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In this paper we summarize some results concerning the Brauer group of classes of
Azumaya algebras defined on a surface. These general results are applied to determine the
Brauer group of some subrings of the polynomial ring in two variables over an algebraically
closed field.

In Section 1 we let X denote a nonsingular surface of finite type over an algebraically
closed field k of characteristic zero. If X is complete and the Kodaira dimension κ(X) =
−1 then the Brauer group B(X) of X is trivial (Theorem 1.1(a)) and if X is not necessarily
complete in some cases B(X) is determined by the dual of the algebraic fundamental group
of the ‘curve at infinity’ on X (Theorem 1.2).

In Section 2 the problem of analyzing the Brauer group under the resolution of a normal
singularity on a surface X defined over an algebraically closed field is discussed. This
problem has already been studied by several authors including [3], [7], [12], [15], [17],
[25], and [26]. In [7] a summary of what was known until that time was given. Theorem 2.8
summarizes our knowledge on the resolution problem for both B(X) and the cohomological
Brauer group B′(X). If k is the field of complex numbers then connections with algebraic
topology can be made (Theorem 2.9) which permit us to explain some of
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the phenomena given in [7]. Finally, we point out that if R is a normal two-dimensional
graded k-algebra of finite type with characteristic of k = 0 and R0 = k and if the only
singularities on SpecR are rational then B(R) = 0.

In Section 3 the general results are applied to some examples. In particular, if k is an
algebraically closed field of characteristic zero and R is a normal affine subring of k[x,y]
with k[x,y] finitely generated as an R-module, then B(R) = 0 whenever R is graded, or
k = C. Two examples are given. The Brauer group of the cone over a smooth integral
curve defined over an algebraically closed field of characteristic zero is trivial. Using
a Mayer-Vietoris sequence an example of a non-normal affine subring R of k[x,y] with
k[x,y] a finite R-algebra and B(R) 6= 0 is given. This shows the hypothesis that the ring R
be normal in Theorem 3.1 is necessary.

Our techniques and basic terminology follow A. Grothendieck [17]. In particular, un-
less otherwise specified, all cohomology is in the étale topology. By a surface we mean
an integral, separated, locally Noetherian two-dimensional scheme over the algebraically
closed field k.

1

In this section let X denote a nonsingular surface of finite type over an algebraically
closed field k of characteristic zero. If X is complete, following [18] the Kodaira dimension
κ(X) is defined to be the transcendence degree over k of the ring R =

⊕
n≥0

H0(X ,L (nK))

minus 1, where K is the canonical divisor on X and cohomology is in the Zariski topology.
For a surface X , −1 < κ(X) < 2. Theorem 6.1 of [18] asserts κ(X) = −1 if and only if
X contains an affine open subset U isomorphic to A1×Γ where Γ is a nonsingular curve.
Let D denote the regular completion of Γ.

Theorem 1.1. [12] Let X be a complete nonsingular surface of finite type over k with the
Kodaira dimension κ(X) = −1. If D is as above, then

a) H2(X ,Gm) = 0
b) H3(X ,Gm) = Hom(π1(D),Q/Z),
c) X is rational if and only if H3(X ,Gm) = 0.
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The proof of Theorem 1.1 can be found in [12]. M. Artin pointed out to us examples of
complete nonsingular surfaces X over k with B(X) 6= 0. The calculation in (b) of Theorem
1.1 is important in the analysis of noncomplete surfaces.

If X is not necessarily complete then X can be embedded as an open subset of a com-
plete nonsingular surface S. Let Z = S−X and write Z = Z1 ∪ ·· · ∪Zm where the Zi are
the connected components of Z. If κ(S) = −1, then S contains an affine open subset iso-
morphic to A×Γ where Γ is a nonsingular curve. Let D be the nonsingular completion of
Γ.

Theorem 1.2. [12] Let X be a nonsingular surface of finite type over k. Embed X as an
open subset of a complete nonsingular surface S as above. Assume κ(S) = −1 and let Zi,
D be as above. If the pair (S,Z) satisfies the “Theorem of Purity for the Brauer group”
[17, 6.2, III], then

a)

0→ B(X)→
⊕

i

Hom(π1(Zi),Q/Z)→ Hom(π1(D),Q/Z)→ H3(X ,Gm)

is exact.
b) If X is affine, then

0→ B(X)→
⊕

i

Hom(π1(Zi),Q/Z)→ Hom(π1(D),Q/Z)→ 0

is exact.
c) If X is rational, then

B(X) ∼=
⊕

i

Hom(π1(Zi),Q/Z)

Theorem 1.2 is proved in [12]. If k = C in Theorem 1.2 then Zi, D can be viewed as real
2-manifolds. The algebraic fundamental group π1(Zi) and the topological fundamental
group have the same finite quotients [21, p. 40]. It is well known that the topological
fundamental group of a compact connected real 2-manifold M of genus g is the direct sum
of g-copies of Z together with one copy of Z/(2) if M is not orientable. In particular, if
X is as in Theorem 1.2 and the Zi are simply connected then B(X) = 0. If Z is regular the
pair (S,Z) always satisfies the conclusion of the “Theorem of Purity for the Brauer group”.

2

In this section let X denote a normal, locally Noetherian, integral, separated, two-
dimensional scheme over an algebraically closed field k. Let K denote the function field of
X and B′(X) the cohomological Brauer group H2(X ,Gm). For a point p on X let
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Op denote the local ring of X at p, Oh
p the Henselization of Op, and Ôh

p the completion of
Op. The surface X has at most finitely many singular points. The next two results due to A.
Grothendieck and B. Auslander, respectively, show that to study the map B′(X)→ B(K),
it suffices to study the corresponding maps on the local rings at the singular points of X .

Theorem 2.1. [17, II, sec. 1] If X is a surface with singular points p1, . . . , pn, then the
sequence

0→
⊕

i

Cl
(
Oh

pi

)
/Cl (Opi)

φ−→ B′(X)→ B(K)

is exact where Cl (Opi) is the divisor class group of Opi . Moreover, φ is an isomorphism
modulo torsion subgroups.

Theorem 2.2. [3] If X is an affine surface then the sequence

0→ B(X)→∏
p

B (Op)

is exact where the product runs over all points p on X.

Corollary 2.3. If X is an affine surface, the sequence

0→ B(X)→

 ⊕
p∈Sing(X)

B (Op)

⊕B(K)

is exact.

Let Ω be a singular point of X and π : Y → X a series of blowings-up over Ω. Let
Y h = Y ×X Spec

(
Oh

Ω

)
. The following theorem was proved by W. Gordon using the Leray

spectral sequence
Hp (X ,Rq

π∗Gm) =⇒ Hp+q (Y ,Gm) .

Theorem 2.4. [15] With X, Y as above, there is an exact sequence

0→ Pic(X)→ Pic(Y )→ Pic
(

Y h
)
→ B′(X)→ B′(Y )→ 0 .

Let R be a two-dimensional normal local ring with maximal ideal M and algebraically
closed residue field k. Let f : X → Spec(R) be a desingularization of R. Let E1, . . . ,En
be the irreducible components of the closed fiber E, i.e., all the integral curves on X with
exceptional support. Then f−1 ({M})red = E1 + · · ·+En. It is known that the intersection
matrix

(
(Ei ·E j)

)
is negative definite [20, Lemma 14.1]. Let E be the additive group of

divisors on X with exceptional support, i.e., divisors of the form ∑siEi. For each i let
di > 0 be the greatest common divisor of all the degrees of invertible sheaves on Ei. Define

θ : Pic(X)→E∗ = Hom(E,Z) by (θ (∆)) (Ei) =
1
di
(∆ ·Ei).
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Denote by Pic0 X the kernel of θ and by G the cokernel of θ . Let U ∼= X− f−1({M}) =
SpecR−{M}. The following diagram with exact rows and columns is due to J. Lipman
[20].

0 0y y
E∩Pic0 X = 0 −−−−→ E −−−−→ θ (E)y y y

0 −−−−→ Pic0 X −−−−→ PicX θ−−−−→ E∗ −−−−→ G −−−−→ 0yρ

y y y=
0 −−−−→ ρ Pic0 X −−−−→ PicU −−−−→ H −−−−→ G −−−−→ 0y y

0 0
The group H is defined by the diagram. Since U = Spec(R)−{M} is regular, Pic(U) =

Cl(U) = Cl(R). The singularity of R is said to be a rational singularity if Cl(R) is finite.
From [20], one of R, Rh, R̂ has a rational singularity if and only if they all do. Using [20,
Prop. 16.3] with A = R and B = Rh and [20, Prop. 17.1] one can show that H = Cl

(
Rh
)

if
the singularity of R is rational.

Theorem 2.5. Let R be a two-dimensional normal local ring with an algebraically closed
residue field. If R has a rational singularity then B(R) = B′(R) and the following diagram
commutes and has exact rows and columns

0 0y y
0 −−−−→ E −−−−→ θ (E)y y
0 −−−−→ PicX θ−−−−→ E∗ −−−−→ B(R) −−−−→ B(K)y y y= y=
0 −−−−→ Cl(R) −−−−→ Cl

(
Rh
)
−−−−→ B(R) −−−−→ B(K)y y

0 0
Proof. For exactness of the diagram apply to the diagram of J. Lipman, the preceding
comments and Theorem 2.1. To see that B(R) = B′(R) note that Cl

(
Rh
)

is finite so by
Theorem 2.1 B′(R) is torsion. But for an affine scheme X , B(X) is the torsion subgroup of
B′(X) by a theorem of O. Gabber [14]. Thus B′(R) = B(R). �

Corollary 2.6. If X is a normal, integral, locally noetherian, two-dimensional scheme of
finite type over an algebraically closed field k with only rational singularities, then B′(X)
is torsion.
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Proof. Apply Theorem 2.1 and Theorem 2.5. �

Corollary 2.7. With the hypothesis of Theorem 2.5, let E = f−1({M}) and Eh = E×SpecR

SpecRh. Then PicEh = PicE.

Proof. Let X be a desingularization of SpecR. From Theorem 2.4 and Theorem 2.5 we
have two exact sequences

0 −−−−→ PicX −−−−→ PicEh −−−−→ B′(R) −−−−→ B(K)y= yθ

y= y=
0 −−−−→ PicX −−−−→ E∗ −−−−→ B(R) −−−−→ B(K)

Both E∗ and PicE are free on n generators. From [20, Lemma 14.3] the restriction map φ :
PicEh→ PicE is surjective. Since PicE ∼= Z(n), the map φ splits. The diagram commutes
so φ is an isomorphism. �

Let R denote a local normal domain, let
{
(Si,mi)

}
i∈I be a directed family of Galois

coverings with fixed maximal ideals. The derived family of local rings
{
(Si)mi

}
i∈I

is di-

rected. Let R̃ = lim−→ (Si)mi
and let π1 = lim←−Gal (Si/R). Now we summarize the preceding

results. By using Theorem 2.1, the following can be extended to any finite number of
singular points. Denote by B′(K/X) the kernel of B′(X)→ B(K).

Theorem 2.8. Let X be a normal, integral, locally noetherian, two-dimensional scheme
over the algebraically closed field k. Assume p is the only singular point on X, then

a) B′(K/X) ∼= Pic(Y h)/P where P = PicY /PicX, and Y nonsingular is obtained
from X by a series of blowings-up over p.

b) B′(K/X) ∼= B′ (K/Op).
c) B′(K/X) ∼= Cl

(
Oh

p
)

/Cl (Op).
d) B′(K/X) ∼= Cl

(
Ôp
)
/Cl (Op).

e) B′(K/X) ∼= Cl
(
Õp
)π1 /Cl (Op).

Moreover, if the singularity on X is rational,then
f) B(K/X) ∼= Pic(E)/P .
g) B(K/X) ∼= B (K/Op).
h) B(K/X) ∼= Cl

(
Oh

p
)

/Cl (Op).
i) B(K/X) ∼= Cl

(
Ôp
)
/Cl (Op).
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The proof of e) is in [25]. In the context of Theorem 2.8, Cl
(
Ôp
) ∼= Cl

(
Oh

p
)
. In [15]

W. Gordon shows that if X has a rational singularity and chark > 0, then B(K/X) 6=
0. It follows from results of Hoobler published in these proceedings that B′(K/X)tor =
B(K/X) in a) – d) above.

Let X be an algebraic surface over C. Following [5] a singular point x on X is said to
be given by a group action if there is an isomorphism from the local ring OX ,x of X at x
into OA2,p (where p is the origin (0,0) of A2) and a finite group G of automorphisms of
OA2,p so that OG

A2,p = OX ,x. It is shown in [5], [23] that a singular point x on a surface
X is given by a group action if and only if πX ,x is finite where πX ,x is the topological
fundamental group of N −{x} where N is a star-like open subset of X (in the analytic
topology) containing x.

Theorem 2.9. [12] Let X be a normal complex affine algebraic surface and assume πX ,x
is finite for each singular point x on X. Then B(K/X) = 0.

In [22] D. Mumford calculated the fundamental group πX ,x of an isolated singular point
x on a complex surface X in terms of generators and relations determined by the geometry
of the exceptional line on a resolution of the singularity x. In particular, if x is resolved by
a single blow-up and the exceptional curve E has self intersection number −l, then πX ,x
is a cyclic group of order l. Theorem 2.9 implies that B(K/X) = 0 when x is the only
singularity on X . This answers a question raised in [7]. If the exceptional curve E has
irreducible components E0,E1, . . . ,E4 with configuration

E2
0 = −4

E2
1 = −2 E2

2 = −2 E2
3 = −2 E2

4 = −2

and self-intersections as given, then using [22] one can show πX ,x is infinite. Hence the
singularity at x is not given by a group action.

Theorem 2.10. [12] Let R =
∞⊕

i=0

Ri be a normal, graded, two-dimensional k-algebra of

finite type with R0 = k. Assume k is algebraically closed and chark = 0. If the only
singularities on SpecR are rational, then B(R) = 0.
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A normal domain R is said to have a discrete divisor class group (DCG) in case Cl(R) =
Cl
(
R[[x]]

)
. The proof of Theorem 2.10 uses the fact that B(R) ∼= B

(
R[x]

)
, which is a

consequence of the next theorem due to P. Griffith.

Theorem 2.11. [16] Let R be a normal domain containing a field of characteristic zero. If
the strict Henselization of R at each prime ideal has DCG, then there is a natural isomor-
phism B(R) ∼= B

(
R[x]

)
.

Note that Theorem 2.10 is valid with the hypothesis “SpecR has only rational singulari-
ties” replaced by “R has DCG”. From [9] and [10] it follows that R has DCG when Cl

(
Rh

p
)

is finitely generated for each maximal ideal p.

3

Theorem 3.1. [12] Let k be an algebraically closed field of characteristic zero and let R be
an affine normal subring of k[x,y] such that k[x,y] is a finitely generated R-module. Then
B(R) = 0 whenever R is graded or k = 0.

Note that with the hypothesis of Theorem 3.1 there is a finite surjective morphism from
A2 to X = SpecR. Thus each singularity on X is a quotient singularity and is given by a
group action. In particular, each singular point on X is rational, and the first conclusion of
the theorem follows from 2.10. If k = C, then the topological fundamental group at each
point of SpecR is finite so by 2.9 B(K/R) = 0. By utilizing results in [1] and [29] it can
be shown that B(X) = B(X−Y ) = 0 where Y is the set of singular points on X .

Theorem 3.2. [12] Let k be an algebraically closed field of characteristic zero, and let
F ∈ k[x,y,z] be a homogeneous polynomial. If R = k[x,y,z]/(F) and ProjR = Y ⊆ P2 is
a smooth integral curve, then B(R) = 0.
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Proof. R is the affine coordinate ring of the cone X = Spec(R) over Y in A3. The ring R
is a two-dimensional normal graded ring and has one singular point at (0,0,0). In general,
the singularity of X is not rational so Theorem 2.10 does not apply. It follows from [8]
that Cl

(
R̂p
) ∼= Cl (Rp)⊕V where V is a finite dimensional vector space over k. Therefore,

Cl
(
R̂p
)
/Cl (Rp) is torsion free.

From Theorem 2.1 we have B′(K/R) is torsion free. Since B(R) is torsion we have
B(K/R) = 0. Let φ : X̃ → X be the morphism obtained by blowing up (0,0,0) in A3. It is
an exercise [18, I, 5.7] to show X is regular and φ−1(0,0,0) ∼= Y . It follows from Theorem
1.2 that B(X̃) = 0. Since X̃ is regular we have an exact commutative diagram

0 −−−−→ B(X̃) −−−−→ B(K)x x=
0 −−−−→ B(X) −−−−→ B(K)

Therefore B(X) ⊆ B(X̃) = 0 So B(X) = B(R) = 0. �

Finally, we give an example of an affine subring R of k[x,y] with k[x,y] a finite R-algebra
and k algebraically closed of characteristic zero yet B(R) 6= 0. This shows the condition
that R be normal in Theorem 3.1 is necessary. To begin let R be any domain with integral
closure R̄ and conductor ideal c. Assume R̄ is a finite R-algebra, then the diagram

R −−−−→ R̄y y
R/c −−−−→ R̄/c

is a cartesian square with respect to the units functor in the sense of 1.3 of [13]. By
Proposition 1.3(b) of [13] the sequence

· · · → Hn(R,U)→ Hn(R̄,U)⊕Hn(R/c,U)→ Hn(R̄/c,U)→ Hn+1(R,U)→ . . .

is exact. Taking torsion subgroups and identifying the terms of low degree we obtain the
Mayer-Vietoris sequence [6] and [19]

1→U(R)t →U(R̄)t ⊕U(R/c)t →U(R̄/c)t →
Pic(R)t → Pic(R̄)t ⊕Pic(R/c)t → Pic(R̄/c)t →

B(R)→ B(R̄)⊕B(R/c)→ B(R̄/c)

Let R = k[x,y2,y(y2− p(x))] where p(x) is some polynomial in x. The quotient field of R
is k(x,y), the integral closure of R is k[x,y], the conductor c viewed as an ideal in k[x,y] is
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(y2− p(x)) and c = ((y2− p(x),y(y2− p(x))) when viewed as an ideal in R. Also k[x,y]
is generated by the elements 1, y as an R-module. Moreover R̄/c = k[x,y]/(y2− p(x))
and R/c = k[x,z]/(z− p(x)) ∼= k[x] where z corresponds to y2.

If k is an algebraically closed field of characteristic 0, then Pic(R/c) = Pic(R̄) =
B(R̄) = B(R/c) = 0 so from the Mayer-Vietoris sequence Pic(R̄/c)t = B(R). If we let
p(x) = x2(x+ 1), then R/c is the coordinate ring of the nodal cubic and by applying the
Mayer-Vietoris sequence to R/c we have Pic(R/c)t ∼=U(k)t so B(R) ∼=U(k)t 6= 0 in this
case.
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