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ABSTRACT. This article is concerned with the cup product map

µ : H1(X ,Z/n)⊗H1(X ,Z/n)→ n B(X) .

Under certain conditions we describe the image and kernel of µ for the spectrum of
k[x1, . . . ,xν , f−1] and for a fiber product space.

0

Throughout X will be a connected scheme over Z[1/n][ω ] where n > 1 is an integer
and ω is a primitive n-th root of unity. We denote by B(X) the Brauer group of X and
by B′(X) the cohomological Brauer group of X [13]. For any abelian group A we let nA
denote the subgroup of A annihilated by n. All cohomology and sheaves are for the étale
topology. Let Gm denote the sheaf of units on X and µn the

This research was partially supported by the NSF.
F. van Oystaeyen and L. Le Bruyn (eds.), Perspectives in Ring Theory, 135–145,
©1988 by Kluwer Academic Publishers.

135



136 T. J. FORD

sheaf of n-th roots of unity. The sequence

(1) 1→ µn →Gm
n−→Gm → 1

is exact. Since Γ(X ,Gm) contains ω , µn is (non-canonically) isomorphic to the constant
sheaf Z/n. The long exact sequence of cohomology associated to (1) is

(2) 1→ µn → Γ(X ,Gm) n−→ Γ(X ,Gm)→ H1(X ,Z/n)→ PicX n−→ PicX

→ H2(X ,Z/n)→ B′(X) n−→ B′(X)→ . . .

where we have identified PicX = H1(X ,Gm) and B′(X) = tors
(
H2(X ,Gm)

)
. If X is affine,

it is known that B(X) = B′(X) under the natural map B(X)→ H2(X ,Gm) [11], [17]. The
cup product map [21, V.1.17]

H1(X ,Z/n)⊗H1(X ,Z/n)→ H2(X ,Z/n)

followed by the homomorphism

H2(X ,Z/n)→ n B′(X)

defines a homomorphism

(3) µ : H1(X ,Z/n)⊗H1(X ,Z/n)→ n B′(X)

which will also be called cup product.
This article is concerned with the study of the map µ . If X is the spectrum of a field k

this problem has been completely solved by Merkurjev [19], [22] if n = 2 and by Merkurjev
and Suslin [20] for all n > 1. For Speck, µ is always surjective and ker µ is the Steinberg
relation group of k. In [3] L. Childs shows that if R is the ring of
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algebraic integers in a number field, then n B(R) is not always generated by im µ .
The group H1(X ,Z/n) classifies Galois covers of X with group Z/n. It is known that

µ corresponds to taking the smash product of two cyclic Galois covers of X [12]. Since the
smash product of cyclic Galois extensions is an Azumaya algebra, im µ ⊆ n B(X). When
n = 2 it is shown in [7] that µ is intimately connected to the group structure of the Brauer-
Wall group BW(X) and the Brauer-Long group BD(X ,Z/2). To compute BD(X ,Z/2) it
suffices to compute B(X), H1(X ,Z/2), and the cup product map µ .

1

First we consider rings of the form R = k[x1, . . . ,xν , f−1]. If f factors into linear poly-
nomials, Theorem 1 shows µ is onto and ker µ is described. Examples 2 and 3 illustrate
that this is not the case in general.

Let Y0, . . . ,Ym be distinct hyperplanes in Pν , ν > 1. Let Y = Y0 ∪ ·· · ∪Ym. Let P de-
note the singular set of Y , P =

{
Yi∩Yj|i 6= j

}
. Write P = p1 ∪ ·· · ∪ ps where the pi are

the irreducible components of P. Each pi is a linear subvariety of Pν of codimension 2,
hence is isomorphic to Pν−2. Define a graph Γ associated to Y . The vertices of Γ are the
hyperplanes Y0, . . . ,Ym and the varieties p1, . . . , ps. There is an edge connecting Yi and p j
if and only if p j is a subvariety of Yi. The graph Γ is bipartite and connected. We orient
Γ by taking the positive end of an edge E the Yi and the negative end the p j. Let e be the
number of edges.
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Theorem 1. [10, Theorem 1] Let k be an algebraically closed field of characteristic p. Let
f1, . . . , fm be linear polynomials in k[x1, . . . ,xν ] and

R = k[x1, . . . ,xν ][ f−1
1 , . . . , f−1

m ] .

Let Y0 be the hyperplane at infinity and Y1, . . . ,Ym the complete hyperplanes in Pν defined
by f1, . . . , fm. Assume that the Yi are distinct. Let Y = Y0 ∪ ·· · ∪Ym and Γ the graph of Y .
Then modulo p-groups B(R) = Q/Z(r) where r = e−m− s is the rank of the cycle space
of Γ. The cup product map

µ : H1(R,Z/n)⊗H1(R,Z/n)→ n B(R)

is surjective for all n relatively prime to p and ker µ is generated by{
fi⊗ f j|Yi∩Y0 = Yj ∩Y0

}⋃ {
( fi⊗ f j)( f j ⊗ ft)( fi⊗ ft)−1|Yi∩Yt = Yj ∩Yt

}
.

Example 2. Let k = C be the field of complex numbers. Choose four points in the
affine plane over k not all on a conic of the form y = ax2 + bx + c and no three on a
line. Choose four conics A, B, C, D each with equation of the form y = ax2 + bx + c,
each passing through exactly three of the above points, no two conics containing the same
three points. Let R = k[x,y][α−1,β−1,γ−1,δ−1] where α , β , γ , δ are the polynomials
in k[x,y] corresponding to A, B, C, D. In [10] it is shown that H1(R,Z/2) = (Z/2)(4),
2 B(R) = (Z/2)(8) and im µ ∼= (Z/2)(5). Thus µ is not surjective.

Example 3. Let k be an algebraically closed field and n relatively prime to the character-
istic of k. Let f = xn−yn−1z and R = k[x,y,z, f−1]. In [10] it is shown that H1(R,Z/n) ∼=
Z/n, B(R) ∼= Z/n and µ is the zero map.
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2

Now we consider fiber product spaces. In Example 4 we see that the Brauer group of
a Laurent polynomial ring is generated by cup products and the Brauer group of the base
ring. Corollary 6, a Künneth formula for the Brauer group, gives sufficient conditions for
n B′(X ×Y ) to be generated by n B′(X), n B′(Y ), and cup products.

Example 4. Suppose R is a Z[1/n][ω ]-algebra and SpecR is connected. Let t be an
indeterminate. In [9] it is shown

(4) n B
(
R[t,1/t]

) ∼= n B(R)⊕
(
H1(R,Z/n)/(C/nC)

)
where C = PicR[t,1/t]/PicR. The homomorphism H1(R,Z/n) → n B(R) is induced
(non-canonically) by taking the smash product of a cyclic Galois extension L with the
cyclic extension R[t,1/t][t1/n]. Therefore n B

(
R[t,1/t]

)
is generated by n B(R) and im µ .

If R contains an algebraically closed field, this is a special case of Corollary 6.

Theorem 5. [21, VI.8.25] and [4, Th. finitude, 1.11]. Let X and Y be schemes of finite
type over the separably closed field k. Let n be relatively prime to the characteristic of k.
Let F and G be sheaves of Z/n-modules on X and Y respectively. The Künneth map

(5) RΓ(X ,F)⊗L RΓ(Y ,G)→ RΓ(X ×Y ,F�LG)

is a quasi-isomorphism.
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Corollary 6. Let X and Y be connected schemes of finite type over the algebraically closed
field k. Let n > 1 be relatively prime to the characteristic of k. Suppose Hi(X ,Z/n) is a
free Z/n-module for i > 0. Then the following sequences are exact, where C is defined by
the first sequence.

(6) 0→ PicX ⊕PicY → PicX ×Y →C → 0

(7) 0→C/nC → H1(X ,Z/n)⊗H1(Y ,Z/n)
µ−→

n B′(X ×Y )→ n B′(X)⊕ n B′(Y )→ 0

Proof. Because Hi(X ,Z/n) is flat for i > 0, Theorem 5 gives

(8) H2(X ×Y ,Z/n) ∼=
⊕

p+q=2

Hp(X ,Z/n)⊗Hq(Y ,Z/n)

Since k is algebraically closed the natural projections X ×Y → X , X ×Y → Y admit
sections. Therefore, the natural maps B′(X)⊕B′(Y ) → B′(X ×Y ) and PicX ⊕PicY →
PicX ×Y split. Let C be defined by (6). Then PicX ×Y ∼= PicX ⊕PicY ⊕C and Pic(X ×
Y )/nPic(X ×Y ) ∼= PicX/nPicX ⊕ PicY /nPicY ⊕C/nC. Kummer theory (2) gives a
commutative diagram
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(9)

0 −−−−→ PicY
nPicY −−−−→ H2(Y ,Z/n) −−−−→ n B′(Y ) −−−−→ 0y y y

0 −−−−→ PicX×Y
nPicX×Y −−−−→ H2(X ×Y ,Z/n) −−−−→ n B′(X ×Y ) −−−−→ 0x x x

0 −−−−→ PicX
nPicX −−−−→ H2(X ,Z/n) −−−−→ n B′(X) −−−−→ 0

with split vertical arrows and exact rows. From (9) we have the exact sequence:

(10) 0→ Pic(X ×Y )⊗Z/n(
PicX ⊕PicY

)
⊗Z/n

→ H2(X ×Y ,Z/n)
H2(X ,Z/n)⊕H2(Y ,Z/n)

→ n B′(X ×Y )
n B′(X)⊕ n B′(Y )

→ 0

Combining (10) and (8) yields (7). �

Corollary 7. Let X and Y be smooth curves over the algebraically closed field k of char-
acteristic p. If n is relatively prime to p, then there are exact sequences

(11) 0→ PicX ⊕PicY → PicX ×Y →C → 0

(12) 0→C/nC → H1(X ,Z/n)⊗H1(Y ,Z/n)
µ−→ n B(X ×Y )→ 0

where C is defined by the first sequence.
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Proof. For the smooth surface X ×Y , B(X ×Y ) = B′(X ×Y ). For smooth curves the
groups Hi(X ,Z/n) are free Z/n-modules, i > 0. Over k the Brauer group of a curve is
trivial. �

Corollary 8. Let X and Y be projective nonsingular varieties over the algebraically closed
field k of characteristic p. Assume n is relatively prime to p and either

a. X and Y are both curves, or
b. n is a prime.

If C = Pic (X ×Y )/(PicX ⊕PicY ) and

(13) µ : K(X)∗/K(X)∗n⊗K(Y )∗/K(Y )∗n → B
(
K(X ×Y )

)
then C/nC ∼= ker µ .

Proof. There is a natural injection

H1(X ,Z/n)⊗H1(Y ,Z/n)→ K(X)∗/K(X)∗n⊗K(Y )∗/K(Y )∗n .

Choose arbitrary open subsets U and V of X and Y respectively. Let

D = Pic (U ×V )/(PicU ⊕PicV ) .

The diagram

(14)

0 −−−−→ PicX ⊕PicY −−−−→ PicX ×Y −−−−→ C −−−−→ 0yα

yβ

yφ

0 −−−−→ PicU ⊕PicV −−−−→ PicU ×V −−−−→ D −−−−→ 0
commutes. Since α and β are surjective, φ is surjective. The diagram
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(15)

0 −−−−→ C/nC −−−−→ H1(X ,Z/n)⊗H1(Y ,Z/n) −−−−→ n B(X ×Y )yσ

yτ

yγ

0 −−−−→ D/nD −−−−→ H1(U ,Z/n)⊗H1(V ,Z/n) −−−−→ n B(U ×V )
commutes and τ and γ are one-to-one. Therefore σ is one-to-one, hence C/nC ∼= D/nD.
Taking the limit of D/nD over all U and V gives ker µ . �

Example 9. Let X be a projective nonsingular elliptic curve over the algebraically closed
field k. Suppose chark = p, p 6= 2. With notation taken from [16, IV.4], say τ = i, j = 1728.
Then PicX = Z⊕ (R/Z)2. If C is as in (11), then C = End(X ,P0) ∼= Z[i]. Thus C/nC ∼=
(Z/n)2. H1(X ,Z/n) ∼= n PicX ∼= (Z/n)2. Applying Corollary 7 we get n B(X ×X) ∼=
(Z/n)2. Modulo p-groups, B(X ×X) ∼= (Q/Z)2.

Example 10. Let k be the complex number field. Let X be the complement of the curve
xn = yn−1z in the projective plane P2. Let Y be the affine nodal curve y2 = x2(x + 1). In
[8] it was shown that B(X ×Y ) ∼= Z/n. One can compute B(X) = B(Y ) = 0, PicX =
Z/n, H1(X ,Z/n) = Z/n, H2(X ,Z/n) = Z/n, H1(Y ,Z/n) = Z/n, and in (6) C = 0.
Applying Corollary 6 we see that the generator of B(X ×Y ) is a cup product.

Corollary 11. Let X and Y be connected schemes of finite type over the algebraically
closed field k of characteristic p. Let n > 1 be relatively prime to p. Suppose Hi(X ,Z/n) is
a free Z/n-module for i > 0. If n B(X) = n B′(X) and n B(Y ) = n B′(Y ), then n B(X×Y ) =
n B′(X ×Y ).

Proof. From Corollary 6, n B′(X ×Y ) is generated by n B(X), n B(Y ) and im µ . But these
groups are subgroups of n B(X ×Y ). �
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