m is equal to k. Start with the exact sequence

I/I2 γ−→ΩA/k⊗A R a−→ΩR/k→ 0

of Theorem 10.2.4. Tensoring with the residue field, ()⊗R k, the sequence

I/I2⊗R k
γ−→ΩA/k⊗A k a−→ΩRp/k⊗Rp k→ 0

is exact. As in the proof of Proposition 10.2.7, the image of γ is the column space of
the jacobian matrix J and ΩA/k⊗A k ∼= k(n). From the exact sequence, the dimension of
ΩR/k⊗R k over k is equal to n−Rank(J). By Proposition 11.6.1, m/m2 ∼= ΩRp/k⊗Rp k.
Therefore, Rp is a regular local ring if and only if Rank(J) = n− r. □

EXAMPLE 11.6.6. In the above context, let F = Z( f ) be an algebraic set in An
k defined

by a square free polynomial f in A = k[x1, . . . ,xn]. Using Corollaries 9.6.12 and 10.3.4 we
see that dim(O(F)) = n− 1. Let d ≥ 2 be an integer that is invertible in k. Consider the
algebraic set Y = Z(zd− f ) in An+1

k . The affine coordinate ring of Y , O(Y ) =A[z]/(zd− f ),
is a ramified radical extension of A. We are in the context of Theorem 11.5.14. Then Y
is irreducible, O(Y ) is a normal integral domain, the quotient field of O(Y ) is a finite
algebraic extension of k(x1, . . . ,xn), and the Krull dimension of O(Y ) is equal to n. If
π : An+1

k → An
k is the projection along the z-axis defined by (a1, . . . ,an,b) 7→ (a1, . . . ,an),

then π−1(F) is the algebraic subset of Y equal to Y ∩ Z(z). Let Sing(Y ) denote the set
of points in Y where the local ring OP,Y is not a regular local ring. The set Sing(Y ) is
called the singular locus of Y . For any point Q ∈ Y such that π(Q) is not in F , it follows
from Theorem 11.5.14 (4) that OQ,Y is a regular local ring. This implies Sing(Y )⊆ π−1(F).
Applying Theorem 11.6.5, we can say more. The jacobian of zd− f is

(
fx1 , . . . , fxn ,dzd−1

)
.

From Theorem 11.6.5, we see at once that P ∈ Sing(Y ) if and only if P = (a1, . . . ,an,0)
and π(P) = (a1, . . . ,an) is in Sing(F). In other words, the singular locus of Y corresponds
under π to the singular locus of F . By Exercise 11.3.42, O(Y ) is a regular integral domain
if and only if O(F) is a regular ring.
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EXAMPLE 11.6.7. Although the field in Theorem 11.6.5 is required to be algebraically
closed, it is sometimes possible to work around this obstacle. In this paragraph, one
such method is presented. Let k be a field and in this example do not assume k is alge-
braically closed. Let k̄ be an algebraic closure of k. Let I be an ideal in k[x1, . . . ,xn] and
T = k[x1, . . . ,xn]/I. If T̄ = T ⊗k k̄, then the natural map T → T̄ is faithfully flat (Exer-
cise 3.5.18). By Exercise 11.3.41, if T̄ is regular, then T is regular. By Exercise 6.1.17 (2),
if T̄ is an integrally closed integral domain, then T is an integrally closed integral domain.
By Exercise 6.1.17 (3), if T̄ is a normal ring, then T is a normal ring.

COROLLARY 11.6.8. Let k be an algebraically closed field and Y an irreducible al-
gebraic subset of An

k . Then the singular locus of Y , Sing(Y ), is a proper closed subset of
Y .

PROOF. As in Example 11.6.6, Sing(Y ) consists of those points P in Y such that OP,Y
is not a regular local ring. There is a one-to-one correspondence between the points P
in Y and the maximal ideals m in MaxO(Y ) (Example 6.2.15). The finitely generated k-
algebra O(Y ) is an integral domain since Y is irreducible. Therefore, this follows from
Corollary 11.6.4. □



CHAPTER 12

Divisor Class Groups

This subject of this chapter is ideal theory, in the classical sense. Let R be an integral
domain with field of fractions K and V a finite dimensional K-vector space. Throughout
this chapter, for sake of completeness and also for brevity, we will frequently assume the
ring R is noetherian or integrally closed, or both. The chapter begins with a section on
R-lattices. An R-lattice is an R-submodule M of V such that M contains a generating set
for V as a K-vector space, and M is a submodule of a finitely generated R-submodule of V .
When dimK(V ) = 1, we assume V = K. In this case, an R-lattice is called a fractional ideal
of R in K. Since any nonzero ideal I of R is a fractional ideal of R in K, this generalizes
the usual notion of ideal. In Definition 3.6.6 we defined Pic(R), the Picard group of R.
In Section 12.2 we construct the Picard group in terms of fractional ideals of R in K that
are projective R-modules. Dedekind domains are the subject of Section 12.3. These are
noetherian integrally closed integral domains with Krull dimension one. We show that for a
Dedekind domain R, the set of all fractional ideals is an abelian group under multiplication.
In Definition 11.4.11, we defined Cl(R), the class group of a noetherian integrally closed
integral domain R, in terms of Weil divisors. In Section 12.4, we construct the class group
in terms of those fractional ideals of R that are reflexive R-modules. In Section 12.5 some
important functorial properties of the class group are derived. Section 12.6 contains some
fundamental results on lattices over noetherian regular integral domains. For instance,
we show that for such a ring R, the groups Pic(R) and Cl(R) are equal. There is a short
section, Section 12.7, on the class group of a graded noetherian integrally closed integral
domain. As an application of the results in the previous sections, Section 12.8 contains
an introduction to classical Algebraic Number Theory. If R is the ring of integers in a
global field, we prove that the class group of R is finite. We also prove the first half of the
Dirichlet Units Theorem which says that if R is the integral closure of Z in a finite algebraic
extension of Q, then the group of units in R is a finitely generated abelian group.

1. Lattices

Let R be an integral domain with field of fractions K. If V is a finite dimensional
K-vector space, and M is an R-submodule of V , then the K-subspace of V spanned by M is
denoted KM. Notice that KM is finite dimensional over K, but M is not necessarily finitely
generated as an R-module. If M is any finitely generated torsion free R-module, the natural
mapping R⊗R M→ K⊗R M is one-to-one (Lemma 3.1.4). In this case we can identify M
with the R-submodule 1⊗M of K⊗R M. In this case, we write KM instead of K⊗R M.
The primary sources for the material in this section are [22] and [13].

1.1. Definition and First Properties. Let R be an integral domain with field of frac-
tions K and V a finite dimensional K-vector space. The definition of an R-lattice in V
follows Proposition 12.1.1. If M is an R-submodule of V , then the proposition establishes
five equivalent conditions, any one of which can be taken as the definition for an R-lattice

481
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in V . Of the five, the one with a particularly straightforward interpretation is Property (1).
It states that to be an R-lattice it is necessary and sufficient that M has two key properties.
The first is that M contains a spanning set for V as a K-vector space and the second is
that M is either finitely generated as an R-module, or is contained in a finitely generated
R-submodule of V .

PROPOSITION 12.1.1. Let R be an integral domain with field of fractions K and V a
finite dimensional K-vector space. The following are equivalent for an R-submodule M of
V .

(1) There is a finitely generated R-submodule N of V such that M⊆N, and KM =V ,
where KM denotes the K-subspace of V spanned by M.

(2) There is a free R-submodule F in V with RankR(F) = dimK(V ) and a nonzero
element r ∈ R such that rF ⊆M ⊆ F.

(3) There are free R-submodules F1,F2 in V with F1 ⊆ M ⊆ F2 and RankR(F1) =
RankR(F2) = dimK(V ).

(4) There is a chain of R-submodules L ⊆ M ⊆ N where KL = V and N is finitely
generated.

(5) Given any free R-submodule F of V with RankR(F)= dimK(V ), there are nonzero
elements r,s ∈ R such that rF ⊆M ⊆ s−1F.

PROOF. Assume dimK(V ) = n. We prove that (4) implies (5). The rest is left to the
reader. Assume we are given F = Ru1⊕ ·· · ⊕Run a free R-submodule of V . Also, let
L⊆M ⊆ N, where KL =V and N is a finitely generated R-submodule of V . Since KL =V
we can pick a K-basis for V in L, say {λ1, . . . ,λn} (Theorem 1.6.13). For each j there are
k j,i ∈ K such that u j = ∑

n
i=1 k j,iλi. Pick a nonzero r ∈ R such that rk j,i ∈ R for all pairs

j, i. Then ru j = ∑
n
i=1 rk j,iλi ∈ ∑i Rλi ⊆ L, hence rF = ∑ j Rru j ⊆ L ⊆ M. Let ν1, . . . ,νt

be a generating set for N. For each j there are κ j,i ∈ K such that ν j = ∑
n
i=1 κ j,iui. Pick a

nonzero s ∈ R such that sκ j,i ∈ R for all pairs j, i. Then sν j = ∑
n
i=1 sκ j,iui ∈ ∑

n
i=1 Rui = F .

Therefore, M ⊆ N = ∑
t
j=1 Rν j ⊆ s−1F . □

DEFINITION 12.1.2. Let R be an integral domain, K the field of fractions of R, and
V a finite dimensional K-vector space. An R-submodule M of V that satisfies any of the
equivalent conditions of Proposition 12.1.1 is said to be an R-lattice in V . The rank of an
R-lattice M in V is defined to be dimK V .

EXAMPLE 12.1.3. Let R be an integral domain with field of fractions K.
(1) If M is a finitely generated R-module, then the image of M→K⊗R M is a finitely

generated R-lattice.
(2) Let R be a noetherian integral domain and M and N finitely generated R-modules

such that N is torsion free. Then HomR(M,N) is a finitely generated torsion
free R-module (Exercises 4.1.25 and 9.2.26). By Proposition 3.5.8, HomR(M,N)
embeds as an R-lattice in K⊗R HomR(M,N) = HomK(K⊗R M,KN). This is a
special case of Proposition 12.1.6 (3).

(3) Assume R is integrally closed in K, L/K is a finite separable field extension, and
S is the integral closure of R in L. By Theorem 6.1.13, S is an R-lattice in L.

PROPOSITION 12.1.4. Let R be an integral domain with field of fractions K. Let V be
a finite dimensional K-vector space and M an R-lattice in V .

(1) If R is noetherian, then M is a finitely presented R-module.
(2) If R is a principal ideal domain, then M is a finitely generated free R-module and

RankR(M) = dimK(V ).
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PROOF. (1): Apply Proposition 12.1.1 and Corollary 4.1.12.
(2): Apply (1) and Theorem 1.7.14. By Theorem 2.3.23, an R-basis for M is also a

K-basis for V , so the rank of M is equal to the dimension of V . □

PROPOSITION 12.1.5. Let R be an integral domain and K the field of fractions of R.
In the following, U, V , V1, . . . ,Vr, W denote finite dimensional K-vector spaces.

(1) If M and N are R-lattices in V , then M+N and M∩N are R-lattices in V .
(2) If U is a K-subspace of V , and M is an R-lattice in V , then M∩U is an R-lattice

in U.
(3) Let M1, . . . ,Mm be R-lattices in V1, . . . ,Vm respectively. If φ : V1×·· ·×Vm→U

is a multilinear form, then the R-module generated by φ(M1× ·· ·×Mm) is an
R-lattice in the subspace spanned by φ(V1×·· ·×Vm).

(4) Let L/K be an extension of fields. Let S be an R-subalgebra of L such that
L is the field of fractions of S. If M is an R-lattice in V , then the image of
S⊗R M→ L⊗K V is an S-lattice in L⊗K V .

PROOF. (1): We apply Proposition 12.1.1 (5). Let F be a free R-submodule of V with
rank n = dimK(V ). There exist nonzero elements a,b,c,d in R such that aF ⊆M, bF ⊆ N,
M ⊆ c−1F , N ⊆ d−1F . Then (ab)F ⊆M∩N ⊆M+N ⊆ (cd)−1F .

(2): Start with a K-basis, say u1, . . . ,um, for U . Extend to a K-basis u1, . . . ,um, . . . ,ur
for V . Let E = Ru1⊕·· ·⊕Rum and F = Ru1⊕·· ·⊕Run. Then E = F ∩U . Also, for any
α ∈ K, (αF)∩U = (∑n

i=1 Rαui)∩U = ∑
m
i=1 Rαui = αE. We apply Proposition 12.1.1 (5).

Let r,s be nonzero elements in R such that rF ⊆M ⊆ s−1F . Then rE ⊆M∩U ⊆ s−1E.
(3): For each j, M j contains a K-spanning set for Vj. From this is follows that φ(M1×

·· ·×Mm) contains a spanning set for the subspace of U spanned by φ(V1×·· ·×Vm). For
each j, let N j be a finitely generated R-submodule of Vj containing M j. Then φ(N1×·· ·×
Nm) is contained in a finitely generated R-submodule of U .

(4): Since K ⊗R M = K ⊗R V = V , we have L⊗S S⊗R M = L⊗K K ⊗R M = L⊗K
V . If M ⊆ N ⊆ V with N a finitely generated R-module, then the diagram of S-module
homomorphisms

S⊗R M //

%%

L⊗K V

S⊗R N

99

commutes. Therefore, the image of S⊗R M in L⊗K V is contained in the image of S⊗R N
which is a finitely generated S-module. □

PROPOSITION 12.1.6. Let R be an integral domain and K the field of fractions of R.
Let V and W be finite dimensional K-vector spaces. In the following, M0,M1,M denote
R-lattices in V and N0,N1,N denote R-lattices in W. Using the module quotient notation,
N : M is defined to be

N : M = { f ∈ HomK(V,W ) | f (M)⊆ N}.

Then

(1) If M0 ⊆M1, and N0 ⊆ N1, then N0 : M1 ⊆ N1 : M0.
(2) The restriction mapping ρ : (N : M)→ HomR(M,N) is an isomorphism of R-

modules.
(3) N : M is an R-lattice in HomK(V,W ).
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(4) Let Z ⊆ R−{0} be a multiplicative set and Z−1R the localization of R in K. Then
Z−1(N : M) = Z−1N : Z−1M.

PROOF. (1): Is left to the reader.
(2): The reader should verify that restriction defines an R-module homomorphism

ρ : (N : M)→HomR(M,N). Because M contains a K-basis for V , ρ is one-to-one. Because
M and N are torsion free R-modules, the maps M→K⊗R M =KM and N→K⊗R N =KN
are one-to-one. If θ ∈ HomR(M,N), then the diagram

M

��

θ // N

��
K⊗R M =V

1⊗θ // K⊗R N =W

commutes. Therefore, 1⊗θ : V →W is an extension of θ and belongs to N : M. In other
words, θ is in the image of ρ .

(3): Let E0 ⊆ M ⊆ E1 be R-lattices in V with E0 and E1 free. Let F0 ⊆ N ⊆ F1 be
R-lattices in W with F0 and F1 free. By (1), F0 : E1 ⊆ N : M ⊆ F1 : E0. By Proposi-
tion 12.1.1 (4), it suffices to prove (4) when M and N are free R-lattices. In this case,
HomR(M,N) is free over R and HomR(M,N)→ K ⊗R HomR(M,N) is one-to-one. By
Corollary 2.4.13, the assignment θ 7→ 1⊗ θ embeds HomR(M,N) as an R-submodule of
HomK(KM,KN) = HomK(V,W ). By (2), the image of HomR(M,N) under this embedding
is equal to N : M. This proves N : M is an R-lattice in HomK(V,W ), when M and N are free
R-lattices.

(4): If f ∈ (N : M) and z∈Z, then f (z−1x)= z−1 f (x)∈ z−1N for all x∈M. Conversely,
suppose f ∈ Z−1N : Z−1M. Let y1, . . . ,yn be a generating set for M. There exists z∈ Z such
that f (xi) ∈ z−1N for 1≤ i≤ n. Therefore, z f ∈ N : M. □

1.2. Reflexive Lattices. Most of the material in this section appears in [19, Sec-
tion 6.3.2]. In the context of Proposition 12.1.6, we identify R : M with the dual module
M∗ = HomR(M,R). By Exercise 2.4.20 the assignment m 7→ ϕm is an R-module homomor-
phism M→M∗∗ = R : (R : M), where ϕm is the “evaluation at m” homomorphism. That is,
ϕm( f ) = f (m). The diagram

M

��

// M∗∗ = R : (R : M)

��
V // V ∗∗

(1.1)

commutes and the bottom horizontal arrow is an isomorphism (Exercise 2.4.21). Since
the vertical maps are one-to-one, the top horizontal arrow is one-to-one. We say M is
a reflexive R-lattice in case M → R : (R : M) is onto. For instance, a finitely generated
projective R-lattice is reflexive (Exercise 2.4.21). If M is an R-lattice, then Lemma 12.1.7
shows that R : M, the dual of M, is reflexive.

LEMMA 12.1.7. Let R be an integral domain with field of fractions K. Let V be a finite
dimensional K-vector space and M an R-lattice in V . Then R : M = R : (R : (R : M)), or
equivalently, R : M is a reflexive R-lattice in V ∗.

PROOF. By Proposition 12.1.6 (1) applied to M ⊆ R : (R : M), we get the set inclusion
R : M ⊇ R : (R : (R : M)). The reverse inclusion follows from the commutative diagram
(1.1). □
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PROPOSITION 12.1.8. Let R be an integral domain with field of fractions K. Let V be
a finite dimensional K-vector space and M an R-lattice in V . Let M ⊆ F ⊆ V , where F is
a free R-lattice (Proposition 12.1.1). Then M is a reflexive R-lattice if and only if

M =
⋂

α∈(R:M)

(
α
−1(R)∩F

)
.

PROOF. It suffices to prove

(1.2) R : (R : M) =
⋂

α∈(R:M)

(
α
−1(R)∩F

)
.

Let v ∈V and assume v is in the right hand side of (1.2). Then v ∈ R : (R : M) if and only if
α(v)∈ R, for all α ∈ R : M. Notice that if α ∈ R : M, then α ∈ R : (α−1(R)∩F). Therefore,
α(v) ∈ R, which shows v ∈ R : (R : M).

For the reverse inclusion, let α ∈ R : M. Then α(M)⊆ R, hence M ⊆ α−1(R)∩F ⊆ F .
By Proposition 12.1.1 (4), this implies α−1(R)∩F is an R-lattice in V . Let v ∈ R : (R :
(α−1(R)∩F)). Under the identification V = V ∗∗, we identify v with a vector in V . As
mentioned above, α ∈ R : (α−1(R)∩F), α(v) ∈ R, hence v ∈ α−1(R). Since F is free,
F is reflexive (Exercise 2.4.21) and we see that R : (R : (α−1(R)∩F)) ⊆ R : (R : F) =
F . Combined, this shows R : (R : (α−1(R)∩F)) ⊆ α−1(R)∩F . That is, α−1(R)∩F is
reflexive. This shows R : (R : M)⊆ α−1(R)∩F for each α . In (1.2), the left hand side is a
subset of the right hand side. □

Let R be an integral domain with field of fractions K. Let U , V , W be finite dimensional
K-vector spaces. Let

HomK(V,W )⊗K U α−→ HomK(HomK(U,V ),W )

be the isomorphism of Lemma 2.4.11 which is defined by α( f ⊗a)(h) = f (h(a)). Let

HomK(U⊗K V,W )
φ−→ HomK(U,HomK(V,W ))

be the Adjoint Isomorphism (Theorem 2.4.10) which is defined by φ(θ)(u) = θ(u⊗·).

LEMMA 12.1.9. In the above context, let L, M, N be R-lattices in U, V , W respectively.

(1) Let (N : M)L denote the image of (N : M)⊗R L→ HomK(V,W )⊗K U. Then
α ((N : M)L)⊆ N : (M : L).

(2) Let LM denote the image of L⊗R M→U ⊗K V . Then φ (N : LM)⊆ (N : M) : L,
and φ−1 ((N : M) : L)⊆ N : LM.

PROOF. (1): Let f ∈ N : M, ℓ ∈ L, h ∈M : L. Then α( f ⊗ ℓ)(h) = f (h(ℓ)) ∈ N.
(2): Assume θ ∈ HomK(U ⊗K V,W ) and θ(LM) ⊆ N. For all m ∈ M and ℓ ∈ L,

φ(θ)(ℓ)(m) = θ(ℓ⊗m) ∈ N. Therefore, φ(θ)(L)⊆ N : M, hence φ(θ) ∈ (N : M) : L. For
the second part, suppose φ(θ)(ℓ) ∈ N : M for all ℓ ∈ L. Then φ(θ)(ℓ)(m) = θ(ℓ⊗m) ∈ N,
and θ ∈ N : LM. □

PROPOSITION 12.1.10. Let R be an integral domain with field of fractions K. Let N be
an R-lattice in the finite dimensional K-vector space W. Let M be a reflexive R-lattice in the
finite dimensional K-vector space V . Then M : N is a reflexive R-lattice in HomK(W,V ).

PROOF. In this context,

HomK(W,V )
α∗−→ HomK(W ⊗K V ∗,K)

φ−→ HomK(W,V )
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is the identity map. Under this identification, φ is the inverse of the dual of α . By
Lemma 12.1.9 (2),

φ(R : (R : M)N)⊆ (R : (R : M)) : N = M : N

where the last equality is because M is reflexive. By Lemma 12.1.9 (1),

α((R : M)N)⊆ R : (M : N)

taking duals,
R : (R : (M : N))⊆ R : α((R : M)N).

By the identification mentioned above, R : (R : (M : N))⊆M : N. □

THEOREM 12.1.11. Let R be a noetherian integrally closed integral domain with field
of fractions K. Let V be a finite dimensional K-vector space and M an R-lattice in V .

(1) If L is another R-lattice in V , then Lp = Mp for all but finitely many p ∈ X1(R).
(2) Suppose for each p ∈ X1(R) that N(p) is an Rp-lattice in V such that N(p) = Mp

for all but finitely many p ∈ X1(R). For N =
⋂

p∈X1(R) N(p), the following are
true.
(a) N is an R-lattice in V .
(b) Np = N(p) for all p ∈ X1(R).
(c) If N′ is an R-lattice in V such that N′p = N(p) for all p∈ X1(R), then N′ ⊆N.

PROOF. (1): Using Proposition 12.1.1, the reader should verify that there exist r,s∈ R
such that rM ⊆ L⊆ s−1M. Let p ∈ X1(R) such that νp(r) = νp(s) = 0. Then rM⊗R Rp =
s−1M⊗R Rp. By Corollary 11.4.4, this proves (1).

(2): For each p ∈ X1(R), Rp is a discrete valuation ring. By Proposition 12.1.4, N(p)
is a finitely generated free Rp-module.

(a): Let F be a free R-lattice in V . By (1), Mp = Fp for all but finitely many p ∈ X1(R).
Assume q1, . . . ,qt are those height one primes in X1(R) where Fq j ̸= N(q j). Let u1, . . . ,un

be a free R-basis for F . Let {v j,1, . . . ,v j,n} be a free Rq j -basis for N(q j). There are elements
κk, j,i in K such that uk = ∑

n
i=1 κk, j,iv j,i. For some r ∈ R− (0), ruk ∈ ∑

n
i=1 Rv j,i ⊆ N(q j) for

all k, j. For 1 ≤ j ≤ t this implies rF ⊆ N(q j). Also, if Fp = N(p), then rF ⊆ rFp =
rN(p)⊆ N(p). Therefore, rF ⊆ N =

⋂
p∈X1(R) N(p).

There are elements λk, j,i in K such that v j,i = ∑
n
k=1 λk, j,iuk. For some s ∈ R− (0),

sv j,i ∈ ∑
n
k=1 Ruk = F for all j, i. This implies sN(q j) ⊆ Fq j , hence N(q j) ⊆ (s−1F)q j for

all j. Also, if N(p) = Fp, then sN(p) ⊆ N(p) = Fp, hence N(p) ⊆ (s−1F)p. If necessary,
replace F with s−1F , and assume N(p) ⊆ Fp for all p ∈ X1(R). By taking direct sums
in Corollary 11.4.4 (4) we see that F =

⋂
p∈X1(R) Fp. Then N =

⋂
p∈X1(R) N(p) ⊆ F . By

Proposition 12.1.1, N is an R-lattice in V .
(b): By the last part of the proof of Part (a), N(p)⊆ Fp for all p ∈ X1(R) with equality

for all but finitely many p∈ X1(R). Assume p1, . . . ,pw are those height one primes in X1(R)
where Fpi ̸= N(pi). (Note: we do not assume this list is equal to q1, . . . ,qt .) Then

N =
⋂

p∈X1(R)

N(p)

= N(p1)∩·· ·∩N(pw)∩

 ⋂
p∈X1(R)

Fp


= N(p1)∩·· ·∩N(pw)∩F.
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It follows from the definition of localization that

Np = N(p1)p∩·· ·∩N(pw)p∩Fp.

If p is not one of p1, . . . ,pw, then by Lemma 12.1.12, N(p j)p = KN(p j) =V , for 1≤ j≤w.
In this case, Np = Fp = N(p). On the other hand, if i ̸= j, then N(pi)p j = KN(pi) = V .
Thus Np j = N(p j)p j ∩Fp j . But N(p j)p j = N(p j)⊆ Fp j , so Np j = N(p j) for 1≤ j ≤ w.

(c): Suppose N′ is an R-lattice in V such that N′p = N(p) for all p ∈ X1(R). Then
N′ ⊆

⋂
p∈X1(R) N′p =

⋂
p∈X1(R) N(p) = N. □

LEMMA 12.1.12. Let R be an integral domain with field of fractions K. Let p, q be
prime ideals in R with p ̸⊆ q. Assume Rp is a discrete valuation ring. Then

(1) (Rp)q = K.
(2) If M is an Rp-module, then Mq = M⊗R Rq = M⊗Rp K.

PROOF. Let a ∈ p− q. Then a ∈ pRp and a−1 ∈ Rq, so the only maximal ideal in
(Rp)q is the zero ideal. □

LEMMA 12.1.13. Let R be an integrally closed integral domain with field of frac-
tions K. Let V be a finite dimensional K-vector space and M an R-lattice in V . Then the
following are true.

(1) R : M =
⋂

p∈X1(R) Rp : Mp.
(2) For any p ∈ X1(R), (R : M)p = Rp : Mp.

PROOF. Let F ⊆M be a free R-lattice. For every p ∈ X1(R), the diagram

(R : M)p
α //

β

��

(R : F)p

γ

��
Rp : Mp

δ // Rp : Fp

commutes where β and γ are the natural maps induced by change of base. Since F is free,
γ is an isomorphism (Corollary 2.4.13). By Proposition 12.1.6 (1), α and δ are one-to-one.
We have

R : M ⊆
⋂

p∈X1(R)

(R : M)p ⊆
⋂

p∈X1(R)

Rp : Mp

where the intersection takes place in V ∗ = K : V . Let f ∈
⋂

p∈X1(R) Rp : Mp. Then for every
p ∈ X1(R), f (M) ⊆ f (Mp) ⊆ Rp. Then f (M) ⊆ R =

⋂
p∈X1(R) Rp, hence f ∈ R : M. This

proves (1). Part (2) follows from Theorem 12.1.11 (2) and Part (1). □

THEOREM 12.1.14. Let R be a noetherian integrally closed integral domain with field
of fractions K. Let V be a finite dimensional K-vector space and M an R-lattice in V . If we
set M̃ =

⋂
p∈X1(R) Mp, then the following are true.

(1) R : (R : M) = M̃.
(2) M is a reflexive R-lattice if and only if M = M̃.
(3) For each p ∈ X1(R), M̃p = Mp.
(4) M̃ is a reflexive R-lattice in V containing M.
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PROOF. (1): Each Mp is a free Rp-lattice, so by Lemma 12.1.13,

R : (R : M) =
⋂

p∈X1(R)

Rp : (R : M)p

=
⋂

p∈X1(R)

Rp : (Rp : Mp)

=
⋂

p∈X1(R)

Mp

= M̃.

The rest is left to the reader. □

COROLLARY 12.1.15. Let R be a noetherian integrally closed integral domain with
field of fractions K and let V be a finite dimensional K-vector space. Let M and N be two
R-lattices in V such that N is reflexive. In order for M ⊆ N it is necessary and sufficient
that Mp ⊆ Np for all p ∈ X1(R).

PROOF. If M ⊆ N, then Mp ⊆ Np for all p ∈ Spec(R). Conversely, we have

M ⊆ R : (R : M) =
⋂

p∈X1(R)

Mp ⊆
⋂

p∈X1(R)

Np = R : (R : N) = N.

□

The following proposition of Auslander and Goldman ([8]) will be applied in Sec-
tion 12.6.1.

PROPOSITION 12.1.16. Let R be a noetherian integrally closed integral domain. Let
M and N be finitely generated torsion free R-modules. Then there are R-module isomor-
phisms

HomR(M,N)∗∗ ∼= (N∗⊗R M)∗ ∼= HomR(M,N∗∗)∼= HomR(N∗,M∗)

where we write (·)∗ for the dual HomR(·,R). In particular,

HomR(M,M)∗∗ ∼= HomR(M∗,M∗)∼= HomR(M∗∗,M∗∗).

PROOF. The homomorphism

N∗⊗R M α−→ HomR(M,N)∗

of Lemma 2.4.11 is defined by α( f ⊗ x)(g) = f (g(x)). The dual of α is

HomR(M,N)∗∗
α∗−→ (N∗⊗R M)∗.

For each p ∈ X1(R), Rp is a DVR and Mp is a free Rp-module (Proposition 12.1.4). By
Proposition 3.5.8 and Lemma 2.4.11,

N∗⊗R M⊗R Rp
α⊗1−−→ HomR(M,N)∗⊗R Rp

is an isomorphism. Taking duals and applying the same argument,

HomR(M,N)∗∗⊗R Rp
α∗⊗1−−−→ (N∗⊗R M)∗⊗R Rp

is also an isomorphism. By Theorem 12.1.14, HomR(M,N)∗∗ is a reflexive R-lattice. With-
out explicitly doing so, we view all of the modules as lattices in suitable vector spaces over
the field of fractions of R. Applying Corollary 12.1.15, we see that α∗ is an isomorphism.
The second and third isomorphisms follow from the first and the Adjoint Isomorphisms
(Theorem 2.4.10).
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By the first part, HomR(M,M)∗∗ ∼= HomR(M∗,M∗). Then

HomR(M,M)∗∗ ∼= (HomR(M,M)∗∗)∗∗

∼= HomR(M∗,M∗)∗∗

∼= HomR(M∗∗,M∗∗).

□

1.2.1. A Local to Global Theorem for Reflexive Lattices. Constructing nontrivial ex-
amples of reflexive lattices of rank greater than or equal to two is generally a difficult task.
Theorem 12.1.17 provides a globalization method for constructing reflexive lattices from
locally defined projective lattices. A version of Theorem 12.1.17 for sheaves of modules
on a ringed space was proved by B. Auslander in [5, Theorem VI.5]. A partial converse is
[5, Theorem VI.6]. In the language of schemes, it says that if U is an open subset of SpecR
which contains X1(R), and M is a sheaf of OU -modules which is locally projective of finite
rank, then M comes from a finitely generated reflexive R-module N. For an application of
Theorem 12.1.17 to construct a locally trivial nontrivial Azumaya algebra, the interested
reader is referred to [19, Proposition 11.3.26].

Before stating Theorem 12.1.17 we establish some notation. Let R be a noetherian
integrally closed integral domain with quotient field K. Let f1, . . . , fn be a set of nonzero
elements of R. Let f0 = f1 · · · fn. Write Ri for the localization R fi , and Ui for the basic open
set U( fi) = SpecRi = {p ∈ SpecR | fi ̸∈ p}. Then U0 ⊆U1 ∩ ·· · ∩Un. Assume f1, . . . , fn
are chosen so that the open set U1∪·· ·∪Un contains X1(R). Let V be a finite dimensional
K-vector space. Suppose for each i that Mi is a locally free Ri-lattice in V such that for
each pair i, j we have Mi⊗Ri Ri j = M j⊗R j Ri j, where Ri j = R fi f j . Let p ∈ X1(R). If p is in
Ui, then (Mi)p is an Rp-lattice in V . Moreover, if p is in Ui∩U j, then (Mi)p = (M j)p. Let
L be a free R0-lattice in V which contains M1⊗Ri R0 = · · ·= Mn⊗Rn R0. Let v1, . . . ,vr be a
free R0-basis for L. Then F = Rv1 + · · ·+Rvr is a free R-lattice in V .

THEOREM 12.1.17. Let R, K, V , f1, . . . , fn, M1, . . . ,Mn, F be as above. For each
p ∈ X1(R), define N(p) to be (Mi)p, for any i such that p is in Ui. If

N =
⋂

p∈X1(R)

N(p),

then

(1) N is an R-lattice in V and Np = N(p) for all p ∈ X1(R).
(2) N is a reflexive R-lattice in V .
(3) N⊗R R fi = Mi for 1≤ i≤ n.
(4) N =

⋂n
i=1 Mi.

PROOF. (1): By Corollary 9.6.12, a minimal prime of f0 has height one. By Corol-
lary 4.1.15, f0 is contained in only finitely many height one primes of R. Therefore, U0
contains all but finitely many height one primes of R. By Theorem 12.1.11 (1), (Mi)p = Fp
for all but finitely many p ∈ X1(R0). Taken together, this implies that N(p) = Fp for all but
finitely many p ∈ X1(R). Part (1) follows from Theorem 12.1.11 (2).

(2): Follows from Theorem 12.1.14 (4).
(3): For each p ∈ X1(Ri), (N⊗R Ri)p = Np = N(p) = (Mi)p. By Exercise 12.1.20 and

Corollary 12.1.15, N⊗R Ri = Mi.
(4): Follows from: N =

⋂
p∈X1(R) N(p) =

⋂n
i=1
⋂

p∈X1(Ri)
(Mi)p =

⋂n
i=1 Mi. □
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1.3. Exercises.

EXERCISE 12.1.18. Let R be an integral domain and M a finitely generated torsion
free R-module. Let S be a submodule of M and consider S̄ = KS∩M.

(1) Prove that M/S̄ is a finitely generated torsion free R-module.
(2) Prove that KS = KS̄.

EXERCISE 12.1.19. Let R be an integral domain with field of fractions K. Let V be a
finite dimensional K-vector space and M an R-lattice in V . Then M is a reflexive R-lattice
if and only if there is an R-lattice N (in some K-vector space) such that M is isomorphic as
an R-module to R : N.

EXERCISE 12.1.20. Let R be a noetherian integrally closed integral domain with field
of fractions K. Let V be a finite dimensional K-vector space.

(1) If M and N are reflexive R-lattices in V , then M∩N is a reflexive R-lattice in V .
(2) If U is a K-subspace of V , and M is a reflexive R-lattice in V , then M ∩U is a

reflexive R-lattice in U .
(3) If M is a reflexive R-lattice in V and Z ⊆ R−{0} is a multiplicative set, then

Z−1M is a reflexive Z−1R-lattice in V .

2. Fractional Ideals

Let R be an integral domain with field of fractions K. A fractional ideal of R is a
nonzero R-submodule F of K such that there exists a finitely generated R-submodule N of
K and F ⊆ N ⊆ K. In the terminology of Definition 12.1.2, a fractional ideal of R is an
R-lattice in K, where we view K as a vector space over itself. The material in this section
is based on various sources, including [32] and [22].

LEMMA 12.2.1. Let R be an integral domain with field of fractions K. If F is a nonzero
R-submodule of K, then the following are equivalent.

(1) F is a fractional ideal of R in K. That is, there exists a finitely generated R-
submodule N such that F ⊆ N ⊆ K.

(2) There are nonzero elements a,b in K such that aR⊆ F ⊆ bR.
(3) There exists a nonzero c in R such that cF ⊆ R.
(4) There exists a nonzero d in K such that dF ⊆ R.

PROOF. This is a special case of Proposition 12.1.1, so we only sketch the proof.
(1) implies (3): Write N = Rx1 + · · ·+Rxn where x1, . . . ,xn are elements of K. If c is

the product of the denominators of x1, . . . ,xn, then for each i we have cxi ∈ R. Therefore
cF ⊆ cN ⊆ Rcx1 + · · ·+Rcxn ⊆ R.

(3) implies (4): Is trivial.
(4) implies (2): Suppose dF ⊆ R and d ∈ K− (0). If b = d−1 and a ∈ F − (0), then

we have aR⊆ F = bdF ⊆ bR.
(2) implies (1): Take N = bR. □

EXAMPLE 12.2.2. It follows immediately from Lemma 12.2.1 that a nonzero ideal I
of R is a fractional ideal.

Let R be an integral domain with field of fractions K. If E and F are fractional ideals
of R, the product EF is defined to be the R-submodule of K generated by the set {xy |
x ∈ E and y ∈ F}.
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LEMMA 12.2.3. Let R be an integral domain with field of fractions K. If E and F are
fractional ideals of R, then E +F, E ∩F and EF are fractional ideals of R.

PROOF. By definition, E and F are nonzero. Thus E +F is nonzero. Also by defini-
tion there are finitely generated R-submodules M and N of K such that E ⊆M and F ⊆ N.
Then E+F is a submodule of the finitely generated R-submodule M+N of K. This proves
E +F is a fractional ideal of R. By Lemma 12.2.1 (2) there are nonzero elements a,b,c,d
in K such that aR⊆ E ⊆ bR and cR⊆ F ⊆ dR. Then acR⊆ EF ⊆ bdR, which shows EF
is a fractional ideal. Now we show E ∩F is a fractional ideal. Since E ∩F ⊆ E ⊆ M, it
remains to show E ∩F is nonzero. There exist r,s,u,v in R such that a = s/t and c = u/v.
Then us = uta ∈ E and us = svc ∈ F , hence us ∈ E ∩F . □

If F is a fractional ideal, let

F−1 = R : F = {x ∈ K | xF ⊆ R}.

LEMMA 12.2.4. Let R be an integral domain with field of fractions K. If F is a
fractional ideal of R, then the following are true.

(1) F−1 is a fractional ideal of R.
(2) F−1F ⊆ R and F−1F is an ideal of R.

PROOF. (1): The proof that F−1 is a nonzero R-submodule of K is left to the reader.
Let a∈F−(0) and x∈F−1. Then xa∈R says x∈ a−1R. Since x was arbitrary, this implies
F−1 ⊆ a−1R and by Lemma 12.2.1 (1), we are done.

The proof of (2) is left to the reader. □

DEFINITION 12.2.5. A fractional ideal F is called an invertible ideal of R in case
F−1F = R.

LEMMA 12.2.6. Let R be an integral domain with field of fractions K.
(1) If α ∈ K∗, then the principal fractional ideal I = Rα is invertible and I−1 =

Rα−1.
(2) If F is a fractional ideal of R and f ∈ HomR(F,R), then for all a,b ∈ F it is true

that a f (b) = b f (a).
(3) Let F be a fractional ideal of R. For any α ∈ F−1, let ℓα : F → R be “left

multiplication by α“. The mapping α 7→ ℓα is an isomorphism of R-modules
ℓ : F−1→ F∗ = HomR(F,R).

PROOF. (2): Let a and b be arbitrary elements of F . There exist some elements
r,s, t,u ∈ R such that a = rs−1 and b = tu−1. Then as = r and bu = t are both in R. Also,
bas = br and abu = at are both in F . For any f ∈ HomR(F,R) we have

s f (abu) = f (sabu) = u f (abs).

Combining these, we get a f (b) = sa f (b)s−1 = f (abs)s−1 = f (abu)u−1 = bu f (a)u−1 =
b f (a).

(3): The reader should verify that the mapping ℓ : F−1 → F∗ is a one-to-one homo-
morphism of R-modules. Let f ∈ F∗. Fix an arbitrary a ∈ F − (0). By (2), if x ∈ F ,
then a f (x) = x f (a). Let α = a−1 f (a). Then f (x) = a−1x f (a) = αx = ℓα(x). This shows
f = ℓα .

The proof of (1) is left to the reader. □

THEOREM 12.2.7. Let R be an integral domain with field of fractions K and let F be
a fractional ideal of R. The following are equivalent.
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(1) F is a projective R-module.
(2) F is an invertible fractional ideal.
(3) F is a rank one R-progenerator. That is, F is an invertible R-module (Defini-

tion 3.6.6).
(4) There exists a fractional ideal E of R such that EF = aR is a principal ideal.

PROOF. (3) implies (1): Is trivial.
(2) implies (4): Take E = F−1.
(4) implies (3): There exist elements x1, . . . ,xn in E, y1, . . . ,yn in F , and a1, . . . ,an in R

such that a=∑
n
i=1 aixiyi. Since EF is nonzero, we know a ̸= 0. For any x∈E and y∈F , we

have xy∈ aR. Then a−1xy∈R. This implies a−1x∈F−1. By Lemma 12.2.6 (3), ℓa−1x ∈F∗.
For each i, let φi = ℓa−1aixi

. Consider {(yi,φi) | 1 ≤ i ≤ n}. Given any y ∈ F we have
ay = ∑

n
i=1 aixiyyi. Therefore, y = ∑

n
i=1 a−1aixiyyi = ∑

n
i=1 φi(y)yi, which shows {(yi,φi) |

1≤ i≤ n} is a dual basis for F . By Lemma 2.1.10, F is a finitely generated projective R-
module. Since R is an integral domain, by Corollary 2.2.4, F is an R-progenerator and by
Corollary 3.4.9, RankR(F) is defined. Since K⊗R F = K, we see that F has RankR(F) = 1.

(1) implies (2): By Lemma 2.1.10, F has a dual basis {(xi, fi) | i ∈ I}. It follows from
Lemma 12.2.6 (3) that for each i∈ I there is αi ∈F−1 such that fi = ℓαi . If x∈F−(0), then
fi(x) = αix is zero for all but finitely many i ∈ I. Since αi ∈ K, this implies I is a finite set.
In particular, this implies F is finitely generated as an R-module. Then x = ∑i∈I fi(x)xi =

∑i∈I αixxi. This equation holds in the field K, so we cancel x to get 1 = ∑i∈I αixi. Since
each αi is in F−1, this shows F−1F is equal to the unit ideal R. □

LEMMA 12.2.8. Let R be an integral domain with field of fractions K.

(1) If F1, . . . ,Fn are fractional ideals of R, then F = F1F2 · · ·Fn is invertible if and
only if each Fi is invertible.

(2) If P1, . . . ,Pr are invertible prime ideals in R, and Q1, . . . ,Qs are prime ideals in R
such that P1P2 · · ·Pr = Q1Q2 · · ·Qs, then r = s and after re-labeling, Pi = Qi.

PROOF. (1): Is left to the reader.
(2): The proof is by induction on r. The reader should verify the basis step. Assume

r > 1 and that the claim is true for r− 1 prime factors. Choose a minimal member of
the set P1, . . . ,Pr and for simplicity’s sake, assume it is P1. Since Q1 · · ·Qs ⊆ P1, by Def-
inition 6.3.1, there exists i such that Qi ⊆ P1. Re-label and assume Q1 ⊆ P1. Likewise,
P1 · · ·Pr ⊆ Q1 so there exists i such that Pi ⊆ Q1 ⊆ P1. Since P1 is minimal, P1 = Q1.
Multiply by P−1

1 to get P2 · · ·Pr = Q2 · · ·Qs. Apply the induction hypothesis. □

LEMMA 12.2.9. Let R be an integral domain with field of fractions K. Let M be a
nonzero finitely generated torsion free R-module.

(1) If dimK(KM) = 1, then M is isomorphic as an R-module to a fractional ideal of
R in K.

(2) If R is a noetherian integrally closed integral domain and there exists α ∈K such
that αM ⊆M, then α ∈ R.

PROOF. (1): Choose any nonzero element m0 of M and let F = {α ∈ K | αm0 ∈M}.
Then F is an R-submodule of K. The assignment α 7→ αm0 defines a one-to-one R-module
homomorphism θ : F → M. Since the K-vector space KM has dimension one, m0 is a
generator. Given any m ∈ M, there exists α ∈ K such that αm0 = m. Therefore θ is an
isomorphism, and F is a nonzero finitely generated R-submodule of K. This means F is a
fractional ideal of R.
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(2): Begin as in Part (1). For any m0 ∈M− (0), set F = {α ∈ K | αm0 ∈M}. Then
there is a one-to-one R-module homomorphism θ : F→M defined by α 7→αm0. It follows
from Corollary 4.1.12 that F is finitely generated as an R-module. Since F is nonzero, F
is a fractional ideal of R. Clearly R ⊆ F and α ∈ F . It follows that αn ∈ F for all n ≥ 0.
Then R[α]⊆ F and Proposition 6.1.2 implies that α is integral over R. But R is integrally
closed, so α ∈ R. □

2.1. Exercises.

EXERCISE 12.2.10. Let R be an integral domain. Let E and F be fractional ideals of
R. If EF = R, then E = F−1 and F is an invertible fractional ideal.

EXERCISE 12.2.11. Let R be an integral domain with field of fractions K. Let E and
F be fractional ideals of R. If E is invertible, then the multiplication mapping α⊗β 7→ αβ

is an isomorphism E⊗R F ∼= EF of R-modules.

EXERCISE 12.2.12. Let R be an integral domain with field of fractions K. Let E and
F be fractional ideals of R in K.

(1) KF = K.
(2) K⊗R F ∼= KF by the multiplication mapping α⊗ x 7→ αx.
(3) If φ : E → F is an R-module isomorphism, then φ extends to a K-module iso-

morphism ψ : K→ K and ψ is “left multiplication by ψ(1)”.
(4) E and F are isomorphic as R-modules if and only if there exists α ∈ K such that

αE = F .

EXERCISE 12.2.13. Let R be an integral domain with field of fractions K. Let Invert(R)
denote the set of all invertible fractional ideals of R in K. Let Prin(R) denote the subset of
Invert(R) consisting of all principal fractional ideals of R in K.

(1) Prove that Invert(R) is a group under multiplication and contains Prin(R) as a
subgroup.

(2) Every invertible ideal I ∈ Invert(R) is an invertible R-module, hence I represents
a class in the Picard group of R (Definition 3.6.6). Show that this assignment
defines a homomorphism θ : Invert(R)→ Pic(R).

(3) Show that θ induces an isomorphism Invert(R)/Prin(R) ∼= Pic(R). The group
Invert(R)/Prin(R) is called the class group of rank one projective R-modules.

EXERCISE 12.2.14. Let k be a field, A = k[x] and R = k[x2,x3]. From Exercises 3.6.16
and 6.1.20, we know that the quotient field of R is K = k(x), A is the integral closure of R
in K, and the conductor ideal from A to R is m = (x2,x3), which is a maximal ideal in R.
For each α ∈ k, Pα = R(1−αx)+m is a fractional ideal of R in K. Notice that Pα is an
R-submodule of A. Prove:

(1) Pα is isomorphic to R if and only if α = 0.
(2) Pα Pβ = Pα+β . (Hints: x4 ∈m2, x3 ∈ Pαm, x2 ∈ Pαm, 1− (α +β )x ∈ Pα Pβ .)
(3) PicR contains a subgroup isomorphic to the additive group k.
(4) PicR is generated by the classes of the modules Pα , which implies PicR∼= k. (See

[29, Example II.6.11.4].) This proof may involve methods not yet proved in this
text. Here is an outline of a proof which uses a Mayer-Vietoris exact sequence
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of Milnor (see [19, Exercise 14.2.19]). First show that the diagram

R //

��

R/m

��
A // A/m

is a cartesian square of commutative rings (Example 2.7.17). There is an exact
sequence

1→ R∗→ A∗× (R/m)∗→ (A/m)∗
∂−→ PicR→ PicA×Pic(R/m)→ Pic(A/m).

of abelian groups from which PicR can be computed.

EXERCISE 12.2.15. Let k be a field and A = k[x,y] the polynomial ring over k in
two variables. Consider the subring R = k[x2,xy,y2,x3,x2y,xy2,y3] of A. The ideal m =
(x2,xy,y2,x3,x2y,xy2,y3) in R is maximal ideal. We know from Exercises 11.3.29 and 7.3.9
that the quotient field of R is K = k(x,y), A is the integral closure of R in K, and the
conductor ideal from A to R is m. For each pair (α,β ) ∈ k2, Pα,β = R(1−αx−βy)+m is
a fractional ideal of R in K. Notice that Pα,β is an R-submodule of A. Prove:

(1) Pα,β is isomorphic to R if and only if α = β = 0.
(2) Pα,β Pγ,δ = Pα+γ,β+δ . (Hints: m2 contains every monomial of degree 4, Pα,βm

contains every monomial of degree 3 or 2, Pα,βm contains m, 1− (α + γ)x−
(β +δ )y ∈ Pα,β Pγ,δ .)

(3) PicR contains a subgroup isomorphic to the additive group k2.
(4) PicR is generated by the classes of the modules Pα,β , which implies PicR ∼= k2.

As in Exercise 12.2.14 (4), apply the Mayer-Vietoris sequence of Milnor. Use
Corollary 11.4.13 and Exercise 12.4.16 to show that ∂ is onto. Now show the
image of ∂ contains each class of the form Pα,β .

EXERCISE 12.2.16. Let k be a field, R = k[x,y]/(xy), A = R/(x)⊕R/(y). Let m be
the maximal ideal of R generated by x,y.

(1) Show that the natural map θ : R→ A is one-to-one, hence R can be viewed as a
subring of A.

(2) Show that the conductor ideal from A to R is m.
(3) As in Exercise 12.2.14 (4), apply the Mayer-Vietoris sequence of Milnor to show

that R∗ = k∗ and PicR = ⟨0⟩.

EXERCISE 12.2.17. Let R be an integral domain with field of fractions K. Let S be
another subring of K such that R ⊆ S ⊆ K is a tower of subrings. Prove that R : S, the
conductor ideal from S to R, is nonzero if and only if S is a fractional ideal of R in K.

3. Dedekind Domains

Dedekind domains arise in Algebraic Number Theory as the integral closure of Z in
a finite algebraic extension of Q. They arise in Algebraic Geometry as the coordinate ring
of a nonsingular algebraic curve. A principal ideal domain is a Dedekind domain, but not
conversely. Nevertheless, a Dedekind domain R is in many ways similar to a principal
ideal domain. For example, we see in Proposition 12.3.3 below that if I is a proper ideal,
then R/I is an artinian principal ideal ring. A Dedekind domain R is a noetherian normal
integral domain with Krull dimension one. Conversely, we will see in Theorem 12.3.7
below that the integral closure of a noetherian integral domain with Krull dimension one
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in a finite algebraic extension of its quotient field is a Dedekind domain. In general R is
not a unique factorization domain. However, unique factorization does exist for the set of
proper ideals in R. The results in this section are based on various sources, including [4],
[32] and [16].

In Theorem 12.3.2 below we list six equivalent properties of an integral domain. Any
of them can be taken as the definition of a Dedekind domain. We first prove a useful lemma
about rings with Krull dimension one.

LEMMA 12.3.1. Let R be a commutative noetherian integral domain of Krull dimen-
sion one. For any proper ideal I of R, there exist unique primary ideals I1, . . . , In such
that

(1) Rad I1, . . . ,Rad In are distinct maximal ideals of R, and
(2) I = I1I2 · · · In.

PROOF. (Existence.) By Theorem 9.3.8, I has a reduced primary decomposition I =
I1 ∩ I2 ∩ ·· · ∩ In. In a reduced primary decomposition the primes Rad I1, . . . ,Rad In are
distinct. Because I is nonzero and dimR = 1, each Rad Ii is a maximal ideal of R. Two
distinct maximal ideals are necessarily comaximal. By Exercise 3.3.20, the ideals Ii are
pairwise comaximal. By Exercise 1.1.25, I = I1I2 · · · In.

(Uniqueness.) Suppose I1, . . . , In are primary ideals such that Rad I1, . . . ,Rad In are
distinct maximal ideals of R, and I = I1I2 · · · In. By the same argument as above, I =
I1 ∩ I2 ∩ ·· · ∩ In is a reduced primary decomposition of I. By Lemma 9.3.5, the primary
ideals Ii are uniquely determined by I. □

THEOREM 12.3.2. Let R be an integral domain. The following are equivalent.
(1) R is a noetherian normal integral domain with Krull dimension one.
(2) R is a noetherian integral domain and for every prime ideal P of height greater

than or equal to one, the local ring RP is a DVR.
(3) Every proper ideal in R has a unique representation as a product of a finite

number of prime ideals.
(4) Every nonzero ideal in R is invertible. By Theorem 12.2.7, this is equivalent to

each of the following statements.
(a) Every nonzero ideal of R is R-projective.
(b) Every nonzero ideal of R is an invertible R-module.

(5) Every fractional ideal of R is invertible. By Theorem 12.2.7, this is equivalent to
each of the following statements.
(a) Every fractional ideal of R is R-projective.
(b) Every fractional ideal of R is an invertible R-module.

(6) Let Frac(R) denote the set of all fractional ideals of R. Then Frac(R) is a group
under multiplication.

An integral domain satisfying the equivalent conditions of Theorem 12.3.2 is called a
Dedekind domain.

PROOF. (1) is equivalent to (2): Is left to the reader.
(5) is equivalent to (6): Is left to the reader.
(5) implies (4): Is trivial.
(1) implies (3): Let I be a proper ideal of R. By Lemma 12.3.1, I = I1 · · · In where

I1, . . . , In are unique primary ideals. If Pi = Rad Ii, then Pi is a maximal ideal of R. By
Theorem 11.4.3, Ii is equal to the symbolic power P(νi)

i , for some unique νi > 0. By
Proposition 9.1.2 (3), Pνi

i is a Pi-primary ideal. By Exercise 9.3.9, it follows that Ii = Pνi
i .



496 12. DIVISOR CLASS GROUPS

(4) implies (5): If F is a fractional ideal, then F−1F is invertible. By Lemma 12.2.8,
F is invertible.

(4) implies (2): Let I be a nonzero ideal of R. By Theorem 12.2.7, I is a rank one
projective R-module. Then I is finitely generated and by Corollary 4.1.7, R is noetherian.
Let P be a nonzero prime ideal of R and let m denote the maximal ideal PRP in RP. By
Proposition 3.4.3, m is a free RP-module of rank one. In other words, m is a principal ideal
and Corollary 9.6.13 says dimR = 1. Theorem 11.2.11 implies RP is a DVR.

(3) implies (4): By Lemma 12.2.8, it suffices to show every nonzero prime ideal of R
is invertible. The proof is split into two steps.

Step 1: If P is an invertible prime ideal in R, then P is maximal. The proof is by
contradiction. Assume a ∈ R−P and P+Ra ̸= R. By assumption,

P+Ra = P1 · · ·Pm

P+Ra2 = Q1 · · ·Qn

for some prime ideals P1, . . . ,Pm,Q1, . . . ,Qn. Since P is prime, R/P is an integral domain.
Let η : R→ R/P be the natural map.

η(P+Ra) = η(P1) · · ·η(Pm)

η(P+Ra2) = η(Q1) · · ·η(Qn)

The two ideals on the left-hand side are the principal ideals in R/P generated by η(a) and
η(a2) respectively. By Lemma 12.2.6 (1), η(P+Ra) and η(P+Ra2) are invertible. Since
P⊆ Pi and P⊆Q j for each i and j, the ideals η(Pi) and η(Q j) are prime ideals in R/P. By
Lemma 12.2.8 (1), for all i and j, the ideals η(Pi) and η(Q j) are invertible prime ideals in
R/P. Apply Lemma 12.2.8 (2) to the two factorizations

η(Q1) · · ·η(Qn) = η(P1)
2 · · ·η(Pm)

2

of the principal ideal η(P+Ra2) =η(P+Ra)2. Then n= 2m and upon relabeling, η(Pi) =
η(Q2i−1)=η(Q2i) for i= 1, . . . ,m. By Proposition 1.5.3, Pi =Q2i−1 =Q2i for i= 1, . . . ,m,
which implies

P+Ra2 = Q1 · · ·Qn = P2
1 · · ·P2

m = (P+Ra)2.

We see that
P⊆ P+Ra2 ⊆ (P+Ra)2 ⊆ P2 +Ra.

Suppose x ∈ P2, r ∈ R, and x+ ra ∈ P. Since P is prime and a ̸∈ P, we conclude r ∈ P.
Hence P⊆P2+Pa⊆P. But P is invertible, so R=P−1(P2+Pa)=P+Ra, a contradiction.

Step 2: If P is a nonzero prime ideal in R, then P is invertible. Let x ∈ P− (0).
By assumption, Rx = P1 · · ·Pm for some prime ideals P1, . . . ,Pm. Then P1 · · ·Pm ⊆ P. By
Lemma 12.2.6 (1), Rx is invertible. By Lemma 12.2.8, each Pi in the product is invertible.
By Definition 6.3.1, there exists i such that Pi ⊆ P. By Step 1, Pi is a maximal ideal in R.
This shows P = Pi, hence P is invertible (and maximal). □

Proposition 12.3.3 is a generalization of [20, Exercises 4.6.18 and 4.6.19].

PROPOSITION 12.3.3. Let R be a Dedekind domain.
(1) Let P be a nonzero prime ideal in R, e > 0 and A = R/(Pe). The following are

true.
(a) Every ideal in A is principal.
(b) A is a field if and only if e = 1.
(c) A is a local ring with maximal ideal P/Pe.
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(d) A has exactly e+1 ideals, namely: (0)⊆ Pe−1/Pe ⊆ ·· · ⊆ P2/Pe ⊆ P/Pe ⊆
A.

(2) Let P1, . . . ,Pn be distinct nonzero prime ideals of R, e1, . . . ,en positive integers,
I = Pe1

1 Pe2
2 · · ·Pen

n , and A = S/I. The following are true.
(a) A is isomorphic to the direct sum of the local rings

⊕
i S/Pei

i .
(b) Every ideal in A is principal.
(c) Including the two trivial ideals (0) and A, there are exactly (e1 + 1)(e2 +

1) · · ·(en +1) ideals in A.
(d) A has exactly n maximal ideals, namely P1/I, . . . ,Pn/I.

PROOF. (1): The only maximal ideal of R that contains Pe is P, which is (c). By
Theorem 12.3.2 (3), the ideals of R that contain Pe are Pe,Pe−1, . . . ,P,R, which is (d) and
(b). If 1≤ i < e and α ∈ Pi−Pi+1, then Pe +Rα is not a subset of Pi+1. Hence Pe +Rα =
Pi, which proves (a).

(2): A direct product of commutative rings R1×·· ·×Rt is a principal ideal ring if and
only if each Ri is a principal ideal ring. Therefore, (2) follows from Theorems 1.1.8, 1.1.7,
and Part (1). □

COROLLARY 12.3.4. Let I be an ideal in the Dedekind domain R. If I is not principal,
then I is generated by two elements. That is, there exist α,β in I such that I = Rα +Rβ .

PROOF. Assume I is not principal and pick any nonzero element α in I. By Propo-
sition 12.3.3, the ideal I/Rα is a principal ideal in R/Rα . There exists β ∈ I such that
Rα +Rβ = I. □

If I is an ideal in a Dedekind domain R, by Corollary 12.3.4, I = Rα +Rβ , where
α ∈ I− (0) is arbitrary. For this reason, a Dedekind domain is said to have the “one and a
half generator property for ideals”.

COROLLARY 12.3.5. Let I and J be proper ideals in the Dedekind domain R. Then
there exist an element α in R and an ideal C in R satisfying J+C = R and IC = Rα .

PROOF. By Proposition 12.3.3, the ideal I/IJ is a principal ideal in R/IJ. There exists
α ∈ I such that Rα + IJ = I. By Exercise 12.3.13, there exists an ideal C in R such that
Rα = IC. Multiplying IC+ IJ = I by I−1 yields C+ J = R. □

THEOREM 12.3.6. Let R be a Dedekind domain with quotient field K and M a finitely
generated torsion free R-module. If n = dimK (KM), then there exist fractional ideals
F1, . . . ,Fn of R such that M ∼= F1⊕·· ·⊕Fn.

PROOF. Let x be any nonzero element of M. Let S = Rx be the principal submodule of
M generated by x. Let S̄ = KS∩M. By Exercise 12.1.18, M/S̄ is torsion free and KS̄ = KS.
Since dimK KS̄ = 1, by Lemma 12.2.9, there exists a fractional ideal F1 of R such that
S̄ ∼= F1. Since dimK

(
K⊗R (M/S̄)

)
= n−1, by induction on n, there exist fractional ideals

F2, . . . ,Fn of R such that M/S̄ ∼= F2⊕ ·· ·⊕Fn. By Theorem 12.3.2, each Fi is projective.
Therefore the sequence 0→ S̄→M→M/S̄→ 0 is split exact. □

We now prove that the integral closure of a Dedekind domain in a finite extension of
its quotient field is a Dedekind domain. Theorem 12.3.7 is a corollary to the Krull-Akizuki
Theorem (Theorem 9.7.5).

THEOREM 12.3.7. Let R be a noetherian integral domain with dim(R) = 1. Let K
be the quotient field of R, L a finitely generated algebraic field extension of K, and S the
integral closure of R in L. Then S is a Dedekind domain.



498 12. DIVISOR CLASS GROUPS

PROOF. By Theorem 9.7.5, S is noetherian and has Krull dimension one. By Corol-
lary 6.1.8, L is the quotient field of S. Since S is integrally closed in L, Theorem 12.3.2 (1)
implies S is a Dedekind domain. □

3.1. Exercises.

EXERCISE 12.3.8. Let R be a Dedekind domain and Frac(R) the group of fractional
ideals of R.

(1) Frac(R) is a free abelian group on the set Max(R), where the binary operation is
multiplication.

(2) There is an isomorphism Frac(R)∼= Div(R) which maps a maximal ideal P to the
corresponding generator of Div(R).

EXERCISE 12.3.9. Let R be a Dedekind domain and Frac(R) the group of fractional
ideals of R. Let Prin(R) = {Rα | α ∈ K∗} denote the subset of Frac(R) consisting of all
principal fractional ideals.

(1) Prin(R) is a subgroup of Frac(R).
(2) The quotient Frac(R)/Prin(R) is isomorphic to Cl(R).
(3) The following are equivalent.

(a) R is a PID.
(b) R is a UFD.
(c) Cl(R) = (0).

EXERCISE 12.3.10. Let R be a Dedekind domain and M a finitely generated R-module.
The following are equivalent.

(1) M is torsion free.
(2) M is flat.
(3) M is projective.

EXERCISE 12.3.11. Show that if R is a Dedekind domain, then Pic(R) and Cl(R) are
isomorphic.

EXERCISE 12.3.12. Let R be a Dedekind domain. Let P1, . . . ,Pm,Q1, . . . ,Qn be nonzero
prime ideals of R satisfying ∏

m
i=1 Pi ⊇∏

n
j=1 Q j. Then m ≤ n and upon relabeling, Pi = Qi

for i = 1, . . . ,m.

EXERCISE 12.3.13. Let R be a Dedekind domain. If A and B are ideals of R such that
A⊇ B, then there exists an ideal C such that AC = B

EXERCISE 12.3.14. Let R be a Dedekind domain. Let P1, . . . ,Pn be distinct nonzero
prime ideals of R and let e1, . . . ,en, f1, . . . , fn nonnegative integers. Let I = ∏Pei

i and J =

∏P fi
i . Let mi = min(ei, fi) and Mi = max(ei, fi). Then I + J = ∏Pmi

i and I∩ J = ∏PMi
i .

EXERCISE 12.3.15. Let R be a Dedekind domain. If F1 and F2 are fractional ideals of
R, then there exists an isomorphism of R-modules F1⊕F2 ∼= R⊕F1F2.

EXERCISE 12.3.16. Let R be a Dedekind domain and assume I1, . . . , Im and J1, . . . ,Jn
are fractional ideals of R. The following are equivalent.

(1) There exists an isomorphism of R-modules I1⊕·· ·⊕ Im ∼= J1⊕·· ·⊕ Jn.
(2) m = n and there exists an isomorphism of R-modules I1 · · · Im ∼= J1 · · ·Jn.
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4. The Class Group of Rank One Reflexive Modules

In Definition 11.4.11, we defined Cl(R), the class group of a noetherian integrally
closed integral domain R, in terms of Div(R), the group of Weil divisors of R. The main
result of this section, Theorem 12.4.4, shows that Div(R) is isomorphic to the group of
all reflexive fractional ideals of R. Consequently, Cl(R) is isomorphic to the group of
reflexive fractional ideals of R in K, modulo the subgroup of principal fractional ideals
(see Exercise 12.4.16).

4.1. Reflexive Fractional Ideals. Let R be an integral domain with field of fractions
K. In this section we study fractional ideals of R in K which are reflexive R-lattices. Such
fractional ideals are called reflexive fractional ideals. For instance, any invertible fractional
ideal is projective (Theorem 12.2.7), hence reflexive. If F is a fractional ideal of R in K,
then F ⊆ (F−1)−1. By Lemma 12.2.6 (3), the assignment α 7→ ℓα defines an isomorphism
F−1→ HomR(F,R). The reader should verify that F → F∗∗ is an isomorphism (that is, F
is reflexive) if and only if F = (F−1)−1. If E and F are two fractional ideals of R in K,
then

E : F = {α ∈ K | αF ⊆ E}.
We call E : F either the ideal quotient, or module quotient (Definition 11.3.5). Notice that
F−1 = R : F . For convenience, we assemble in Lemma 12.4.1 some results on reflexive
fractional ideals that are special cases of results on reflexive lattices that we already proved
in Section 12.1.2.

LEMMA 12.4.1. Let R be an integral domain with field of fractions K.
(1) If E and F are fractional ideals of R, then E : F is a fractional ideal of R.
(2) Given fractional ideals I1 ⊆ I2 and J1 ⊆ J2, J1 : I2 ⊆ J2 : I1.
(3) If F is a fractional ideal, then

F−1 = R : F = R : (R : (R : F)).

That is, F−1 is a reflexive fractional ideal and F−1 ∼= (F−1)∗∗.
(4) If F is a fractional ideal, then

(F−1)−1 =
⋂

α∈F−1

α
−1R.

That is, F is a reflexive fractional ideal if and only if

F =
⋂

α∈F−1

α
−1R.

(5) If D, E and F are fractional ideals, then
(a) D : EF = (D : E) : F, and
(b) (D : E)F ⊆ D : (E : F).

(6) If F is a fractional ideal, then (F−1F)−1 = F−1 : F−1.
(7) If F is a fractional ideal and E is a reflexive fractional ideal, then E : F is a

reflexive ideal.

PROOF. The reader should verify that (1), (2), (3), (4), (5) and (7) are special cases
of Proposition 12.1.6, Lemma 12.1.7, Proposition 12.1.8, Lemma 12.1.9, and Proposi-
tion 12.1.10. (6): By Part (5) (a), R : F−1F = (R : F) : F−1 = (R : F) : (R : F). □

Let Reflex(R) denote the set of all reflexive fractional ideals of R in K. If E and F
are reflexive fractional ideals of R, then EF is not necessarily reflexive. Define a binary
operation on Reflex(R) by the formula E ∗F = R : (R : EF). By Exercise 12.4.12, this



500 12. DIVISOR CLASS GROUPS

operation turns Reflex(R) into an abelian monoid with identity R. If R is a noetherian
normal integral domain, then Lemma 11.1.2 (3) implies that R is completely normal and
Proposition 12.4.2 implies that Reflex(R) is an abelian group.

PROPOSITION 12.4.2. Let R be an integral domain with field of fractions K. Then
Reflex(R) is an abelian group if and only if R is completely normal (see Definition 11.1.1).

PROOF. Assume Reflex(R) is an abelian group. Let I be a fractional ideal of R in K.
By Exercise 12.4.11, it is enough to show R = I : I. Let J = (I−1)−1. By Lemma 12.4.1 (3),
J is a reflexive fractional ideal. By Lemma 12.4.1 (7), J : J is a reflexive fractional ideal.
By Exercise 12.4.9, J : J is an intermediate ring R ⊆ J : J ⊆ K, so (J : J)2 = J : J. Then
R : (R : (J : J)2) = R : (R : (J : J)) = J : J says J : J is the idempotent of the group Reflex(R).
That is, R = J : J. Again by Exercise 12.4.9,

R⊆ I : I ⊆ I−1 : I−1 ⊆ J : J = R.

Conversely, if I ∈ Reflex(R), then so is I−1 by Lemma 12.4.1 (3). By Lemma 12.4.1 (6),
R : II−1 = I−1 : I−1 =R. Then R : (R : II−1) =R, so I−1 is the inverse of I in Reflex(R). □

LEMMA 12.4.3. Let R be a noetherian normal integral domain with field of fractions
K.

(1) Suppose I is an ideal in R that is maximal among all proper reflexive ideals in
R. Then there exists an element x ∈ K such that I = R : (Rx+R) and I is a prime
ideal.

(2) If P is a prime ideal of R and P is a reflexive ideal, then ht(P) = 1.
(3) If P ∈ X1(R), then P is reflexive.

PROOF. (1): Since I is a proper reflexive ideal, I−1 ̸= R. Pick x ∈ I−1−R. Then
I ⊆ R : (Rx+R)⊆ R and since x ̸∈ R, 1 ̸∈ R : (Rx+R). The ideal R : (Rx+R) is reflexive,
by Lemma 12.4.1 (3). By the maximality of I, I = R : (Rx+R). Now suppose a,b ∈ R
and ab ∈ I. Let A = Ra+ I and B = Rb+ I. Suppose b ̸∈ I. Since AB ⊆ I, it follows that
I ⊊ B ⊆ I : A. Also, I : A ⊆ I : I = R. By Lemma 12.4.1 (7), I : A is a reflexive ideal in R.
By maximality of I we conclude that I : A = R. Since 1 ∈ I : A, we conclude that a ∈ I.

(2): Since P ̸= R, R ̸= R : P. Suppose Q ∈ SpecR and (0) ⊊ Q ⊊ P. Let x ∈ P−Q.
Then (R : P)x ⊆ R, so (R : P)xQ ⊆ Q. But x ̸∈ Q and Q is prime, so (R : P)Q ⊆ Q. Thus
R : P⊆ Q : Q. Since R is normal, R = Q : Q. This is a contradiction.

(3): If x ∈ P− (0), then Rx is free, hence reflexive. The set

S = {I ∈ Reflex(R) | I ⊆ P and there exists α ∈ K∗ such that I = Rα
−1∩R}

is nonempty. Since R is noetherian, S has a maximal member, M = Rα−1∩R. It suffices
to show that M is prime. Let a, b be elements of R such that ab ∈M. Then R(aα)−1∩R⊇
Rα−1∩R = M. By Exercise 12.4.15, R(aα)−1∩R is in Reflex(R).

Case 1: Assume R(aα)−1 ∩R ⊆ P. By the choice of M, R(aα)−1 ∩R = M. Thus
ab ∈ R(aα)−1 ∩R, so there exists r ∈ R such that ab = r(aα)−1 ∈ R. This shows that
b = r(aα)−1a−1 ∈ Rα−1∩R = M.

Case 2: Assume R(aα)−1 ∩ R ̸⊆ P. There exists y ∈ R(aα)−1 ∩ R such that y ̸∈
P. Given w = r(yα)−1 ∈ R(yα)−1 ∩R, yw = rα−1 ∈ M ⊆ P. Since y ̸∈ P, this proves
R(yα)−1∩R ⊆ P. We have M = Rα−1∩R ⊆ R(yα)−1∩R ⊆ P. By the choice of M, this
means M = R(yα)−1∩R. Hence a ∈ R(yα)−1∩R = M.

This proves that M is prime. Since ht(P) = 1, we conclude M = P. Thus P is reflexive.
□
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THEOREM 12.4.4. Let R be a noetherian normal integral domain with field of frac-
tions K.

(1) If I is an ideal in R, then I is reflexive if and only if there exist P1, . . . ,Pn ∈ X1(R)
such that I = R : (R : (P1 · · ·Pn)).

(2) If I is a reflexive ideal in R, then there are only finitely many P ∈ X1(R) such that
I ⊆ P.

(3) The factorization in Part (1) is unique up to the order of the factors.
(4) Reflex(R) is a free Z-module and X1(R) is a basis. The group Reflex(R) is

isomorphic to Div(R), the group of Weil divisors of R.

PROOF. (1): Suppose I is a proper ideal of R and I is reflexive. If I ∈ X1(R), then I has
the desired factorization. The proof is by contradiction. Since R is noetherian, there exists
a maximal counterexample, say M. That is, M is a reflexive proper ideal in R and M does
not have a factorization in the form M = R : (R : (P1 · · ·Pn)), where each Pi is in X1(R). By
Lemma 12.4.3, there is a maximal reflexive ideal P1 that properly contains M. In fact, P1 is
in X1(R). Since R ⊊ P−1

1 , it follows that M ̸= P−1
1 ∗M, hence M ⊊ (R : P1)M. Take double

duals, M ⊊ R : (R : (R : P1)M). Also, M ⊆ P1 ⊆ R, so (R : P1)M ⊆ (R : P1)P1 ⊆ R. That is,
R : (R : (R : P1)M) is a reflexive ideal in R that properly contains M. By the choice of M,
this ideal has a factorization in the desired form:

R : (R : (R : P1)M) = R : (R : (P2 · · ·Pn))

where P2, . . . ,Pn ∈ X1(R). Use Exercise 12.4.12 and Proposition 12.4.2 to show that P−1
1 ∗

M = P2 ∗ · · ·∗Pn and M = P1 ∗P2 ∗ · · ·∗Pn = R : (R : (P1 · · ·Pn)). The converse follows from
Lemma 12.4.1 (3).

(2): Suppose I = R : (R : (P1 · · ·Pm)) and each Pi ∈ X1(R). Then P1 · · ·Pm ⊆ I. Suppose
P ∈ X1(R) such that I ⊆ P. By Proposition 1.5.4, there must be some i in 1, . . . ,m such that
Pi ⊆ P. Since ht(P) = 1, Pi = P. There are only finitely many choices for P.

(3): Suppose I = R : (R : (P1 · · ·Pm)) and each Pi ∈ X1(R). If m = 1, then I = P1 so
the claim is trivially true. Proceed by induction on m. By Part (2), we can assume I ⊆ P1.
It follows that I : P1 ⊆ P1 : P1 = R. By Lemma 12.4.1, I : P1 is a reflexive ideal in R. By
Exercise 12.4.13, I : P1 = I ∗P−1

1 . By Exercise 12.4.12, I : P1 = P2 ∗ · · · ∗Pm = R : (R :
(P2 · · ·Pm)) and by induction we are done.

(4): By Parts (2) and (3) it suffices to show Reflex(R) is generated by those ideals in
X1(R). Let I ∈ Reflex(R). There exists a ∈ R such that aI ⊆ R. By Part (1) there are primes
Qi and Pj in X1(R) such that aR = Q1 ∗ · · · ∗Qn and aI = P1 ∗ · · · ∗Pm. Therefore, in the
group Reflex(R) we have

I ∗Q1 ∗ · · · ∗Qn = P1 ∗ · · · ∗Pm.

The last claim follows from the fact that the group of Weil divisors, Div(R), is the free
Z-module on X1(R) (Definition 11.4.11). □

4.2. A Nodal Cubic Curve. This section is devoted to an example of an algebraic
plane curve that is nonnormal and birational to the affine line A1. Assume that the char-
acteristic of k, the base field, is not 2. Consider the polynomial y2− x2(x+ 1) in k[x][y].
By Eisenstein’s Criterion, with prime p = x+ 1, y2− x2(x+ 1) is irreducible in k[x][y].
Let R = k[x,y]/(y2− x2(x+ 1)). In the following we show that R is a nonnormal integral
domain, the Krull dimension of R is one, every maximal ideal of R is reflexive, and there
is exactly one maximal ideal of R that is not projective,

First we show that R is isomorphic to the ring of Exercises 3.6.18 and 6.1.22. Let
A= k[z] be the polynomial ring over k in the variable z. Define θ : k[x,y]→ k[z] by assigning
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θ(x) = z2−1, θ(y) = z(z2−1). The image of θ is the ring k[z2−1,z(z2−1)]. It is routine
to see that θ(y2− x2(x+1)) = 0. Therefore, θ factors through R and the diagram

k[x,y] θ //

η

��

k[z2−1,z(z2−1)]

R = k[x,y]
(y2−x2(x+1))

θ̄

66

commutes. Since θ is onto, θ̄ is onto. Since k[z2−1,z(z2−1)] is an integral domain, ker θ̄

is a prime ideal in R. By Theorem 10.3.1 and Corollaries 9.6.12, and 10.3.4, dim(R) =
1. By Theorem 9.6.22, dim(k[z2− 1,z(z2− 1)]) = dim(k[z]) = 1. Another application of
Corollary 10.3.4 shows θ̄ is one-to-one.

PROPOSITION 12.4.5. Let k be a field with characteristic different from 2 and R =
k[x,y]/(y2− x2(x+1)). Then the following are true.

(1) R is a noetherian integral domain with Krull dimension 1.
(2) If K denotes the quotient field of R, then y/x is transcendental over k and K =

k(y/x) is the field of rational functions in one variable over k.
(3) R is equal to the k-subalgebra of K generated by the two elements x = (y/x)2−1

and y = (y/x)((y/x)2−1). The integral closure of R in K is R[y/x] = k[y/x].
(4) The conductor ideal from k[y/x] to R is equal to the ideal m = (x,y). The ideal

m is a maximal ideal in R and a principal ideal (x) in k[y/x].

PROOF. We already proved Part (1). From Exercises 3.6.18 and 6.1.22, the quotient
field of k[z2− 1,z(z2− 1)] is equal to k(z), the integral closure is equal to k[z], and the
conductor ideal from k[z] to k[z2−1,z(z2−1)] is (z2−1,z(z2−1)). Parts (2) – (4) follow
from this and the isomorphism θ̄ derived above. To see this, note that the identity y2 =
x2(x+1) implies x = (y/x)2−1. Starting with the isomorphism θ̄ , there is a commutative
diagram

k[y/x]
∼= // A = k[z]

R = k[x,y]
(y2−x2(x+1))

OO

∼= // k[z2−1,z(z2−1)]

OO

of k-algebras. The left vertical arrow is defined by x 7→ (y/x)2− 1 and y 7→ (y/x)x and is
one-to-one. The right vertical arrow is set containment. The top horizontal arrow is the
isomorphism defined by y/x 7→ z. □

PROPOSITION 12.4.6. Let k be a field with characteristic different from 2 and R =
k[x,y]/(y2−x2(x+1)). Let K denote the quotient field of R and R̄ the integral closure of R
in K. Then the following are true.

(1) In R, the ideal m= (x,y) has the following properties:
(a) m is a maximal ideal of R and m is the only prime ideal of R that contains

x.
(b) As R-modules, m is isomorphic to R̄.
(c) m and R̄ are reflexive fractional ideals of R.
(d) m and R̄ are not invertible fractional ideals. That is, m and R̄ are not pro-

jective R-modules.
(e) R : R̄ = R̄−1 =m, R : m=m−1 = R̄, and m : m= R̄.
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(2) If P is a maximal ideal of R and x is not in P, then P is a projective R-module.
That is, P is an invertible fractional ideal.

PROOF. (1): Since R/(x,y) = k, this proves m = (x,y) is maximal. Any prime ideal
that contains x contains x2(x+ 1) = y2, hence contains y. From Proposition 12.4.5, R̄ is
generated as an R-module by 1 and y/x. Since (y/x)2 = x+ 1, we have R̄ = R+R(y/x).
Therefore, R̄ is a fractional ideal of R in K. Then R̄−1 is equal to the conductor ideal
R : R̄, which is m = (x,y). As an R̄-module, m = R̄x = R̄((y/x)2− 1) is cyclic. There-
fore, left multiplication by x = (y/x)2− 1 is an R-module isomorphism ℓx : R̄→ m. By
Lemma 12.4.1, m = R : R̄ is a reflexive fractional ideal of R. By the isomorphism R̄ ∼= m,
this implies R̄ is a reflexive fractional ideal of R. Since R̄−1R̄ =m ̸= R, by Theorem 12.2.7
we see that R̄ and m are not invertible fractional ideals. Since R̄ is reflexive, we have
R̄ = R : (R : R̄) = R : m. The last identity in (e) follows from R̄⊆m : m⊆ R : m= R̄.

(2): Let P be a maximal ideal in R and assume x is not in P. Since P⊗R Rm is the
unit ideal, it is free of rank 1 over the local ring Rm. By Exercise 3.3.26, P⊗R R[1/x]
is a maximal ideal in R[1/x]. By Exercise 3.6.18, R[1/x] = R̄[1/x]. Since R̄ is a PID,
P⊗R R[1/x] is a principal ideal, hence free of rank 1 over R[1/x]. From this it follows that
P satisfies Proposition 3.6.2 (4). Therefore, P is locally free of rank 1. By Theorem 12.2.7,
P is an invertible fractional ideal. □

See Exercise 12.4.18 for a continuation of this example.

4.3. Exercises.

EXERCISE 12.4.7. Let R be an integral domain with field of fractions K. Let E and F
be fractional ideals of R in K. For any α ∈ E : F , let ℓα : F → E be “left multiplication by
α“. The mapping α 7→ ℓα is an isomorphism of R-modules E : F → HomR(F,E).

EXERCISE 12.4.8. Let R be an integral domain with field of fractions K.
(1) If M is a reflexive R-module, then M is torsion free.
(2) If M is a finitely generated reflexive R-module and dimK(K⊗R M) = 1, then M

is isomorphic to a reflexive fractional ideal of R in K.

EXERCISE 12.4.9. Let R be an integral domain with field of fractions K. Let F be a
fractional ideal of R in K.

(1) F : F is a ring, and R⊆ F : F ⊆ K is a tower of subrings.
(2) F : F ⊆ F−1 : F−1 ⊆ (F−1)−1 : (F−1)−1.

EXERCISE 12.4.10. Let R be an integral domain with field of fractions K and let
α ∈ K. The following are equivalent.

(1) α is almost integral over R.
(2) R[α] is a fractional ideal of R in K.
(3) There exists a fractional ideal F of R in K such that αF ⊆ F .

EXERCISE 12.4.11. If R is an integral domain with field of fractions K, then R is
completely normal if and only if R = F : F for all fractional ideals F of R in K.

EXERCISE 12.4.12. Let R be an integral domain with field of fractions K. Let D,E,F
be fractional ideals of R in K.

(1) Show that (D−1 : E) : F = (E−1 : F) : D.
(2) Show that (D((EF)−1)−1)−1 = (((DE)−1)−1F)−1 = (DEF)−1.
(3) Show that with the binary operation E ∗F =R : (R : EF)= ((EF)−1)−1, Reflex(R)

is an abelian monoid.



504 12. DIVISOR CLASS GROUPS

EXERCISE 12.4.13. Let R be a noetherian normal integral domain with field of frac-
tions K. Let E and F be elements of the group Reflex(R). Prove that E : F = E ∗F−1 and
F : E = F ∗E−1.

EXERCISE 12.4.14. Let R be an integral domain with field of fractions K. Let E and
F be elements of the group Reflex(R). Prove that HomR(E,F) is a free R-module of rank
one if and only if E is isomorphic to F .

EXERCISE 12.4.15. Let R be a noetherian normal integral domain with field of frac-
tions K. Let E and F be reflexive fractional ideals. Prove that E∩F is a reflexive fractional
ideal.

EXERCISE 12.4.16. Let R be a noetherian normal integral domain with field of frac-
tions K.

(1) Invert(R) is a subgroup of Reflex(R).
(2) Prin(R) is a subgroup of Reflex(R).
(3) The quotient Reflex(R)/Prin(R) is called the class group of rank one reflexive R-

modules. Show that this group is isomorphic to the class group of Weil divisors
Cl(R).

(4) Show that there is a one-to-one homomorphism

Invert(R)/Prin(R)→ Reflex(R)/Prin(R)

from the class group of rank one projectives into the class group of rank one
reflexives.

(5) There is a one-to-one homomorphism Pic(R)→ Cl(R).

EXERCISE 12.4.17. Let R be a noetherian normal integral domain and Sing(R) the set
of all maximal ideals m ∈Max(R) such that Cl(Rm) ̸= (0). Show that the natural maps
induce an exact sequence

0→ Pic(R)→ Cl(R)→ ∏
m∈Sing(R)

Cl(Rm)

of abelian groups. (Hint: Exercise 11.4.22.)

EXERCISE 12.4.18. Let k be a field with characteristic different from 2. Let R =
k[x,y]/(y2− x2(x+1)) be the ring of Section 12.4.2. Let K denote the quotient field of R
and R̄ the integral closure of R in K. Consider the tower of rings k[x] ⊆ R ⊆ R̄. Prove the
following:

(1) R is free of rank 2 over k[x].
(2) R̄ is free of rank 2 over k[x].
(3) R̄ is not free over R.
(4) R is not separable over k[x].
(5) R̄ is not separable over k[x].
(6) R̄ is separable over R. (Hint: Theorem 10.1.19.)

5. Functorial Properties of the Class Group

Let R be a noetherian normal integral domain with field of fractions K. Let S be
a noetherian normal integral domain with field of fractions L. The class group is not a
functor. That is, a homomorphism R→ S does not necessarily induce a homomorphism
of groups Cl(R)→ Cl(S). There are three important cases when a homomorphism on
class groups does exist. The first case is when S is a localization of R in K and K = L.
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This is the context of Nagata’s Theorem and the reader is referred to Theorem 11.4.14
and Exercise 11.4.22. Secondly, if S is a flat R-algebra, we show that there is an induced
homomorphism γ : Cl(R)→Cl(S). This is the subject of Section 12.5.1. The third scenario
is when S is a faithful R-algebra which is finitely generated as an R-module. In this context,
we show in Section 12.5.2 that there is a homomorphism γ : Cl(R)→ Cl(S). The special
case where L/K is a finite Galois extension of fields is investigated in Section 12.5.3. Many
of the results in this section have appeared in [19, Section 6.5].

5.1. Flat Extensions. Now assume S/R is an extension of noetherian normal integral
domains and L/K is the corresponding extension of the fields of fractions. Assume S is a
flat R-algebra. Then in this context, Proposition 12.5.2 shows that there is a homomorphism
of divisor groups β : Div(R)→ Div(S) which induces a homomorphism of class groups
γ : Cl(R)→ Cl(S).

LEMMA 12.5.1. Let R be a noetherian integral domain with field of fractions K. Let
M be a reflexive R-lattice in the finite dimensional K-vector space V . Let θ : R→ S be a
flat homomorphism of commutative rings. The following are true.

(1) S⊗R M is a reflexive S-module.
(2) If θ is one-to-one and S is an integral domain with field of fractions L, then the

image of S⊗R M is a reflexive S-lattice in L⊗K V .

PROOF. (1): Since R is noetherian, both M and HomR(M,R) are finitely presented
R-modules. Applying Proposition 3.5.8, we see that S⊗R M is a reflexive S-module.

(2): By Proposition 12.1.5, S⊗R M is an S-lattice in L⊗K V . □

PROPOSITION 12.5.2. Let S/R be an extension of noetherian normal integral domains
and L/K the corresponding extension of the fields of fractions. Assume S is a flat R-algebra.
Let I be a reflexive fractional ideal of R in K. The following are true.

(1) IS is a reflexive fractional ideal of S in L.
(2) I⊗R S∼= IS by the multiplication map a⊗b 7→ ab.
(3) The action I 7→ IS induces a homomorphism Cl(R)→ Cl(S) of abelian groups.

PROOF. (2): There is α ∈ R such that αI ⊆ R. Since S is flat over R, the multiplication
map αI⊗R S→ αIS is an isomorphism, by Corollary 3.7.4. From this we get I⊗R S→ IS
is an isomorphism.

(1): This follows from (2) and Lemma 12.5.1.
(3): By (1) and (2), the assignment I 7→ IS induces a homomorphism Reflex(R)→

Reflex(S). If I is a principal ideal of R, then IS is a principal ideal of S, hence under
this homomorphism Prin(R) is mapped to Prin(S). By Exercise 12.4.16, this induces a
homomorphism of groups Cl(R)→ Cl(S). □

COROLLARY 12.5.3. Let S/R be an extension of noetherian normal integral domains
and L/K the corresponding extension of the fields of fractions. Assume S is a faithfully flat
R-algebra.

(1) Let I be a fractional ideal of R in K. Then I is a projective fractional ideal if and
only if IS is a projective fractional ideal of S in L.

(2) If Pic(R) = 0, then Cl(R)→ Cl(S) is one-to-one.

PROOF. (1): This follows from Proposition 12.5.2 and Lemma 3.5.12.
(2): If I is a reflexive fractional ideal of R in K and IS is principal, then I is an invertible

fractional ideal, by (1). Since Pic(R) = 0, I is principal. □
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COROLLARY 12.5.4. (Mori’s Theorem) Let R be a commutative noetherian ring, I an
ideal contained in the Jacobson radical of R, and R̂ the I-adic completion of R. If R̂ is
an integrally closed integral domain, then R is an integrally closed integral domain and
Cl(R)→ Cl(R̂) is one-to-one.

PROOF. By Theorem 7.3.7, the ring R and ideal I make up a Zariski pair and R̂ is a
faithfully flat R-algebra. By Corollary 7.3.18, R̂ is noetherian. If R̂ is an integrally closed
integral domain, then R is also, by Exercise 6.1.17. Given a reflexive fractional ideal a of R,
by Proposition 12.5.2 the assignment a 7→ aR̂ induces a homomorphism Cl(R)→ Cl(R̂).
There exists a nonzero element c ∈ R such that ca ⊆ R. By Corollary 7.3.20, if caR̂ is
a principal ideal, then ca is a principal ideal. It follows that the map on class groups is
one-to-one. □

Polynomial rings are an important special case of the above. Let R be a commutative
ring and x an indeterminate. By Exercise 3.5.23, R[x] is a faithfully flat extension of R. If
R is a normal ring, then so is R[x], by Lemma 11.1.6.

THEOREM 12.5.5. Let R be a noetherian commutative ring.
(1) If R is an integrally closed integral domain, then the natural homomorphism

Cl(R)→ Cl(R[x]) is an isomorphism.
(2) If R is a normal ring, then the natural homomorphism Pic(R)→ Pic(R[x]) is an

isomorphism.

PROOF. (1): Let K be the quotient field of R. Since K[x] is a unique factoriza-
tion domain, Cl(K[x]) = 0 (Corollary 11.4.13). By Nagata’s Theorem (Exercise 11.4.22),
Cl(R[x]) is generated by the prime divisors P ∈ X1(R[x]) such that P ∩ R ̸= (0). Let
S = R[x] and P ∈ X1(S). Since S/R is faithfully flat, going down holds and Theorem 9.6.21
says ht(P) = ht(P∩R)+ ht(P/(P∩R)S). If P∩R ̸= (0), this means P∩R ∈ X1(R), and
P = (P∩R)S. Therefore, Cl(R)→ Cl(R[x]) is onto. Consider the commutative diagram

Pic(R) α //

��

Pic(R[x])

��
Cl(R)

β // Cl(R[x])

in which β is onto and the vertical maps are one-to-one (Exercise 12.4.16). If R[x]→ R
is the homomorphism defined by x 7→ 0, then R→ R[x]→ R is an isomorphism of rings.
Since Pic() is a functor, Pic(R)→ Pic(R[x])→ Pic(R) is an isomorphism of abelian groups,
hence α is one-to-one. By Corollary 12.5.3 (1) it follows that α is onto and β is one-to-one.

(2): By the proof of (1), this is true when R is an integral domain. It follows from
Lemma 11.1.5 that R is a finite direct sum of normal integral domains. By Exercise 3.6.12,
the Picard group distributes across direct sums. □

5.2. Finite Extensions. We begin by establishing some notation that will be in effect
throughout this section. Let S/R be an extension of noetherian normal integral domains
and L/K the corresponding extension of the fields of fractions. Assume S is a finitely
generated R-module. Then S is equal to the integral closure of R in L. Since S⊗R K is the
localization of S in L with respect to the multiplicative set R−{0}, S⊗R K is an integral
domain. By Theorem 2.3.23, S⊗R K is a finitely generated K-vector space. Thus S⊗R K is
a field, by Lemma 6.1.4. Therefore, S⊗R K = L which implies dimK(L) = m is finite.

In this context, we show that there is a homomorphism of divisor groups β : Div(R)→
Div(S) which induces a homomorphism of class groups γ : Cl(R)→Cl(S). By Parts (1) and
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(5) of Theorem 6.3.6, the continuous map SpecS→ SpecR is onto and going down holds
for R→ S. Assume p ∈ X1(R) and q ∈ Spec(S) such that p = q∩ p. By Theorem 9.6.22,
q ∈ X1(S). By Theorem 11.2.11, Rp is a discrete valuation ring. By Corollary 6.3.7,
Sp = S⊗R Rp is a semilocal ring whose maximal ideals correspond to the prime ideals
q ∈ X1(S) lying over p. Before defining the homomorphism β : DivR→ DivS, we define
for every prime q ∈ X1(S) such that p = q∩ p two important numbers e(q), f (q). These
numbers are significant in their own right, hence Proposition 12.5.6 is stated in the special
case where R is a discrete valuation ring with quotient field K and S is the integral closure
of R in a finite algebraic extension field of K.

PROPOSITION 12.5.6. Let R be a DVR with quotient field K, maximal ideal m, residue
field k = R/m, and local parameter π . Let L/K be a finite algebraic extension of fields with
dimK(L) = m and let S be the integral closure of R in L. Then the following are true.

(1) The ring S satisfies the following:
(a) S is a noetherian normal integral domain with Krull dimension one. In other

words, S is a Dedekind domain (see Theorem 12.3.2).
(b) The quotient field of S is L.
(c) S is a torsion free R-module and S⊗R K = L. If S is a finitely generated

R-module, then S is a free R-module of rank m.
(d) X1(S) is a finite set, say {q1, . . . ,qt}.
(e) S is semilocal.
(f) PicS = ClS = (0).
(g) S is a PID and hence a UFD.

(2) For each 1≤ i≤ t, Sqi is a DVR and R→ Sqi is a local homomorphism of local
rings. Denote the maximal ideal of Sqi by m(qi) and the residue field by k(qi).
There exist unique positive integers ei and fi satisfying:
(a) mSqi =m(qi)

ei .
(b) k(qi) is a finite dimensional extension field of k and dimk k(qi) = fi.

(3) The numbers t, ei, fi satisfy the identity: dimk S⊗R k = ∑
t
i=1 ei fi. If S is a finitely

generated R-module, then dimk S⊗R k = RankR (S) = dimK (L).

PROOF. (1): By Theorem 12.3.7, S is a Dedekind domain and L is the quotient field of
S. By Lemma 9.7.1, S⊗R K = L. Therefore S is a torsion free R-module of rank dimK(L) =
m. By Corollary 9.7.6, S is semilocal and the maximal ideals of S are precisely the minimal
prime over-ideals of m. For some t ≥ 1 we have X1(S) = {q1, . . . ,qt}. Over a semilocal
integral domain a finitely generated projective module is free, by Exercise 4.2.13. By
Exercises 12.3.11 and 12.3.9, PicS = ClS = (0) and S is a PID. This proves (1).

(2): Fix 1 ≤ i ≤ t. By Theorem 11.2.11, Sqi is a discrete valuation ring for L. Let
m(qi) be the maximal ideal and k(qi) the residue field of Sqi . Since m = qi ∩R, the ideal
mSqi is contained in m(qi). By Lemma 11.2.10, mSqi =m(qi)

ei for a unique ei ≥ 1, which
is (a). By Theorem 9.7.5, S⊗R k is a finite dimensional k-vector space. By Exercise 4.1.35
and Theorem 4.5.6, S⊗R k decomposes into the direct sum of local rings

(5.1) S⊗R k =
t⊕

i=1

Sqi/mSqi .

Each local ring Sqi/mSqi is finite dimensional over k. Therefore, the residue field k(qi) is
finite dimensional over k. Then dimk k(qi) = fi is finite, which is (b).

(3): Fix 1≤ i≤ t. By (2) we have the identity

mSqi =m(qi)
ei .
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The local ring Sqi/mSqi = Sqi/m(qi)
ei is a k-vector space with filtration by subspaces

m(qi)
ei

m(qi)ei
⊆ m(qi)

ei−1

m(qi)ei
⊆ ·· · ⊆ m(qi)

2

m(qi)ei
⊆ m(qi)

m(qi)ei
⊆ Sqi

m(qi)ei
.

Since Sqi is a DVR, for 1≤ j ≤ ei, the factor m(qi)
j−1/m(qi)

j is isomorphic to k(qi) as a
k-vector space. Thus the dimension of each factor of the filtration is equal to fi. There are
ei factors in the filtration, so dimk Sqi/mSqi = ei fi. Combining this with the direct sum in
(5.1), we have dimk S⊗R k = ∑

t
i=1 ei fi, which completes the proof. □

DEFINITION 12.5.7. In Proposition 12.5.6 (2), the number ei is called the ramification
index of qi over p and the number fi is called the degree of the residue field extension of qi
over p. Notice that ei = 1 if and only if mSqi =m(qi). In this case we say qi is unramified
over p.

COROLLARY 12.5.8. In the context of Proposition 12.5.6, S⊗R k is separable over k
if and only if for each i, ei = 1 and the extension of residue fields k(qi)/k is separable.

PROOF. This follows from Corollary 5.5.9 and Proposition 12.5.6. □

Now let S/R be an extension of noetherian normal integral domains and L/K the
corresponding extension of the fields of fractions. Assume S is a finitely generated R-
module. Let p ∈ X1(R). By Theorem 11.2.11, Rp is a discrete valuation ring. Since Sp
is the localization of S in L with respect to the multiplicative set R− p, by Lemma 6.1.7,
Sp is the integral closure of Rp in L and Sp is an integrally closed integral domain by
Theorem 6.1.3. Then Rp, with quotient field K and Sp, with quotient field L are in the
context of Proposition 12.5.6. Then X1(Sp) is a finite set. If q is in X1(Sp), the ramification
index of q over p is denoted eq and the degree of the residue field extension is denoted fq.
A prime q in X1(Sp) corresponds to a minimal prime over-ideal of pS in SpecS, which will
also be denoted q. The local ring of Sp at q is equal to the local ring Sq. The homomorphism

β : DivR→ DivS

is defined by sending the prime divisor p∈ X1(R) to the divisor ∑q∩R=p eqq, where the sum
runs over the set of primes in X1(S) lying over p, which is equal to the set X1(Sp). Thus,

β (p) = ∑
q∩R=p

eqq

= ∑
q∈X1(Sp)

eqq.

PROPOSITION 12.5.9. Let S/R be an extension of noetherian normal integral domains
and L/K the corresponding extension of the fields of fractions. Assume S is a finitely
generated R-module. Then there is a homomorphism γ : Cl(R)→ Cl(S) which is induced
on divisors by the homomorphism β defined above.

PROOF. Let α ∈K∗. Let q∈ X1(S) and q∩R = p. By definition of ramification index,
νq(α) = eqνp(α). Therefore, β maps a principal divisor to a principal divisor, the diagram

0 // Prin(R) //

��

Div(R) //

β

��

Cl(R)

γ

��

// 0

0 // Prin(S) // Div(S) // Cl(S) // 0

commutes and the rows are exact. □
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In the context of Proposition 12.5.9, the ramification divisor on SpecS is the subset of
X1(S) consisting of all primes q of height one such that eq > 1. In Proposition 12.5.10 we
show that the ramification divisor is a finite set if the extension of fields L/K is separable.

PROPOSITION 12.5.10. Let R be a noetherian integrally closed integral domain with
field of fractions K. Let L/K be a finite separable extension of fields and S the integral
closure of R in L. The ramification divisor,

{q ∈ X1(S) | eq > 1} ,
is a finite set.

PROOF. By the Primitive Element Theorem, Theorem 5.5.8, there exists α ∈ L such
that L = K(α) is a simple extension. Let f = Irr.polyK(α) be the irreducible polynomial
of α in K[x]. So f is separable and the ideal in K[x] generated by f and f ′ contains 1.
There exist g,h ∈ K[x] such that g f +h f ′ = 1. The polynomials f ,g,h, f ′ have coefficients
in K. Let a be a nonzero element of R such that the polynomials a f ,ag,ah,a f ′ have
coefficients in R. Let A = R[a−1] be the localization of R in K formed by inverting a. Then
the polynomials f ,g,h, f ′ have coefficients in A and the ideal in A[x] generated by f and
f ′ contains 1. By Proposition 5.6.2, T = A[x]/( f ) is separable over A and T is a free A-
module of rank m= deg( f ) = dimK(L). Since L=K[x]/( f ), we can map T isomorphically
onto A[α] by the assignment x 7→ α . The quotient field of T contains K and α , hence L is
equal to the quotient field of T . The diagram of subrings

L = K(α)

T = A[α]

88

K

dd

S

<<

A = R[a−1]

ff ;;

R

cc 88

commutes where each arrow is set inclusion. By change of base (Corollary 5.3.2), given
any p ∈ Spec(A), we have T ⊗A k(p) is separable over k(p). By Corollary 12.5.8, every
q ∈ X1(T ) is unramified over q∩A. For each p ∈ Spec(A), we have T ⊗A k(p) is a direct
sum of fields by Corollary 5.5.9. Therefore, T ⊗A k(p) is a regular ring. So T is normal by
Corollary 11.5.6. This means T is the integral closure of A in L. By Lemma 6.1.7, S[a−1] is
the integral closure of A in L. This proves T = S[a−1]. As in the proof of Theorem 11.4.14,
we can view Div(R[a−1]) as the free Z-submodule of Div(R) generated by the primes in
X1(R[a−1]). Let Div(a) = ν1p1 + · · ·+νnpn. Then X1(R) = X1(R[a−1])∪{p1, . . . ,pn}. Let
q be a ramified height one prime in X1(S) and set p = q∩R. Then p is not in X1(R[a−1]),
so p is in the finite set {p1, . . . ,pn}. By Proposition 12.5.6, there are only finitely many
primes of S that lie over each pi. □

We apply the results of this section to a ramified radical extension (see Section 11.5.3).

COROLLARY 12.5.11. Let R be a noetherian normal integral domain and a a nonzero
element of R such that Div(a) = P1 + · · ·+Pv is a reduced effective divisor. If n ≥ 2 is
invertible in R and S = R[x]/(xn−a), then the following are true.
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(1) There are unique primes Q1, . . . ,Qv in X1(S) such that Pi = Qi∩R and Div(x) =
Q1 + · · ·+Qv.

(2) For each i, the ramification index eQi is equal to n.
(3) The ramification divisor of the extension S/R is equal to {Q1, . . . ,Qv}.

PROOF. This follows from the proofs of Parts (4) and (5) of Theorem 11.5.14. □

5.3. Galois Descent of Divisor Classes. References for the material in this section
are [22], [51], and [54]. Let R be a noetherian integrally closed integral domain with quo-
tient field K. Let L/K be a finite dimensional extension of fields which is Galois with group
G. The degree of the extension is denoted n. Let S be the integral closure of R in L. Then
L is the quotient field of S and S is finitely generated as an R-module (Theorem 6.1.13).
We are in the context of Proposition 12.5.9. The reader should verify that that G acts on
S as a group of R-algebra automorphisms, and SG = R. If q ∈ SpecS, then it is clear that
for every σ ∈ G, σ(q) is in SpecS. Moreover, if p ∈ X1(R), then Sp is the integral closure
of Rp in L and G acts as a group of permutations of X1(Sp). The prime ideals in X1(Sp)
correspond to height one primes in S lying over p. By Theorem 6.3.5 (6), any two primes in
X1(Sp) are conjugate to each other. Therefore, G acts as a group of permutations on X1(S).
Since Div(S) is the free abelian group on X1(S), this makes Div(S) into a ZG-module. In
Proposition 12.5.12, we employ the notation of Section 8.5.

PROPOSITION 12.5.12. In the above context, the following are true.
(1) There is a monomorphism β : Div(R)→ Div(S)G of abelian groups.
(2) Cl(S) is a ZG-module and there is a homomorphism of groups γ : Cl(R) →

Cl(S)G.
(3) There is a natural exact sequence

0→ kerγ → H1(G,S∗)→ Div(S)G/Div(R)

of abelian groups.
(4) If each q ∈ X1(S) is unramified over q∩R, then β : Div(R)→ Div(S)G is an

isomorphism.

PROOF. (1): Clearly β is one-to-one. Given q ∈ X1(S), let p = R∩ q. Each σ ∈ G
induces a commutative diagram

Sq
σ //

��

Sσ(q)

Rp

==

where the top row is an isomorphism. From this we see that the ramification index of q is
equal to the ramification index of σ(q). Hence the image of β is fixed by σ .

(2): If α ∈ L∗, then νq(α) = νσ(q)(σ(α)), so σ maps a principal divisor to a principal
divisor and Cl(S) is a ZG-module. The rest follows from (1).

(3): The long exact sequence of cohomology associated to

(5.2) 1→ S∗→ L∗→ PrinS→ 0

and Hilbert’s Theorem 90 (Theorem 8.5.23) yield the exact sequence

(5.3) 1→ R∗→ K∗→ Prin(S)G→ H1(G,S∗)→ 0

→ H1(G,PrinS) δ 1
−→ H2(G,S∗) ε−→ H2(G,L∗).
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By definition, K∗/R∗ = PrinR. The diagram

0 // PrinR

��

// DivR

β

��

// ClR

γ

��

// 0

0 // Prin(S)G // Div(S)G // Cl(S)G

(5.4)

commutes and the rows are exact. To finish (3), combine (5.3) and (5.4) with the Snake
Lemma (Theorem 2.5.2).

(4): For each p ∈ X1(R), let P(p) = {q ∈ X1(S) | q∩R = p} be the set of those prime
divisors in X1(S) lying over p. Then β (p) = ∑q∈P(p) eqq = ∑q∈P(p) q because each rami-
fication index is assumed to be 1. By Theorem 6.3.6 (6), if q∩R = p, then the set P(p) is
equal to the orbit of q under the action of G on Div(S). Let D = ∑q∈X1(S) aqq be a divisor in
Div(S)G. Since D is fixed by each σ ∈G, the coefficients aq are constant as q runs through
P(p). If we denote this constant by ap, then

D = ∑
p∈X1(R)

(
ap ∑

q∈P(p)
q

)
= ∑

p∈X1(R)
apβ (p)

which shows D is in the image of β . □

PROPOSITION 12.5.13. In the above context, H1(G,DivS) = (0).

PROOF. For each p ∈ X1(R) fix a prime Qp ∈ X1(S) lying above p. Let Gp be the
subgroup of G fixing Qp. The reader should verify that

Div(S) =
⊕

p∈X1(R)

ZG⊗ZGp Z

as G-modules. Since G is finite, HomZGp(ZG,Z) and ZG⊗ZGp Z are isomorphic as G-
modules (Lemma 8.5.18). From Theorem 8.5.13, for each p ∈ X1(R) we have the iden-
tity H1(G,HomZGp(ZG,Z)) = H1(Gp,Z). But Z is a trivial Gp-module and by Proposi-
tion 8.5.9 we see that H1(Gp,Z) = Hom(Gp,Z). But G is finite, so the last group is the
trivial group (0). It follows from Exercise 8.5.30 that H1(G,Div(S)) = (0). □

The exact sequence that we derive in Theorem 12.5.14 is a special case of the main
theorem of [51].

THEOREM 12.5.14. (D. S. Rim) In the above context, there is an exact sequence

(5.5) 0→ Cl(S/R)
γ0−→ H1(G,S∗)

γ1−→ Div(S)G/Div(R)
γ2−→ Cl(S)G/Cl(R)

γ3−→ H2(G,S∗)
γ4−→ H2(G,L∗)

of abelian groups where Cl(S/R) is the kernel of Cl(R)→ Cl(S).

PROOF. The long exact sequence of cohomology associated to the short exact se-
quence

(5.6) 0→ PrinS→ DivS→ ClS→ 0

is

(5.7) 0→ Prin(S)G→ Div(S)G→ Cl(S)G δ 0
−→ H1(G,PrinS)→ H1(G,DivS).
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By Proposition 12.5.13, δ 0 is onto. Combine (5.3) with (5.7) to get

(5.8) 0→ Cl(S/R)
γ0−→ H1(G,S∗)

γ1−→ Div(S)G

γ2−→ Cl(S)G δ 1δ 0
−−−→ H2(G,S∗)

γ4−→ H2(G,L∗).

Using Diagram (5.4) it is straightforward to derive (5.5) from (5.8). □

In Proposition 12.5.12 we saw that the group Div(S)G/Div(R) is trivial whenever S/R
is unramified at every height one prime. We end this section with a description of this group
for another important class of examples. In Proposition 12.5.15 we assume that for every
prime q ∈ X1(S), if q is ramified, then q is fixed by the Galois group. That is, eq fq = n.

PROPOSITION 12.5.15. In the context of Section 12.5.3, assume that for every height
one prime q of S, if q is ramified, then q is fixed by the Galois group. Let q1, . . . ,qv be those
primes in X1(S) with ramification index eqi > 1. The case v = 0 is allowed. In the context
of Theorem 12.5.14,

Div(S)G/Div(R)∼=

{
(0) if v = 0⊕v

i=1(Z/eqi)qi if v > 0.

PROOF. Let pi = qi∩R, U = X1(R)−{p1, . . . ,pv} and V = X1(S)−{q1, . . . ,qv}. Start
with the commutative diagram

0 // ⊕v
i=1Zpi //

α

��

Div(R) π //

β

��

⊕
p∈U Zp //

γ

��

0

0 // ⊕v
i=1Zqi // Div(S)G θ ////

(⊕
q∈V Zq

)G

where the map π is the projection onto the submodule spanned by U and θ is the projection
onto the submodule spanned by V . The vertical maps α and γ are induced by β . The map α

is defined by pi 7→ eqiqi. The proof of Proposition 12.5.12 (4) shows γ is an isomorphism.
The rest follows from the Snake Lemma (Theorem 2.5.2). □

We apply the results of this section to a ramified radical extension (see Section 11.5.3).

COROLLARY 12.5.16. Let R be a noetherian normal integral domain with quotient
field K. Assume R is a Z[n−1,ζ ]-algebra, where ζ is a primitive nth root of unity in C.
Let a be a nonzero element of R and assume Div(a) is a reduced effective divisor. If
S = R[x]/(xn−a) and L = K[x]/(xn−a), then the following are true.

(1) L/K is a cyclic Galois extension with group G = ⟨σ⟩, and σ(x) = ζ x.
(2) If Div(x) = Q1 + · · ·+Qv, then in the context of Theorem 12.5.14,

v⊕
i=1

(Z/n)Qi = Div(S)G/Div(R)

is a free Z/n-module of rank v.

PROOF. By [20, Theorem 5.6.3], L/K is a Kummer extension of degree n. By Corol-
lary 12.5.11, the ramification divisor of the extension S/R is equal to {Q1, . . . ,Qv}. For
each i, the action by G on Div(S) fixes each ramified prime divisor Qi = PiS+(x). The
ramification index eQi is equal to n. The rest follows from Proposition 12.5.15. □
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5.4. Exercises.

EXERCISE 12.5.17. Let n ≥ 2 be an integer and k a field in which 2n is invertible.
Also assume k contains a primitive 2nth root of unity, ζ . For T = k[x,y,z]/(zn−xn−1y+1),
prove the following.

(1) T is an integrally closed integral domain.
(2) If α : T [x−1]→ k[x,z,x−1] is the function defined by y 7→ (zn + 1)x1−n, x 7→ x,

z 7→ z, then α is an isomorphism of k-algebras.
(3) For i = 1, . . . ,n, the ideal Qi = (x,z+ζ 2i−1) is a height one prime ideal of T .
(4) The divisor of x is Divx = Q1 + · · ·+Qn.
(5) Cl(T ) = ZQ1⊕·· ·⊕ZQn−1.
(6) Let σ be the k[x,y]-algebra automorphism of T defined by z 7→ ζ 2z (see Exer-

cise 1.1.23). Let G = ⟨σ⟩ and A = k[x,y].
(a) G is a cyclic group of order n which acts on Cl(T ) by σQ1 = −Q1−Q2−
·· ·−Qn−1, σQ2 = Q1, . . . , σQn−1 = Qn−2.

(b) p= ⟨xn−1y−1⟩ is a height one prime in A and q= ⟨z,xn−1y−1⟩ is a height
one prime in T .

(c) For the extension A→ T , the ramification index of q over p is n.
(d) Div(T )G/Div(A) is a cyclic group of order n generated by q.
(e) Cl(T )G = ⟨0⟩ (Hint: Exercise 8.5.35).
(f) In the exact sequence of Theorem 12.5.14 for the extension A→ T , the

homomorphism γ1 : H1(G,T ∗)→ Div(T )G/Div(A) is an isomorphism be-
tween cyclic groups of order n.

EXERCISE 12.5.18. Let n≥ 2 be an integer and k a field in which 2n is invertible. Also
assume k contains a primitive 2nth root of unity, ζ . For T = k[x,y,z]/(zn−xn−1+yn), prove
the following.

(1) T is an integrally closed integral domain.
(2) Let

T [x−1]
α−→ k[u,v][(un + vn)−1]

be the function defined by x 7→ (un +vn)−1, y 7→ u(un +vn)−1, z 7→ v(un +vn)−1.
Then α is an isomorphism of k-algebras.

(3) For i = 1, . . . ,n, let ℓ = z+ ζ 2i−1y. Then the ideal Pi = (x, ℓi) is a height one
prime ideal of T .

(4) In Div(T ) we have Divx = P1 + · · ·+Pn, and Divℓi = (n−1)Pi.
(5) Cl(T ) is isomorphic to the free Z/(n−1) module of rank n−1, and is generated

by P1, . . . ,Pn−1.
(6) Let σ be the k[x,y]-algebra automorphism of T defined by z 7→ ζ 2z (see Exer-

cise 1.1.23). Let G = ⟨σ⟩ and A = k[x,y].
(a) G is a cyclic group of order n which acts on Cl(T ) by σP1 = −P1−P2−
·· ·−Pn−1, σP2 = P1, . . . , σPn−1 = Pn−2.

(b) p= ⟨xn−1− yn⟩ is a height one prime in A and q= ⟨z,xn−1− yn⟩ is a height
one prime in T .

(c) For the extension A→ T , the ramification index of q over p is n.
(d) Div(T )G/Div(A) is a cyclic group of order n generated by q.
(e) Cl(T )G = ⟨0⟩ (Hint: Exercise 8.5.35).
(f) In the exact sequence of Theorem 12.5.14 for the extension A→ T , the

homomorphism γ1 : H1(G,T ∗)→ Div(T )G/Div(A) is an isomorphism be-
tween cyclic groups of order n.
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6. Reflexive Lattices over Regular Domains

In this section R denotes a noetherian regular integral domain with field of fractions
K. In Section 12.6.1 we prove that if the ring of endomorphisms of a reflexive R-lattice
M is projective, then M is projective. This theorem of Auslander and Goldman was stated
without proof in [19, Theorem 6.5.10]. In Section 12.6.2 we prove that the Picard group
of R is equal to the class group of R. As an application, for any n ≥ 2, we construct an
example of a ring R such that Cl(R) is a finite cyclic group of order n.

6.1. A Theorem of Auslander and Goldman. The goal of this section is to prove
that if a reflexive R-lattice M has a projective ring of endomorphisms, then M is projective
(Theorem 12.6.8). The proof given here is essentially the original proof by Auslander and
Goldman in [8].

THEOREM 12.6.1. Let R be a noetherian regular integral domain and assume the
Krull dimension of R is less than or equal to two. Let M be a finitely generated R-lattice.
Then M is reflexive if and only if M is projective.

PROOF. By Exercise 2.4.21, if M is projective, then M is reflexive. Assume M is a
reflexive R-lattice. By Proposition 3.6.2, it suffices to show this when R is a regular local
ring. If dim(R) = 0, then R is a field and every R-module is projective. If dim(R) = 1, then
R is a DVR (Theorem 11.2.11), and M is free by Proposition 12.1.4. Assume dim(R) = 2.
By Proposition 12.1.6, M∗ = R : M is an R-lattice. Let

0→ K0
d1−→ F0

ε−→M∗→ 0

be an exact sequence, where F0 is a finitely generated free R-module. Apply the functor
HomR(·,R) to get the exact sequence

0→M∗∗ ε∗−→ F∗0
d∗1−→ K∗0 .

By hypothesis, M = M∗∗. Since K0 is an R-submodule of F0, K0 is an R-lattice. By Propo-
sition 12.1.6, K∗0 is an R-lattice and we can embed K∗0 in a free R-lattice F1. If we define N
to be the cokernel of F∗0 → F1, then the sequence

(6.1) 0→M ε∗−→ F∗0
d∗1−→ F1→ N→ 0

is exact. Since F0 is free, so is F∗0 (Corollary 2.4.9). By Theorem 11.3.31, coh.dim(R) =
dim(R) = 2. By Theorem 8.4.5, M is projective because it is the first syzygy of (6.1). □

PROPOSITION 12.6.2. Let R be a noetherian integrally closed local integral domain
with maximal ideal m. If M is a finitely generated R-module such that HomR(M,M) is
reflexive and Ext1R(M,M) = 0, then M = M∗∗.

PROOF. By Exercise 9.2.26, HomR(M,M) = HomR(M,M)∗∗ is torsion free. By Ex-
ercise 9.2.24, M is torsion free. In particular, M is an R-lattice. If ν is the natural map and
C denotes the cokernel of ν , then

(6.2) 0→M ν−→M∗∗→C→ 0

is an exact sequence. If dim(R)≤ 1, then M is a finitely generated free R-module, hence is
reflexive (Exercise 2.4.21). Inductively, assume d = dim(R)> 1 and that the proposition is
true for all noetherian integrally closed local integral domains of Krull dimension less than
d. For any p ∈ SpecR, if ht(p) < d, then by the induction hypothesis, Cp = 0. Therefore,
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SuppR(C)⊆{m} and by Exercise 9.2.25, to show C = 0, it suffices to show HomR(M,C) =
0. The long exact sequence of Ext modules associated to (6.2) is

(6.3) 0→ HomR(M,M)
ν∗−→ HomR(M,M∗∗)→ HomR(M,C)

δ 0
−→ Ext1R(M,M)→ . . .

(Proposition 8.3.12). Since Ext1R(M,M) = 0 by assumption, it suffices to show ν∗ is an
isomorphism. The reader should verify that the diagram

HomR(M,M)
ν∗ //

=

��

HomR(M,M∗∗)

HomR(M,M)∗∗
α∗ // (M∗⊗R M)∗

β ∗

OO
(6.4)

commutes where α∗ and β ∗ are the isomorphisms of Proposition 12.1.16. □

LEMMA 12.6.3. Let R be a noetherian commutative local ring with maximal ideal m.
Let M and N be finitely generated R-modules such that HomR(M,N) is nonzero.

(1) If depth(N)≥ 1, then depth(HomR(M,N))≥ 1.
(2) If depth(N)≥ 2, then depth(HomR(M,N))≥ 2.

PROOF. (1): Let x be a regular element for N in m. Applying the left exact covariant
functor HomR(M, ·) to the short exact sequence

0→ N ℓx−→ N→ N/xN→ 0

yields the exact sequence

0→ HomR(M,N)
H(ℓx)−−−→ HomR(M,N)→ HomR(M,N/xN).

The module HomR(M,N) is finitely generated (Exercise 4.1.25). By Nakayama’s Lemma
(Corollary 2.2.5), the cokernel of H(ℓx) is a nonzero submodule of HomR(M,N/xN). This
shows x is a regular element for HomR(M,N).

(2): Let y be a regular element for N/xN in m. It follows from (1) that y is a regular
element for HomR(M,N/xN) and (x,y) is a regular sequence for HomR(M,N) in m. □

LEMMA 12.6.4. Let R be a regular local ring of dimension greater than or equal to
three. Let M and N be nonzero finitely generated R-modules satisfying

(1) depth(N)≥ 2,
(2) HomR(M,N) is R-projective, and
(3) Ext1R(M,N) ̸= 0.

Then depth(Ext1R(M,N))> 0.

PROOF. Let n = dim(R), m the maximal ideal, and k = R/m the residue field. Let
x ∈m a regular element for N. The long exact Ext sequence associated to

0→ N ℓx−→ N→ N/xN→ 0

is

(6.5) 0→ HomR(M,N)
H(ℓx)−−−→ HomR(M,N)→ HomR(M,N/xN)→

Ext1R(M,N)
H1(ℓx)−−−→ Ext1R(M,N)→ . . .

(Proposition 8.3.12). Write E for Ext1R(M,N) and assume for contradiction’s sake that the
depth of E is equal to zero. Since R is noetherian, and M and N are finitely generated, we
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know that E is finitely generated (Lemma 8.3.13 (2)). Let Ψ= {p∈AssocR(E) | x ̸∈ p}. Let
K denote the kernel of the localization map θ : E→ R[x−1]⊗R E. By Proposition 9.2.6, K
is the unique submodule of E such that AssocR(K) = AssocR(E)−Ψ and AssocR(E/K) =
Ψ. By Exercise 11.3.15, m is an associated prime of E. Since x ∈ m, m ∈ AssocR(K).
Since K is a finitely generated R-module, the reader should verify that for some j > 0, the
kernel of the left multiplication map ℓx j : E → E is equal to K. Since R[x−1] = R[x− j], if
necessary we replace x with x j and assume K is equal to the kernel of H1(ℓx j) in (6.5).
Since m ∈ AssocR(K), by Exercise 11.3.15, depth(K) = 0. Write H for HomR(M,N) and
Q for HomR(M,N/xN). The short exact sequence

(6.6) 0→ H/xH→ Q→C→ 0

of R-modules gives rise to the long exact sequence of the modules TorR
i (·,k)

(6.7) · · · → Torn+1(Q,k)→ Torn+1(K,k)→ Torn(H/xH,k)

→ Torn(Q,k)→ Torn(K,k)→ Torn−1(H/xH,k)→ . . .

(Proposition 8.3.2). Because H is projective and the sequence H → H → H/xH → 0 is
exact, proj.dim(H/xH)≤ 1. By Proposition 8.4.10, we have Tori(H/xH,k) = 0 for i≥ 2.
Because n−1≥ 2, the sequence (6.7) produces two isomorphisms

Torn+1(Q,k)∼= Torn+1(K,k)

Torn(Q,k)∼= Torn(K,k)
(6.8)

Since R is a regular local ring with dimension n, by Proposition 11.3.39, proj.dim(K) =
dim(R)−depth(K) = n. By Proposition 8.4.10, we have Torn+1(K,k) = 0 and Torn(K,k)
is nonzero. By Eq. (6.8) and Proposition 8.4.10, proj.dim(Q) = n. By Proposition 11.3.39,
depth(Q) = depth(HomR(M,N/xN) = 0. This is a contradiction to Lemma 12.6.3 (2). □

LEMMA 12.6.5. Let R be a regular local ring. If M is a finitely generated reflexive
R-module such that HomR(M,M) is free, then Ext1R(M,M) = 0.

PROOF. The proof is by induction on n= dim(R). If dim(R)≤ 2, then M is projective,
by Theorem 12.6.1, and Ext1R(M,M) = 0, by Proposition 8.3.12. Assume n ≥ 3 and that
the proposition is true for all rings of dimension less than n. Let m be the maximal ideal
in R. Let p be a prime ideal in SpecR−{m}. By Corollary 11.3.38, Rp is a regular local
ring and dim(Rp) = ht(p) < n. Applying Proposition 3.5.8, the reader should verify that
Rp together with the module Mp = M⊗R Rp satisfy the hypotheses of the proposition. By
Lemma 8.3.13 (3) and the induction hypothesis, Ext1R(M,M)p = Ext1Rp

(Mp,Mp) = 0. This
proves Supp(Ext1R(M,M)) ⊆ {m}. For contradiction’s sake, assume Ext1R(M,M) ̸= 0. By
Theorem 9.2.7, m is the only associated prime of Ext1(M,M). By Exercise 11.3.15, this
implies depth(Ext1R(M,M)) = 0, which contradicts Lemma 12.6.4. □

LEMMA 12.6.6. Let R be a noetherian commutative local ring. Let M and N be finitely
generated R-modules such that proj.dim(M) = n is finite. Then ExtnR(M,N) ̸= 0.

PROOF. By Theorem 8.4.5 and Exercise 8.4.21, there exists a resolution

0→ Fn
dn−→ ·· · d3−→ F2

d2−→ F1
d1−→ F0

ε−→M→ 0

such that for all i ≥ 0, Fi is a finitely generated free R-module and imdi+1 ⊆ mFi. By
Theorem 8.2.19, there is an exact sequence

HomR(Fn−1,N)
H(dn)−−−→ HomR(Fn,N)→ ExtnR(M,N)→ 0.
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If we write RankR(Fi) = ri, then HomR(Fi,N)∼= Nri . Since the image of dn is contained in
mFn−1, the image of H(dn) : Nrn−1 → Nrn is contained in mNrn . By Nakayama’s Lemma
(Corollary 2.2.2), H(dn) is not onto. □

PROPOSITION 12.6.7. Let R be a regular local ring. Let M be a nonzero finitely
generated R-module. Then the following are true.

(1) If dim(R)≤ 2, then M∗ = HomR(M,R) is a finitely generated free R-module.
(2) If dim(R)≤ 2, and M = M∗∗, then M is free.
(3) If M = M∗∗ and HomR(M,M) is free, then M is free.

PROOF. (1) and (2): Follow directly from Proposition 11.3.39 and Lemma 12.6.3 (or
Example 12.1.3 (2), Exercise 12.1.19 and Theorem 12.6.1).

(3): The proof is by induction on n = dim(R). Part (2) covers the cases n ≤ 2. We
now prove the n = 3 case. By Proposition 11.3.39, depth(R) = dim(R) = 3. Lemma 12.6.3
applied to M = M∗∗ gives depth(M) ≥ 2. By Proposition 11.3.39, proj.dimR(M) ≤ 1.
By Lemma 12.6.5, Ext1R(M,M) = 0. Lemma 12.6.6 implies proj.dimR(M) ̸= 1, so we
conclude that proj.dimR(M) = 0, which proves that M is free.

Inductively, assume n≥ 4 and that (3) is true for any ring of dimension less than n. Let
m be the maximal ideal of R. Let a1, . . . ,an be a regular system of parameters for R, and
take a to be a1. Since M = M∗∗ is torsion free, AssocR(M) = (0) and a is a regular element
for M in m. By Theorem 11.3.31, R̄ = R/aR is a regular local ring with Krull dimension

dim(R̄) = n−1. Let M̄ = M/aM. The short exact sequence 0→M ℓa−→M→ M̄→ 0 gives
rise to the long exact sequence

0→ HomR(M,M)
H(ℓa)−−−→ HomR(M,M)→ HomR(M,M̄)

∂−→ Ext1R(M,M)

(Proposition 8.3.12). By Lemma 12.6.5, Ext1R(M,M) = 0, so we have the isomorphism of
R̄-modules HomR(M,M)⊗R R̄ ∼= HomR(M,M̄). Since HomR(M,M) is a free R-module,
HomR(M,M̄) is a free R̄-module. By Theorem 2.4.10 (the Adjoint Isomorphism),

HomR̄(M̄,M̄)∼= HomR(M,M̄)

hence both modules are R̄-free. By Exercise 9.2.24, M̄ is torsion free. By Proposi-
tion 12.1.16,

HomR̄(M̄,M̄) = HomR̄(M̄,M̄)∗∗ ∼= HomR̄(M̄
∗,M̄∗)

is R̄-free. By Lemma 12.1.9, M̄∗ is reflexive. By our induction hypothesis applied to R̄ and
M̄∗, we conclude that M̄∗ is R̄-free.

Now depth(R̄) = dim(R̄) = n−1≥ 3 and HomR̄(M̄, R̄) = M̄∗ is R̄-free. If follows from
Lemma 12.6.4, that the statement:

(6.9) If ExtiR̄(M̄, R̄) ̸= 0, then depth(ExtiR̄(M̄, R̄))> 0.

is true. The Adjoint Isomorphism (Lemma 8.3.14) induces isomorphisms

(6.10) ExtiR̄(M̄, R̄)∼= ExtiR(M, R̄)

for all i≥ 0. Therefore, the statement:

(6.11) If ExtiR(M, R̄) ̸= 0, then depth(ExtiR(M, R̄))> 0.

is equivalent to (6.9). The short exact sequence

(6.12) 0→ R ℓa−→ R→ R̄→ 0
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gives rise to the long exact sequence

0→M∗
ℓ∗a−→M∗→ HomR(M, R̄) ∂−→ Ext1R(M,R)

ℓ∗a−→ Ext1R(M,R)→ Ext1R(M, R̄)

(Proposition 8.3.12). Let p ∈ SpecR−{m}. By Lemma 8.3.13,

(6.13) Ext1R(M,R)p ∼= Ext1Rp
(Mp,Rp).

Our induction hypothesis applied to Rp and Mp implies that Mp is a free Rp-module. By
Proposition 8.3.12, both groups in (6.13) are trivial. This proves that Supp(Ext1R(M,R))⊆
{m}. For contradiction’s sake assume that Ext1R(M,R)) ̸= (0). Since a ∈m, the image of

Ext1R(M,R)
ℓ∗a−→ Ext1R(M,R)

is contained in mExt1R(M,R). By Lemma 8.3.13 the module Ext1R(M,R) is finitely gener-
ated. By Nakayama’s Lemma, coker(ℓ∗a) is a nontrivial submodule of Ext1R(M, R̄). Since

Supp(coker(ℓ∗a))⊆ Supp(Ext1R(M,R))⊆ {m}

it follows from Theorem 9.2.7 that m is the only associated prime of Ext1R(M, R̄). By Exer-
cise 11.3.15, this implies depth(Ext1R(M, R̄)) = 0, which is a contradiction to the statement
in (6.11). This shows that Ext1(M,R) = 0, so the sequence

0→M∗
ℓ∗a−→M∗→ HomR(M, R̄)→ 0

is exact. As mentioned in (6.10), HomR̄(M̄, R̄) ∼= HomR(M, R̄). Since M̄∗ is R̄-free, this
proves M∗/aM∗, which is isomorphic to HomR(M, R̄), is also R̄-free. We know that
proj.dimR(R̄) = 1 (for instance, by the exact sequence (6.12)), hence proj.dimR(M

∗/aM∗)
is equal to 1. By Proposition 8.4.10, proj.dimR(M

∗) = 0, hence M∗ is R-free. Therefore,
M = M∗

∗
is R-free. □

THEOREM 12.6.8. Let R be a noetherian regular integral domain with field of frac-
tions K. Let V be a finite dimensional K-vector space and M an R-lattice in V . If M is
R-reflexive and HomR(M,M) is R-projective, then M is R-projective.

PROOF. Let p∈ SpecR. Then Rp is a regular local ring (Corollary 11.3.38). By Propo-
sition 3.5.8 we see that Mp is Rp-reflexive and HomRp(Mp,Mp) is Rp-free. By Proposi-
tion 12.6.7, Mp is Rp-free. □

6.2. The Class Group of a Regular Domain.

THEOREM 12.6.9. Let R be a noetherian regular integral domain with field of frac-
tions K. Then the following are true.

(1) Pic(R) = Cl(R).
(2) If R is a local ring, then Cl(R) = (0) and R is a unique factorization domain.
(3) If R is a semilocal ring, then Cl(R) = (0) and R is a unique factorization domain.

PROOF. (1): Let F be a reflexive fractional ideal of R in K. It follows from Exer-
cise 12.4.13 that F : F = R is free of rank one. By Theorem 12.6.8, F is projective. The
equality Pic(R) = Cl(R) follows from Exercise 12.4.16.

(2) and (3): For any local ring the Picard group is trivial since a finitely generated
projective module is free, by Proposition 3.4.3. The same is true for finitely generated
projective modules of constant rank over a semilocal ring, by Exercise 4.2.13. By (1), the
class group, Cl(R), is trivial. By Corollary 11.4.13, R is a UFD. □
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EXAMPLE 12.6.10. In this example we show how to construct a regular integral do-
main R such that Pic(R) is a finite cyclic group of order n. The example comes from
Algebraic Geometry and is based on the fact that if k is a field, then the class group of the
projective plane P2

k is an infinite cyclic group and is generated by a line. For simplicity’s
sake we construct our example using the projective plane. However, the same ideas apply
in higher dimensions. Start with any field k and any integer n > 1. Let

S = k[x,y,z] = S0⊕S1⊕S2⊕·· ·⊕Sn⊕·· ·
be the polynomial ring in three variables, with the usual grading (Example 7.2.1). Let
f ∈ Sn be a homogeneous irreducible polynomial of degree n. The localized ring S[ f−1]
has a Z-grading: S[ f−1] =

⊕
i∈Z S[ f−1]i. If p ∈ Sm is homogeneous of degree m, then

p f−d is a typical homogeneous element of degree m− dn ∈ S[ f−1]i. Let R = S[ f−1]0 be
the subring of homogeneous elements in S[ f−1] of degree 0. We will show the following.

(1) R is a finitely generated k-algebra, a regular noetherian integral domain, and the
Krull dimension of R is dim(R) = 2.

(2) Pic(R) = Cl(R)∼= Z/n.
(3) R∗ = k∗.

A typical element of R is a fraction p f−d where p ∈ Sdn. Since R is a subring of the field
k(x,y,z), R is an integral domain. Since f is irreducible and has degree n≥ 2, f (0,y,z) is a
homogeneous polynomial in k[y,z] of degree n. Therefore, the homomorphism k[x,y,z]→
k[y,z] defined by x 7→ 0 induces

R = S[ f−1]0
θ−→ k[y,z][( f (0,y,z))−1]0.

Notice that θ is onto, and since the image is an integral domain, p= ker(θ) is a prime ideal
in R. Consider the local ring Rp. We will now show that Rp is a DVR and x/y is a local
parameter. If h+ i+ j = dn, then the monomial xhyiz j f−d is in the kernel of θ if and only
if h≥ 1. Then

(6.14)
xhyiz j

f d
f d

yh+iz j =
xh

yh

shows pRp is generated by x/y. This also proves that ht(p) = 1. Notice that in S[ f−1],
which is a UFD, the element xn f−1 belongs to the unique minimal prime ideal (x) =
(x f−1). Viewing R as a subring of S[ f−1], we see that xn f−1 is irreducible in R, and p is
the unique minimal prime of R containing xn f−1. Using (6.14) we compute

(6.15) νp(xn f−1) = n.

Consider the localized ring R[ f x−n]. Given p ∈ Sdn we multiply and divide by (xn f−1)d to
get

p f−d = (px−dn f d)( f x−n)−d f−d

= p(1,y/x,z/x)( f (1,y/x,z/x))−d .

Therefore, the assignments x 7→ 1, y 7→ u, z 7→ v induce an isomorphism of k-algebras

(6.16) R[ f x−n]→ k[u,v][( f (1,u,v))−1].

The homomorphism in (6.16) is usually specified by saying “dehomogenize with respect
to x”. Notice that the ring on the right hand side of (6.16) is a finitely generated k-algebra,
a regular integral domain, and has Krull dimension two. By the same argument used in
(6.16), but dehomogenizing with respect to y and z, the reader should verify that R[ f y−n]
and R[ f z−n] are finitely generated regular integral k-algebras of Krull dimension two. For
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some N > 0, f N is a sum of monomials of the form xhyiz j where at least one of h, i, j is
greater than n. Therefore, 1= f N f−N is in the ideal of R generated by xn f−1,yn f−1,zn f−1.
This shows that R[ f x−n]⊕ R[ f y−n]⊕ R[ f z−n] is a faithfully flat extension of R (Exer-
cise 3.5.28) By Proposition 3.5.36, R is finitely generated as a k-algebra. For each prime
ideal P ∈ SpecR, the local ring RP is regular and has dimension two. This proves (1).
Since f (x,y,z)x−n = f (1,yx−1,zx−1), we see that f (1,u,v) is irreducible because f (x,y,z)
is irreducible. Applying Nagata’s Theorem (Theorem 11.4.14) to the ring R, the sequence

(6.17) 1→ R∗→ (R[ f x−n])∗
Div−−→ Zp→ Cl(R)→ Cl(R[ f x−n])→ 0

is exact. By the isomorphism in (6.16), we see that R[ f x−n] is a UFD. Hence Cl(R[ f x−n])
is equal to (0) by Corollary 11.4.13. Using (6.16) and the fact that k[u,v] is a UFD, we see
that

(R[ f x−n])∗ = k∗×⟨xn f−1⟩
is an internal direct sum. This and (6.15) shows that the image of Div in (6.17) is nZp.
Therefore, Cl(R) is generated by p and has order n. Part (2) follows from Theorem 12.6.9,
and the reader is asked to prove Part (3) in Exercise 12.6.11.

6.3. Exercise.

EXERCISE 12.6.11. If R is the ring of Example 12.6.10, prove the following.

(1) R∗ = k∗.
(2) pn is equal to the principal ideal generated by xn f−1.

7. The Class Group of a Graded Ring

Most of the results in this section were originally published in [54]. For additional
results on this subject, the interested reader is referred to [54], [22, § 10], and [47, § B.II.1].
Throughout this section all rings are commutative. The reader is referred to Section 3.8 for
the definitions of graded rings and modules. Let R =⊕∞

n=0Rn be a graded integral domain
and W = Rh−{0} the set of nonzero homogeneous elements. The localization W−1R is
viewed as a subring of the quotient field K of R. An element aw−1 in W−1R is said to be
homogeneous if a∈ Rh and w∈W . The degree of a homogeneous element aw−1 is defined
to be dega−degw. The reader should verify:

(1) The degree function is well defined on homogeneous elements.
(2) The sum of two homogeneous elements of the same degree d is homogeneous of

degree d.
(3) The product of a homogeneous element of degree d with a homogeneous element

of degree e is homogeneous of degree d + e.
(4) Every element of W−1R can be written uniquely as a finite sum of homogeneous

elements of different degrees.

LEMMA 12.7.1. Let R = ⊕∞
n=0Rn be a graded integral domain and W = Rh−{0}.

Then the following are true.

(1) W−1R is a Z-graded ring, a graded R-module and contains R as a graded sub-
ring. If K0 =

(
W−1R

)
0 is the subring consisting of all homogeneous elements of

degree zero, then K0 is a field.
(2) If R ̸= R0, then W−1R is isomorphic to the Laurent polynomial ring K0[t, t−1].

PROOF. (1): Is left to the reader.
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(2): Since R ̸= R0, K0 is not equal to W−1R. Therefore, the set

{dega−degw | a ∈ Rh,w ∈W}

contains nonzero integers. Let t = aw−1 ∈W−1R, be a homogeneous element of minimal
positive degree. That is, dega > degw and d = dega− degw is minimal. The proof is a
series of three steps.

Step 1: Show that t = aw−1 is transcendental over K0. Suppose we have an integral
relation

(7.1) α0tr +α1tr−1 + · · ·+αr−1t +αr = 0

where each αi ∈ K0. Write αi = aiw−1
i , where degai = degwi. Let y = w0w1 · · ·wr and set

yi = yw−1
i . Then αi = aiyiy−1. If we set bi = aiyi, then degbi = degy for each i. Upon

multiplying both sides of (7.1) by ywr, we get

(7.2) b0ar +b1war−1 + · · ·+br−1wr−1a+brwr = 0

which is a relation in R. The left hand side of (7.2) is a sum of homogeneous elements.
Since degar > degwar−1 > · · ·> degwr−1a > degwr, no two terms in (7.2) have the same
degree. Therefore, bi = 0 for all i. This implies αi = 0 for all i.

Step 2: Since t is transcendental over K0, we have K0[t]⊆W−1R. In the quotient field
of R we have the chain of subrings: K0 ⊆ K0[t] ⊆ K0[t, t−1] ⊆ K0(t). Since dega > 0, it
follows that a ∈W . Hence t−1 = wa−1 ∈W−1R. Therefore, we have K0[t, t−1]⊆W−1R.

Step 3: Show that W−1R = K0[t, t−1]. Suppose x ∈ Rh, y ∈W , and degx−degy = m.
By the division algorithm, there exist integers q, r, such that m = qd + r and 0 ≤ r < d.
Then

(degx−degy)−q(dega−degw) = m−qd = r.

Since t was chosen so that d is minimal, this implies the homogeneous element xy−1t−q

is of degree zero. That is, z = xy−1t−q ∈ K0, which implies xy−1 = tqz ∈ K0[t, t−1]. Since
every element of W−1R is a sum of homogeneous terms of the form xy−1, this shows
W−1R⊆ K0[t, t−1]. □

PROPOSITION 12.7.2. If R=⊕∞
n=0Rn is a graded noetherian integrally closed integral

domain, then the natural map Divh(R)→ Cl(R) is onto, where Divh(R) is the subgroup of
Div(R) generated by those prime ideals in X1(R) which are homogeneous.

PROOF. Let W = Rh−{0}. By Lemma 12.7.1, W−1R = K0[t, t−1]. Since K0[t] is
factorial, so is the localization W−1R = K0[t, t−1]. By Exercise 11.4.22, Cl(R) is generated
by the classes of those prime divisors p ∈ X1(R)−X1(W−1R). Let p be a prime ideal in R
of height one and assume p∩W ̸= /0. Then p is homogeneous, by Lemma 9.5.2 (4). □

LEMMA 12.7.3. Let R = ⊕∞
n=0Rn be a graded noetherian integral domain with field

of fractions K. Let F be a fractional ideal of R in K which is a graded R-submodule of
W−1R. Then the following are true.

(1) There is a nonzero homogeneous r ∈ Rh such that rF ⊆ R.
(2) F−1 = R : F is a fractional ideal of R in K and a graded R-submodule of W−1R.

PROOF. (1): By Lemma 12.2.1, there exists c ∈ R− (0) such that cF ⊆ R. Write c =
c0 +c1 + · · ·+cd as a sum of homogeneous elements, and assume cd ̸= 0. Let y ∈ Fh− (0)
be a nonzero homogeneous element of F . By Lemma 12.7.1, R is a graded subring of
W−1R. Since cy = (c0 + c1 + · · ·+ cd)y is in R, it follows that cdy ∈ R. If we set r = cd ,
then rF ⊆ R.
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(2): By Proposition 12.1.6, F−1 is a fractional ideal of R in K. By (1), there is r ∈
Rh−{0} such that rF ⊆ F ∩R. Then there exists s ∈ F ∩Rh, s ̸= 0. If t ∈ F−1, then
ts = x is an element of R. Since s ∈W , we see that t = xs−1 is in W−1R. This shows
F−1 is an R-submodule of W−1R. Write t = t1 + t2 + · · ·+ td as a sum of homogeneous
elements in W−1R, where deg ti = di. Then for each homogeneous element y ∈ Fh, we
have ty = t1y+ t2y+ · · ·+ tdy is in R. By Lemma 12.7.1, R is a graded subring of W−1R.
Therefore, tiy ∈ R, for each i. Since y was arbitrary, this implies ti ∈ F−1, for each i.
Therefore, F−1 is a graded R-submodule of W−1R. □

COROLLARY 12.7.4. Let R = ⊕∞
n=0Rn be a graded noetherian integrally closed in-

tegral domain. If R0 is a field and hence, the exceptional ideal m = R+ =
⊕

∞
n=1 Rn is

maximal, then the natural homomorphism Cl(R)→ Cl(Rm) is an isomorphism.

PROOF. The natural map γ : Cl(R)→ Cl(Rm) is onto, by Exercise 11.4.22. Let K be
the field of fractions of R and I a reflexive fractional ideal of R in K. To show that γ is
one-to-one, we prove that if Im is principal, then I is principal. By Proposition 12.7.2, we
can assume I is in the subgroup of Reflex(R) generated by the homogeneous prime ideals
of R in X1(R). The reader should verify that the product of two fractional ideals of R which
are graded R-submodules of W−1R is again a graded R-submodule of W−1R. Using this,
and Lemma 12.7.3 (2), we see that if I is in the subgroup of Reflex(R) generated by the
homogeneous prime divisors, then I is a graded R-submodule of W−1R. By

Now let I be a reflexive fractional ideal of R which is a graded R-submodule of W−1R
and assume Im is principal. We show that I is principal. By Lemma 12.7.3 (1), we can
assume I ⊆ R. If ξ1, . . . ,ξs is a set of homogeneous elements of I which generate I as an R-
module, then the vector space Im⊗R/m has dimension one and is generated by the image
of one of the elements ξi. By Proposition 3.4.3, Im is generated by the image of the same
element ξi. Let ξ ∈ I be a homogeneous element such that Im = ξ Rm. Let x be any nonzero
homogeneous element of I. Then x = ξ (yz−1) for some y ∈ R−{0}, z ∈ R−m. Write
y = yq + yq+1 + · · ·+ yq+d and z = z0 + z1 + · · ·+ ze as sums of homogeneous elements.
Since y ̸= 0, assume yq ̸= 0. Since z ∈ R−R+, we know that z0 ̸= 0. Then xz = ξ y implies
that the relation

xz0 + xz1 + · · ·+ xze = ξ yq +ξ yq+1 + · · ·+ξ yq+d

holds in the graded module I. Therefore, xz0 = ξ yq. Since R0 is a field, z0 is invertible
in R. Therefore, x = ξ (yqz−1

0 ) is an element of ξ R. Since I is generated by homogeneous
elements, this shows I = ξ R. □

8. The Ring of Integers in a Global Field

In this section we prove two main results from classical Algebraic Number Theory. A
field L is said to be a global field, if one of the following is true:

(1) L is a finitely generated algebraic extension field of Q and B is the integral closure
of Z in K. In this case we also say L is an algebraic number field and B is the
ring of algebraic integers in L.

(2) k[t] is the ring of polynomials in one variable over a finite field k, k(t) is the
field of rational functions, L is a finitely generated separable extension field of
k(t), and B is the integral closure of k[t] in L. In this case we also say L is the
function field of an algebraic curve over the finite field k and B is called the ring
of integers in L.
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Notice that in (2) the ring of integers B depends not only on the field L but also on the
choice of t.

Let L be a global field and B the ring of integers in L. By Corollary 6.1.8, L is the
quotient field of B. In Section 8.1 we show that the class group of the ring B is finite.
This is proved in Theorem 12.8.8. In Section 8.2 we assume B is the ring of integers in an
algebraic number field. In this case, we show that B∗, the group of units in B, is a finitely
generated abelian group. The torsion subgroup of B∗ is a cyclic group.

This is half of the Dirichlet Units Theorem. The second half of Dirichlet’s theorem,
which we do not prove here, describes the rank of the torsion free part of B∗.

8.1. The Class Group of a Global Field is Finite. In this section we show that if R
is the ring of integers in a global field, then R is a Dedekind domain (Proposition 12.8.3)
and the class group of R is a finite abelian group (Theorem 12.8.8). The proof we give is
based on [58] and [16, §20]. For the remainder of this section, let A be either Z or k[t],
where k is a fixed finite field of order q. Let K be the quotient field of A, L a global field
which is a finitely generated separable extension field of K, and B the ring of integers in L.
The ring A is a UFD, hence is integrally closed in K (Proposition 6.1.5). Hence K is itself
a global field with ring of integers A.

LEMMA 12.8.1. In the above context, let V be a finite dimensional K-vector space,
and M1 ⊆M2 a tower of A-lattices in V . Then the following are true.

(1) Each Mi is a finitely generated free A-module and RankA(Mi) = dimK(V ).
(2) The index [M2 : M1] is finite. The group M2/M1 is a finite abelian group.
(3) There are only finitely many A-lattices M such that M1 ⊆M ⊆M2.

PROOF. (1): Since A is a PID, this follows from Proposition 12.1.4.
(2): By Proposition 12.1.1 there exists an element α ∈ A− (0) such that αM2 ⊆M1 ⊆

M2. By (1), M2/αM2 is isomorphic to the direct sum of dimK(V ) copies of the cyclic
A-module A/αA. If A = Z, then the group A/αA is finite of order |α|. If A = k[t], then by
Example 1.6.10 (2), A/αA is a k-vector space of dimension degα . The group A/αA has
order qdegα . The rest follows from Lagrange’s Theorem, Theorem 1.1.1.

(3): By Proposition 12.1.1, any A-module M such that M1 ⊆M ⊆M2 is an A-lattice in
V . This follows from (2) and Theorem 1.1.12 (3). □

In the above context, if I is a nonzero ideal in A, then as seen in Lemma 12.8.1 (2), the
index [A : I] is finite. Let NA : A→ N∪{0} be the function defined by

NA(α) =

{
0 if α = 0
[A : αA] if α ̸= 0.

Suppose α ̸= 0. The proof of Lemma 12.8.1 (2) shows that

NA(α) =

{
|α| if A = Z
qdegα if A = k[t].

LEMMA 12.8.2. In the above context, the function NA : A→ N∪{0} satisfies:

(1) If m ∈ N and Ξ = {α ∈ A | NA(α)≤ m}, then Ξ is a finite set and |Ξ| ≥ m.
(2) If α,β ∈ A, then NA(αβ ) = NA(α)NA(β ) and NA(α +β )≤ NA(α)+NA(β ).
(3) If α ∈ A∗, then NA(α) = [A : αA] = 1.

PROOF. Part (3) is left to the reader. The proofs of (1) and (2) are split into two cases.
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First assume A = Z. The set Ξ = {α ∈ Z | |α| ≤ m} has cardinality 2m+ 1, which
proves (1). Part (2) follows from the fact that on Z the absolute value function satisfies
|αβ |= |α||β | and |α +β | ≤ |α|+ |β |.

If A = k[t] and α ∈ A, then NA(α) = qdegα ≤ m if and only if degα ≤ logq(m). If i
is the unique integer such that qi ≤ m < qi+1, then i ≤ logq(m) < i+ 1 and the set Ξ =

{α ∈ A | deg(α)< i+1} has cardinality qi+1. Since qi+1 ≥ m, this proves (1). Part (2) is
obviously true if one or more of α , β , or α +β is equal to 0. Otherwise,

NA(αβ ) = qdeg(αβ ) = qdeg(α)+deg(β ) = qdeg(α)qdeg(β ) = NA(α)NA(β )

and

NA(α +β ) = qdeg(α+β ) ≤ qmax(deg(α),deg(β )) ≤ qdeg(α)+qdeg(β ) = NA(α)+NA(β ).

□

PROPOSITION 12.8.3. In the above context, let L be a global field and B the ring of
integers in L. Then the following are true.

(1) B is a Dedekind domain with quotient field L.
(2) B is a finitely generated A-lattice in L, hence is a free A-module of rank dimK(L).
(3) If A = k[t], then B is a finitely generated k-algebra.

PROOF. Part (1) follows from Theorem 12.3.7. Parts (2) and (3) follow from Theo-
rem 6.1.13, Lemma 12.8.1, and Exercise 1.1.22. □

As above, A is either Z or k[t], where k is a fixed finite field of order q. The quotient
field of A is denoted K. Let Λ be a finite dimensional K-algebra. Assume Λ is a domain.
By Lemma 6.1.4, this is equivalent to assuming Λ is a division ring. We say Λ is a finite
dimensional K-division algebra. Let B be an A-subalgebra of Λ which is also an A-lattice
in Λ. We call the ring B an A-order in Λ.

By Lemma 12.8.1, B is a free A-module of rank n = dimK(Λ). If u1, . . . ,un is an
A-basis for B, then u1, . . . ,un is also a K-basis for Λ. As in Example 6.2.13, the norm
NΛ

K : Λ→ K is a homogeneous polynomial function on Λ of degree n. With respect to the
basis u1, . . . ,un we can identify Λ with affine n-space over K. Under this identification, the
norm NΛ

K : Λ→ K corresponds to a homogeneous polynomial F(x1, . . . ,xn) in K[x1, . . . ,xn]
of degree n. Given a point (s1, . . . ,sn) in Kn, we have the element β = s1u1 + · · ·+ snun in
Λ, and ℓβ is the “left multiplication by β” map on Λ. Then F(s1, . . . ,sn) is equal to NΛ

K (β ),
which is the determinant det(ℓβ ). The norm NΛ

K : Λ→ K restricts to a norm NB
A : B→ A

(Exercise 1.7.26).
The formula derived in Lemma 12.8.4 below bears an interesting resemblance to that

of Exercise 1.7.28 (2).

LEMMA 12.8.4. In the above context, let β be a nonzero element in B. Then the right
ideal βB is an A-submodule of B of finite index and [B : βB] = NA(NB

A (β )) = |det(ℓβ )|.

PROOF. By Lemma 12.8.1, the index [B : βB] is finite. By the Simultaneous Bases
Theorem (Corollary 1.7.20), there is a basis u1, . . . ,un for B over A and elements δ1, . . . ,δn
in A− (0) such that βui = δiui for each i and δ1 | δ2 | · · · | δn. Then det(ℓβ )) = δ1δ2 · · ·δn.
The sequence of A-modules

0→ B
β−→ B→ B/βB→ 0
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is exact and B/βB is isomorphic to the direct sum A/δ1A⊕ ·· · ⊕ A/δnA of cyclic A-
modules. The group A/δiA has order NA(δi). By Lemma 12.8.2, NA is multiplicative.
Therefore [B : βB] = NA(δ1) · · ·NA(δn) = NA(δ1 · · ·δn) = NA(det(ℓβ )) = NA(NB

A (β )) □

LEMMA 12.8.5. In the above context, let u1, . . . ,un be an A-basis for B. Denote by
F(x1, . . . ,xn) the homogeneous polynomial of degree n in A[x1, . . . ,xn] associated to the
norm map NB

A : B→ A. Then there is a constant U ∈ N such that for every ε ∈ N, if
0≤ si ≤ ε for each 1≤ i≤ n and β = s1u1 + · · ·+ snun, then [B : βB]≤ εnU.

PROOF. As in [20, Section 3.6.1], write F as a linear combination of monomials of
degree n: F(x1, . . . ,xn) = ∑

r
i=1 aix

ei,1
1 · · ·x

ei,n
n , where ai ∈ A, ei, j ∈ N∪{0}, and ei,1 + · · ·+

ei,n = n for every i. Let U = ∑
r
i=1 NA(ai) and assume ε ∈ N, (s1, . . . ,sn) ∈ An, NA(si) ≤ ε

for each 1≤ i≤ n, and β = s1u1 + · · ·+ snun. Using Lemmas 12.8.4 and 12.8.2, we have

[B : βB] = NA(NB
A (β ))

= NA(F(s1, . . . ,sn))

= NA

(
r

∑
i=1

ais
ei,1
1 · · ·s

ei,n
n

)

≤
r

∑
i=1

(NA(ai)NA(s1)
ei,1 · · ·NA(sn)

ei,n)

≤
r

∑
i=1

NA(ai)ε
n

≤ ε
nU.

□

LEMMA 12.8.6. As above, let A be either Z or k[t], where k is a fixed finite field of
order q. Let K be the quotient field of A, Λ a finite dimensional K-division algebra, B an
A-order in Λ. Then there exists N ∈ N such that for every right ideal J of B that is also an
A-lattice in Λ, the following are true.

(1) There exists an element ξ in J− (0) such that [B : ξ B] = NA(NB
A (ξ ))≤ [B : J]N.

(2) ξ−1J is a right B-submodule and A-lattice in Λ such that B⊆ ξ−1J and [ξ−1J :
B]≤ N.

PROOF. (1): Let {u1, . . . ,un} be an A-basis for B. Let r be the maximum integer in
{r ∈ N | rn ≤ [B : J]}. Then r is well defined, by Lemma 12.8.1, and (r + 1)n > [B : J].
By Lemma 12.8.2, the set Ξ = {α ∈ A | NA(α) ≤ 2r} has at least 2r elements. Since
2r ≥ r+1, the subset X = {s1u1 + · · ·+ snun | si ∈ Ξ} of B has at least (r+1)n elements.
Since (r+1)n > [B : J], there are two distinct elements ξ1,ξ2 in X such that ξ = ξ1−ξ2 =
s1u1+ · · ·+snun is in J. If s, t are in Ξ, then by Lemma 12.8.2, NA(s−t)≤NA(s)+NA(t)≤
2(2r). Therefore, NA(si)≤ 4r, for each i. By Lemma 12.8.5, there exists U ∈ N such that
[B : ξ B] = NA(NB

A (ξ ))≤ (4r)nU ≤ 4nU [B : J]. Taking N = 4nU , Part (1) follows.
(2): Since ξ ∈ J, we have ξ B⊆ J. Multiplying by ξ−1 ∈ K, it follows that B⊆ ξ−1J.

The diagram of right B-modules

0 // B

ξ

��

// ξ−1J

ξ

��

// ξ−1J/B

ξ

��

// 0

0 // ξ B // J // J/ξ B // 0
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commutes. The rows are exact sequences. The vertical arrows are left multiplication by ξ

and are isomorphisms. The groups in the right hand column are finite, by Lemma 12.8.1.
Combining all of this with Part (1) and Lagrange’s Theorem, Theorem 1.1.1, applied to
ξ B⊆ J ⊆ B, we have

[ξ−1J : B] = [J : ξ B]

= [B : ξ B]/[B : J]

≤ N.

□

LEMMA 12.8.7. As above, let A be either Z or k[t], where k is a fixed finite field of
order q. Let K be the quotient field of A, Λ a finite dimensional K-division algebra, B an
A-order in Λ. For any N ∈ N, let S be the set of all right B-submodules of Λ such that
B⊆M, M is an A-lattice in Λ, and [M : B]≤ N. Then S is a finite set.

PROOF. Let M ∈S . By Lemma 12.8.1, M/B is a finitely generated torsion A-module.
By the Basis Theorem Theorem 1.7.17, M/B is isomorphic as an A-module to

⊕ℓ
i=1 A/αiA,

where α1, . . . ,αℓ are the invariant factors of M/B. Then αℓ annihilates M/B, hence αℓM ⊆
B. We have αℓB ⊆ αℓM ⊆ B. For each i, the order of A/αiA is equal to NA(αi), hence
αi belongs to the finite set Ξ = {α ∈ A− (0) | NA(α) ≤ N}. Since Ξ is a finite subset
of A− (0), there exists γ ∈ A− (0) such that for every α ∈ Ξ, α divides γ . Therefore,
γB ⊆ γM ⊆ B for every M in S . By Lemma 12.8.1, there are only finitely many choices
for γM. Therefore, there are only finitely many M in S . □

THEOREM 12.8.8. If B is the ring of integers in the global field L, then Cl(B) is a
finite abelian group.

PROOF. By Proposition 12.8.3, B is a Dedekind domain and an A-lattice in L, where
A is Z if char(L) = 0 and A = k[t] otherwise. The class group of B is the group of fractional
ideals modulo the group of principal fractional ideals. If F is a fractional ideal, then for
some d ∈ L, J = dF is a nonzero ideal in B. By Lemma 12.8.6, there is an upper bound
N ∈ N that depends only on B, an element ξ in J such that ξ−1J is a fractional ideal of
B containing B and [ξ−1J : B] ≤ N. By Lemma 12.8.7, there are only finitely many such
fractional ideals ξ−1J. Therefore, there are only finitely many ideal classes. □

COROLLARY 12.8.9. If B is the ring of integers in the global field L, then there exists
β ∈ B such that the localization B[β−1] is a principal ideal domain.

PROOF. Assume B is not a principal ideal domain. Let {p1, . . . ,pt} be a set of maximal
ideals in B that generate Cl(B) (Theorem 12.8.8). Then U = SpecB−{p1, . . . ,pt} is a
nonempty open. By Lemma 3.3.11, there is β ∈ B such that the basic open subset U(β ) is
a nonempty open subset of U . By Theorem 11.4.14, Cl(B[β−1]) = (0). By Exercise 12.3.9,
B[β−1] is a unique factorization domain and a principal ideal domain. □

8.2. The Dirichlet Units Theorem. The following proof of the Dirichlet Units The-
orem is based on Chapter 6 of [3].

Let F be a Galois extension of Q with finite group G = AutQ(F). As in Proposi-
tion 5.6.12, F ⊗Q C =

⊕
σ∈GCeσ is isomorphic to the trivial G-Galois extension of C.

The change of base function

φ : F → F⊗QC=
⊕
σ∈G

Ceσ
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is a homomorphism of Q-algebras and the composite map is defined by the formula φ(α)=

∑σ∈G σ(α)eσ . The absolute value of a complex number is |a + bi| =
√

a2 +b2. The
absolute value followed by the logarithm defines a homomorphism ln|·| : C∗ → R from
the multiplicative group of C to the additive group of R. Define λ : F∗→

⊕
σ∈GReσ

F∗

φ

��

λ

))⊕
σ∈GC∗eσ

⊕ ln| | // ⊕
σ∈GReσ

to be φ followed by the logarithm function applied coordinate-wise. On an element α ∈F∗,
λ is defined by λ (α)=∑σ∈G ln|σ(α)|eσ . If n= [G : 1], then in Lemma 12.8.10 we identify⊕

σ∈GReσ with Rn together with the usual euclidean metric space.

LEMMA 12.8.10. In the above context, let F/Q be a Galois extension of fields with
finite group G of order n. Let B be the integral closure of Z in F. If X is a bounded subset
of
⊕

σ∈GReσ then the preimage of X under λ : B∗→
⊕

σ∈GReσ is a finite set.

PROOF. In this proof for convenience we use interval notation for subsets of R. The
logarithm is a monotonic increasing function (0,∞)→ (−∞,∞) Since X is bounded, there
is a real number U > 0 such that X ⊆∏σ∈G[−U,U ]eσ . Then there is a real number V > 1
such that V−1 ≤ y≤V whenever lny ∈ X . If α ∈ B∗ and λ (α) ∈ X , then for each σ ∈ G,
V−1 ≤ |σ(α)| ≤V .

By Exercise 1.8.11, the polynomial gα(x) =∏σ∈G(x−σ(α)) has only one irreducible
factor, namely Irr.polyQ(α). The coefficients of gα(x) are elementary symmetric polyno-
mials (see [20, Section 5.7.2]) in {σ(α) | σ ∈ G}. By Lemma 6.1.10, Gauss’ Lemma,
the coefficients of gα(x) are in Z. The elementary symmetric polynomials are continuous
functions from ∏σ∈GR∗ to R. By choosing V larger if necessary, we may assume the
coefficients of gα(x) are integers in [−V,V ]. This means the set of polynomials {gα(x) |
α ∈ B∗ and λ (α) ∈ X} is finite. Consequently, the set of polynomials {Irr.polyQ(α) |
α ∈ B∗ and λ (α) ∈ X} is finite. Therefore, the set {α | α ∈ B∗ and λ (α) ∈ X} is finite.

□

COROLLARY 12.8.11. In the context of Lemma 12.8.10, let F be a finite Galois ex-
tension of Q with group G and let B be the ring of integers in F. If T denotes the kernel of
the homomorphism λ : B∗→

⊕
σ∈GReσ , then

(1) T is a finite cyclic group, and
(2) T is equal to the group of all roots of unity in F.

PROOF. We know T is a finite group by Lemma 12.8.10 applied to X = {0}. We know
T is cyclic by [20, Corollary 3.6.11]. Suppose ζ ∈ F∗ and ζ m = 1 for some m > 1. Then
ζ is integral over Z, hence ζ ∈ B. For each σ ∈ G, |σ(ζ )|m = |σ(ζ )m|= |σ(ζ m)|= 1. So
|σ(ζ )|= 1. By the definition of λ , this shows ζ ∈ T . □

LEMMA 12.8.12. Fix n > 0 and let Rn be the n-dimensional real vector space with
the usual euclidean metric. Let M be a nontrivial Z-submodule of Rn with the property
that X ∩M is a finite set whenever X is a bounded subset of Rn. Then there exist vectors
{e1, . . . ,er} in M satisfying the following:

(1) 1≤ r ≤ n,
(2) ∑

r
i=1Rei is an r-dimensional subspace of Rn, and contains M,

(3) M is a free Z-module of rank r,
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(4) M is a Z-lattice in ∑
r
i=1Qei.

PROOF. Let V be the subspace of Rn spanned by M. Let r = dimR(V ) and suppose
{e1, . . . ,er} is an R-basis for V contained in M. Let

X =

{
r

∑
i=1

aiei | ai ∈ R, 0≤ ai ≤ 1

}
.

Then X is a bounded subset of Rn. By hypothesis on M, X ∩M is a finite set. Notice that
X ∩M contains {e1, . . . ,er}. Let y be an arbitrary element of M. There are unique ri ∈ R
such that y = ∑

r
i=1 riei. Define ρ(y) by the rule

ρ(y) = y−
r

∑
i=1
⌊ri⌋ei

=
r

∑
i=1

(ri−⌊ri⌋)ei

where ⌊⌋ : R→ Z is the floor function. Since 0 ≤ x−⌊x⌋ < 1 for all x ∈ R, it follows
that ρ(y) ∈ X . Since y ∈ M and ∑

r
i=1⌊ri⌋ei ∈ M, we see that ρ(y) ∈ M ∩X . This shows

M is generated as a Z-module by the finite set M∩X . Therefore M is a finitely generated
torsion free Z-module, hence free of finite rank by Theorem 1.7.14. Since M contains
{e1, . . . ,er}, the rank of M is at least r. The set {ρ( jy) | j ∈ Z} is a subset of the finite set
M ∩X . For some pair of integers j < k we have ρ( jy) = ρ(ky). For 1 ≤ i ≤ r we have
( jri−⌊ jri⌋)ei = (kri−⌊kri⌋)ei. Thus (k− j)ri = ⌊kri⌋− ⌊ jri⌋. This proves ri ∈ Q for
each i, hence M ⊆ ∑

r
i=1Qei. By Proposition 12.1.1 (1), M is a Z-lattice in ∑

r
i=1Qei. By

Proposition 12.1.4, M is has rank r. □

LEMMA 12.8.13. In the context of Lemma 12.8.10, let F be a finite Galois extension
of Q with group G and let B be the ring of integers in F. Then

(1) B∗ is a finitely generated abelian group.
(2) The torsion subgroup of B∗ is equal to the group of all roots of unity in F and is

a finite cyclic group.

PROOF. By Lemma 12.8.12, the image of λ : B∗→
⊕

σ∈GReσ is a finitely generated
free Z-module of rank r ≤ [G : 1]. By Corollary 12.8.11, the kernel of λ is equal to the
group T = ⟨ζ ⟩ of all roots of unity in F and is a finite cyclic group. The sequence

⟨1⟩ → ⟨ζ ⟩ → B∗ λ−→ Zr→ ⟨0⟩

is split exact. □

LEMMA 12.8.14. Let L be an algebraic number field with ring of integers A. Then

(1) A∗ is a finitely generated abelian group.
(2) The torsion subgroup of A∗ is equal to the group of all roots of unity in L and is

a finite cyclic group.

PROOF. By the Embedding Theorem, there is a finite dimensional Galois extension
F/Q containing L as an intermediate field. If B is the ring of integers in F , then A is a
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subring of B.
F

L

OO

B

__

Q

OO

A

__ OO

Z

OO__

The group of units in A is a subgroup of the group of units in B. By Lemma 12.8.13, A∗

is finitely generated and if T denotes the torsion subgroup of A∗, then T is a finite cyclic
group. The proof of Corollary 12.8.11 shows that T is equal to the group of all roots of
unity in L. □

We end this section with a statement of the Dirichlet Units Theorem. First we establish
some notation. Let L be an algebraic number field with ring of integers A. By the Primitive
Element Theorem, Theorem 5.5.8, L=Q(u) for some element u∈ L. Let f = Irr.polyQ(u).
Since f is separable, the unique factorization of f as a polynomial in R[x] has the form

f = (x−u1) · · ·(x−ur1)q1(x) · · ·qr2(x)

where u1, . . . ,ur1 are the distinct real roots of f , r1 ≥ 0, q1(x), . . . ,qr2(x) are the irreducible
monic quadratic factors of f in R[x], and r2 ≥ 0 ([20, Theorem 5.4.11]). Then

L⊗QR=
Q[x]
( f )
⊗QR

=

(
r1⊕

i=1

R[x]
(x−ui)

)
⊕

(
r2⊕

i=1

R[x]
(qi(x))

)

∼=

(
r1⊕

i=1

R

)
⊕

(
r2⊕

i=1

C

)
.

That is, L⊗QR is the ring direct sum of r1 copies of the field R and r2 copies of the field
C.

THEOREM 12.8.15. (The Dirichlet Units Theorem) Let L be an algebraic number field
with ring of integers A. In the above notation, the group of units in A is a finitely generated
abelian group isomorphic to ⟨ζ ⟩⊕Zr, where r = r1 + r2− 1 and ⟨ζ ⟩ is the group of all
roots of unity in L.

PROOF. By Lemma 12.8.14, A∗ is finitely generated and the torsion subgroup is
cyclic. The only part that has not been proved is the formula for the rank. See [3] for
a proof that is based on an application of Minkowski’s Convex Body Theorem. □





Acronyms

ACC Ascending Chain Condition
DCC Descending Chain Condition
PID Principal Ideal Domain
UFD Unique Factorization Domain
DVR Discrete Valuation Ring
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Glossary of Notations

(X) submodule generated by X , 17
[G : H] index of the subgroup H in the group G, 13
annihR(M) annihilator of M in R, 17
AssocR(M) set of all associated primes of M in SpecR, 359
Bn(A•) n-coboundaries of the complex A•, 289
Bn(A•) n-boundaries of the complex A•, 272∧

R(M), or
∧
(M) exterior algebra of the R-module M, 165

char(R) characteristic of R, 15
char.polyR(M) characteristic polynomial of M, 39
χM,I(x) Hilbert polynomial of M with respect to I, 384
d(M) degree of the Hilbert polynomial χM,I , 384
Cl(R) class group of R, 464
coh.dim(R) global cohomological dimension of R, 320
coker( f ) cokernel of a homomorphism, 17
∆i j(u) elementary matrix, 40
depthI(M) I-depth of an R-module M, 450
DerR(A,M) set of all R-derivations from A to M, 395
det(A) determinant of A, 38
dim(M) Krull dimension of a module, 384
dim(R) Krull dimension of a commutative ring R, 383
dimD(V ) dimension of a D-vector space, 35
Div : K∗→ Div(R) divisor homomorphism, 464
DivR group of Weil divisors of R, 464
ℓ(M) length of a module M, 176
ExtnR(A,B) nth Ext group of the R-modules A and B, 313
Frac(R) set of all fractional ideals of R, 495
grI (R) graded ring associated to a I-adic filtration, 257
grn(R) In/In+1, the component of degree n in grI(R), 437
M̂ = lim←−M/IiM I-adic completion of M, 104
ht(I) height of an ideal I, 383
Hn(A•) nth cohomology module of the complex A•, 289
Hn(A•) nth homology module of the complex A•, 272
Hom(M,M) ring of endomorphisms of an abelian group M, 16
HomZ(M,Q/Z) character module of M, 94
HomR(M,N) set of all R-module homomorphisms from M to N, 17
idemp(R) set of idempotents of R, 128
im( f ) image of a homomorphism, 14
inf(S) infimum, 21
inj.dimR M injective dimension of M, 316
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538 GLOSSARY OF NOTATIONS

Inn.DerR(A,M) set of inner derivations, 398
Invert(R) set of all invertible fractional ideals of R, 493
Irr.polyk(α) irreducible polynomial of α , 47
J(R) Jacobson radical of R, 179
ker( f ) kernel of a homomorphism, 14
LnF nth left derived functor of F, 278
An

k affine n-space over k, 241
H ring of real quaternions, 204
TRM trace ideal of M in R, 57
MaxR maximal ideal spectrum of R, 126
min.polyk(α) minimal polynomial of α , 52
ΩA/R module of Kähler differentials, 403
ord(x) order of x with respect to I-adic topology, 437
Pic(R) Picard group of R, 150
PrinR group of principal Weil divisors, 464
∏i∈I Ri direct product of a family of rings, 30
∏i∈I Xi product of a family of sets, 23
proj.dimR M projective dimension of M, 316
RadR(A) nil radical of the ideal A in R, 127
RankR(F) rank of a free module over a commutative ring, 35
RankR(M) rank of a finitely generated projective module, 133
RnF nth right derived functor of F, 294
SpecR prime ideal spectrum of R, 126
sup(S) supremum, 21
SuppR(M) support of M in SpecR, 362
TorR

n (A,B) nth Tor group of the R-modules A and B, 308
Units(R) group of units in R, 14
lim−→Ai direct limit of a directed system {Ai,φ

i
j}, 97

ϕM(d) Hilbert function of M, 382
lim←−Ai inverse limit of the inverse system {Ai,φ

j
i }, 101

Zn(A•) n-cocycles of the complex A•, 289
Zn(A•) n-cycles of the complex A•, 272
A• a cochain complex, 289
Ae enveloping algebra, A⊗R Ao, 161
A• a chain complex, 271
ei j elementary matrix in Mnm(R), 40
I(Y ) ideal of a subset of Spec(R), 126
I(Y ) ideal of the subset Y ⊆ An

k , 242
I : J module quotient, 19
JA/R the kernel of µ : Ae→ A, 202
Li(u) elementary matrix, 40
M(−ℓ) graded module twisted by ℓ, 264
M(φ ,X ,Y ) matrix of φ with respect to the bases X and Y , 38
M⊗R N tensor product of M and N, 64
M∗ completion of a linear topological module M, 253
M∗ dual module, HomR(M,R), 85
MA centralizer of A in M, 202
M∗∗ double dual module, 85



539

Mnm(R) the set of all n-by-m matrices over R, 38
NA

R : A→ R norm from A to R, 46
PM Hilbert polynomial of M, 382
R(G) group ring, 14
R[ f−1] localization of R at the multiplicative set {1, f , f 2, . . .}, 123
R∗ group of units in R, 14
RP local ring of R at P, 118
SR(M), or S(M) symmetric algebra of the R-module M, 163
T A

R : A→ R trace from A to R, 46
TR(M), or T (M) tensor algebra of the R-module M, 161
Ti j elementary matrix, 40
U(α) basic open subset of SpecR, 128
V (L) closed subset of Spec(R), 126
W−1R localization of R, 116
X1(R) set of all prime ideals of R with height one, 459
Z(R) center of R, 14
Z(T ) zero set of the set of polynomials T , 241
MR category of right R-modules, 25
RM category of left R-modules, 25
SMR category of left S right R bimodules, 67
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I-adic completion, 104
sufficient conditions to be functorial in I, 107

Adjoint Isomorphism, 82, 92, 94, 95, 100, 102,
155, 315, 328, 349, 406, 407, 485, 488, 517

algebra, 17
direct limit of finitely generated subalgebras,

105
finite dimensional over a field is artinian and

noetherian, 172, 179
over Q, 124
progenerator, 135
three dimensional, 188, 189, 193–196, 199
two dimensional, 51

algebraic closure of a field, 47, 48, 442
algebraic curve, 58–61, 152, 238, 501–504
algebraic surface, 78, 152
alternating multilinear form, 38

universal mapping property for
∧n, 167

annihilator of a module, 17, 35, 63
localization of, 159
under flat base change, 142, 158

artinian module, 171, 189
direct sums, 173
submodule and quotient module criterion, 173

artinian ring, 171, 172, 189
commutative

Jacobson radical, 192
necessary conditions, 190–192
projective module, 191
sufficient conditions, 190–192
unique decomposition theorem, 191, 192
units, 193

direct sums, 175
faithfully flat descent criterion, 175
finitely generated module is artinian, 175
homomorphic image is artinian, 175
is noetherian, 190
Jacobson radical, 180
localization is artinian, 175
tensor product, 193
with no zero divisors is a division ring, 175

ascending chain condition, 21, 171
associates in a commutative ring, 28

Auslander, B., 489
Auslander, M., 207, 319, 450, 488, 514
Axiom of Choice, 23, 55
Azumaya, G., 270

balanced map, 64
Basis Theorem for Modules over a PID, 41, 198,

200
Bass, H., 346

Theorem of Bass, 346
bimodule

definition, 67
block matrix, 43

determinant formula, 44, 46, 47
Buchsbaum, D. A., 450

cartesian square, 102, 107
category, 25

has enough injectives, 93
natural equivalence, 26, 27, 110

Cayley-Hamilton Theorem, 39, 47, 234, 338
center of a ring, 203
central algebra, 144

local ring criterion, 144
separable over a field is simple, 218
under faithfully flat base change, 144

central simple algebra, 187–188
enveloping homomorphism criterion, 217
is central separable, 218
twisted form of matrices, 221

centralizer of A, 202
functor, 203, 204

chain (partially ordered set), 21
character module of M, 94
characteristic of a ring, 15
characteristic polynomial, 39

of an endomorphism, 337
coefficients, 46

classification
rings of order p2, 196
rings of order p3, 196–199
three dimensional algebras, 193–196
two dimensional algebras, 193

closed immersion, 130, 135
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criterion to be flat and finitely presented, 125
necessary criterion to be flat, 146

cogenerator module, 94
comaximal ideals, 15

product equals intersection, 20, 63, 129, 222,
495

complex, 19
composition series, 176, 177

existence criteria, 177
conductor ideal, 20, 152, 198, 263, 374, 447
connected ring, 63
continuous function, 23
Correspondence Theorem

for modules, 18, 179, 523
for rings, 28, 194, 496

cuspidal cubic curve, 152
normalization, 238

cyclic extension of a commutative ring, 20, 216,
230, 513

Decomposition Theorem for a Noetherian
Topological Space, 24

DeMeyer, F., 214
descending chain condition, 21, 171, 172
determinant, 38, 39, 46
direct limit, 96–100

chain of submodules, 105
existence of an idempotent, 106
homomorphic image of the direct sum, 106
of flat modules is flat, 105

direct product of modules, 31
universal mapping property, 32, 36

direct product of rings, 15, 30, 119, 129, 158, 220,
222, 228, 269, 270, 436, 497

Jacobson radical, 182
product of finite prime fields, 89, 92, 124
universal mapping property, 61

direct sum
of finitely generated projective modules, 151
of flat and faithfully flat modules, 145
of flat modules, 145
of free modules, 151
of projectives is projective, 61
of short exact sequences of modules, 36

direct sum of fields, 192
direct sum of modules, 31

direct limit of finite direct sums, 105
direct sum of finite prime fields, 89, 92, 124
over a direct sum of rings, 151
ranks add, 134
submodule of, 35
under change of base, 73
universal mapping property, 32, 37

direct sum of rings, 30
modules over, 36, 151

direct summand of a module, 33
discrete valuation ring

local principal ideal domain, 123

divisible group, 91–94
double dual module, 85
dual basis, 49, 56–59, 63, 74, 213, 224, 225, 227,

229
Dual Basis Lemma, 56, 58, 59, 108, 492
dual module, 85

module structure, 107

elementary row and column operations, 40
elliptic curve

k[x,y]/(y2− x(x2−1)), 58, 60, 61
endomorphism

onto if and only if invertible, 78, 85, 402, 409
endomorphism ring HomR(M,M), 18, 89, 112,

202, 518
acts on M, 18, 78, 107
isomorphic to Mn(Ro), 38, 86
modules over, 113
under change of base, 19
uniqueness of M, 151

enveloping algebra, 161, 201
enveloping homomorphism, 202
equivalent homomorphisms, 39, 40
equivalent matrices, 40
exact sequence, 19

character module criterion, 94
Hom functor criterion, 80, 406
residue field criterion for splitting, 132, 135

exterior algebra of a module, 165–168
exterior product

∧n, 167–169
and determinants, 169
of a rank n projective, 169
rank formula, 169
universal mapping property, 167

faithful module, 17, 63
under faithfully flat base change, 142
under flat base change, 142

faithfully flat algebra, 138
counterexample

Z[2−1], 146
descent criterion, 159
equivalent conditions, 138
example

polynomial ring, 145
progenerator, 139
Zariski open cover, 146

necessary conditions, 138
faithfully flat base change

is a faithful functor, 139
faithfully flat module, 113

counterexample that is flat, 138
equivalent conditions, 145
example⊕

m∈MaxR Rm, 138
over a commutative ring

equivalent conditions, 136
under change of base, 145
under faithfully flat base change, 142
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Faithfully Flat over Faithfully Flat is Faithfully
Flat, 146

fiber of a morphism, 134, 135, 193
fiber product diagram, 102
finite field

fundamental theorem, 50, 196, 198, 220, 333
finite ring

example
order p3, 199

order p3, 196–200
finitely generated algebra, 17

example
localization of a semilocal ring, 147

left invertible element is invertible, 85
locally of finite type, 147
under change of base, 77

finitely generated module, 17, 33, 34
lifting a generating set modulo an ideal, 131,

132, 182
over a PID, 41
over a noetherian ring

flat is projective, 175
over a noetherian ring is noetherian, 174
over an artinian ring is artinian, 175
sufficient conditions, 35, 120
under change of base, 73, 143, 506
under faithfully flat base change, 142, 149, 227,

354
under Morita equivalence, 112

Finitely Generated over Finitely Generated is
Finitely Generated

algebra version, 20
module version, 57, 234, 235

finitely generated projective module, 148
associated idempotents, 134
finitely presented, 56, 95
is locally free, 133–134
over a local ring, 132, 133, 155
over a semilocal ring, 182
rank function, 133, 134
twisted form of a free, 151, 354

finitely presented module, 34
flat is projective, 95, 157
under faithfully flat base change, 142

Five Lemma, 86
flat algebra

counterexample, 146, 152
local ring criterion, 153
localization is flat, 159
over a Dedekind domain, 159
over an integral domain is faithful, 159

flat module, 72
character module criterion, 95
counterexample

Z/n, 72, 76
torsion module, 78

finitely presented is projective, 95, 157
finiteness criterion, 105, 153–155

local ring criterion, 153
over a local ring, 155
torsion elements in, 159
under change of base, 73, 153, 213, 369, 425
under faithfully flat base change, 142

Flat over Flat is Flat, 145, 159
flat resolution, 76
free module, 33

basis, 33
under change of base, 35

example
polynomial ring, 145

is faithfully flat, 145
is flat, 76
is projective, 55
over a commutative artinian ring, 191
rank, 35, 36
under change of base, 73, 132, 134, 188, 483
under Morita equivalence, 112
universal mapping property, 34

Free over Free is Free, 57, 192, 328
converse is false, 78

free resolution, 61
functor

adjoint pair, 26
contravariant, 25
covariant, 25
essentially surjective, 27
fully faithful, 27, 28, 110, 112
inverse equivalences, 27
left exact, 26
natural, 26
right exact, 26
sufficient conditions to commute with inverse

limits, 106

Galois extension
example

quadratic, 51
trivial extension, 227–229

generator module, 57, 61, 73, 75, 84, 108, 109
under change of base, 73
under faithfully flat base change, 142, 227
under Morita equivalence, 112

Generator over a Generator is a Generator, 57
generic point, 127
Goldman, O., 207, 450, 488, 514
graded

algebra
alternating, 160

ideal, 160
module, 159, 168
ring, 159, 168

exceptional ideal, 159, 168
tensor product, 160

universal mapping property, 161
Grothendieck, A., 450
group, 13
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union of a chain of subgroups, 177
group ring, 14, 34, 206, 321, 331

associated to a subgroup, 36
universal mapping property, 36

henselian local ring, 270
Hom functor, 79

HomAe (M, ·), 203, 204
distributive property

direct limit, 106
direct product, 81
direct sum, 81, 106

left exact, 79
Hom group

module structure, 78, 85, 107, 210, 225, 328
Hom group HomR(M,N), 18

finitely generated
sufficient conditions, 175

isomorphic to Mnm(R), 38
ranks multiply, 134
under change of base, 18, 19, 329

Hom Tensor Relation, 82–84
Adjoint Isomorphism, 82
for flat base change, 140, 141

counterexample, 141
homeomorphic topological spaces, 23
homogeneous element, 159
homomorphism of graded modules, 160
homomorphism of modules, 17

fundamental theorem, 18, 40, 87, 88
left invertible

Hom functor criterion, 84, 85
one-to-one

local ring criterion, 145
modulo Jacobson radical, 182

onto
local ring criterion, 145
modulo Jacobson radical, 182
residue field criterion, 79, 139

onto if and only if invertible, 145
right invertible

Hom functor criterion, 85
homomorphism of rings, 14

fundamental theorem, 14
localization at a prime ideal, 122
preimage of a unit is a unit, 131

ideal in a ring, 14
generated by a set, 15
necessary and sufficient conditions, 19

ideal of definition, 192
ideal quotient, 20, 29

localization of, 159
under flat base change, 158

idempotent, 16, 128
sufficient conditions for lifting modulo an ideal,

181, 267
index of a subgroup in a group, 13
infimum, 21

injective module, 90–96
injective resolution, 93
inner automorphism, 15
integral domain

sheaf property, 123
internal direct sum of ideals, 15, 16, 64, 115, 125,

129, 130, 175, 186, 215, 497
prime ideal spectrum of, 130

internal direct sum of submodules, 32
inverse limit, 100–105

of a direct product, 106
submodule of the direct product, 106

Inverse Systems Indexed by Nonnegative Integers,
102–104

invertible module, 150–151
irreducible element in a commutative ring, 28
irreducible polynomial

conjugate splitting, 51, 228, 527
isomorphism of modules

Hom functor criterion, 85
modulo Jacobson radical, 182

isomorphism of rings
local ring criteria, 147

Isomorphism Theorem
for modules, 18
for rings, 14

Jacobson radical, 179–181
direct product of rings, 182
homomorphic image of, 180
lifting idempotents modulo an ideal, 181, 267
lifting units modulo an ideal, 181
ring of matrices, 182

Kernel-Cokernel Sequence, 88
Kronecker delta function, 33
Krull dimension

zero
sufficient conditions, 191, 192

Lagrange’s Theorem, 13, 198, 523, 526
left regular representation, 17–19, 39, 46, 50, 73,

89, 90, 142, 144, 189, 195, 196, 202, 225,
234, 243

length of a module, 176, 177
descent criterion, 179
over a commutative artinian ring, 192

linearly independent set, 33
local homomorphism of local rings, 20

flat implies faithfully flat, 146
local parameter, 123
local ring, 20

artinian
necessary and sufficient conditions, 191
sufficient conditions, 192

equivalent conditions, 20
has only two idempotents, 130
of R at P, 118, 122

direct limit of subrings, 124
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residue field, 118, 122
trivial Picard group, 151

local to global lemma, 119–121
for an isomorphism, 135
for finitely generated projective, 133
for idempotents, 124

localization, 116–119, 123
R[ f−1], 123
and idempotents, 122
distributive property, 122
is flat, 118
necessary criterion to be faithfully flat, 146
of a homomorphic image, 122
of a homomorphism of commutative rings, 122
of the nil radical, 131
transitive property, 122, 123
universal mapping property, 122, 124

locally free module of finite rank, 148
residue field criterion, 149

locally of finite type, 147

Maschke’s Theorem, 221
matrices over R

free R-module, 38
matrix of a homomorphism, 38, 47

multiplication rule, 38
matrix ring

over R
change of base, 78
Jacobson radical, 182

over a division ring, 185, 186
over a field, 187, 189

modules over, 113
subalgebras, 189

maximal ideal ideal in a commutative ring, 28
maximal ideal in a commutative ring, 28, 130
maximal ideal spectrum, 126

dense subset of prime ideal spectrum, 130
of an artinian ring, 192

maximal left ideal, 179
maximum condition, 21, 171
McKenzie, T., 220
minimal left ideal, 124
minimal polynomial, 52
minimal prime ideal, 130
minimal prime over-ideal, 130, 174
minimum condition, 21, 171, 172
module

definition, 16
direct limit of finitely generated submodules,

105
over a direct sum of rings, 36

module direct summand of a ring, 64, 124–125
module identity, 37, 62, 90
module quotient, 19, 447
Morita Theory, 107–113

correspondence of ideals, 111
Morita Theorem, 109, 110, 113

multiplication map on the enveloping algebra, 77,
202

multiplicative subset, 116
combining two multiplicative subsets, 122

Nakayama’s Lemma, 62, 63, 78, 79, 262
for a local homomorphism of local rings, 64,

223
for a noncommutative ring, 179

nil radical, 127, 130
commutative artinian ring, 192
of a localization, 131

nilpotent ideal, 63, 131, 132, 180, 191, 194, 255,
267, 358, 423, 425

in a finite dimensional algebra, 188
nodal cubic curve, 152, 501–504

normalization, 238
noetherian module, 171, 189

counterexample
Z[2−1], 175

direct sums, 173
equivalent conditions, 172
submodule and quotient module criterion, 173

noetherian ring, 29, 171, 189
connected components, 175
equivalent conditions, 172
example

left noetherian but not right, 175
faithfully flat descent criterion, 175
finitely generated module

flat is projective, 175
finitely generated module is noetherian, 174
homomorphic image is noetherian, 174
irreducible components, 174
localization is noetherian, 174
prime ideal spectrum is noetherian, 174

norm from A to R, 46, 52
for a separable extension of fields, 48–50
for an extension of finite fields, 52

open immersion, 131, 135, 146
example

localization of a semilocal ring, 147
finitely generated as an algebra, 147

opposite ring, 25, 38, 86
orthogonal idempotents, 16, 124

Picard group, 150–151
modulo the Jacobson radical, 152
of a direct sum, 151

polynomial ring in many variables, 105
power series ring

completion of polynomial ring, 105
prime element in a commutative ring, 28
prime ideal ideal in a commutative ring, 28
prime ideal spectrum, 125–128

basic open set, 128, 131
closure of a point, 130
connected component, 129, 175
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functor, 130, 131, 135, 193
irreducible closed subset, 127, 174
is compact, 131
of a localization, 131
of an internal direct sum of ideals, 130
open immersion, 131, 135
subsets that are open and closed, 128–129

Primitive Element Theorem, 219, 220, 223
primitive idempotent, 124, 125, 129, 175
principal ideal domain

has Krull dimension one, 29, 383
is a unique factorization domain, 29, 383
local, 123
trivial Picard group, 151

Product Lemma, 88, 89
product of sets, 22
progenerator module, 57

over a commutative artinian ring, 191
over a commutative ring, 63, 214, 226, 346, 492
over an integral domain

residue field criterion, 149
twisted form of a free, 151, 354

Progenerator over a Progenerator is a
Progenerator, 57

projective module, 53–62, 108
counterexample

R[α−1], 61
Z[2−1], 146

direct sum, 61
example

not free, 58, 59
finitely generated is finitely presented, 95, 134,

148, 157
Hom functor criterion, 79
is flat, 76, 95, 138, 155, 157
lifting a free basis modulo an ideal, 132, 152,

182
over a commutative artinian ring, 191
under change of base, 73, 133, 139, 224
under faithfully flat base change, 142, 149, 227,

354, 505
under Morita equivalence, 112

Projective over Projective is Projective, 57, 211,
213

projective resolution, 61, 272
pullback diagram, 102, 107

quadratic extension
is commutative, 151
standard involution exists, 345

quotient ring, 14
acts on quotient module, 19
dividing by the nil radical is not flat, 146

radical ideal, 127
rank formula, 57

over local rings, 192
rational curve

k[x,y]/(y2 + x2−1), 59–61

rational point, 245
existence criterion, 90

reflexive module
counterexample, 85
definition, 85

regular ring
example

k[x1, . . . ,xn], 192
ring

definition, 13
example

(Z/4)[x]/(x4 +1), 193
Z[2−1], 122, 146
k[x,y]/(xn,ym), 193
k[x,y]/(y2 + x2−1), 59–61
k[x,y]/(y2− x(x2−1)), 58, 60, 61
k[x,y]/(y2− x2(x+1)), 501–504
k[x]/(x2−a), 51
k[x2,x3], 152
k[x2−1,x3− x], 152
k[xn,xy,yn], 78, 152
order p3, 196

union of finitely generated subrings, 21

Schur’s Lemma, 186
semilocal ring, 147

example
direct sum of fields, 192

Jacobson radical, 182
noetherian

ideal of definition, 192
trivial Picard group, 151

semisimple module, 183, 184
semisimple ring, 184, 185, 189

Maschke’s Theorem, 221
separability criterion

(·)A is an exact functor, 204
descent, 208–209, 211
Jacobian Criterion, 215, 222, 408
modulo the annihilator, 209
over a field, 218, 219
residue field criterion, 221
tower of subrings, 213
trace map, 223–227, 230
twisted form of Rn, 227, 230

separability idempotent, 202
left ideal generated by, 204
uniqueness criterion, 204

separable algebra
counterexample

Z[i], 216
k[x,y]/(x2 + y2−1), 216
k[x,y]/(x2− y2), 216
k[x], 216

direct sum, 210, 215
dual basis, 230
equivalent conditions, 202
example
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R[ n
√

a], 230
R[
√

a], 216
C over R, 204
closed immersion, 204
group algebra, 205–206, 221
localization, 204
quadratic Kummer extension, 206–207
quaternions, 204, 216
ring of matrices, 205
trivial commutative extension, 204

finiteness criterion, 213, 218
homomorphic image, 209
homomorphism of, 212, 214, 215
idempotents and sections, 215, 217
locally separable, 215
necessary conditions, 203
over a field

unique deomposition theorem, 219–220
over a local ring, 223
progenerator criteria, 214
under change of base, 208

Separable over Separable is Separable, 211
separable polynomial, 221
sheaf property

for integral domain, 123
simple module, 18, 186
simple ring, 185, 186, 189
Simultaneous Bases Theorem, 43, 524
Skolem-Noether Theorem, 220–221
Small, Lance, 175
Smith Normal Form, 42, 43
Snake Lemma, 86
split exact sequence, 19, 76

necessary and sufficient conditions, 35
splitting field of a set of polynomials, 47, 48, 236
standard basis, 33
structure idempotents, 134
submodule, 17

maximal, 18, 179
sum of submodules, 32
supremum, 21
symmetric algebra

of a progenerator, 168
symmetric algebra of a module, 163–165

tensor algebra, 161–163
functorial properties, 169
of a torsion free rank one module, 168
of an invertible module, 168
rank formula for T r , 168

tensor functor, 67, 68
change of base, 71, 73, 77

()⊗R R/I, 76
()⊗Z Z/m, 76

right exact, 71, 287
tensor product

associative property, 68
change of base, 77, 78

definition, 64
distributes over a direct sum, 69
module structure, 67, 68, 71, 73, 108
of algebras, 72, 73, 77

universal mapping property, 76
of faithfully flats is faithfully flat, 146
of finitely generated algebras is finitely

generated, 77
of finitely generated is finitely generated, 74,

397
of flats is flat, 146
of free modules is free, 76
of generators is a generator, 74
of homomorphisms, 66
of progenerators is a progenerator, 74, 347
of projectives is projective, 74
of quotient modules, 76, 163
of separable algebras, 207
progenerator implies factors are progenerators,

75, 150, 346
ranks multiply, 134
universal mapping property, 65

theorem of permanence, 210–212
topological space, 23

closure, 23
connected, 23
irreducible, 23
noetherian, 23, 24
separated, 24

torsion free module, 41
contains a basis for KM, 123
over a PID, 41, 43, 55, 483, 528

trace
of an endomorphism, 46

trace from A to R, 46, 224, 229, 230
coefficient of minimal polynomial, 230
for a separable extension of fields, 48–50
transitivity, 230

trace ideal of an R-module, 57, 63, 108, 109, 186
transcendence base, 51, 240, 412–414
Transfinite Induction Principle, 22, 47, 178, 473
twisted form

of a finitely generated free module, 151, 354
of a ring of matrices, 188, 221
of a trivial Galois extension, 228
of the trivial extension, 227, 230

two-sided A/R-module, 161, 201

unique factorization domain
counterexample

k[x,y]/(y2 + x2−1), 60, 61
k[x,y]/(y2− x(x2−1)), 60

irreducible elements are prime, 29, 464
prime elements exist, 30
satisfies ACC on principal ideals, 29

units
example

R/(πe), 181
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in a commutative ring, 30, 193
lifting modulo an ideal, 181, 182

vector space, 16, 34
basis, 36
dimension, 35

equal to length, 178
is a projective module, 55
ring of endomorphisms is artinian and

noetherian, 172, 178
Villamayor, O., 213

Wedderburn-Artin Theorem, 186, 189
well ordered set, 21

union of two well ordered sets, 179
Well Ordering Principle, 21–23, 47, 178

Zariski topology, 125–129
Zelinsky, D., 213
Zorn’s Lemma, 22, 48, 91, 126, 179, 183, 368, 442
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