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Preface

The purpose of this book is to provide an introduction to the theory of abstract
algebra in an efficient concise no-nonsense manner. The goal is to lay a solid
foundation for future study of algebraic topics. It is intended to be accessible to
first year graduate students and advanced undergraduate students in mathematics.
Chapters two, three, four, five and six provide a solid introduction to group theory,
ring theory, linear algebra and fields. A typical two-semester sequence on Abstract
Algebra at the introductory level would cover much of the material in these five core
chapters. Chapter one, a background chapter, contains much of the conventions
concerning notation and terminology as well as a review of the material from set
theory, elementary number theory, calculus, and matrix theory necessary for reading
the rest of the book. Chapter seven is an additional chapter that applies the main
results of the five core chapters to a topic normally seen in a more advanced algebra
book, namely the group of ideal classes of a Dedekind domain.

Algebra is one of the fundamental areas of mathematics. Like most of modern
mathematics, it is no exaggeration to say that Algebra is very abstract. The many
abstract structures and constructions that exist in Algebra can be difficult to grasp
upon first encounter. For this reason, it is sometimes helpful to have a “handle” to
lend support. In its essence, Algebra is the study of polynomial equations. While
not intending to be an oversimplification of the matter, keeping this in mind can be
of help to a student trying to make sense of the many abstract notions that arise.
For instance, Number Theory can be considered as that subset of Algebra that is
concerned with polynomial equations for which the coefficients involve only natural
numbers. Likewise, the origins of Group Theory lie in the study of solutions to
polynomial equations in one variable. It was Galois who stressed the importance of
looking at the permutations of the set of roots of a polynomial in one indeterminate.
This led to what is now called Galois Theory, as well as to the notion of a group
acting on a set, hence to what is now called Group Theory. The set of solutions to
a system of polynomials in several variables is called an algebraic variety. Algebraic
Geometry arose as the study of algebraic varieties. Linear Algebra is the study of
systems of linear equations. Arising out of this study are what we now call vector
spaces, and more generally, modules. Matrices turn out to have both practical and
theoretical importance in Linear Algebra. Ring Theory can be thought of as the
natural abstraction of the addition and multiplication operations possessed by the
set of square matrices. Commutative Algebra naturally developed out of the study
of properties of the ring of polynomial functions on an algebraic variety.

Chapter 1 includes a review of much of the background material. It serves as
a reference for the rest of the book. This includes material that is ordinarily cov-
ered in the standard undergraduate courses on Discrete Mathematics, Introductory
Number Theory, and Introductory Linear Algebra.

Chapter 2 is an introduction to Group Theory. There are many examples
of finite groups. The standard counting theorems for cosets and factor groups,
including Lagrange’s Theorem are proved. The Isomorphism Theorems which are
proved here for groups are referenced by the later chapters when the counterparts
for rings and modules arise. There is a section devoted to group actions, conjugacy
classes, the Class Equation, and semidirect products. Arbitrary direct products,
both external and internal are defined. The important properties of permutations
on finite sets and the symmetric groups are derived. Included are proofs of Cauchy’s
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Theorem, the Sylow Theorems, the Basis Theorem for a Finite Abelian Group, an
introduction to the classification problem for finite groups, and an introduction to
solvable groups.

Chapter 3 is an introduction to Ring Theory. Topics include ideals, factor
rings, the Isomorphism Theorems, direct sums and products, the Chinese Remain-
der Theorem, factorization in commutative rings, euclidean domains, principal ideal
domains, unique factorization domains, the quotient field of an integral domain,
polynomial rings over a commutative ring, and a proof that a polynomial ring over
a unique factorization domain is a unique factorization domain. We prove that a
principal ideal domain satisfies the ascending chain condition on ideals and is a
unique factorization domain. These results are used in Section 4.6 when we study
finitely generated modules over a principal ideal domain. A euclidean domain is a
principal ideal domain, hence is a unique factorization domain. Over an arbitrary
euclidean domain, the Extended Euclidean Algorithm exists for computing a great-
est common divisor d = gcd(a, b) and for solving the Bézout Identity d = ax+ by.

Chapter 4 is an introduction to modules, vector spaces, algebras, and matrices.
We define a module over an arbitrary ring, and a vector space over a division ring.
Whenever possible, theorems on modules are treated as extensions of their counter-
parts for groups. Submodules, quotient modules, and the Isomorphism Theorems
are covered. Direct products and direct sums are defined for an arbitrary family
of modules. The fundamental properties of free modules are proved, including the
existence of a basis. This then leads to an introduction to properties of vector
spaces. In this chapter we also define an algebra over a commutative ring. In
general, algebras are noncommutative. In an algebra over a field, we show that an
algebraic element has a unique minimal polynomial. Included is an introduction to
Matrix Theory over an arbitrary ring. Given finitely generated free R-modules M
and N and given bases for M and N , a homomorphism from M to N has a matrix
representation. The set of all n-by-m matrices over a ring R is a free module. Ma-
trix multiplication is consistent with composition of homomorphisms. The set of all
n-by-n matrices is itself a ring. Changing the basis ofM corresponds to a similarity
transformation of the matrix associated to an endomorphism of M . In this chapter
we prove the Invariant Factor Form and the Elementary Divisor Form of the Basis
Theorem for Finitely Generated Modules. Rather than state and prove these the-
orems for finitely generated Z-modules or for modules over a euclidean domain, we
instead prove them over an arbitrary Principal Ideal Domain. This permits us in
Chapter 7 to prove the finiteness of the integral closure of a principal ideal domain
in a finite separable extension of its quotient field (Corollary 7.1.16). This leads
into an existence theorem for Dedekind domains (Theorem 7.3.2) that applies to
the integral closure of a principal ideal domain in a finite separable extension of its
quotient field.

Chapter 5 is an introduction to fields. This includes algebraic extensions, tran-
scendental extensions, and the questions of antiquity involving straightedge and
compass constructions. The existence and uniqueness of a splitting field is proved.
The Primitive Element Theorem is proved for a finite separable extension. Our
presentation of the Fundamental Theorem of Galois Theory is very close to the
traditional approach of [2]. The importance of separable extensions is emphasized.
There are proofs of the Embedding Theorem, the existence of a separable closure,
that normal and separable implies Galois, and that for a field to be perfect it is
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necessary and sufficient that every algebraic extension be separable. For a Ga-
lois extension there are the norm and trace functions. Hilbert’s Theorem 90 is
proved for a cyclic extension. Many of the fundamental properties of finite fields,
cyclotomic extensions and cyclic extensions are proved. We prove that the field
of symmetric rational functions is equal to the field of rational functions in the
elementary symmetric polynomials and a symmetric polynomial is a polynomial in
the elementary symmetric polynomials. When the ground field has characteristic
zero and contains sufficiently many roots of unity, we show that a polynomial is
solvable by radicals if and only if the Galois group solvable. This chapter relies
heavily on results from Chapters 2, 3 and 4.

Chapter 6 is the study of linear transformations on a finite dimensional vector
space over a field. Given a field k, a finite dimensional k-vector space V , and a
linear transformation ϕ : V → V , the eigenvalues and eigenvectors of ϕ are studied.
The eigenvalues are related to the existence of a basis such that the matrix of ϕ is
in triangular form. Associated to the linear transformation ϕ is a module structure
on V over the principal ideal domain k[x]. The Basis Theorems for a Finitely
Generated Module over a Principal Ideal Domain are applied to derive the rational
canonical form and the Jordan canonical form of ϕ. The existence and uniqueness
of a reduced row echelon form is proved. The determinant function is defined
as a symmetric multilinear form and the characteristic polynomial is defined as a
determinant. This allows us to derive their important properties. This chapter
relies heavily on results from Chapters 2 – 5.

Chapter 7 includes an introduction to integral extensions and the integral clo-
sure of an integral domain. An introduction to the properties of fractional ideals is
given. We define the ideal class group, but for sake of brevity as well as complete-
ness, we restrict our definition to Dedekind domains. A Dedekind domain is an
integral domain S with quotient field L such that S ̸= L, S is integrally closed in
L, S has the ascending chain condition on ideals, and every nonzero prime ideal of
S is maximal. We show that for a Dedekind domain the set of all fractional ideals
is an abelian group. Given a principal ideal domain R with quotient field K and a
finite separable extension L/K, the integral closure of R in L is a Dedekind domain.
This important existence theorem implies, for example, that the ring of integers in
an algebraic number field is a Dedekind domain. The last section is devoted to
some applications and computations for two specific examples. The examples we
consider are affine algebraic curves of degree two and degree three. Modulo some
results we need from algebraic geometry (specifically, the Jacobian Criterion for
Regularity and the proof that a nonsingular curve is rational if and only if there
are two distinct points that are linearly equivalent), the group law on the cubic
is presented in terms of the ideal class group of the affine coordinate ring. This
chapter relies heavily on results from Chapters 2 – 6.

This book originated in the class notes that I compiled when I taught the
two-semester sequence on Abstract Algebra at Florida Atlantic University for the
Fall 2019 – Spring 2020 academic year. At my university, the students who take
this course are either advanced undergraduates or first year graduate students.
Throughout the course, I personally typeset the lecture notes and made them avail-
able for my students. Supplemental exercises were added as well. By the end of the
course, I had accumulated most of the material in this document. In the following
three year period, the book has since been used as the primary source for the same



PREFACE 11

algebra course at my university. A number of new topics have been included. Many
examples and exercises have been added.

The intention in writing this book is to produce an introductory level abstract
algebra book. Compared to other popular books on the subject, the plan is for
it to be content-wise on the level of Herstein’s [15] and Clark’s [6], and presented
in their same no-nonsense style. It deliberately covers fewer topics and is shorter
in length than [4], and [8], for example. It is meant to be more accessible than
Hungerford’s [16], Rotman’s [23], [24], [25], or Lang’s [18].

I take this opportunity to express my gratitude for the positive influence three
algebraists have had on my appreciation, attraction and love for this subject. I am
grateful to Frank DeMeyer for introducing me to the amazing subject of Abstract
Algebra, in the style of [16], to James Brewer for suggesting [15] for an introductory
level textbook on this subject, and to Fred Richman who steered me into the
straightforward approach employed by [6].





CHAPTER 1

Preliminaries and Prerequisites

Chapter 1 is intended to be used as a reference by the subsequent chapters.
We assume the reader is familiar with most of the material. This chapter is not
intended to be a substitute for an undergraduate textbook on Discrete Mathematics.
Conventions, notation and terminology are established. Without undermining the
importance of the subject matter, the goal of Chapter 1 is to efficiently and concisely
set the table for the rest of the book. Therefore, a practical, or utilitarian approach
is taken.

1. Background Material from Set Theory

Sets are the basic building blocks of abstract mathematics. We begin with sets
of numbers, sets of letters, sets of sets, or sets of variables. We combine them,
operate on them, compare them. Functions, relations and binary operations are
themselves defined as sets.

A rigorous definition of a set is not attempted. Rather, we adopt the naive
approach that a set is an abstract collection of objects, or elements. It is important
to emphasize that the key property or attribute a set is required to possess is that
it is possible to distinguish in an unambiguous way those elements that are in the
set from those not in the set.

1.1. Sets and Operations on Sets. A set is a collection of objects X with
a membership rule such that given any object x it is possible to decide whether x
belongs to the set X. If x belongs to X, we say x is an element of X and write
x ∈ X. Suppose X and Y are sets. If every element of X is also an element of Y ,
then we say X is a subset of Y , or that X is contained in Y , and write X ⊆ Y .
If X and Y are subsets of each other, then we say X and Y are equal and write
X = Y . The set without an element is called the empty set and is denoted ∅. The
set of all subsets of X is called the power set of X, and is denoted 2X . Notice that
∅ and X are both elements of 2X . The union of X and Y , denoted X∪Y , is the set
of all elements that are elements of X or Y . The intersection of X and Y , denoted
X ∩ Y , is the set of all elements that are elements of X and Y . The complement
of X with respect to Y , denoted Y −X, is the set of all elements of Y that are not
elements of X. The product of X and Y , denoted X × Y , is the set of all ordered
pairs of the form (x, y) where x is an element of X and Y is an element of Y .

Let I be a set and suppose for each i ∈ I there is a set Xi. Then we say
{Xi | i ∈ I} is a family of sets indexed by I. The union of the family is denoted⋃
i∈I Xi and is defined to be the set of all elements x such that x ∈ Xi for some

i ∈ I. The intersection of the family is denoted
⋂
i∈I Xi and is defined to be the

set of all elements x such that x ∈ Xi for all i ∈ I.

13



14 1. PRELIMINARIES AND PREREQUISITES

The set of integers is Z = {. . . ,−2,−1, 0, 1, 2, . . . }. The set of natural numbers
is N = {1, 2, 3, . . . }. The set of nonnegative integers is Z≥0 = {0, 1, 2, 3, 4, . . . }. The
set of rational numbers is Q = {n/d | n ∈ Z, d ∈ N} where it is understood that
n/d = x/y if ny = dx. The set of real numbers is denoted R, the set of complex
numbers is denoted C.

If n ∈ N and {X1, . . . , Xn} is a family of sets indexed by {1, 2, . . . , n}, then we
sometimes write X1 ∪ · · · ∪ Xn instead of

⋃n
i=1Xi, and X1 ∩ · · · ∩ Xn instead of⋂n

i=1Xi. The product of the family, written X1 × · · · ×Xn or
∏n
i=1Xi, is the set

{(x1, . . . , xn) | xi ∈ Xi}.

1.2. Relations and Functions. Let X and Y be nonempty sets. A relation
between X and Y is a nonempty subset R of the product X×Y . Two relations are
equal if they are equal as sets. The domain of R is the set of all first coordinates
of the pairs in R. The range of R is the set of all second coordinates of the pairs
in R.

A function (or map) from X to Y is a relation f ⊆ X × Y such that for each
x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f . In this case, we say y is
the image of x under f , and write y = f(x). The range of a function f is also
called the image of f . The image of f is denoted f(X), or im(f). The notation
f : X → Y means f is a function from X to Y . If T ⊆ Y , the preimage of T
under f , denoted f−1(T ), is the set of all elements x ∈ X such that f(x) ∈ T . If
y ∈ Y , we usually write f−1(y) instead of f−1({y}). If S ⊆ X, the restriction of
f to S is the function f |S : S → Y defined by f |S(x) = f(x) for all x ∈ S. The
identity map from X to X, 1X : X → X, is defined by 1X(x) = x for all x ∈ X.
If S ⊆ X, the inclusion map from S to X is the restriction of the identity map
1X to the subset S. If f : X → Y and g : Y → Z, the product or composition
map is gf : X → Z defined by gf(x) = g(f(x)). If h : Z → W , the reader should
verify that h(gf) = (hg)f so the product of functions is associative. We say that
f : X → Y is one-to-one (or injective) in case f−1(y) is a set with exactly one
element for each y ∈ f(X). We say that f : X → Y is onto or (surjective) in case
the image of f is equal to Y . If f : X → Y is one-to-one and onto, then we say that
f is a one-to-one correspondence (or f is bijective). The reader should verify that
the identity map 1X is a one-to-one correspondence. If S ⊆ X, the reader should
verify that the inclusion map S → X is one-to-one.

Proposition 1.1.1. Let f : X → Y .

(1) f is one-to-one if and only if there exists g : Y → X such that gf = 1X .
In this case g is called a left inverse of f .

(2) If f is a one-to-one correspondence, then the function g of Part (1) is
unique and satisfies fg = 1Y . In this case g is called the inverse of f and
is denoted f−1.

(3) If there exists a function g : Y → X such that gf = 1X and fg = 1Y ,
then f is a one-to-one correspondence and g is equal to f−1.

Proof. (1): View f as a subset of X × Y and define g as a subset of Y ×X.
Because f is not onto, our definition of g on Y −f(X) is ad hoc. For this reason, let
x0 be any element of X. Define g = {(f(x), x) | x ∈ X} ∪ {(y, x0) | y ∈ Y − f(X)}.
Then g has the desired properties. The rest is Exercise 1.1.8. □

For the counterpart of Proposition 1.1.1 (1) with ’onto’ instead of ’one-to-one’,
see Exercise 1.3.8.
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A commutative diagram is a finite family of sets DV = {X1, . . . , Xv} together
with a finite collection of functions DE = {f1, . . . , fe} satisfying the following prop-
erties.

(1) Each f in DE is a function from one set in DV to another set in DV .
(2) Given two sets X, Y in DV and any two paths

X = A0

fa1−−→ A1

fa2−−→ · · · → Ar−1
far−−→ Ar = Y

X = B0

gb1−−→ B1

gb2−−→ · · · → Bs−1
gbs−−→ Bs = Y

from X to Y consisting of functions fa1 , . . . , far , gb1 , . . . , gbs in DE , the
composite functions far · · · fa1 and gbs · · · gb1 are equal.

1.3. Binary Relations. A binary relation on X is a subset ofX×X. Suppose
∼ is a binary relation on X. If (x, y) is an element of the relation, then we say
x is related to y and write x ∼ y. Otherwise we write x ̸∼ y. If x ∼ x for every
x ∈ X, then we say ∼ is reflexive. We say ∼ is symmetric in case x ∼ y whenever
y ∼ x. We say ∼ is antisymmetric in case x ∼ y and y ∼ x implies x = y.
We say ∼ is transitive if x ∼ z whenever x ∼ y and y ∼ z. If ∼ is reflexive,
symmetric and transitive, then we say ∼ is an equivalence relation on X. If ∼ is
an equivalence relation on X, and x ∈ X, then the equivalence class containing x
is [x] = {y ∈ X | x ∼ y}. By X/ ∼ we denote the set of all equivalence classes.
The function η : X → X/ ∼ defined by η(x) = [x] is called the natural map.

Proposition 1.1.2. Let X be a nonempty set and ∼ an equivalence relation
on X.

(1) If x ∈ X, then [x] ̸= ∅.
(2)

⋃
x∈X

[x] = X =
⋃

[x]∈X/∼

[x]

(3) If x, y ∈ X, then [x] = [y] or [x] ∩ [y] = ∅.

Proof. Is left to the reader. □

Let X be a nonempty set. A partition of X is a family P of nonempty subsets
of X such that X =

⋃
P∈P P and if P,Q ∈ P, then either P = Q, or P ∩ Q = ∅.

If ∼ is an equivalence relation on X, then Proposition 1.1.2 shows that X/ ∼ is a
partition of X. Conversely, suppose P is a partition of X. There is an equivalence
relation ∼ on X corresponding to P defined by x ∼ y if and only if x and y belong
to the same element of P.

Proposition 1.1.3. Let X be a nonempty set. There is a one-to-one corre-
spondence between the set of all equivalence relations on X and the the set of all
partitions of X. The assignment maps an equivalence relation ∼ to the partition
X/ ∼.

Proof. Is left to the reader. □

Let U be any set, which we assume contains N as a subset. Define a binary
relation on the power set 2U by the following rule. If X and Y are subsets of U ,
then we say X and Y are equivalent if there exists a one-to-one correspondence
α : X → Y . The reader should verify that this is an equivalence relation on 2U . If
X and Y are equivalent sets, then we say X and Y have the same cardinal number.
For n ≥ 1 define Nn = {1, . . . , n}. If a set X is equivalent to Nn, then we say X
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has cardinal number n and write |X| = n. The cardinal number of the empty set
is defined to be 0. We write |∅| = 0. We say a set X is finite if X is equal to the
empty set, or equivalent to Nn for some n. Otherwise, we say X is infinite.

Let X be a set and ≤ a binary relation on X which is reflexive, antisymmetric
and transitive. Then we say ≤ is a partial order on X. We also say X is partially
ordered by ≤. If x, y ∈ X, then we say x and y are comparable if x ≤ y or y ≤ x.
A chain is a partially ordered set with the property that any two elements are
comparable. If S ⊆ X is a nonempty subset, then S is partially ordered by the
restriction of ≤ to S × S. If the restriction of ≤ to S is a chain, then we say S is a
chain in X.

Let X be partially ordered by ≤ and suppose S is a nonempty subset of X.
Let a ∈ S. We say a is the least element of S if a ≤ x for all x ∈ S. If it exists,
clearly the least element is unique. We say a is a minimal element of S in case
x ≤ a implies x = a for all x ∈ S. We say a is a maximal element of S in case
a ≤ x implies x = a for all x ∈ S. A well ordered set is a partially ordered set X
such that every nonempty subset S has a least element. The reader should verify
that a well ordered set is a chain. An element u ∈ X is called an upper bound for S
in case x ≤ u for all x ∈ S. An element l ∈ X is called a lower bound for S in case
l ≤ x for all x ∈ S. An element U ∈ X is a supremum, or least upper bound for S,
denoted U = sup(S), in case U is an upper bound for S and U is a lower bound for
the set of all upper bounds for S. The reader should verify that the supremum is
unique, if it exists. An element L ∈ X is an infimum, or greatest lower bound for
S, denoted L = inf(S), in case L is a lower bound for S and L is an upper bound
for the set of all lower bounds for S. The reader should verify that the infimum is
unique, if it exists. A lattice is a partially ordered set X such that sup{x, y} exists
and inf{x, y} exists, for every pair of elements x, y in X.

Let X be partially ordered by ≤. We say that X satisfies the minimum con-
dition if every nonempty subset of X contains a minimal element. We say that X
satisfies the maximum condition if every nonempty subset of X contains a max-
imal element. We say that X satisfies the descending chain condition (DCC) if
every chain in X of the form {. . . , x3 ≤ x2 ≤ x1 ≤ x0} is eventually constant.
That is, there is a subscript n such that xn = xi for all i ≥ n. We say that
X satisfies the ascending chain condition (ACC) if every chain in X of the form
{x0 ≤ x1 ≤ x2 ≤ x3, . . . } is eventually constant.

1.4. Permutations and Combinations. Let n ≥ 1 and Nn = {1, 2, . . . , n}.
A bijection σ : Nn → Nn is also called a permutation. Let Sn denote the set of all
permutations of Nn. In Example 2.1.15 we will call Sn the symmetric group on n
letters. If σ ∈ Sn, then we can view σ = (x1, . . . , xn) as an n-tuple in the product∏n
i=1 Nn. The fact that σ is a bijection is equivalent to the statement that the

n-tuple (x1, . . . , xn) contains no repeated elements. Therefore,

Sn =

{
(x1, . . . , xn) ∈

n∏
i=1

Nn | if i ̸= j, then xi ̸= xj

}
.

Because there are n ways to pick x1, n−1 ways to pick x2, and so forth, a straight-
forward induction proof shows that the number of elements in Sn is equal to n!. If
1 ≤ k ≤ n, then a k-permutation of Nn is a one-to-one function σ : Nk → Nn. The
k-permutations of Nn correspond to k-tuples (x1, . . . , xk) where each xi ∈ Nn and
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if i ̸= j, then xi ̸= xj . Again, a straightforward induction proof shows that the
number of k-permutations of Nn is equal to n(n− 1) · · · (n− k + 1) = n!/(n− k)!.

If X is a finite set with cardinality |X| = n, then we say X is an n-set. If
S ⊆ X and |S| = k, then we say S is a k-subset of X. The number of k-subsets of
an n-set X is denoted

(
n
k

)
. The symbol

(
n
k

)
is called the binomial coefficient and

is pronounced n choose k because it is the number of different ways to choose k
objects from a set of n objects.

As we saw above, the number of different k-permutations of Nn is equal to
n!/(n− k)!. But a k-permutation of Nn can be viewed as a two step process. The
first step is choosing a k-subset, which can be done in

(
n
k

)
different ways. Then the

elements of the k-set are permuted, which can be done in k! ways. Viewing the
number of k-permutations of Nn in these two different ways, we see that n!/(n−k)!
is equal to

(
n
k

)
(k!). This leads to Part (3) of the next lemma.

Lemma 1.1.4. The following are true.

(1) If k < 0 or n < 0 or k > n, then
(
n
k

)
= 0.

(2) If n ≥ 0, then
(
n
0

)
=
(
n
n

)
= 1.

(3) If 0 ≤ k ≤ n, then

(
n

k

)
=

n!

k!(n− k)!
.

(4) (Pascal’s Identity) If 0 < k < n, then
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.

Proof. Parts (1) and (2) follow straight from the definition of binomial coef-
ficient. Part (3) follows from the paragraph above. Part (4) follows directly from
the formula in (3) and is left as an exercise for the reader. □

1.5. Binary Operations. Let X be a nonempty set. A binary operation on
X is a function X × X → X. If ∗ is a binary operation on X, the image of an
ordered pair (x, y) is denoted x ∗ y. The binary operation is said to be associative
if (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ X. If e is a special element in X such
that x ∗ e = e ∗ x = x for all x ∈ X, then we say e is an identity element for ∗. If
x∗y = y∗x for all x, y ∈ X, then we say ∗ is commutative. If (x, y) 7→ x·y is another
binary operation on X such that x·(y∗z) = (x·y)∗(x·z) and (x∗y)·z = (x·z)∗(y ·z)
for all x, y, z ∈ X, then we say · distributes over ∗.

Example 1.1.5. Here are some common examples of binary operations on sets.

(1) Addition of numbers is a binary operation on the set of real numbers R.
Addition is associative, commutative, and 0 is the identity element. Mul-
tiplication of numbers is a binary operation on the set of real numbers R.
Multiplication is associative, commutative, and 1 is the identity element.
Multiplication distributes over addition.

(2) Let U be a nonempty set and X = 2U . If A and B are in X, then so are
A ∪ B, A ∩ B, and A − B. In other words, union, intersection, and set
difference all define binary operations on X. Union and intersection are
both associative and commutative. The distributive laws for union and
intersection are in Exercise 1.1.6.

(3) Let X be a nonempty set and Map(X) the set of all functions mapping
X to X. If f, g ∈ Map(X), then so is the composite function fg. Compo-
sition of functions is a binary operation on Map(X) which is associative.
That is, (f (gh)) (x) = ((fg)h) (x) for all f, g, h ∈ Map(X) and x ∈ X.
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If |X| > 1, then composition of functions in Map(X) is noncommutative.
The identity map 1X is the identity element.

(4) Let R3 = {(x1, x2, x3) | x1, x2, x3 ∈ R} be the set of all ordered 3-tuples
over R. The cross product of the vector x = (x1, x2, x3) and the vector
y = (y1, y2, y3) is the vector x × y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 −
x2y1). Therefore, cross product is a binary operation on R3. This binary
operation is not associative and not commutative.

1.6. Exercises.

Exercise 1.1.6. (Distributive Laws for Intersection and Union) Let {Xi | i ∈
I} be a family of sets indexed by I and let Y be any set. Prove:

(1) Y ∩
(⋃

i∈I Xi

)
=
⋃
i∈I(Y ∩Xi)

(2) Y ∪
(⋂

i∈I Xi

)
=
⋂
i∈I(Y ∪Xi)

Exercise 1.1.7. (DeMorgan’s Laws) Let {Xi | i ∈ I} be a family of sets
indexed by I and suppose U is an arbitrary set. Prove:

(1) U −
(⋃

i∈I Xi

)
=
⋂
i∈I(U −Xi)

(2) U −
(⋂

i∈I Xi

)
=
⋃
i∈I(U −Xi)

Exercise 1.1.8. Finish the proof of Proposition 1.1.1.

Exercise 1.1.9. Let f : X → Y and g : Y → Z. Prove:

(1) If gf is onto, then g is onto.
(2) If gf is one-to-one, then f is one-to-one.
(3) If f is onto and g is onto, then gf is onto.
(4) If f is one-to-one and g is one-to-one, then gf is one-to-one.

Exercise 1.1.10. Recall that the set of natural numbers is N = {1, 2, . . . } and
if n ∈ N, then Nn = {1, 2, . . . , n}. Prove:

(1) If f : Nn → Nn is one-to-one, then f is onto.
(2) If f : Nn → Nn is onto, then f is one-to-one.

Exercise 1.1.11. (The Pigeonhole Principle) Let f : Nm → Nn. Prove:
(1) If m > n, then f is not one-to-one.
(2) If m < n, then f is not onto.

Exercise 1.1.12. Let X and Y be finite sets. Show that |X × Y | = |X||Y |.

Exercise 1.1.13. (Universal Mapping Property) Let f : X −→ Y be a func-
tion. Let ∼ be an equivalence relation on X, and η : X → X/∼ the natural map.
Show that if f has the property that a ∼ b implies f(a) = f(b) for all a, b ∈ X,
then there exists a function f̄ : X/∼ → Y such that f = f̄η. Hence the diagram

X
f //

η

��

Y

X/∼
∃f̄

==

commutes. This shows that if f is constant on equivalence classes, then f factors
through the natural map η.

Exercise 1.1.14. Let f : X −→ Y be a function. Define a relation ≈ on X by
the rule: x ≈ y if and only if f(x) = f(y). Prove:
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(1) ≈ is an equivalence relation on X. If x ∈ X, then the equivalence class of
x is f−1(f(x)). We say the equivalence classes are the fibers of f .

(2) There exists a function f̄ : X/ ≈ → Y such that f factors through the
natural map η : X → X/≈. That is, f = f̄η.

(3) f̄ is one-to-one.
(4) f̄ is a one-to-one correspondence if and only if f is onto.

Exercise 1.1.15. Let X be an infinite set. Prove that X contains a subset
that is equivalent to N.

Exercise 1.1.16. Let X be a set. Prove that X is infinite if and only if there
exists a one-to-one function f : X → X which is not onto.

Exercise 1.1.17. If x ∈ R, the floor of x, written ⌊x⌋, is the maximum of the
set {k ∈ Z | k ≤ x}. The ceiling of x, written ⌈x⌉, is the minimum of the set
{k ∈ Z | k ≥ x}. Let f : Nm → Nn. Prove:

(1) There exists a ∈ Nn such that the cardinality of the set f−1(a) is greater
than or equal to ⌈m/n⌉.

(2) There exists b ∈ Nn such that the cardinality of the set f−1(b) is less than
or equal to ⌊m/n⌋.

Exercise 1.1.18. Prove the Binomial Theorem:

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i

where x and y are indeterminates and n ≥ 0.

Exercise 1.1.19. Let X be a finite set. Use the Binomial Theorem to prove
that |2X | = 2|X|.

Exercise 1.1.20. (Correspondence Theorem) Let X be a set and ∼ an equiv-
alence relation on X. Let ≈ be an equivalence relation on X/ ∼. Show that
there exists an equivalence relation ≡ on X and a one-to-one correspondence
φ : (X/ ≡) → (X/ ∼)/ ≈ such that the diagram

X
η∼ //

η≡

��

X/ ∼

η≈

��
X/ ≡

φ // (X/ ∼)/ ≈

commutes where η∼, η≈, η≡ are the natural maps.

2. Background Material from Number Theory

The basic results from Elementary Number Theory that will be required later
in the text are included here. The set of integers is Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
We assume the reader is familiar with its partial ordering, and the binary operations
of addition and multiplication. No attempt is made to construct the integers from
from first principles. The set of natural numbers is N = {1, 2, 3, . . . }. The Well
Ordering Principle is assumed as an axiom.

Axiom 1.2.1. (The Well Ordering Principle) If S is a nonempty subset of Z
and S has a lower bound, then S contains a least element.



20 1. PRELIMINARIES AND PREREQUISITES

Proposition 1.2.2. (Mathematical Induction) Let S be a subset of N such that
1 ∈ S. Assume S satisfies one of the following.

(1) For each n ∈ N, if n ∈ S, then n+ 1 ∈ S.
(2) For each n ∈ N, if {1, . . . , n} ⊆ S, then n+ 1 ∈ S.

Then S = N.

Proof. Assume S ⊆ N, 1 ∈ S, and S satisfies (1) or (2). Let C = N− S. For
contradiction’s sake assume C ̸= ∅. By Axiom 1.2.1, C has a least element, say ℓ.
Since 1 ∈ S, we know ℓ > 1. Therefore, ℓ− 1 ∈ S and ℓ ̸∈ S, which contradicts (1).
Since ℓ is the least element of C, {1, . . . , ℓ − 1} ⊆ S and ℓ ̸∈ S, which contradicts
(2). We conclude that C = ∅, hence S = N. □

Proposition 1.2.3. (The Division Algorithm) If a, b ∈ Z and a ̸= 0, then there
exist unique integers q, r ∈ Z such that 0 ≤ r < |a| and b = aq + r.

Proof. First we prove the existence claim. The idea is to apply the Well
Ordering Principle to the set S = {b− ax | x ∈ Z and b− ax ≥ 0}. If x > |b|, then
it follows that b+|a|x ≥ 0. Therefore, either b+ax or b−ax is in S. By Axiom 1.2.1,
S has a least element, say r = b − aq, for some q ∈ Z. For contradiction’s sake,
assume r ≥ |a|. Then 0 ≤ r − |a| = b − aq − |a| = b − a(q ± 1). This implies
r − |a| ∈ S, contradicting the minimal choice of r.

To prove the uniqueness claim, suppose b = aq + r = aq1 + r1 and 0 ≤ r ≤
r1 < |a|. Then |r1 − r| = |a||q − q1|. Since 0 ≤ r1 − r < |a|, this implies q − q1 = 0.
Hence r1 − r = 0. □

Let a, b ∈ Z. We say a divides b, and write a | b, in case there exists q ∈ Z such
that b = aq. In this case, a is called a divisor of b, and b is called a multiple of a.

Proposition 1.2.4. Let {a1, . . . , an} be a set of integers and assume at least
one of the ai is nonzero. There exists a unique positive integer d such that

(1) d | ai for all 1 ≤ i ≤ n, and
(2) if e | ai for all 1 ≤ i ≤ n, then e | d.

We call d the greatest common divisor of the set, and write d = gcd(a1, . . . , an).

Proof. Let S be the set of all positive linear combinations of the ai

S = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ Z, x1a1 + · · ·+ xnan > 0}.
The reader should verify that S ̸= ∅. By Axiom 1.2.1, there exists a least element
of S which we can write as d = k1a1 + · · ·+ knan for some integers k1, . . . , kn. Fix
one i and apply the Division Algorithm to write ai = dq+r where 0 ≤ r < d. Solve
ai = (k1a1 + · · ·+ knan)q + r for r to see that

r = ai − (k1a1 + · · ·+ knan)q

is a linear combination of a1, . . . , an. Because r < d, we conclude that r is not in
S. Therefore r = 0. This proves Part (1). The reader should verify Part (2) and
the claim that d is unique. □

If gcd(a1, . . . , an) = 1, then the set of integers {a1, . . . , an} is said to be rela-
tively prime. An integer π ∈ Z is called a prime in case π > 1 and the only divisors
of π are −π,−1, 1, π.

Lemma 1.2.5. Let a, b and c be integers. Assume a ̸= 0 or b ̸= 0.
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(1) (Bézout’s Identity) If d = gcd(a, b), then there exist integers u and v such
that d = au+ bv.

(2) (Euclid’s Lemma) If gcd(a, b) = 1 and a | bc, then a | c.
(3) If there exist integers u and v such that 1 = au+ bv, then gcd(a, b) = 1.

Proof. (1): This is immediate from the proof of Proposition 1.2.4.
(2): Assume gcd(a, b) = 1. By Part (1) there exist integers u and v such that

1 = au+ bv. Then c = acu+ bcv. Since a divides the right hand side, a divides c.
(3): This is immediate from the proof of Proposition 1.2.4. □

Lemma 1.2.6. Let π be a prime number. Let a and a1, . . . , an be integers.

(1) If π | a, then gcd(π, a) = π, otherwise gcd(π, a) = 1.
(2) If π | a1a2 · · · an, then π | ai for some i.

Proof. (1): The proof is an exercise for the reader.
(2): For sake of contradiction, assume the statement is false. Let π and

a1, . . . , an be a counterexample such that n is minimal. Then π divides the product
a1 · · · an and by (1) gcd(π, ai) = 1 for each i. Again by (1), n > 1. By Lemma 1.2.5
applied to a1(a2 · · · an), π | a2 · · · an. By the minimal choice of n, π divides one of
a2, . . . , an. This is a contradiction. □

Proposition 1.2.7. (The Fundamental Theorem of Arithmetic) Let n be a
positive integer which is greater than 1. There exist unique positive integers k,
e1, . . . , ek and unique prime numbers p1, . . . , pk such that n = pe11 · · · pekk .

Proof. First we prove the existence claim. If n is a prime, then set k = 1,
p1 = n, e1 = 1, and we are done. In particular, the result is true for n = 2. The
proof is by induction on n. Assume that every number in the set {2, 3, . . . , n −
1} has a representation as a product of primes. Assume n = xy is composite
and that 2 ≤ x ≤ y ≤ n − 1. By the induction hypothesis, both x and y have
representations as products of primes. Then n = xy also has such a representation.
By Proposition 1.2.2, we are done.

For the uniqueness claim, assume

(2.1) n = pe11 · · · pekk = qf11 · · · qfℓℓ
are two representations of n as products of primes. Let M =

∑k
i=1 ei and N =∑ℓ

i=1 fi. Without loss of generality, assume M ≤ N . The proof is by induction on
M . If M = 1, then n = p1 is prime. This implies ℓ = 1 = f1 and q1 = p1. Assume
inductively that M > 1 and that the uniqueness claim is true for any product
involving M − 1 factors. Using Lemma 1.2.6 we see that p1 divides one of the qi.
Since qi is prime, this implies p1 is equal to qi. Canceling p1 and qi from both sides
of Eq.(2.1) results in a product of primes with M − 1 factors. By the induction

hypothesis, we conclude that k = ℓ and the sets {pe11 , . . . , p
ek
k } and {qf11 , . . . , q

fk
k }

are equal. □

Definition 1.2.8. Let m be a positive integer. Define a binary relation on Z
by the following rule. Given x, y ∈ Z, we say x is congruent to y modulo m, and
write x ≡ y (mod m), in case m | (x − y). By Proposition 1.2.9 this defines an
equivalence relation on Z. The set of all equivalence classes of integers modulo m
is denoted Z/(m). The congruence class of x is denoted [x].

Proposition 1.2.9. Let m be a positive integer.
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(1) Congruence modulo m is an equivalence relation on Z.
(2) {0, 1, . . . ,m−1} is a full set of representatives for the equivalence classes.

In other words, every integer is congruent to one of 0, 1, . . . ,m−1 and no
two distinct elements of {0, 1, . . . ,m− 1} are congruent to each other.

(3) If u ≡ v (mod m) and x ≡ y (mod m), then u+ x ≡ v + y (mod m) and
ux ≡ vy (mod m).

(4) If gcd(a,m) = 1 and ax ≡ ay (mod m), then x ≡ y (mod m).

Proof. (1): Since m | 0, x ≡ x (mod m) for every x ∈ Z. If x− y = mq, then
y − x = m(−q). Therefore, x ≡ y (mod m) implies y ≡ x (mod m). If x− y = mq
and y − z = mr, then adding yields x− z = m(q + r). Therefore, x ≡ y (mod m)
and y ≡ z (mod m) implies x ≡ z (mod m).

(2): By Proposition 1.2.3, if x ∈ Z, then there exist unique integers q and
r such that x = mq + r and 0 ≤ r < m. This implies x ≡ r (mod m), and
r ∈ {0, 1, . . . ,m− 1}. From the uniqueness part of the Division Algorithm, no two
distinct elements of {0, 1, . . . ,m− 1} are congruent to each other.

(3): Write u − v = mq and x − y = mr for integers q, r. Adding, we get
u − v + x − y = (u + x) − (v + y) = m(q + r), hence u + x ≡ v + y (mod m).
Multiplying the first equation by x and the second by v we have ux − vx = mxq
and xv − yv = mvr. Adding, we get ux − vx + xv − yv = ux − yv = m(xq + vr),
hence ux ≡ vy (mod m).

(4): By Lemma 1.2.5 we write 1 = au + mv for integers u, v. We are given
that a(x − y) = mq for some integer q. Multiply by u to get au(x − y) = muq.
Substitute au = 1 − mv and rearrange to get x − y = mv(x − y) + muq. Hence
x ≡ y (mod m). □

If a, b ∈ Z−{0}, then |ab| is a common multiple of both a and b. Therefore, the
set S = {x ∈ N | a | x, b | x} is nonempty. By Axiom 1.2.1, S has a least element,
which is called the least common multiple of a and b, and is denoted lcm(a, b).

Proposition 1.2.10. Suppose a > 0 and b > 0. Then the following are true.

(1) If c ∈ Z and a | c and b | c, then lcm(a, b) | c.
(2) gcd(a, b) lcm(a, b) = ab.

Proof. (1): Let lcm(a, b) = L. By Proposition 1.2.3, c = Lq + r where
0 ≤ r < L. Since a | c and a | L, we see that a divides r = c − Lq. Likewise, b | c
and b | L implies that b divides r. So r is a common multiple of a and b and r < L.
By the definition of L, we conclude that r = 0.

(2): Write d = gcd(a, b). Then (ab)/d = a(b/d) = (a/d)b is a common multiple
of a and b. By (1), L | (ab)/d, or equivalently, dL | ab. By Lemma 1.2.5, d = ax+by
for some integers x, y. Multiply by L to get dL = aLx+ bLy. Since L is a common
multiple of a and b we see that ab divides aLx + bLy = dL. We have shown that
dL | ab and ab | dL. Both numbers are positive, so we have equality. □

Theorem 1.2.11. (Chinese Remainder Theorem) Let m and n be relatively
prime positive integers. Then the function

Z/mn ψ−→ Z/m× Z/n
defined by ψ([x]) = ([x], [x]) is a one-to-one correspondence.

Proof. We know that ψ is well defined, by Exercise 1.2.19. By Exercise 1.1.12
and Proposition 1.2.9, |Z/m × Z/n| = |Z/mn| = mn. By Exercise 1.1.10, it is
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enough to show ψ is one-to-one. Suppose ψ([x]) = ψ([y]). Then x ≡ y (mod m)
and x ∼= y (mod n), which implies x − y is a common multiple of m and n. By
Proposition 1.2.10, x − y is divisible by lcm(m,n). But lcm(m,n) = mn since
gcd(a, b) = 1. This implies x ≡ y (mod mn), and we have shown that ψ is one-to-
one. □

For a generalization of Theorem 1.2.11, see Theorem 2.5.2.
Let n ≥ 2. By Exercise 1.2.20, if x ≡ y (mod n), then gcd(x, n) = gcd(y, n).

This says the function Z → Z defined by x 7→ gcd(x, n) is constant on congruence
classes. The set Un = {[k] ∈ Z/n | gcd(k, n) = 1} is called the set of units modulo
n. The Euler ϕ-function, named for Leonhard Euler, is defined to be the number
of units modulo n. That is, ϕ(n) = |Un|. In the terminology of Definition 2.1.1,
Lemma 1.2.12 shows that Un is an abelian group of order ϕ(n).

Lemma 1.2.12. Let n ≥ 2.

(1) If [a] ∈ Un, then there exists [b] ∈ Un such that [a][b] = [1].
(2) If a, b ∈ Z and ab ≡ 1 (mod n), then [a] ∈ Un and [b] ∈ Un.

Proof. (1): If [a] ∈ Un, then gcd(a, n) = 1. By Lemma 1.2.5, there exist
integers b, c such that ab+ nv = 1. Therefore, ab ≡ 1 (mod n).

(2): If ab ≡ 1 (mod n), then ab = nq + 1 for some integer q. By Lemma 1.2.5,
gcd(a, n) = 1 and gcd(b, n) = 1. □

Proposition 1.2.13. If p is a prime and k ≥ 1, then ϕ(pk) = pk − pk−1 =
pk(1− 1/p).

Proof. The multiples of p in the set {1, 2, . . . , pk} are p, 2p, . . . , pk−1p. Since
there are pk−1 multiples of p, there are pk−pk−1 numbers that are relatively prime
to p. □

Proposition 1.2.14. Let m ≥ 2, n ≥ 2 and assume gcd(m,n) = 1. Then
ϕ(mn) = ϕ(m)ϕ(n).

Proof. By Theorem 1.2.11, the function ψ : Z/mn→ Z/m× Z/n defined by
ψ([x]) = ([x], [x]) is a one-to-one correspondence. We show that the restriction of
ψ to Umn induces a one-to-one correspondence ρ : Umn → Um × Un.

If gcd(x,mn) = 1, then by Lemma 1.2.5 there exist integers u, v such that
1 = xu +mnv, hence gcd(x,m) = 1 and gcd(x, n) = 1. This proves that ρ is well
defined. Since ψ is one-to-one, so is ρ. To finish the proof we show that ρ is onto.
Let ([a], [b]) ∈ Um×Un. By Lemma 1.2.12 there exists ([x], [y]) ∈ Um×Un such that
ax ≡ 1 (mod m) and by ≡ 1 (mod n). Since ψ is onto, there exists [k] ∈ Z/mn
such that k ≡ a (mod m) and k ≡ b (mod n). Likewise, there exists [ℓ] ∈ Z/mn
such that ℓ ≡ x (mod m) and ℓ ≡ y (mod n). By Proposition 1.2.9, kℓ ≡ ax ≡ 1
(mod m) and kℓ ≡ by ≡ 1 (mod n). Since ψ is one-to-one, kℓ ≡ 1 (mod mn). By
Lemma 1.2.12 this implies [k] ∈ Umn, which proves ρ is onto. □

Definition 1.2.15. Let n ≥ 1 be an integer. The notation
∑
d|n or

∏
d|n

denotes the sum or product over the set of all positive numbers d such that d | n.
An integer n is said to be square free if for every prime p, n is not a multiple of p2.
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The Möbius function is defined by

µ(n) =


1 if n = 1,

0 if n is not square free,

(−1)r if n factors into r distinct primes.

Theorem 1.2.16. (Möbius Inversion Formula) Let f be a function defined on
N and define another function on N by

F (n) =
∑
d|n

f(d).

Then

f(n) =
∑
d|n

µ(d)F
(n
d

)
.

Proof. The proof can be found in any elementary number theory book, and
is left to the reader. □

2.1. Exercises.

Exercise 1.2.17. Let a and b be integers that are not both zero and let d be
the greatest common divisor of a and b. Consider the linear diophantine equation:
d = ax + by. Bézout’s Identity says that there exist integers u and v such that
d = au+ bv.

(1) Show that the matrix

(
u v

−b/d a/d

)
is invertible over Z. Find its inverse.

(2) If c is an integer, show that the linear diophantine equation c = ax + by
has a solution if and only if d | c.

(3) Assume d | c. Prove that the general solution to the linear diophantine
equation c = ax + by is x = x0 − tb/d, y = y0 + ta/d, where t ∈ Z and
(x0, y0) is any particular solution.

Exercise 1.2.18. This exercise is based on Problem 1.3 of Adrian Wadsworth’s
book [29]. Let a and b be relatively prime positive integers and consider the set

L = {ax+ by | x and y are nonnegative integers}.

The problem is to find the integer ℓ satisfying these two properties: (1) ℓ − 1 ̸∈ L
and (2) if n is an integer and n ≥ ℓ, then n ∈ L.

You are encouraged to solve this interesting problem yourself. Alternatively,
you may follow the six steps below which outline a solution.

(1) Prove that if a = 1 or b = 1, then L contains the set of all nonnegative
integers.

(2) Prove that the integers a, b, ab, (a− 1)(b− 1) are in L.
(3) Prove that ab− a− b = (a− 1)(b− 1)− 1 is not in L.
(4) Prove that if n ≥ ab, then n is in L.
(5) Assume a > 1, b > 1, and let n be an integer satisfying ab−a−b < n < ab.

Prove that n is in L.
(6) Let ℓ = (a− 1)(b− 1). Prove that ℓ− 1 ̸∈ L and if ℓ ≤ n, then n is in L.
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Exercise 1.2.19. Let m,n ∈ N. Consider the diagram

Z
ηn

""
ηm

��
Z/m

∃θ
// Z/n

where ηm and ηn are the natural maps. Show that there exists a function θ mak-
ing the diagram commute if and only if n divides m. See Lemma 2.3.29 for an
application of this result.

Exercise 1.2.20. Let n ≥ 1. Show that the function Z → Z defined by
x 7→ gcd(x, n) is constant on congruence classes. In other words, show that x ≡ y
(mod n) implies gcd(x, n) = gcd(y, n).

Exercise 1.2.21. Let p be a prime.

(1) If 1 ≤ k ≤ p− 1, show that p divides
(
p
k

)
.

(2) Show that (a+ b)p ≡ ap + bp (mod p) for any integers a and b.
(3) Use (2) and Proposition 1.2.2 to prove that (a+ b)p

n ≡ ap
n

+ bp
n

(mod p)
for any integers a and b and for all n ≥ 0.

See Exercise 3.6.35 for a generalization of this result.

Exercise 1.2.22. Show that the Möbius function µ is multiplicative in the
sense that if gcd(m,n) = 1, then µ(mn) = µ(m)µ(n).

Exercise 1.2.23. Let n ≥ 0 and X =
∏n
i=1 Z≥0 = {(x1, . . . , xn) | xi ∈ Z≥0},

where Z≥0 = {x ∈ Z | x ≥ 0} is the set of nonnegative integers. The lexicographical
ordering (also called alphabetical or dictionary ordering) onX is defined recursively
on n. For n = 1, the usual ordering on Z is applied. If n > 1, then

(v1, v2, . . . , vn) < (w1, w2, . . . , wn) if and only if{
(v1, v2, . . . , vn−1) < (w1, w2, . . . , wn−1), or

(v1, v2, . . . , vn−1) = (w1, w2, . . . , wn−1) and vn < wn.

If α, β ∈ X, then we write α ≤ β in case α < β or α = β.

(1) Show that ≤ is a partial order on X. Show that X is a chain.
(2) If α ∈ X, the segment of X determined by α, written (−∞, α), is {x ∈

X | x < α}. For which α ∈ X is
(a) (−∞, α) = ∅?
(b) (−∞, α) finite?
(c) (−∞, α) infinite?

(3) Show that X with the lexicographical ordering ≤ is a well ordered set.
That is, show that if S ⊆ X and S ̸= ∅, then S has a least element.

Exercise 1.2.24. Let X = {x0, x1, . . . , xn−1} be a finite set and Z≥0 the set
of nonnegative integers. If U ⊆ X, the so-called indicator function on U , denoted
χU : U → {0, 1}, is defined by

χU (x) =

{
1 if x ∈ U

0 if x ̸∈ U .

Define f : 2X → Z≥0 by f(U) =
∑n−1
i=0 χU (xi)2

i. Prove:
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(1) f is a one-to-one correspondence between 2X and {0, 1, . . . , 2n − 1}.
(2) |2X | = 2|X|.
(3) The ordering on 2X induced by the function f makes 2X into a well

ordered set.

Exercise 1.2.25. (Partial Fractions) Letm and n be natural numbers such that
m < n. Follow the following outline to show that a partial fraction decomposition
exists for the rational number m/n. Prove:

(1) Let b and c be natural numbers such that gcd(b, c) = 1. Let d be an
integer.
(a) There exist integers e, f such that d

bc =
e
b +

f
c .

(b) If e′ and f ′ are another pair of integers such that d
bc =

e′

b + f ′

c , then
e ≡ e′ (mod b) and f ≡ f ′ (mod c).

(2) Let a, b and c be natural numbers such that gcd(b, c) = 1 and a < bc.
Then there exist unique integers e, f such that 0 ≤ e < b, −c < f < c and

a

bc
=
e

b
+
f

c
.

(3) Let p1, . . . , pn be distinct prime numbers. For i = 1, . . . , n, let ei ≥ 1 be
a positive integer. Let b = pe11 · · · penn . If a is a positive integer such that
a < b, then there exist integers a1, . . . , an such that

a

b
=

a

pe11 · · · penn
=

a1
pe11

+ · · ·+ an
penn

and |ai| < peii for each i. The integers a1, . . . , an are unique in the sense
that if a′1, . . . , a

′
n also satisfy the equation

a

b
=

a

pe11 · · · penn
=

a′1
pe11

+ · · ·+ a′n
penn

,

then ai ≡ a′i (mod peii ) for each i.
(4) (Base b Representation) Let b, n and a be natural numbers. Assume b > 1

and a < bn. Then there exist unique integers a0, a1, . . . , an−1 such that
0 ≤ ai < b for each i and

a = a0 + a1b+ · · ·+ an−1b
n−1.

(5) Let b, n and a be natural numbers. Assume b > 1 and a < bn. Then there
exist unique integers a0, a1, . . . , an−1 such that 0 ≤ ai < b for each i and

a

bn
=
a0
bn

+
a1
bn−1

+ · · ·+ an−1

b
.

3. The Well Ordering Principle and Some of Its Equivalents

Most readers will prefer to make a quick scan of this section on first reading.
It is included for completeness’ sake as well as a tribute to the influence of [17,
Chapter 0, Theorem 25] on the author’s fondness for the subject. In this book, the
only direct application of Zorn’s Lemma, Proposition 1.3.3, is in the proof that a
commutative ring contains a maximal ideal (see Proposition 3.2.27). As a historical
note, Zorn’s Lemma, which is equivalent to the Well Ordering Principle, has been
called Zorn’s Lemma since M. Zorn first used it to prove that a commutative ring
contains a maximal ideal [33]. The Axiom of Choice, Proposition 1.3.5, guarantees
that a product of nonempty sets is nonempty, but throughout this book we limit
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our applications either to products of at most a countably infinite number of sets,
or to a product of algebraic structures like groups for instance. Such a product
always contains an identity element. In addition to the application to show the
existence of maximal ideals, the other applications of the Well Ordering Principle
or one of its equivalents appear in Section 4.2.3 and in several exercises that are
inserted to challenge the reader.

Although we do not prove it here, the Well Ordering Principle, the Principle
of Transfinite Induction, Zorn’s Lemma, and the Axiom of Choice are logically
equivalent to each other.

Axiom 1.3.1. (The Well Ordering Principle) If X is a nonempty set, then
there exists a partial order ≤ on X such that X is a well ordered set. That is, every
nonempty subset of X has a least element.

Let X be a set and ≤ a partial order on X. If x, y ∈ X, then we write x < y
in case x ≤ y and x ̸= y. Suppose C ⊆ X is a chain in X and α ∈ C. The segment
of C determined by α, written (−∞, α), is the set of all elements x ∈ C such that
x < α. A subset W ⊆ C is called an inductive subset of C provided that for any
α ∈ C, if (−∞, α) ⊆W , then α ∈W .

Proposition 1.3.2. (The Transfinite Induction Principle) Suppose X is a well
ordered set and W is an inductive subset of X. Then W = X.

Proof. Suppose X −W is nonempty. Let α be the least element of X −W .
ThenW contains the segment (−∞, α). SinceW is inductive, it follows that α ∈W ,
which is a contradiction. □

Proposition 1.3.3. (Zorn’s Lemma) Let X be a partially ordered set. If every
chain in X has an upper bound, then X contains a maximal element.

Proof. By Axiom 1.3.1, there exists a well ordered set W and a one-to-one
correspondence ω : W → X. Using Proposition 1.3.2, define a sequence {C(w) |
w ∈ W} of well ordered subsets of X. If w0 is the least element of W , define
C(w0) = {ω(w0)}. Inductively assume α ∈W −{w0} and that for all w < α, C(w)
is defined and the following are satisfied

(1) if w0 ≤ w1 ≤ w2 < α, then C(w1) ⊆ C(w2),
(2) C(w) is a well ordered chain in X, and
(3) C(w) ⊆ {ω(i) | w0 ≤ i ≤ w}.

Let x = ω(α) and

F =
⋃
w<α

C(w).

The reader should verify that F is a well ordered chain in X and F ⊆ {ω(i) | w0 ≤
i < α}. Define C(α) by the rule

C(α) =

{
F ∪ {x} if x is an upper bound for F

F otherwise.

The reader should verify that C(α) satisfies

(4) if w0 ≤ w1 ≤ w2 ≤ α, then C(w1) ⊆ C(w2),
(5) C(α) is a well ordered chain in X, and
(6) C(α) ⊆ {ω(i) | w0 ≤ i ≤ α}.
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By Proposition 1.3.2, the sequence {C(w) | w ∈ W} is defined and the properties
(4), (5) and (6) are satisfied for all α ∈W . Now set

G =
⋃
w<α

C(w).

The reader should verify that G is a well ordered chain in X. By hypothesis, G
has an upper bound, say u. We show that u is a maximal element of X. For
contradiction’s sake, assume X has no maximal element. Then we can choose the
upper bound u to be an element of X −G. For some w1 ∈W we have u = ω(w1).
For all w < w1, u is an upper bound for C(w). By the definition of C(w1), we have
u ∈ C(w1). This is a contradiction, because C(w1) ⊆ G. □

Definition 1.3.4. Let I be a set and {Xi | i ∈ I} a family of sets indexed by
I. The product is ∏

i∈I
Xi =

{
f : I →

⋃
Xi | f(i) ∈ Xi

}
.

An element f of the product is called a choice function, because f chooses one
element from each member of the family of sets. Sometimes the product is called
the cartesion product.

Proposition 1.3.5. (The Axiom of Choice) Let I be a set and {Xi | i ∈ I}
a family of nonempty sets indexed by I. Then the product

∏
i∈I Xi is nonempty.

That is, there exists a function f on I such that f(i) ∈ Xi for each i ∈ I.

Proof. By Axiom 1.3.1, we can assume
⋃
i∈I Xi is well ordered. We can view

Xi as a subset of
⋃
i∈I Xi. For each i ∈ I, let xi be the least element of Xi. The

set of ordered pairs (i, xi) defines the choice function. □

3.1. Exercises.

Exercise 1.3.6. Let I be a set and {Xi | i ∈ I} a family of nonempty sets
indexed by I. For each k ∈ I define πk :

∏
i∈I Xi → Xk by the rule πk(f) = f(k).

We call πk the projection onto coordinate k. Show that πk is onto.

Exercise 1.3.7. Let X be a set that is partially ordered by ≤.

(1) Prove that X satisfies the descending chain condition (DCC) if and only
if X satisfies the minimum condition.

(2) Prove that X satisfies the ascending chain condition (ACC) if and only if
X satisfies the maximum condition.

Exercise 1.3.8. Use the Axiom of Choice to prove: A function f : X → Y is
onto if and only if there exists a function g : Y → X such that fg = 1Y . In this
case g is called a right inverse of f .

4. Background Material from Calculus

As in Section 1.1.1, the set of real numbers is denoted R.

Theorem 1.4.1. If a is a positive real number, then there exists a real number
x such that x2 = a. In other words, a positive real number has a square root.

Proof. See, for instance, [27, Theorem 7.8, p. 124]. □
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Theorem 1.4.2. If n is a positive odd integer and a0, a1, . . . , an−1 are real
numbers, then there exists a real number x such that xn+an−1x

n−1+· · ·+a1x+a0 =
0. In other words, a polynomial over R of odd degree has a root.

Proof. See, for instance, [27, Theorem 7.9, p. 125]. □

For properties of the complex numbers, the reader is referred, for example,
to [27, Chapter 25]. The set of complex numbers, denoted C, is identified with
R2 and is a two-dimensional real vector space. A complex number is an ordered
pair (a, b). A basis for C is (1, 0), also denoted 1, and (0, 1), also denoted i. In
terms of this basis, the complex number (a, b) has representation a+ bi. Addition
of complex numbers is coordinate-wise: (a + bi) + (c + di) = (a + c) + (b + d)i.
The additive identity is 0 = (0, 0) and the additive inverse of a + bi is −a − bi.
Multiplication distributes over addition, and i2 = −1, hence (a + bi)(c + di) =
ac + (ad + bc)i + bdi2 = (ac − bd) + (ad + bc)i. The multiplicative identity is

1 = (1, 0) = 1 + 0i. If z = a + bi, then the absolute value of z is |z| =
√
a2 + b2,

which is equal to the length of the vector (a, b). Let r = |a + bi|. If θ is the angle
determined by the vectors z = a + bi and 1 = (1, 0), then the representation of z
in polar coordinates is z = a + bi = r cos θ + ir sin θ. The complex conjugate of
z = a + bi is χ(z) = a − bi. Then zχ(z) = a2 + b2 = |z|2 is a nonnegative real
number. This implies if z ̸= 0, then z is invertible and

z−1 =
a− bi

a2 + b2
.

The power series for the functions ex, cosx, and sinx are

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
+
x8

8!
+ . . .

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ . . .

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . . .

These power series converge for every real number x. We define eix to be the
substitution of ix into the power series. Using the identities i2 = −1, i3 = −i,
i4 = 1, and i5 = i, we have

eix = 1 + ix+
i2x2

2!
+
i3x3

3!
+
i4x4

4!
+
i5x5

5!
+
i6x6

6!
+
i7x7

7!
+
i8x8

8!
+ . . .

= 1 + ix− x2

2!
− ix3

3!
+
x4

4!
+
ix5

5!
− x6

6!
− ix7

7!
+
x8

8!
+ . . .

=

(
1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ . . .

)
+ i

(
x− x3

3!
+
x5

5!
− x7

7!
+ . . .

)
= cosx+ i sinx.

Therefore, if z = a + bi has polar representation r cos θ + ir sin θ, then the repre-
sentation for z in exponential form is a+ bi = reiθ.

Proposition 1.4.3. In exponential notation, arithmetic in C satisfies the fol-
lowing formulas.

(1) (Additive inverse) −reiθ = rei(θ+π).
(2) (Multiplication) reiθseiϕ = (rs)ei(θ+ϕ).
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(3) (Complex conjugation) χ
(
reiθ

)
= re−iθ.

(4) (Multiplicative inverse)
(
reiθ

)−1
= r−1e−iθ.

(5) (Square root) If r ≥ 0, then z1/2 =
√
reiθ =

√
reiθ/2.

(6) (nth root) If r ≥ 0, then z1/n =
(
reiθ

)1/n
= r1/neiθ/n.

Proof. The proof is left to the reader. □

5. Background Material from Matrix Theory

The general theorems on matrices are derived and presented in Section 6.5. In
that section, the entries of the matrices are usually from an arbitrary ring R. Nev-
ertheless, matrices comprise an important source for examples. Therefore, we will
be introducing many examples of groups, rings and modules of matrices throughout
Chapters 2, 3, and 4 before the general theorems are proved. For example, the group
of invertible two-by-two matrices is introduced in Example 2.1.21. The center of
the ring of n-by-n matrices is computed in Example 3.1.13. The Cayley-Hamilton
Theorem for two-by-two matrices is proved in Proposition 4.4.16.

In this short section we define the addition and multiplication formulas for
matrices and derive some of their common properties. The goal is to be brief, with
the understanding that most readers have already been exposed to this material.
Throughout the remainder of this section we denote by R an arbitrary ring. In
particular, R can be the ring of integers, Z, or the ring of integers modulo n, Z/(n),
or one of the fields Q, R, or C.

Let m and n be positive integers. An m-by-n matrix is an array consisting of m
rows and n columns of elements from R. ByMmn(R) we denote the set of all m-by-
n matrices over R. If A ∈Mmn(R), we write A = (aij), where aij refers to the entry
in row i and column j. If m = n, then we simply write Mn(R) instead of Mnn(R).
Addition of matrices is coordinate-wise. If B = (bij) ∈Mmn(R), then A+B is the
matrix whose entry in position i, j is aij + bij . That is, (aij) + (bij) = (aij + bij).
We can multiply an element r of R (r is sometimes called a scalar) and a matrix
A = (aij) by the rule r(aij) = (raij). The m-by-n zero matrix, denoted 0, is the
matrix whose entry in position i, j is 0. The matrix (−aij) is denoted −A.

Proposition 1.5.1. Let A,B,C be matrices in Mmn(R) and r, s elements of
R. Addition of matrices and multiplication by elements of R satisfy the following
properties.

(1) Addition is associative: (A+B) + C = A+ (B + C).
(2) Addition is commutative: A+B = B +A.
(3) Additive inverses exist: −A+A = 0.
(4) 0 is the additive identity: 0 +A = A.
(5) Scalar multiplication distributes over addition: r(A+B) = rA+ rB.
(6) Another associative law: (rs)A = r(sA).
(7) Another distributive law: (r + s)A = rA+ sA.

Proof. The proof is left to the reader. □

If A = (aij) ∈ Mmn(R) and B = (bjk) ∈ Mnp(R), then the product AB is the
matrix C = (cik) in Mmp(R) whose entry in position i, k is cik =

∑n
j=1 aijbjk. The

n-by-n identity matrix is the matrix In in Mn(R) whose entry in position i, j is 1
if i = j and 0 otherwise. If r ∈ R, then the matrix rIn is called a scalar matrix.
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Proposition 1.5.2. Addition and multiplication of matrices satisfy the fol-
lowing properties. In the following, assume A ∈ Mmn(R), B,B1 ∈ Mnp(R), and
C ∈Mpq(R).

(1) Multiplication is associative: (AB)C = A(BC).
(2) I is the multiplicative identity: ImA = A = AIn.
(3) Multiplication distributes over addition from both the left: A(B + B1) =

AB +AB1, and from the right: (B +B1)C = BC +B1C.

Proof. The first property is called the associative law for matrix multiplica-
tion. We prove it and leave the rest to the reader. Write A = (aij), B = (bjk), and
C = (cks). Then AB is the m-by-p matrix whose entry in position i, k is

n∑
j=1

aijbjk.

The product (AB)C is the m-by-q matrix whose entry in position i, s is

(5.1)

p∑
k=1

 n∑
j=1

aijbjk

 cks.

The product BC is the n-by-q matrix whose entry in position j, s is
p∑
k=1

bjkcks.

The product A(BC) is the m-by-q matrix whose entry in position i, s is

(5.2)

n∑
j=1

aij

(
p∑
k=1

bjkcks

)
.

The fact that (5.1) and (5.2) are equal proves the associative law for multiplication.
□

If eij is the m-by-n matrix with 1 in position (i, j) and 0 elsewhere, then eij
is called an elementary matrix. Let A = (aij) be a matrix. Then A is an upper
triangular matrix if aij = 0 whenever i > j. Likewise, A is a lower triangular
matrix if aij = 0 whenever i < j. If aij = 0 whenever i ̸= j, then we say A is
a diagonal matrix. The notation diag(a1, . . . , an) represents the diagonal matrix
a1e11 + · · ·+ anenn.

As in Section 1.1.4, Sn denotes the symmetric group on n letters, where n ≥ 2.
Let σ be a permutation in Sn. The n-by-n matrix Pσ =

∑n
i=1 eσ(i),i is called

the permutation matrix associated to σ. Notice that the n-by-n identity matrix
In is equal to the permutation matrix e11 + · · · + enn associated to the identity
permutation.

Proposition 1.5.3. Let σ be a permutation in Sn and Pσ the permutation
matrix associated to σ. If A is an m-by-n matrix in Mmn(R), and B is an n-by-p
matrix in Mnp(R), then

(1) APσ is the matrix obtained by permuting the columns of A by σ. That is,
column i of APσ is column σ(i) of A.

(2) Pσ is the matrix obtained by permuting the columns of In by the permutation
σ. That is, column i of Pσ is column σ(i) of In.
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(3) PσB is the matrix obtained by permuting the rows of B by σ−1. That is, row i
of PσB is row σ−1(i) of B.

(4) Pσ is the matrix obtained by permuting the rows of In by the permutation σ−1.
That is, row i of Pσ is row σ−1(i) of In.

Proof. (1): Let 1 ≤ i ≤ n, and consider the product Aeσ(i),i. If we denote
column i of A by Ai, then Aeσ(i),i is the matrix (0, ..., 0, Aσ(i), 0, . . . , 0) with col-
umn i equal to Aσ(i), and all other columns equal to 0. Then APσ is the matrix
(Aσ(1), Aσ(2), . . . , Aσ(n)) obtained by permuting the columns of A by σ.

(3): Follows from an argument similar to that used to prove (1).
(2) and (4): Follow from (1) and (3) respectively. □



CHAPTER 2

Groups

Groups arise in all areas of Mathematics. All of the other algebraic structures
that arise are also based on groups. A module is an abelian group, a ring is an
additive abelian group and the set of invertible elements of a ring is a multiplicative
group. For this reason the theorems of this chapter are fundamental.

In a concrete sense, a group is a set of permutations of a set. E. Galois first
emphasized the importance of studying permutations of the roots of polynomials.
Group Theory can be viewed as an axiomatic abstraction of permutation groups.

1. First Properties of Groups

The notion of a binary operation on a set was introduced in Section 1.1.5. The
main ideas remain the same, but we recast them in light of the present context.
Let G be a nonempty set with a binary operation G×G→ G. Usually the binary
operation on a group will be written either multiplicatively or additively. In the
multiplicative notation, the product of two elements a, b in G is denoted by ab, an
identity element will usually be denoted e or 1 and the inverse of an element a will
be written a−1. If additive notation is used, the sum of a and b is denoted by a+ b,
an identity is usually denoted 0 and −a denotes the inverse of a.

1.1. Definitions, Terminology, and First Properties. After the formal
definition of a group is stated, some of the first properties of groups are proved.
For instance, we establish the associative law for arbitrary finite products, the
notion of a general power, the uniqueness of an identity element, the solvability
and cancellation theorems. Some of the first examples of groups are given. These
include the group of integers modulo n under addition, the group of units modulo
n under multiplication, the group of permutations of a set, the symmetric group
on n letters, the group of symmetries of a regular n-gon, the quaternion 8-group,
and the general linear group of 2-by-2 matrices with entries in a field.

Definition 2.1.1. Let G be a nonempty set with a multiplicative binary op-
eration. If a(bc) = (ab)c for all a, b, c ∈ G, then the binary operation is said to
be associative. In this case, G is called a semigroup. If G is a semigroup and G
contains an element e satisfying ae = ea = a for all a ∈ G, then e is said to be an
identity element and G is called a monoid. Let G be a monoid with identity ele-
ment e. An element a ∈ G is said to be invertible if there exists a−1 ∈ G such that
aa−1 = a−1a = e. The element a−1 is called the inverse of a. A monoid in which
every element is invertible is called a group. In other words, a group is a nonempty
set G together with an associative binary operation such that an identity element
e exists in G, and every element of G is invertible. If xy = yx for all x, y ∈ G, then
the binary operation is said to be commutative. A commutative group is called an
abelian group.

33
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If G has an additive binary operation, then the associative law is (a + b) +
c = a + (b + c) for all a, b, c ∈ G. The element 0 ∈ G is an identity element if
a+0 = 0+a = a for all a ∈ G. The element a is invertible if there exists an inverse
element −a ∈ G such that a + (−a) = (−a) + a = 0. The commutative law is
a+ b = b+a for all a, b ∈ G. As a rule, additive notation is not used for nonabelian
groups.

Example 2.1.2. Let X be a nonempty set. A one-to-one correspondence
σ : X → X is also called a permutation of X. The set of all permutations of
X is denoted Perm(X). We are in the context of Example 1.1.5 (3) and Perm(X)
is a subset of Map(X). Composition of functions is a binary operation on Map(X)
which is associative and 1X is the identity element. Therefore, Map(X) is a monoid.
If σ and τ are permutations of X, then so is the composite function στ , by Propo-
sition 1.1.1. Therefore, Perm(X) is a group with identity element 1X . See Exam-
ple 2.1.15 for the important special case where |X| is finite. We will see later (for
example, Example 2.1.15) that if |X| > 2, then Perm(X) is nonabelian.

Example 2.1.3. Here are some examples of abelian groups.

(1) Under addition, Z is an abelian group with identity 0. The inverse of x is
written −x.

(2) Let n ∈ N. Proposition 1.2.9 shows that under addition, Z/(n) is an abelian
group with identity [0]. The inverse of [x] is [−x]. We have |Z/(n)| = n.

(3) Let n ∈ N. Lemma 1.2.12 shows that the set of units modulo n, Un, is a
multiplicative abelian group. The identity element is [1] and |Un| = ϕ(n).

LetG be a multiplicative semigroup. The associative law onG says that (ab)c =
a(bc). In other words, a product of length three has a unique value regardless of how
we associate the multiplications into binary operations using parentheses. When
writing a product abc it is not necessary to use parentheses. The next lemma
extends this result to products of arbitrary finite length.

Lemma 2.1.4. (General Associative Law) Let G be a semigroup, n ≥ 1, and
x1x2 · · ·xn a product involving n elements of G. Then the product has a unique
value regardless of how we associate the multiplications into binary operations using
parentheses.

Proof. First we define a standard value for x1x2 · · ·xn by the recursive for-
mula:

x1x2 · · ·xn =

{
x1 if n = 1

(x1x2 · · ·xn−1)xn if n > 1.

Now we show that any association of x1x2 · · ·xn will result in the value defined
above. The proof is by induction on n. If n ≤ 3, then this is true by the associative
law on G. Inductively assume n > 3 and that the result holds for any product
of length less than n. Let x1x2 · · ·xn be a product involving n elements. Assume
the product is associated into binary operations using parentheses. Then the last
binary operation can be written as

(x1x2 · · ·xm)(xm+1 · · ·xn)

and by the induction hypothesis, the two products x1x2 · · ·xm and xm+1 · · ·xm
have unique values regardless of how they are associated. If m = n−1, then we are



1. FIRST PROPERTIES OF GROUPS 35

done, by the induction hypothesis. Assume 1 ≤ m < n − 1. Using the associative
law on G and the induction hypothesis, we get

(x1x2 · · ·xm)(xm+1 · · ·xn) = (x1x2 · · ·xm)((xm+1 · · ·xn−1)xn)

= ((x1x2 · · ·xm)(xm+1 · · ·xn−1)xn)

= (x1x2 · · ·xn−1)xn

= x1x2 · · ·xn
which completes the proof. □

Definition 2.1.5. Let G be a group, a ∈ G, and n a nonnegative integer.

(1) If G is a multiplicative group, then the nth power of a is defined recursively by
the formula:

an =

{
e if n = 0

aan−1 if n > 0.

We define a−n to be (a−1)n. Using induction, the reader should verify that
(a−1)n is equal to (an)−1.

(2) For an additive group G, the counterpart of the nth power of a is left multipli-
cation of a by n, which is defined recursively by:

na =

{
0 if n = 0

a+ (n− 1)a if n > 0.

We define (−n)a to be n(−a), which is equal to −(na).

Proposition 2.1.6. Let G be a group and a, b, c elements of G.

(1) There exists a unique x in G such that ax = b.
(2) There exists a unique y in G such that ya = b.
(3) We have ab = ac if and only if b = c.
(4) We have ab = cb if and only if a = c.

Parts (1) and (2) are called the solvability properties, Parts (3) and (4) are called
the cancellation properties.

Proof. (3): Assume we have ab = ac. Multiply both sides on the left by a−1

to get a−1ab = a−1ac. Since a−1ab = eb = b and a−1ac = ec = c, we get b = c.
Conversely, multiplying both sides of b = c from the left with a yields ab = ac.

(1): Let x = a−1b. Multiply by a on the left to get ax = aa−1b = eb = b. If x′

is another solution, then ax = ax′ and by Part (3) we have x = x′.
Parts (4) and (2) are proved in a similar manner. □

Lemma 2.1.7. If G is a group and x, y are elements of G, then the following
are true.

(1) If x2 = x, then x = e. We say that a group has exactly one idempotent.
(2) If xy = e, then y = x−1.
(3) (x−1)−1 = x.
(4) (xy)−1 = y−1x−1.

Proof. (1): Applying Proposition 2.1.6 (3) to x2 = x = xe, we have x = e.
(2): Applying Proposition 2.1.6 (1) to xy = e, we have y = x−1e = x−1.
(3): Applying Proposition 2.1.6 (1) to x−1x = e, we have x = (x−1)−1.
(4): Applying (2) to (xy)(y−1x−1) = e, we have y−1x−1 = (xy)−1. □
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Example 2.1.8. Let G be a group. Let a ∈ G be a fixed element. Then “left
multiplication by a” defines a function λa : G → G, where λa(x) = ax. Part (1)
of Proposition 2.1.6 says that λa is onto and Part (3) says that λa is one-to-one.
Therefore, λa is a one-to-one correspondence. Likewise, “right multiplication by a”
defines a one-to-one correspondence ρa : G→ G where ρa(x) = xa.

Definition 2.1.9. If G is a group, then the order of G is the cardinality of the
underlying set. The order of G is denoted [G : e] or |G| or o(G).

Definition 2.1.10. Let G be a group and a ∈ G. The order of a, written |a|,
is the least positive integer m such that am = e. If no such integer exists, then we
say a has infinite order.

Definition 2.1.11. Let G and G′ be groups. A function θ : G → G′ is called
an isomorphism of groups, if θ is a one-to-one correspondence and θ(xy) = θ(x)θ(y)
for all x, y ∈ G. In this case, we say G and G′ are isomorphic and write G ∼= G′.
From an abstract algebraic point of view, isomorphic groups are indistinguishable.

1.2. Examples of Groups.

Example 2.1.12. In this example we show that there is up to isomorphism only
one group of order two. By Example 2.1.3, a group of order two exists, namely the
additive group Z/2. Let G = {e, a} be an arbitrary group of order two, where e is
the identity element. By Example 2.1.8, left multiplication by a is a permutation
of G. Since ae = a, this implies aa = e. In other words, there is only one binary
operation that makes {e, a} into a group. If G′ = {e, b} is a group, then the function
that maps e 7→ e, a 7→ b is an isomorphism.

Example 2.1.13. We know from Example 2.1.3 that the additive group Z/3 is
an abelian group of order three. In this example we show that up to isomorphism
there is only one group of order three. Let G = {e, a, b} be an arbitrary group
of order three, where e is the identity element. By Example 2.1.8, λa and ρa are
permutations of G. By cancellation, ab = b leads to the contradiction a = e. Since
ae = a, we conclude that ab = e and aa = b. Similarly, ba = b is impossible, hence
we conclude that ba = e. We have shown that G = {e, a, a2} and a has order 3.
Suppose G′ = {e, c, c2} is another group of order 3. Then the assignments ai 7→ ci

for i = 0, 1, 2 define an isomorphism.

Example 2.1.14. If X = {x1, . . . , xn} is a finite set, then a binary operation on
X can be represented as an n-by-n matrix with entries from X. Sometimes we call
the matrix the “multiplication table” or “addition table”. If the binary operation
is ∗, then the entry in row i and column j of the associated matrix is the product
xi ∗ xj . For instance, the multiplication and addition tables for Z/6 are:

∗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

If the binary operation ∗ on X is commutative, then the matrix is symmetric with
respect to the main diagonal. If X, ∗ is a group, then by Example 2.1.8, each row
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of the multiplication table is a permutation of the top row and each column is a
permutation of the leftmost column. See Exercise 2.1.28 for more examples.

Example 2.1.15. Let n ≥ 1 and Nn = {1, 2, . . . , n}. The set of all permutations
of Nn is called the symmetric group on n letters and is denoted Sn. In Example 2.1.2
we saw that composition of functions makes Sn = Perm(Nn) into a group. As shown
in Section 1.1.4, the group Sn has order n!. A permutation can be specified using
an array of two rows. For example,

σ =

[
1 2 3 . . . n
a1 a2 a3 . . . an

]
represents the permutation σ(i) = ai. Occasionally we simply write the same
permutation as the ordered list of length n: σ = (a1, a2, a3, . . . , an). The so-
called cycle notation is a very convenient way to represent elements of Sn. Let
{a1, . . . , ak} ⊆ Nn. The k-cycle σ = (a1a2 . . . ak) is the permutation of Nn defined
by:

σ(x) =


x if x ̸∈ {a1, . . . , ak}
a1 if x = ak

ai+1 if x = ai and 1 ≤ i < k.

Notice that a k-cycle has order k in the group Sn. The inverse of σ = (a1a2 . . . ak)
is σ−1 = (a1akak−1 . . . a2) which is also a k-cycle. It is important to realize that
the notation for k-cycles is not unique. The k-cycles (a1a2 . . . ak), (a2 . . . aka1), . . . ,
(aka1 . . . ak−1), all denote the same permutation. A 2-cycle is also called a transposi-
tion. The identity element of Sn is usually denoted e. For example, (abc)(ab) = (ac)
and (ab)(abc) = (bc). Therefore, Sn is nonabelian if n > 2. The group table for
S3 = {e, (abc), (acb), (ab), (ac), (bc)} is:

∗ e (abc) (acb) (ab) (ac) (bc)
e e (abc) (acb) (ab) (ac) (bc)

(abc) (abc) (acb) (e) (ac) (bc) (ab)
(acb) (acb) (e) (abc) (bc) (ab) (ac)
(ab) (ab) (bc) (ac) (e) (acb) (abc)
(ac) (ac) (ab) (bc) (abc) (e) (acb)
(bc) (bc) (ac) (ab) (acb) (abc) (e)

Example 2.1.16. Let T be a regular triangle with vertices labeled 1, 2, 3. A
symmetry of T is any one-to-one correspondence σ : T → T that preserves distances
and maps adjacent vertices to adjacent vertices. Therefore, σ is a permutation of
the three vertices. Conversely, a permutation of {1, 2, 3} uniquely determines a
symmetry of T . The group of symmetries of T is therefore equal to S3.

Example 2.1.17. Now let n > 2 and let Tn be a regular n-gon with vertices
labeled 1, 2, . . . , n consecutively. A symmetry of Tn is any one-to-one correspon-
dence σ : Tn → Tn that preserves distances and maps adjacent vertices to adjacent
vertices Therefore, σ is a permutation of the n vertices. If n > 3, a permutation
of {1, 2, . . . , n} does not necessarily determine a symmetry of Tn. When n > 3,
the group of symmetries of Tn is therefore a proper subgroup of Sn. The group of
all symmetries of Tn is called the dihedral group Dn. A rotation of Tn through an
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angle of 2π/n corresponds to the permutation

R =

[
1 2 3 . . . n− 1 n
2 3 4 . . . n 1

]
which in cycle notation is the n-cycle R = (12 . . . n). Therefore, Rk is a rotation
of Tn through an angle of 2πk/n, hence R has order n. A top to bottom flip of
Tn across the line of symmetry containing vertex 1 corresponds to the permutation
defined by

H =



[
1 2 3 . . . k k + 1 . . . n− 1 n

1 n n− 1 . . . k + 2 k + 1 . . . 3 2

]
if n = 2k is even,

[
1 2 3 . . . k k + 1 . . . n− 1 n

1 n n− 1 . . . k + 1 k . . . 3 2

]
if n = 2k − 1 is odd.

In cycle notation, H can be represented as

H =

{
(2, n)(3, n− 1) · · · (k, k + 2) if n = 2k is even,

(2, n)(3, n− 1) · · · (k, k + 1) if n = 2k − 1 is odd.

Then HH = e, hence H has order 2. The reader should verify that HRH = R−1.
Any symmetry of Tn is either a rotation or a rotation followed by a flip. Therefore
we see that Dn = {HiRj | 0 ≤ i ≤ 1, 0 ≤ j < n} is a nonabelian group of order 2n.

Example 2.1.18. Let R4 be a nonsquare rectangle with vertices labeled con-
secutively 1, 2, 3, 4. The group of symmetries of R4 can be viewed as a subgroup
of S4 as well as a subgroup of D4. In the notation of Example 2.1.17, the group
of symmetries of R4 is {HiRj | 0 ≤ i ≤ 1, 0 ≤ j ≤ 1}, which is a group of order
four. In cycle notation, this group is {e, (14)(23), (12)(34), (13)(24)}. Note that the
group is abelian and every element satisfies the identity x2 = e.

Example 2.1.19. The quaternion 8-group is Q8 = {1,−1, i,−i, j,−j, k,−k}
with identity element 1. The multiplication rules are: (−1)2 = 1, i2 = j2 = k2 =
−1, ij = −ji = k. This is an example of a nonabelian group of order eight. The
group table for Q8 is:

1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k

−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i

−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

For a continuation of this example, see Exercise 2.4.23. The group Q8 is also called
the group of quaternion units because it is a subgroup of the group of units of the
ring of real quaternions HR, which was discovered by W. R. Hamilton. For the
definition of the ring of quaternions over an arbitrary field, see Example 3.1.14.
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Example 2.1.20. Let F be a field. If α is a nonzero element of F , then α has
a multiplicative inverse, denoted α−1. The set of all nonzero elements of F is a
multiplicative group. This group is denoted F ∗ and is called the group of units of
F .

Example 2.1.21. Let F be a field. The set of all n-by-n matrices over F is
denoted Mn(F ). In this example, we assume the reader is familiar with the basic
properties for multiplication of matrices (see Section 1.5). In this example our goal
is to show that the set of 2-by-2 matrices over F with nonzero determinant is a
group. For n = 2, the determinant function det :M2(F ) → F is defined by

det

(
a b
c d

)
= ad− bc.

To show that the determinant function is multiplicative, start with the product of
two arbitrary 2-by-2 matrices:(

a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
.

The determinant formula applied on the left hand side yields: (ad− bc)(eh− fg) =
adeh − adfg − bceh + bcfg. The reader should verify that this is equal to the
determinant of the right hand side: (ae + bg)(cf + dh) − (ce + dg)(af + bh). A

matrix α is invertible if there is a matrix β such that αβ = βα =

(
1 0
0 1

)
. Taking

determinants, this implies detα detβ = 1. In other words, if α is invertible, then
detα ̸= 0. Notice that(

a b
c d

)(
d −b
−c a

)
=

(
ad− bc 0

0 ad− bc

)
= (ad− bc)

(
1 0
0 1

)
.

If det

(
a b
c d

)
= ad− bc ̸= 0, then the matrix is invertible and the inverse is given

by the formula (
a b
c d

)−1

= (ad− bc)−1

(
d −b
−c a

)
.

The set

GL2(F ) =

{(
a b
c d

)
∈M2(F ) | ad− bc ̸= 0

}
is the set of all invertible 2-by-2 matrices over F and is called the general linear
group of 2-by-2 matrices over F . For a continuation of this example when F = Z/2
is the field of order 2, see Exercise 2.1.26.

Example 2.1.22. The Klein Viergruppe, or Klein 4-group, is V = {e, a, b, c}
with multiplication rules: a2 = b2 = c2 = e, ab = ba = c. Notice that V is
isomorphic to the group of symmetries of a nonsquare rectangle presented in Ex-
ample 2.1.18 by the mapping: a 7→ (14)(23), b 7→ (12)(34), c 7→ (13)(24).

1.3. Exercises.

Exercise 2.1.23. Let G be a monoid with identity element e.

(1) Show that G has exactly one identity element. In other words, show that
if e′ ∈ G has the property that ae′ = e′a = a, then e = e′.
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(2) Show that an invertible element of G has a unique inverse. In other words,
if aa−1 = a−1a = e and aa′ = a′a = e, then a−1 = a′.

(3) Suppose a, r, ℓ ∈ G satisfy the identities: ar = e and ℓa = e. Show that
r = ℓ and a is invertible.

(4) Suppose every element of G has a left inverse. In other words, assume
for every a ∈ G there exists al ∈ G such that ala = e. Show that G is a
group.

(5) If a ∈ G is invertible, then a−1 is invertible and (a−1)−1 = a.
(6) If a and b are invertible elements of G, then ab is invertible and (ab)−1 =

b−1a−1.

Exercise 2.1.24. Let G be a group. The opposite group of G is denoted Go.
As a set, Go is equal to G. The binary operation on Go is reversed from that of
R. Writing the multiplication of R by juxtaposition and multiplication of Ro with
the asterisk symbol, we have x ∗ y = yx. Show that Go is a group. Show that G is
isomorphic to Go.

Exercise 2.1.25. Let G be a group. Prove the following:

(1) If x2 = e for all x ∈ G, then G is abelian.
(2) If |G| = 2n for some n ∈ N, then there exists x ∈ G such that a ̸= e and

a2 = e.

Exercise 2.1.26. In this example, we assume the reader is familiar with the
basic properties for multiplication of matrices (see Proposition 1.5.2). In particular,
multiplication of matrices is associative and the product of a two-by-two matrix
times a two-by-one column vector is defined by:(

a b
c d

)(
u
v

)
=

(
au+ bv
cu+ dv

)
.

Let G = GL2(Z/2) be the group of two-by-two invertible matrices over the field Z/2
(see Example 2.1.21). List the elements of G and construct the group table (see
Example 2.1.14). Show that G has two elements of order three and three elements
of order two. Let

a =

(
1
0

)
, b =

(
0
1

)
, c =

(
1
1

)
and consider the set of column vectors {a, b, c} over F2. For every matrix α in
G, show that left multiplication by the matrix α defines a permutation of the
set {a, b, c}. Comparing the group table for G with the group table given in Ex-
ample 2.1.15 for S3, the symmetric group on 3 letters, show that GL2(Z/2) is
isomorphic to S3.

Exercise 2.1.27. Let K and H be groups. Define a binary operation on K×H
by (x1, y1)(x2, y2) = (x1x2, y1y2). Show that this makes K ×H into a group with
identity element (e, e), and the inverse of (x, y) is (x−1, y−1). Show that K ×H is
abelian if and only if K and H are both abelian.

Exercise 2.1.28. For various values of n, each of the following matrices is
an n-by-n multiplication table representing a binary operation ∗ on the set In =
{0, 1, . . . , n − 1}. In each case, determine whether the binary operation (a) is
commutative, (b) is associative, (c) has an identity element, and (d) is a group.
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(1)

∗ 0 1 2 3
0 0 0 0 0
1 0 1 1 3
2 0 2 3 0
3 0 3 1 2

(2)

∗ 0 1 2 3 4 5 6 7
0 4 2 6 0 7 1 5 3
1 5 4 0 1 6 7 3 2
2 1 7 4 2 5 3 0 6
3 0 1 2 3 4 5 6 7
4 7 6 5 4 3 2 1 0
5 6 0 3 5 2 4 7 1
6 2 3 7 6 1 0 4 5
7 3 5 1 7 0 6 2 4

(3)

∗ 0 1 2 3 4 5 6 7
0 4 5 3 2 0 1 7 6
1 7 4 5 6 1 2 3 0
2 3 7 4 0 2 6 5 1
3 2 6 0 4 3 7 1 5
4 0 1 2 3 4 5 6 7
5 6 0 1 7 5 3 2 4
6 5 3 7 1 6 0 4 2
7 1 2 6 5 7 4 0 3

(4)

∗ 0 1 2 3 4 5 6 7
0 7 2 1 4 3 6 5 0
1 2 7 0 5 6 3 4 1
2 1 0 7 6 5 4 3 2
3 4 5 6 7 0 1 2 3
4 3 6 5 0 7 2 1 4
5 6 3 4 1 2 7 0 5
6 5 4 3 2 1 0 7 6
7 0 1 2 3 4 5 6 7

(5)

∗ 0 1 2
0 2 0 1
1 0 1 2
2 1 2 0

(6)

∗ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 0 2 1
4 4 3 5 1 0 2
5 5 4 3 2 1 0

Exercise 2.1.29. In the following, Z/n denotes the group of integers modulo n
(see Example 2.1.3), Dn is the dihedral group (see Example 2.1.17), V is the Klein
4-group (see Example 2.1.22), Q8 is the quaternion 8-group (see Example 2.1.19).
Prove:

(1) Z/4 is not isomorphic to V .
(2) Z/(2n) is not isomorphic to Dn.
(3) No two of Z/8, Q8, or D4 are isomorphic to each other.

2. Subgroups and Cosets

A subgroup of a group G is a subset that is itself a group under the binary
operation on G. One way we study groups is in terms of their subgroups. A subset
X of a subgroup H is said to be a generating set for H if H is the smallest subgroup
of G that contains X. One way to study subgroups is in terms of their generators.
Associated to a subgroup H is an equivalence relation on G called left congruence
modulo H. Specifically, two elements x and y of G are left congruent modulo H if
there is an element z in H such that y = xz. The equivalence class of x is the set
xH = {xz | z ∈ H}, which is called the left coset of x modulo H. The set of all
left cosets of H in G is denoted G/H and there is a natural map η : G→ G/H. If
G is a finite group, then all left cosets of H have the same cardinality. Lagrange’s
Theorem says the order of G is divisible by the order of H and the quotient is
equal to the number of cosets of H. If H and K are two subgroups of G, then
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the number of elements in the set HK is equal to the order of H times the order
of K divided by the order of the intersection H ∩ K. This important formula is
called a counting theorem. The last part of this section contains results on cyclic
subgroups. A subgroup is cyclic if it contains a generating set consisting of a single
element. In particular, we show that an infinite group always contains an infinite
number of cyclic subgroups. One reason cyclic subgroups are important is that any
group is the union of its cyclic subgroups.

2.1. First Properties of Subgroups. First we state the formal definition of
a subgroup. Then in Lemma 2.2.2 we give two more equivalent conditions.

Definition 2.2.1. If G is a group and H is a nonempty subset of G that is
a group under the binary operation on G, then we say H is a subgroup of G and
write H ≤ G.

If H is a nonempty subset of a group G, then Lemma 2.2.2 provides two useful
tests for whether H is a subgroup of G or not.

Lemma 2.2.2. Let G be a group and H a nonempty subset of G. The following
are equivalent.

(1) H is a subgroup of G.
(2) For all a, b in H we have ab ∈ H and a−1 ∈ H.
(3) For all a, b in H we have ab−1 ∈ H.

Proof. (2) implies (1): Let a ∈ H. Then e = aa−1 ∈ H. The associative law
applies on G, hence on H. The other group properties are included in (2).

(1) implies (3): Let a and b be elements of H. If H is a group, then b−1 ∈ H
and ab−1 ∈ H.

(3) implies (2): Let a and b be elements of H. By (3) we have aa−1 = e ∈ H,
ea−1 = a−1 ∈ H, and a(b−1)−1 = ab ∈ H. □

Example 2.2.3. Let G be a group. Then {e} and G are both subgroups of
G. We call these the trivial subgroups of G. A nontrivial subgroup is also called a
proper subgroup.

When G is a finite group, Proposition 2.2.4 is a subgroup test that is a simplified
form of Lemma 2.2.2.

Proposition 2.2.4. Let G be a group and H a finite subset of G. If for all
a, b ∈ H we have ab ∈ H, then H is a subgroup of G.

Proof. Assume a, b ∈ H implies ab ∈ H. By Lemma 2.2.2, to show H is a
subgroup it suffices to show that a ∈ H implies a−1 ∈ H. Let |H| = n. Define
f : Nn+1 → H be defined by f(i) = ai. Since a ∈ H, we see from Definition 2.1.5
that f is well defined. The Pigeonhole Principle (Exercise 1.1.11) implies that there
exists a pair 0 < i < j ≤ n + 1 such that ai = aj . Then j − i > 0, so e = aj−i

is in H. If j − i = 1, then a = e, which implies a−1 = e ∈ H. If j − i > 1, then
e = aj−i = aaj−i−1, which implies a−1 = aj−i−1 ∈ H. □

Lemma 2.2.5. Let G be a group and X ⊆ G. Let S = {H ≤ G | X ⊆ H}, and
let

⟨X⟩ =
⋂
H∈S

H

be the intersection of all subgroups of G containing X. Then the following are true.
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(1) ⟨X⟩ is the smallest subgroup of G containing X.
(2) ⟨X⟩ is the trivial subgroup {e} if X = ∅, otherwise

⟨X⟩ = {xe11 · · ·xenn | n ≥ 1, ei ∈ Z, xi ∈ X} .

Proof. (1): We know S is nonempty because G ∈ S. Therefore, (1) follows
straight from Exercise 2.2.23.

(2): If X = ∅, then {e} ∈ S, so ⟨X⟩ = {e}. Assume X ̸= ∅. By Lemma 2.2.2,
the set S = {xe11 · · ·xenn | n ≥ 1, ei ∈ Z, xi ∈ X} is a subgroup ofG. SinceX ⊆ S, we
have ⟨X⟩ ⊆ S. Let xe11 · · ·xenn be a typical element of S. For each i, xi ∈ X implies
xi is in the group ⟨X⟩. By Definition 2.1.5, the power xeii is in ⟨X⟩. Therefore, the
product xe11 · · ·xenn is in ⟨X⟩. This proves S ⊆ X. □

Definition 2.2.6. In the context of Lemma 2.2.5, the set ⟨X⟩ is called the
subgroup of G generated by X. If X = {x1, . . . , xn} is a finite subset of G, then
we sometimes write ⟨X⟩ in the form ⟨x1, . . . , xn⟩. A subgroup H ≤ G is said
to be finitely generated if there exists a finite subset {x1, . . . , xn} ⊆ H such that
H = ⟨x1, . . . , xn⟩. We say H is cyclic if H = ⟨x⟩ for some x ∈ H.

Proposition 2.2.7. The set of all subgroups of G, ordered by set inclusion, is
a lattice. We call this partially ordered set the subgroup lattice of G.

Proof. Let A and B be subgroups of G. The subgroup generated by the set
A ∪B is the least subgroup of G that contains both A and B. By Exercise 2.2.23,
A ∩B is the largest subgroup of G that is contained in both A and B. □

Definition 2.2.8. Let G be a group and H a subgroup of G. If x and y are
elements of G, then we say x is congruent to y modulo H if x−1y ∈ H. In this case
we write x ≡ y (mod H).

Lemma 2.2.9. Let G be a group and H a subgroup. Then congruence modulo
H is an equivalence relation on G.

Proof. If x ∈ G, then x−1x = e ∈ H, so x ≡ x (mod H). Assume x ≡ y
(mod H). Then x−1y ∈ H, which implies y−1x = (x−1y)−1 ∈ H, hence y ≡ x
(mod H). Assume x ≡ y (mod H) and y ≡ z (mod H). Then x−1yy−1z = x−1z ∈
H, which implies x ≡ z (mod H). □

The following notation will be used frequently in our study of groups.

Definition 2.2.10. Let G be a group and assume A and B are nonempty
subsets of G. If G is a multiplicative group, then

AB = {xy | x ∈ A, y ∈ B}.
In case A or B is a singleton set, we write xB or Ay instead of {x}B or A{y}. If
G is an additive group, then

A+B = {x+ y | x ∈ A, y ∈ B}.
In case A or B is a singleton set, we write x + B or A + y instead of {x} + B or
A+ {y}.

Lemma 2.2.11. Let G be a group, H a subgroup, and x, y ∈ G. The following
are equivalent.

(1) x ≡ y (mod H).
(2) y = xh for some h ∈ H.
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(3) xH = yH.

Under congruence modulo H, the equivalence class of x is xH.

Proof. (1) is equivalent to (2): We have x ≡ y (mod H) if and only if x−1y ∈
H which is true if and only if x−1y = h for some h ∈ H which is equivalent to
y = xh for some h ∈ H.

(3) implies (2): We have y = ye ∈ yH = xH. Therefore, y = xh for some
h ∈ H.

(2) implies (3): Suppose y = xh, for some h ∈ H. For every z ∈ H, yz =
x(hz) ∈ xH. Hence yH ⊆ xH. Also, x = yh−1 implies xz = y(h−1z) ∈ yH, which
implies xH ⊆ yH.

By (1), (2) and (3) above, the equivalence class of x modulo H is {y ∈ G |
y ≡ x (mod H)} = {y ∈ G | y = xh for some h ∈ H} = xH, which proves the last
statement. □

2.2. Cosets and Lagrange’s Theorem. Let G be a group and H a sub-
group. By Lemma 2.2.9, congruence modulo H is an equivalence relation on G.
Therefore G is partitioned into equivalence classes. If x ∈ G, then by Lemma 2.2.11,
the equivalence class of x is xH. The set xH is called the left coset of x modulo
H. The set of all left cosets of G modulo H is G/H = {xH | x ∈ G}. By Propo-
sition 1.1.2 two cosets are either disjoint or equal as sets. The index of H in G is
the cardinality of the set G/H and is denoted [G : H].

There is a right hand version of the above, which we will briefly describe here.
We say x is right congruent to y modulo H if yx−1 ∈ H. This defines an equivalence
relation on G. The equivalence class of x is the set Hx which is called the right
coset of x modulo H. The set of all right cosets is denoted H\G. In general, the
partitions G/H and H\G are not equal. That is, a left coset is not necessarily a
right coset (see Lemma 2.3.5). In Exercise 2.2.25 the reader is asked to show that
there is a one-to-one correspondence between G/H and H\G. That is, G/H and
H\G both have cardinality equal to [G : H].

Lemma 2.2.12. Let G be a group and H ≤ G. Given x, y ∈ G there is a one-
to-one correspondence ϕ : xH → yH defined by ϕ(z) = (yx−1)z. If |H| is finite,
then all left cosets of H have the same number of elements.

Proof. For any h ∈ H, yx−1xh = yh ∈ yH. We see that ϕ is a well defined
function. The function ψ(w) = xy−1w is the inverse to ϕ. Applying Proposi-
tion 1.1.1, it follows that ϕ is a one-to-one correspondence. □

If H is a subgroup of G, then a complete set of left coset representatives for H
in G is a subset {ai | i ∈ I} of G where we have exactly one element from each left
coset. The index set I can be taken to be G/H. If {ai | i ∈ I} is a complete set of
left coset representatives, then G =

⋃
i∈I aiH is a partition of G. For example, if

m ≥ 1, then Proposition 1.2.9 (2) shows that {0, 1, . . . ,m− 1} is a complete set of
left coset representatives for ⟨m⟩ in Z.

Theorem 2.2.13. If K ≤ H ≤ G, then [G : K] = [G : H][H : K]. If two of the
three indices are finite, then so is the third.

Proof. Let {ai | i ∈ I} be a complete set of left coset representatives for H in
G and Let {bj | j ∈ J} be a complete set of left coset representatives for K in H.
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Then G =
⋃
i∈I aiH is a partition of G and H =

⋃
j∈J bjK is a partition of H. So

G =
⋃
i∈I

aiH

=
⋃
i∈I

ai

⋃
j∈J

bjK


=
⋃
i∈I

⋃
j∈J

aibjK

 .

To finish the proof, we show that {aibj | (i, j) ∈ I × J} is a complete set of left
coset representatives for K in G. It suffices to show the cosets aibjK are pairwise
disjoint. Assume aibjK = asbtK. Then aibj = asbtk for some k ∈ K. Recall that
bj , bt, k are in H. Then we have ai = ash, for some h ∈ H. Hence aiH = asH,
which implies i = s. Canceling, we get bj = btk, or bjK = btK, which implies
j = t. This proves [G : K] = [G : H][H : K]. The index [G : K] is infinite if and
only if [G : H] is infinite or [H : K] is infinite. This proves the theorem. □

Corollary 2.2.14. (Lagrange’s Theorem) If G is a group and H ≤ G, then
|G| = [G : H]|H|.

Proof. Apply Theorem 2.2.13 with K = ⟨e⟩. □

2.3. A Counting Theorem.

Lemma 2.2.15. Let G be a group containing subgroups H and K. Then HK
is a subgroup of G if and only if HK = KH.

Proof. See Definition 2.2.10 for the definition of the set HK. First as-
sume HK = KH. To show HK is a subgroup we show that the criteria of
Lemma 2.2.2 (1) are satisfied. In the following, h, h1, h2, h3 denote elements of
H and k, k1, k2, k3 denote elements of K. Let h1k1 and h2k2 be arbitrary ele-
ments of HK. Since HK = KH, there exist h3, k3 such that k1h2 = h3k3. Now
(h1k1)(h2k2) = h1(k1h2)k2 = h1(h3k3)k2 = (h1h3)(k3k2) is an element of HK. By
Lemma 2.1.7, (hk)−1 = k−1h−1 is is an element of KH = HK. This proves HK
is a subgroup.

Conversely, suppose HK is a subgroup. Consider the function i : G → G
defined by i(x) = x−1. By Lemma 2.1.7, i2 is the identity function. Thus i is a one-
to-one correspondence. Since HK is a group, the restriction of i to HK is a one-to-
one correspondence. That is, i(HK) = HK. If hk ∈ HK, then i(hk) = (hk)−1 =
k−1h−1 is in KH, which shows HK = i(HK) ⊆ KH. Consider kh ∈ KH. Then
i(kh) = (kh)−1 = h−1k−1 is in HK. Therefore, kh is the inverse of an element in
the subgroup HK. By Lemma 2.2.2, kh ∈ HK, which implies KH ⊆ HK. □

Theorem 2.2.16. Let G be a group. If H and K are finite subgroups of G,
then

|HK| = |H||K|
|H ∩K|

.

Proof. We do not assume HK is a group. Let C = H ∩ K. Then C is a
subgroup of H. Let {h1, . . . , hn} be a full set of left coset representatives of C in
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H, where n = [H : C]. Then H =
⋃n
i=1 hiC is a disjoint union. Since C ⊆ K, by

Proposition 2.1.6 we have CK = K, hence

HK =

n⋃
i=1

hiCK =

n⋃
i=1

hiK.

The last union is a disjoint union. To see this, suppose hiK = hjK. Then h−1
j hi ∈

H∩K = C, which implies i = j. By Lemma 2.2.12 we can now count the cardinality
of HK:

|HK| =
n∑
i=1

|K| = n|K| = [H : H ∩K]|K|.

By Corollary 2.2.14, we are done. □

2.4. Cyclic Subgroups. In the next theorem we show that the additive group
Z is cyclic and every subgroup is of the form ⟨n⟩ for some n ≥ 0. Moreover, the
equivalence relation of Definition 2.2.8 defined in terms of the subgroup ⟨n⟩ is equal
to the equivalence relation of Definition 1.2.8 defined in terms of divisibility by n.

Theorem 2.2.17. Let Z be the additive group of integers.

(1) Every subgroup of Z is cyclic. The trivial subgroups of Z are: ⟨0⟩ and Z = ⟨1⟩.
If H is a nontrivial subgroup, then there is a unique n > 1 such that H = ⟨n⟩ =
nZ = {nk | k ∈ Z}.

(2) If n ≥ 1 and H = ⟨n⟩, then x ≡ y (mod H) if and only if x ≡ y (mod n).
That is, the coset x+ ⟨n⟩ in Z/⟨n⟩ is equal to the congruence class [x] in Z/n.

Proof. (1): Let H ≤ Z and assume H ̸= ⟨0⟩. If x ∈ H − ⟨0⟩, then so is
−x. By the Well Ordering Principle (Axiom 1.2.1) there is a least positive integer
in H, say n. We prove that H = nZ. Let x ∈ H. By the Division Algorithm
(Proposition 1.2.3) we can write x = nq + r where 0 ≤ r < n. By Definition 2.1.5,
nq ∈ H. Therefore, r = x − nq is in H. By the choice of n, this implies r = 0.
Hence x ∈ nZ.

(2): This follows from the fact that x−y ∈ H if and only if n divides x−y. □

LetG be a group and a an element of finite order inG. Recall (Definition 2.1.10)
that the order of a, written |a|, is the least positive integer m such that am = e.

Lemma 2.2.18. Let G be a group, a ∈ G, and assume |a| = m is finite. Then
the following are true.

(1) |a| = |⟨a⟩|.
(2) ⟨a⟩ = {e, a, a2, . . . , am−1}.
(3) For each n ∈ Z, an = e if and only if m divides n.
(4) For each n ∈ Z, |an| = m/ gcd(m,n).
(5) Let b ∈ G. Assume |b| = n is finite, ab = ba, and ⟨a⟩ ∩ ⟨b⟩ = ⟨e⟩. Then

|ab| = lcm(m,n).

Proof. (1) and (2): Let m = |a|. Then m > 0, am = e, and if m > 1, then
am−1 ̸= e. Let n ∈ Z. Applying Proposition 1.2.3, there exist unique integers q
and r such that n = mq + r and 0 ≤ r < m. Then an = (am)qar = ar. Therefore,
⟨a⟩ = {e, a, a2, . . . , am−1}. It follows that |⟨a⟩| = m.

(3): First assume n = mq. Then we have amq = (am)q = eq = e. Conversely
assume an = e. By Parts (1) and (2), if n = mq + r and 0 ≤ r < m, then ar = e,
which implies r = 0.
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(4) and (5): This part of the proof is Exercise 2.2.29. □

Corollary 2.2.19. If |G| is finite, and a ∈ G, then the following are true.

(1) |a| is finite.
(2) |a| divides |G|.
(3) a|G| = e.

Proof. (1): Proposition 2.2.4 shows that |a| is finite.
(2) and (3): These follow immediately from Lemma 2.2.18 and Corollary 2.2.14.

□

Corollary 2.2.20. Let a ∈ Z. Then the following are true.

(1) (Euler) If m ∈ N and gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).
(2) (Fermat) If p is prime and gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).

Proof. As noted in Example 2.1.3, Un, the group of units modulo n, has order
ϕ(n). If p is prime, then ϕ(p) = p− 1. □

Corollary 2.2.21. Let G be a group satisfying |G| > 1. If G has no proper
subgroup, then |G| is finite, |G| is prime, and G is cyclic.

Proof. Let a ∈ G − ⟨e⟩. Since G has no proper subgroup and ⟨e⟩ ≠ ⟨a⟩
is a subgroup of G, we have ⟨a⟩ = G. Look at the set S = {e, a, a2, . . . }. If
there is a relation of the form ak = am, where k < m, then |a| is finite, hence
G is finite. Conversely, if G is finite, then Proposition 2.2.4 shows that there is a
relation ak = am, where k < m. Assume for contradiction’s sake that G is infinite.
Then a ̸= an, for all n > 1. Thus, ⟨a2⟩ is a proper subgroup of G, a contradiction.
We conclude that G = ⟨a⟩ = {e, a, . . . , an−1} is a finite cyclic group of order n,
for some n. Assume for contradiction’s sake that n = xy where 1 < x ≤ y < n.
By Lemma 2.2.18 (4), ⟨ax⟩ = {e, ax, a2x, . . . , a(y−1)x} has order y, hence G has a
proper subgroup, which is a contradiction. This proves n is prime. □

Corollary 2.2.22. Let G be a group. If G has only a finite number of sub-
groups, then G is finite.

Proof. Suppose G is an infinite group. We prove that G has infinitely many
subgroups. Let x1 ∈ G and set X1 = ⟨x1⟩. By Theorem 2.2.17, the additive group
of integers Z has infinitely many distinct subgroups, namely {⟨n⟩ | n ≥ 0}. If X1 is
infinite, then the same proof shows that X1 has infinitely many distinct subgroups,
namely {⟨xn1 ⟩ | n ≥ 0}. From now on assume every element of G has finite order.
Then G−⟨x1⟩ is infinite. Pick x2 ∈ G−⟨x1⟩. Then ⟨x1⟩ ≠ ⟨x2⟩. Assume inductively
that n ≥ 1 and x1, x2, . . . , xn are in G such that X1 = ⟨x1⟩, . . . , Xn = ⟨xn⟩ are n
distinct subgroups. Then

⋃n
i=1Xi is finite. Pick xn+1 ∈ G −X1 −X2 − · · · −Xn

and set Xn+1 = ⟨xn+1⟩. Then by induction there exists an infinite collection
{Xi | i ≥ 1} of distinct subgroups of G. □

2.5. Exercises.

Exercise 2.2.23. (An intersection of subgroups is a subgroup.) Let G be a
group, I a nonempty set, and {Hi | i ∈ I} a family of subgroups of G indexed by
I. Show that ⋂

i∈I
Hi
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is a subgroup of G.

Exercise 2.2.24. Let G be a group and X,Y, Z subgroups of G. Prove that if
Y ⊆ X, then X ∩ Y Z = Y (X ∩ Z).

Exercise 2.2.25. Let G be a group and H a subgroup of G. We denote by
G/H the set of all left cosets of H in G, and by H\G the set of all right cosets of H
in G. Show that the assignment xH 7→ Hx−1 defines a one-to-one correspondence
between G/H and H\G.

Exercise 2.2.26. Let G be a group containing finite subgroups H and K. If
|H| and |K| are relatively prime, show that H ∩K = ⟨e⟩.

Exercise 2.2.27. This exercise is a continuation of Exercise 2.1.27. Let K and
H be groups and K ×H the product group. Show that K × ⟨e⟩ = {(x, e) | x ∈ K}
and ⟨e⟩ ×H = {(e, y) | y ∈ H} are normal subgroups of K ×H.

Exercise 2.2.28. Consider the symmetric group S3 of order 6. Show that
S3 has 4 proper subgroups. Let H be the subgroup of order 2 generated by the
transposition (12). Compute the three left cosets of H and the three right cosets
of H.

Exercise 2.2.29. Prove Parts (4) and (5) of Lemma 2.2.18.

Exercise 2.2.30. Let p be a prime number and G a finite group of order p.
Prove:

(1) G has no proper subgroup.
(2) There exists a ∈ G such that G = ⟨a⟩.
(3) G is abelian.

Exercise 2.2.31. Let (R,+) denote the additive group on R. Then (Q,+) is
a subgroup of (R,+) and (Z,+) is a cyclic subgroup of both (Q,+) and (R,+).
Show that the set {x ∈ R | 0 ≤ x < 1} is a complete set of left coset representatives
for Z in R. Show that the set {x ∈ Q | 0 ≤ x < 1} is a complete set of left coset
representatives for Z in Q. See Exercise 2.3.23 for a continuation of this exercise.

Exercise 2.2.32. Let G be a finite group of order m and a ∈ G. Let n ∈ Z
and assume m and n are relatively prime. Show that there exists b ∈ G such that
a = bn.

Exercise 2.2.33. Let G be a finite group and a, b elements of G such that
|a| = 2, |b| = 2, and ab ̸= ba. Show that the subgroup of G generated by a and b is
isomorphic to a dihedral group Dn for some n > 2 (see Example 2.1.17).

3. Homomorphisms and Normal Subgroups

A homomorphism of groups is a function ϕ : G→ G′ from a group G to a group
G′ which preserves the binary operations on G and G′. In other words, the binary
operation on the image of ϕ agrees with the binary operation on G. Important
properties of the groups G and G′ are studied in terms of the homomorphism ϕ.
The function ϕ induces a binary relation on G and the fibers of the map are the
equivalence classes. If e′ is the identity element of G′, then the fiber ϕ−1(e′) is
called the kernel of ϕ. The kernel of ϕ is denoted ker(ϕ) and is a subgroup of G.
The image of ϕ is a subgroup of G′. Given a group G and subgroup H, left congru-
ence modulo H is an equivalence relation on G (Lemma 2.2.9). Equivalence classes
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are called left cosets and the set of left cosets is denoted G/H. There is a natural
surjection η : G → G/H. If the binary operation on G induces a group structure
on the set of cosets modulo H, then H is called a normal subgroup. The kernel
of a homomorphism ϕ is a normal subgroup. Theorem 2.3.12 is of fundamental
importance and says that ϕ factors in a natural way into the onto homomorphism
η : G→ G/ ker(ϕ) followed by a one-to-one homomorphismG/ ker(ϕ) → G′. There-
fore, the homomorphic images of G correspond to the quotient groups G/H where
H is a normal subgroup of G.

3.1. Definition and First Properties of Normal Subgroups. A function
from one group to another that preserves the binary operations is called a homo-
morphism. After stating the formal definition of a homomorphism, some of the first
properties are established. For instance, the homomorphic image of the identity el-
ement is the identity element, the inverse of a homomorphic image of an element is
the homomorphic image of the inverse, the homomorphic image of a subgroup is a
subgroup.

If H is a subgroup of G, then H is a normal subgroup if and only if the binary
operation on G turns the set of left cosets G/H into a group and in this case the
natural map G→ G/H is a homomorphism of groups (Lemma 2.3.5).

Definition 2.3.1. A homomorphism of groups is a function ϕ : G → G′ from
a group G to a group G′ such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G. If ϕ is onto,
we say ϕ is an epimorphism. If ϕ is one-to-one, we say ϕ is a monomorphism. If
ϕ is one-to-one and onto, then as in Definition 2.1.11 we say ϕ is an isomorphism.
A homomorphism from G to G is called an endomorphism of G. An isomorphism
from G to G is called an automorphism of G.

Definition 2.3.2. Let ϕ : G→ G′ be a homomorphism of groups. The kernel
of ϕ is ker(ϕ) = {x ∈ G | ϕ(x) = e}. In Lemma 2.3.3 (4) we prove that ker(ϕ) is a
subgroup of G.

Lemma 2.3.3. If f : G→ G′ is a homomorphism of groups, then the following
are true.

(1) f(e) = e.
(2) For each x ∈ G, f(x−1) = f(x)−1.
(3) If H is a subgroup of G, then f(H) is a subgroup of G′. If there is a containment

relation H1 ⊆ H2, then f(H1) ⊆ f(H2).
(4) If H ′ is a subgroup of G′, then f−1(H ′) is a subgroup of G. If there is a

containment relation H ′
1 ⊆ H ′

2, then f
−1(H ′

1) ⊆ f−1(H ′
2). In particular, ker f

is a subgroup of f−1(H ′).

Proof. (1): f(e) = f(ee) = f(e)f(e). By Lemma 2.1.7 (1), f(e) = e.
(2): By (1), we have e = f(e) = f(xx−1) = f(x)f(x−1). By Lemma 2.1.7 (2),

f(x−1) = f(x)−1.
(3): Let x and y be arbitrary elements of H. By (2), we have f(xy−1) =

f(x)f(y)−1. By Lemma 2.2.2, this proves f(H) is a subgroup of G′. The second
statement is left to the reader.

(4): Let x and y be arbitrary elements of G such that f(x) ∈ H ′ and f(y) ∈ H ′.
Then f(xy−1) = f(x)f(y)−1 ∈ H ′. By Lemma 2.2.2, this proves f−1(H ′) is a
subgroup of G. The second statement is left to the reader. Since ⟨e⟩ is a subgroup
of H ′, ker f = f−1(e) is a subgroup of f−1(H ′). □
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Definition 2.3.4. Let G be a group. For every a ∈ G, let αa : G → G be
defined by αa(x) = a−1xa. If X is a nonempty subset of G, then αa(X) = a−1Xa
is called the conjugate of X by a.

The next lemma lists the fundamental properties of normal subgroups. The
definition follows the lemma.

Lemma 2.3.5. Let G be a group and H a subgroup of G. The following are
equivalent.

(1) For each x ∈ G, x−1Hx ⊆ H.
(2) For each x ∈ G, x−1Hx = H.
(3) For each x ∈ G there exists y ∈ G such that xH = Hy.
(4) For each x ∈ G, xH = Hx.
(5) For each x ∈ G and y ∈ G, xHyH = xyH.
(6) There is a well defined binary operation G/H ×G/H → G/H on G/H defined

by the rule (xH, yH) 7→ xyH.
(7) There is a binary operation on G/H such that the natural map η : G → G/H

is a homomorphism of groups.
(8) There exists a group G′ and a homomorphism of groups θ : G → G′ such that

H = ker θ.

Proof. (1) implies (2): Let x ∈ G. First apply (1) to x, yielding x−1Hx ⊆ H.
Now conjugate by x−1 and apply (1) with x−1 to get H = (xx−1)H(xx−1) ⊆
xHx−1 ⊆ H.

(2) implies (3): Let x ∈ G. Apply (2) to x−1 to get xHx−1 = H. This implies
xH = Hx.

(3) implies (4): Given x ∈ G, there exists y ∈ G such that xH = Hy. Since
x is in xH = Hy, this implies x = hy for some h ∈ H. Therefore y = h−1x and
Hy = Hh−1x = Hx.

(4) implies (5): Let x ∈ G and y ∈ G. By (4) applied to y, yH = Hy.
Therefore, xHyH = x(Hy)H = x(yH)H = xyH.

(5) implies (6): This is immediate.
(6) implies (7): By (6), (xH, yH) 7→ xyH defines a binary operation on G/H.

The associative law on G implies the associative law also holds on G/H. The
identity element is the coset eH and (xH)−1 = x−1H. Therefore G/H is a group
and it is now clear that the natural map η : G→ G/H is a homomorphism.

(7) implies (8): The kernel of η : G→ G/H is η−1(eH) = H.
(8) implies (1): Let θ : G → G′ be a homomorphism of groups and assume

H = ker θ. By Lemma 2.3.3 (4), ker(θ) = θ−1(⟨e⟩) is a subgroup of G. Given x ∈ G
and h ∈ H we have θ(h) = e. Hence θ(x−1hx) = θ(x)−1θ(h)θ(x) = θ(x)−1θ(x) = e.
Therefore, x−1Hx ⊆ ker θ = H. □

Definition 2.3.6. If G is a group and H is a subgroup of G satisfying any of
the equivalent conditions of Lemma 2.3.5, then we say H is a normal subgroup of
G. The group G/H is called the quotient group, or factor group. If N is a normal
subgroup of G, we sometimes write N ⊴G.

Example 2.3.7. Let G be a group.

(1) The trivial subgroups ⟨e⟩ and G are normal in G.
(2) If G is abelian and H is a subgroup of G, then for every x ∈ G, xH = Hx,

hence H is normal. The quotient group G/H is abelian because G is abelian.
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3.2. The Isomorphism Theorems. Theorem 2.3.12, says that any homo-
morphism of groups θ : A → B factors in a natural way into a surjection A →
A/ ker(θ) followed by an injection A/ ker(θ) → B. This provides us with a valu-
able tool for defining a homomorphism on a quotient group A/N . As applications,
we prove the Isomorphism Theorems (Theorem 2.3.14) and the Correspondence
Theorem (Theorem 2.3.15).

Lemma 2.3.8. Let ϕ : G→ G′ and ϕ1 : G′ → G′′ be homomorphisms of groups.
Then the following are true.

(1) The composite ϕ1ϕ : G→ G′′ is a homomorphism of groups.
(2) The kernel of ϕ, ker(ϕ), is a normal subgroup of G.
(3) The function ϕ is one-to-one if and only if ker(ϕ) = ⟨e⟩.

Proof. (1): This follows straight from:

ϕ1ϕ(xy) = ϕ1(ϕ(x)ϕ(y)) = ϕ1ϕ(x)ϕ1ϕ(y).

(2): By Lemma 2.3.5 (8), ker(ϕ) is a normal subgroup of G.
(3): If ϕ is one-to-one, then ker(ϕ) = ϕ−1(⟨e⟩) = ⟨e⟩. If ker(ϕ) = ⟨e⟩ and

ϕ(x) = ϕ(y), then ϕ(xy−1) = ϕ(x)ϕ(y)−1 = e, so xy−1 ∈ ker(ϕ). Therefore, x = y
and ϕ is one-to-one. □

Example 2.3.9. If ϕ : G → G′ is an isomorphism of groups, then as in Defi-
nition 2.1.11 we say G is isomorphic to G′, and write G ∼= G′. If ϕ1 : G′ → G′′ is
another isomorphism of groups, then by Lemma 2.3.8 and Exercise 1.1.9, the com-
posite ϕ1ϕ is an isomorphism. The reader should verify that isomorphism defines
an equivalence relation on the set of all groups.

Example 2.3.10. Let G be a group. The set of all automorphisms of G is
denoted Aut(G). By Lemma 2.3.8 the composition of automorphisms is an auto-
morphism. In the notation of Example 2.1.2, Aut(G) is a subgroup of Perm(G).

Definition 2.3.11. Let G be a group and a ∈ G. As in Definition 2.3.4,
conjugation by a defines the function αa : G→ G, where αa(x) = a−1xa. In Exer-
cise 2.3.21 the reader is asked to prove that αa is an automorphism of G. We call
αa the inner automorphism of G defined by a. The set of all inner automorphisms
is a subgroup of Aut(G).

Theorem 2.3.12. Let θ : A → B be a homomorphism of groups. Let N be a
normal subgroup of A contained in ker θ. There exists a homomorphism φ : A/N →
B satisfying the following.

(1) φ(aN) = θ(a), or in other words θ = φη.
(2) φ is the unique homomorphism from A/N → B such that θ = φη.
(3) im θ = imφ.
(4) kerφ = η(ker θ) = ker(θ)/N .
(5) φ is one-to-one if and only if N = ker θ.
(6) φ is onto if and only if θ is onto.



52 2. GROUPS

(7) There is a unique epimorphism ϕ : A/N → A/ ker θ such that the diagram

A
θ //

##
η

��

B

A/ ker θ

;;

A/N

ϕ

OO φ

EE

commutes.

Proof. The map φ exists by Exercise 1.1.13. The proofs of (1) – (6) are left
as an exercise for the reader. Part (7) results from an application of Parts (1) – (6)
to the natural map A→ A/ ker θ. □

Corollary 2.3.13. If θ : A → B is a homomorphism of groups, then there
exists a unique monomorphism θ̄ such that θ = θ̄η. Hence θ factors into an epi-
morphism η followed by a monomorphism θ̄ and the diagram

A
θ //

η ##

B

A/ ker θ

θ̄

;;

commutes.

Proof. This is Theorem 2.3.12 (5). □

An important application of Theorem 2.3.12 is the definition of a homomor-
phism on a factor group. It is worth stressing this subtle but useful tool. Suppose
A and B are groups, N is a normal subgroup of G, and one wishes to define a
homomorphism φ : A/N → B. By Theorem 2.3.12, to do this it suffices to define
a homomorphism θ : A → B and show that N ⊆ ker θ. To reiterate, the function
is defined on the top group A instead of on the factor group A/N . Typically this
is the preferred approach because it immediately implies that the function φ is
well defined on A/N which consists of cosets of N , not elements of A. This is the
method of proof used below in the proof of Theorem 2.3.14.

Theorem 2.3.14. (The Isomorphism Theorems) Let G be a group.

(1) If θ : G→ G′ is a homomorphism of groups, then the map φ : G/ ker θ → im θ
sending the coset x ker θ to θ(x) is an isomorphism of groups.

(2) If A and B are subgroups of G and B is normal, then the natural map

A

A ∩B
→ AB

B

sending the coset x(A ∩B) to the coset xB is an isomorphism of groups.
(3) If A and B are normal subgroups of G and A ⊆ B, then B/A is a normal

subgroup of G/A and the natural map

G/A

B/A
→ G/B

sending the coset containing xA to the coset xB is an isomorphism of groups.
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Proof. (1): By Lemma 2.3.3 (3), the image of G is a subgroup of G′. This is
Parts (e) and (f) of Theorem 2.3.12.

(2): By Exercise 2.3.20, AB is a group, B is normal in AB, and A∩B is normal
in A. Let f : A → (AB)/B be the set containment map A → AB followed by the
natural map AB → (AB)/B. If a ∈ A and b ∈ B, then abB = aB, hence f is onto.
Let a ∈ A. Then aB = B if and only if a ∈ B. Therefore the kernel of f is A ∩B.
Part (2) follows from Part (1) applied to the homomorphism f .

(3): By Theorem 2.3.12 (7) applied to the natural map G → G/B, there is a
natural epimorphism ϕ : G/A → G/B defined by ϕ(xA) = xB. The kernel of ϕ
consists of those cosets xA such that x ∈ B. That is, kerϕ = B/A. Part (3) follows
from Part (1) applied to the homomorphism ϕ. □

Theorem 2.3.15. (The Correspondence Theorem) Let G be a group and A
a normal subgroup of G. There is a one-to-one order-preserving correspondence
between the subgroups B such that A ⊆ B ⊆ G and the subgroups of G/A given by
B 7→ B/A. Moreover, B is a normal subgroup of G if and only if B/A is a normal
subgroup of G/A.

Proof. Let η : G → G/A be the natural homomorphism. By Lemma 2.3.3,
if B is a subgroup of G, then η(B) is a subgroup of G/A, and if H is a subgroup
of G/A, then η−1(H) is a subgroup of G containing A. If B1 ⊆ B2, then η(B1) ⊆
η(B2). Likewise, if H1 ⊆ H2, then η

−1(H1) ⊆ η−1(H2). Since η is onto, ηη−1(H) =
H. By Exercise 2.3.17, if B is a subgroup of G containing A, then B = η−1η(B).
This proves the first claim.

For the last claim, let B be a subgroup of G containing A. If B is normal,
then by Theorem 2.3.14 (3), η(B) is normal in G/A. Conversely assume η(B) is
normal in G/A. Then B is equal to the kernel of the composite map G→ G/A→
(G/A)/η(B), hence is normal in G. □

Example 2.3.16. Let (R,+) be the additive abelian group of real numbers
and (R>0, ·) the multiplicative abelian group of positive real numbers. Define ϕ :
(R,+) → (R>0, ·) by ϕ(x) = ex. Then ϕ(x + y) = ex+y = exey = ϕ(x)ϕ(y),
so ϕ is a homomorphism. Define ψ : (R>0, ·) → (R,+) by ψ(x) = lnx. Then
ψ(xy) = lnxy = lnx + ln y = ψ(x) + ψ(y), so ψ is a homomorphism. Since ϕ and
ψ are inverses of each other, they are isomorphisms. Hence (R,+) and (R>0, ·) are
isomorphic groups.

3.3. Exercises.

Exercise 2.3.17. Let f : G→ G′ be a homomorphism of groups. Prove:

(1) If H is a subgroup of G and ker f ⊆ H, then f−1f(H) = H.
(2) If G is abelian, then im(f) is abelian.

Exercise 2.3.18. Let G,+ be an additive abelian group. Let n ∈ Z and x ∈ G.
If n > 0, then nx =

∑n
i=1 x = x+ · · ·+x is the sum of n copies of x. If n < 0, then

nx = |n|(−x) =
∑|n|
i=1(−x), and 0x = 0.

(1) Show that “left multiplication by n” defines a function λn : G → G by
the rule λn(x) = nx. Show that λn is an endomorphism of G.

(2) Show that the kernel of λn is G(n) = {x ∈ G | |x| | n}, hence G(n) is a
subgroup of G.
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(3) Show that the image of λn is nG = {nx | x ∈ G}, hence nG is a subgroup
of G.

When the group operation is written multiplicatively, the counterpart of λn is the
“nth power map” which is denoted πn : G → G and is defined by πn(x) = xn. In
this case, im(πn) is denoted Gn.

Exercise 2.3.19. Let G be a group and H a subgroup. Prove that if [G : H] =
2, then H is a normal subgroup.

Exercise 2.3.20. Let G be a group containing subgroups H, K, and N . Prove
the following:

(1) If N is a normal subgroup of G, then NK is a subgroup of G. Moreover,
K is a subgroup of NK, and N is a normal subgroup of NK.

(2) If N is normal, then N ∩H is a normal subgroup of H.
(3) If H and K are both normal, then HK is a normal subgroup of G.

Exercise 2.3.21. Let G be a group. For every a ∈ G, let αa : G → G be
defined by αa(x) = a−1xa. In the terminology of Definition 2.3.4, αa(x) is the
conjugate of x by a. Prove that αa is an automorphism of G.

Exercise 2.3.22. (The conjugate of a subgroup is a subgroup.) Let G be a
group, S a nonempty subset of G, and a ∈ G. By Definition 2.3.4, the conjugate
of S by a is defined to be αa(S) = a−1Sa. Prove that S is a subgroup of G if and
only if Sa is a subgroup of G.

Exercise 2.3.23. Let S1 = {z ∈ C | |z| = 1}. Then S1 = {e2πiθ | 0 ≤ θ < 1}
is the unit circle in the complex plane (see Section 1.4).

(1) Show that multiplication in C makes S1 into a group.
(2) Let (R,+) denote the additive group on R. Show that the function f :

(R,+) → S1 defined by f(θ) = e2πiθ is an onto homomorphism. Compute
the kernel of f . Show that f induces an isomorphism R/Z ∼= S1 (see
Exercise 2.2.31).

(3) If n ∈ N, then the nth power map z 7→ zn is an endomorphism of S1 (see
Exercise 2.3.18). Let µn denote the kernel of the nth power map. Show
that µn = {e2πik/n | k ∈ Z} is the set of all nth roots of unity in C.

(4) Show that the function ϕ : Z → µn defined by ϕ(k) = e2πik/n is an epi-
morphism. Compute the kernel of ϕ. Show that ϕ induces an isomorphism
Z/n ∼= µn.

(5) Let µ =
⋃
n≥1 µn. Show that µ is a group. Define h : Q → µ by h(r) =

e2πir. Show that h is an epimorphism. Compute the kernel of h. Show
that h induces an isomorphism Q/Z ∼= µ (see Exercise 2.2.31).

Exercise 2.3.24. Let G be a finite group of order n = [G : e]. Let p be a prime
number such that p | n and p2 > n. Assume G contains a subgroup H of order p.
(This is always true, by Cauchy’s Theorem, Theorem 2.7.3.) Prove:

(1) H is the unique subgroup of G of order p.
(2) H is a normal subgroup of G.

Exercise 2.3.25. A group G is said to be simple if the only normal subgroups
of G are ⟨e⟩ and G. Prove that a group G is simple if and only if for every nontrivial
homomorphism of groups f : G→ G′, f is a monomorphism.
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Exercise 2.3.26. This exercise is a continuation of Exercise 2.2.27. Let K and
H be groups and K ×H the product group. Define four functions

(1) ι1 : K → K ×H, ι1(x) = (x, e)
(2) ι2 : H → K ×H, ι2(y) = (e, y)
(3) π1 : K ×H → K, π1(x, y) = x
(4) π2 : K ×H → H, π2(x, y) = y

Show that ι1 and ι2 are monomorphisms. Show that π1 and π2 are epimorphisms.
Show that im ι1 = kerπ2 = K × {e} and im ι2 = kerπ1 = {e} ×H.

3.4. More on Cyclic Groups. One way we study a group is in terms of its
subgroups. From this point of view, cyclic subgroups are the basic building blocks
of a group. A group is the union of its cyclic subgroups.

A cyclic group A = ⟨a⟩ is generated by a single element. Theorem 2.3.27 shows
that if A is infinite, then A is isomorphic to the additive group Z. In this case A
has two generators, namely a, and a−1. If A is finite of order n, then A is isomor-
phic to Z/n and A has ϕ(n) generators, namely {ai | 1 ≤ i ≤ n− 1, gcd(i, n) = 1}.
Lemma 2.3.29 shows that any homomorphism A→ G of groups defined on A is com-
pletely determined by the image of a generator. Necessary and sufficient conditions
for the existence of a homomorphism A → G are derived. In Theorem 2.3.30 we
show that the group of all automorphisms of a cyclic group of order n is isomorphic
to the group of units modulo n. The group of automorphisms of an infinite cyclic
group is a group of order two. As an application of these theorems on cyclic groups,
we exhibit the classic proof by mathematical induction that a finite abelian group of
order n contains an element of order p if p is a prime divisor of n (Theorem 2.3.32).

Theorem 2.3.27. Let A = ⟨a⟩ be a cyclic group. Then the following are true.

(1) A is abelian.
(2) Every subgroup of A is cyclic.
(3) Every homomorphic image of A is cyclic.
(4) There is a unique n ≥ 0 such that A is isomorphic to Z/⟨n⟩.
(5) If n = 0, then

(a) A is infinite and
(b) A is isomorphic to Z.

(6) If n > 0, then
(a) A isomorphic to Z/n, hence A is finite of order n,
(b) if H is a subgroup of A, then |H| divides n,
(c) for every positive divisor d of n, A has a unique subgroup of order d,

namely ⟨an/d⟩,
(d) if d is a positive divisor of n, then A has ϕ(d) elements of order d, where

ϕ is the Euler function.

Proof. (4): Let θ : Z → A be the function defined by θ(i) = ai. Since A
is generated by a, by Lemma 2.2.5, a typical element of A is ai for some i ∈ Z.
Therefore, θ is onto. Since θ(i + j) = ai+j = aiaj = θ(i)θ(j), θ is an epimor-
phism. By Theorem 2.2.17 there is a unique n ≥ 0 such that ker(θ) = ⟨n⟩. By
Theorem 2.3.14 (1), θ induces an isomorphism θ̄ : Z/⟨n⟩ → A.

(1): This follows from (4) and Exercise 2.3.17 (2).
(3): If ϕ : A → G is a homomorphism, then ϕ(ai) = ϕ(a)i. Therefore we have

im(ϕ) = ⟨ϕ(a)⟩.
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(2): By (4), θ̄ : Z/⟨n⟩ → A is an isomorphism. By (3) and Theorem 2.2.17
every subgroup of Z/⟨n⟩ is cyclic. Theorem 2.3.15 now applies.

(5): Follows from (4).
(6): Assume n > 0 and d is a positive divisor of n. By Lemma 2.2.18, |an/d| = d.

Thus, ⟨an/d⟩, is a subgroup of order d. Now suppose |ax| = d. By Lemma 2.2.18,
gcd(x, n) = n/d. By Bézout’s Identity, Lemma 1.2.5, we can write n/d = xu +
nv, for some u, v ∈ Z. Since an/d = (ax)u(an)v = (ax)u we see that ⟨an/d⟩ ⊆
|ax| = d. Both groups have order d, hence they are equal. By Lemma 2.2.18, the
number of elements of order n in A is equal to the cardinality of the set {x ∈ Z |
1 ≤ x ≤ n and gcd(x, n) = 1}, which is equal to ϕ(n). Therefore, the number of
elements of order d in a cyclic group of order d is ϕ(d). □

Example 2.3.28. In this example we show that up to isomorphism there are
exactly two groups of order four. The group Z/4 is a cyclic abelian group of order
four, generated by either [1], or [3]. As in Example 2.1.22, the Klein Viergruppe
is denoted V . Then V = {e, a, b, c} has multiplication rules: a2 = b2 = c2 = e,
ab = ba = c and is a noncyclic abelian group of order four. Let G be an arbitrary
group of order four. We will show that G is either isomorphic to Z/4, or V . Let
a ∈ G−{e}. By Corollary 2.2.19, the order of a is either 2 or 4. If |a| = 4, then by
Lemma 2.2.18, G = ⟨a⟩ is cyclic. By Theorem 2.3.27 (4), G is isomorphic to Z/4.
If G has no element of order 4, then every element a of G satisfies: a2 = e. By
Exercise 2.1.25, G is abelian. Let a ∈ G−{e}. Let b ∈ G−{e, a}. Let c = ab. Then
G = {e, a, b, c}, a2 = b2 = c2 = e, ab = ba = c, and it is clear that G is isomorphic
to V .

Lemma 2.3.29. Let A = ⟨a⟩ be a cyclic group and G any group.

(1) Let ϕ : A→ G be a homomorphism of groups. Then ϕ is completely determined
by the value ϕ(a).

(2) Let x ∈ G.
(a) If the order of A is infinite, then there is a homomorphism θ : A → G

defined by θ(a) = x.
(b) If A has finite order |A| = n, then there is a homomorphism θ : A → G

defined by θ(a) = x if and only if x has finite order |x| = d and d | n.

Proof. (1): We have ϕ(ai) = ϕ(a)i.
(2): Part (a) was proved in the proof of Part (4) of Theorem 2.3.27. We prove

Part (b). Assume A is finite and |A| = n. If there is a homomorphism θ : A → G,
then by Exercise 2.3.44 the order of θ(a) is a divisor of n. Conversely, assume |x| = d
is finite and d | n. By Theorem 2.3.27 there is an isomorphism A ∼= Z/n defined by
ai 7→ [i]. Likewise, there is an isomorphism Z/d ∼= ⟨x⟩ defined by [1] 7→ x. If ηn and
ηd are the natural maps, then by Exercise 1.2.19, there exists a homomorphism γ
such that the diagram

Z

  

ηn

~~

ηd

  
A

∼= // Z/n
γ // Z/d

∼= // ⟨x⟩ ⊆ // G

commutes. Define the homomorphism θ to be the composition of the four homo-
morphisms in the bottom row. As required, we have θ(a) = x. □
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As in Example 2.3.10, if G is a group, then Aut(G) denotes the group of all
automorphisms of G. In Theorem 2.3.30 we show that the group of automorphisms
of a cyclic group is an abelian group.

Theorem 2.3.30. Let n ∈ N be a positive integer. The group of automorphisms
of the cyclic group of order n is isomorphic to the group of units modulo n. That
is,

Aut(Z/n) ∼= Un

which is a group of order ϕ(n). The group of automorphisms of the infinite cyclic
group Z is isomorphic to the group of order two. That is,

Aut(Z) ∼= {1,−1}.

Proof. We utilize Theorem 2.3.27, Lemma 2.3.29, and Exercise 2.3.18. Let
A = ⟨a⟩ be an arbitrary cyclic group. Given r ∈ Z, the rth power map on A is
denoted πr : A→ A and is defined by πr(a) = ar. If α : A→ A is an endomorphism
of A, then α(a) = as for some integer s. Since

(3.1) α(at) = α(a)t = (as)t = ast

we see that α = πs. That is, every endomorphism of A is πr for some r ∈ Z.
This also shows that the composite function πsπt is equal to πst. The image of
πr : A→ A is the subgroup ⟨ar⟩.

Case 1: Assume A is finite of order n. Then ar = as if and only if r ≡ s
(mod n). This proves that there are n distinct endomorphisms of A, namely
{π0, π1, . . . , πn−1}. The generators of A are {ar | gcd(r, n) = 1}, which is a
set of order ϕ(n). Since πr is one-to-one and onto if and only if ar is a gen-
erator of A, this proves that there are ϕ(n) automorphisms of A, namely {πr |
1 ≤ r ≤ n− 1, gcd(r, n) = 1}. By Example 2.1.3, the group of units modulo n is
an abelian group of of order ϕ(n). Define θ : Aut(Z/n) → Un by θ(πr) = r. Then
we have shown that θ is an isomorphism of groups.

Case 2: Assume A is infinite. Then ar = as if and only if r = s. By Theo-
rem 2.2.17, the two generators of A are {a, a−1}. Therefore, the two automorphisms
of A are π1 and π−1. □

Remark 2.3.31. To effectively apply Theorem 2.3.30 it is necessary to have a
complete description of the groups Un in terms of the factorization n = pe11 · · · pekk
of n into prime numbers. We remark here that this computation of the group Un
will come later and depends on several theorems. For instance, by the Chinese
Remainder Theorem (Corollary 2.5.3) Un ∼= Upe11 × · · · × Upekk

. This allows us to

compute the group Un in terms of groups of the form Upa , where p is prime. To
classify the groups Upa we will employ the Basis Theorem for Finite Abelian Groups
(Theorem 2.8.7). In case n = 2a, Proposition 2.8.8 gives a description of the group
of units U2a . When p is an odd prime, see Proposition 3.6.19 for a description of
the group of units Upa .

In general, if G is a finite group and p is a prime divisor of |G|, then G has
an element of order p. This is known as Cauchy’s Theorem and we will eventually
present two proofs in Corollary 2.4.15 and Theorem 2.7.3. As an application of
Theorem 2.3.27, an abelian version of Cauchy’s Theorem is stated and proved
in Theorem 2.3.32 below. The proof is an example of an important divide and
conquer technique in Group Theory. The goal is to show that a group G has a
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certain property. The strategy is to find a normal subgroup N such that both N
and the quotient group G/N have that property, and from there proceed to show
that the group G has it as well. The proof below is by induction on the order of G.
The induction step uses Lagrange’s Theorem (Corollary 2.2.14) and the fact that
if N is a subgroup of G, then G/N is an abelian group (Example 2.3.7). The key
step in the induction argument is that an element of order p in the quotient group
G/N “lifts” to an element in G whose order is a multiple of p.

Theorem 2.3.32. (Cauchy’s Theorem for Abelian Groups) Let G be a finite
abelian group and p a prime number. If p divides |G|, then G contains an element
of order p.

Proof. The proof is by induction on the order of G. Let n = |G|. Since p
divides n, we know n > 1. If p = |G|, then by Exercise 2.2.30, there exists a ∈ G
such that G = ⟨a⟩, hence |a| = p. Inductively assume n is composite and that the
result holds for all abelian groups of order less than n. By Corollary 2.2.21, we
know G has a proper subgroup, call it N . If p divides |N |, then by our induction
hypothesis, N has an element of order p. Therefore, assume p does not divide |N |.
Since G is abelian, by Example 2.3.7, N is a normal subgroup and G/N is abelian.
By Corollary 2.2.14, p divides |N |[G : N ]. Since p does not divide |N |, we have
p divides [G : N ]. By our induction hypothesis, G/N has an element of order p.
Suppose b ∈ G and bN has order p in G/N . Since G is finite, b has finite order.
By Exercise 2.3.44, p divides the order of b. By Theorem 2.3.27, ⟨b⟩ contains an
element of order p. □

Example 2.3.33. In this example we show that up to isomorphism there are
exactly two groups of order six. By Example 2.1.3, we know that Z/6 is an abelian
group of order six. We know from Example 2.1.15 that the symmetric group on 3
letters, S3, is a nonabelian group of order 6. Let G be a group of order six. Let
a ∈ G and set A = ⟨a⟩. By Corollary 2.2.19, |a| ∈ {1, 2, 3, 6}. If G has an element
of order 6, then by Theorem 2.3.27, G is isomorphic to Z/6. Assume from now
on that G has no element of order 6. For contradiction’s sake, suppose G has no
element of order 3. Then every element of G satisfies x2 = e. By Exercise 2.1.25,
G is abelian and there exists a ∈ G such that |a| = 2. Then A = ⟨a⟩ is normal
and G/A has order three. By Exercise 2.3.44, if the generator of G/A is bA, then b
has order 3 or 6, a contradiction. We have shown that G has an element a of order
3. If A = ⟨a⟩, then by Exercise 2.3.24, A is the unique subgroup of order 3. Then
G− A consists of elements of order 2. Let b ∈ G− A. The coset decomposition of
G is A ∪ bA = {e, a, a2} ∪ {b, ba, ba2}. Since [G : A] = 2, by Exercise 2.3.19 A is
normal. By Lemma 2.3.5, bA = Ab. Therefore, ab ∈ {b, ab, a2b}. We know ab ̸= b
since a ̸= e. If ba = ab, then by Lemma 2.2.18, |ab| = 6, a contradiction. Therefore,
ab = ba2. We have proved that G = {e, a, a2, b, ba, ba2} where a3 = b2 = e and
ab = ba2. The reader should verify that the assignments a 7→ (123), a2 7→ (132),
b 7→ (12), ba 7→ (23), and ba2 7→ (13) define an isomorphism G ∼= S3.

3.5. The Center of a Group. The center of a group is defined and as an
exercise the reader is asked to prove that the center is a normal subgroup. As
examples, we compute the center of the quaternion 8-group, the dihedral groups,
the symmetric groups, and the general linear group of 2-by-2 matrices over a field.
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Definition 2.3.34. Let G be a group. The center of G, denoted Z(G), is
defined to be {x ∈ G | xa = ax for all a ∈ G}. In Exercise 2.3.42 the reader is
asked to prove that Z(G) is a normal subgroup of G.

Example 2.3.35. Let Q8 be the quaternion 8-group of Example 2.1.19. In
Exercise 2.4.23 the reader is asked to prove that the center of Q8 is the unique
subgroup of order two.

Example 2.3.36. Let n ≥ 3 and let Dn be the dihedral group (see Exam-
ple 2.1.17). Then Dn is the group of symmetries of a regular n-gon. If H is the
horizontal flip and R the rotation, then Dn = {HiRj | 0 ≤ i ≤ 1, 0 ≤ j < n} is
a nonabelian group of order 2n. The relations H2 = Rn = e and HRH = R−1

hold. Hence the conjugate of R by H is HRH = R−1 and the conjugate of H by
R is R−1HR = HR2. Conjugation by R is an automorphism, so if 0 ≤ i < n, then
R−1(HRi)R = R−1HRRi = HR2Ri. This proves HRi is not in Z(Dn). It also
shows that Z(Dn) is a subgroup of ⟨R⟩. A typical element of ⟨R⟩ is Ri. We show
that Ri is in Z(Dn) if and only if n | 2i. Since e ∈ Z(Dn), assume 0 < i < n.
Conjugation by H is an automorphism, so HRiH = R−i. We see that Ri is in
Z(Dn) if and only if Ri = R−i, which is true if and only if n = 2k is even and
i = k. So if n = 2k is even, Z(Dn) is the subgroup ⟨Rk⟩ which has order 2. If n is
odd, then it follows that the center of Dn = ⟨e⟩. In summary, we have shown that

Z(Dn) =

{
⟨Rn/2⟩ if n is even

⟨e⟩ if n is odd.

Example 2.3.37. Let n ≥ 3 and let Sn be the symmetric group on n letters
(see Example 2.1.15). We show that Z(Sn) = ⟨e⟩. Let π ∈ Sn and assume π ̸= e.
First assume π(a) = b and π(b) = c, where a, b, c are distinct. Let τ be the 2-cycle
(ab). Then πτ(a) = π(b) = c and τπ(a) = τ(b) = a, which shows π is not central.
Now suppose π(a) = b and π(b) = a. Let σ be the 2-cycle (bc), where a, b, c are
distinct. Then πσ(a) = π(a) = b and σπ(a) = σ(b) = c, which shows π is not
central. If π ̸= e, then π falls into one of these two cases. This shows Z(Sn) = ⟨e⟩.

Example 2.3.38. Let F be a field and GLn(F ) the general linear group of
invertible n-by-n matrices over F . For instance, if n = 1, then GL1(F ) is simply
the set F −{0} of invertible elements in F , which we denote F ∗. If n = 2, then we
saw in Example 2.1.21 that

GL2(F ) =

{(
a b
c d

)
| ad− bc ̸= 0

}
.

To compute the center, assume

(
a b
c d

)
is a central matrix. Then(

0 1
1 0

)(
a b
c d

)(
0 1
1 0

)
=

(
d c
b a

)
shows that a = d and b = c. Now(

1 −1
0 1

)(
a b
b a

)(
1 1
0 1

)
=

(
a− b 0
b a+ b

)
shows that b = 0. Therefore, a central matrix is diagonal. It is routine to show that

a diagonal matrix

(
a 0
0 a

)
is central. This computation shows that Z(GL2(F )) is
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equal to

{(
a 0
0 a

)
| a ∈ F ∗

}
. If we define δ : F ∗ → GL2(F ) to be the diagonal

map, δ(x) =

(
x 0
0 x

)
, then δ is a monomorphism and im(δ) = Z(GL2(F )). The

quotient, GL2(F )/F
∗, is denoted PGL2(F ) and is called the projective general linear

group of 2-by-2 matrices over F .

Example 2.3.39. Let F be a field. Let det : GL2(F ) → F ∗ be the determinant

function, where det

(
a b
c d

)
= ad− bc. In Example 2.1.21 we showed that det is an

epimorphism on multiplicative groups. This is proved in Lemma 6.3.5 below for all
n. The kernel, ker(det), which is the set of all matrices with determinant equal to
1, is denoted SL2(F ) and is called the special linear group of 2-by-2 matrices over
F . By Theorem 2.3.14 (1) there is an isomorphism of groups

GL2(F )/ SL2(F ) ∼= F ∗.

See Exercise 2.5.18 for a computation of SL2(Z/3).

Example 2.3.40. As in Example 2.1.15, the group of permutations of the set
{1, 2, 3} is

S3 = {e, (123), (132), (12), (13), (23)}

and is called the symmetric group on 3 elements. The group S3 is isomorphic to
D3, the group of symmetries of an equilateral triangle (see Example 2.1.16). Also,
S3 is isomorphic to GL2(Z/2), the group of invertible 2-by-2 matrices over the field
of order 2 (see Exercise 2.1.26). The group table for S3 is listed in Example 2.1.15.
The cyclic subgroups of S3 are:

⟨e⟩ = {e}
⟨(123)⟩ = ⟨(132)⟩ = {e, (123), (132)}

⟨(12)⟩ = {e, (12)}
⟨(13)⟩ = {e, (13)}
⟨(23)⟩ = {e, (23)}

Since S3 is a subgroup of itself, there are exactly 6 subgroups. The center of S3

is the trivial subgroup ⟨e⟩, by Example 2.3.37. The commutator subgroup (see
Exercise 2.3.46) of S3 is the cyclic subgroup ⟨(123)⟩, by Exercise 2.3.47. There is
one subgroup of order 6, one subgroup of order 3, three subgroups of order 2, and
one subgroup of order 1. The three elements of order 2 are not central, hence the
subgroups of order 2 are not normal. The commutator subgroup and the trivial
subgroups are normal. By Proposition 2.2.7, the set of all subgroups of a group is
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a lattice. The subgroup lattice of S3 is

S3

⟨(123)⟩

⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩

⟨e⟩

Example 2.3.41. In Example 2.1.17 we defined the dihedral group Dn as the
group of symmetries of a regular n-gon. For instance, if n = 4, the dihedral group

D4 = {e, (1234), (13)(24), (1432), (13), (24), (12)(34), (14)(23)}

is a group of order 8 and is the group of symmetries of a square. In this example
we use cycle notation, so R = (1234) represents a rotation of the square through
an angle of 90 degrees. The horizontal flip that fixes vertex 1 is H = (24). The
multiplicative powers of each element of D4 are given in the rows of the following
table. The order of the element is listed in the last column.

x x2 x3 x4 |x|
e 1

(1234) (13)(24) (1432) e 4
(13)(24) e 2
(1432) (13)(24) (1234) e 4
(13) e 2
(24) e 2

(12)(34) e 2
(14)(23) e 2

There are 2 elements of order 4, 5 elements of order 2, and 1 element of order 1.
Each element of order 2 generates a cyclic subgroup of order 2. The elements of
order 4 are inverses of each other and generate the only cyclic subgroup of order 4
in D4. There are two more subgroups of order 4 that are not cyclic:

⟨(13), (24)⟩ = {e, (13), (13)(24), (24)}
⟨(12)(34), (14)(23)⟩ = {e, (12)(34), (13)(24), (14)(23)}.

The trivial subgroups ⟨e⟩ and D4 are normal. The three subgroups of order 4 are
normal, by Exercise 2.3.19. The center of D4 is the cyclic subgroup ⟨(13)(24)⟩
and is normal, by Exercise 2.3.42. The commutator subgroup of D4 is the cyclic
subgroup ⟨(13)(24)⟩, by Exercise 2.3.47. The only subgroups of D4 that are not
normal are the four cyclic subgroups of order 2 that are not central. The subgroup
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lattice of D4 is

D4

⟨(13), (24)⟩ ⟨(1234)⟩ ⟨(12)(34), (14)(23)⟩

⟨(13)⟩ ⟨(24)⟩ ⟨(13)(24)⟩ ⟨(12)(34)⟩ ⟨(14)(23)⟩

⟨e⟩

where a line indicates set containment.

3.6. Exercises.

Exercise 2.3.42. Let G be a group. As in Definition 2.3.34, the center of G is
the set Z(G) = {x ∈ G | xy = yx for every y ∈ G}. Prove the following:

(1) Z(G) is an abelian group.
(2) Z(G) is a normal subgroup of G.
(3) If H and K are groups, then Z(H ×K) = Z(H)× Z(K).
(4) If G/Z(G) is a cyclic group, then G is abelian.

Exercise 2.3.43. Let G be a group and Aut(G) the group of all automorphisms
of G. As in Exercise 2.3.21, for every a ∈ G, let αa : G→ G be defined by αa(x) =
a−1xa. Define θ : G → Aut(G) by θ(a) = αa−1 . Show that θ is a homomorphism
of groups. The image of θ is called the group of inner automorphisms of G and is
denoted Inn(G). Show that ker(θ) is equal to Z(G), the center of G. Conclude that
Inn(G) is isomorphic to G/Z(G).

Exercise 2.3.44. Let θ : G→ G′ be a homomorphism of groups and x ∈ G an
element of finite order. Show that |θ(x)| divides |x|.

Exercise 2.3.45. Let n be a positive integer. Prove that
∑
d|n ϕ(d) = n. See

Definition 1.2.15 for the notation
∑
d|n.

Exercise 2.3.46. Let G be a group. The commutator subgroup of G is the
subgroup of G generated by the set {x−1y−1xy | x, y ∈ G} and is denoted G′.
Prove:

(1) G′ is a normal subgroup of G.
(2) G/G′ is abelian.
(3) If N is a normal subgroup of G such that G/N is abelian, then G′ ⊆ N .
(4) If H is a subgroup of G and G′ ⊆ H, then H is normal in G.

Exercise 2.3.47. Let G = Dn be the dihedral group of order 2n. Compute
the commutator subgroup G′ (see Exercise 2.3.46).

Exercise 2.3.48. Let

σ =

[
1 2 3 4 5 6 7
4 6 1 5 3 7 2

]
, τ =

[
1 2 3 4 5 6 7
5 2 4 3 6 1 7

]
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be permutations in S7. Compute τστ−1. Write σ, τ , τστ−1 using cycle notation.
Show that σ factors into a 4-cycle times a 3-cycle. Show that τστ−1 factors into a
4-cycle times a 3-cycle. This is a special case of Lemma 2.6.9.

Exercise 2.3.49. Let G be a group and X ⊆ G. Let S be the set of all normal
subgroups H in G such that X ⊆ H. Prove that N =

⋂
H∈S H is a subgroup of G

satisfying:

(1) N is a the smallest normal subgroup of G containing X.
(2) N is equal to the subgroup of G generated by the set

⋃
g∈G gXg

−1.

We call N the normal subgroup of G generated by X.

Exercise 2.3.50. Let F be a field and G = GL2(F ) the general linear group
of 2-by-2 matrices over F . Show that the commutator subgroup G′ (see Exer-
cise 2.3.46) is a subgroup of the special linear group SL2(F ) (see Example 2.3.39).
For a continuation of this example, see Exercise 2.3.54.

Exercise 2.3.51. Let GL2(F ) be the general linear group of invertible 2-by-2
matrices over the field F and det : GL2(F ) → F ∗ the determinant function (see
Example 2.1.21). Consider the following sets consisting of upper triangular matrices
in GL2(F ):

U =

{(
a b
0 d

)
∈M2(F ) | ad ̸= 0

}
,

D =

{(
1 b
0 1

)
∈M2(F ) | b ∈ F

}
.

(1) Show that U is a subgroup of GL2(F ).
(2) Show that det : U → F ∗ is an epimorphism of groups and describe the

kernel as a set of matrices.
(3) Show that D is isomorphic to (F,+), the additive group of the field F .
(4) Show that D is a normal subgroup of U and U/D ∼= F ∗ × F ∗.
(5) Show that D is equal to the commutator subgroup of U . For the definition

of commutator subgroup see Exercise 2.3.46.

For a continuation of this example, see Exercise 2.3.52.

Exercise 2.3.52. As in Exercise 2.3.51, let F be a field, GL2(F ) the general
linear group of 2-by-2 matrices over F , and U the subgroup of GL2(F ) consisting
of all upper triangular invertible matrices.

(1) Define θ : U → F ∗ by θ

(
a b
0 d

)
= d. Show that θ is a group epimorphism.

Let T = ker θ. Describe T as a set of matrices.
(2) Show that

W =

{(
a 0
0 1

)
∈M2(F ) | a ∈ F ∗

}
is a subgroup of U . Assume F ̸= Z/2. In other words, assume F contains
at least three elements. Show:
(a) W is not a normal subgroup of U .
(b) The normal subgroup of U generated by W (for this terminology, see

Exercise 2.3.49) is the group T of Part (1).

For a continuation of this example, see Exercise 2.5.24.
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Exercise 2.3.53. Let C∗ be the group of all nonzero complex numbers under
multiplication and S1 = {z ∈ C | |z| = 1} the subgroup of all complex numbers
of absolute value 1 (see Exercise 2.3.23). Show that the quotient group C∗/S1 is
isomorphic to (R>0, ·), the multiplicative abelian group of positive real numbers.
For a continuation of this exercise see Exercise 2.5.27.

Exercise 2.3.54. This exercise is a continuation of Exercise 2.3.50. Let F
be a field and assume F ̸= Z/2. In other words, assume F is a field that has at
least three elements. Show that the commutator subgroup of GL2(F ), the general
linear group of 2-by-2 matrices over F , is equal to SL2(F ), the special linear group.
(Although the proof is relatively long and tedious, it is elementary and involves
only material already covered in this book.)

Exercise 2.3.55. Let Q8 be the quaternion 8-group of Example 2.1.19 and D4

the dihedral group of Example 2.1.17. Let C4 be a cyclic group of order 4. For each
of the following statements, either exhibit an example to substantiate the claim, or
prove that the claim is false.

(1) There exists a monomorphism of groups C4 → Q8.
(2) There exists an epimorphism of groups Q8 → C4.
(3) There exists a monomorphism of groups C4 → D4.
(4) There exists an epimorphism of groups D4 → C4.

See Exercise 2.4.42 for a continuation of this exercise.

Exercise 2.3.56. Let G be a group and Aut(G) the group of all automor-
phisms of G. Let Inn(G) denote the group of inner automorphisms of G (see
Exercise 2.3.43). Show that Inn(G) is a normal subgroup of Aut(G).

Exercise 2.3.57. Let θ : A→ B be an isomorphism of groups. Prove:

(1) θ maps the center of A isomorphically onto the center of B. That is,
θ(Z(A)) = Z(B).

(2) θ maps the commutator subgroup of A isomorphically onto the commu-
tator subgroup of B. That is, θ(A′) = B′.

Exercise 2.3.58. Let G be a group containing subgroups A and B such that
A ⊆ B ⊆ G. In this context, each of the following statements is true or false. If
true, present a proof. If false, exhibit a counterexample.

(1) If A is normal in G, then A is normal in B.
(2) If A is normal in B and B is normal in G, then A is normal in G.
(3) If B is normal in G and A = B′ is the commutator subgroup of B, then

A is normal in G.
(4) If B is normal in G and A = Z(B) is the center of B, then A is normal in

G.
(5) If A is normal in G, then B is normal in G.

4. Group Actions

The topic of the present chapter is Group Theory. As we have emphasized
before, Group Theory arises as the axiomatic abstraction of permutation groups.
In this section the connection between the abstract notion of a group G and the
concrete notion of the group of all permutations of a set X is formalized. If X is
any nonempty set with group of permutations Perm(X), then a homomorphism of
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groups θ : G→ Perm(X) associates to an element g of G a permutation θ(g) on X.
We call such a representation of G an “action by G on X”. We also say “G acts
on X as a group of permutations”. Cayley’s Theorem, named after A. Cayley, says
that a group G always has a representation as a group of permutations of the set
{g | g ∈ G} of elements of G. There is an important special case that arises when
X is not only a set, but also a group. In case X is a group, Aut(X) is a subgroup of
Perm(X). Whenever G acts as a group of permutations of X and θ : G→ Perm(X)
factors through Aut(X), so that

G

""

θ // Perm(X)

Aut(X)

⊆

99

commutes, then we say “G acts as a group of automorphisms of X”. A group action
by G on X gives rise to an equivalence relation on X. In this case, the equivalence
class of an element x ∈ X is the set of all images θ(g)(x) where g is parametrized
by G. This set is called the orbit of x under G. The set of all orbits is called the
orbit space. Associated to x is the subgroup of G associated to all g such that the
permutation θ(g) fixes x. Another important subset of X is the set of all points x
that are fixed by every θ(g). Conjugation is an important action by G on itself. The
orbits under this action are called the conjugacy classes. The subset of G fixed by
this action is the center of G. When G is finite, the so-called Class Equation is an
important counting theorem. We end this section with an important construction
that allows us to construct a new group, called the semidirect product of H and
K, whenever K acts as a group of automorphisms of H. Many of the results and
notions from the present section will play an important role when we study Galois
Theory in Section 5.3.

4.1. Group Actions, Orbits and Stabilizers.

Lemma 2.4.1. Let G be a group and S a nonempty set. The following are
equivalent.

(1) There is a homomorphism of groups θ : G→ Perm(S).
(2) There is a function G × S → S, where the image of the ordered pair (g, x) is

denoted g ∗ x, and the properties
(a) (associative law) (g1g2) ∗ x = g1 ∗ (g2 ∗ x) for all g1, g2 ∈ G, x ∈ S and
(b) (e ∈ G acts as the identity function) e ∗ x = x, for all x ∈ S
are satisfied.

Proof. (1) implies (2): Instead of θ(g)(x) we will write g ∗x. The assignment
(g, x) 7→ g ∗ x defines a function G× S → S. Then

(g1g2) ∗ x = θ(g1g2)(x)

= θ(g1)(θ(g2)(x))

= g1 ∗ (g2 ∗ x)

and e ∗ x = θ(e)(x) = 1S(x) = x.
(2) implies (1): For each g ∈ G, define λg : S → S to be the “left multiplication

by g” function defined by λg(x) = g ∗ x. Since g ∗ g−1 = g−1 ∗ g = e, λg is a
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permutation of S. Define θ : G → Perm(S) by θ(g) = λg. The associative law
implies θ(g1g2) = θ(g1)θ(g2), so θ is a homomorphism. □

In light of Lemma 2.4.1 we make the following definition.

Definition 2.4.2. Let G be a group and S a nonempty set. We say G acts on S
as a group of permutations, if there is a homomorphism of groups θ : G→ Perm(S).
If g ∈ G and x ∈ S, instead of θ(g)(x) we usually write g ∗ x. If θ is one-to-one,
then the group action is said to be faithful. If the image of θ is ⟨1X⟩, then the group
action is said to be trivial. In Lemma 2.4.4 below, the kernel of θ is denoted G0.
Hence G0 is a normal subgroup of G.

Example 2.4.3. Let G be a group. As in Example 2.1.8, if a ∈ G, then
λa : G → G is the “left multiplication by a” function and λa is a permutation of
the set G. Since λab = λaλb, the assignment a 7→ λa defines a homomorphism of
groups λ : G→ Perm(G). Proposition 2.1.6 shows that λ is one-to-one.

Lemma 2.4.4. Let G be a group acting on a set X. Then

G0 = {g ∈ G | g ∗ x = x for all x ∈ X}
is a normal subgroup of G.

Proof. As in Lemma 2.4.1, there is a homomorphism of groups θ : G →
Perm(X) and G0 is equal to the kernel of θ. □

Theorem 2.4.5. (Cayley’s Theorem) A finite group of order n is isomorphic
to a subgroup of the symmetric group Sn.

Proof. Let G = {g1, . . . , gn} be a fixed enumeration of the elements of G.
Then we can identify Perm(G) with the symmetric group Sn. By Example 2.4.3,
G is isomorphic to a subgroup of Sn. □

Example 2.4.6. Let G be a group and H a subgroup. Let a, x, y be elements
of G. Then xH = yH if and only if axH = ayH because (ax)−1ay = x−1y. If
a ∈ G and xH ∈ G/H, then a∗xH = (ax)H defines an action by G on the set G/H
by left multiplication. The reader should verify that the criteria of Lemma 2.4.1 (2)
are satisfied.

Lemma 2.4.7. Let H and K be groups. The following are equivalent.

(1) There is a homomorphism of groups θ : K → Aut(H).
(2) There is a function K ×H → H, where the image of the ordered pair (k, x) is

denoted k ∗ x, and the properties
(a) (associative law) (k1k2) ∗ x = k1 ∗ (k2 ∗ x) for all k1, k2 ∈ k, x ∈ H and
(b) (e ∈ K acts as the identity function) e ∗ x = x, for all x ∈ H
(c) (distributive law) k ∗ (xy) = (k ∗ x)(k ∗ y) for all k ∈ K, x, y ∈ H.
are satisfied.

Proof. (1) implies (2): We identify Aut(H) with a subgroup of Perm(H).
Then by Lemma 2.4.1, K acts on H as a group of permutations. The action by K
on H is defined by k ∗ x = θ(k)(x) and properties (a) and (b) are satisfied. The
distributive law follows from the fact that θ(k) is a homomorphism if k ∈ K.

(2) implies (1): By Lemma 2.4.1, K → Perm(H) is a homomorphism of groups,
where k 7→ λk. For k ∈ K, λk is a permutation of H. The distributive law implies
λk is a homomorphism. □
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In light of Lemma 2.4.7 we make the following definition.

Definition 2.4.8. Let H and K be groups. We say K acts on H as a group
of automorphisms, if there is a homomorphism of groups θ : K → Aut(H).

Example 2.4.9. Let G be a group and g ∈ G. Conjugation of X by g is the
automorphism αg : G → G defined by αg(x) = g−1xg. (Exercise 2.3.21). By
Exercise 2.3.43, there is a homomorphism of groups θ : G → Aut(G) defined by
g 7→ αg−1 . By Definition 2.4.8, this implies conjugation defines an action by G
on itself as a group of automorphisms. The kernel of θ is Z(G), the center of G.
More generally, if N is a normal subgroup of G, and g ∈ G, then αg restricts to an
automorphism of N . Therefore there is a homomorphism G→ Aut(N) defined by
g 7→ αg−1 . Thus, conjugation defines an action of G on the normal subgroup N as
a group of automorphisms. See Exercise 2.4.22 for a continuation of this example.

Definition 2.4.10. Let G be a group acting as a group of permutations of
a nonempty set X. Define a relation ∼ on X by the rule x ∼ y if y = g ∗ x for
some g ∈ G. Then x = e ∗ x implies x ∼ x, and if y = g ∗ x, then x = g−1 ∗ y.
Moreover, if y = g1 ∗ x and z = g2 ∗ y, then z = g2g1 ∗ x. This proves that ∼ is an
equivalence relation on X. The equivalence class of x is called the orbit of x. The
orbit of x is equal to G ∗ x = {g ∗ x | g ∈ G}. The set of orbits is denoted X/G.
If x ∈ X, then the stabilizer of x in G is Gx = {g ∈ G | g ∗ x = x}. It is shown
in Theorem 2.4.11 below that Gx is a subgroup of G, therefore, Gx is sometimes
called the subgroup fixing x. If Gx = G, then we say x is fixed by G. The set
X0 = {x ∈ X | g ∗ x = x for all g ∈ G} is the set of all x in X that are fixed by G.

Theorem 2.4.11. Let G be a group acting on a nonempty set X. If x ∈ X,
then Gx, the stabilizer of x in G satisfies the following properties.

(1) Gx is a subgroup of G.
(2) The length of the orbit G ∗ x is equal to the index [G : Gx].

Proof. (1): Since e ∈ Gx, we have Gx ̸= ∅. If a, b ∈ Gx, then ab ∗ x =
a ∗ (b ∗ x) = a ∗ x = x, hence ab ∈ Gx. If a ∗ x = x, then x = a−1 ∗ x. This proves
Gx is a subgroup of G.

(2): We show that there is a one-to-one correspondence between the set of left
cosets of Gx in G and the set G∗x. Define a function f : G→ G∗x by f(g) = g∗x.
Then f is onto. Define a relation on G by the rule: g ≈ h if and only if f(g) = f(h).
By Exercise 1.1.14, ≈ is an equivalence relation. Notice that g ≈ h if and only if
g−1h ∈ Gx, which is equivalent to g ≡ h (mod Gx). Therefore, f̄ : G/Gx → G ∗ x
is a one-to-one correspondence. □

4.2. Conjugates and the Class Equation.

Example 2.4.12. Let G be a group and 2G the power set of G. If X is
a subset of G, and a ∈ G, then the conjugate of X by a is αa(X) = a−1Xa
(Definition 2.3.4). Define a function θ : G → Perm(2G) by θ(a) = αa−1 . Since
α(ab)−1(X) = (ab)X(ab)−1 = a(bXb−1)a−1 = αa−1αb−1(X), this implies θ(ab) =
θ(a)θ(b). That is, θ is a homomorphism of groups. By Definition 2.4.2, conjugation
defines an action by G as a group of permutations of the set 2G. This action is
therefore given by the formula a ∗X = aXa−1. The stabilizer of X in G is usually
called the normalizer of X in G and is denoted NG(X) = {a ∈ G | aXa−1 = X}.
The orbit ofX under this action is the set {aXa−1 | a ∈ G} of all distinct conjugates
of X by elements of G.
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Proposition 2.4.13. Let G be a group and X a subset of G. The normalizer
of X in G satisfies the following properties.

(1) NG(X) is a subgroup of G.
(2) If H is a subgroup of G, then NG(H) is the largest subgroup of G containing

H as a normal subgroup.
(3) The number of distinct conjugates of X by elements in G is [G : NG(X)].

Proof. (1) and (3): These follow from Theorem 2.4.11.
(2): Since H is a subgroup, a−1Ha = H for all a ∈ H. Therefore, H ⊆ NG(H).

If x ∈ NG(H), then x−1Hx = H. Therefore, H is normal in NG(H). Suppose
H ≤ K ≤ G and H is a normal subgroup of K. For all x ∈ K, x−1Hx = H, hence
K ⊆ NG(H). □

As in Example 2.4.9, let G be a group acting on itself by conjugation. Assume
moreover that G is a finite group. If x ∈ G, the orbit of x is G∗x = {a−1xa | a ∈ G}
and is called the conjugacy class of x. The number of conjugates of x is the length
of the orbit G ∗ x. By Theorem 2.4.11, |G ∗ x| = [G : NG(x)]. If x is in Z(G),
the center of G, then NG(x) = G and G ∗ x = {x}. Since |G| is finite, there are a
finite number of conjugacy classes. If x1, . . . , xn is a full set of representatives for
the conjugacy classes that are not in Z(G), then

G = Z(G) ∪ (G− Z(G))

= Z(G) ∪

(
n⋃
i=1

G ∗ xi

)
= Z(G) ∪G ∗ x1 ∪ · · · ∪G ∗ xn

is a disjoint union. Taking cardinalities of both sides of this equation yields the
next corollary.

Corollary 2.4.14. (The Class Equation) Let G be a finite group and x1, . . . , xn
a full set of representatives for the conjugacy classes that are not in Z(G). Then

|G| = |Z(G)|+
n∑
i=1

[G : NG(xi)].

As an application of Corollary 2.4.14, we prove Cauchy’s Theorem. Recall that
we already proved Theorem 2.3.32, which is the abelian version of this result. A
second more concise proof of Cauchy’s Theorem is given below in Theorem 2.7.3.

Corollary 2.4.15. (Cauchy’s Theorem) Let G be a finite group of order n
and p a prime divisor of n. Then G contains an element of order p.

Proof. The proof is by induction on n. If G is abelian, then G has an element
of order p, by Theorem 2.3.32. We see from Exercise 2.2.30 and Example 2.3.28 that
any group of order five or less is abelian. Inductively assume n ≥ 6, G is nonabelian,
and that the result holds for any group of order less than n. Let x1, . . . , xm be a
full set of representatives for the conjugacy classes that are not in Z(G). By our
induction hypothesis, m ≥ 1. Solving the Class Equation of Corollary 2.4.14 for
|Z(G)|, we have

(4.1) |Z(G)| = |G| −
m∑
i=1

[G : NG(xi)].



4. GROUP ACTIONS 69

For each xi, NG(xi) is a proper subgroup of G. If p divides |NG(xi)| for some
i, then by our induction hypothesis, there is an element of order p in NG(xi).
Therefore, assume for every i that p does not divide |NG(xi)|. By Corollary 2.2.14,
|G| = |NG(xi)|[G : NG(xi)]. Since p divides |G| and p does not divide |NG(xi)|, we
have p divides [G : NG(xi)], for every i. Therefore, p divides the right hand side
of (4.1). Hence p divides |Z(G)|. By Theorem 2.3.32, we know that Z(G) has an
element of order p. □

4.3. Semidirect Product. As in Definition 2.4.8, let H and K be groups
and assume K acts on H as a group of automorphisms. In this context, we can
build a new group which contains subgroups that are isomorphic to H and K.
The underlying set for our bigger group is the cartesian product H ×K, but the
new group is not the product group of Exercise 2.1.27 because a modified binary
operation is used.

Define a binary operation on H ×K by the rule:

(x1, k1)(x2, k2) = (x1(k1 ∗ x2), k1k2).

The binary operation defined above makes H × K into a group. The proof is
Proposition 2.4.16 (1) and follows straight from the definitions and Lemma 2.4.7.
The identity element is (e, e) and the inverse of (x, k) is (k−1 ∗ x−1, k−1). This
group is denoted H ⋊K and is called the semidirect product of H and K.

Proposition 2.4.16. Let K act on H as a group of automorphisms and let
H ⋊K be the semidirect product of H and K. Then

(1) H ⋊K is a group.
(2) N = {(x, e) | x ∈ H} is a normal subgroup of H ⋊K and is isomorphic to H.
(3) The quotient (H ⋊K)/N is isomorphic to K.
(4) C = {(e, k) | k ∈ K} is a subgroup of H ⋊K and K is isomorphic to C.

Proof. (1): By the distributive and associative laws of Lemma 2.4.7, the last
term of

((x1, k1)(x2, k2)) (x3, k3) = (x1(k1 ∗ x2), k1k2)(x3, k3)
= (x1(k1 ∗ x2)(k1k2) ∗ x3, k1k2k3)

and the last term of

(x1, k1) ((x2, k2)(x3, k3)) = (x1, k1)(x2(k2 ∗ x3), k2k3)
= (x1k1 ∗ (x2(k2 ∗ x3)), k1k2k3)

are equal. Therefore, the binary operation on H ⋊ K is associative. The proof
that the identity element is (e, e) is left to the reader. Applying Lemma 2.4.7 and
Exercise 2.4.21, an argument similar to the above proves that (k−1 ∗ x−1, k−1) is
the inverse of (x, k).

(2): Define ι1 : H → H ⋊ K by ι(x) = (x, e) and ι2 : K → H ⋊ K by
ι(k) = (e, k). Define f : H ⋊ K → K by f(x, k) = k. The reader should verify
that ι1, ι2 and f are homomorphisms of groups. As in Exercise 2.3.26, the reader
should verify that f is onto, the kernel of f is the set N , ι1 and ι2 are one-to-one,
and im(ι1) = ker(f). By Lemma 2.3.5, N is a normal subgroup of H ⋊ K. This
proves (2).

Part (3) follows from (2) and Theorem 2.3.14 (1). Lastly, the image of ι2 is the
set C, which proves Part (4). □
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When is a given group G isomorphic to a semidirect product? This question is
the motivation for Corollary 2.4.17. It provides sufficient conditions for a group G
to be a semidirect product of two subgroups N and K. If N is a normal subgroup
of G and K is an arbitrary subgroup, then by Exercise 2.4.22, conjugation defines
an action by K on N as a group of automorphisms. On elements the action is
defined by the rule: k ∗ x = kxk−1, for all k ∈ K and x ∈ N .

Corollary 2.4.17. Let G be a group containing subgroups N and K satisfying:

(1) G = NK,
(2) N is normal in G, and
(3) N ∩K = ⟨e⟩.

Let K act on N by conjugation. Then the semidirect product N ⋊K is isomorphic
to G.

Proof. Define f : N ⋊K → G by (x, k) 7→ xk. Then

f((x1, k1)(x2, k2)) = f(x1k1 ∗ x2, k1k2)
= f(x1k1x2k

−1
1 , k1k2)

= x1k1x2k
−1
1 k1k2

= x1k1x2k2

= f(x1, k1)f(x2, k2).

This shows f is a homomorphism. By (1) it follows that f is onto and by (3) it
follows that f is one-to-one. □

Example 2.4.18. In this example we show that for any n ≥ 1 there exists a
nonabelian group of order 6n. The strategy is to construct a semidirect product
A ⋊K where A has order 3, K has even order and K acts in a nontrivial way on
A. From now on, let A = ⟨a⟩ be a cyclic group of order 3. By Theorem 2.3.30,
Aut(A) is isomorphic to U3 which is a group of order 2. By Proposition 2.4.16, to
construct a semidirect product A ⋊ K, it suffices to find a group K and an onto
homomorphism θ : K → Aut(A). By Theorem 2.3.14 (1), it suffices to find a group
K which contains a normal subgroup of index 2. Any subgroup of index 2 is normal,
by Exercise 2.3.19. Without being specific, let K be any group which contains a
subgroup N of index 2. Before proceeding with our construction, we mention a few
of the many choices for K.

(1) By Theorem 2.3.27, a cyclic group of order 2n has a subgroup of index 2.
This shows that for any n ≥ 1 there exists at least one abelian group K of
order 2n which satisfies our criteria. We will see in Section 2.8 below that
any finite abelian group of even order has a normal subgroup of index 2.

(2) If n ≥ 3, a nonabelian choice for our group K would be the dihedral
group Dn which has order 2n and contains a normal subgroup of order n
(Example 2.1.17).

(3) Another nonabelian choice for K is the symmetric group Sn where n ≥ 3
(Example 2.1.15). We will see in Corollary 2.6.15 below that Sn con-
tains a unique subgroup of index 2 which is denoted An and is called the
alternating group on n letters.

(4) There are many infinite groups for which our construction applies. For
example, K = Z and N = ⟨2⟩.
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(5) Another infinite choice for K is the group of nonzero real numbers R∗

which contains the subgroup R>0 of positive real numbers. The quotient
group R∗/R>0 has order 2 (see Exercise 2.5.26).

(6) Notice that for a given group K, there may be multiple choices for N .
For example, we saw in Example 2.3.41 that D4 contains 3 subgroups of
order 4.

Now we continue with our example. Assume from now on that A is a cyclic group
of order 3, and K is a group containing a normal subgroup N such that [K : N ] =
2. Since K/N and Aut(A) are cyclic groups of order 2, they are isomorphic to
each other. Let θ = ϕη be the composition of the natural map η followed by the
isomorphism ϕ. Then the diagram

K

η
!!

θ // Aut(A)

K/N

ϕ

∼=
::

commutes. Using θ we construct the semidirect product A ⋊ K. Since θ is onto,
by Theorem 2.3.30, there exists some k ∈ K such that k ∗ a = a−1. Therefore
(e, k)(a, e) = (a−1, k) is not equal to (a, e)(e, k) = (a, k). This shows elements
of the subgroup {(x, e) | x ∈ A} do not commute with elements of the subgroup
{(e, k) | k ∈ K}. The group A⋊K is nonabelian, even if K is abelian.

Next we present an example of a semidirect product of an arbitrary abelian
group and a cyclic group of order two. The reader is asked to show in Exercise 2.4.25
below that the dihedral groupDn is the semidirect product of a cyclic group of order
n and a group of order two. Therefore, the example in Proposition 2.4.19 is very
general and includes as special cases the dihedral groups.

Let A be an abelian group, written multiplicatively. Let σ : A → A be the
function defined by σ(x) = x−1. In the notation of Exercise 2.3.18, σ is equal to
the (−1)-power map and is denoted π−1. Hence σ is an automorphism of A. Since
σ2 = 1, ⟨σ⟩ is a subgroup of Aut(A) of order 2 or less. Let C = ⟨c⟩ be a cyclic
group of order 2. By Lemma 2.3.29, there exists a homomorphism θ : C → Aut(A)
defined by θ(c) = σ. By Lemma 2.4.7, the rule c ∗ x = x−1 for all x ∈ A defines an
action by C on A as a group of automorphisms.

Proposition 2.4.19. In the above context, let A be an abelian group and C =
⟨c⟩ a cyclic group of order 2 acting on A by the rule c ∗ x = x−1 for all x ∈ A. Let
G = A⋊ C be the semidirect product.

(1) The commutator subgroup of G is the set G′ = {(x2, e) | x ∈ A}.
(2) The group G is abelian if and only if x2 = e for all x ∈ A.
(3) If G is nonabelian, then Z(G), the center of G, is equal to the set {(x, e) |

x ∈ A and x2 = e}.

Proof. For reference we list some useful multiplication identities for the group
G which should be verified by the reader. In the following, x and y are arbitrary
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elements of A.

(x, c)−1 = (x, c)(4.2)

(x, e)−1 = (x−1, e)(4.3)

(x, c)(y, c) = (xy−1, e)(4.4)

(x, c)(y, e) = (xy−1, c)(4.5)

(x, e)(y, c) = (xy, c)(4.6)

(x, e)(y, e) = (xy, e)(4.7)

The commutator subgroup of G is the subgroup generated by the set of all com-
mutators {a−1b−1ab | a, b ∈ G} (Exercise 2.3.46). Using (4.2) – (4.7), a general
commutator in G is one of the following.

(x, c)(y, c)(x, c)(y, c) = (xy−1, e)(xy−1, e) = (x2y−2, e)(4.8)

(x, c)(y−1, e)(x, c)(y, e) = (xy, c)(xy−1, c) = (y2, e)(4.9)

(x−1, e)(y, c)(x, e)(y, c) = (x−1y, c)(xy, c) = (x−2, e)(4.10)

(x−1, e)(y−1, e)(x, e)(y, e) = (x−1y−1xy, e) = (e, e)(4.11)

It is evident that the commutator subgroup G′ is equal to {(x2, e) | x ∈ A}. This
proves (1). Part (2) follows from (1) since G′ = ⟨(e, e)⟩ if and only if x2 = e for
all x ∈ A. It follows from (4.5) – (4.7) that (x, e) ∈ Z(G) for all x ∈ A such
that x = x−1. Conversely, if x ̸= x−1, then (x, e)(e, c) = (x, c) is not equal to
(e, c)(x, e) = (x−1, c) and (x, c)(e, c) = (x, e) is not equal to (e, c)(x, c) = (x−1, e).
This proves (3). □

We end this section with the following application of Cauchy’s Theorem (Corol-
lary 2.4.15). In Proposition 2.4.20 we classify all groups of order pq, where p and q
are distinct primes.

Proposition 2.4.20. Let p and q be distinct primes, and assume p < q. Let
G be a group of order pq. Then G is isomorphism to one of two groups. Either G
is abelian and isomorphic to Z/(pq), or G is nonabelian, q ≡ 1 (mod p), and G is
isomorphic to a semidirect product Z/q ⋊ Z/p.

Proof. The proof is divided into four steps.
Step 1. Assume G is an abelian group. By Theorem 2.3.32, let a be an element

of order p and b an element of order q. By Lemma 2.2.18 (5), ab has order pq and G
is cyclic. By Theorem 2.3.27, an abelian group of order pq is isomorphic to Z/(pq).

Step 2. Now we show that any group G of order pq is isomorphic to a semidi-
rect product of a cyclic group of order q and a cyclic group of order p. By Corol-
lary 2.4.15, let P be a subgroup of G of order p and Q a subgroup of G of order q. By
Exercise 2.2.26, P ∩Q = ⟨e⟩. By Exercise 2.3.24, Q is normal in G. Then P acts on
Q by conjugation (Exercise 2.4.22) and there is a homomorphism θ : P → Aut(Q).
By Corollary 2.4.17, G is isomorphic to the semidirect product Q⋊ P .

Step 3. Now we prove that there exists a nonabelian group of order pq if and
only if q ≡ 1 (mod p). Assume G is a group of order pq. By Step 2, there is a
homomorphism θ : P → Aut(Q). By Theorem 2.3.30, Aut(Q) ∼= Uq is an abelian
group of order ϕ(q) = q − 1. By Theorem 2.3.14 (1) and Corollary 2.2.14, the
image of θ has order 1 or p. First we assume q is not congruent to 1 modulo p,
and prove that G is abelian. If p does not divide q − 1, then p does not divide
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the order of Aut(Q), so im(θ) = ⟨e⟩. By Exercise 2.4.41, G is isomorphic to the
direct product of P and Q. By Exercise 2.1.27, G is an abelian group. Conversely,
assume q ≡ 1 (mod p) and show that there is a nonabelian group of order pq. In
this case, p divides q − 1 and by Corollary 2.4.15, there is a subgroup of order p
in Uq. By Lemma 2.3.29, there exists a monomorphism θ : Z/p → Aut(Z/q). By
Exercise 2.4.41, the semidirect product Z/q ⋊ Z/p is a nonabelian group of order
pq.

Step 4. We show that up to isomorphism a nonabelian group of order pq is
unique. This part of the proof uses the fact that Uq, the group of units modulo
q, is a cyclic group of order q − 1. This result will be proved in Corollary 3.6.12
below. Since Aut(Q) ∼= Uq is cyclic of order q − 1, there is a unique subgroup of
order p in Aut(Q) (Theorem 2.3.27 (6)). The monomorphism θ : Z/p → Aut(Z/q)
is unique up to the choice of a generator for Z/p. If θ1 : Z/p→ Aut(Z/q) is another
monomorphism, then there exists σ ∈ Aut(Z/p) such that θ = θ1σ. So if Z/q⋊θZ/p
is the semidirect product defined using θ, and Z/q⋊θ1 Z/p is the semidirect product
defined using θ1, then the map defined by (x, y) 7→ (x, σ(y)) is an isomorphism of
groups. □

4.4. Exercises.

Exercise 2.4.21. Let H and K be groups. Recall (Definition 2.4.8) that we
say K acts as a group of automorphisms of H if there is a homomorphism of groups
θ : K → Aut(H). In this case, write k ∗ x instead of θ(k)(x). Prove the following:

(1) k ∗ e = e for all k ∈ K.
(2) (k ∗ x)−1 = k ∗ x−1 for all k ∈ K, x ∈ H.

Exercise 2.4.22. Let G be a group containing a normal subgroup N . Let K be
an arbitrary subgroup of G. Generalize Example 2.4.9 by showing that conjugation
defines an action by K on N as a group of automorphisms. Specifically, show that
if k ∈ K and x ∈ N , then k ∗ x = kxk−1 defines an action by K on N as a group
of automorphisms.

Exercise 2.4.23. Let Q8 = {±1,±i,±j,±k} be the quaternion 8-group of
Example 2.1.19. Show that every subgroup of Q8 is normal. Let Z denote the center
of Q8. Show that Z is a group of order two and is contained in every nontrivial
subgroup of Q8. Show that Q8 is not a semidirect product of two subgroups. Show
that Z is equal to the commutator subgroup of Q8.

Exercise 2.4.24. Let m,n ∈ N be positive integers. Show that there are
gcd(m,n) distinct homomorphisms from Z/m to Z/n. See Exercises 3.1.17 and
2.8.14 for a continuation of this exercise.

Exercise 2.4.25. If n ≥ 3, show that the dihedral group Dn is isomorphic to
the semidirect product of a cyclic subgroup of order n and a cyclic subgroup of
order two.

Exercise 2.4.26. Let p be an odd prime. Let G be a group of order 2p. Show
that G has a unique subgroup of order p. Denote by P the subgroup of G of order
p. Show that G is isomorphic to the semidirect product of P and a cyclic subgroup
of order two that acts on P by conjugation. Show that G is isomorphic to either
the cyclic group Z/2p or the dihedral group Dp.
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Exercise 2.4.27. Show how to construct a nonabelian group of order 9 · 37
that contains a cyclic subgroup of order 9 and a cyclic subgroup of order 37.

Exercise 2.4.28. Let G be a group and H a subgroup of G. As in Exam-
ple 2.4.6, G acts on G/H by left multiplication. By Lemma 2.4.1, there is a homo-
morphism of groups θ : G→ Perm(G/H). As in Lemma 2.4.4, denote the kernel of
θ by G0. Prove:

(1) G0 is a normal subgroup of G contained in H.
(2) If N is a normal subgroup of G contained in H, then N ⊆ G0. Conclude

that G0 is the largest normal subgroup of G contained in H.
(3) If [G : H] = n > 1 and [G : 1] does not divide n!, then H contains a

nontrivial normal subgroup of G. Conclude that G is not a simple group.

Exercise 2.4.29. Let p be a prime and G be a group of order p2. Apply
Exercise 2.4.28 to show that every subgroup of G is normal. If G has order pr,
r > 1, show that every subgroup of order pr−1 is normal in G.

Exercise 2.4.30. Let p and q be primes such that q ≡ 1 (mod p). Show how
to construct a nonabelian group of order pq.

Exercise 2.4.31. Let Q8 = {±1,±i,±j,±k} be the quaternion 8-group of Ex-
ample 2.1.19. Show that Q8 = {1}∪{−1}∪{±i}∪{±j}∪{±k} is the decomposition
of Q8 into conjugacy classes.

Exercise 2.4.32. The group of symmetries of a square is

D4 = {e, (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)}.
Show that

D4 = {e} ∪ {(13)(24)} ∪ {(1234), (1432)} ∪ {(24), (13)} ∪ {(12)(34), (14)(23)}
is the decomposition of D4 into conjugacy classes.

Exercise 2.4.33. The group of symmetries of a regular pentagon is

D5 = {e, (12345), (13524), (14253), (15432),
(25)(34), (15)(24), (13)(45), (12)(35), (14)(23)}.

Show that

D5 = {e} ∪ {(12345), (15432)} ∪ {(13524), (14253)}
∪ {(25)(34), (15)(24), (13)(45), (12)(35), (14)(23)}

is the decomposition of D5 into conjugacy classes.

Exercise 2.4.34. Show how to construct two nonisomorphic nonabelian groups
of order 40 each of which is a semidirect product of two cyclic groups.

Exercise 2.4.35. Let G be a finite group and H a subgroup of G. Suppose
the only normal subgroup of G contained in H is ⟨e⟩. Show that G is isomorphic
to a subgroup of Sn, where n = [G : H].

Exercise 2.4.36. For the following choices of p and q, show how to construct
a nonabelian group of order pq which is a semidirect product of two cyclic groups.

(1) p = 5, q = 11.
(2) p = 7, q = 29.
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Exercise 2.4.37. Let p be a prime number and n an integer such that 0 <
n < p. Prove that if G is a finite group of order pn and P is a subgroup of order p,
then P is normal.

Exercise 2.4.38. Let G be a finite group and H a subgroup. Prove the follow-
ing generalization of Exercise 2.3.19. If p is the smallest prime that divides [G : 1]
and [G : H] = p, then H is a normal subgroup.

Exercise 2.4.39. Let G be a finite group and suppose G has n conjugacy
classes. Prove that

∑
x∈G|NG(x)| = n|G|.

Exercise 2.4.40. Let G be a group and a, b elements of G. Prove:

(1) The cyclic subgroups ⟨ab⟩ and ⟨ba⟩ are conjugates of each other.
(2) The order of ab is equal to the order of ba.

Exercise 2.4.41. Let K act as a group of automorphisms on the group H. Let
θ : K → Aut(H) be the associated homomorphism. Let H ⋊K be the semidirect
product. Prove:

(1) If im θ = ⟨e⟩, then H ⋊K is isomorphic to H ×K.
(2) If im θ ̸= ⟨e⟩, then elements of N = {(x, e) | x ∈ H} do not necessarily

commute with elements of C = {(e, k) | k ∈ K}. The group H ⋊ K is
nonabelian.

Exercise 2.4.42. This exercise is a continuation of Exercise 2.3.55. Let Q8

be the quaternion 8-group of Example 2.1.19 and D4 the dihedral group of Exam-
ple 2.1.17. Let C4 be a cyclic group of order 4.

(1) How many distinct homomorphisms θ : C4 → Q8 are there? How many
are monomorphisms?

(2) How many distinct homomorphisms θ : Q8 → C4 are there? How many
are epimorphisms?

(3) How many distinct homomorphisms θ : C4 → D4 are there? How many
are monomorphisms?

(4) How many distinct homomorphisms θ : D4 → C4 are there? How many
are epimorphisms?

Exercise 2.4.43. Let G be a group. Show that if N is a normal subgroup of
G, then N is a disjoint union of conjugacy classes.

5. Direct Products

We have already defined the direct product K × H of two groups K and H.
The binary operation on K × H is coordinate-wise. If {Gi | i ∈ I} is a family of
groups indexed by an arbitrary set I, then coordinate-wise multiplication is a bi-
nary operation on the product

∏
i∈I Gi (Definition 1.3.4). The Chinese Remainder

Theorem for the product of finite cyclic groups is proved in Theorem 2.5.2. When
N1, . . . , Nm are normal subgroups of a group G, then G is the internal direct prod-
uct of N1, . . . , Nm if the product map

∏m
i=1Ni → G is an isomorphism of groups.

The notion of a free group on a set X is introduced. This allows us to present a
group G in terms of generators and relations.
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5.1. External Direct Product. Given an arbitrary family of groups {Gi |
i ∈ I}, a binary relation is defined on the product G =

∏
i∈I Gi and the resulting

group is called the direct product. In other words, we build the big group G and the
building blocks are the groups Gi. Because the product G is constructed from the
unrelated groups Gi, this is also called the external direct product. From this point
of view, the groups Gi are not subgroups of G. Nevertheless, the canonical injection
and projection maps give rise to homomorphisms ιk : Gk → G and πk : G→ Gk.

Definition 2.5.1. Let I be an index set and {Gi | i ∈ I} a family of multi-
plicative groups indexed by I. Although the groups Gi in general are not equal as
sets and have no common elements, we abuse notation and use the same symbol e
to denote the identity element of each group Gi. As defined in Definition 1.3.4, the
product is

∏
i∈I Gi = {f : I →

⋃
i∈I | f(i) ∈ Gi}. The product is a group if the

binary operation is defined to be coordinate-wise multiplication: (fg)(i) = f(i)g(i).
The identity element is the constant function e(i) = e and the inverse of f is defined
by f−1(i) = (f(i))−1, the coordinate-wise inverse. The group

∏
i∈I Gi is called the

direct product. Sometimes
∏
i∈I Gi is called the external direct product to distin-

guish it from the construction in Definition 2.5.4 below. For every k ∈ I there is a
canonical injection map ιk : Gk →

∏
i∈I Gi which maps x ∈ Gk to ιk(x), where

ιk(x)(i) =

{
x if i = k

e otherwise.

The canonical projection map is πk :
∏
i∈I Gi → Gk where πk(f) = f(k). The

reader should verify that ιk is a monomorphism, πk is an epimorphism and πkιk =
1Gk

. Since the product
∏
i∈I Gi contains the constant function e, it is not necessary

to apply the Axiom of Choice (Proposition 1.3.5).
When I = {1, . . . , n} is a finite set, the direct product is identified with the set of

n-tuples {(x1, . . . , xn) | xi ∈ Gi} and it is writtenG1×· · ·×Gn or
∏n
i=1Gi. Multipli-

cation is defined coordinate-wise, hence (x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn).
The identity element is (e, . . . , e), and (x1, . . . , xn)

−1 is (x−1
1 , . . . , x−1

n ).

Theorem 2.5.2 is a generalization of Theorem 1.2.11 and Corollary 2.5.3 is a
generalization of Proposition 1.2.14.

Theorem 2.5.2. (Chinese Remainder Theorem) Let m and n be positive inte-
gers and let

ψ : Z → Z/m× Z/n
be defined by ψ(x) = (ηm(x), ηn(x)), where ηm : Z → Z/m and ηn : Z → Z/n are
the natural maps. Then the following are true:

(1) ker(ψ) = ⟨M⟩, where M = lcm(m,n).
(2) ψ is onto if and only if gcd(m,n) = 1.
(3) Z/m× Z/n is cyclic if and only if gcd(m,n) = 1.

Proof. (1): Since ηm and ηn are homomorphisms, it is routine to verify that ψ
is a homomorphism. By Theorem 2.2.17, the kernel of ηm ismZ and the kernel of ηn
is nZ. We see that ker(ψ) = ker(ηm)∩ker(ηn) is equal to {x ∈ Z | m | x and n | x}.
By Theorem 2.2.17, ker(ψ) is generated by M = lcm(m,n).

(2): Let d = gcd(m,n). By Proposition 1.2.10, Md = mn. By Theorem 2.3.14,
im(ψ) is isomorphic to Z/M , which has order M . We see that ψ is onto if and only
if M = mn, which is true if and only if d = 1.
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(3): If d = 1, then the direct product Z/m×Z/n is cyclic by (2). Assume d > 1.
To show the direct product is not cyclic, we show that it contains more than ϕ(d)
elements of order d and apply Theorem 2.3.27 (6). Let A = {x ∈ Z/m | |x| = d}.
Then |A| = ϕ(d). If x ∈ A, then by an application of Lemma 2.2.18 (5) we see that
(x, 0) has order d in the direct product. Likewise, if B = {y ∈ Z/n | |y| = d}, then
|B| = ϕ(d) and (0, y) has order d, for each y ∈ B. Therefore, the direct product
contains at least 2ϕ(d) elements of order d. This proves (3). □

Corollary 2.5.3. Let m and n be relatively prime positive integers. Then

Z/mn ψ−→ Z/m× Z/n
defined by ψ([x]) = ([x], [x]) is an isomorphism of additive groups. The restriction
of the map ψ induces an isomorphism

Umn
ψ−→ Um × Un

of multiplicative groups of units.

5.2. Internal Direct Product. The topics in this section are motivated by
the question: When is a group G isomorphic to a direct product? The answer
to this question is the basis for the definition of the internal direct product given
below. If G is a group, and N1, N2, . . . , Nm a collection of normal subgroups of G,
then the notion of internal direct product is defined (Definition 2.5.4). We prove in
Lemma 2.5.5 (5) that algebraically, this notion is isomorphic to the external direct
product

∏m
i=1Ni defined in Definition 2.5.1. In other words, G is the internal

direct product of N1, N2, . . . , Nm if and only if the product map (x1, . . . , xm) 7→
x1x2 · · ·xm is an isomorphism of groups

∏m
i=1Ni → G. If G is a group, then to

show that G is a direct product it suffices to show that G is the internal direct
product of a family of normal subgroups. Therefore, the difference between the
external and internal direct product is the point of view.

Definition 2.5.4. Let G be a group and N1, N2, . . . , Nm a collection of sub-
groups of G satisfying:

(1) Ni is a normal subgroup of G for each i,
(2) G = N1N2 · · ·Nm, and
(3) if xi ∈ Ni for each i and e = x1x2 · · ·xm, then xi = e for each i.

Then we say G is the internal direct product of N1, . . . , Nm.

Lemma 2.5.5. Suppose G is the internal direct product of N1, N2, . . . , Nm. Then
the following are true.

(1) If i ̸= j, then Ni ∩Nj = ⟨e⟩.
(2) If i ̸= j, xi ∈ Ni, xj ∈ Nj, then xixj = xjxi.
(3) For each i let xi, yi ∈ Ni. If x = x1x2 · · ·xm, and y = y1y2 · · · ym, then

(a) xy = (x1y1)(x2y2) · · · (xmym), and
(b) x−1 = x−1

1 x−1
2 · · ·x−1

m .
(4) If x ∈ G, then x has a unique representation as a product x = x1x2 · · ·xm,

where xi ∈ Ni for each i.
(5) G is isomorphic to the (external) direct product N1 ×N2 × · · · ×Nm.

Proof. (1): Let x ∈ Ni ∩ Nj . Assume 1 ≤ i < j ≤ m. In the product
N1 · · ·Ni · · ·Nj · · ·Nm we have

e = e · · ·x · · ·x−1 · · · e
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where the ith factor is x, the jth factor is x−1, and all other factors are the group
identity e. By the uniqueness property of Definition 2.5.4, x = e.

(2): Because Ni and Nj are normal in G, we have xiyjx
−1
i x−1

j is in Ni ∩Nj =
⟨e⟩.

(3): The two identities follow immediately from Part (2).
(4): Assume x = x1x2 · · ·xm, where xi ∈ Ni for each i. Assume x = y1y2 · · · ym,

where yi ∈ Ni for each i is another such representation. Using Part (3), we get

e = xx−1 = (x1y
−1
1 ) · · · (xmy−1

m ).

By the uniqueness property of Definition 2.5.4, xi = yi for each i.
(5): Let ψ : N1×N2×· · ·×Nm → G be the function defined by multiplication in

the group G: ψ(x1, x2, . . . , xm) = x1x2 · · ·xm. By Part (3), ψ is a homomorphism.
By Definition 2.5.4, ψ is a one-to-one correspondence. □

Proposition 2.5.6. Let G be a group and N1, . . . , Nm a collection of normal
subgroups. Then the following are equivalent.

(1) G is the internal direct product of N1, . . . , Nm.
(2) The function ϕ : N1×· · ·×Nm → G defined by ϕ(x1, . . . , xm) = x1 · · ·xm

is an isomorphism of groups.
(3) G = N1 · · ·Nm and the intersection Nk ∩ (N1 · · ·Nk−1Nk+1 · · ·Nm) = ⟨e⟩

is the trivial subgroup for each k.
(4) G = N1 · · ·Nm, and N1 ∩ N2 · · ·Nm = N2 ∩ N3 · · ·Nm = · · · = Nm−1 ∩

Nm = ⟨e⟩.

Proof. (1) implies (2): This is Lemma 2.5.5 (5).
(2) implies (3): Since ϕ is onto we have G = N1 · · ·Nm. Let x be an arbitrary

element of Nk ∩ (N1 · · ·Nk−1Nk+1 · · ·Nm). We can write x in two ways: x =
xk ∈ Nk, and x = x1 · · ·xk−1xk+1 · · ·xm ∈ N1 · · ·Nk−1Nk+1 · · ·Nm. Therefore
x = ϕ(e, . . . , e, xk, e, . . . , e) = ϕ(x1, . . . , xk−1, e, xk+1, . . . , xm). Since ϕ is one-to-
one, x1 = e, . . . , xm = e. Hence x = e.

(3) implies (4): For each k = 1, . . . ,m− 1 we have the set containment:

Nk+1 · · ·Nm ⊆ N1 · · ·Nk−1Nk+1 · · ·Nm.
Therefore, Nk ∩ (Nk+1 · · ·Nm) ⊆ Nk ∩ (N1 · · ·Nk−1Nk+1 · · ·Nm) = ⟨e⟩.

(4) implies (1): Let e = x1x2 · · ·xm be a representation of e in N1N2 · · ·Nm.
Then x−1

1 = x2 · · ·xm is in N1∩N2 · · ·Nm = ⟨e⟩. Therefore, x1 = e and x2 · · ·xm =
e. Inductively, assume 1 < k < m and xk · · ·xm = e. Then x−1

k = xk+1 · · ·xm is in
Nk ∩Nk+1 · · ·Nm = ⟨e⟩. Therefore, xk = e and xk+1 · · ·xm = e. By induction, we
are done. □

5.3. Free Groups. In this section the free group F (X) on an arbitrary al-
phabet X is defined. As abstract groups we see that free groups are fundamental.
For instance, F (X) satisfies a universal mapping property and every group G is the
homomorphic image of a free group. This allows us to introduce the notion of a
group presentation in terms of generators and relations.

Let X be a set, which will be called the alphabet. A word on the alphabet X
is a finite string of the form

w = aϵ11 a
ϵ2
2 · · · aϵnn

where n ≥ 0, each ai is an element of X and ϵi ∈ {−1, 1}. The length of the string
is n. The only string of length 0 is called the empty string and is denoted e. A
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string is reduced if it contains no substrings of the form xx−1 or x−1x, for x ∈ X.
Every word can be reduced in a unique way by recursively striking out all of the
substrings of the form xx−1 or x−1x.

Lemma 2.5.7. Let v = aϵ11 a
ϵ2
2 · · · aϵnn and w = bϕ1

1 bϕ2

2 · · · bϕp
p be reduced words

on the alphabet X. There exist factorizations of v and w into substrings v = v1v2,
w = w1w2 such that v2w1 reduces to the empty word e and the reduction of vw is
equal to v1w2. The factors v1, v2, w1, w2 are unique.

Proof. If v has length n = 0, then take v1 = v2 = w1 = e and w2 = w. In this
case, vw = v1w2 and we are done. Inductively assume n > 0 and that the result

holds for any reduced word of length n − 1. If aϵn ̸= b−ϕ1

1 , then vw is reduced. In
this case, take v = v1,v2 = w1 = e, and w2 = w. Otherwise, delete aϵn from the end

of v and b−ϕ1

1 from the front of w, and apply the induction hypothesis to obtain
factorizations:

aϵ11 a
ϵ2
2 · · · aϵn−1

n−1 = v1v3

bϕ2

2 · · · bϕp
p = w3w2

Setting v2 = v3a
ϵ
n and w1 = bϕ1

1 w3, we have v2w1 = v3a
ϵ
nb
ϕ1

1 w3 reduces to v3w3

which reduces to the empty word e. Also, the reduction of vw is equal to the
reduction of v1v3w3w2 which is equal to v1w2. This proves the existence of the
factorization. The uniqueness of v3 and w3 implies the uniqueness of v2 and w1. □

Lemma 2.5.8. Let F (X) be the set of all reduced words on X. Then F (X) is a
group, where the product of two words is the word defined by juxtaposition followed
by reduction. The identity element for the group F (X) is the empty string e. The
inverse of the string aϵ11 a

ϵ2
2 · · · aϵnn is the string a−ϵnn · · · a−ϵ22 a−ϵ11 . There is a natural

injection ι : X → F (X) defined by ι(x) = x.

Proof. By Lemma 2.5.7, if v and w are reduced words in F (X), then the
reduction of the word vw is uniquely defined. Since this binary operation does
not depend on grouping by parentheses, it is associative. The rest is left to the
reader. □

Definition 2.5.9. The group F (X) of Lemma 2.5.8 is called the free group on
the set X.

Theorem 2.5.10. (Universal Mapping Property) Let X be a set and ι : X →
F (X) the natural injection map. For any group G and any function j : X → G,
there is a unique homomorphism f : F (X) → G such that the diagram

X
ι //

j
""

F (X)

f

��
G

commutes.

Proof. Let v = aϵ11 a
ϵ2
2 · · · aϵnn be a reduced word in F (X). Then we define f(v)

to be j(a1)
ϵ1j(a2)

ϵ2 · · · j(an)ϵn . Then f is a well defined function and fι = j. To

see that f is a homomorphism of groups, let w = bϕ1

1 bϕ2

2 · · · bϕp
p be another reduced

word on the alphabet X. As in Lemma 2.5.7, factor v = v1v2, w = w1w2 such
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that the reduction of vw is equal to v1w2. Since f(v) = f(v1v2) = f(v1)f(v2),
f(w) = f(w1w2) = f(w1)f(w2), and f(v2)f(w1) = e, it follows that

f(vw) = f(v1w2) = f(v1)f(w2) = f(v1)f(v2)f(w1)f(w2) = f(v)f(w).

To prove the uniqueness claim, assume g : F (X) → G is another homomorphism
and gι = j. Then f(x) = g(x) for every x ∈ X. Since X is a generating set for the
group F (X), f is equal to g. □

Corollary 2.5.11. Every group G is the homomorphic image of a free group.

Proof. In Theorem 2.5.10, take X = G and j : G → G the identity map.
Since j is onto, f is onto. □

Definition 2.5.12. Let X be a set and Y a subset of F (X). As in Exer-
cise 2.3.49, let N be the normal subgroup of F (X) generated by Y . Consider the
quotient group G = F (X)/N . We say G is defined by the generators X subject to
the relations Y . We denote the group G = F (X)/N by ⟨X | Y ⟩.

Definition 2.5.13. Let G be a group. Then we say G is a free group if G has
a generating set X ⊆ G such that the natural map F (X) → G is an isomorphism.
In this case, G has presentation ⟨X | ∅⟩. That is, a group G is free if there exists a
relation-less or relation-free presentation of G.

Example 2.5.14. In the notation of Theorem 2.3.27, let A = ⟨a⟩ be a cyclic
group. If A is infinite, then a presentation of A in terms of generators and relations
is A = ⟨a | ∅⟩. If A has order n > 0, then a presentation of A in terms of generators
and relations is A = ⟨a | an⟩. It is common for the relations to be written as
equations. Then A = ⟨a | an = e⟩.

Example 2.5.15. Let n > 2 and Dn the dihedral group of order 2n of Exam-
ple 2.1.17. Then Dn is generated by two elements, R and H. The order of R is
n and the order of H is 2. The so-called commutator identity is HRH = R−1.
Therefore,

Dn = ⟨R,H | H2 = e, Rn = e, HRH = R−1⟩
is a presentation of Dn in terms of generators and relations.

Example 2.5.16. Let V be the Klein 4-group of Example 2.1.22. Then V is
an abelian group of order 4, generated by two elements of order two. Hence,

V = ⟨a, b | a2 = b2 = e, ab = ba⟩

is a presentation in terms of generators and relations.

Example 2.5.17. Let Q8 = {1,−1, i,−i, j,−j, k,−k} be the quaternion eight
group of Example 2.1.19. The multiplication rules are: (−1)2 = 1, i2 = j2 = k2 =
−1, ij = −ji = k. So we see that Q8 is generated by i and j. Both i and j have
order 4 and −1 = i2 = j2. The commutator relation for i and j is ij = −ji = j3i.
If we write a and b instead of i and j, then a presentation in terms of generators
and relations is

Q8 = ⟨a, b | a4 = e, b4 = e, a2 = b2, ab = b3a⟩.
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5.4. Exercises.

Exercise 2.5.18. The general linear group of 2-by-2 matrices over the field

Z/3, denoted GL2(Z/3), is the multiplicative group of invertible matrices

(
a b
c d

)
with entries in the field Z/3. Let A =

(
1 1
1 0

)
, B =

(
0 1
1 1

)
, C =

(
1 2
1 1

)
,

P =

(
0 1
2 0

)
, and Q =

(
1 1
1 2

)
be matrices with entries in Z/3. For the following

computations, access to a computer algebra system such as [28] is not required,
but will be beneficial, especially for parts (6) and (7).

(1) Show that A, B, C, P , and Q are in GL2(Z/3).
(2) Compute the cyclic subgroups ⟨A⟩, ⟨B⟩, ⟨C⟩, ⟨P ⟩, ⟨Q⟩.
(3) Show that P is in the normalizer of ⟨A⟩. Show that P and A generate a

subgroup of order 16.
(4) Show that P is in the normalizer of ⟨B⟩. Show that P and B generate a

subgroup of order 16.
(5) Show that Q is in the normalizer of ⟨C⟩. Show that Q and C generate a

subgroup of order 16.
(6) If G = GL2(Z/3), show that G has order 48. Show that G has 3 subgroups

of order 16. Show that G has 4 subgroups of order 3.
(7) The special linear group of 2-by-2 matrices over Z/3, denoted SL2(Z/3), is

the subgroup of GL2(Z/3) consisting of those matrices with determinate
equal to 1. Let S = SL2(Z/3). Show that S has order 24. Show that S has
3 subgroups of order 8. Show that every subgroup of order 8 is isomorphic
to the quaternion 8-group, Q8 = {±1,±i,±j,±k} of Example 2.1.19. .
Show that S has 4 subgroups of order 3.

Exercise 2.5.19. Give an example of a group G and subgroups N1, N2, . . . , Nm
of G satisfying:

(1) Ni is a normal subgroup of G for each i,
(2) G = N1N2 · · ·Nm, and
(3) if i ̸= j, then Ni ∩Nj = ⟨e⟩,

such that G is not the internal direct product of N1, N2, . . . , Nm.

Exercise 2.5.20. Let G be a finite abelian group. Assume G is the internal
direct product of cyclic subgroups A = ⟨a⟩ and B = ⟨b⟩ where a and b both have
order 6.

(1) Show that |G| = 36.
(2) Show that C = ⟨ab2⟩ has order 6.
(3) Compute |AC|.
(4) Show that AC is the internal direct product of A and ⟨b2⟩.

Exercise 2.5.21. Let A and B be normal subgroups of G such that G = AB.
Prove that G/(A ∩B) is isomorphic to G/A×G/B.

Exercise 2.5.22. Let G be a group containing subgroups A and B such that

(1) G = AB,
(2) xy = yx for every x ∈ A and y ∈ B, and
(3) A ∩B = ⟨e⟩.



82 2. GROUPS

Show that G is the internal direct product of A and B.

Exercise 2.5.23. Let A and B be groups.

(1) Let A0 be a normal subgroup of A and B0 a normal subgroup of B. Show
that there is an isomorphism of groups

A×B

A0 ×B0

∼=
A

A0
× B

B0
.

(2) In the notation of Exercise 2.2.27, show that A×B
A×⟨e⟩

∼= B, and A×B
⟨e⟩×B

∼= A.

Exercise 2.5.24. This is a continuation of Exercise 2.3.52. Let F be a field
and

U =

{(
a b
0 d

)
∈M2(F ) | ad ̸= 0

}
the set of all upper triangular matrices in GL2(F ). Let T be the kernel of the

homomorphism U → F ∗ defined by

(
a b
0 d

)
7→ d. As in Example 2.3.38, let

δ : F ∗ → GL2(F ) be the diagonal map. Let Z = im δ. Show that U is the internal
direct product of T and Z.

Exercise 2.5.25. Let G be a group. Denote by Z2 the direct product Z × Z
(see Exercise 2.1.27). In Z2 let e1 = (1, 0) and e2 = (0, 1). Prove the following
generalization of Lemma 2.3.29.

(1) Z2 = ⟨e1, e2⟩.
(2) Let θ : Z2 → G be a homomorphism of groups.

(a) im(θ) is an abelian subgroup of G.
(b) θ is completely determined by the two values θ(e1) and θ(e2).
(c) θ(e1)θ(e2) = θ(e2)θ(e1).

(3) If a and b are elements of G such that ab = ba, then there exists a group
homomorphism θ : Z2 → G such that θ(e1) = a and θ(e2) = b.

(4) If G is a finite group with n conjugacy classes, then the number of distinct
group homomorphisms θ : Z2 → G is equal to n|G|.

Exercise 2.5.26. Let R∗ be the group of all nonzero real numbers under mul-
tiplication. Let (R>0, ·) be the group of all positive real numbers. Show that R∗ is
equal to the internal direct product of R>0 and the subgroup {1,−1}.

Exercise 2.5.27. Let C∗ be the group of all nonzero complex numbers under
multiplication. Let S1 = {z ∈ C | |z| = 1} be the subgroup of all complex numbers
of absolute value 1 (see Exercise 2.3.23). Let R>0 be the group of all positive real
numbers. Show that C∗ is equal to the internal direct product of the subgroups S1

and R>0.

Exercise 2.5.28. Let G be a group containing normal subgroups A and B
such that A ∩B = ⟨e⟩. Prove:

(1) ab = ba for every a ∈ A and for every b ∈ B.
(2) The group AB is the internal direct product of A and B.

Exercise 2.5.29. The purpose of this exercise is to show that if A is an abelian
group, then there exists a nonabelian group G such that A is isomorphic to Z(G),
the center of G.
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(1) Show that the function defined by θ(x, y) = (y, x) defines an automor-
phism of A×A.

(2) Show that T = ⟨θ⟩ is a group of order 2.
(3) Let G be the semidirect product (A×A)⋊T . Show that G is nonabelian.
(4) Show that Z(G) = {(x, x, 1) | x ∈ A}.
(5) Show that A is isomorphic to Z(G).

Exercise 2.5.30. If G is the group of Exercise 2.5.29, determine the quotient
group G/Z(G).

6. Permutation Groups

The group of all permutations of Nn = {1, 2, 3, . . . , n} is called the symmetric
group on n letters and is denoted Sn. The reader is referred to Example 2.1.15 for
the terminology and notation associated with the group Sn. Since Sn is a group
of permutations of the set Nn, we are in the context of Definition 2.4.2. In fact,
Sn acts on the set Nn. Given any permutation σ, the decomposition of the set
Nn into orbits under σ gives rise to a factorization of σ into a product of disjoint
cycles. Furthermore, using this cycle decomposition, we show that σ factors into a
product of transpositions. In Section 2.6.2 we show that the set of all permutations
that can be represented as a product involving an even number of transpositions
is a subgroup of Sn. This subgroup, denoted An, has index two and is called the
alternating group on n letters. We show in Corollary 2.6.15 below that An is the
commutator subgroup of Sn and An is the only subgroup of index two in Sn. For
n ≥ 3, we know from Example 2.3.37 that the center of Sn is ⟨e⟩.

6.1. The Cycle Decomposition of a Permutation. Let α = (a1, . . . , as)
be an s-cycle and β = (b1, . . . , bt) a t-cycle. We say α and β are disjoint if
{a1, . . . , as} ∩ {b1, . . . , bt} = ∅. If this is the case, then β(ai) = ai for each i,
and α(bj) = bj for each j. Therefore, αβ = βα. This proves Lemma 2.6.1.

Lemma 2.6.1. If α and β are disjoint cycles in Sn, then α and β commute.
That is, αβ = βα.

Example 2.6.2. Here is an example with n = 6. In S6, let

α =

[
1 2 3 4 5 6
3 4 1 2 6 5

]
, β =

[
1 2 3 4 5 6
6 5 4 3 1 2

]
.

Then A = ⟨α⟩ acts on {1, 2, 3, 4, 5, 6}. Given x ∈ {1, 2, 3, 4, 5, 6}, the orbit of x is
A ∗ x. We compute the orbit decomposition under this action. The reader should
verify that A ∗ 1 = {1, 3}, A ∗ 2 = {2, 4}, A ∗ 5 = {5, 6}. In Theorem 2.6.3 we
find that from the orbit decomposition we can construct the factorization of α into
cycles. For instance, α = (1, 3)(2, 4)(5, 6). Likewise, for B = ⟨β⟩, we find the
disjoint orbits are B ∗ 1 = {1, 6, 2, 5}, B ∗ 3 = {3, 4} and the factorization of β into
cycles is β = (1, 6, 2, 5)(3, 4).

Theorem 2.6.3. If σ ∈ Sn is a permutation on n letters, then σ can be written
as the product of disjoint cycles. This representation is unique in the sense that if
σ ̸= e and σ = α1α2 · · ·αk is a product of disjoint cycles all of length two or more
and σ = β1β2 · · ·βℓ is another such representation, then k = ℓ and β1, β2, . . . , βk
can be relabeled such that αi = βi for each i.
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Proof. Let σ ∈ Sn and let S = ⟨σ⟩. Then S acts on Nn = {1, 2, . . . , n}.
Let a be an arbitrary element of Nn. We associate to the orbit of a under S a
cyclic permutation αa. Let Sa be the subgroup of S fixing a. Then Sa is a cyclic
subgroup of S. If [S : Sa] = w, then by Theorem 2.3.27, Sa is the unique subgroup
of S with index w and Sa = ⟨σw⟩. By Theorem 2.4.11, the length of the orbit
of a is equal to w and the orbit of a is {a, σ(a), σ2(a), . . . , σw−1(a)}. On this set
σ is equal to the cyclic permutation αa = (a, σ(a), σ2(a), . . . , σw−1(a)). We see
that for every orbit under the S-action there is an associated cyclic permutation.
If {a1, a2, . . . , ak} is a full set of representatives for the orbits, then σ is equal
to the product of cycles αa1αa1 · · ·αak . The orbits are disjoint, hence so are the
cycles in this factorization. The uniqueness claim follows from the fact that the
cycle decomposition is determined by the orbit decomposition which is uniquely
determined by σ. □

Corollary 2.6.4. If α1, α2, . . . , αm are pairwise disjoint cycles in Sn, then
the order of the product α1α2 . . . αm is equal to lcm(|α1|, |α2|, . . . , |αm|).

Proof. Let |αi| = ki and let k = lcm(k1, k2, . . . , km). By Lemma 2.6.1, the
pairwise disjoint cycles commute. Therefore, (α1α2 . . . αm)k = αk1α

k
2 . . . α

k
m = e.

Suppose ℓ > 0 and e = (α1α2 . . . αm)ℓ = αℓ1α
ℓ
2 . . . α

ℓ
m. The permutation αℓ2 . . . α

ℓ
m

fixes point-wise every element of the orbit of α1. Therefore, αℓ1 = e, hence ℓ ≥ k1.
By symmetry, ℓ ≥ ki for each i. □

Corollary 2.6.5. Every π ∈ Sn is a product of transpositions.

Proof. Let k ≥ 2. By Theorem 2.6.3, it suffices to show that any k-cycle can
be written as a product of transpositions. Notice that a 2-cycle (a1a2) is already
a transposition, a 3-cycle (a1a2a3) = (a1a3)(a1a2) can be factored as a product
of 2 transpositions, and a 4-cycle (a1a2a3a4) = (a1a4)(a1a3)(a1a2) factors into 3
transpositions. In general, a k-cycle (a1a2 · · · ak) = (a1ak) · · · (a1a3)(a1a2) can be
written as a product of k − 1 transpositions. □

6.2. The Sign of a Permutation. Let n ≥ 2 and Sn the symmetric group
on n letters. A permutation σ ∈ Sn is said to be even if σ can be written as a
product involving an even number of transpositions. If σ can be written as a product
involving an odd number of transpositions, then we say σ is odd. We denote by
An the subset of Sn consisting of all even permutations. The identity map e is
even, and the product of even permutations is even. By Proposition 2.2.4, An is a
subgroup, and is called the alternating group on n letters. In Lemma 2.6.6 below,
we show that a permutation cannot be both even and odd. Although elementary,
the proof is not trivial so we include many of the details.

Lemma 2.6.6. Let n ≥ 2, Sn the symmetric group on n letters, and An the
alternating group on n letters. A permutation σ in Sn cannot be both even and odd.
The alternating group An is a normal subgroup of Sn, [Sn : An] = 2, the quotient
group Sn/An is cyclic of order two, and if τ is any transposition in Sn, then the
decomposition of Sn into left cosets is: Sn = An ∪ τAn .

Proof. Let σ ∈ Sn and let σ =
∏ℓ
i=1 σi be the unique decomposition of σ

into disjoint cycles (Theorem 2.6.3). Assume σi has length ki. Define a function

N : Sn → Z by the formula N(σ) =
∑ℓ
i=1(ki − 1). By the proof of Corollary 2.6.5,
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there exists a representation of σ as the product ofN(σ) transpositions. We proceed
in two steps.

Step 1: Prove that if τ = (ab) is any transposition in Sn, then N(στ) =
N(σ)± 1. There are four cases.

Case 1: σ fixes a and b. Then clearly N(στ) = N(σ) + 1.
Case 2: σ(a) ̸= a and σ(b) = b. Assume σ1 = (ac2 · · · ck1). Any other cycle in

σ fixes a and b. Then

στ = (ac2 · · · ck1)(ab)σ2 · · ·σℓ
= (abc2 · · · ck1)σ2 · · ·σℓ

which implies N(στ) = N(σ) + 1.
Case 3: σ(a) ̸= a and σ(b) ̸= b and a and b belong to disjoint cycles in σ.

Without loss of generality, assume σ1 = (ac2 · · · ck1) and σ2 = (bd2 · · · dk2). Then
στ = (ac2 · · · ck1)(bd2 · · · dk2)(ab)σ3 · · ·σℓ

= (ad2 · · · dk2bc2 · · · ck1)σ3 · · ·σℓ
which implies N(στ) = k1 + k2 − 1 + k3 − 1 + · · ·+ kℓ − 1 = N(σ) + 1.

Case 4: a and b belong to the same cycle in σ. We split this case into two
subcases. For simplicity’s sake we assume σ is a cycle.

Subcase 4.1: a and b are not adjacent. Write σ = (ac1 · · · cibd1 · · · dj) where
i > 0 and j > 0. Notice that N(σ) = i+ j + 1. Then

στ = (ac1 · · · cibd1 · · · dj)(ab) = (ad1 · · · dj)(bc1 · · · ci)
which implies N(στ) = j + 1 + i+ 1− 2 = j + i = N(σ)− 1.

Subcase 4.2: a and b are adjacent. Write σ = (ac1 · · · cib). Notice that N(σ) =
i+ 1. Then

στ = (ac1 · · · cib)(ab) = (bc1 · · · ci)
which implies N(στ) = i = N(σ)− 1.

Step 2: Suppose σ = (a1b1) · · · (ambm) is a product of m transpositions. We
show that m is congruent to N(σ) modulo 2. A transposition has order 2, so

e = σσ−1

= σ(ambm) · · · (a1b1).
Applying the formula from Step 1 above m times, we have

0 = N(e) = N(σ) +

m∑
i=1

±1.

Reducing modulo 2, we get N(σ) ≡ m (mod 2). Therefore, σ cannot be both
even and odd. Using this result, we conclude that a transposition is odd. Hence
[Sn : An] ≥ 2. If σ and τ are both odd, then στ−1 is even, hence [Sn : An] ≤ 2.
Since [Sn : An] = 2, by Exercise 2.3.19, An is a normal subgroup of Sn. The
quotient group Sn/An is cyclic of order two. Given any transposition τ ∈ Sn, the
decomposition of Sn into left cosets is: Sn = An ∪ τAn. □

Proposition 2.6.7. Let n ≥ 2, Sn the symmetric group on n letters, and An
the alternating group on n letters.

(1) There is an epimorphism of multiplicative groups sign : Sn → {1,−1}.
(2) The kernel of sign is An.
(3) If σ = τ1τ2 · · · τm is a product of transpositions, then sign(σ) = (−1)m.
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Proof. By Lemma 2.6.6, the assignment

sign(σ) =

{
1 if σ is even

−1 if σ is odd.

defines a function sign : Sn → {1,−1}. Identify {1,−1} with the group µ2 of square
roots of unity in C (Exercise 2.3.23 (3). It is routine to check that sign is an onto
homomorphism and the kernel is An. Since a transposition is odd, (3) follows from
(1). □

Example 2.6.8. Let σ be a k-cycle. By the proof of Corollary 2.6.5, σ =
(a1a2 · · · ak) = (a1ak) · · · (a1a3)(a1a2) is a product of k − 1 transpositions. By
Proposition 2.6.7, sign(σ) = (−1)k−1. Hence σ is even if k is odd and odd if k is
even.

We return to the study of the alternating group in Section 2.6.4.

6.3. Conjugacy Classes of the Symmetric Group. Let n ≥ 2 and Sn the
symmetric group on n letters. We view Sn as the group Perm(Nn). The purpose
of this section is to describe the conjugacy classes of Sn in terms of the partitions
of the number n. If σ ∈ Sn, then we can write σ as a product of disjoint cycles
σ = σ1σ2 · · ·σk where we assume |σi| = si and s1 ≥ s2 ≥ · · · ≥ sk. Furthermore,
by adjoining 1-cycles if necessary, we assume n = s1+s2+ · · ·+sk. In other words,
the sequence s1 ≥ s2 ≥ · · · ≥ sk is a partition of n. The next lemma shows that
the conjugacy classes of Sn correspond to the partitions of n.

Let σ and θ be arbitrary permutations in Sn. Suppose σ(i) = j, θ(i) = k, and
θ(j) = ℓ. Then θσθ−1(k) = θσ(i) = θ(j) = ℓ. This provides us with an algorithm
to compute the cycle decomposition of the conjugation of σ by θ−1 given the cycle
decomposition of σ: replace each letter by its image under θ. For instance, write
σ = σ1σ2 · · ·σk as a product of disjoint cycles where |σi| = si, s1 ≥ s2 ≥ · · · ≥ sk,
and n = s1 + s2 + · · · + sk. Write σi = (σi1, σi2, . . . , σisi). Then θσiθ

−1 is the
cycle (θ(σi1), θ(σi2), . . . , θ(σisi)). This shows that under conjugation the form of
the cycle decomposition is preserved.

We illustrate this procedure by an example with n = 10. Let

σ =

[
1 2 3 4 5 6 7 8 9 10
3 8 4 5 1 10 9 7 6 2

]
θ =

[
1 2 3 4 5 6 7 8 9 10
5 4 10 1 7 3 9 8 6 2

]
Then

θσθ−1 =

[
1 2 3 4 5 6 7 8 9 10
7 4 2 8 10 3 5 9 6 1

]
As a product of disjoint cycles, we have σ = (2, 8, 7, 9, 6, 10)(1, 3, 4, 5). Now compute
the disjoint cycle form of the conjugate θσθ−1. Because σ1 starts with 2, and σ2
starts with 1, we start the 6-cycle of θσθ−1 with θ(2) = 4, and the 4-cycle with
θ(1) = 5:

θσθ−1 = (4, 8, 9, 6, 3, 2)(5, 10, 1, 7)

=
(
θ(2), θ(8), θ(7), θ(9), θ(6), θ(10)

)(
θ(1), θ(3), θ(4), θ(5)

)
.

The last equation shows that the cycle decomposition can be obtained by applying
θ to each letter in σ.
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Now we show that every conjugacy class contains a canonical permutation. We
continue to employ the notation established above. Consider the permutation

L =

[
1 2 . . . s1 s1 + 1 s1 + 2 . . . s1 + s2 . . . n
σ11 σ12 . . . σ1s1 σ21 σ22 . . . σ2s2 . . . σksk

]
where the second row is obtained by removing all of the parentheses from the prod-
uct of disjoint cycles σ1σ2 · · ·σk. Hence L is a permutation in Sn. Set τ = L−1σL.
Then the disjoint cycle decomposition of τ is obtained by inserting parentheses into
1, 2, . . . , n and splitting it into cycles with the lengths s1, . . . , sk.

We illustrate this algorithm on the example from above. Start with the per-
mutation σ = (2, 8, 7, 9, 6, 10)(1, 3, 4, 5) in S10. Then

L =

[
1 2 3 4 5 6 7 8 9 10
2 8 7 9 6 10 1 3 4 5

]
is the permutation whose second row is obtained by removing the parentheses from
σ. Compute:

L−1σL =

[
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 1 8 9 10 7

]
.

We see that L−1σL = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10) in disjoint cycle form.
The two algorithms specified above combine to prove Lemma 2.6.9.

Lemma 2.6.9. Let n ≥ 2 and Sn the symmetric group on n letters. Two
permutations σ, τ in Sn are in the same conjugacy class if and only if they give rise
to the same partition of n. The number of distinct conjugacy classes of Sn is equal
to the number of distinct partitions of n.

6.4. The Alternating Group. Let n ≥ 2. The alternating group on n letters
is denoted An and is defined to be the kernel of the homomorphism sign : Sn →
{1,−1}. That is, An is the subgroup of all even permutations. We have [Sn :
An] = 2 and |An| = n!/2. Theorem 2.6.12, the main result of this section, is a
proof that if n ̸= 4, then An is simple. The proof we give is completely elementary.
In Exercise 2.6.16 the reader is asked to prove that A4 contains a normal subgroup
of order 4, hence A4 is not simple.

Lemma 2.6.10. If n ≥ 3, then An is generated by 3-cycles.

Proof. By Corollary 2.6.5, a 3-cycle is even, so An contains every 3-cycle.
Every permutation in An is a product of an even number of transpositions. It
suffices to show that a typical product (ab)(cd) factors into 3-cycles. If (ab) and
(cd) are disjoint, then we see that

(ab)(cd) = (ab)(ac)(ac)(cd)

= (acb)(acd)

is a product of 3-cycles. If a = c, then we have (ab)(ad) = (adb). These are the
only cases, so An is generated by 3-cycles. □

Lemma 2.6.11. Let n ≥ 3. If N is a normal subgroup of An and N contains a
3-cycle, then N = An.
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Proof. Without loss of generality assume (123) ∈ N . Then (123)(123) =
(132) ∈ N . We assume n > 3, otherwise we are done. By Corollary 2.6.5, a 3-cycle
is even, so An contains every 3-cycle. Let 3 < a ≤ n be arbitrary. We use the fact
that σ−1Nσ ⊆ N for all σ ∈ An. Then (1a3)(123)(13a) = (1a2) is in N . Also,
(1a2)2 = (12a) ∈ N . Similarly, we see that (13a), (1a3), (23a), (2a3) are in N .

Now let a ̸= b, a > 2, and b > 2. Then (1b2)(12a)(12b) = (1ab) is in N .
Similarly, we see that (2ab), (3ab), (a1b), (a2b), etc. are in N .

Now let a ̸= b ̸= c, a > 1, b > 1, and c > 1. Then (ac1)(a1b)(a1c) = (abc) is in
N . So N contains every 3 cycle. By Lemma 2.6.10, N = An. □

Theorem 2.6.12. The alternating group An is simple if n ̸= 4.

Proof. If n = 2, then A2 = ⟨e⟩. If n = 3, then A3 = ⟨(123)⟩ is a cyclic group
of order 3, hence is simple. From now on assume n > 4, N is a normal subgroup
of An and N ̸= ⟨e⟩. We prove that N = An. The proof consists of a case-by-case
analysis.

Case 1: If N contains a 3-cycle, then N = An, by Lemma 2.6.11.
Case 2: Assume N contains a permutation σ such that the cycle decomposition

of σ has a cycle of length r ≥ 4. Write σ = (a1a2 · · · ar)τ , where τ fixes each
a1, . . . , ar element-wise. Let δ = (a1a2a3). Then δ ∈ An and δσδ−1 ∈ N since N is
normal. The following computation

σ−1δσδ−1 = τ−1(a1ar · · · a2)(a1a2a3)(a1a2 · · · ar)τ(a1a3a2)
= (a1a3ar)

shows that Case 2 reduces to Case 1.
Case 3: Assume N has a permutation σ such that the cycle decomposition of σ

has at least two disjoint 3-cycles. Write σ = (a1a2a3)(a4a5a6)τ , where τ fixes each
a1, a2, a3, a4, a5, a6 element-wise. Let δ = (a1a2a4). Then δ ∈ An and δ−1σδ ∈ N
since N is normal. The following computation

δ−1σδσ−1 = (a1a4a2)(a1a2a3)(a4a5a6)τ(a1a2a4)τ
−1(a1a3a2)(a4a6a5)

= (a1a4a2a3a5)

shows that Case 3 reduces to Case 2.
Case 4: Assume N has a permutation σ such that the cycle decomposition of

σ consists of one 3-cycle and one or more 2-cycles. Write σ = (a1a2a3)τ , where τ
is the product of the 2-cycles. Then σ2 = (a1a3a2) ∈ N , hence Case 4 reduces to
Case 1.

Case 5: Assume every σ ∈ N has a cycle decomposition that is a product of
disjoint 2-cycles. Let σ = (a1a2)(a3a4)τ where τ is a product of 2-cycles and is
disjoint from (a1a2)(a3a4). Let δ = (a1a2a3). Then δ ∈ An and δ−1σδ ∈ N since
N is normal. The following computation

δ−1σδσ−1 = (a1a3a2)(a1a2)(a3a4)τ(a1a2a3)(a1a2)(a3a4)τ

= (a1a4)(a2a3)

shows that β = (a1a4)(a2a3) is in N . Since n > 4 (notice that this is the first time
we have used this hypothesis), there exists a5 ̸∈ {a1, a2, a3, a4}. Let α = (a1a4a5).
The following computation

α−1βαβ = (a1a5a4)(a1a4)(a2a3)(a1a4a5)(a1a4)(a2a3)

= (a1a4a5)
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shows that N contains a 3-cycle, hence Case 5 reduces to Case 1. □

Corollary 2.6.13. If n > 4, the normal subgroups of Sn are ⟨e⟩, An, and Sn.

Proof. Let N be a normal subgroup of Sn. Then N∩An is a normal subgroup
of An. By Theorem 2.6.12, N ∩ An is equal to either ⟨e⟩, or An. If N ∩ An = An,
then [Sn : An] = 2 implies N = An, or N = Sn. Suppose N ∩ An = ⟨e⟩ and for
contradiction’s sake, suppose N ̸= ⟨e⟩. Then N consists of e and odd permutations.
If σ ∈ N is an odd permutation, then σ2 is even, hence σ2 ∈ N ∩ An = ⟨e⟩.
Therefore, every element of N has order 2 or 1. Let σ ∈ N and assume σ has order
2. By Corollary 2.6.4, σ decomposes into a product of disjoint transpositions. If
σ = (ab) is a transposition, then (ab)(acb)(ab)(abc) = (acb) is in N , a contradiction.
Assume σ = (ab)(cd)τ , where τ is a product of disjoint transpositions that do
not involve a, b, c, d. Let α = (acb)σ(abc) = (ac)(bd)τ . Then α is in N , and
σα = (ad)(bc) is in N . But (ad)(bc) is even, which is a contradiction. □

Corollary 2.6.14. Let n > 4. If H is a subgroup of Sn and [Sn : H] < n,
then H = An or H = Sn.

Proof. Let H be a subgroup of Sn, m = [Sn : H], and assume m < n. Then
Sn acts on G/H by left multiplication. If we identify Perm(G/H) with Sm, then
there is a homomorphism of groups ϕ : Sn → Sm. By the Pigeonhole Principle
(Exercise 1.1.11), kerϕ is a nontrivial normal subgroup of G. By Exercise 2.4.28,
kerϕ is contained in H. By Corollary 2.6.13, kerϕ is either An or Sn. Therefore,
H is either An or Sn. □

Corollary 2.6.15. If n ≥ 2, then the commutator subgroup of Sn is An. The
subgroup An is the only subgroup of index two in Sn.

Proof. Let C denote the commutator subgroup of Sn. Since Sn/An is cyclic
of order two, by Exercise 2.3.46 (3), C is a nontrivial normal subgroup of Sn and
C ≤ An. If n ̸= 4, then Theorem 2.6.12 implies that C = An. If n = 4, Exer-
cise 2.6.23 implies that C = A4. Suppose H is a subgroup of Sn with index 2.
Then H is normal by Exercise 2.3.19 and since Sn/H is abelian, H contains An,
by Exercise 2.3.46 (3). □

6.5. Exercises.

Exercise 2.6.16. Let G = A4 be the alternating group on 4 letters. The order
of G is twelve.

(1) Viewing G as a group of permutations of {1, 2, 3, 4}, list the twelve ele-
ments of G using disjoint cycle notation. For each x ∈ G, compute the
cyclic subgroup ⟨x⟩. Show that G has eight elements of order three and
three elements of order two.

(2) Show that the subgroup of order 4 is the group of symmetries of a non-
square rectangle (see Example 2.1.18).

(3) Show that G has four subgroups of order three. Show that the subgroup of
order four is normal. Show that the center of G has order one. Construct
the lattice of subgroups of G. Show that G has only one proper normal
subgroup, namely the subgroup of order four.

(4) Show that the commutator subgroup of A4 is the subgroup of order four.
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Exercise 2.6.17. As in Exercise 2.6.16, the alternating group on four letters
is denoted A4. Let N be the normal subgroup of A4 of order four. Show that G
is isomorphic to the semidirect product of N and a cyclic subgroup of order three
that acts on N by conjugation.

Exercise 2.6.18. Let A4 be the alternating group on 4 letters (see Exer-
cise 2.6.16). Compute the partition of A4 into conjugacy classes.

Exercise 2.6.19. Show that the set of transpositions {(12), (23), . . . , (n−1, n)}
generates Sn.

Exercise 2.6.20. Show that Sn is generated by a transposition (1, 2) and an
n-cycle (123 · · ·n).

Exercise 2.6.21. Compute the number of distinct k-cycles in Sn.

Exercise 2.6.22. Let 1 ≤ k < n. Show that for each k-subset A = {a1, . . . , ak}
of Nn there is a subgroup of Sn isomorphic to Sk × Sn−k. Show that any two such
subgroups are conjugates of each other.

Exercise 2.6.23. Let V = {e, (12)(34), (13)(24), (14)(23)} be the subgroup of
order 4 in A4. Show that V is a normal subgroup of S4. Prove that S4/V is a
nonabelian group of order 6.

Exercise 2.6.24. Show that Aut(S3) is isomorphic to S3.

Exercise 2.6.25. Let n ≥ 2. As in Section 1.5, if σ ∈ Sn, then Pσ is the n-by-n
permutation matrix associated to σ. Show that {Pσ | σ ∈ Sn} is a subgroup of
GLn(Z). Show that Sn is isomorphic to {Pσ | σ ∈ Sn}.

7. The Sylow Theorems

Throughout this section G will be a finite group and p will be a prime number
that divides |G|, the order of G. If p is the only prime divisor of |G|, then we
call G a p-group. Theorem 2.7.1, which plays a fundamental role in the study of
p-groups, is proved. In particular, if |G| = pn, then there is a chain of subgroups
⟨e⟩ ⊴ G1 ⊴ G2 ⊴ · · · ⊴ Gn−1 ⊴ G where |Gi| = pi. As an application, we give a
second proof of Cauchy’s Theorem, Theorem 2.7.3. A subgroup P of G is called
a p-Sylow subgroup (pronounced p-See-Low subgroup), if P is a p-group and |P | is
the highest power of p that divides |G|. By Corollary 2.2.14, Lagrange’s Theorem,
if P is a p-Sylow subgroup of G, then |P | is maximal among all p-subgroups of G.

The Sylow Theorems were first proved by P. Sylow, a nineteenth century Nor-
wegian algebraist. In summary, the three Sylow Theorems prove that for every p
that divides |G|, the following are true. The First Sylow Theorem (Theorem 2.7.4)
shows that there exists at least one p-Sylow subgroup in G. The Second Sylow
Theorem (Theorem 2.7.5) shows that two p-Sylow subgroups are conjugates of
each other. The Third Sylow Theorem (Theorem 2.7.7) shows that the number of
p-Sylow subgroups is a divisor of |G| and is congruent to 1 modulo p.

7.1. p-Groups. Let p be a prime number. A finite group G is called a p-group
if |G| = pr for some r ≥ 1. We begin this section with the following fundamental
theorem on p-groups. By Exercise 2.2.30, if |G| = p, then G is a finite simple cyclic
abelian group.
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Theorem 2.7.1. Let p be a prime and G a finite group of order pn, where
n ≥ 1. Then the following are true.

(1) Z(G) ̸= ⟨e⟩.
(2) If G has order p or p2, then G is abelian.
(3) If n > 1, then G has a proper normal subgroup N such that ⟨e⟩ ≠ N ̸= G.
(4) (A finite p-group is solvable) There is a sequence of subgroups G0 ⊆ G1 ⊆ · · · ⊆

Gn−1 ⊆ Gn such that
(a) G0 = ⟨e⟩, Gn = G,
(b) for 0 ≤ i ≤ n, |Gi| = pi,
(c) for 0 ≤ i ≤ n − 1, Gi is a normal subgroup of Gi+1 and the quotient

Gi+1/Gi is a cyclic group of order p.
We call G0, G1, . . . , Gn a solvable series for G.

(5) Let X be a finite set and assume G acts on X as a group of permutations. Let
X0 = {x ∈ X | g ∗ x = x for all g ∈ G}. Then |X| ≡ |X0| (mod p).

Proof. (5): If x ∈ X, then x ∈ X0 if and only if G∗x = {x}. If X0 = X, there
is nothing to prove. Let x1, . . . , xm be a full set of representatives of the orbits with
length two or more. The orbit decomposition of X is X0 ∪ (

⋃m
i=1G ∗ xi). Taking

cardinalities and applying Theorem 2.4.11,

|X| = |X0|+
m∑
i=1

|G ∗ xi|

= |X0|+
m∑
i=1

[G : Gxi
].

Then [G : Gxi
] ̸= 1 for each i and by Corollary 2.2.14, [G : Gxi

] divides pn.
Reducing both sides of the equation modulo p, we get |X| ≡ |X0| (mod p).

(1): Let G act on itself by conjugation. Then Z(G) is the set of all elements
fixed by the group action. By Part (5), 0 ≡ |Z(G)| (mod p).

(2): By Part (1), Z(G) has order p or p2. Then G/Z(G) has order 1 or p, hence
is cyclic. By Exercise 2.3.42, G is abelian.

(3): By Part (1), if Z(G) ̸= G, then N = Z(G) works. If Z(G) = G, then G is
abelian. In this case every subgroup of G is normal and by Corollary 2.2.21, G has
a proper normal subgroup.

(4): The proof is by induction on n. If n = 1, then G0 = ⟨e⟩, G1 = G is a
solvable series. If n = 2, then by Part (3) G0 = ⟨e⟩, G1 = N , G2 = G is a solvable
series.

Inductively, assume n ≥ 2 and that a solvable series exists for any p-group
of order less than pn. By Part (3) there exists a proper normal subgroup N .
Then |N | = pt, where 1 ≤ t < n − 1. By our induction hypothesis, let G0 =
⟨e⟩, G1, . . . , Gt = N be a solvable series for N . Let H = G/N . By Corollary 2.2.14,
|H| = pn−t. By our induction hypothesis, let H0 = ⟨e⟩, H1, . . . ,Hn−t−1, Hn−t = H
be a solvable series for H = G/N . By Theorem 2.3.15, we lift each Hi to a
subgroup Gi+t of G and get a sequence Gt = N ⊆ Gt+1 ⊆ · · · ⊆ Gn−1 ⊆ Gn = G.
By Theorem 2.3.14, Gi+1+t/Gi+t ∼= Hi+1/Hi for each 0 ≤ i ≤ t. Combining the
two sequences, G0 ⊆ · · · ⊆ Gt ⊆ · · · ⊆ Gn−1 ⊆ Gn = G is a solvable series for
G. □
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Lemma 2.7.2. Let G be a finite group and p a prime number that divides |G|.
If H is a subgroup of G and H is a p-group, then the following are true:

(1) [NG(H) : H] ≡ [G : H] (mod p).
(2) If p divides [G : H], then p divides [NG(H) : H], hence NG(H) ̸= H.

Proof. (1): As in Example 2.4.6, G acts on G/H by left multiplication. For
g ∈ G, g ∗ xH is equal to (gx)H. Since H is a subgroup of G, this means H
acts on G/H by left multiplication. Let X = G/H and X0 = {xH ∈ X |
h ∗ xH = xH for all h ∈ H}. First we show that xH ∈ X0 if and only if x ∈
NG(H). This follows from the following string of logical equivalences.

xH ∈ X0 ↔ (hx)H = xH for all h ∈ H

↔ x−1hx ∈ H for all h ∈ H

↔ x−1Hx = H

↔ xHx−1 = H

↔ x ∈ NG(H).

This shows that X0 consists of those cosets xH such that xH ⊆ NG(H). Therefore,
|X0| = [NG(H) : H]. By Theorem 2.7.1 (5), |X| ≡ |X0| (mod p), or [G : H] ≡
[NG(H) : H] (mod p).

(2): By Part (1), 0 ≡ [G : H] ≡ [NG(H) : H] (mod p). Thus, [NG(H) : H] is a
multiple of p. □

7.2. Cauchy’s Theorem. As an application of Theorem 2.7.1 we give a sec-
ond proof of Corollary 2.4.15, Cauchy’s Theorem. The proof given below is due
to J. McKay [20]. This has been the proof of choice used in [6], [16], and other
introductory texts on this subject.

Theorem 2.7.3. (Cauchy’s Theorem) Let G be a finite group of order n and p
a prime divisor of n. Then G contains an element of order p.

Proof. Let X = Gp =
∏p
i=1G be the product of p copies of G. Elements of

Gp are p-tuples (x1, . . . , xp) where each xi is in G and |X| = np. In Exercise 2.7.10
the reader is asked to prove that the symmetric group Sp acts on X. For this proof,
we require only a special case. Let ξ be the p-cycle (12 · · · p) ∈ Sp. Then the cyclic
subgroup C = ⟨ξ⟩ acts on X by

ξi ∗ (x1, . . . , xp) =


(xp, x1, . . . , xp−1) if i = 1

(xp−i+1, . . . , xp, x1, . . . , xp−i) if 0 < i < p

(x1, . . . , xp) if i = 0 or i = p.

Now define Z = {(x1, . . . , xp) ∈ X | x1x2 · · ·xp = e}. Then Z is a subset of X.
Given (x1, . . . , xp) ∈ Z, notice that xp = (x1 · · ·xp−1)

−1, so |Z| = np−1. Since
xp = (x1 · · ·xp−1)

−1 implies xpx1x2 · · ·xp−1 = e, it follows that ξ ∗ Z = Z. Hence
C acts on Z and there is a partition of Z into orbits. Let Z0 be the set of all z in Z
fixed by ξ. A p-tuple z = (x1, . . . , xp) is fixed by ξ if and only if x1 = x2 = · · · = xp.
Since (e, e, . . . , e) ∈ Z0, we know Z0 ̸= ∅. By Theorem 2.7.1 (5), |Z0| ≡ 0 (mod p).
Then |Z0| ≥ p, and there are at least p elements g ∈ G such that gp = e. One
solution to gp = e is g = e. Any other solution is an element g of order p. □
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7.3. The Sylow Theorems.

Theorem 2.7.4. (Sylow’s First Theorem) Let G a finite group and p a prime
number. If pα divides |G|, then G contains a subgroup of order pα.

We give two proofs for Theorem 2.7.4. The first proof is due to H. Wielandt
[30]. The proof is based on an elementary combinatorial and number theoretic
argument. It has been the proof of choice used by [6], [15] and other introductory
books on this subject. Recursively applying Lemma 2.7.2 and Theorem 2.7.3, the
second proof constructs a tower of subgroups Pi−1 ⊆ Pi in G such that |Pi| = pi.
The idea for this proof comes from [16].

First Proof of Theorem 2.7.4. Write |G| = pγr where pγ is the highest
power of p that divides |G|. Then 0 ≤ α ≤ γ, and we write |G| = pαq. If we let
β = γ −α, then pβ is the highest power of p that divides q. Let X be the set of all
subsets of G of cardinality pα. Then

|X| =
(
pαq

pα

)
=
pαq

pα
· p

αq − 1

pα − 1
· · · p

αq − i

pα − i
· · · p

αq − pα + 2

pα − pα + 2
· p

αq − pα + 1

pα − pα + 1

where the factorization on the right hand side results from expanding the binomial
coefficient using Lemma 1.1.4, Let 0 < i < pα and write i = ptk where 0 ≤ t < α
and gcd(p, k) = 1. Then pαq−i = pt(pα−tq−k) and pα−tq−k ≡ −k (mod p). This
implies the highest power of p that divides pαq − i is pt. Therefore, canceling all
powers of p from the numerator and denominator we see that the highest power of p
that divides |X| is the same as the highest power of p that divides q, which is pβ . As
in Example 2.4.3, G acts on itself by left multiplication. If a ∈ G, and S ∈ X, then
aS has cardinality pα. Therefore, a∗S = aS defines an action byG onX. Under this
action, X is partitioned into orbits. Since pβ+1 does not divide |X|, we know there
is an orbit, say G∗S, such that pβ+1 does not divide |G∗S|, the length of the orbit.
Let H = GS be the stabilizer of S. Then H = {h ∈ G | hS = S}. So hs ∈ S for
each h ∈ H and s ∈ S. For a fixed s ∈ S, this implies the right coset Hs is a subset
of S. Hence |H| ≤ |S| = pα. By Corollary 2.2.14, |G ∗ S| = |G|/|H| = (pαq)/|H|.
Thus pαq = |H||G∗S|. Since pα+β divides the left hand side, we have pα+β divides
|H||G ∗ S|. Since pβ+1 does not divide |G ∗ S|, this implies pα divides |H|. This
proves H is a subgroup of G order pα. □

Second Proof of Theorem 2.7.4. Write |G| = pγr where pγ is the highest
power of p that divides |G|. We prove more than is required. In fact, we show
that G has a sequence of subgroups P0 ⊴ P1 ⊴ · · ·⊴ Pγ such that |Pi| = pi. Thus,
this gives us a new proof of Theorem 2.7.1 (4). Set P0 = ⟨e⟩, which has order 1. If
γ ≥ 1, then by Theorem 2.7.3, there exists a ∈ G such that P1 = ⟨a⟩ has order p.
The method of proof is to iteratively apply Cauchy’s Theorem γ − 1 times.

Inductively assume 1 ≤ i < γ, and that we have already constructed the
sequence of subgroups P0 ⊴ P1 ⊴ · · · ⊴ Pi in G, where |Pi| = pi. To finish the
proof it suffices to show that G has a subgroup Pi+1 of order pi+1 containing Pi
as a normal subgroup. By Corollary 2.2.14, [G : Pi] = pγ−ir is a multiple of p.
By Lemma 2.7.2, Pi ̸= NG(Pi) and p divides [NG(Pi) : Pi]. Since Pi is normal in
NG(Pi), by Theorem 2.7.3, the group NG(Pi)/Pi. has a subgroup P ′

i+1 of order
p. By Theorem 2.3.15, P ′

i+1 = Pi+1/Pi for a subgroup Pi+1 of NG(Pi) such that

Pi ⊆ Pi+1 ⊆ NG(Pi). By Corollary 2.2.14, |Pi+1| = |P ′
i+1||Pi| = pi+1. Since Pi is

normal in NG(Pi), Pi is normal in Pi+1. □
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By Theorem 2.7.4, if p is a prime, G is a finite group, α ≥ 1, and pα is the
highest power of p that divides |G|, then G has a subgroup of order pα, call it P .
In this case, we say P is a p-Sylow subgroup of G. Therefore, a p-Sylow subgroup
is a maximal member of the set of all subgroups of G that are p-groups.

Theorem 2.7.5. (Sylow’s Second Theorem) Let G be a finite group and p a
prime that divides |G|. Then any two p-Sylow subgroups of G are conjugates of
each other.

Proof. Assume G is not a p-group, otherwise there is nothing to prove. By
Theorem 2.7.4, a p-Sylow subgroup exists. Let P and Q be two p-Sylow subgroups
of G. We prove that there exists x ∈ G such that x−1Px = Q. Let X = G/Q be the
set of left cosets of Q in G. By Example 2.4.6, G acts on X by left multiplication.
Since P is a subgroup of G, P acts on X by left multiplication. Since P is a
p-group, by Theorem 2.7.1 (5), [G : Q] = |X| ≡ |X0| (mod p). Since p does not
divide [G : Q], we know |X0| ̸= 0. Let xQ ∈ X0. Then for each a ∈ P , axQ = xQ.
Thus x−1ax ∈ Q for every a ∈ P , hence x−1Px ⊆ Q. Since |P | = |Q| = pα, this
implies x−1Px = Q. □

Corollary 2.7.6. Let G be a finite group and p a prime that divides |G|. Let
P be a p-Sylow subgroup of G. Then the following are true.

(1) For every a ∈ G, a−1Pa is a p-Sylow subgroup of G.
(2) In G, P is the unique p-Sylow subgroup if and only if P is a normal subgroup.
(3) NG(NG(P )) = NG(P ).

Proof. (1): Conjugation by a is an automorphism, hence |P | = |a−1Pa|.
(2): The subgroup P is normal in G if and only if P = a−1Pa for all a ∈ G,

which by (1) is true if and only if P is the unique p-Sylow subgroup of G.
(3): By Proposition 2.4.13, P is a normal subgroup of NG(P ). By (2), P is the

unique p-Sylow subgroup of NG(P ). Let z ∈ NG(NG(P )). Then conjugation by z
is an automorphism of NG(P ), hence zPz

−1 = P . This implies z ∈ NG(P ). □

Theorem 2.7.7. (Sylow’s Third Theorem) Let G be a finite group and p a prime
that divides |G|. The number of p-Sylow subgroups in G is congruent to 1 modulo
p and divides |G|. More precisely, let |G| = pαr where α ≥ 1 and gcd(p, r) = 1. If
n is the number of p-Sylow subgroups in G, then n divides r and n ≡ 1 (mod p).

Proof. By Theorem 2.7.4, a p-Sylow subgroup exists. Let P be a p-Sylow
subgroup. As in Example 2.4.12, let G act by conjugation on 2G, the power set
of all subsets of G. By Theorem 2.7.5, the orbit of P is the set of all p-Sylow
subgroups of G. The length of the orbit is [G : NG(P )], which divides |G|. By
Theorem 2.2.13, r = [G : P ] = [G : NG(P )][NG(P ) : P ]. Therefore the number of
conjugates of P divides r.

Let X be the set of all p-Sylow subgroups of G. The number of p-Sylow sub-
groups in G is equal to |X|. Let P act on X by conjugation. By Theorem 2.7.1 (5),
|X| ≡ |X0| (mod p). First note that P ∈ X0. Suppose Q is another element of X0.
Then a−1Qa = Q for all a ∈ P . Therefore, P ⊆ NG(Q). In this case, both P and
Q are p-Sylow subgroups of NG(Q). By Corollary 2.7.6 (2), P = Q. This proves
X0 = {P}. We have shown that |X| ≡ 1 (mod p). □
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Proposition 2.7.8. Let G be a finite group of order n where the unique fac-
torization of n is pe11 · · · pemm . Assume for each pi that G has a unique pi-Sylow
subgroup Pi. Then G is the internal direct product of P1, . . . , Pm.

Proof. By Corollary 2.7.6, each Pi is a normal subgroup of G. We use induc-
tion to show that P1, . . . , Pm satisfy the criteria of Proposition 2.5.6 (4). If m = 1,
there is nothing to prove. If m = 2, then P1 ∩ P2 = ⟨e⟩ by Exercise 2.2.26. Then
G = P1P2 by Theorem 2.2.16. By Proposition 2.5.6 (3), G is the internal direct
product of P1 and P2.

Assume m > 2. The proof is by induction on m − r, where 1 < r < m.
Inductively assume that

(1) Pr · · ·Pm is a subgroup of G, and
(2) Pi ∩ (Pi+1 · · ·Pm) = ⟨e⟩ for i = r, . . . ,m− 1.

By Proposition 2.5.6, Pr · · ·Pm is isomorphic to Pr × · · · ×Pm. Then |Pr · · ·Pm| =
perr · · · pemm . Because Pr−1 is normal in G, by Exercise 2.3.20, Pr−1Pr · · ·Pm is a
subgroup ofG. Because pr−1 is relatively prime to |Pr · · ·Pm|, by by Exercise 2.2.26,
we know that Pr−1 ∩ (Pr · · ·Pm) = ⟨e⟩. By Mathematical Induction on m− r, this
proves P1 · · ·Pm is the internal direct product of P1, . . . , Pm. Since |P1 · · ·Pm| =
|G|, this proves the proposition. □

7.4. Exercises.

Exercise 2.7.9. Let G be a finite group and N a normal subgroup of G. Show
that if p is a prime and |N | = pr for some r ≥ 1, then N is contained in every
p-Sylow subgroup of G. See Exercise 2.7.12 for an application of this exercise.

Exercise 2.7.10. Let n ≥ 1, A a nonempty set, and X = An the product of
n copies of A. An element x of X is an n-tuple (x1, . . . , xn) where each xi ∈ A.
Alternatively, an n-tuple x = (x1, . . . , xn) can be viewed as a function x : Nn → A
(see Section 1.1.3) where x(i) = xi. Show that the symmetric group Sn acts on X
by the rule σ ∗ x = xσ−1 where xσ−1 refers to the composition of functions:

Nn
σ−1

−−→ Nn
x−→ A.

Therefore, σ ∗ x = (xσ−1(1), . . . , xσ−1(n)).

Exercise 2.7.11. Let G be a group containing subgroups A and B such that
A ⊆ B ⊆ G.

(1) Give an example such that B is normal in G, A is normal in B, and A is
not normal in G. We say that normal over normal is not normal.

(2) Suppose G is finite and p is a prime number. Assume B is normal in G
and A is normal in B and that A is a p-Sylow subgroup of B. Prove that
A is normal in G.

Exercise 2.7.12. Let G be a group of order 2r · 7, where r ≥ 5. Apply
Exercises 2.4.28 and 2.7.9 to show G contains a normal subgroup N satisfying:
2r−4 ≤ |N | ≤ 2r and N is contained in every 2-Sylow subgroup of G.

Exercise 2.7.13. Let G be a finite group of order n.

(1) Show that for each n in the list: 30, 36, 40, 42, 44, 48, 50, 52, 54, 55, 56, 75, 32·
52, 9 · 37, G is not a simple group.

(2) Show that for each n in the list: 45, 51, 5 · 17, 52 · 17, 52 · 37, G is abelian.
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Exercise 2.7.14. Let G be a group of order p2q, where p and q are distinct
primes. Show that G is not simple.

Exercise 2.7.15. Let G be a group of order (p−1)p2, where p is an odd prime.
Prove the following.

(1) G has a unique p-Sylow subgroup.
(2) There are at least four groups of order (p− 1)p2 which are pairwise non-

isomorphic.

Exercise 2.7.16. Show that a group of order 105 is a semidirect product of
two cyclic groups. Show how to construct an example of a nonabelian group of
order 105.

Exercise 2.7.17. Let p be a prime and G a finite p-group of order pn, where
n ≥ 1. Show that if N is a proper normal subgroup of G, then N ∩Z(G) is a proper
subroup of G.

8. Finite Abelian Groups

The purpose of this section is to prove that a finite abelian group can be de-
composed into an internal direct product of cyclic subgroups. The number of cyclic
subgroups and their orders are unique. These numbers are called the invariants
of the finite abelian group. The generators and the cyclic subgroups themselves
are not unique. This is called the Basis Theorem for finite abelian groups. As an
application, we show that the group of units modulo 2a is the direct product of a
group of order 2 with a cyclic group of order 2a−2.

8.1. The nth Power Map. Let A be an abelian group written multiplica-
tively and n ∈ Z. The nth power map πn : A→ A is defined by the rule πn(x) = xn.

By Exercise 2.3.18 (where the abelian group was written additively) we see
that πn is an endomorphism of A with kernel {x ∈ A | |x| divides n} and image
{xn | x ∈ A}. In the following, the kernel of πn will be denoted A(n) and the image
will be denoted An. Then A(n) and An are subgroups of A. By the Isomorphism
Theorem, Theorem 2.3.14 (1), πn induces an isomorphism A/A(n) ∼= An.

Lemma 2.8.1. Let ϕ : A → B be an isomorphism of abelian groups. Then for
any n ∈ Z, the following are true.

(1) ϕ : A(n) → B(n) is an isomorphism.
(2) ϕ : An → Bn is an isomorphism.
(3) ϕ : A/A(n) → B/B(n) is an isomorphism.
(4) ϕ : A/An → B/Bn is an isomorphism.

Proof. (1): Let x ∈ A(n). Then (ϕ(x))n = ϕ(xn) = ϕ(e) = e implies
ϕ(A(n)) ⊆ B(n). Given y ∈ B(n), y = ϕ(x) for some x ∈ A. Then e = yn =
(ϕ(x))n = ϕ(xn). So x ∈ ker(ϕ) = ⟨e⟩. This proves ϕ : A(n) → B(n) is an
isomorphism.

(2): Let x ∈ A. Then ϕ(xn) = (ϕ(x))n, so ϕ(An) ⊆ Bn. Let yn ∈ Bn. Then
y = ϕ(x) for some x ∈ A, so yn = (ϕ(x))n = ϕ(xn), which proves ϕ : An → Bn is
an isomorphism.
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(3): Consider the commutative diagram

A
ϕ //

��

B

η

��
A/ ker(ηϕ)

∼= // B/B(n)

where all of the maps are onto. By Part (1), the kernel of ηϕ is ϕ−1(B(n)) =
A(n). By Theorem 2.3.14 (1), ηϕ factors through A/A(n) giving the isomorphism:
A/A(n) ∼= B/B(n).

(4): Consider the commutative diagram

A
ϕ //

��

B

η

��
A/ ker(ηϕ)

∼= // B/Bn

where all of the maps are onto. By Part (2), the kernel of ηϕ is ϕ−1(Bn) = An.
By Theorem 2.3.14 (1), ηϕ factors through A/An giving the isomorphism: A/An ∼=
B/Bn. □

Lemma 2.8.2. Let A = ⟨a⟩ be an infinite cyclic group. If n ∈ N, then A(n) = ⟨e⟩
and A/An is cyclic of order n.

Proof. We have the isomorphism ϕ : Z → A which is defined on generators
by the rule ϕ(1) = a (Theorem 2.3.27 (5)). The group Z is written additively as
in Exercise 2.3.18, and instead of the nth power map πn, we will use the “left
multiplication by n” map λn : Z → Z. The kernel of λn is ⟨0⟩ and the image of
λn is ⟨n⟩ = nZ. Applying Lemma 2.8.1 we have A(n) = ⟨e⟩ and A/An ∼= Z/nZ is
cyclic of order n. □

Lemma 2.8.3. Let A = ⟨a⟩ be a finite cyclic group of order m. If n ∈ N and
d = gcd(m,n), then the following are true.

(1) A(n) = ⟨am/d⟩ is cyclic of order d.
(2) A/A(n) ∼= An is cyclic of order m/d.
(3) A/An is cyclic of order d.

Proof. We have A = {e, a, . . . , am−1}.
(1): Suppose 0 ≤ i < m and (ai)n = e. Then m divides ni and by Propo-

sition 1.2.10, lcm(m,n) = mn/d divides ni. This implies m/d divides i. Hence
A(n) ⊆ ⟨am/d⟩. But am/d has order d by Lemma 2.2.18. Since d divides n,
A(n) ⊇ ⟨am/d⟩, proving (1).

(2) and (3): By Theorem 2.3.14 (1), A/A(n) ∼= An. From Part (1) and La-
grange’s Theorem (Corollary 2.2.14), we get (2). From Part (2) and Lagrange’s
Theorem, we get (3). □

Lemma 2.8.4. Let A and B be abelian groups. If n ∈ Z, then the following are
true.

(1) (A×B)(n) = A(n)×B(n).
(2) (A×B)n = An ×Bn.
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Proof. Let (a, b) be a typical element in A×B. Part (2) follows immediately
from the identity (a, b)n = (an, bn). Part (1) follows from (A × B)(n) = {(a, b) |
(a, b)n = (e, e)} = {(a, b) | an = e and bn = e} = A(n)×B(n). □

Lemma 2.8.5. Let A be a finite abelian group, p a prime, r ∈ N, and assume
pr is the highest power of p that divides |A|. Then A(pr) is equal to the p-Sylow
subgroup of A.

Proof. Since A is abelian, every subgroup is normal and by Corollary 2.7.6,
A has a unique p-Sylow subgroup. Call it P . Then |P | = pr. If x ∈ P , then |x|
divides pr by Corollary 2.2.19. As a set, A(pr) consists of those elements x ∈ A
whose order divides pr. Therefore, P ⊆ A(pr). If x ∈ A(pr), then by Exercise 2.7.9,
x is in P . Therefore, A(pr) ⊆ P . □

8.2. The Basis Theorem.

Theorem 2.8.6. Every finite abelian group G is isomorphic to an internal
direct product of cyclic groups.

Proof. Since G is abelian, every subgroup of G is normal. It follows from
Proposition 2.7.8 that G is isomorphic to the internal direct product of its Sylow
subgroups. Therefore, it suffices to prove the theorem for a finite p-group. From
now on, assume p is a prime and [G : e] = pn, for some n ∈ N.

The proof is by Mathematical Induction on n. If n = 1, then G ∼= Z/p is cyclic.
Assume inductively that n > 1 and that the theorem is true for all abelian groups
of order pi where 0 < i < n.

Let a ∈ G be an element of maximal order. If |a| = pn, then G = ⟨a⟩ is cyclic
and we are done. Assume |a| = pα, where 1 ≤ α < n. Set A = ⟨a⟩. Look at the
quotient G/A. We have |G/A| = [G : A] = pn−α. By our induction hypothesis, G/A
is an internal direct product of cyclic groups. That is, there exist b1, . . . , bm ∈ G
such that

(8.1) G/A = ⟨[b1]⟩ × · · · × ⟨[bm]⟩
where we write [bi] for the left coset biA. Assume the order of [bi] in G/A is pβi . By
Exercise 2.3.44, pβi divides the order of bi in G . Since |a| is maximal, α ≥ βi for

each i. Because (biA)
pβi

= A, bp
βi

i ∈ A. Therefore bp
βi

i = aki for some ki. Because
the order of every element of G divides pα, we have(

aki
)pα−βi

=
(
bp

βi

i

)pα−βi

= bp
α

i = e.

It follows that pα divides kip
α−βi . Hence pβi divides ki. Write ki = ℓip

βi . Set
ai = bia

−ℓi . Then

ap
βi

i =
(
bia

−ℓi
)pβi

= bp
βi

i a−ℓip
βi

= akia−ki = e

which implies |ai| ≤ pβi . Since ai ≡ bi (mod A), the order of ai is greater than or
equal to the order of [bi] in G/A which is pβi . This implies |ai| = pβi . Set Ai = ⟨ai⟩.

To finish the proof, we show that G is the internal direct product of the cyclic
subgroups A,A1, . . . , Am. Let x ∈ G be an arbitrary element of G. In G/A we
can write the coset xA as a product be11 A · · · bemm A. Since biA = aiA, we see that
x = ae11 · · · aemm ae0 , for some e0 ∈ Z. This proves that G = AA1 · · ·Am. Sup-
pose e = ae0ae11 · · · aemm . In G/A we have [e] = [a1]

e1 · · · [am]em which is equal to
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[b1]
e1 · · · [bm]em . As in Eq. (8.1), G/A is a direct product so [bi]

ei = [e] for each i.
So pβi divides ei for each i. Therefore, aeii = e for each i. It follows that e = ae0 ,
hence e has a unique representation. □

Theorem 2.8.7. (Basis Theorem for Finite Abelian Groups) Let G be an
abelian group of finite order. Then the following are true.

(1) G is the internal direct product of its Sylow subgroups.
(2) If p is a prime factor of |G| and P is the unique p-Sylow subgroup of G, then

there exist a1, . . . , am in P such that P is the internal direct product of the cyclic
subgroups ⟨a1⟩, . . . , ⟨am⟩, the order of ai is equal to pei , and e1 ≥ e2 ≥ · · · ≥ em.

(3) G is uniquely determined by the prime factors p of |G| and the integers ei that
occur in (2).

The prime powers pei that occur in (2) are called the invariants of G. Notice that
if |P | = pn, then n = e1 + · · ·+ em is a partition of the integer n.

Proof. Part (1) follows from Proposition 2.7.8. Part (2) follows from Theo-
rem 2.8.6.

(3): Let A and B be finite abelian groups. First we prove that if ϕ : A → B
is an isomorphism, then A and B have the same invariants. Because ϕ is a one-to-
one correspondence, |A| = |B|. Let p be a prime that divides |A| (and |B|). By
Lemmas 2.8.5 and 2.8.1, the p-Sylow subgroups of A and B are isomorphic. Using
Theorem 2.8.6 we can suppose the p-Sylow subgroup of A is the internal direct
product of A1, . . . , Am where Ai = ⟨ai⟩, |ai| = pei , and e1 ≥ e2 ≥ · · · ≥ em ≥
1. Likewise, assume the p-Sylow subgroup of B is the internal direct product of
B1, . . . , Bn where Bi = ⟨bi⟩, |bi| = pfi , and f1 ≥ f2 ≥ · · · ≥ fn ≥ 1. We have the
isomorphism

(8.2) ϕ : A1 × · · · ×Am → B1 × · · · ×Bn.

Applying Lemma 2.8.1 and the pth power map to the isomorphism (8.2), we get
the isomorphisms

(8.3) ϕ : (A1 × · · · ×Am)(p) → (B1 × · · · ×Bn)(p)

and

(8.4) ϕ : (A1 × · · · ×Am)p → (B1 × · · · ×Bn)
p.

By Lemma 2.8.4 applied m− 1 times, we can write (8.3) as the isomorphism

(8.5) ϕ : A1(p)× · · · ×Am(p) → B1(p)× · · · ×Bn(p)

and (8.4) as the isomorphism

(8.6) ϕ : Ap1 × · · · ×Apm → Bp1 × · · · ×Bpn.

By Lemma 2.8.3, each side of (8.5) is a direct product of cyclic groups of order p.
Comparing the orders of the groups on both sides of the isomorphism (8.5), we get
that pm = pn. Therefore m = n. Inductively, assume the uniqueness claim is true
for any finite p-group of order less than pe1+···+em . By Lemma 2.8.3, the invariants
of the left hand side of (8.6) are e1 − 1 ≥ · · · ≥ em − 1 and the invariants of the
right hand side of (8.6) are f1 − 1 ≥ · · · ≥ fn − 1. By induction, ei = fi for each i.

For the converse, suppose we are given the cyclic groupsA1, . . . , Am, B1, . . . , Bn,
where |Ai| = pei for each i, and |Bj | = pfi for each j. If m = n and ei = fi for each
i, then clearly Ai ∼= Bi for each i and we have A1 × · · · ×Am ∼= B1 × · · · ×Bm. □
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8.3. The Group of Units Modulo 2a. As an application of Theorem 2.8.7
we compute the invariants of the group of units in Z/2a, for a ≥ 1. In the notation
of Lemma 1.2.12 and Example 2.1.3, let U2a denote the group of units modulo
2a. Then [U2a : 1] = ϕ(2a) = 2a − 2a−1 = 2a−1. The congruence classes in U2a

correspond to the odd numbers in {0, 1, . . . , 2a − 1}. By direct computation, the
reader should verify the values appearing in Table 8.1.

Table 8.1. Groups of units modulo 2, 22, 23 and 24

a U2a [U2a : 1] invariants
1 U2 = ⟨1⟩ 1
2 U4 = ⟨−1⟩ 2 2
3 U8 = ⟨−1⟩ × ⟨1 + 2⟩ 4 2, 2
4 U16 = ⟨−1⟩ × ⟨1 + 2⟩ 8 2, 22

If a ≥ 3, then U2a is not cyclic. It is a direct product of a group of order 2 and
a cyclic group of order 2a−2.

Proposition 2.8.8. If a ≥ 3, then U2a is an abelian 2-group of order 2a−1 and
has invariants 2, 2a−2.

Proof. There are two steps to the proof. In Step 1 we show that U2a is the
direct sum of two cyclic groups. In Step 2 we show that U2a contains an element
of order 2a−2.

Step 1: Prove that U2a = ⟨α⟩ × ⟨β⟩ is the direct product of two cyclic groups
and the subgroup annihilated by 2 is the internal direct product ⟨−1⟩× ⟨1+2a−1⟩.
For this step of the proof, fix a and write U instead of U2a . An arbitrary square
in U is (1 + 2x)2 = 1 + 22x + 22x2 = 1 + 22x(1 + x). Then 1 + 2x is in U(2), the
subgroup annihilated by 2, if and only if 2a−2 divides x(1 + x). There are only
four possibilities for x because 0 < 1 + 2x < 2a. The four elements of order 2
or less are listed in Table 8.2 under the column with header 1 + 2x. This proves
U(2) = ⟨−1⟩ × ⟨1+ 2a−1⟩. By Theorem 2.8.7, U is a product of the form ⟨α⟩ × ⟨β⟩
where −1 is the element of order 2 in ⟨α⟩ and 1 + 2a−1 is the element of order 2 in
⟨β⟩.

Step 2: We complete the proof. Let θa : Z/2a → Z/2a−1 be the natural map.
The kernel of θa is the cyclic group ⟨2a−1⟩ of order 2. Then θa induces a map on
the groups of units θa : U2a → U2a−1 and the kernel is the cyclic group ⟨1 + 2a−1⟩
of order 2. Since ⟨1 + 2a−1⟩ is the unique subgroup of order 2 in ⟨β⟩, we see that
|β| = 2|θa(β)|. Consider the sequence

U2a
θa−→ U2a−1

θa−1−−−→ · · · θ5−→ U24
θ4−→ U23

Table 8.2. The four elements of order 2 or less in U2a

x 1 + 2x |1 + 2x|
2a−2 1 + 2a−1 2
2a−1 1 1
2a−2 − 1 2a−1 − 1 = −(1 + 2a−1) 2
2a−1 − 1 −1 2
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of onto group homomorphisms. From Table 8.1, U23 = ⟨−1⟩× ⟨1+2⟩ and 1+2 has
order 2. Recursively, we have |β| = 2a−3|θ4θ5 · · · θa(β)| = 2a−3|1 + 2| = 2a−2. This
implies that α = θa(−1) has order 2 and the invariants of U2a are 2 and 2a−2. □

8.4. Exercises.

Exercise 2.8.9. If G is any group, and n ∈ N, the direct product of n copies
of G is Gn =

∏n
i=1G. Let G,+ be an abelian group. Using Exercise 2.3.18, show

that an n-tuple A ∈ (a1, . . . , an) ∈ Zn defines a homomorphism A : Gn → G by
the rule A(x1, . . . , xn) =

∑n
i=1 aixi.

Exercise 2.8.10. Let m,n ∈ N. Show that the direct product Z/m × Z/n is
cyclic if and only if gcd(m,n) = 1.

Exercise 2.8.11. If p is a prime, and n ≥ 1, compute the following:

(1) Let G =
∏n
i=1 Z/2 = Z/2× · · · ×Z/2 be the direct product of n copies of

Z/2. How many subgroups of order 2 are there in G?
(2) Let G =

∏n
i=1 Z/p = Z/p× · · · ×Z/p be the direct product of n copies of

Z/p. How many elements of order p are there in G? How many subgroups
of order p are there in G?

(3) Let G =
∏n
i=1 Z/pei = Z/pe1 × · · · × Z/pen where ei ≥ 1 for each i. How

many elements of order p are there in G? How many subgroups of order
p are there in G?

Exercise 2.8.12. Let G be a finite abelian group. Prove that the following are
equivalent:

(1) G is cyclic.
(2) For every prime factor p of |G|, the p-Sylow subgroup of G is cyclic.
(3) For every prime factor p of |G|, G(p) (see Exercise 2.3.18 for this notation)

is cyclic.
(4) For every n ∈ N, the order of G(n) is at most n.
(5) For every n ∈ N, the equation xn = e has at most n solutions in G.

Exercise 2.8.13. Let A and B be abelian groups written additively. The set
of all homomorphisms from A to B is denoted Hom(A,B).

(1) If f, g ∈ Hom(A,B), then f + g is the function defined by the rule: (f +
g)(x) = f(x) + g(x). Show that this additive binary operation makes
Hom(A,B) into an abelian group.

(2) Now consider the case where A = B. Show that composition of functions
defines a binary operation on Hom(A,A) satisfying the following.
(a) f(gh) = (fg)h for all f, g, h in Hom(A,A). In other words, composi-

tion of functions is associative.
(b) f(g+h) = fg+fh and (f+g)h = fh+gh for all f, g, h in Hom(A,A).

In other words, composition distributes over addition.
Together with the two binary operations of addition and composition of
functions, we call Hom(A,A) the ring of endomorphisms of A.

Exercise 2.8.14. Let m,n ∈ N be positive integers. Show that the abelian
group Hom(Z/m,Z/n) is a cyclic group of order gcd(m,n).

Exercise 2.8.15. Show that if G is a finite group of order at least three, then
Aut(G) has order at least two.



102 2. GROUPS

Exercise 2.8.16. Let p be a prime and G a finite group of order pn, where
n ≥ 2. Show that if G is not a cyclic group, then G contains a normal subgroup N
such that G/N is isomorphic to the direct product Z/p× Z/p.

Exercise 2.8.17. Let A be an abelian group, written additively. Show that the
assignment f 7→ f(1) induces an isomorphism of abelian groups Hom(Z, A) ∼= A.
See Exercise 4.1.27 for a generalization of this result.

Exercise 2.8.18. Suppose G is a finite abelian p-group. Prove that G is cyclic
if and only if G has exactly p− 1 elements of order p.

Exercise 2.8.19. Let G = ⟨a⟩ be a finite cyclic group of order n > 1. Find
necessary and sufficient conditions on n such that the following statement is true:

If H and K are subgroups of G, then H ∪K is a subgroup of G.

9. Classification of Finite Groups

This section consists of computations and applications of the theorems from the
previous sections. The examples presented here are not only intended to classify
all groups of a given order, but to illustrate how the various theorems of Group
Theory are applied.

Example 2.9.1. Before going on to the new examples below, we summarize
here the results on the classification of finite groups from previous sections. In the
following, p and q denote distinct primes.

(1) Finite abelian groups are classified by the Basis Theorem for Finite Abelian
Groups, Theorem 2.8.7.

(2) A group of order p is a finite cyclic group and is simple (Exercise 2.2.30).
(3) A group of order p2 is abelian (Theorem 2.7.1 (2)).
(4) If G is a group of order pq, then G is either a cyclic group or a nonabelian

semidirect product (Proposition 2.4.20).

9.1. Groups of Order 12. We show in this example that up to isomorphism
there are exactly five groups of order 12. Let G be a finite group of order 12 = 22 ·3.
Let P be a 2-Sylow subgroup. Then P is either ⟨a | a4 = e⟩, a cyclic group of order
4, or P is ⟨a, b | a2 = b2 = e, ab = ba⟩, an isomorphic copy of the Klein four group.
In both cases P is abelian. By Theorem 2.7.7, the number of conjugates of P is odd
and divides 3, hence P has either 1 or 3 conjugates. Let Q be a 3-Sylow subgroup.
By Theorem 2.7.7, the number of conjugates of Q divides 4, hence Q has either 1
or 4 conjugates. We know that Q = ⟨c | c3 = e⟩ is cyclic, hence abelian. Since
P ∩ Q = ⟨e⟩, by Theorem 2.2.16 we see that PQ = G. We consider the following
four cases.

Case 1: Assume P and Q are both normal in G. By Theorem 2.7.8, G is the
internal direct product of P and Q, hence G is abelian. By Theorem 2.8.7, G is
isomorphic to either

Z/3× Z/4
or

Z/3× Z/2× Z/2.
Case 2: Assume P is normal and Q has 4 conjugates. Then Q acts by conju-

gation on P and there is a homomorphism θ : Q → Aut(P ), where θ(c) = αc−1 is
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conjugation by c−1. By Corollary 2.4.17, G is isomorphic to P ⋊Q, the semidirect
product of P and Q. There are two subcases to consider.

Subcase 2.1: Assume P = ⟨a⟩ is cyclic. Then Aut(P ) ∼= U4 is a group of order
two. Since Q has order three, in this case im θ = ⟨e⟩. Then cac−1 = a, hence G
must be abelian. In this case, G is the first group of Case 1.

Subcase 2.2: Assume P = ⟨a, b | a2 = b2 = e, ab = ba⟩ is not cyclic. Then
Aut(P ) is isomorphic to GL2(Z/2). We will prove this in Proposition 4.5.7. By
Exercise 2.1.26, GL2(Z/2) ∼= S3. There are two elements of order 3 in S3. One
element of order three in Aut(P ) is the cyclic permutation π defined by a 7→ b 7→
ab 7→ a. The other element of order three is π−1. Therefore, if θ(c) = π, then
θ(c−1) = π−1. Since Q is generated by either c, or c−1, without loss of generality
we assume θ(c) = π. Then cac−1 = b and cbc−1 = ab. The semidirect product
P ⋊Q has presentation in terms of generators and relations

⟨a, b, c | a2 = b2 = c3 = e, ab = ba, cac−1 = b, cbc−1 = ab⟩.

This group is isomorphic to A4 by the map defined by a 7→ (12)(34), b 7→ (14)(23),
c 7→ (123). The reader should verify that

(123)(12)(34)(132) = (14)(23),

(123)(14)(23)(132) = (13)(24), and

(123)(13)(24)(132) = (12)(34).

Case 3: Assume P has 3 conjugates and Q is normal. Then P acts on Q
by conjugation and there is a homomorphism θ : P → Aut(Q). Then G is the
semidirect product Q⋊P . By Theorem 2.3.30, Aut(Q) ∼= U3 is a group of order 2.
The automorphism of order two is defined by c 7→ c−1. There are two subcases to
consider.

Subcase 3.1: Assume P = ⟨a⟩ is cyclic. Then there is one nontrivial possibility
for θ. In this case, aca−1 = c−1. The presentation of the semidirect product in
terms of generators and relations is

⟨a, c | a4 = c3 = e, aca−1 = c−1⟩.

Subcase 3.2: Assume P = ⟨a, b | a2 = b2 = e, ab = ba⟩ is not cyclic. Then P has
three subgroups of order two. Hence there are three possible homomorphisms from
P onto Aut(Q). Therefore, one of a, b, ab commutes with c. Since P is generated by
any two of the three, without loss of generality we assume aca = c−1 and bcb = c.
The semidirect product is described by

⟨a, b, c | a2 = b2 = c3 = e, ab = ba, aca = c−1, bc = cb⟩.

This group is isomorphic to D6 the element bc has order 6, and a(bc)a = (bc)−1.
Another way to view this group is as the internal direct product ⟨b⟩ × ⟨a, c⟩ which
is isomorphic to Z/2×D3.

Case 4: Assume P has 3 conjugates and Q has 4 conjugates. Counting elements
we find that each subgroup of order 3 has 2 elements of order 3. Therefore, G has
8 elements of order 3. The subgroup P has 4 elements. Since P is not normal, the
group G has more than 12 elements, which is a contradiction. Case 4 cannot occur.
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9.2. Groups of Order 30. In this example we show that up to isomorphism
there are exactly 4 groups of order 30. Let G be a group of order 30 = 2 · 3 · 5.
Using Theorems 2.7.8 and 2.5.2 we see that if G is abelian, then G is cyclic. Let P
be a 2-Sylow subgroup of G, Q a 3-Sylow subgroup, and R a 5-Sylow subgroup. By
Theorem 2.7.7, Q is either normal or has 10 conjugates. The number of conjugates
of R is either 1 or 6. By counting elements, we see that if G has 6 subgroups of
order 5 then there are 24 elements of order 5. If G has 10 subgroups of order 3, then
this includes 20 elements of order 3. Since |G| = 30, this implies either Q is normal
or R is normal. By Exercise 2.3.20, QR is a subgroup of G. Since Q ∩ R = ⟨e⟩,
by Theorem 2.2.16, |QR| = 15. Since [G : QR] = 2, Exercise 2.3.19, implies QR
is normal in G. By Theorem 2.5.2, QR is cyclic. Write QR = ⟨b⟩. Then P acts
by conjugation on QR and there is a homomorphism θ : P → Aut(QR) ∼= U15.
The image of θ has order 1 or 2. The group U15 has order ϕ(15) = 8. The reader
should verify that there are 4 elements in U15 that satisfy x2 ≡ 1 (mod 15), they
are 1, 4,−1,−4. Therefore, if P = ⟨a⟩, then aba = bs, where s ∈ {1, 4,−1,−4}.
Thus G is the semidirect product QR⋊P . The presentation in terms of generators
and relations is

(9.1) G = ⟨a, b | a2 = b15 = e, aba = bs⟩

where s ∈ {1, 4,−1,−4}. If s = 1, then a commutes with b, and G is abelian. If
s = −1, then G is isomorphic to D15. By Example 2.3.36, the center of D15 is ⟨e⟩.

If s = 4, then because ab5a = b20 = b5 we see that the center of G contains b5,
an element of order 3. Then G/⟨b5⟩ has presentation ⟨a, b | a2 = b5 = e, aba = b4⟩
which is isomorphic to D5. Since the center of D5 is trivial, this proves the center
of G is Z = ⟨b5⟩. Since ab3a = b12 = b−3 we see that the subgroup D = ⟨a, b3⟩ has
order 10 and is isomorphic to D5. generated by a and b3. Using Exercise 2.5.22, we
see that G is the internal direct product D×Z, hence G is isomorphic to D5×Z/3.

If s = −4, then because ab3a = b−12 = b3 we see that the center of G contains
b3, an element of order 5. Then G/⟨b3⟩ has presentation ⟨a, b | a2 = b3 = e, aba =
b−1⟩ which is isomorphic to D3. Since the center of D3 is trivial, this proves the
center of G is Z = ⟨b3⟩. Since ab5a = b−20 = b−5 we see that the subgroup
D = ⟨a, b5⟩ has order 6 and is isomorphic to D3. Using Exercise 2.5.22, we see that
G is the internal direct product D × Z, hence G is isomorphic to D3 × Z/5.

This proves that in (9.1) the four values of s give rise to four groups that are
pairwise nonisomorphic.

9.3. Groups of Order 63. We show in this example that up to isomorphism
there are exactly four groups of order 63. Let G be a finite group of order 63 = 7·32.
If G is abelian, then by Theorem 2.8.7, G is isomorphic to either Z/7 × Z/9, or
Z/7× Z/3× Z/3. Assume from now on that G is nonabelian. Let P be a 7-Sylow
subgroup. The number of conjugates of P divides 9 and is of the form 1 + 7k.
Therefore, we conclude that k = 0 and P is normal. Let Q be a 3-Sylow subgroup.
We know that Q is abelian. Since P ∩ Q = ⟨e⟩, by Theorem 2.2.16 we see that
PQ = G. By Corollary 2.4.17, G = P ⋊Q and the action by Q on P is conjugation.
By Example 2.4.9, the homomorphism

θ : Q→ Aut(P ) ∼= U7

is defined by θ(x) = αx−1 , where αx−1 is the inner automorphism of P corresponding
to conjugation by x−1. If the image of θ is ⟨1⟩, then every element of Q commutes
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with every element of P and G is abelian. By our assumption, we can assume θ is
not the trivial map. By Theorem 2.3.30, Aut(P ) ∼= U7 which is an abelian group of
order ϕ(7) = 6, hence is cyclic. Since Q has order 9, this implies ker(θ) has order
3, and im(θ) has order 3. Let P = ⟨a⟩. There are two cases.

Case 1: Q = ⟨b⟩ is cyclic. Then θ maps b to αb−1 , the inner automorphism
defined by b−1, which is an element of order 3 in U7. There are two elements of
order 3 in U7, namely [2] and [4]. Therefore, bab−1 = ai where i = 2 or 4. Notice
that |b2| = 9 so Q = ⟨b2⟩. Since b2ab−2 = a2i, without loss of generality we can
replace b with b2 if necessary and assume i = 2. Then in this case,

G = ⟨a, b | a7 = b9 = e, bab−1 = a2⟩

is the presentation of G in terms of generators and relations.
Case 2: Q is a direct sum of two cyclic groups of order 3. Suppose ker(θ) = ⟨c⟩

and b ∈ Q − ⟨c⟩. Then Q = ⟨b, c⟩. As in Case 1, bab−1 = ai where i = 2 or 4.
Again, we can replace b with b−1 if necessary and assume bab−1 = a2. Then in this
case,

G = ⟨a, b, c | a7 = b3 = c3 = e, bc = cb, bab−1 = a2, cac−1 = a⟩
is the presentation of G.

For a continuation of this example, see Exercise 2.9.7.

9.4. Groups of Order 171. We show in this example that up to isomorphism
there are exactly five groups of order 171. Let G be a finite group of order 171 =
19 ·32. If G is abelian, then by Theorem 2.8.7, G is isomorphic to either Z/19×Z/9,
or Z/19 × Z/3 × Z/3. Assume from now on that G is nonabelian. Let P be a 19-
Sylow subgroup. Then P = ⟨a⟩ is cyclic. The number of conjugates of P divides
9 and is of the form 1 + 19k. Therefore, we conclude that k = 0 and P is normal.
Let Q be a 3-Sylow subgroup. We know that Q is abelian. Since P ∩Q = ⟨e⟩, by
Theorem 2.2.16 we see that PQ = G. By Corollary 2.4.17, G = P ⋊ Q and the
action by Q on P is conjugation. By Example 2.4.9, the homomorphism

θ : Q→ Aut(P ) ∼= U19

is defined by θ(x) = αx−1 , where αx−1 is the inner automorphism of P corresponding
to conjugation by x−1. If the image of θ is ⟨1⟩, then every element of Q commutes
with every element of P and G is abelian. By our assumption, we can assume θ is
not the trivial map. By Theorem 2.3.30, Aut(P ) ∼= U19 which is an abelian group
of order ϕ(19) = 18. Since Q has order 9, this implies ker(θ) has order 1 or 3, and
im(θ) has order 3 or 9. A direct computation shows that U19 is cyclic and has 6
elements of order 9, namely [4], [5], [6], [9], [16], and [17]. The 2 elements of order
3 are [7] and [11]. There are three cases.

Case 1: Assume Q = ⟨b⟩ is cyclic and im θ has order 9. Then θ maps Q
isomorphically onto the subgroup of order 9 in Aut(P ). If necessary, we replace
b with the generator of Q that maps to [4] ∈ U19. We have bab−1 = a4. The
presentation of G in terms of generators and relations is

G = ⟨a, b | a19 = b9 = e, bab−1 = a4⟩.

Case 2: Assume Q = ⟨b⟩ is cyclic and im θ has order 3. Then the kernel of θ
is the cyclic subgroup of order 3. Under θ, an element of order 9 is mapped onto
one of the elements of order 3. If necessary, we replace b with a generator of Q
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that maps to [7] ∈ U19. We have bab−1 = a7. The presentation of G in terms of
generators and relations is

G = ⟨a, b | a19 = b9 = e, bab−1 = a7⟩.
Case 3: Assume Q is a direct sum of two cyclic groups of order 3. Since U19

has a unique subgroup of order 3, the kernel of θ is a group of order 3. Suppose
ker(θ) = ⟨c⟩. Because the image of θ contains both [7] and [11], we pick b ∈ Q−⟨c⟩
such that θ(b) = [7]. Then Q = ⟨b, c⟩, cac−1 = a, and bab−1 = a7. Then in this
case,

G = ⟨a, b, c | a19 = b3 = c3 = e, bc = cb, bab−1 = a7, cac−1 = a⟩
is the presentation of G.

9.5. Groups of Order 225. In this example we show that there are at least
six nonisomorphic groups of order 225. We show how to construct two nonisomor-
phic nonabelian groups of order 225 = 3252. Let G denote a group of order 225.
Let P be a 5-Sylow subgroup of G. By Theorem 2.7.7, the number of conjugates
of P divides 9 and is congruent to 1 modulo 5. We conclude that P is normal in
G. Let Q be a 3-Sylow subgroup of G. The number of conjugates of Q divides 25
and is congruent to 1 modulo 3. Therefore, either Q is normal in G, or Q has 25
conjugates. By Theorem 2.7.1 (2), both P and Q are abelian.

Case 1: Assume P and Q are both normal in G. By Theorem 2.7.8, G is the
internal direct product of P and Q, hence G is abelian. By Theorem 2.8.7, G is
isomorphic to either

Z/9× Z/25
or

Z/9× Z/5× Z/5
or

Z/3× Z/3× Z/25
or

Z/3× Z/3× Z/5× Z/5.
Case 2: Assume P is normal and Q has 25 conjugates. Then Q acts by conju-

gation on P and there is a homomorphism of groups θ : Q → Aut(P ). There are
two subcases to consider.

Subcase 2.1: Assume P is cyclic. By Theorem 2.3.30, Aut(P ) ∼= U25 is an
abelian group of order ϕ(25) = 20. Since Aut(P ) has no subgroup of order 3, θ
is the trivial homomorphism. Therefore, every element of Q commutes with every
element of P . By Exercise 2.5.22, G is the internal direct product of P and Q,
hence this case reduces to Case 1.

Subcase 2.2: Assume P ∼= Z/5×Z/5. Then Aut(P ) is isomorphic to GL2(Z/5).
We will prove this in Proposition 4.5.7. As seen in Exercise 2.9.11, there are sub-
groups of order 3 in Aut(P ). Without being more specific, we end this example by
showing how to construct two nonisomorphic nonabelian groups of order 225. Let
α ∈ Aut(P ) be an automorphism of P of order 3. There are two cases for Q.

Subcase 2.2.1: Assume Q = ⟨a | a9 = e⟩ is cyclic of order 9. Then a 7→ α
induces θ : Q → Aut(P ). The kernel of θ has order 3, the image of θ has order 3.
Then the semidirect product P ⋊Q is a nonabelian group of order 225.

Subcase 2.2.2: Assume Q = ⟨a, b | a3 = b3 = e⟩ is a noncyclic group of order 9.
Then a 7→ α, b 7→ e induces θ : Q→ Aut(P ). The kernel of θ is ⟨b⟩, which has order
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3, the image of θ is ⟨α⟩, which has order 3. Then the semidirect product P ⋊Q is
a nonabelian group of order 225.

9.6. Groups of Order p3. Let p be an odd prime. In this example we show
that up to isomorphism there are exactly five groups of order p3. For the classi-
fication of groups of order 8, see Exercise 2.9.9. Let G be an arbitrary group of
order p3. If G is abelian, then by Theorem 2.8.7, G is isomorphic to either Z/p3,
Z/p2 × Z/p, or Z/p× Z/p× Z/p. Assume from now on that G is nonabelian. The
proof is divided into two parts. First we show in Examples 2.9.2 and 2.9.3 below
that there exist two nonisomorphic nonabelian groups of order p3. The second part
of the proof shows that there are at most two nonisomorphic nonabelian groups of
order p3.

9.6.1. Existence of Two Nonabelian Groups. We show by example that there
exist two nonisomorphic nonabelian groups of order p3. The group in Example 2.9.2
is a semidirect product of a cyclic group of order p2 with a cyclic group of order p.
The group in Example 2.9.3 is a semidirect product of a noncyclic p-group of order
p2 with a cyclic group of order p.

Example 2.9.2. Let A = ⟨a⟩ be a cyclic group of order p2. Then Aut(A) is
isomorphic to Up2 , an abelian group of order ϕ(p2) = p(p − 1) (Theorem 2.3.30).
Therefore, there is a unique p-Sylow subgroup of Up2 of order p. Let r be any
integer in Np2 such that the congruence class [r] has order p in Up2 . Let ξ ∈ Aut(A)
be the automorphism of A of order p defined by ξ(a) = ar. If C is the cyclic group
⟨ξ⟩, then the semidirect product A ⋊ C is a nonabelian group of order p3 which
contains a normal subgroup isomorphic to A.

Example 2.9.3. Let F be the prime field Z/p. Let V = F 2 = {(x1, x2) | xi ∈
F} where the binary operation on V is written additively. Then V is isomorphic

to Z/p × Z/p. Let θ ∈ GL2(F ) be the matrix

[
1 0
1 1

]
. Then θ2 =

[
1 0
2 1

]
, θ3 =[

1 0
3 1

]
, . . . , θp−1 =

[
1 0

p− 1 1

]
, θp =

[
1 0
0 1

]
. This shows that C = ⟨θ⟩ is a cyclic

subgroup of GL2(F ) of order p. Although we have not proved it yet, using matrices
and properties of Hom we will prove in Proposition 4.5.7 that Aut(V ) ∼= GL2(F ).
Therefore, the semidirect product V ⋊C is a nonabelian group of order p3 containing
a normal subgroup isomorphic to V . Before ending this example, we show that every
element of the semidirect product has order 1 or p. Let i ∈ Z. Then

I2 + θi + θ2i + · · ·+ θ(p−1)i =

[
p 0

0 + i+ 2i+ · · ·+ (p− 1)i p

]
=

[
0 0

ip(p− 1)/2 0

]
=

[
0 0
0 0

]
.
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Let z = (x, θi) be a typical element of the semidirect product V ⋊ C. Then

z2 = (x, θi)(x, θi) = (x+ θi(x), θ2i) =
(
(I2 + θi)(x), θ2i

)
z3 =

(
(I2 + θi)(x), θ2i

)
(x, θi) =

(
(I2 + θi + θ2i)(x), θ3i

)
...

zp =
(
(I2 + θi + θ2i + · · ·+ θ(p−1)i)(x), θpi

)
= (0, I2).

This shows z has order 1 or p. The group in Example 2.9.2 has elements of order
p2, hence is not isomorphic to the group in this example.

9.6.2. Uniqueness of Two Nonabelian Groups. To complete our classification,
we show that there are at most two nonisomorphic groups of order p3. The proof
consists of a sequence of three lemmas. In what follows, G is a nonabelian group of
order p3. The center of G is Z(G). By Exercise 2.3.46, the commutator subgroup
of G, denoted G′, is the subgroup of G generated by the set {x−1y−1xy | x, y ∈ G}.

Lemma 2.9.4. In the above context, the commutator subgroup G′ is equal to the
center Z(G) and is a cyclic group of order p.

Proof. By Theorem 2.7.1, Z(G) has order p or p2 and G/Z(G) is an abelian
group. If [G : Z(G)] = p, then G/Z(G) is cyclic and by Exercise 2.3.42 (4) this
cannot happen since G is nonabelian. Therefore, Z(G) is a cyclic group of order p.
Since G/Z(G) is abelian, Exercise 2.3.46 implies G′ ⊆ Z(G). Since G′ ̸= ⟨e⟩ and
Z(G) is simple, this proves G′ = Z(G). □

The next lemma contains some useful commutator identities for the group G.

Lemma 2.9.5. In the above context, if x, y ∈ G and n ≥ 0, then

(1) (x−1y−1xy)n = x−1y−nxyn = x−ny−1xny, and

(2) (xy)n = xnyn(x−1yxy−1)(
n
2).

Proof. Both parts are trivial if n ≤ 1.
(1): We prove the first identity. The proof of the second is left to the reader.

Inductively assume n ≥ 1 and that the identity holds for n. The string of equalities

(x−1y−1xy)n+1 = (x−1y−1xy)(x−1y−1xy)n

= x−1y−1xy(x−1y−nxyn)

= x−1(y−1xyx−1)y−nxyn

= x−1y−n(y−1xyx−1)xyn

= x−1y−n−1xyn+1.

follow from our induction hypothesis, and Lemma 2.9.4.
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(2): Inductively assume n ≥ 1 and that the identity holds for n. The string of
equalities

(xy)n+1 = (xy)nxy

= xnyn(x−1yxy−1)(
n
2)xy

= xnynxy(x−1yxy−1)(
n
2)

= xn(xx−1)ynx(y−nyn)y(x−1yxy−1)(
n
2)

= xn+1(x−1ynxy−n)yn+1(x−1yxy−1)(
n
2)

= xn+1(x−1yxy−1)nyn+1(x−1yxy−1)(
n
2)

= xn+1yn+1(x−1yxy−1)n(x−1yxy−1)(
n
2)

= xn+1yn+1(x−1yxy−1)(
n+1
2 )

follow from our induction hypothesis, Lemma 2.9.4, and Part (1). □

Lemma 2.9.6. If p is an odd prime and G is a nonabelian group of order p3,
then in terms of generators and relations, G has presentation

(1) ⟨a, b, c | ap = bp = cp = e, ac = ca, bc = cb, c = a−1b−1ab⟩, or
(2) ⟨a, b | ap2 = bp = e, b−1ab = ap+1⟩.

Proof. Every element of G has order 1, p, or p2. We consider two mutually
exclusive cases.

Case 1: Assume G has no element of order p2. Let a, b ∈ G be any two
elements of G that do not commute with each other. Then c = a−1b−1ab ̸= e and
by Lemma 2.9.4, Z(G) = ⟨c⟩. Since a is not central, a ̸∈ ⟨c⟩. Since c commutes
with a, the subgroup ⟨a, c⟩ is abelian of order p2 and is normal. Since a and b do
not commute, b ̸∈ ⟨a, c⟩. Hence b maps to a generator of the cyclic group G/⟨a, c⟩.
Then G has presentation in Part (1).

Case 2: Assume there exists an element a in G of order p2. Let b be in G−⟨a⟩.
First we show that b can be chosen such that |b| = p. Assume |b| = p2. Since G/⟨a⟩
is abelian, we know Z(G) = G′ ⊆ ⟨a⟩, by Lemma 2.9.4. Therefore, Z(G) is equal
to ⟨ap⟩, the unique subgroup of order p in ⟨a⟩. For the same reason, Z(G) = ⟨bp⟩.
There exists k such that gcd(k, p) = 1 and ap = bkp. By Lemma 2.2.18, ⟨bk⟩ = ⟨b⟩.
Replace b with bk and assume bp = ap. This implies apb−p = e. Since p is an odd
prime,

(
p
2

)
is a multiple of p (Exercise 1.2.21). The exponent of Z(G) = G′ is p.

Together with Lemma 2.9.5 (2), we have

(ab−1)p = apb−p(a−1b−1ab)(
p
2)

= e.
(9.2)

Now G is generated by a and b, and b is in G − ⟨a⟩. This implies G is generated
by a and ab−1. By (9.2), the order of ab−1 is p. Replace b with ab−1. We now
have: b is in G − ⟨a⟩, |b| = p, and G is generated by a and b. Let c = a−1b−1ab.
Then c is a generator of Z(G) = ⟨ap⟩. For some j, gcd(j, p) = 1 and cj = ap. By
Lemma 2.9.5 (1), cj = a−1b−jabj = ap. Since ⟨b⟩ = ⟨bj⟩, replace b with bj and we
have b−1ab = ap+1. This shows G has presentation in Part (2) of the lemma. □
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9.7. Exercises.

Exercise 2.9.7. This exercise is a continuation of Example 9.3. Let G be a
nonabelian group of order 63. Show that G contains a cyclic subgroup N of order
21 and N is normal in G. Show that the center of G is a cyclic group of order 3.

Exercise 2.9.8. Classify up to isomorphism all groups of order 99.

Exercise 2.9.9. Show that up to isomorphism there are 5 groups of order 8,
namely Z/8, Z/4×Z/2, Z/2×Z/2×Z/2, the dihedral group D4, and the quaternion
8-group Q8 of Example 2.1.19.

Exercise 2.9.10. (The square roots of unity in GL2(Z/5)) The general linear
group of 2-by-2 matrices over the field Z/5, denoted GL2(Z/5), is the multiplicative

group of invertible matrices

(
a b
c d

)
with entries in the field Z/5. In this exercise

the reader is asked to find all matrices M in GL2(Z/5), such that M2 = I2, where
I2 denotes the identity matrix. The following is a suggested outline to show that
there are 31 elements of order two in GL2(Z/5).

(1) Let M =

[
a b
c d

]
and assume M2 = I2. Show that a, b, c, d satisfy the

equations: a2 − d2 = 0, bc = 1− a2.

(2) If a = 0, then M is of the form

[
0 b
b−1 0

]
, where b = 1, 2, 3, 4, so there are

4 such matrices.

(3) If a = ±1, thenM has one of the forms ±
[
1 0
0 1

]
, ±
[
1 b
0 −1

]
, ±
[
1 0
c −1

]
,

where b = 0, 1, 2, 3, 4, c = 1, 2, 3, 4. There are 20 such matrices, one of
them has order 1, the rest order 2.

(4) If a = ±2, then M has one of the forms ±
[
2 b
c −2

]
, where bc = 2. There

are 8 such matrices.

Exercise 2.9.11. (The cube roots of unity in GL2(Z/5)) The general linear
group of 2-by-2 matrices over the field Z/5, denoted GL2(Z/5), is the multiplicative

group of invertible matrices

(
a b
c d

)
with entries in the field Z/5. In this exercise

the reader is asked to find all matrices M in GL2(Z/5), such that M3 = I2, where
I2 denotes the identity matrix. The following is a three-step outline to show that
there are 20 elements of order three in GL2(Z/5).

(1) Let M =

[
a b
c d

]
. Show that if M2 +M + I2 = 0, then M3 = I2.

(2) Show that a, b, c, d satisfy the equations: bc = −(a2 + a+ 1), d = 4− a.
(3) Show that there are 5 choices for a and for each a there are 4 choices for

the ordered triple (b, c, d).
(4) This part assumes the reader has basic familiarity with field extensions.

Show that every element of order three in the ring of 2-by-2 matrices over
the field Z/5 is a root of the polynomial equation x2 + x + 1 = 0. Prove
that every element of order 3 in GL2(Z/5) is in the list of Part (3).

Exercise 2.9.12. Show how to construct a nonabelian group of order 75.
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10. Chain Conditions

10.1. Nilpotent Groups and Solvable Groups.

Definition 2.10.1. Let G be a group. Set Z0 = ⟨e⟩ and Z1 = Z(G), the center
of G. Then Z1 = {x ∈ G | xyx−1y−1 ∈ Z0 for all y ∈ G}. By Exercise 2.3.42, Z1

is an abelian normal subgroup of G. Inductively assume that n ≥ 1 and we have
the chain of normal subgroups Z0 ⊆ Z1 ⊆ · · · ⊆ Zn in G. Let ηn : G → G/Zn be
the natural map. Then Zn+1 is defined by the rules

Zn+1 = η−1
n (Z(G/Zn))

= {x ∈ G | xyx−1y−1 ∈ Zn for all y ∈ G}.

By Theorem 2.3.15, Zn+1 is a normal subgroup of G, Zn ⊆ Zn+1, and the quotient
group Zn+1/Zn is isomorphic to Z(G/Zn), hence is abelian. The ascending chain
of subgroups Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ Zn ⊆ Zn+1 ⊆ · · · is called the ascending
central series of G.

Definition 2.10.2. Let G be a group. We say G is nilpotent , if the ascending
central series of G converges to G. That is, if Zn = G for some n ≥ 1.

Lemma 2.10.3. Let p be a prime and G a finite p-group. Then G is nilpotent.

Proof. By Theorem 2.7.1, G has a nontrivial center. If G is abelian, then
Z1 = G. Otherwise, Z1 ⊊ G, and the quotient G/Z1 is a p-group of order less than
|G|. Since G is finite, Zn = G for some n ≥ 1. □

Lemma 2.10.4. If A and B are groups, then Zn(A×B) = Zn(A)× Zn(B).

Proof. The proof is by induction on n. By Exercise 2.3.42, Z(A × B) =
Z(A) × Z(B), so the result is true for n = 1. Assume inductively that j ≥ 1 and
Zj(A×B) = Zj(A)× Zj(B). By Exercise 2.5.23,

A×B

Zj(A×B)
=

A×B

Zj(A)× Zj(B)
=

A

Zj(A)
× B

Zj(B)
.

By Exercises 2.3.42 and 2.5.23,

Z

(
A×B

Zj(A×B)

)
= Z

(
A

Zj(A)
× B

Zj(B)

)
= Z

(
A

Zj(A)

)
× Z

(
B

Zj(B)

)
=
Zj+1(A)

Zj(A)
× Zj+1(B)

Zj(B)

=
Zj+1(A)× Zj+1(B)

Zj(A)× Zj(B)

=
Zj+1(A)× Zj+1(B)

Zj(A×B)
.

This proves Zj+1(A×B)/Zj(A×B) =
(
Zj+1(A)× Zj+1(B)

)
/Zj(A×B). It fol-

lows from Theorem 2.3.15 that Zj+1(A×B) = Zj+1(A)× Zj+1(B). This completes
the proof. □

Proposition 2.10.5. The direct product of a finite number of nilpotent groups
is nilpotent.
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Proof. Let A and B be nilpotent groups. We show that A × B is nilpotent.
A finite induction argument proves the result for a general finite product. By
hypothesis, there exists n ≥ 1 such that A = Zm(A) and B = Zm(B). By Lemma
Zm(A×B) = Zm(A)× Zm(B) = A×B. □

Lemma 2.10.6. Let G be a nilpotent group and H a proper subgroup of G. Then
H is a proper subgroup of NG(H), the normalizer of H in G.

Proof. For some n ≥ 1, we are given that Zn = G. Let k be the largest
integer such that Zk ⊆ H. Let a ∈ Zk+1 −H. Then aha−1 ≡ h (mod Zk) implies
there exists z ∈ Zk such that aha−1 = zh. But zh ∈ H, hence a ∈ NG(H)−H. □

Theorem 2.10.7. Let G be a finite group. Then G is nilpotent if and only if
G is the internal direct product of its Sylow subgroups.

Proof. Assume G is a finite nilpotent group. Let p be a prime divisor of |G|
and P a Sylow p-subgroup of G. First we show that P is a normal subgroup of G.
By Corollary 2.7.6 (3), NG(NG(P )) = NG(P ). By Lemma 2.10.6, NG(P ) = G. By
Proposition 2.4.13, P is a normal subgroup of NG(P ) = G. By Proposition 2.7.8,
G is the internal direct product of its Sylow subgroups. The converse follows from
Lemma 2.10.3 and Proposition 2.10.5. □

Definition 2.10.8. Let G be a group. By Exercise 2.3.46, the commutator
subgroup of G, denoted G′, is the subgroup of G generated by the set {x−1y−1xy |
x, y ∈ G}. Moreover, G′ is a normal subgroup of G and the quotient group G/G′

is abelian. Set G(0) = G and G(1) = G′. Recursively, for n ≥ 1, define G(n+1) to
be the commutator subgroup of G(n). Then G(n+1) is a normal subgroup of G(n)

and the quotient group G(n)/G(n+1) is an abelian group. The descending chain of
subgroups G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · ⊇ G(n) ⊇ G(n+1) ⊇ · · · ⊇ ⟨e⟩ is called the
derived series of G.

Definition 2.10.9. A group G is said to be solvable if there is a descending
chain of subgroups G = G0 ⊇ G1 ⊇ · · · ⊇ Gm = ⟨e⟩ starting with G and ending
with ⟨e⟩ such that for 0 < i ≤ m, Gi is a normal subgroup of Gi−1 and the quotient
Gi/Gi−1 is an abelian group. In this case, we say G0, G1, . . . , Gm is a solvable series
for G.

Example 2.10.10. It is proved in Theorem 2.7.1 that a finite p-group is solv-
able.

Example 2.10.11. If G is a finite abelian group, then ⟨e⟩ ⊆ G is a solvable
series for G.

Lemma 2.10.12. Let G be a group. If G is nilpotent, that is, if there exists
k ≥ 1 such that Zk = G, then G is solvable.

Proof. Assume the ascending central series ⟨e⟩ = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆
Zk−1 ⊆ Zk = G begins at ⟨e⟩ and ends at G. Since each quotient Zn+1/Zn is
abelian, this is a solvable series. □

Lemma 2.10.13. Let G be a group. Then G has a solvable series if and only if
for some k ≥ 1, the kth derived subgroup G(k) is equal to ⟨e⟩. In other words, G is
solvable if and only if the derived series converges to ⟨e⟩.
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Proof. If G(k) = ⟨e⟩, then the derived series is a solvable series. Conversely,
assume G = G0 ⊇ G1 ⊇ · · · ⊇ Gm = ⟨e⟩ is a solvable series. Since G1 is a
normal subgroup of G and G/G1 is abelian, by Exercise 2.3.46 (3), G′ ⊆ G1. Then
{aba−1b−1 | a, b ∈ G′} is a subset of {aba−1b−1 | a, b ∈ G1}. So G(2) = G′′ ⊆ G′

1.
But G2 is a normal subgroup of G1 and G1/G2 is abelian, so G′

1 ⊆ G2. Taken
together, we have G(2) ⊆ G2. Iterating this argument shows that G(m) ⊆ Gm =
⟨e⟩. □

Corollary 2.10.14. The symmetric group Sn is solvable if and only if n ≤ 4.

Proof. If n is less than 3, then Sn is abelian. A solvable series for S3 is
⟨e⟩ ⊆ A3 = ⟨e, (123), (132)⟩ ⊆ S3. It follows from Exercise 2.6.16 that ⟨e⟩ ⊆
⟨e, (12)(34), (13)(24), (14)(23)⟩ ⊆ A4 ⊆ S4 is a solvable series for S4. Let n ≥ 5 and
let G = Sn. By Corollary 2.6.15, G′ = An. By Theorem 2.6.12, An is nonabelian
and simple. Therefore G′ = G(2) = An which implies the derived series for G
converges to An. By Lemma 2.10.13, G is not solvable. □

10.2. Composition Series.

Definition 2.10.15. Let G be a group and suppose there is a strictly descend-
ing finite chain of subgroups

G = G0 ⊋ G1 ⊋ G2 ⊋ · · · ⊋ Gn = ⟨e⟩

starting with G = G0 and ending with Gn = ⟨e⟩. The length of the chain is n.
A composition series for G is a chain such that for i = 1, . . . , n, Gi is a normal
subgroup of Gi−1 and Gi−1/Gi is simple. If G has no composition series, define
ℓ(G) = ∞. Otherwise, let ℓ(G) be the minimum of the lengths of all composition
series of G.

Lemma 2.10.16. Let G be a finite group. Then G has a composition series.

Proof. The reader should verify that a strictly descending chain of subgroups
of maximum length such that Gi is a normal subgroup of Gi−1 is a composition
series. □

10.3. Exercises.

Exercise 2.10.17. Let G be a group. Prove:

(1) For each k ≥ 1, the kth derived subgroup, G(k), is a normal subgroup of
G.

(2) If θ : G→ H is an epimorphism, then θ(G(k)) = H(k).

Exercise 2.10.18. Let G be a group. Prove:

(1) If G is solvable and H is a subgroup of G, then H is solvable.
(2) If G is solvable and θ : G→ H is an epimorphism, then H is solvable.
(3) Let N be a normal subgroup of G. If N and G/N are solvable, then G is

solvable.
(4) If G ̸= ⟨e⟩ and G is solvable, then there exists an abelian normal subgroup

A ⊆ G, A ̸= ⟨e⟩.

Exercise 2.10.19. Let n ≥ 3.
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(1) Show that there is a homomorphism θ : D2n → Dn from the dihedral
group D2n onto the dihedral group Dn and the kernel of θ is the center
of D2n.

(2) Let 2m be the highest power of 2 that divides n. Show that the central

ascending series of Dn is Z(0) ⊆ Z(1) ⊆ · · · ⊆ Z(m), where Z(i) = ⟨Rn/2i⟩.
(3) Show that if n is odd, then D2n is the internal direct sum of a cyclic

subgroup of order two (the center) and a subgroup isomorphic to Dn.

Exercise 2.10.20. Let G be a finite solvable group. Prove:

(1) If G is abelian and G = G0 ⊋ G1 ⊋ · · · ⊋ Gm = ⟨e⟩ is a composition
series, then Gi−1/Gi is a cyclic group and [Gi−1 : Gi] is a prime number.

(2) G has a composition series G = G0 ⊋ G1 ⊋ · · · ⊋ Gm = ⟨e⟩ such that
Gi−1/Gi is a cyclic group and [Gi−1 : Gi] is a prime number.

Exercise 2.10.21. Let H and K be groups and assume K acts on H as a group
of automorphisms. Show that the semidirect product G = H ⋊K is solvable if and
only if H and K are both solvable. Use this to show that the following groups are
solvable.

(1) Dn, for all n ≥ 3.
(2) Any semidirect product G = H ⋊ K, where H and K are both abelian

groups.



CHAPTER 3

Rings

A ring is an algebraic structure which has two binary operations called addi-
tion and multiplication. We have already seen concrete examples of rings. The
prototypical example of a ring is the ring of integers, Z. Its close relative is the
ring of integers modulo n, Z/(n). The fields Q, R, and C are rings. The set Mn(R)
all of n-by-n matrices over R is an example of a ring in which multiplication is not
commutative. The set of polynomials, the set of rational functions, and the set of
power series with coefficients over the field R are rings. The set of all continuous
functions, differentiable functions, and integrable functions from R to R are rings.
The set of all functions from R to R that are continuous at a specific point is a
ring. If A is an abelian group, the set Hom(A,A) of all endomorphisms on A is a
ring. Ring Theory can be viewed as the axiomatic abstraction of these examples.

1. Definitions and Terminology

Definition 3.1.1. A ring is a nonempty set R with two binary operations,
addition written +, and multiplication written · or by juxtaposition. Under ad-
dition (R,+) is an abelian group with identity element 0. Under multiplication
(R, ·) is associative and contains an identity element, denoted by 1. Multiplication
distributes over addition from both the left and the right. If (R, ·) is commutative,
then we say R is a commutative ring. The trivial ring is {0}, in which 0 = 1. If R
is not the trivial ring, the reader is asked to prove in Proposition 3.1.2 that 0 ̸= 1.

Proposition 3.1.2. Let R be a ring. In the following, a, b, a1, . . . , an, b1, . . . , bm
all represent elements of R and n,m are natural numbers in N. Then the following
are true.

(1) 0a = a0 = 0.
(2) (−a)b = a(−b) = −(ab).
(3) (−a)(−b) = ab.
(4) (na)b = a(nb) = n(ab).
(5)

(∑n
i=1 ai

)(∑m
j=1 bj

)
=
∑n
i=1

∑m
j=1 aibj.

(6) If R contains more than one element, then 0 ̸= 1.

Proof. Is left to the reader. □

Definition 3.1.3. Let R be a ring and a ∈ R. We say a is a left zero divisor
if a ̸= 0 and there exists b ̸= 0 such that ab = 0. We say a is a right zero divisor if
a ̸= 0 and there exists b ̸= 0 such that ba = 0. If a is both a left zero divisor and
right zero divisor, then we say a is a zero divisor. We say a is left invertible in case
there is b ∈ R such that ba = 1. We say a is right invertible in case there is b ∈ R
such that ab = 1. If a is both left invertible and right invertible, then we say a is
invertible. In this case, the left inverse and right inverse of a are equal and unique

115
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(Exercise 2.1.23 (2)). An invertible element in a ring R is also called a unit of R.
If R ̸= (0) and R has no zero divisors, then we say R is a domain. A commutative
domain is called an integral domain. A domain in which every nonzero element is
invertible is called a division ring. A commutative division ring is called a field.
The set of all invertible elements in a ring R is a group which is denoted Units(R)
or R∗ and is called the group of units in R.

Remark 3.1.4. Notice that in Definition 3.1.3, we have explicitly required a
domain to have at least two elements. The only ring with order one is the trivial
ring (0). We will see in Example 3.2.2 (4) below that {0} plays the role of a terminal
object in the category of rings. Besides this, there is no significant result that can
be proved about the ring {0}. It has no proper ideals, is not a subring of any larger
ring, and there is no nontrivial module or algebra over {0}.

Example 3.1.5. Standard examples of rings and fields are listed here.

(1) The ring of integers Z is an integral domain.
(2) Using Proposition 1.2.9, one can verify that the ring of integers modulo n,

denoted Z/(n), is a commutative ring containing n elements. The group
of units in Z/(n) is Un = {[u] | gcd(u, n) = 1} (Lemma 1.2.12). If p is
a prime number, then Up is equal to the set of all nonzero congruence
classes hence Z/(p) is a field.

(3) Denote by Q the field of rational numbers, by R the field of real numbers
and by C the field of complex numbers (see Section 1.4).

(4) If k is a field and n ≥ 1, the ring of n-by-n matrices over k is denoted
by Mn(k). If n > 1, then Mn(k) is noncommutative. The group of
units in the ring of matrices Mn(k) is called the general linear group
GLn(k). When n = 2, we showed in Example 2.1.21 that GL2(k) ={(

a b
c d

)
∈M2(F ) | ad− bc ̸= 0

}
. The general result for any n ≥ 2 is

proved in Corollary 6.3.10.
(5) As in Section 1.5, if R is any ring, the ring of n-by-n matrices over R

is denoted by Mn(R). It follows from Propositions 1.5.1 and 1.5.2 that
Mn(R) is a ring.

Example 3.1.6. Let R be a commutative ring and G a finite multiplicative
group. Assume the order of G is n and enumerate the elements G = {g1, . . . , gn},
starting with the group identity g1 = e. Let R(G) be the set of all formal sums

R(G) = {r1g1 + · · ·+ rngn | ri ∈ R}.

Define two binary operations on R(G). Addition is defined by

n∑
i=1

rigi +

n∑
i=1

sigi =

n∑
i=1

(ri + si)gi

and multiplication by( n∑
i=1

rigi

)( n∑
i=1

sigi

)
=

n∑
i=1

n∑
j=1

(risj)(gigj).

The additive identity is 0 = 0g1 + 0g2 + · · · + 0gn. The multiplicative identity is
1 = 1g1 + 0g2 + · · ·+ 0gn. Then R(G) is a ring. We call R(G) a group ring.
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If R is a commutative ring and G is a group which is not necessarily finite, we
can still define the group ring R(G). In this case, take R(G) to be the set of all
finite formal sums

R(G) =

{∑
g∈G

rgg | rg ∈ R and rg = 0 for all but finitely many g

}
.

If g ∈ G, then in R(G) we have the identity gg−1 = g−1g = 1. Therefore, we can
view G as a subgroup of the group of units in the group ring R(G).

Example 3.1.7. If A is an abelian group, let Hom(A,A) be the set of all
homomorphisms from A to A. Turn Hom(A,A) into a ring by coordinate-wise
addition and composition of functions:

(f + g)(x) = f(x) + g(x)

(fg)(x) = f(g(x)).

See Exercise 2.8.13. For computations of Hom(Z,Z) ∼= Z and Hom(Z/n,Z/n) ∼=
Z/n, see Exercises 3.1.16 and 3.1.17.

Definition 3.1.8. If R is any ring, the opposite ring of R is denoted Ro. As
an additive abelian group, the opposite ring of R is equal to R. However, the
multiplication of Ro is reversed from that of R. Writing the multiplication of R by
juxtaposition and multiplication of Ro with the asterisk symbol, we have x∗y = yx.

If G is a group and Go denotes the opposite group, then G is isomorphic to Go

(Exercise 2.1.24). If R is a noncommutative ring, then R and Ro are not necessarily
isomorphic to each other. To construct a ring R such that R is not isomorphic to
Ro is a subject for a more advanced book on the theory of rings. There is an
example in [9, Exercise 7.6.26] that is attributed to Lance Small. In Ring Theory
the opposite ring plays an important role. We will see in Proposition 4.5.7 that
the ring of endomorphisms of a finitely generated free module over a ring R is
isomorphic to the ring of matrices over Ro. The opposite ring appears frequently
throughout the study of separable algebras. The interested reader is referred to the
book [10].

Definition 3.1.9. If A is a ring and B ⊆ A, then we say B is a subring of A
if B contains both 0 and 1 and B is a ring under the addition and multiplication
rules of A. Let A be a ring. The center of A is the set

Z(A) = {x ∈ A | xy = yx (∀y ∈ A)}.

The reader should verify that Z(A) is a subring of A and Z(A) is a commutative
ring. If x ∈ Z(R), then we say x is central.

Example 3.1.10. Let R = Z/6 = {0, 1, 2, 3, 4, 5} be the ring of integers modulo
6. Let B = {0, 2, 4} and C = {0, 3}. The reader should verify that B is a ring of
order 3. In fact, B is isomorphic to the field Z/3. Since B does not contain 1, B is
not a subring of R. Likewise, C is a ring, isomorphic to the field Z/2, but C is not
a subring of R. The sets B and C are examples of ideals (see Example 3.2.1).

Example 3.1.11. If n > 1, then the additive group (Z/n,+) is generated by
1. Therefore, the ring Z/n has no proper subring.
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Example 3.1.12. Let R be a commutative ring and Mn(R) the ring of n-by-n
matrices over R, where n ≥ 2. Let

L = {(rij) | rij = 0 if i < j}
be the set of all lower triangular matrices in Mn(R). If A = (aij) and B = (bij) are
lower triangular matrices in L, then the product AB is the matrix C = (cij) where

cij =

n∑
k=1

aikbkj =


0 if i < j

aiibii if i = j∑i
k=j aikbkj if i > j.

This shows that the product of lower triangular matrices is lower triangular and
the product of diagonal matrices is diagonal. It follows that L is a noncommutative
subring ofMn(R). Likewise, the set U of all upper triangular matrices is a noncom-
mutative subring of Mn(R). The intersection D = L ∩ U is the set of all diagonal
matrices over R. Then D is a commutative subring of Mn(R). See Example 3.2.12
for a continuation of this example.

Example 3.1.13. Let R be a commutative ring and M2(R) the ring of two-by-
two matrices over R. The proof given in Example 2.3.38 can be readily adapted
to show that the center of the ring M2(R) is equal to the set of scalar matrices{(

a 0
0 a

)
| a ∈ R

}
. Let n ≥ 2. Using a different proof, we show that the center

of the ring Mn(R) is equal to the set of scalar matrices over R. Let A = (aij) be
a central matrix. For each ordered pair (i, j), where 1 ≤ i, j ≤ n, let eij be the
elementary matrix with 1 in position (i, j) and 0 elsewhere. In the following, we
use the following notation: Ci(A) denotes column i of A, Rj(A) denotes row j of
A, and Mrs(0) denotes the r-by-s matrix with 0 in every position. Then

eijA =

Mi−1,n(0)
Rj(A)

Mn−i,n(0)

 .

In words, row i of eijA is equal to row j of A and all other entries of eijA are equal
to 0. The entry in position (i, j) of eijA is ajj . Also,

Aeij =
(
Mn,j−1(0) Ci(A) Mn,n−j(0)

)
.

In words, column j of Aeij is equal to column i of A and all other entries of eijA
are equal to 0. The entry in position (i, j) of eijA is aii. Since A commutes with
eij , we conclude that all elements of A that are not on the diagonal are equal to 0.
If we assume i ̸= j, this also means ajj = aii. Therefore, A is a scalar matrix. It is
routine to check that a scalar matrix is central.

Example 3.1.14. If F is a field the ring of quaternions over F is the four-
dimensional vector space over F with basis {1, i, j, k} with multiplication defined
by extending these relations:

i2 = j2 = k2 = −1

ij = −ji = k

ik = −ki = −j
by associativity and distributivity. We denote the ring of quaternions by H(F ), or
HF . This terminology is due to W. R. Hamilton, who first discovered the ring of
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real quaternions HR. Notice that when F is a field with the property that −1 ̸= 1,
then under multiplication the set {1,−1, i,−i, j,−j, k,−k} is Q8, the quaternion
8-group of Example 2.1.19. The ring of quaternions HF is a division ring if F is
equal to either Q or R (Exercise 3.1.18). The ring of quaternions HC is isomorphic
to M2(C) (Exercise 3.1.20). The ring of quaternions H(Z/(2)) is commutative
(Exercise 3.1.19). The product formula for multiplying two quaternions x = a +
bi+ cj + dk and y = e+ fi+ gj + hk is

xy = (a+ bi+ cj + dk)(e+ fi+ gj + hk)

= (ae− bf − cg − dh) + (af + be+ ch− dg)i

+ (ag − bh+ ce+ df)j + (ah+ bg − cf + de)k

and is derived from the relations above. We identify F with F · 1. Thus, F is a
subring of HF . If x ∈ F , then xy = yx. That is, F is a subring of the center of
HF . For a quaternion x = a + bi + cj + dk define χ(x) = a − bi − cj − dk. Using
the product formula above, we find

χ(y)χ(x) = (e− fi− gj − hk)(a− bi− cj − dk)

= (ae− bf − cg − dh)− (af + be+ ch− dg)i

− (ag − bh+ ce+ df)j − (ah+ bg − cf + de)k

= χ(xy).

Define the norm of x by

N(x) = xχ(x) = (a+ bi+ cj + dk)(a− bi− cj − dk)

= (a2 + b2 + c2 + d2) + (−ab+ ab+ cd− cd)i

+ (ac+ bd− ac− bd)j + (−ad− bc+ bc+ ad)k

= a2 + b2 + c2 + d2

which is an element of F . Using the formulas from above, we see that

N(xy) = xyχ(xy) = xyχ(y)χ(x) = xN(y)χ(x) = xχ(x)N(y) = N(x)N(y)

hence N : HF → F is multiplicative. The function χ is an example of an involution.

Definition 3.1.15. Let R and S be rings. A function θ : R → S is called an
isomorphism of rings, if θ is a one-to-one correspondence, θ(1) = 1, θ(x + y) =
θ(x)+ θ(y), and θ(xy) = θ(x)θ(y) for all x, y ∈ R. In this case, we say R and S are
isomorphic and write R ∼= S. From an abstract algebraic point of view, isomorphic
rings are indistinguishable.

1.1. Exercises.

Exercise 3.1.16. The point to this exercise is to compute the ring Hom(Z,Z)
of all endomorphisms of the infinite cyclic group (Z,+) (see Exercise 2.8.13). In
the following, f and g always denote endomorphisms of Z.

(1) Define ϕ : Hom((Z,+), (Z,+)) → Z by ϕ(f) = f(1). Show that ϕ is an
isomorphism of rings.

(2) Show that Aut((Z,+)) has order two.

Exercise 3.1.17. Let n ∈ N. The object of this exercise is to compute the ring
of all endomorphisms of the finite cyclic group (Z/n,+). As in Exercise 2.8.13, this
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ring is denoted Hom((Z/n,+), (Z/n,+)). In the following, f and g always denote
endomorphisms of (Z/n,+).

(1) Define ϕ : Hom((Z/n,+), (Z/n,+)) → Z/n by ϕ(f) = f(1). Prove that ϕ
is an isomorphism of rings.

(2) Show that Aut((Z/n,+)) ∼= Un, where Un is the group of units modulo n.

Exercise 3.1.18. Prove that the ring of quaternions (see Example 3.1.14) over
Q (or R) is a division ring.

Exercise 3.1.19. Let G = ⟨a, b | a2 = b2 = e, ab = ba⟩ be an elementary
2-group of order 4. Let R = Z/(2) be the field with 2 elements. For the definition
of the ring of quaternions, see Example 3.1.14. For the definition of a group ring,
see Example 3.1.6.

(1) Prove that the ring of quaternions over R is isomorphic to the group ring
R(G).

(2) Determine the group of units in R(G).
(3) Determine the set of zero divisors in R(G).
(4) Determine all elements in R(G) that satisfy the equation e2 = e. These

elements are the so-called idempotents.

Exercise 3.1.20. Prove that the ring of quaternions over C is isomorphic to
M2(C).

Exercise 3.1.21. Let R be the ring M2(Z/(2)) of two-by-two matrices over
Z/(2).

(1) Determine the group of units in R.
(2) Determine the set of zero divisors in R.
(3) Determine all elements in R that satisfy the equation e2 = e. These

elements are the so-called idempotents in R.
(4) Show that R contains exactly two subrings that are fields. One is the

image of the canonical homomorphism χ : Z → R which has order 2, and
the other is a field of order 4.

Exercise 3.1.22. Let R be any ring. Let x and y be elements of R such that
xy = yx. Prove the Binomial Theorem:

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i

for any n ≥ 0.

Exercise 3.1.23. Let i ∈ C be the square root of −1.

(1) Show that Q[i] = {a+ bi | a, b ∈ Q} is a subfield of C.
(2) Show that Z[i] = {a + bi | a, b ∈ Z} is a subring of Q[i]. The ring Z[i] is

called the ring of gaussian integers.

Exercise 3.1.24. Consider the set

Z/4[i] = {a+ bi | a, b ∈ Z/4}
where i2 = −1 ≡ 3 (mod 4). Addition and multiplication are defined as in the
gaussian integers, where a and b are added and multiplied in the ring Z/4. Show
that Z/4[i] is a commutative ring of order 16. Show that the group of units in
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Z/4[i] is isomorphic to U16, the group of units modulo 16. Show that the rings
Z/4[i] and Z/16 are not isomorphic.

Exercise 3.1.25. Let R be a ring.

(1) Let I be an index set and {Si | i ∈ I} a family of subrings of R indexed
by I. Show that

⋂
i∈I Si is a subring of R.

(2) Let X be a subset of R and F = {S | S is a subring of R and X ⊆ S} the
family of all subrings of R containing X. Show that T =

⋂
S∈F S is the

smallest subring of R containing X. We call T the subring of R generated
by X.

(3) Show that the set of all subrings of R is a lattice.

Exercise 3.1.26. Let a and b be elements of a ring R. Denote the group of
units of R by R∗. Prove that ab ∈ R∗ if and only if a ∈ R∗ and b ∈ R∗.

2. Homomorphisms and Ideals

Subgroups played an important role in our study of groups. Because a ring
has two binary operations, there are two completely different kinds of structures
that are for rings what subgroups are for groups. These structures are subrings
and ideals. Just as subgroups are the building blocks of groups, we can think of
subrings and ideals as the building blocks of rings. In general, a subring is not an
ideal and an ideal is not a subring.

A subring of a ring R is a subset that contains 0 and 1 and which is itself a
ring under the binary operations on R (Definition 3.1.9). One way we study rings
is in terms of their subrings. In ring theory, in addition to subrings we have ideals.
Moreover, we distinguish between left ideals, right ideals, and two-sided ideals. A
left ideal of a ring R is a subset I such that (I,+) is a subgroup of (R,+) and for
every element r in R, left multiplication by r defines a homomorphism of additive
abelian groups λr : I → I where λr(x) = rx. Similarly, I is a right ideal of R
if for every r in R, right multiplication by r defines a homomorphism of groups
ρr : I → I where ρr(x) = xr. If I is both a left and right ideal, then I is called a
two-sided ideal. A homomorphism of rings is a function f : R → S from a ring R
to a ring S which is additive, multiplicative and maps the identity element 1 ∈ R
to the identity element 1 ∈ S. Therefore, f is a homomorphism from the group
(R,+) to the group (S,+). The image of a homomorphism is a subring of S and the
kernel is a two-sided ideal of R. For this reason subrings and ideals play important
but different roles in ring theory. An ideal I is a two-sided ideal of R if and only
if the set of cosets R/I is a ring. In our analogy with groups, two-sided ideals are
the counterpart for rings of normal subgroups. Theorem 3.2.15 together with its
corollaries are the counterparts for rings of the group theoretic theorems with the
same names.

2.1. Definitions and First Properties. Let A be a ring. A left ideal of A
is a nonempty subset I ⊆ A such that (I,+) is a subgroup of (A,+) and ax ∈ I for
all a ∈ A and all x ∈ I. A right ideal of A is a nonempty subset I ⊆ A such that
(I,+) is a subgroup of (A,+) and xa ∈ I for all a ∈ A and all x ∈ I. If I is both a
left ideal and right ideal, we say I is an ideal. For emphasis we sometimes say I is
a two-sided ideal.

Example 3.2.1. Some important examples of ideals are listed here.
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(1) If R is a commutative ring, then a left ideal is a two-sided ideal.
(2) In a ring R the trivial ideals are {0} and R.
(3) If F is a field, the only ideals are {0} and F . This is Exercise 3.2.33.
(4) Let R be a commutative ring and Mn(R) the ring of n-by-n matrices over

R, where n ≥ 2. The set

L = {(rij) | rij = 0 if i < j}

of all lower triangular matrices is a subring of Mn(R) (Example 3.1.12).
It is not an ideal, because the identity matrix I is in L.

(5) Let F be a field and M2(F ) the ring of 2-by-2 matrices over F . Then

I =

{(
a 0
b 0

)
| a, b ∈ F

}
is a left ideal in M2(F ), but not a right ideal.

(6) The subgroups of Z,+ are the cyclic subgroups Zm, where m ∈ Z. Any
such subgroup is an ideal. So the ideals of Z are of the form Zm.

If R and S are rings, a homomorphism from R to S is a function f : R → S
satisfying

(1) f(x+ y) = f(x) + f(y) for all x, y ∈ R,
(2) f(xy) = f(x)f(y) for all x, y ∈ R, and
(3) f(1) = 1.

Notice that (1) implies f : (R,+) → (S,+) is a homomorphism of additive groups.
The kernel of f is ker (f) = {x ∈ R | f(x) = 0} which is equal to the kernel of the
homomorphism on additive groups. By Exercise 3.2.28, the kernel of f is an ideal
in R. By Lemma 2.3.8, f is one-to-one if and only if ker f = (0). The image of the
homomorphism f is im (f) = {f(x) ∈ S | x ∈ R}. By Exercise 3.2.28, the image
of f is a subring of S. As in Definition 3.1.15, an isomorphism is a homomorphism
f : R→ S that is one-to-one and onto. An automorphism of R is a homomorphism
f : R→ R that is one-to-one and onto. An endomorphism is a homomorphism from
R to R. A monomorphism is a homomorphism that is one-to-one. An epimorphism
is a homomorphism that is onto.

Example 3.2.2. Some important examples of homomorphisms are listed here.

(1) The natural projection Z → Z/(n) maps an integer to its congruence class
modulo n. It is a homomorphism of rings which is onto. The kernel is the
subgroup generated by n.

(2) If u is an invertible element of R, the inner automorphism of R defined
by u is σu : R → R where σu(x) = u−1xu. The reader should verify that
σu is a homomorphism of rings and is a one-to-one correspondence.

(3) Suppose R is a commutative ring, H and G are groups and θ : H → G is
a homomorphism of groups. The action rh 7→ rθ(h) induces a homomor-
phism of group rings R(H) → R(G) (see Example 3.1.6).
(a) The homomorphism ⟨e⟩ → G induces a homomorphism θ : R →

R(G). Notice that θ is one-to-one and the image of θ is contained in
the center of R(G).

(b) The homomorphism G → ⟨e⟩ induces ϵ : R(G) → R. Notice that ϵ
is onto, and the kernel of ϵ contains the set of elements D = {1− g |
g ∈ G}. The reader should verify that the kernel of ϵ is the ideal
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generated by D in R(G) (see Definition 3.2.4). Sometimes ϵ is called
the augmentation map.

(4) If R is a ring, then the zero mapping R→ {0} is a homomorphism of rings.
In the language of categories, this says that {0} is a terminal object in
the category of rings.

(5) If R is a ring, there is a unique homomorphism χ : Z → R. In fact, by
definition χ(1) = 1 so χ(n) = nχ(1) = n1 for an arbitrary integer n. This
says that in the category of rings, Z is an initial object. In the lattice of
all subrings of R, the image of χ is the unique minimal member. If R is
a domain, the image of χ is called the prime ring of R. The kernel of χ
is a subgroup of Z, hence is equal to (n) for some nonnegative integer n.
We call n the characteristic of R and write n = char(R).

Proposition 3.2.3 is the counterpart for ideals of Lemma 2.3.3.

Proposition 3.2.3. Let ϕ : R → S be a homomorphism of rings. Then the
following are true:

(1) If J is a left ideal in S, then ϕ−1(J) is a left ideal in R.
(2) If ϕ is onto and A is a left ideal of R, then ϕ(A) is a left ideal of S.

The corresponding statements are true, if left ideal is replaced by right ideal or by
two-sided ideal.

Proof. (1): We know from group theory that (ϕ−1(J),+) is a subgroup of
(R,+) (see Lemma 2.3.3). Let x ∈ ϕ−1(J), r ∈ R. Then ϕ(rx) = ϕ(r)ϕ(x) ∈ J
since ϕ(x) ∈ J . Therefore, rx ∈ ϕ−1(J). Hence, ϕ−1(J) is a left ideal in R. A
similar proof applies if J is a right ideal in S.

(2): We know from group theory that (ϕ(A),+) is a subgroup of (S,+) (see
Lemma 2.3.3). Let y ∈ ϕ(A) and s ∈ S = ϕ(R). Then there exist r ∈ R and
x ∈ A such that s = ϕ(r) and y = ϕ(x). If A is a left ideal, then rx ∈ A. We have
sy = ϕ(r)ϕ(x) = ϕ(rx) ∈ ϕ(A). So ϕ(A) is a left ideal in S. A similar proof applies
if A is a right ideal in R. □

Definition 3.2.4. Let R be any ring and X ⊆ R. The left ideal generated by
X is {

n∑
i=1

rixi | n ≥ 1, ri ∈ R, xi ∈ X

}
.

The reader should verify that the left ideal generated by X is equal to the intersec-
tion of the left ideals containing X (see Exercise 3.2.35). The ideal generated by X
is {

n∑
i=1

rixisi | n ≥ 1, ri, si ∈ R, xi ∈ X

}
.

The reader should verify that the ideal generated by X is equal to the intersection
of the ideals containing X (see Exercise 3.2.35). If I is the ideal generated by
X, we write I = (X). If A and B are left ideals of R, then A + B is the set
{a+ b | a ∈ A, b ∈ B}. The left ideal generated by the set {ab | a ∈ A, b ∈ B} is
denoted AB. The left ideal generated by X is sometimes denoted RX. A left ideal
(or ideal) is principal if it is generated by a single element. If a ∈ R, the principal
left ideal generated by a is Ra. A commutative ring R is called a principal ideal ring
if every ideal is a principal ideal. A principal ideal domain is an integral domain in
which every ideal is principal. Sometimes we say R is a PID.
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Proposition 3.2.5. Let R be any ring. If A and B are left ideals in R, then
the following are true.

(1) A+B is a left ideal of R. If A and B are ideals, then A+B is an ideal.
(2) A+B is the left ideal of R generated by the set A ∪B.
(3) AB = {

∑n
i=1 xiyi | n ≥ 1, xi ∈ A, yi ∈ B}. If A and B are ideals, then

AB is an ideal.
(4) If X = {a1, . . . , an} is a finite subset of R, then (X), the ideal generated

by X, is equal to (a1) + · · ·+ (an).
(5) The set of all left ideals of R, ordered by set inclusion, is a lattice. The

corresponding statements are true if left ideals are replaced by right ideals
or by two-sided ideals.

Proof. The proof is left to the reader. □

Example 3.2.6. Additional examples of ideals are listed here.

(1) In any ring, the set {0} is an ideal.
(2) In any ring R, if u is invertible, then for any r ∈ R we see that r = (ru−1)u

is in the left ideal generated by u. That is, (u) = R. We call R the unit
ideal of R. In R, the trivial ideals are {0} and R. If R is a division ring,
the only left ideals in R are the trivial ideals.

(3) The ideals in Z are precisely the subgroups of (Z,+). That is, I is an
ideal of Z if and only if I = (n) for some n. The ring Z is a principal ideal
domain.

Example 3.2.7. Let k be a field and R = k[w, x, y, z] the polynomial ring in
four variables over k. Let A = (w, x) and B = (y, z). Then wy + xz ∈ AB, but
wy + xz cannot be factored as uv, where u ∈ A and v ∈ B. This shows that in
general the set {uv | u ∈ A, v ∈ B} is not an ideal.

Example 3.2.8. A ring R is said to be a simple ring if the only two-sided ideals
in R are the trivial ideals. If R is a division ring, then R is a simple ring because
the only ideals in R are the trivial ideals, by Example 3.2.6 (2).

Example 3.2.9. Let k be a field. In this example we prove that R = M2(k),
the ring of 2-by-2 matrices over k is a simple ring. The same proof can be modified
to show Mn(k) has no proper ideal for any n ≥ 1 (see Exercise 3.2.34). Let I ̸= (0)

be an ideal in R. Let A =

[
a b
c d

]
be a nonzero element of I. By Proposition 1.5.3,

after multiplying A by suitable permutation matrices if necessary, we can assume
a ̸= 0. Let eij denote the elementary matrix with 1 in row i column j, and 0

elsewhere. Then e11Ae11 =

[
a 0
0 0

]
∈ I. Multiplying by a−1 shows e11 ∈ I. Then

P12e11 = e21 ∈ I, e11P12 = e12 ∈ I, and P12e12 = e22 ∈ I. This proves I contains
{e11, e12, e21, e22} which is a k-vector space basis for R. Hence, I = R.

Example 3.2.10. Let F be a field and M2(F ) the ring of 2-by-2 matrices over

F . The reader should verify that

{(
a 0
c 0

)
| a, c ∈ F

}
is the principal left ideal

in M2(F ) generated by the elementary matrix e21 =

(
0 0
1 0

)
. The principal right

ideal generated by e21 is

{(
0 0
c d

)
| c, d ∈ F

}
.
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Lemma 3.2.11. Let R be any ring and a ∈ R. The following are equivalent.

(1) a has a left inverse in R.
(2) 1 ∈ Ra.
(3) Ra = R.

Proof. (1) implies (2): We have a−1 ∈ R such that 1 = a−1a.
(2) implies (3): We have 1 = ra for some r ∈ R. For each x ∈ R, (xr)a =

x(ra) = x ∈ Ra.
(3) implies (1): 1 ∈ R = Ra implies 1 = ra for some r ∈ R. □

Example 3.2.12. This is a continuation of Example 3.1.12. Let R be a com-
mutative ring, n ≥ 2, Mn(R) the ring of n-by-n matrices over R,

L = {(rij) | rij = 0 if i < j}
the subring of all lower triangular matrices, and D the subring of all diagonal
matrices. Define τ : L → D to be the function which maps a lower triangular
matrix A = (aij) to the diagonal matrix τ(A) = diag(a11, . . . , ann). Using the
product formula for lower triangular matrices given in Example 3.1.12, one can
verify that τ(AB) = τ(A)τ(B). It is routine to check that τ(A+B) = τ(A)+τ(B).
For any diagonal matrix C, we have τ(C) = C. Therefore, τ is an epimorphism
from L onto D. The kernel of τ is the ideal

N = {(rij) | rij = 0 if i ≤ j} .
This proves that L is not a simple ring, even when R is a field. The ring L is isomor-
phic to the opposite ring Lo. For a hint on how to prove this, see Exercise 4.5.27.

2.2. A Fundamental Theorem on Ring Homomorphisms. Theorem 3.2.15,
which is of fundamental importance, shows that a homomorphism of rings θ : R→ S
factors into an onto homomorphism followed by a one-to-one homomorphism. The
construction of the factorization of θ mirrors the factorization of a homomorphism
of groups presented in Theorem 2.3.12. The kernel of θ is a two-sided ideal of R.
The image of θ is isomorphic to the residue class ring R/ ker θ. Before defining the
residue class ring, we list the fundamental properties of two-sided ideals in a ring
R. Lemma 3.2.13 is the counterpart for ideals of Lemma 2.3.5. By R/I we denote
the set of all left cosets of (I,+) in (R,+). Then the factor group R/I is an abelian
group under addition and the natural map η : R → R/I is a homomorphism of
additive groups.

Lemma 3.2.13. Let R be a ring and I a left ideal in R. The following are
equivalent.

(1) I is a two-sided ideal of R. That is, for each r ∈ R and x ∈ I, we have
rx ∈ I and xr ∈ I.

(2) There is a well defined multiplicative binary operation R/I ×R/I → R/I
on R/I defined by the rule (x+ I, y + I) 7→ xy + I.

(3) There is a multiplicative binary operation on R/I such that the natural
map η : R→ R/I is a homomorphism of rings.

(4) There exists a ring S and a homomorphism of rings θ : R → S such that
I = ker θ.

Proof. (1) implies (2): We verify that multiplication of cosets is well defined.
Say x ≡ x′ (mod I) and y ≡ y′ (mod I). Then x− x′ ∈ I implies that xy − x′y =
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(x − x′)y ∈ I. Likewise y − y′ ∈ I implies that x′y − x′y′ = x′(y − y′) ∈ I. Taken
together, we have xy ≡ x′y ≡ x′y′ (mod I).

(2) implies (3): On R/I, the associative law for multiplication, the distributive
laws and the fact that 1 + I is the multiplicative identity are routine to check.
Therefore, R/I is a ring. Let η : R→ R/I be the natural map defined by x 7→ x+I.
Then η is a homomorphism, im η = R/I, and ker η = I.

(3) implies (4): Take S to be R/I and for θ take the natural map η.
(4) implies (1): Let x ∈ ker θ = I and r ∈ R. Then θ(rx) = θ(r)θ(x) = θ(r)0 =

0, by Proposition 3.1.2. Likewise, θ(xr) = θ(x)θ(r) = 0θ(r) = 0. This prove that
xr and rx are in ker θ = I. □

Definition 3.2.14. Let R be a ring and I an ideal in R. The residue class
ring is the set R/I = {a + I | a ∈ R} of all left cosets of I in R. We sometimes
call R/I the factor ring, or quotient ring of R modulo I. We define addition and
multiplication of cosets by the rules

(a+ I) + (b+ I) = (a+ b) + I

(a+ I)(b+ I) = ab+ I.

By Lemma 3.2.13, R/I is a ring, the natural map η : R→ R/I is a homomorphism
of rings, η is onto, and I = ker η.

Theorem 3.2.15 and Corollaries 3.2.17, 3.2.18, and 3.2.16, are the counterparts
for homomorphisms of rings of Theorems 2.3.12, 2.3.14, 2.3.15, and Corollary 2.3.13.

Theorem 3.2.15. Let θ : R → S be a homomorphism of rings. Let I be an
ideal of R contained in ker θ. There exists a homomorphism φ : R/I → S satisfying
the following.

(1) φ(a+ I) = θ(a), or in other words θ = φη.
(2) φ is the unique homomorphism from R/I → S such that θ = φη.
(3) im θ = imφ.
(4) kerφ = η(ker θ) = ker(θ)/I.
(5) φ is one-to-one if and only if I = ker θ.
(6) φ is onto if and only if θ is onto.
(7) There is a unique homomorphism ϕ : R/I → R/ ker θ such that the dia-

gram

R
θ //

##
η

��

S

R/ ker θ

;;

R/I

ϕ

OO φ

EE

commutes.

Proof. On the additive groups, this follows straight from Theorem 2.3.12.
The map φ is multiplicative since θ is a homomorphism of rings. □

Corollary 3.2.16. If θ : R → S is a homomorphism of rings and η : R →
R/ ker θ is the natural map, then there exists a unique monomorphism θ̄ such that
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θ = θ̄η. Hence θ factors into an epimorphism η followed by a monomorphism θ̄
and the diagram

R
θ //

η ##

S

R/ ker θ

θ̄

;;

commutes. There is an isomorphism of rings φ : R/ ker θ → im θ where φ maps the
coset x+ ker θ to θ(x)

Proof. This is Theorem 3.2.15 (5). □

Corollary 3.2.17. Let R be a ring and I ⊆ J ⊆ R a chain of ideals in R.
Then J/I is an ideal in R/I and the natural map

R/I

J/I
→ R/J

sending the coset containing x+ I to the coset x+ J is an isomorphism of rings.

Proof. This follows from Theorem 3.2.15 and Theorem 2.3.14 (3). □

Corollary 3.2.18. (Correspondence Theorem) Let R be a ring and I an ideal
in R. There is a one-to-one order-preserving correspondence between the ideals J
such that I ⊆ J ⊆ R and the ideals of R/I given by J 7→ J/I.

Proof. This follows from Proposition 3.2.3, Theorem 3.2.15 and the Corre-
spondence Theorem for Groups, Theorem 2.3.15. □

2.3. Prime Ideals and Integral Domains. This section focuses mostly on
ideals in commutative rings. An ideal J in a commutative ring R is prime if the
quotient ring R/J is an integral domain. If R/J is a field, then J is a maximal
ideal. We show that a maximal ideal in R is a maximal proper ideal with respect
to set inclusion. We show that for finite rings, prime ideals and maximal ideals are
the same thing. In the setting of Corollary 3.2.18, prime ideals in R/I correspond
to prime ideals in R containing I. The next lemma and its proof are written using
symbolic expressions.

Lemma 3.2.19. Let R be a ring in which 0 ̸= 1. The following are equivalent,
where a, b, c represent elements of R.

(1) (ab = 0) → ((a = 0) ∨ (b = 0))
(2) (a ̸= 0) → (((ab = ac) → (b = c)) ∧ ((ba = ca) → (b = c)))
(3) ((a ̸= 0) ∧ (b ̸= 0)) → (ab ̸= 0)

Proof. (1) is equivalent to (3) by contraposition.
(1) implies (2):

((a ̸= 0) ∧ (ab = ac)) → ((a ̸= 0) ∧ (ab− ac = 0))

→ ((a ̸= 0) ∧ (a(b− c) = 0))

→ ((a ̸= 0) ∧ ((a = 0) ∨ (b = c)))

→ (b = c)

Likewise, ((a ̸= 0) ∧ (ba = ca)) → (b = c).
(2) implies (1): ((a ̸= 0) ∧ (ab = 0)) → ((a ̸= 0) ∧ (ab = a0)) → (b = 0). □
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As in Definition 3.1.3, a ring that satisfies the three equivalent statements of
Lemma 3.2.19 is a domain. A commutative domain is called an integral domain.

Example 3.2.20. If F is a field, then F is an integral domain.

(1) If R is a subring of F , then R is an integral domain.
(2) The ring of 2-by-2 matrices M2(F ) is a noncommutative F -algebra. Since

M2(F ) contains zero divisors, it is not a domain. For example:(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
.

Theorem 3.2.21. Let R be a finite domain. Then every a ∈ R−{0} is invert-
ible. In other words, R is a division ring. In particular, a finite integral domain is
a field.

Proof. Let a ∈ R − {0}. Consider the “left multiplication by a” function
λa : R→ R. Since R is an integral domain, λa is one-to-one, by Lemma 3.2.19 (2).
Since R is finite, the Pigeonhole Principle (Exercise 1.1.11) implies λa is onto.
So there exists x ∈ R such that ax = 1. This proves a is left invertible. A
symmetric argument using “right multiplication by a” shows that a is invertible.
By Definition 3.1.3, R is a division ring. □

The proof of Theorem 3.2.21 shows that a finite domain is a division ring. By
Wedderburn’s Theorem, Theorem 5.5.11, a finite division ring is always commuta-
tive.

Definition 3.2.22. Let R be a commutative ring. An ideal I in R is prime in
case R/I is an integral domain. An ideal I in R is maximal in case R/I is a field. A
field is an integral domain, so a maximal ideal is a prime ideal. By Definition 3.1.3,
an integral domain has at least two elements, so the unit ideal is never prime.

Example 3.2.23. Let R be a commutative ring and I an ideal in R.

(1) If R is an integral domain, then the zero ideal (0) is a prime ideal. The zero
ideal is a maximal ideal in R if and only if R is a field (Exercise 3.2.33).

(2) By Theorem 3.2.21, if R/I is a finite ring, then I is a prime ideal in R if
and only if I is a maximal ideal in R.

(3) If R = Z, then by Example 3.2.1 (6) every ideal is principal, so I = (n) for
some n ≥ 0. If n > 0, then by Example 3.1.5 (2), Z/(n) is a field if and
only if n is prime. The maximal ideals in Z are the nonzero prime ideals
(n), for prime numbers n.

Proposition 3.2.24 gives additional necessary and sufficient conditions for an
ideal to be a prime ideal.

Proposition 3.2.24. Let R be a commutative ring and P an ideal of R. As-
sume P ̸= R. The following are equivalent.

(1) P is a prime ideal. That is, R/P is an integral domain.
(2) For all x, y ∈ R, if xy ∈ P , then x ∈ P or y ∈ P .
(3) For any ideals I, J in R, if IJ ⊆ P , then I ⊆ P or J ⊆ P .

Proof. Is left to the reader. □

In Proposition 3.2.25 we see that the homomorphic preimage of a prime ideal is
a prime ideal. This important property of prime ideals is central to most of modern



2. HOMOMORPHISMS AND IDEALS 129

Algebraic Geometry. For a brief introduction to the subject, see the example in
Section 7.4.

Proposition 3.2.25. Let ϕ : R→ S be a homomorphism of commutative rings.
Let J be an ideal in S. Then the following are true:

(1) If J is a prime ideal, then ϕ−1(J) is a prime ideal.
(2) If ϕ is onto, and J is a maximal ideal, then ϕ−1(J) is a maximal ideal.

Proof. (1): This is Exercise 3.2.48.
(2): Let J be a maximal ideal of S. Consider the commutative diagram

R
θ //

ϕ %%

S/J

R/ kerϕ ∼= S

η

99

where θ = ηϕ. Since ϕ and η are onto, θ is onto. By Corollary 3.2.16, R/ ker θ ∼=
S/J . Since S/J is a field, ker θ is a maximal ideal in R. Because ϕ is onto,
we have J = ϕϕ−1(J). Then θ(ϕ−1(J)) = η(J/ kerϕ) = J , so ϕ−1(J) ⊆ ker θ. If
θ(x) = ϕ(x)+J = J , then ϕ(x) ∈ J , hence x ∈ ϕ−1(J). This proves ker θ = ϕ−1(J).
Hence ϕ−1(J) is a maximal ideal. □

Corollary 3.2.26. (Correspondence Theorem for Prime Ideals) Let R be a
commutative ring and I an ideal in R. There is a one-to-one order-preserving
correspondence between the ideals J such that I ⊆ J ⊆ R and the ideals of R/I
given by J 7→ J/I. Under this correspondence prime ideals of R/I correspond to
prime ideals of R that contain I.

Proof. The first part is Corollary 3.2.18. The preimage of a prime ideal is a
prime ideal, by Proposition 3.2.25 (1). Corollary 3.2.17 shows that the image of a
prime ideal that contains I is a prime ideal in R/I. □

Proposition 3.2.27 shows that an ideal M is maximal if and only if it is a
maximal proper ideal with respect to the set inclusion relation. To show that
maximal ideals exist, it is necessary to apply Zorn’s Lemma.

Proposition 3.2.27. Let R be a commutative ring.

(1) An ideal M is a maximal ideal in R if and only if M is not contained in
a larger proper ideal of R.

(2) R contains a maximal ideal.
(3) If I is a proper ideal of R, then R contains a maximal ideal M such that

I ⊆M .

Proof. (1): By Exercise 3.2.33 and Corollary 3.2.18 R/M is a field if and only
if there is no proper ideal J such that M ⊊ J .

(2): Let S be the set of all ideals I in R such that I ̸= R. Then (0) ∈ S.
Order S by set inclusion. Let {Aα} be a chain in S. The union J =

⋃
Aα is

an ideal in R, by Exercise 3.2.35. Since 1 is not in any element of S, it is clear
that 1 ̸∈ J . Therefore, J ∈ S is an upper bound for the chain {Aα}. By Zorn’s
Lemma, Proposition 1.3.3, S contains a maximal member. By Part (1), this ideal
is a maximal ideal.

(3): By Part (2), R/I has a maximal ideal. By Corollary 3.2.26, there exists a
maximal ideal of R containing I. □



130 3. RINGS

2.4. Exercises.

Exercise 3.2.28. Let θ : R → S be a homomorphism of rings. Prove the
following.

(1) The image of θ is a subring of S.
(2) The kernel of θ is a two-sided ideal of R.
(3) If ϕ : A → R is another homomorphism of rings, then the composite

θϕ : A→ S is a homomorphism of rings.

Exercise 3.2.29. Let θ : R→ S be a homomorphism of rings. Prove:

(1) θ is one-to-one if and only if ker θ = (0).
(2) If R is a division ring, then θ is one-to-one.

Exercise 3.2.30. Let R be any ring.

(1) If n = charR, then nx = 0 for any x ∈ R.
(2) If R is a domain, then the characteristic of R is either 0 or a prime number.

Exercise 3.2.31. Let R be any ring and suppose p = charR is a prime number.
Let x and y be elements of R such that xy = yx. Prove:

(1) (x+ y)p = xp + yp.
(2) (x− y)p = xp − yp.

(3) (x− y)p−1 =
∑p−1
i=0 x

iyp−1−i.

(4) If n ≥ 0, then (x+ y)p
n

= xp
n

+ yp
n

.

See Exercise 3.6.35 for an application of this exercise.

Exercise 3.2.32. Let R be a commutative ring and assume charR = p is a
prime number. Define θ : R → R by x 7→ xp. Show that θ is a homomorphism
of rings. We call θ the Frobenius homomorphism, after F. G. Frobenius. For any
a ≥ 1, show that θa(x) = xp

a

. If R is a field, show that θ is one-to-one.

Exercise 3.2.33. Prove:

(1) If R is a ring with no proper left ideal, then every nonzero element has a
left inverse.

(2) If R is a ring with no proper left ideal, then R is a division ring.
(3) A commutative ring R is a field if and only if R has no proper ideal.

Exercise 3.2.34. This exercise is a continuation of Example 3.2.9. Let R be
a ring and Mn(R) the ring of n-by-n matrices over R where addition and multipli-
cation are defined in the usual way.

(1) Let eij be the elementary matrix which has 0 in every position except
in position (i, j) where there is 1. Determine the left ideal in Mn(R)
generated by eij .

(2) If n ≥ 2, show that Mn(R) has proper left ideals.
(3) If I is an ideal in Mn(R), show that I =Mn(J) for some ideal J in R.
(4) If D is a division ring, show thatMn(D) has no proper ideal. We say that

Mn(D) is a simple ring.

Exercise 3.2.35. Let R be a ring, I an index set, and {Ai | i ∈ I} a family of
left ideals in R.

(1) Show that
⋂
i∈I Ai is a left ideal in R.
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(2) Suppose {Ai | i ∈ I} is an ascending chain of left ideals in R. That is, I is
a partially ordered set that is a chain, and if α ≤ β in I, then Aα ⊆ Aβ .
Show that

⋃
i∈I Ai is a left ideal in R.

Exercise 3.2.36. Let U and V be ideals in the commutative ring R. As in
Definition 3.2.4, UV is the ideal generated by the set {uv | u ∈ U, v ∈ V }. Prove
the following.

(1) UV ⊆ U ∩ V .
(2) If U + V = R, then UV = U ∩ V .
(3) Show by counterexample that UV = U ∩ V is false in general.

Exercise 3.2.37. Let n > 1.

(1) Show that every prime ideal in Z/(n) is a maximal ideal.
(2) Let n = πe11 · · ·πekk be the unique factorization of n (Proposition 1.2.7).

Determine the maximal ideals in Z/(n).

Exercise 3.2.38. An element x of a ring is said to be nilpotent if xn = 0 for
some n > 0. If R is a commutative ring, let RadR(0) denote the set of all nilpotent
elements of R. We call RadR(0) the nil radical of R.

(1) Show that RadR(0) is an ideal.
(2) Let I be an ideal of R contained in RadR(0). Show that the nil radical of

R/I is RadR(0)/I, hence the nil radical of R/RadR(0) is the trivial ideal
(0 + RadR(0)).

(3) Show that RadR(0) ⊆ P , if P is a prime ideal in R.

Exercise 3.2.39. Let θ : R → S be a homomorphism of rings. Prove that θ
induces a homomorphism θ : Units(R) → Units(S) on the groups of units.

Exercise 3.2.40. Let R be a commutative ring, RadR(0) the nil radical of R,
and η : R→ R/RadR(0) the natural map. Prove:

(1) If x is a nilpotent element of R, then 1 + x is a unit in R.
(2) If η(r) is a unit in R/RadR(0), then r is a unit in R.
(3) Let I be an ideal of R contained in RadR(0). Then the natural map

η : Units(R) → Units(R/I) is onto and the kernel of η is equal to the
coset 1 + I.

Exercise 3.2.41. Let I and J be ideals in the commutative ring R. The ideal
quotient is I : J = {x ∈ R | xJ ⊆ I}. Prove that I : J is an ideal in R.

Exercise 3.2.42. For the following, let I, J andK be ideals in the commutative
ring R. Prove that the ideal quotient satisfies the following properties.

(1) I ⊆ I : J
(2) (I : J)J ⊆ I
(3) (I : J) : K = I : JK = (I : K) : J
(4) If {Iα | α ∈ S} is a collection of ideals in R, then(⋂

α∈S
Iα

)
: J =

⋂
α∈S

(Iα : J)

(5) If {Jα | α ∈ S} is a collection of ideals in R, then

I :
∑
α∈S

Jα =
⋂
α∈S

(I : Jα)



132 3. RINGS

Exercise 3.2.43. A local ring is a commutative ring R such that R has exactly
one maximal ideal. If R is a local ring with maximal ideal m, then R/m is called
the residue field of R. If (R,m) and (S, n) are local rings and f : R → S is a
homomorphism of rings, then we say f is a local homomorphism of local rings in
case f(m) ⊆ n. Prove:

(1) A field is a local ring.
(2) If (R,m) is a local ring, then the group of units of R is equal to the set

R−m.
(3) If f : R → S is a local homomorphism of local rings, then f induces a

homomorphism of residue fields R/m → S/n.

Exercise 3.2.44. Let R be a ring. If A and B are left ideals in R, then
the product ideal AB is defined in Definition 3.2.4. The powers of A are defined
recursively by the rule:

An =


R if n = 0,

A if n = 1,

AAn−1 if n > 1.

The left ideal A is nilpotent if for some n > 0, An = 0. Let A and B be nilpotent
left ideals of R. Prove:

(1) Assume An = 0. If x1, . . . , xn are elements of A, then x1 · · ·xn = 0.
(2) Every element x of A is nilpotent.
(3) A+B is a nilpotent left ideal.

Exercise 3.2.45. Let R be a commutative ring and {x1, . . . , xn} a finite set of
nilpotent elements of R. Show that Rx1 + · · ·+Rxn is a nilpotent ideal.

Exercise 3.2.46. Let R be a ring. We say that a left ideal M of R is maximal
if M is not equal to R and if I is a left ideal such that M ⊆ I ⊊ R, then M = I.
Let I be a left ideal of R which is not the unit ideal. Apply Zorn’s Lemma,
Proposition 1.3.3, to show that there exists a maximal left ideal M such that
I ⊆M ⊊ R.

Exercise 3.2.47. Prove Proposition 3.2.24.

Exercise 3.2.48. Prove Proposition 3.2.25 (1).

Exercise 3.2.49. If R is a commutative ring, let Aut(R) denote the group of
all ring automorphisms of R. Prove the following.

(1) Aut(Z) = (1).
(2) Aut(Z/(n)) = (1) for any n.

Exercise 3.2.50. Let R be a commutative ring and G a group. Show that the
group ring R(G) (see Example 3.1.6) is isomorphic to the opposite ring R(G)o (see
Definition 3.1.8).

Exercise 3.2.51. Let R be a ring and Aut(R) the group of all ring automor-
phisms of R. Let R∗ be the group of units of R. If u ∈ R∗, the inner automorphism
defined by u is σu : R → R which is the function defined by σu(x) = u−1xu (see
Example 3.2.2 (2)). Show that the assignment θ(u) = σu−1 defines a homomor-
phism of groups θ : R∗ → Aut(R). Show that the image of θ is a normal subgroup
of Aut(R). The image of θ is called the group of inner automorphisms of R and is
denoted Inn(R).
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Exercise 3.2.52. Let R be a ring. For every r ∈ R, let λr : R → R be “left
multiplication by r”. That is, λr(x) = rx. Similarly, let ρr : R → R be “right
multiplication by r”, where ρr(x) = xr. By Example 3.1.7, if I is an ideal (left,
right or two-sided), then Hom(I, I) is a ring.

(1) Let I be a left ideal of R. Show that λ : R → Hom(I, I) is a homomor-
phism of rings, where λ(r) = λr.

(2) Let I be a right ideal of R. As in Definition 3.1.8, Ro denotes the opposite
ring of R. Show that ρ : Ro → Hom(I, I) is a homomorphism of rings,
where ρ(r) = ρr.

Exercise 3.2.53. Let R be a ring and I a proper left ideal in R. Assume the
group (I,+) is cyclic, isomorphic to Z/n, where n = 0 is allowed. Prove that R
contains a two-sided ideal A such that the ring R/A is isomorphic to the ring Z/n.

3. Direct Product and Direct Sum of Rings

As with groups, we define the direct product of an arbitrary family of rings. For
the definition of an internal direct sum, we limit our attention to a finite family of
ideals. The direct product of a family of rings is a ring where the binary operations
are coordinate-wise addition and coordinate-wise multiplication. A ring R is an
internal direct sum of a finite family of ideals A1, . . . , An provided each Ai is a ring
and the summation map A1 × · · · ×An → R is an isomorphism of rings. For rings
there is a version of the Chinese Remainder Theorem that generalizes the theorem
for the product of finite cyclic groups.

3.1. External Direct Product.

Definition 3.3.1. Let {Ri | i ∈ I} be a family of rings. For each i ∈ I,
the same symbol 0 is used to denote the additive identity of each Ri. Likewise, 1
denotes the multiplicative identity of each Ri. As defined in Definition 1.3.4, the
product of {Ri | i ∈ I} is∏

i∈I
Ri =

{
f : I →

⋃
i∈I

Ri | f(i) ∈ Ri

}
.

The product can be turned into a ring, if addition and multiplication operations
are defined coordinate-wise:

(f + g)(i) = f(i) + g(i)

(fg)(i) = f(i)g(i).

Since each Ri contains 0, the constant function 0(i) = 0 is the additive identity
on the product. Since each Ri contains 1, the constant function 1(i) = 1 is the
multiplicative identity on the product. The other ring axioms hold in the product
because they hold coordinate-wise. The ring

∏
i∈I Ri is called the direct product of

the family {Ri | i ∈ I}. The additive abelian group structure on
∏
i∈I Ri is the

direct product of the additive groups {(Ri,+) | i ∈ I} as defined in Definition 2.5.1.
It is routine to verify that for each k ∈ I the canonical projection map

πk :
∏
i∈I

Ri → Rk
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is an onto homomorphism of rings. Also from Definition 2.5.1 there is a canonical
one-to-one homomorphism of additive groups

ιk : Rk →
∏
i∈I

Ri

where ιk(x) is equal to x in coordinate k, and 0 elsewhere. Moreover, ιk is multi-
plicative, meaning ιk(xy) = ιk(x)ιk(y) and we have πkιk = 1Rk

. The function ιk is
not a homomorphism of rings, since ιk(1) ̸= 1.

If I = {1, 2, . . . , n}, then
n∏
i=1

Ri = R1 ×R2 × · · · ×Rn = {(x1, . . . , xn) | xi ∈ Ri}

and on n-tuples the binary operations are given by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

(x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn).

3.2. Internal Direct Sum.

Definition 3.3.2. Let {I1, . . . , In} be a set of ideals in a ring R. In Defini-
tion 3.2.4 the sum A+B of two ideals in R is defined. For n ≥ 2, I1 + I2 + · · ·+ In
is defined recursively to be (I1 + · · · + In−1) + In and is called the sum of the
ideals. The reader should verify that the sum of the ideals is equal to the ideal of
R generated by the set I1 ∪ I2 ∪ · · · ∪ In. We say that R is the internal direct sum
of the ideals in case

(1) R = I1 + I2 + · · ·+ In, and
(2) for each x ∈ R, x has a unique representation as a sum x = x1+x2+· · ·+xn

where xi ∈ Ii.

We denote the internal direct sum by R = I1 ⊕ I2 ⊕ · · · ⊕ In. Notice that in
this case the additive group (R,+) is the internal direct product of the subgroups
{(Ii,+) | 1 ≤ i ≤ n} as defined in Definition 2.5.4. It is customary to say direct
sum instead of direct product when the group is written additively.

Definition 3.3.3. Let R be a ring. An idempotent of R is an element e ∈ R
that satisfies the equation e2 = e. The elements 0 and 1 are called the trivial
idempotents. A set {ei | i ∈ I} of idempotents in R is said to be orthogonal if
eiej = 0 for all i ̸= j.

Theorem 3.3.4. If A1, . . . , An are ideals in the ring R and R = A1⊕· · ·⊕An,
then the following are true.

(1) For each k, Ak ∩
(∑

j ̸=k Aj

)
= (0).

(2) If x ∈ Ai, y ∈ Aj and i ̸= j, then xy = yx = 0.
(3) For each i, Ai is a ring. If the identity element of Ai is denoted ei, then

{e1, . . . , en} is a set of orthogonal idempotents in R. Moreover, each ei is in
the center of R and Ai = Rei is a principal ideal in R.

(4) R is isomorphic to the (external) direct product A1 × · · · ×An.
(5) Suppose for each k that Ik is a left ideal in the ring Ak. Then I = I1+I2+· · ·+In

is a left ideal in R, where the sum is a direct sum.
(6) If I is a left ideal of R, then I = I1 ⊕ I2 ⊕ · · · ⊕ In where each Ik is a left ideal

in the ring Ak.
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Proof. (1): Assume x ∈ Ak ∩
(∑

j ̸=k Aj

)
. Let xk = −x. Since x ∈

∑
j ̸=k Aj ,

write x =
∑
j ̸=k xj where each xj ∈ Aj . Subtracting, 0 = x− x = x1 + · · ·+ xk +

· · ·+ xn. By the uniqueness of the representation of 0 in the internal direct sum, it
follows that x = 0.

(2): Notice that xy and yx are both in Ai ∩Aj since the ideals are two-sided.
(3): Because Ai is an ideal, it is enough to show that Ai has a multiplicative

identity. Write 1 = e1 + e2 + · · · + en. If x ∈ Ai, then multiply by x from the
left and use Part (2) to get x = x1 =

∑n
j=1 xej = xei. Now multiply by x from

the right and use Part (2) to get x = 1x =
∑n
j=1 ejx = eix. This shows ei is the

multiplicative identity for Ai. Orthogonality of {e1, . . . , en} is by Part (2). The
rest is left to the reader.

(4): Define a function f : A1 × A2 × · · · × An → R from the external ring
direct sum to R by the rule (x1, x2, . . . , xn) 7→ x1 + x2 + · · · + xn. Then f is an
isomorphism on additive groups since R is the internal direct sum of the ideals
Ai. The reader should verify using Part (2) that f is multiplicative. By (3),
ϕ(e1, e2, . . . , en) = e1 + e2 + · · ·+ en = 1.

(5): Since each element r in R = A1+A2+ · · ·+An has a unique representation
in the form r = r1 + r2 + · · ·+ rn, so does any element x in I = I1 + I2 + · · ·+ In.
So the sum is a direct sum and we can write x = x1 + x2 + · · · + xn where each
xk ∈ Ik is unique. Then rx = r1x1 + r2x2 + · · ·+ rnxn is in I, which shows I is a
left ideal in R.

(6): By Part (3), for each k there is a central idempotent ek ∈ R such that
Ak = Rek. Let Ik = ekI. Since ek is central, Ik = Iek is a left ideal in R.
Since I ⊆ R we have Ik = Iek ⊆ Rek = Ak, so Ik is a left ideal in Ak. Since
1 = e1 + · · · + en, we see that I = I1 + I2 + · · · + In. The sum is a direct sum by
Part (5). □

Example 3.3.5. Let R be a ring and let (R,+) denote the additive abelian
group of R. By definition, a left ideal of R is a subgroup of (R,+). In this example
we show that subgroups of (R,+) are not necessarily ideals of R.

(1) Let R be the ring Z/2 × Z/2. Since Z/2 is a field, it has only two ideals
and both are generated by idempotents. By Theorem 3.3.4 (5), R has
four ideals, namely the principal ideals generated by the four idempotents
(0, 0), (1, 0), (0, 1), (1, 1).

(2) Now let G be the additive abelian group (R,+) of the ring R = Z/2×Z/2.
Then G has three elements of order 2, and each one generates a subgroup
of order 2. There are five subgroups of G, namely ⟨(0, 0)⟩, ⟨(1, 0)⟩, ⟨(0, 1)⟩,
⟨(1, 1)⟩, G. Notice that the cyclic subgroup ⟨(1, 1)⟩ of G is not an ideal in
the ring R of Part (1).

Proposition 3.3.6. Suppose A1, . . . , An are ideals in the ring R satisfying

(1) R = A1 +A2 + · · ·+An and
(2) for k = 1, . . . , n− 1, we have Ak ∩ (Ak+1 + · · ·+An) = (0).

Then R = A1 ⊕A2 ⊕ · · · ⊕An.

Proof. This follows from Part (4) implies Part (1) of Proposition 2.5.6. □
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Corollary 3.3.7. Let R1, . . . , Rn be rings and P = R1 × R2 × · · · × Rn the
direct product. For 1 ≤ k ≤ n, let ek be the n-tuple in R1 × R2 × · · · × Rn with 1
in coordinate k and 0 elsewhere.

(1) {e1, . . . , en} is a set of orthogonal idempotents in P , each ek is in the center of
P , 1 = e1 + · · ·+ en, and Pek is a principal two-sided ideal in P .

(2) For each k, the kernel of the canonical projection map πk : P → Rk is the
principal ideal P (1− ek). P = Pek × P (1− ek).

(3) The image of the canonical injection map ιk : Rk → P is the principal ideal
Pek.

Proof. (1): The proof of this part is left as an exercise for the reader.
(2): This follows from (1) and Exercise 3.3.15.
(3): This follows from (1). □

3.3. The Chinese Remainder Theorem for Rings. A generalization of
Corollary 2.5.3 is proved for rings. By Lemma 1.2.5, two integers m and n are
relatively prime if and only if the sum of the ideals Zm and Zn is the unit ideal Z.
Definition 3.3.8 generalizes this notion to two ideals in a ring R.

Definition 3.3.8. If R is a ring and I and J are ideals in R, then we say I
and J are comaximal if I + J = R.

Theorem 3.3.9 is a generalization of Corollary 2.5.3.

Theorem 3.3.9. (The Chinese Remainder Theorem) Let R be a ring and I, J
comaximal ideals of R. Then there is an isomorphism of rings

R

I ∩ J
∼=
R

I
× R

J

induced by the natural projections η1 : R → R/I and η2 : R → R/J . The isomor-
phism of rings induces an isomorphism

Units(R/(I ∩ J)) ∼= Units(R/I)×Units(R/J)

of multiplicative groups of units.

Proof. Step 1: Let ϕ : R → R/I × R/J be defined by ϕ(x) = (x+ I, x+ J).
Since ϕ is defined in terms of the natural projections η1, η2, ϕ is a well defined
homomorphism of rings.

Step 2: We prove that ϕ is onto. Let a, b ∈ R. We need to find x ∈ R such
that ϕ(x) = (a+ I, b+ J). Since I and J are comaximal, there exist u ∈ I, v ∈ J
such that 1 = u+ v. Then u = 1− v ≡ 1 (mod J) and v = 1− u ≡ 1 (mod I). Set
x = bu+ av. Then

x ≡ bu+ av (mod I)

≡ av (mod I)

≡ a (mod I).

Likewise, x ≡ b (mod J). Therefore, ϕ(x) = (a+ I, b+ J).
Step 3: Consider the kernel of ϕ, kerϕ = {x ∈ R | x ∈ I and x ∈ J} = I ∩ J .

By Theorem 3.2.15, this proves that the rings are isomorphic. By Exercise 3.2.39,
ϕ induces an isomorphism on the groups of units of the rings. □

Proposition 3.3.10. Let R be a commutative ring. If I and J are comaximal
ideals, then IJ = I ∩ J .
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Proof. If x ∈ I and y ∈ J , then xy ∈ I and xy ∈ J . Since IJ is generated
by elements of the form xy, we have IJ ⊆ I ∩ J . Let z be an arbitrary element of
I ∩ J . We show z ∈ IJ . Since R = I + J , there exist u ∈ I and v ∈ J such that
1 = u + v. Now zu ∈ IJ since z ∈ J and u ∈ I. Also zv ∈ IJ since z ∈ I and
v ∈ J . Then z = zu+ zv ∈ IJ . □

Example 3.3.11. Let R = Z, I = (3), J = (4). Since gcd(3, 4) = 1 we have
I + J = R. By Proposition 3.3.10, I ∩ J = IJ = (3)(4) = (12). By Theorem 3.3.9,
Z/(12) ∼= Z/(3)× Z/(4). By Theorem 3.3.4, R has a principal ideal Re1 of order 3
and a principal ideal Re2 of order 4, both idempotent generated. By Lemma 2.2.18,
the subgroup of order 3 in Z/(12) is (4) = {0, 4, 8}. The subgroup of order 4 in
Z/(12) is (3) = {0, 3, 6, 9}. The two idempotents in Z/(12) corresponding to the di-
rect summands are 4 and 9 respectively. By Theorem 2.3.27 and Example 3.2.1 (6),
for any n ≥ 1, the the ideals of Z/(n) correspond to the divisors of n. Therefore,
Z/(3) has 2 ideals, Z/(4) has 3 ideals, and Z/(12) has 6 = 2 · 3 ideals. The lattice
of ideals in Z/(12) is

(1)

(2)

>>

(3)

``

(4)

OO

(6)

hh OO

(0)

`` >>

There are two maximal ideals in Z/(12).

Corollary 3.3.12. Let R be a commutative ring. If I and J are comaximal
ideals, then R/IJ ∼= R/I ×R/J .

Corollary 3.3.13. Let R be any ring. If I1, . . . , In are ideals in R and

ϕ : R→ R/I1 ×R/I2 × · · · ×R/In

is the natural map given by x 7→ (x+ I1, . . . , x+ In), then the following are true.

(1) ϕ is a homomorphism of rings.
(2) The kernel of ϕ is equal to I1 ∩ I2 ∩ · · · ∩ In.
(3) ϕ is onto if and only if n = 1 or the ideals are pairwise comaximal, (that

is, Ii + Ij = R if i ̸= j).

Proof. We prove (3) and leave the rest to the reader. Assume ϕ is onto and
n > 1. For each 1 ≤ i ≤ n, consider the idempotent ei in R/I1 × · · · ×R/In which
is 1 in coordinate i and 0 in every other coordinate. Since ϕ is onto, there exists an
element ai ∈ R such that bi = 1 − ai ∈ Ii and ai ∈ Ij whenever j ̸= i. Therefore,
1 = ai + bi is in Ij + Ii.

Now we prove the converse of (3). If n = 1, then this follows from Theo-
rem 3.2.15. Assume n > 1 and the ideals are pairwise comaximal. If n = 2, this is
Theorem 3.3.9. Inductively, assume n > 2 and that the result holds for a collection
of n − 1 or fewer ideals. By our induction hypothesis, there is an isomorphism
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of rings ϕ2 : R/(I2 ∩ · · · ∩ In) → R/I2 × · · · ×R/In. By Exercise 3.3.21, I1 and
I2 ∩ · · · ∩ In are comaximal. Consider the diagram

R
ϕ //

ϕ1
((

R/I1 ×R/I2 × · · · ×R/In

R/I1 ⊕R/(I2 ∩ · · · ∩ In)
ψ

44

where ϕ and ϕ1 are homomorphisms of rings by (1). By induction, ϕ1 is onto.
The map ψ is defined by (x, y) 7→ (x, ϕ2(y)) and it is easy to see that ψ is an
isomorphism. The kernel of ϕ is equal to the kernel of ϕ1, by (2). All of the maps
are the natural maps, so the diagram commutes. Therefore, ϕ is onto. □

Example 3.3.14. Let F be a field and

R =

{(
a b
0 d

)
| a, b, d ∈ F

}
the set of all upper triangular matrices in M2(F ). As in Example 3.1.12, R is a
noncommutative subring ofM2(F ). The proof given in Example 3.1.13 can be used
to show that the center of R is the set of scalar matrices, which is isomorphic to F

by the homomorphism δ : F → R defined by δ(a) =

(
a 0
0 a

)
. Define λ : R→ F by

λ

(
a b
0 d

)
= a. The reader should verify that λ is a homomorphism and λδ(a) = a

for all a ∈ F . We say F is a subfield of R and λ is a section to δ. The homomorphism

ρ : R→ F defined by ρ

(
a b
0 d

)
= d also satisfies ρδ(a) = a, hence a section to δ is

not unique. The kernels of λ and ρ are

kerλ =

{(
0 b
0 d

)
| b, d ∈ F

}
, ker ρ =

{(
a b
0 0

)
| a, b ∈ F

}
,

which are proper ideals in R. We say R is not a simple ring. Since F has no
proper ideals, by Corollary 3.2.18, there is no proper ideal of R that contains
kerλ or ker ρ. The ideals kerλ and ker ρ are maximal proper ideals in R. Let

D =

{(
a 0
0 d

)
| a, d ∈ F

}
. The reader should verify that D is a subring of R.

Define τ : R → D by τ

(
a b
0 d

)
=

(
a 0
0 d

)
. The reader should verify that τ is a

homomorphism and for any matrix A ∈ D, τ(A) = A. In other words, τ is a section
to the inclusion map D → R. The kernel of τ is the ideal

ker τ =

{(
0 b
0 0

)
| b ∈ F

}
.

If

(
a b
0 d

)
is an idempotent matrix, then a and d are idempotents in F . After

looking at the possible cases, the reader should verify that the set of all idempotents
in R is {(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
0 0

)
,

(
0 1
0 1

)}
.

Only the two trivial idempotents, namely 0 and 1, are central. Therefore, R is not
an internal direct sum of proper ideals. Let R∗ be the group of units of R. By
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Exercise 3.2.39, there are homomorphisms of groups δ∗ : F ∗ → R∗ and ρ∗ : R∗ →
F ∗. Let

T = ker ρ∗ =

{(
a b
0 1

)
| a ∈ F ∗, b ∈ F

}
,

and

Z = δ(F ∗) =

{(
a 0
0 a

)
| a ∈ F ∗

}
.

By Exercise 2.5.24, the group of units of R is the internal direct product R∗ = T×Z
of the two proper normal subgroups T and Z. The ring R is an example of an
extension of a ring by a module. Specifically, R is the extension of D by the module
ker τ . The interested reader is referred to [10, Exercise 8.1.14] for the general
construction.

3.4. Exercises.

Exercise 3.3.15. Suppose R is a ring and e ∈ R is a central idempotent.
Assume e ̸= 0 and e ̸= 1. Let I be the ideal generated by e. Prove that R is equal
to the internal direct sum I ⊕ J for some ideal J .

Exercise 3.3.16. Consider the ring R = Z/(n).
(1) Suppose n = 1105.

(a) Prove that R is isomorphic to a direct sum of fields.
(b) Determine all maximal ideals in R.
(c) Determine all idempotents in R.

(2) Suppose n = 1800.
(a) Determine all maximal ideals in R.
(b) Determine all idempotents in R.

Exercise 3.3.17. Assume the ring R is a direct product R = R1 × R2. Let
e1, e2 be the central idempotents corresponding to the factors (guaranteed by Corol-
lary 3.3.7). Let D be a ring which has exactly two idempotents, namely 0 and 1.
Let θ : R→ D be a homomorphism of rings. Prove that exactly one of the following
is true:

(1) θ(e1) = 1 and θ(e2) = 0, or
(2) θ(e1) = 0 and θ(e2) = 1.

Exercise 3.3.18. Let R be any ring. Let I and J be ideals in R and ϕ : R →
R/I ⊕R/J the natural homomorphism of Theorem 3.3.9. Show that the image of
ϕ is the subring of R/I ⊕ R/J defined by {(x+ I, y + J) | x− y ∈ I + J}. See [9,
Exercise 4.2.27] for an interpretation of this result in terms of modules.

Exercise 3.3.19. If n > 1, then we say n is square free if n is not divisible by
the square of a prime number. Prove that the nil radical of Z/n is (0) if and only
if n is square free. For the definition of nil radical, see Exercise 3.2.38.

Exercise 3.3.20. Let n > 1 and R a finite ring of order n. Suppose n is square
free and the factorization of n into primes is n = p1 · · · pm. Prove the following:

(1) R ∼= Z/n.
(2) R is commutative.
(3) R is a field, or a direct sum of fields.
(4) In terms of the prime factors of n, describe the maximal ideals of R.
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Exercise 3.3.21. Let R be a ring and I, I1, . . . , In a collection of two-sided
ideals in R. Assume I + Ij = R for 1 ≤ j ≤ n. Show that I + I1 ∩ · · · ∩ In = R.

Exercise 3.3.22. Show that no two of the following rings are isomorphic to
each other: (1) Z/16. (2) Z/4×Z/4. (3) Z/2×Z/8. (4) Z/2×Z/2×Z/2. (5) Z/4[i]
which is the ring of Exercise 3.1.24. (6)M2(Z/2) which is the ring of Exercise 3.1.21.
(7) The group ring R(G) where R = Z/2, and G = Z/2× Z/2, of Exercise 3.1.19.

Exercise 3.3.23. Let R be a ring and e an idempotent in R. Prove that if
f : R→ S is a homomorphism of rings, then f(e) is an idempotent in S.

Exercise 3.3.24. Let {Ri | i ∈ I} be a family of rings indexed by the set
I. Show that the group of units of the direct product

∏
i∈I Ri is equal to the

direct product of the family of groups {Units(Ri) | i ∈ I}. That is, show that
Units(

∏
i∈I Ri) =

∏
i∈I Units(Ri).

Exercise 3.3.25. Let R1, . . . , Rn be commutative rings and R = R1×· · ·×Rn
the direct product. Show that R is a principal ideal ring if and only if Ri is a
principal ideal ring for each i.

Exercise 3.3.26. Show that the following three rings are all isomorphic to
each other: (1) The group ring Z(G), where G = ⟨σ | σ2 = e⟩ is a cyclic

group of order two. (2)

{[
a b
b a

]
| a, b ∈ Z

}
, which is a subring of M2(Z). (3)

{(x, y) ∈ Z× Z | x ≡ y (mod 2)}, which is a subring of Z× Z.

4. Factorization in Commutative Rings

Throughout this section every ring will be commutative unless specifically
stated otherwise. Notions that arise in Number Theory are applied to the setting
of rings. On the set of natural numbers the relation called “divides” is reflexive,
antisymmetric and transitive, hence it is a partial order. On the ring of integers, it
is not symmetric and not antisymmetric. If a and b are elements of a commutative
ring R, then either a divides b or not. Thus “divides” is a binary relation on R that
is reflexive and transitive but in general not symmetric or antisymmetric. Elements
that are divisors of each other are called associates. The relation “is an associate”
defines an equivalence relation. On associate classes, the relation “divides” does
define a partial order. Using this partial order on associate classes we define the
greatest common divisor of a subset X of R. For a general commutative ring R,
greatest common divisors do not necessarily exist. In R we define what it means
for an element to be prime, or irreducible. For the ring of integers these notions are
equivalent, but for a general commutative ring R they are not (see Exercise 3.6.21).
A unique factorization domain is an integral domain for which the conclusion of
the Fundamental Theorem of Arithmetic holds. A euclidean domain is an integral
domain which has a division algorithm. Some of the fundamental properties of
a principal ideal domain are proved. For instance, a principal ideal domain is a
unique factorization domain and satisfies the ascending chain condition on ideals.

Definition 3.4.1. Let R be a commutative ring. Suppose a and b are elements
of R. We say a divides b, and write a | b, in case there exists c ∈ R such that b = ac.
We also say that a is a factor of b, or b is a multiple of a.
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Definition 3.4.2. Let R be a commutative ring and suppose a and b are
elements of R. If a | b and b | a, then we say a and b are associates. In this case
we write a ∼ b. The reader should verify that the relation “a is an associate of b”
is an equivalence relation on R.

Lemma 3.4.3. Let R be a commutative ring. Let a, b, r, u ∈ R.

(1) The following are equivalent:
(a) a | b.
(b) b ∈ Ra = (a).
(c) (a) ⊇ (b).

(2) a and b are associates if and only if (a) = (b).
(3) If a = bu and u is a unit, then a and b are associates.
(4) If R is an integral domain and a and b are associates, then a = bu for some

unit u.
(5) Let R be an integral domain. If a ̸= 0 and a | b, then there exists a unique c

such that b = ac. We write c = ba−1, or c = b/a.

Proof. (1): This follows straight from Definitions 3.2.4 and 3.4.1.
(5): Suppose b = ac = ac′. Subtract and distribute to get a(c− c′) = 0. Since

a ̸= 0 and R is an integral domain, this means c− c′ = 0, hence c = c′.
The rest of the proof is left to the reader. □

Definition 3.4.4. Let R be a commutative ring and a an element of R which
is not a unit and not a zero divisor. Then a is irreducible in case whenever a = bc,
either b is a unit or c is a unit. We say that a is prime in case whenever a | bc,
either a | b or a | c.

In Lemma 3.4.5 below we show that every prime element in an integral do-
main is irreducible. For a general integral domain R an irreducible element is not
prime (see Exercise 3.6.21). In Corollary 3.4.14 below we prove that in a unique
factorization domain an element is prime if and only if it is irreducible.

Lemma 3.4.5. Let R be an integral domain and p an element of R.

(1) p is prime if and only if (p) is a prime ideal.
(2) p is irreducible if and only if the principal ideal (p) is maximal among nonunit

principal ideals of R.
(3) If p is prime, then p is irreducible.
(4) If p is irreducible and q is an associate of p, then q is irreducible.
(5) If p is prime and q is an associate of p, then q is prime.
(6) If p is irreducible, then the only divisors of p are units and associates of p.

Proof. In the following, let a, b, p, q, u ∈ R.
(1): We have ab ∈ (p) if and only if p | ab. Likewise, a ∈ (p) if and only if p | a,

and b ∈ (p) if and only if p | b.
(2): Suppose p is irreducible and (p) ⊆ (x). Then x | p. Since p is irreducible,

either x is a unit or x and p are associates. By Lemma 3.2.11 and Lemma 3.4.3 (2),
this implies either (p) = (x) or (x) = R. Conversely, suppose (p) is maximal among
all nonunit principal ideals. Suppose p = xy. Then p ∈ (x) and p ∈ (y). Since p is
not a unit, either x or y is not a unit. Assume x is not a unit. Since (p) is maximal,
this implies (p) = (x). By Lemma 3.4.3 Parts (2), (4) and (5), this implies p and x
are associates and y is a unit.
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(3): Suppose p is prime and p = ab. Since p is prime we assume p | a. Therefore
a and p are associates. By Lemma 3.4.3 (4), b is a unit in R.

(5): Assume p is prime, u is a unit, q = pu, and q | ab. For some c ∈ R, ab =
qc = puc. Since p is prime we assume p | a. For some d ∈ R, a = pd = (pu)(u−1d),
which shows q | a.

(4) and (6): The proofs are left to the reader. □

4.1. Greatest Common Divisors. Let R be a commutative ring. Two el-
ements a and b are associates if a | b and b | a, and we write a ∼ b. Then “is an
associate” defines an equivalence relation on R. On the set of equivalence classes
the relation “divides” is a partial order. It is with respect to this partial order that
we define the greatest common divisor of a set of elements in R.

Definition 3.4.6. Let R be a commutative ring and X a nonempty subset
of R. An element d ∈ R is a greatest common divisor of X if the following are
satisfied:

(1) d | x for all x ∈ X, and
(2) if c | x for all x ∈ X, then c | d.

We sometimes write d = gcd(X) if d is a greatest common divisor of X. When
X = {x1, . . . , xn} is finite, we write d = gcd(x1, . . . , xn) for gcd(X).

In Lemma 3.4.7 we see that if d is a greatest common divisor, so is any associate
of d. If gcd(X) exists, it is unique up to associates.

Lemma 3.4.7. Let X be a nonempty subset of R.

(1) If the greatest common divisor of X exists, then it is unique up to associates.
In other words, the following are equivalent:
(a) d = gcd(X) and d ∼ d′.
(b) d = gcd(X) and d′ = gcd(X).

(2) Let R be an integral domain. Then d and d′ are two greatest common divisors
of X if and only if there exists a unit u ∈ R∗ such that d′ = du.

Proof. (1): Suppose d = gcd(X) and d ∼ d′. For each x ∈ X, we have
d′ | d | x. If c | x for each x ∈ X, then c | d | d′. Therefore, d′ = gcd(X).
Conversely, if d = gcd(X) and d′ = gcd(X), then d | d′ and d′ | d. Thus d and d′

are associates.
(2): By Lemma 3.4.3 (4), d′ = du for some u ∈ R∗. □

Proposition 3.4.8. Let R be a commutative ring and X a nonempty subset of
R.

(1) If the ideal generated by X is principal and d is a generator for (X), then
d = gcd(X).

(2) If d = gcd(X) exists and d is in the ideal (X), then (d) = (X).

Proof. (1): If (d) = (X), then d | x, for all x ∈ X. Also, d = a1x1+ · · ·+anxn
for some a1, . . . , an ∈ R and x1, . . . , xn ∈ X. Suppose c | x for each x ∈ X. Then
c | a1x1 + · · ·+ anxn = d.

(2): This follows from Definition 3.4.6 and Exercise 3.4.26. □

Corollary 3.4.9. (A PID is a Bézout domain) Let R be a principal ideal
domain and X a nonempty subset of R. Then d = gcd(X), the greatest common
divisor of X, exists and is unique up to associates. Any generator d of the ideal
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(X) is a greatest common divisor of a and b. In this case, d = a1x1 + · · · + anxn
for some a1, . . . , an ∈ R and x1, . . . , xn ∈ X.

Proof. Since (X) is principal, there exists d ∈ R such that (d) = (X).
Proposition 3.4.8 (1) implies d = gcd(X) exists and can be written in the form
d = a1x1+· · ·+anxn for some a1, . . . , an ∈ R and x1, . . . , xn ∈ X. By Lemma 3.4.7,
d is unique up to associates. □

Corollary 3.4.10. Let R be a principal ideal domain and p ∈ R an irreducible
element. Then the following are true.

(1) p is prime. That is, if p | ab, then p | a or p | b.
(2) If x1, x2, . . . , xn in R and p | x1x2 · · ·xn, then p | xi for some i.

Proof. (1): Assume p | ab and p does not divide b. We prove p | a. The ideal
(p, b) is principal, hence is equal to (d), for some d ∈ R. Then d | p and d | b. Since
p is irreducible, d is a unit, or d is an associate of p (Lemma 3.4.5 (6)). We are
assuming p does not divide b, hence d is not an associate of p, hence d is a unit.
Therefore (d) = (1). By Corollary 3.4.9, we can write 1 = px + by. Multiply by a
to get a = pax+ aby. Since p | ab, this shows p | a.

(2) If n = 1, then take i = 1 and stop. Assume inductively that n > 1 and the
result holds for a product of n − 1 factors. Then p | (x1 · · ·xn−1)xn. By Part (1),
p | xn, or p | (x1 · · ·xn−1). By the induction hypothesis, p | xi for some i. □

Definition 3.4.11. Let R be an integral domain. Then R is a unique factor-
ization domain if for every nonzero nonunit x in R, the following are satisfied:

(1) x has a representation as a product of irreducibles. That is, there exist
irreducible elements x1, x2, . . . , xn in R such that x = x1x2 · · ·xn.

(2) In any factorization of x as in (1), the number of factors is unique.
(3) In any factorization of x as in (1), the irreducible factors are unique up

to order and associates.

Sometimes we say R is a UFD.

Example 3.4.12. The ring Z is a unique factorization domain, by the Funda-
mental Theorem of Arithmetic. We will prove in Theorem 3.4.15 that any principal
ideal domain is a unique factorization domain.

Corollary 3.4.13. Let R be a unique factorization domain. If X = {r1, . . . , rn}
is a finite nonempty subset of R, then d = gcd(X) exists and is unique up to asso-
ciates.

Proof. If n = 1, then by Proposition 3.4.8 (1), r1 = gcd(X) exists. By
Mathematical Induction and Exercise 3.4.27, it suffices to prove the n = 2 case.
Assume X = {a, b}. If a = 0, then (a, b) = (b) and by Proposition 3.4.8 (1),
b = gcd(a, b) exists. If (a, b) = (1), then by Proposition 3.4.8 (1), 1 = gcd(a, b)
exists. Assume a and b are both nonzero and nonunits. Then by Exercise 3.4.28,
gcd(a, b) exists and we are done. □

Corollary 3.4.14. Let R be a unique factorization domain and p ∈ R − (0).
Then the following are equivalent.

(1) p is irreducible.
(2) p is prime.
(3) The principal ideal (p) is a prime ideal.
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Proof. By Lemma 3.4.5 (1), (2) is equivalent to (3). By Lemma 3.4.5 (3), (2)
implies (1). We prove that (1) implies (2). Suppose p is irreducible and p | ab. If
a = 0, then p | a. If b = 0, then p | b. Since p is not invertible, ab is not invertible.
Write ab = pc for some c ∈ R. Assume ab is nonzero and not invertible. Factor ab
and pc into irreducibles. By uniqueness of factorization, p is an associate of one of
the irreducible factors of a or b. □

4.2. Principal Ideal Domains. The fundamental properties of a principal
ideal domain (a PID, for short) are derived in Theorem 3.4.15. In particular, every
principal ideal domain is a unique factorization domain. Part (2) shows that a PID
satisfies the ascending chain condition on ideals. A commutative ring with this
property is said to be noetherian, after E. Noether.

Theorem 3.4.15. Let R be a principal ideal domain.

(1) If p is an irreducible element, then p is a prime element.
(2) R satisfies the ascending chain condition on ideals. That is, given a chain of

ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ · · · , there exists N ≥ 1 such that IN =
IN+1 = · · · .

(3) If a ∈ R is a nonunit, nonzero element of R, then the set

S = {p ∈ R | p is irreducible and p | a}
contains only a finite number of associate classes. In other words, up to asso-
ciates, a has only a finite number of irreducible factors.

(4) If I is an ideal in R which is not the unit ideal, then
⋂
n≥1 I

n = (0).

(5) Suppose a is a nonzero element in R, p is irreducible and p is a factor of a.
Then for some n ≥ 1 we have a ∈ (pn) and a ̸∈ (pn+1).

(6) If a ∈ R is a nonunit and a nonzero element, then there exists an irreducible
element p such that p | a.

(7) R is a unique factorization domain.

Proof. (1): This is Corollary 3.4.10.
(2): Let I =

⋃∞
k=1 Ik. By Exercise 3.2.35, I is an ideal in R. Since R is a PID,

there exists a ∈ R such that I = (a). Given a ∈ I, we know a ∈ IN for some N .
Then I = (a) ⊆ IN ⊆ IN+1 ⊆ · · · and we are done.

(3): The proof is by contradiction. Assume {p1, p2, . . . } is a sequence in S
such that for each n > 1, pn does not divide p1p2 · · · pn−1. Write a = p1a1. Then
p2 | p1a1. By assumption, p2 does not divide p1. By Part (1), p2 | a1 and we write
a1 = p2a2. Iteratively we arrive at the factorizations

a = p1a1 = p1p2a2 = · · · = p1p2 · · · pnan.
Applying one more step, we know pn+1 | a. Since pn+1 does not divide p1p2 · · · pn,
and pn+1 is prime, it follows that pn+1 | an. Write an = pn+1an+1. Therefore
(an) ⊆ (an+1) with equality if and only if an and an+1 are associates. But pn+1 is
not a unit, so by Lemma 3.4.3 (4), the chain of ideals

(a1) ⊆ (a2) ⊆ · · · ⊆ (an) ⊆ (an+1) ⊆ · · ·
is strictly increasing. This contradicts Part (2).

(4): Because R is a PID, I = (b) for some b ∈ R. If I = 0, then Part (4)
is trivial, so we assume b ̸= 0. Let M =

⋂∞
n=1 I

n. Then M is an ideal in R, so
M = (r) for some r ∈ R. Since M is an ideal, bM ⊆ M . To show that bM = M ,
assume x ∈ M . Then x ∈ M ⊆ I implies x = by for some y ∈ R. Let n ≥ 1.
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Then x ∈ M ⊆ In+1 = (bn+1) implies x = bn+1z for some z ∈ R. Since R is an
integral domain and b ̸= 0, x = by = bn+1z implies y = bnz ∈ In = (bn). This
proves y ∈

⋂
n≥1 I

n = M . Therefore x ∈ bM , and bM = M . Since bM = (br),
Lemma 3.4.3 says br and r are associates. But b is not a unit, so r = 0, which
proves (4).

(5): Set I = (p). By assumption, a ∈ (p) and a ̸= 0. By Part (4), for some
n ≥ 1 we have a ̸∈ (pn+1) and a ∈ (pn).

(6): The proof is by contradiction. Suppose a ∈ R is not a unit, and not
divisible by an irreducible. Then a is not irreducible. There are nonunits a1, b1
in R such that a = a1b1. By our assumption, a1 and b1 are not irreducible. By
Lemma 3.4.3, (a) ⊊ (a1). Since a1 is not irreducible, there are nonunits a2, b2 in
R such that a1 = a2b2. Since a2 and b2 are divisors of a, both are not irreducible.
By Lemma 3.4.3, (a) ⊊ (a1) ⊊ (a2). Recursively we construct a strictly increasing
sequence of ideals (ai) ⊊ (ai+1), contradicting Part (2).

(7): This proof is left to the reader. □

4.3. Euclidean Domains. In this section we define a family of rings called
euclidean domains. The prototype of this family is the ring of integers, Z. The
ring of integers has a norm function, the absolute value function, and the Division
Algorithm (Proposition 1.2.3). These are the properties of the ring Z that we
investigate. A euclidean domain is an integral domain that has a norm function
and a division algorithm.

Definition 3.4.16. Let R be an integral domain. Then R is called a euclidean
domain if there is a function (called the norm) δ : R− (0) → N such that

(1) δ(ab) = δ(a)δ(b) for all a, b ∈ R− (0), and
(2) for all a, b ∈ R − (0) there exist q, r ∈ R such that a = bq + r and either

r = 0 or δ(r) < δ(b).

Example 3.4.17. The ring of integers Z is a euclidean domain with the norm
function δ(x) = |x|. The absolute value function is multiplicative, and property (2)
is satisfied by the Division Algorithm on Z (Proposition 1.2.3).

Example 3.4.18. We will prove in Corollary 3.6.5 below that if F is a field,
then the polynomial ring F [x] is a euclidean domain.

Example 3.4.19. In this example we prove that the ring of gaussian integers
Z[i] (see Exercise 3.1.23) is a euclidean domain. Let χ : C → C be complex
conjugation: χ(a + bi) = a − bi. The norm function δ : C − (0) → R is defined by
δ(a + bi) = a2 + b2 = (a + bi)χ(a + bi). Since δ = 1Cχ is defined by multiplying
two automorphisms, δ is multiplicative. As in Exercise 3.1.23, we have Z[i] =
{a+ bi | a, b ∈ Z}. Now we prove that Property (2) of Definition 3.4.16 holds. Let
α, β ∈ Z[i]− (0). Since Q[i] is a field, we can write αβ−1 = u+ vi where u, v ∈ Q.
Let p, q ∈ Z such that |u − p| ≤ 1/2 and |v − q| ≤ 1/2. Then γ = p + qi ∈ Z[i].
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Define ρ = α− βγ = β((u− p) + (v − q)i). Then

δ(ρ) = δ (β((u− p) + (v − q)i))

= δ(β)
(
(u− p)2 + (v − q)2

)
≤ δ(β)

(
1

22
+

1

22

)
≤ 1

2
δ(β) < δ(β)

and α = βγ + ρ.

Proposition 3.4.20. If R is a euclidean domain, then R is a principal ideal
domain. Hence R is a unique factorization domain.

Proof. Let I be a nonzero ideal in R. Consider the nonempty set S = {δ(a) |
a ∈ I − (0)}. By the Well Ordering Principle for N, S has a least element, say δ(b),
for some b ∈ I. Let a ∈ I. Since R is a euclidean domain, there exist q and r in R
such that a = bq + r and either r = 0 or δ(r) < δ(b). Since a, b ∈ I, we have r ∈ I.
By the minimal choice of δ(b), we conclude that r = 0. Thus, a ∈ Rb. This shows
I = Rb is principal. By Theorem 3.4.15, R is a UFD. □

Example 3.4.21. By Proposition 3.4.20, we have the following examples of
principal ideal domains.

(1) We have not proved it yet, but if F is a field, then F [x] is a principal ideal
domain.

(2) By Example 3.4.19, the ring of gaussian integers Z[i] is a principal ideal
domain.

Proposition 3.4.22. Let R be a euclidean domain with norm function δ :
R− (0) → N. Then the following are true:

(1) δ(1) = 1.
(2) If u ∈ R∗ is a unit in R, then δ(u) = 1.
(3) If δ(u) = 1, then u ∈ R∗ is a unit in R.
(4) The group of units of R is R∗ = δ−1{1}.
(5) If p is a prime number, x ∈ R− (0), and δ(x) = p, then x is irreducible.

Proof. (1) and (2): For any u ∈ R − (0) we have δ(u) = δ(u · 1) = δ(u)δ(1).
Therefore, δ(1) = 1. Let u ∈ R∗. Then 1 = δ(uu−1) = δ(u)δ(u−1). Since the group
of invertible elements of the ring Z is {1,−1}, we conclude that δ(u) = 1.

(3): Assume δ(u) = 1. Divide u into 1. There exist q, r ∈ R such that 1 = uq+r.
Since 1 is the least element of N, we conclude that r = 0. Thus, u is invertible.

(4): This part follows from (1), (2), and (3).
(5): Assume x = ab. Then p = δ(x) = δ(a)δ(b). Thus δ(a) = 1 or δ(b) = 1. By

(4), R∗ = {u ∈ R− (0) | δ(u) = 1}. Hence a is a unit or b is a unit. □

We end this section with a proof that in a euclidean domain R the greatest com-
mon divisor of two elements a and b can be computed by the Euclidean Algorithm.
In Corollary 3.4.24 we prove that the so-called Extended Euclidean Algorithm con-
verges to a minimal solution (x, y) to the Bézout Identity gcd(a, b) = ax+ by.

Proposition 3.4.23. (The Euclidean Algorithm) Let R be a euclidean domain
with with norm δ : R − (0) → N. Let a and b be elements of R. The greatest
common divisor of a and b exists and satisfies the following recursive formula:
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(1) (Basis) If b = 0, then gcd(a, b) = a.
(2) (Recurrence) If b ̸= 0, then gcd(a, b) = gcd(b, r), where a = bq + r and either

r = 0 or δ(r) < δ(b).

Proof. If b = 0, then the ideals (a, b) and (a) are equal in R, and Corol-
lary 3.4.9 implies gcd(a, b) = a. If b ̸= 0, then by Definition 3.4.16, a = bq + r,
for elements q and r in R such that either r = 0 or δ(r) < δ(b). Then the ideals
(a, b) and (b, r) are equal in R. By Corollary 3.4.9, gcd(a, b) = gcd(b, r). To see
that the recursive algorithm converges, set r0 = b and successively apply Def-
inition 3.4.16 to find a sequence of quotients q1, q2, . . . , qn+1 and a sequence of
remainders r0, r1, r2, . . . , rn satisfying:

a = r0q1 + r1, 0 < δ(r1) < δ(r0)

r0 = r1q2 + r2, 0 < δ(r2) < δ(r1)

r1 = r2q3 + r3, 0 < δ(r3) < δ(r2)

...

rn−3 = rn−2qn−1 + rn−1, 0 < δ(rn−1) < δ(rn−2)

rn−2 = rn−1qn + rn, 0 < δ(rn) < δ(rn−1)

rn−1 = rnqn+1 + 0

where rn is the last nonzero remainder. The algorithm converges for some n such
that 0 ≤ n ≤ δ(b) because δ(r0) > δ(r1) > δ(r2) > · · · > δ(rn) > 0. As mentioned
above,

rn = gcd(rn, rn−1) = gcd(rn, rn−1) = gcd(rn−1, rn−2)

= · · · = gcd(r3, r2) = gcd(r2, r1) = gcd(r1, r0) = gcd(a, b).

□

Let R be a euclidean domain, a, b elements of R, and d = gcd(a, b). In Corol-
lary 3.4.24 below we prove the so-called Extended Euclidean Algorithm which is
an efficient algorithm for computing a solution (x, y) to the equation d = ax+ by.
The proof we give is inspired by [31]. Using the method of Exercise 1.2.17, one can
show that if (x0, y0) is a particular solution to the equation d = ax+ by, then the
general solution is given by (x, y) = (x0, y0) + t(−b/d, a/d), where t ∈ R.

Let q1, q2, . . . , qn+1 and r0, r1, r2, . . . , rn, rn+1 be the sequences of quotients
and remainders defined in the proof of Proposition 3.4.23. Then rn = gcd(a, b) and
rn+1 = 0. The Extended Euclidean Algorithm uses two additional sequences which
are defined here since they will appear in Corollary 3.4.24 below. The sequence
s0, s1, . . . , sn+1 is defined recursively:

(4.1) si =


0 if i = 0

1 if i = 1

si−2 − qisi−1 if 2 ≤ i ≤ n+ 1.

Likewise, the sequence t0, t1, . . . , tn+1 is defined by the recursive formula:

(4.2) ti =


1 if i = 0

−q1 if i = 1

ti−2 − qiti−1 if 2 ≤ i ≤ n+ 1.
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Corollary 3.4.24. (Extended Euclidean Algorithm) Let R be a euclidean do-
main with norm function δ : R − (0) → N. Let a and b be elements of R. Let
q1, . . . , qn+1, r0, r1, . . . , rn+1 be the two sequences defined in the proof of Propo-
sition 3.4.23. Let s0, s1, . . . , sn+1 and t0, t1, . . . , tn+1 be the sequences defined in
Eq. (4.1) and Eq. (4.2) respectively. Then the following hold.

(1) For 0 ≤ i ≤ n+ 1, ri = asi + bti.
(2) gcd(a, b) = asn + btn.
(3) gcd(si, ti) = 1 for i = 0, 1, . . . , n+ 1.
(4) Let d = gcd(a, b). Then b and dsn+1 are associates, and a and dtn+1 are

associates.
(5) If R = Z is the ring of integers, 1 < a, 1 < b, a does not divide b, and b does not

divide a, then |sn| ≤ b/(2d) and |tn| ≤ a/(2d). In other words, the Extended
Euclidean Algorithm applied to a and b converges to a minimal solution (x, y) to
the Bézout equation d = ax+by in the sense that |x| ≤ b/(2d) and |y| ≤ a/(2d).

Proof. (1): Since r0 = a0+ b1 and r1 = a1+ b(−q1), the formula in (1) holds
for i = 0 and i = 1. Inductively assume 2 ≤ k ≤ n+ 1 and that the formula in (1)
holds for 0 ≤ i < k. Then

rk = rk−2 − qkrk−1

= (ask−2 + btk−2)− qk(ask−1 + btk−1)

= a(sk−2 − qksk−1) + b(tk−2 − qktk−1)

= ask + btk.

By Mathematical Induction, this proves (1).
(2): By Proposition 3.4.23, rn is equal to d = gcd(a, b). This is a special case

of (1).
(3): This part of the proof uses properties of 2-by-2 matrices. Let Mi =[

si−1 ti−1

si ti

]
and Ai =

[
0 1
1 −qi

]
. Then M1 =

[
0 1
1 −q1

]
= A1 and for i > 1 we

have:

AiMi−1 =

[
0 1
1 −qi

] [
si−2 ti−2

si−1 ti−1

]
=

[
si−1 ti−1

si−2 − qisi−1 ti−2 − qiti−1

]
=

[
si−1 ti−1

si ti

]
=Mi.

Therefore, Mi factors into Mi = AiAi−1 · · ·A1. As was shown in Example 2.1.21,
the determinant function det : M2(Q) → Q is multiplicative. Since det(Ai) = −1
for each i, this implies det(Mi) = (−1)i. In particular,

(−1)i = det(Mi)

= det

[
si−1 ti−1

si ti

]
= si−1ti − siti−1.

(4.3)

It follows from Eq. (4.3) that Rsi + Rti is the unit ideal. By Proposition 3.4.8,
gcd(si, ti) = 1.
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(4): From (1) with i = n + 1, we have 0 = asn+1 + btn+1. From (3) and
Exercise 3.4.25, we conclude that sn+1 divides b and tn+1 divides a. The reader
should verify that the statement in (4) holds if sn+1 = 0 or tn+1 = 0. Now assume
sn+1 and tn+1 are both nonzero. Write b = sn+1x and a = tn+1y. Substituting
into asn+1 = −btn+1, we get

(4.4) tn+1ysn+1 = −sn+1xtn+1.

From Eq. (4.4) and Lemma 3.2.19 (2), it follows that x and y are associates. There-
fore x | b, x | a and gcd(bx−1, ax−1) = gcd(sn+1, tn+1) = 1. By Exercise 3.4.29,
x = gcd(a, b). Hence x and y are both associates of d.

(5): Except for the length of the sequences and the initial terms, the si and ti
sequences for a and b are the same as the ti and si sequences obtained when the
algorithm is applied with the roles of a and b swapped. Assume without loss of
generality that b < a. Since b does not divide a, 0 < r1 < b and n ≥ 1. Then for i =
1, 2, . . . , n, we have 1 ≤ qi and 0 < ri < ri−1. Since rn+1 = 0 and 1 ≤ rn < rn−1, we
have 2 ≤ qn+1. We have s0 = 0, s1 = 1, s2 = −q1 < 0. It follows from induction and
the recurrence relation si = si−2 − qisi−1 that s1, s2, . . . , sn, sn+1 is an alternating
sequence. Using this, it follows that |si| = |si−2|+qi|si−1| ≥ qi|si−1| ≥ |si−1|. Thus
|s1| ≤ |s2| ≤ · · · ≤ |sn| ≤ |sn+1|.

From Part (4) we have d|sn+1| = b. Then

b

d
= |sn+1|

= |sn−1|+ qn+1|sn|
≥ qn+1|sn|
≥ 2|sn|

A similar proof using the sequence {t0, t1, . . . , tn+1} proves that a/d ≥ 2|tn|. □

4.4. Exercises.

Exercise 3.4.25. Let a and b be elements of a commutative ring R. If (a, b) =
(1) and a | bc, then a | c.

Exercise 3.4.26. Let X be a nonempty subset of a commutative ring R. If
d ∈ (X) and d | x for all x ∈ X, then (d) = (X).

Exercise 3.4.27. Let X = {x1, . . . , xn} be a nonempty finite subset of a com-
mutative ring R, with n ≥ 2. If e = gcd(x1, . . . , xn−1) and d = gcd(e, xn), then
d = gcd(x1, . . . , xn).

Exercise 3.4.28. (Exponential Notation in a UFD) Let a and b be elements of
a unique factorization domain R. Assume a and b are both nonzero and nonunits.

(1) Show that there are representations of a and b:

a = xe11 · · ·xemm , and

b = uxf11 · · ·xfmm ,

where x1, . . . , xm are irreducible elements in R such that xi and xj are
associates of each other if and only if i = j, u is a unit in R, and e1, . . . , em,
f1, . . . , fm are nonnegative integers.

(2) Show that in the notation from (1) that a | b if and only if ei ≤ fi for
each i.
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(3) In the notation from (1), for j = 1, . . . ,m, let ℓj be the least element in

the set {ej , fj}. Prove that d = xℓ11 x
ℓ2
2 · · ·xℓmm = gcd(a, b).

Exercise 3.4.29. Let R be an integral domain and X a nonempty subset of
R.

(1) Assume d = gcd(X) exists and d ̸= 0. Let Y = {xd−1 | x ∈ X} (see
Lemma 3.4.3 (5) for this notation). Prove that 1 = gcd(Y ).

(2) Suppose d ∈ R−{0} and d | x for every x ∈ X. As in (1), let Y = {xd−1 |
x ∈ X}. Prove that if 1 = gcd(Y ), then d = gcd(X).

Exercise 3.4.30. Let R be a principal ideal domain and P a nonzero prime
ideal of R. Show that P is a maximal ideal.

Exercise 3.4.31. Let a, b, and c be a elements of a commutative ring R.

(1) Show that if (a, c) = (p) is a principal ideal, (b, c) = (q) is a principal ideal,
and (a, b) = (1) is the unit ideal R, then (ab, c) is equal to the principal
ideal (pq).

(2) Show that if (a, c) = (d) is a principal ideal and (b, c) is the unit ideal R,
then (ab, c) is equal to the principal ideal (d).

5. The Quotient Field of an Integral Domain

An integral domain R is an abstraction of the ring of integers Z. Just as the
ring of integers can be extended to the field of rational numbers, the ring R can be
extended to a field K. In other words, R can be assumed to be a subring of a field
K. We build the field K from R in the same way that the field of rational numbers
Q is constructed from the ring of integers Z. The field Q is the set of all quotients,
or fractions, of integers. The field Q contains Z as a subring. The definition of Q
as an extension of Z generalizes to the setting of any integral domain R. Following
the construction of the field of rational numbers, the field K of all quotients, or
fractions, of elements from R is defined and the ring R embeds in a natural way as
a subring of the field K.

Let R be an integral domain. Define a relation on R × (R − (0)) by the rule:
(r, v) ∼ (s, w) if and only if rw = sv. We show that ∼ is an equivalence relation.
Clearly ∼ is reflexive and symmetric. Let us show that it is transitive. Suppose
(r, u) ∼ (s, v) and (s, v) ∼ (t, w). Then rv = su and sw = tv. Multiply the
first equality by w and the second by u to get rvw = suw = tvu. Then rvw =
tvu. Canceling v, rw = tu, which implies (r, u) ∼ (t, w). We have shown that
∼ is an equivalence relation on R × (R − (0)). The set of equivalence classes,
(R× (R− (0))) / ∼, is called the quotient field , or field of fractions of R. The
equivalence class containing (r, w) is denoted by the fraction r/w.

Lemma 3.5.1. Let R be an integral domain and K = (R× (R− (0))) / ∼ the
quotient field of R. Then K is a field with the binary operations

r

v
+
s

w
=
rw + sv

vw
,

r

v

s

w
=

rs

vw
.

The additive identity is 0/1, the multiplicative identity is 1/1. There is a natural
map θ : R→ K defined by r 7→ r/1 which is a one-to-one homomorphism of rings.
If R is a field, then θ is an isomorphism.
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Proof. Assume r
v = r1

v1
and s

w = s1
w1

. Then

rv1 = r1v(5.1)

sw1 = s1w.(5.2)

Multiply (5.1) by ww1 and (5.2) by vv1 to get the identities rv1ww1 = r1vww1 and
sw1vv1 = s1wvv1. From these we derive

(rw + sv)v1w1 = rv1ww1 + sw1vv1

= r1vww1 + s1wvv1

= (r1w1 + s1v1)vw.

This is the center equation in:

r

v
+
s

w
=
rw + sv

vw
=
r1w1 + s1v1

v1w1
=
r1
v1

+
s1
w1
.

Hence, addition of fractions is well defined. Multiply (5.1) by sw1 and (5.2) by r1v
to get the identities rsv1w1 = r1vsw1 and sw1r1v = s1wr1v. Taken together, we
have rsv1w1 = r1vsw1 = s1wr1v. This is the center equation in:

r

v

s

w
=

rs

vw
=

r1s1
v1w1

=
r1
v1

s1
w1
.

Hence, multiplication of fractions is well defined. It is routine to check that the
associative and distributive laws hold, that K is a field, and that θ is a one-to-one
homomorphism of rings. The details are left to the reader. □

5.1. Exercises.

Exercise 3.5.2. (Universal Mapping Property) Let R be an integral domain
with field of fractions K. Let F be a field and ϕ : R → F a one-to-one homomor-
phism of rings. Prove that there is a unique homomorphism of fields φ : K → F
such that the diagram

R
ϕ //

θ   

F

K

∃φ

>>

commutes where θ is the natural map of Lemma 3.5.1.

Exercise 3.5.3. Let R be a commutative ring. A subset W of R is called a
multiplicative subset of R, if the following three properties hold:

(a) 1 ∈W .
(b) W contains no zero divisor of R.
(c) If x and y are in W , then xy ∈W .

If W is a multiplicative subset of R, do the following:

(1) Define a relation on R × W by the rule: (r, v) ∼ (s, w) if and only if
rw = sv. Show that ∼ is an equivalence relation. Denote the set of
equivalence classes by RW .

(2) Show how to make RW into a commutative ring by imitating the con-
struction of the quotient field of an integral domain in Lemma 3.5.1. The
ring RW is called the localization of R at W .

(3) Show that there is a one-to-one homomorphism of rings θ : R→ RW .
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(4) (Universal Mapping Property) Let S be a commutative ring and f : R→ S
a homomorphism such that f(W ) ⊆ Units(S). Show that there exists a
unique homomorphism f̄ : RW → S

R
f //

θ !!

S

RW

∃f̄

==

such that f = f̄ θ.

Exercise 3.5.4. Let R be a commutative ring and W the set of all elements
of R that are not zero divisors.

(1) Show that W is a multiplicative subset. In this case, the localization RW
is called the total ring of quotients of R.

(2) Let S be the total ring of quotients of R. Show that S is a commutative
ring with the property that every element of S is either a unit or a zero
divisor.

Exercise 3.5.5. Let R be a finite ring in which 0 ̸= 1, and x ∈ R. Show that
if x is not a zero divisor, then x is invertible.

Exercise 3.5.6. Let D be an integer that is not a square. Let
√
D be the

complex number given by Proposition 1.4.3 (5).

(1) Show that Q[
√
D] = {r + s

√
D | r, s ∈ Q} is a subfield of C. The field

Q[
√
D] is an example of an algebraic number field.

(2) Show that Z[
√
D] = {a+ b

√
D | a, b ∈ Z} is a subring of Q[

√
D].

(3) Show that Q[
√
D] is equal to the quotient field of Z[

√
D].

Exercise 3.5.7. Let R be a commutative ring. Denote by R∗ the group of
units in R. Show that the following are equivalent.

(1) R is a local ring (see Exercise 3.2.43).
(2) For every r ∈ R, either r ∈ R∗ or 1− r ∈ R∗.
(3) For every pair r, s in R, if r + s = 1, then either r ∈ R∗ or s ∈ R∗.

Exercise 3.5.8. Prove that if R is a local ring, then 0 and 1 are the only
idempotents in R.

6. Polynomial Rings

Given a commutative ring R, the ring of all polynomials in one variable x is a
commutative ring that contains R as a subring. The construction is purely formal.
In other words, a polynomial in x with coefficients a0, a1, . . . , am in R is not defined
as a function on R, but as a formal sum of the form a0 + a1x + · · · + amx

m. The
variable x is also called an indeterminate. We tacitly assume ai = 0 for all i > m.
In this case, two polynomials f = a0+a1x+· · ·+amxm and g = b0+b1x+· · ·+bnxn
are equal if and only if ai = bi for each 0 ≤ i. The polynomial ring in one variable
x with coefficients in R is

R[x] =

{
n∑
i=0

aix
i | n ≥ 0, ai ∈ R

}
.
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The sum and product of two polynomials are defined in the usual way. Suppose
f = a0+a1x+ · · ·+amxm and g = b0+b1x+ · · ·+bnxn are polynomials in R[x]. By
inserting terms with zero coefficients to f or g if necessary, we can assume m = n.
The sum of f and g is defined by adding the coefficients of the corresponding powers
of x:

f + g = (a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n.

(6.1)

The product of f and g is

fg =

(
m∑
i=0

aix
i

)(
n∑
i=0

bix
i

)

= a0b0 + (a0b1 + a1b0)x+ · · ·+

 k∑
j=0

ajbk−j

xk + · · ·+ ambnx
m+n.

(6.2)

Notice that the indeterminate x commutes with elements of R. The reader should
verify that the binary operations of addition and multiplication are commutative,
associative, and that multiplication distributes over addition. The polynomial with
every coefficient ai = 0 is simply denoted 0. The polynomial with a0 = 1 and
ai = 0 for all i > 0 is denoted 1. The polynomial 0 is the additive identity and the
polynomial 1 is the multiplicative identity. Therefore, the set R[x] of polynomials
is a commutative ring.

If a ∈ R and n ≥ 0, the polynomial axn is called a monomial. If a ∈ R − (0),
the degree of the monomial axn is n. For convenience, the degree of 0 is taken to
be −∞. The degree of a polynomial f =

∑n
i=0 aix

i in R[x] is the maximum of the
degrees of the terms a0x

0, . . . , anx
n. The degree of f is denoted deg (f). If f is

nonzero of degree n, the leading coefficient of f is an. We say that f is monic if
the leading coefficient of f is 1.

Proposition 3.6.1. Let R be a commutative ring. Let f =
∑m
i=0 aix

i and
g =

∑n
i=0 bix

i be polynomials in R[x]. If deg(f) = m and deg(g) = n, then the
following are true.

(1) deg(f + g) ≤ max(deg(f),deg(g)).
(2) deg(fg) ≤ m+ n.
(3) If am or bn is not a zero divisor in R, then deg(fg) = deg(f) + deg(g).
(4) R is an integral domain if and only if R[x] is an integral domain. In general,

R is an integral domain if and only if R[x1, . . . , xt] is an integral domain.

Proof. (1): This follows from (6.1).
(2): This follows from (6.2).
(3): If one of the leading coefficients am or bn is not a zero divisor in R, it

follows from (6.2) that ambn is the leading coefficient of fg.
(4): Since R is a subring of R[x], if R has a nonzero zero divisor, so does R[x].

If R is an integral domain, then it follows from (3) that R[x] is an integral domain.
If t > 1, the proof follows by Mathematical Induction. □

We view R as the subring of all polynomials in R[x] of degree less than or equal
to 0. The natural mapping R→ R[x] which maps a ∈ R− (0) to the polynomial of
degree zero is a monomorphism. The polynomial ring over R in several variables
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is defined by iterating the one-variable construction. If t > 1 and x1, . . . , xt are
indeterminates, then R[x1, . . . , xt] = R[x1, . . . , xt−1][xt]. See Section 3.6.1.

Theorem 3.6.2. Let R be a commutative ring and σ : R→ S a homomorphism
of rings.

(1) If S is a commutative ring, the definition σ̄(
∑
rix

i) =
∑
σ(ri)x

i extends
σ to a homomorphism on the polynomial rings σ̄ : R[x] → S[x]. If K =
ker(σ), then the kernel of σ̄ is the set K[x] consisting of those polynomials
f ∈ R[x] such that every coefficient of f is in K.

(2) (Universal Mapping Property) Let s be an element of S such that sσ(r) =
σ(r)s for every r ∈ R. Then there is a unique homomorphism σ̄ such that
σ̄(x) = s and the diagram

R
σ //

!!

S

R[x]

σ̄

==

commutes. We say σ̄ is the evaluation homomorphism defined by x 7→ s.

Proof. The proof is left to the reader. □

Theorem 3.6.3. (The Division Algorithm) Let R be a commutative ring. Let
f, g ∈ R[x] and assume the leading coefficient of g is a unit of R. There exist unique
polynomials q, r ∈ R[x] such that f = qg + r and deg r < deg g.

Proof. (Existence.) If deg f < deg g, then set q = 0 and r = f . Otherwise
assume f =

∑m
i=0 aix

i where am ̸= 0 and g =
∑n
i=0 bix

i where bn ̸= 0 and bn is a

unit in R. If m = 0, then n = 0 so q = a0b
−1
0 and r = 0. Proceed by induction on

m. The leading coefficient of
(
amb

−1
n xm−n) g is am. Set h = f −

(
amb

−1
n xm−n) g.

Then deg h < deg f . By induction, h = q1g + r where deg r < deg g. Now

f =
(
amb

−1
n xm−n) g + q1g + r

=
(
amb

−1
n xm−n + q1

)
g + r

so take q = amb
−1
n xm−n + q1.

(Uniqueness.) Assume f = gq+ r = gq1 + r1 where deg r < deg g and deg r1 <
deg g. Subtracting, we have g(q − q1) = r1 − r. The degree of the right hand side
is deg (r1 − r) ≤ max(deg r1,deg r) < deg g. The degree of the left hand side is
deg g + deg (q − q1). If q − q1 ̸= 0, this is impossible. So q1 = q and r = r1. Hence
the quotient and remainder are unique. □

Corollary 3.6.4. (Synthetic Division) Let R be a commutative ring, f(x) =∑m
i=0 rix

i a polynomial in R[x], and a an element in R. Then there exists a
unique polynomial q(x) ∈ R[x] such that f(x) = q(x)(x − a) + f(a) where f(a) =∑m
i=0 ria

i ∈ R.

Proof. Upon dividing x−a into f(x), this follows straight from Theorem 3.6.3.
□

Corollary 3.6.5. If F is a field, then F [x] is a euclidean domain. It follows
that F [x] is a principal ideal domain and a unique factorization domain.
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Proof. Define the norm function by the exponential formula: δ(f) = 2deg f

for all f ∈ F [x]− (0). Then δ(fg) = 2deg fg = 2deg f+deg g = 2deg f2deg g = δ(f)δ(g),
hence δ is multiplicative. In Definition 3.4.16, property (2) is the division algorithm
on F [x]. □

If k is a field, and R = k[x], then the quotient field of k[x], denoted k(x), is
called the field of rational functions over k. If S is a ring and R a subring, then by
Theorem 3.6.2 we can view R[x] as a subring of S[x].

Example 3.6.6. Let R be a commutative ring and g ∈ R[x] a monic polynomial
of degree n. Consider the residue class ring R[x]/(g). Given any f ∈ R[x], by
the Division Algorithm, Theorem 3.6.3, there is a unique polynomial r ∈ R[x]
such that f + (g) = r + (g) and deg r < n. Therefore, the set of polynomials
{r ∈ R[x] | deg r < n} is a complete set of coset representatives for R[x]/(g).

Definition 3.6.7. Let R be a commutative ring, u ∈ R, and f =
∑m
i=0 rix

i ∈
R[x]. We say that u is a root of f in case f(u) =

∑m
i=0 riu

i = 0.

Lemma 3.6.8. Let R be a commutative ring, u ∈ R, and f ∈ R[x]. The
following are equivalent.

(1) u is a root of f .
(2) f is in the kernel of the evaluation homomorphism R[x] → R defined by

x 7→ u.
(3) There exists q ∈ R[x] such that f = (x− u)q.

Proof. The proof is left to the reader. □

Corollary 3.6.9. If R is an integral domain, and f ∈ R[x] has degree d ≥ 0,
then the following are true:

(1) If u is a root of f in R, then there exists m ≥ 1 such that f = (x− u)mq
and q(u) ̸= 0.

(2) f has at most d roots in R.

Proof. (1): Apply Lemma 3.6.8 and induction on the degree.
(2): If d = 0, then f has no root. Inductively assume d ≥ 1 and that the result

holds for any polynomial of degree in the range 0, . . . , d− 1. If f has no root, then
we are done. Suppose u is a root of f . By Part (1) we can write f = (x − u)mq,
where deg q = d−m. If v ̸= u is another root of f , then 0 = f(u) = (v − u)mq(u).
Since R is an integral domain, this means u is a root of q. By induction, there are
at most d−m choices for v. □

Corollary 3.6.10. (Lagrange Interpolation) Let F be a field and n ≥ 1.
Given n + 1 distinct elements of F : α0, . . . , αn, and n + 1 arbitrary elements of
F : β0, . . . , βn, there exists a unique polynomial f ∈ F [x] such that deg f ≤ n and
f(αi) = βi for each i.
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Proof. (Existence.) The Lagrange basis polynomials with respect to the set
{α0, . . . , αn} are

L0(x) =
(x− α1) · · · (x− αn)

(α0 − α1) · · · (α0 − αn)

...

Lj(x) =
(x− α0) · · · (x− αj−1)(x− αj+1) · · · (x− αn)

(αj − α0) · · · (αj − αj−1)(αj − αj+1) · · · (αj − αn)

...

Ln(x) =
(x− α0) · · · (x− αn−1)

(αn − α0) · · · (αn − αn−1)
.

Notice that Lj(x) has degree n and

Lj(αk) =

{
0 if k ̸= j

1 if k = j.

Set

f(x) =

n∑
j=0

βjLj(x).

Then f(αk) = βk for each k = 0, . . . , n and deg f ≤ n.
(Uniqueness.) Suppose f and g are two polynomials in F [x] such that deg f ≤

n, deg g ≤ n and f(αk) = βk = g(αk) for each k = 0, . . . , n. Then deg (f − g) ≤ n
and f −g has n+1 roots, namely α0, . . . , αn. By Corollary 3.6.9 (2), f −g = 0. □

Corollary 3.6.11. Let R be an integral domain. Let n > 1 be an integer. The
group of nth roots of unity in R, µn = {u ∈ R | un = 1}, is a cyclic group of order
at most n.

Proof. The set µn is the kernel of the nth power map πn : R∗ → R∗ (see
Exercise 2.3.18). Therefore, µn is a subgroup of R∗. The order of µn is at most n,
by Corollary 3.6.9 (2). For every divisor d of n, the equation xd = 1 has at most d
solutions in R∗. By Exercise 2.8.12, µn is a cyclic group. □

Corollary 3.6.12. Let F be a finite field of order q. Then F ∗ is a cyclic
abelian group of order q − 1.

Proof. In a field the nonzero elements make up an abelian group. The group
F ∗ has order q − 1. By Corollary 2.2.19, every u ∈ F ∗ satisfies the equation
uq−1 = 1. By Corollary 3.6.11, F ∗ is a cyclic group of order q − 1. □

Example 3.6.13. If F is a field, the ring F [x, y] is not a PID. The ideal
(x, y) = {ux+ vy | u, v ∈ F [x, y]} is not a principal ideal.

Definition 3.6.14. If R is an integral domain, f ∈ R[x], and u is a root of
f , then the multiplicity of u as a root of f is the positive number m given by
Corollary 3.6.9 (1). We say that u is a simple root if m = 1. If m > 1, then u is
called a multiple root.
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A significant portion of Chapter 5 deals with the subject of separable field
extensions. In Section 5.2.2, the definition of a separable field extension is based
on polynomials that have only simple roots. We also mention that in Numerical
Analysis, the problem of approximating a solution to a polynomial equation is
theoretically more challenging when the root is not a simple root.

Definition 3.6.15. If R is any ring and f =
∑n
i=0 aix

i ∈ R[x], then the formal
derivative of f is defined to be

f ′ =

n∑
i=1

iaix
i−1

which is also in R[x]. The reader should verify the usual identities satisfied by the
derivative operator. In particular, (af + bg)′ = af ′ + bg′ and (fg)′ = f ′g + fg′. If
R is commutative, then (fn)′ = nfn−1f ′.

Proposition 3.6.16 presents necessary and sufficient conditions for an element
to be a simple root of a polynomial. This is sometimes called a jacobian criterion
because it is based on the derivative.

Proposition 3.6.16. Suppose S is an integral domain and R is a subring of
S. Let f be a nonconstant polynomial in R[x] and u ∈ S. Then u is a multiple root
of f if and only if f ′(u) = f(u) = 0.

Proof. Suppose u is a multiple root of f . Write f = (x − u)2q for some
q ∈ S[x] and compute f ′ = 2(x− u)q + (x− u)2q′. It is immediate that f ′(u) = 0.
Conversely, assume f(u) = f ′(u) = 0. Write f = (x − u)q for some q ∈ S[x] and
compute f ′ = q + (x − u)q′. It is immediate that q(u) = 0, so f = (x − u)2q2 for
some q2 ∈ S[x]. □

Part (1) of Theorem 3.6.17 presents useful sufficient criteria for a polynomial to
have no multiple roots. When the characteristic of the coefficient field is positive,
Part (2) has useful necessary and sufficient conditions for the existence of multiple
roots in case the characteristic of the ground field is positive.

Theorem 3.6.17. Let k be a subfield of the integral domain S and f a noncon-
stant polynomial in k[x].

(1) Assume
(a) gcd(f, f ′) = 1, or
(b) f is irreducible in k[x] and f ′ ̸= 0 in k[x], or
(c) f is irreducible in k[x] and k has characteristic zero (see Exam-

ple 3.2.2 (5)).
Then f has no multiple root in S.

(2) Suppose p denotes the characteristic of k. Assume u is a root of f in S.
(a) If f is irreducible in k[x] and u is a multiple root of f , then p > 0

and f ∈ k[xp].
(b) If p > 0 and f ∈ k[xp], then u is a multiple root of f .

Proof. (1): Assuming gcd(f, f ′) = 1, by Corollary 3.4.9 there exist s, t ∈ k[x]
such that 1 = fs+ f ′t. It is clear that f and f ′ do not have a common root in S.
By Proposition 3.6.16, f has no multiple root in S. Case (b) reduces immediately
to case (a). Case (c) reduces immediately to case (b).
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(2) (a): If u ∈ S is a multiple root of f , then because f is irreducible in k[x],
Part (1) implies p > 0 and f ′ = 0. The reader should verify that under these
conditions f ∈ k[xp].

(2) (b): If k has characteristic p > 0 and f ∈ k[xp], then clearly f ′ = 0. If
u ∈ S is a root of f , then by Proposition 3.6.16, u is a multiple root of f . □

6.1. Polynomials in Several Variables. The polynomial ring over R in
several variables is defined by iterating the one-variable construction. If m > 1
and x1, . . . , xm are indeterminates, then R[x1, . . . , xm] = R[x1, . . . , xm−1][xm]. A
monomial in S = R[x1, . . . , xm] is a polynomial of the form M = rxe11 · · ·xemm ,
where r ∈ R is the coefficient and each exponent ei is a nonnegative integer. The
degree of a monomial is −∞ if r = 0, otherwise it is the sum of the exponents. If
M ̸= 0, then degM = e1 + · · ·+ em. If M1 and M2 are monomials with coefficients
r1, r2, then M1M2 is a monomial with coefficient r1r2. So M1M2 = 0 if and only if
r1r2 = 0. If M1M2 ̸= 0, then degM1M2 = degM1 + degM2. A polynomial f in S

is a sum f =
∑d
j=1Mj where eachMj is a monomial. A polynomial f ∈ S is said to

be homogeneous if f can be written as a sum of monomials all of the same degree.
Let S0 = R be the set of all polynomials in S of degree less than or equal to 0.
For all n ≥ 1, let Sn be the R-submodule generated by the set of all homogeneous
polynomials in S of degree n. If f is homogeneous of degree d and g is homogeneous
of degree e, then we see fg is homogeneous of degree d + e. A polynomial f ∈ S
can be written f = f0 + f1 + · · · + fd where each fi is homogeneous of degree i.
We call fi the homogeneous component of f of degree i. This representation of f
as a sum of homogeneous polynomials is unique. The degree of a polynomial is
the maximum of the degrees of the homogeneous components. If k is a field, then
k[x1, . . . , xm] is an integral domain. The quotient field of k[x1, . . . , xm], denoted
k(x1, . . . , xm), is called the field of rational functions over k in m variables.

In Exercise 1.2.23 the lexicographical order ≤ is defined on the set of all m-
tuples of nonnegative integers

∏m
i=1 Z≥0 = {(e1, . . . , em) | xi ∈ Z≥0}. Under this

partial ordering
∏m
i=1 Z≥0 is a chain. This notion induces the lexicographical order

on the set of nonzero monomials in R[x1, . . . , xm]. If M1 = r1x
a1
1 · · ·xamm , and

M2 = r2x
b1
1 · · ·xbmm are two nonzero monomials, then M1 < M2 if and only if

(a1, . . . , am) < (b1, . . . , bm). We see thatM1 andM2 are comparable if (a1, . . . , am)
is not equal to (b1, . . . , bm).

Lemma 3.6.18. Let R be a ring and S = R[x1, . . . , xm].

(1) A nonzero polynomial f in S can be written as a sum f =
∑d
j=1Mj where

each Mj is a nonzero monomial such that M1 < M2 < · · · < Md. This
representation as a sum of strictly increasing monomials is unique. The
monomial Md is called the leading term of f .

(2) Let f and g be nonzero polynomials in S. Let L(f) be the leading term of
f and L(g) the leading term of g. Then the leading term of fg is equal to
L(f)L(g).

(3) If U is a nonempty set of nonzero monomials in S, then there exists an
element α ∈ U with the property that if β ∈ U and β is comparable to
α, then α < β. If U has the property that any two distinct elements are
comparable, then there exists α ∈ U such that if β ∈ U −{α}, then α < β.

Proof. (1): Given a nonzero polynomial f , write f =
∑d
j=1Mj where eachMj

is a nonzero monomial. By adding coefficients, all monomials that are incomparable
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can be combined. Hence we can assume the monomials appearing in the sum are
comparable. After rearranging if necessary, we can assume M1 < M2 < · · · < Md.
Conversely, if M1 < M2 < · · · < Md is a strictly increasing sequence of monomials,

then the sum f =
∑d
j=1Mj is nonzero. The uniqueness claim follows from this

fact.
(2): The proof of this part is left to the reader.
(3): This follows from Exercise 1.2.23 (3). □

6.2. The Group of Units Modulo pa. As an application of Theorem 2.8.7
and Corollary 3.6.12, we show that the group of units modulo pa is a cyclic group if
p is an odd prime and a ≥ 1. The finite ring Z/pa is a principal ideal ring. If a = 1,
then by Corollary 3.6.12, the group of units in the prime field Z/p is a cyclic group
of order p− 1. In the notation of Lemma 1.2.12 and Example 2.1.3, let Upa denote
the group of units modulo pa. Then [Upa : 1] = ϕ(pa) = pa−pa−1 = pa(p−1). The
congruence classes in Upa correspond to the numbers in {0, 1, . . . , pa − 1} that are
not divisible by p.

Proposition 3.6.19. Let p be an odd prime and a ≥ 1. If a = 1, the group Up
is cyclic of order p − 1. If a > 1, the natural map η : Upa → Up is onto and the
kernel of η is 1+⟨p⟩, which is a cyclic group of order pa−1. Hence Upa is isomorphic
to the direct product (1 + ⟨p⟩)× Up and is a cyclic group of order pa−1(p− 1).

Proof. It follows from Corollary 3.6.12 that the group of units in the field
Z/p is cyclic of order p− 1. Assume from now on that a > 1. Let η : Z/pa → Z/p
be the natural map. The kernel of η is the principal ideal ⟨p⟩. The order of ⟨p⟩ is
pa−1. Then η induces a surjective map on the groups of units η : Upa → Up and
the kernel is the subgroup 1 + ⟨p⟩ which also has order pa−1. By Exercise 2.8.12,
to prove that 1 + ⟨p⟩ is a cyclic group it suffices to show that there are at most
p− 1 elements of order p. Let 1 + pkx be an arbitrary element of 1 + ⟨p⟩. Assume
gcd(p, x) = 1. This implies k ≥ 1. By the Binomial Theorem we have

(1 + pkx)p = 1 +

(
p

1

)
pkx+

(
p

2

)
(pkx)2 +

(
p

3

)
(pkx)3 + · · ·+ (pkx)p

= 1 + pk+1x+
p(p− 1)

2
pkpkx2 +

p(p− 1)(p− 2)

3 · 2
pkp2kx3 + · · ·+ ppkxp

= 1 + pk+1

(
x+

p− 1

2
pkx2 +

(p− 1)(p− 2)

3 · 2
p2kx3 + · · ·+ ppk−(k+1)xp

)
= 1 + pk+1v.

Since k ≥ 1, this means v is relatively prime to p. In this case, (1 + pkx)p ≡ 1
(mod pa) if and only if k + 1 ≥ a. So the subgroup annihilated by p in 1 + ⟨p⟩
is 1 + ⟨pa−1⟩, a group of order p. By Exercise 2.8.12, 1 + ⟨p⟩ is a cyclic group of
order pa−1. By Theorem 2.8.7, Upa = (1 + ⟨p⟩) × V is the internal direct product
where V is a subgroup of order p−1. However, V is isomorphic to the factor group
Upa/(1 + ⟨p⟩) which is isomorphic to the cyclic group Up. By Theorem 2.5.2, Upa

is cyclic. □
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6.3. Exercises.

Exercise 3.6.20. Let k be a field of characteristic different from 2. Let f =
x2 − 1. Show that k[x]/(f) is isomorphic to a direct sum of fields.

Exercise 3.6.21. Let k be a field. Let R = k[x2, x3] be the subring of k[x]
consisting of all polynomials such that the coefficient of x is zero. Prove:

(1) R is an integral domain.
(2) R is not a UFD.
(3) R is not a PID.
(4) The converse of Lemma 3.4.5 (3) is false.
(5) Show that the quotient field of k[x2, x3] is equal to k(x). In other words,

show that R and k[x] have the same quotient field.

Exercise 3.6.22. Let R be a commutative ring and I = (a) a principal ideal
in R. Show that for any n ≥ 1, In = (an).

Exercise 3.6.23. Prove that if R is an integral domain, then the homomor-
phism R → R[x] induces an isomorphism on the groups of units Units(R) →
Units(R[x]).

Exercise 3.6.24. Let R be a commutative ring. Prove:

(1) The nil radical of R[x] is equal to RadR(0)[x]. That is, a polynomial is
nilpotent if and only if every coefficient is nilpotent.

(2) The kernel of R[x] → (R/RadR(0))[x] is equal to the nil radical of R[x].
(3) The group of units of R[x] consists of those polynomials of the form f =

a0 + a1x+ · · ·+ anx
n, where a0 is a unit in R and f − a0 ∈ RadR(0)[x].

(4) If RadR(0) = (0), then the homomorphism R → R[x] induces an isomor-
phism on the groups of units Units(R) → Units(R[x]).

Exercise 3.6.25. Let R be an integral domain and a ∈ R. Prove that the
linear polynomial x− a is a prime element in R[x].

Exercise 3.6.26. Let R be a commutative ring and a ∈ R. Show that there
is an automorphism θ : R[x] → R[x] such that θ(x) = x + a and for all r ∈ R,
θ(r) = r.

Exercise 3.6.27. Let R be an integral domain and a an irreducible element of
R. Prove that a is an irreducible element in R[x].

Exercise 3.6.28. Let k be a field and A = k[x]. Prove:

(1) If I = (x) is the ideal in A generated by x, then In = (xn).
(2) Let n ≥ 1. The nil radical of k[x]/(xn) consists of those cosets represented

by polynomials of the form α1x+ · · ·+ αn−1x
n−1.

(3) The group of units of k[x]/(xn) consists of those cosets represented by
polynomials of the form α0 +α1x+ · · ·+αn−1x

n−1, where α0 is a unit in
k.

Exercise 3.6.29. Let R be an integral domain.

(1) A polynomial f in R[x] defines a function f : R → R. If R is infinite,
show that f is the zero function (that is, f(a) = 0 for all a ∈ R) if and
only if f is the zero polynomial.
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(2) A polynomial f in R[x1, . . . , xr] defines a function f : Rr → R. If R is
infinite, use induction on r to show f is the zero function if and only if f
is the zero polynomial.

Exercise 3.6.30. Let R be a commutative ring and S = R[x] the polynomial
ring in one variable over R. If W = {1, x, x2, . . . }, then the localization SW is
called the Laurent polynomial ring over R (see Exercise 3.5.3). The ring of Laurent
polynomials over R is named for P. A. Laurent, and is usually denoted R[x, x−1].

(1) Show that every element of R[x, x−1] has a unique representation in the
form f(x)/xn where f(x) ∈ R[x] and n ≥ 0.

(2) If R is an integral domain, prove that the group of units in R[x, x−1] is
equal to the set {uxe | u ∈ R∗ and e ∈ Z}.

(3) If R is an integral domain, prove that the group of units in R[x, x−1] is
the internal direct product R∗ × ⟨x⟩.

(4) Let k be a field. Prove that k[x, x−1] is a PID.
(5) Let R be a UFD. Prove that R[x, x−1] is a UFD.

Exercise 3.6.31. Let R be a UFD and P a nonzero prime ideal of R. Prove
that P contains a prime element π of R.

Exercise 3.6.32. (GCD is invariant under a change of base field) Let k ⊆ F
be a tower of fields such that k is a subfield of F . In this case we view k[x] as a
subring of F [x]. Let f, g ∈ k[x]. Prove that if d is the greatest common divisor of
f and g in k[x], then d is the greatest common divisor of f and g in F [x].

Exercise 3.6.33. Let F be a field of positive characteristic p. Let θ : F [y] →
F [y] be the evaluation mapping given by y 7→ yp. Let F [yp] denote the image of θ.
Prove that θ extends to a homomorphism χ : F (y) → F (y) and let F (yp) be the
image of χ. Prove that F (yp) is the quotient field of F [yp] and that the diagram

F [y] // F (y)

F [yp]

OO

// F (yp)

OO

commutes where each of the four maps is the set inclusion homomorphism.

Exercise 3.6.34. Let K = F (yp) be the subfield of L = F (y) defined as
in Exercise 3.6.33. We say that L/K is an extension of fields. Show that the
polynomial f = xp − yp is irreducible in K[x], but that f = (x− y)p in L[x].

Exercise 3.6.35. Let p be a prime number and R a commutative ring of char-
acteristic p. Let R[x, y] be the ring of polynomials in two variables with coefficients
in R. Prove:

(1) If n ≥ 0, then (x+ y)p
n

= xp
n

+ yp
n

in R[x, y].

(2) If n > 0 and 0 < k < pn, then
(
pn

k

)
is divisible by p.

Exercise 3.6.36. Assume R is a commutative ring and θ : R → A is a homo-
morphism of rings such that the image of θ is a subring of the center of A. Let
a ∈ A and σ : R[x] → A the evaluation map defined by x 7→ a. Let R[a] denote
the image of σ. Show that R[a] is the smallest subring of A containing θ(R) and a.
Show that R[a] is commutative.
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Exercise 3.6.37. Let R be a commutative ring and a ∈ R. Prove that
R[x]/(x− a) ∼= R.

Exercise 3.6.38. Let k be an infinite field and assume there exists a monic
irreducible polynomial of degree d in k[x]. Show that there are infinitely many
monic irreducible polynomials of degree d in k[x].

7. Polynomials over a Unique Factorization Domain

Throughout this section, R denotes a unique factorization domain with quotient
field K . This section contains four important theorems on the ring of polynomials
R[x] over R. The first main result is the Rational Root Theorem. It gives necessary
conditions for a polynomial f in R[x] to have a root in the field K. An important
application of this theorem is the fact that if f is a monic polynomial in R[x] and
u ∈ K is a root of f , then u is actually in R (see Exercise 3.7.20). This is an
important property of R. In the terminology of Commutative Algebra, we say that
R is an integrally closed integral domain. The second main theorem of this section
is Gauss’ Lemma, which shows that a primitive polynomial f in R[x] is irreducible
when viewed as an element of the ringR[x] if and only if it is irreducible when viewed
as an element of the larger ring K[x]. The third main result, which is a corollary
to Gauss’ Lemma, shows that the ring R[x] is a unique factorization domain. The
fourth main theorem of this section is Eisenstein’s Irreducibility Criterion, which
provides us with sufficient conditions such that a primitive polynomial in R[x] is
irreducible. As an application of Eisenstein’s Criterion, we show that if p is a prime
number, then the cyclotomic polynomial 1 + x + x2 + · · · + xp−1, is irreducible in
Q[x]. As another application of the theorems of this section, we show that for any

square free integer D such that D ≡ 1 (mod 4), the ring Z[
√
D] is a subring of C

which is not a unique factorization domain. In Section 3.7.1 a version of Eisenstein’s
Criterion is derived for the polynomial ring K[y], where K = k(x) is the field of
rational functions in one variable over a field k.

Theorem 3.7.1 is usually stated and proved in the context where R is Z, the
ring of integers, and K is Q, the field of rational numbers. This explains why it
goes by the name Rational Root Theorem.

Theorem 3.7.1. (The Rational Root Theorem) Suppose R is a UFD with
quotient field K and u = b/c is an element of K such that gcd(b, c) = 1. If
f = a0 + a1x+ · · ·+ adx

d ∈ R[x] and u is a root of f , then b | a0 and c | ad.

Proof. If f(b/c) = 0, then

a0 +
a1b

c
+
a2b

2

c2
+ · · ·+ adb

d

cd
= 0.

Multiply by cd

a0c
d + a1bc

d−1 + a2b
2cd−2 + · · ·+ adb

d = 0.

Since b divides the last d terms, it follows that b | a0cd. Since c divides the first d
terms, it follows that c | adbd. Since gcd(b, c) = 1 and R is a UFD, it follows that
b | a0 and c | ad. □

Let R be a unique factorization domain, or UFD for short. Suppose f is a
nonzero polynomial in R[x]. If we write f = a0+a1x+ · · ·+anxn, then the content
of f , written C(f), is defined to be gcd(a0, a1, . . . , an). By Corollary 3.4.13, C(f)
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is unique up to associates, which means C(f) is unique up to multiplication by a
unit of R. If C(f) = 1, then we say f is primitive.

Lemma 3.7.2. Let R be a UFD and f a nonzero polynomial in R[x]. If c1 =
C(f), then f factors as f = c1f1 where f1 ∈ R[x] is primitive. The factors c1 and
f1 of f are unique up to associates in R[x].

Proof. By Exercise 3.4.29, if we factor out the content, then f = C(f)f1
where C(f1) = 1. Both C(f) and C(f1) are unique up to multiplication by units
of R. But units of R[x] correspond to the units of R by Exercise 3.6.23. So f1 is
unique up to associates in R[x]. □

Lemma 3.7.3. Let R be a UFD with quotient field K. Let f and g be nonzero
polynomials in R[x].

(1) If f and g are primitive, then fg is primitive.
(2) C(fg) = C(f)C(g).
(3) Suppose f and g are primitive. Then f and g are associates in R[x] if

and only if they are associates in K[x].

Proof. (1): Assume f and g are nonzero elements of R[x] and fg is not
primitive. Then C(fg) is not a unit in R. Let p be an irreducible factor of C(fg)
in R. Under the natural map η : R[x] → R/(p)[x] of Theorem 3.6.2 (1), we have
η(fg) = η(f)η(g) = 0. By Corollary 3.4.14, (p) is a prime ideal, so R/(p) is an
integral domain. Thus R/(p)[x] is an integral domain, which implies one of η(f) or
η(g) is zero. That is, p divides the content of f or the content of g. That is, either
f or g is not primitive.

(2): As in Lemma 3.7.2, we factor f = C(f)f1, g = C(g)g1, where f1 and
g1 are primitive. Then fg = C(f)C(g)f1g1. By Part (1), f1g1 is primitive. By
Lemma 3.7.2, C(fg) = C(f)C(g).

(3): We are given that 1 = C(f) = C(g). Assume f and g are associates in
K[x]. By Exercise 3.6.23, a unit in K[x] is a nonzero constant polynomial. Suppose
f = ug where u = r/s is a unit in K and gcd(r, s) = 1. Then sf = rg implies
sC(f) = rC(g), which implies r and s are associates. Therefore u is a unit in R.
The converse is trivial, since R ⊆ K. □

Theorem 3.7.4. (Gauss’ Lemma) Let R be a UFD with quotient field K. Sup-
pose f ∈ R[x] is primitive. Then f is irreducible in R[x] if and only if f is irre-
ducible in K[x].

Proof. If f has a nontrivial factorization in R[x], then this factorization still
holds in K[x]. Assume f = pq is a factorization in K[x], where we assume m =
deg p ≥ 1, and n = deg q ≥ 1. Write

p =

m∑
i=0

ai
bi
xi, q =

n∑
i=0

ci
di
xi

and set b = b0b1 · · · bm, d = d0d1 . . . dm. Then b(ai/bi) = αi ∈ R and d(ci/di) =
γi ∈ R for each i, so we get

bp =

m∑
i=0

αix
i, dq =

n∑
i=0

γix
i
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are both in R[x]. Applying Lemma 3.7.2, let α = C(bp) and factor bp = αp1,
where p1 is primitive. Set γ = C(dq) and factor dq = γq1 where q1 is prim-
itive (Lemma 3.7.2). Combining all of this, we have (bd)f = (αγ)(p1q1). By
Lemma 3.7.3, it follows that bd and αγ are associates in R. Up to a unit in R,
f = p1q1. □

Theorem 3.7.5. Let R be a UFD. Then R[x1, . . . , xn] is a UFD.

Proof. By finite induction, it is enough to show R[x] is a UFD.
(Existence.) Let f ∈ R[x] be a nonunit nonzero. If f has degree zero, then we

can view f as an element ofR and factor f into irreducibles inR. By Exercise 3.6.27,
this is a factorization of f into irreducibles in R[x].

Assume deg f ≥ 1 and factor f = C(f)f1 where f1 is primitive and C(f) ∈ R.
Since C(f) can be factored into irreducibles, we can reduce to the case where f
is primitive. Let K be the quotient field of R. We know that K[x] is a UFD, by
Corollary 3.6.5. Let f = p1 · · · pn be the unique factorization of f into a product of
irreducibles in K[x]. By Theorem 3.7.4, for each i we can write

pi =
ai
bi
qi

where ai, bi ∈ R, and qi ∈ R[x] is primitive and irreducible. Set α = a1 · · · an and
β = b1 · · · bn. Multiplying,

f =
α

β
q1q2 · · · qn.

By Lemma 3.7.3 (3) we conclude that α and β are associates in R. Up to associates,
we have factored f = q1q2 · · · qn into irreducibles in R[x].

(Uniqueness.) Let f be a nonzero nonunit element of R[x]. Then f can be
factored into a product of irreducibles f = (c1 · · · cm)(p1p2 · · · pn) where each pi is
a primitive irreducible polynomial in R[x] and each ci is an irreducible element of
R. Up to associates, C(f) = c1c2 · · · cm is uniquely determined by f . Since R is
a UFD, the factorization C(f) = c1c2 · · · cm is unique in R. In K[x] the factoriza-
tion p1p2 · · · pn is uniquely determined up to associates. By Lemma 3.7.3 (3), the
factorization is unique in R[x]. □

Theorem 3.7.6. (Eisenstein’s Irreducibility Criterion) Let R be UFD and f =
a0 + a1x + · · · + anx

n a primitive polynomial of degree n ≥ 1 in R[x]. Let p be a
prime in R such that p ∤ an, p | ai for i = 0, 1, . . . , an−1, and p

2 ∤ a0. Then f is
irreducible.

Proof. Let P = (p). Then P is a prime ideal in R by Corollary 3.4.14.
The proof is by contraposition. Assume an ̸∈ P , (a0, . . . , an−1) ⊆ P and f is
reducible. We prove that p2 | a0. By assumption, there is a factorization f = gh,
where deg g = s ≥ 1, deg h = t ≥ 1, and s + t = n. By Theorem 3.6.2 (1) the
natural map η : R→ R/P induces η̄ : R[x] → R/P [x]. Under this homomorphism,
η̄(f) = η̄(g)η̄(h). By hypothesis, η̄(f) = η(an)x

n has degree n. If we write g =
b0 + b1x+ · · ·+ bsx

s and h = c0 + c1x+ · · ·+ ctx
t, then

(7.1) η(an)x
n = (η(b0) + η(b1)x+ · · ·+ η(bs)x

s)(η(c0) + η(c1)x+ · · ·+ η(ct)x
t)

holds in R/P [x]. Since P is prime, R/P is an integral domain. Let K denote
the quotient field of R/P . The factorization of η̄(f) in (7.1) holds in K[x]. By
Corollary 3.6.5, K[x] is a UFD. We conclude that (b0, b1, . . . , bs−1) ⊆ P and
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(c0, c1, . . . , ct−1) ⊆ P . In particular, p | b0 and p | c0. The constant term of f
is equal to a0 = b0c0 which is divisible by p2. □

Example 3.7.7. Let k be a field and f ∈ k[x]. Assume deg f ≥ 2. The set of
zeros of y2− f in k2 is called an affine hyperelliptic curve. Assume f is square free.
By Theorem 3.7.6, y2 − f is irreducible in k[x, y].

Example 3.7.8. Let p be a prime number. Let Φ(x) = xp−1 ∈ Z[x]. Consider
ϕ(x) = Φ(x)/(x − 1) = xp−1 + xp−2 + · · · + x + 1. By Exercise 3.6.26, the change
of variable x = y + 1 induces an isomorphism Z[x] ∼= Z[y]. Applying the Binomial
Theorem (Exercise 3.1.22) we see that

ϕ(y + 1) =
Φ(y + 1)

y

=
(y + 1)p − 1

y

= yp−1 +

(
p

1

)
yp−2 + · · ·+

(
p

p− 2

)
y +

(
p

p− 1

)
.

By Exercise 1.2.21, p divides
(
p
i

)
if 1 ≤ i ≤ p − 1. By Theorem 3.7.6, ϕ(y + 1)

is irreducible in Z[y]. Therefore, ϕ(x) is irreducible in Z[x] and by Gauss’ Lemma
(Theorem 3.7.4), ϕ(x) is irreducible in Q[x].

Example 3.7.9. In this example we apply Gauss’ Lemma, Theorem 3.7.4, to
construct a large class of rings of the form Z[

√
D] which are not unique factorization

domains. Let D be a square free integer such that D ≡ 1 (mod 4). Let u =
√
D

be the complex number given by Proposition 1.4.3 (5). If f(x) = x2 −D, then by
Theorem 3.7.6, f(x) is irreducible in Z[x] and Q[x], hence u is not in Q. If S = Z[u]
and L = Q[u], then by Exercise 3.5.6, S is an integral domain and L is equal to the
quotient field of S. In L, let α = (1 + u)/2 and β = (1 − u)/2. Since u is not in
Q, we see that α and β are not in S. Since D ≡ 1 (mod 4), there exists an integer
k such that 1 = D + 4k. Then αβ = (1 − u2)/4 = (1 −D)/4 = k and α + β = 1.
Consider the polynomial g(y) = (y − α)(y − β) = y2 − y + k in L[y]. We conclude
that g(y) is irreducible in S, but factors in L[y]. By Theorem 3.7.4, this implies S
is not a unique factorization domain.

7.1. Rational Function Fields. Let k be a field and x, y indeterminates.
Let K = k(x) be the field of rational functions over k in the variable x. A ra-
tional function ϕ ∈ K can be written as a quotient ϕ = p/q where p, q ∈ k[x]
are polynomials and gcd(p, q) = 1. By unique factorization in k[x], the polyno-
mials p and q are uniquely determined up to associates. If u ∈ k, and q(u) ̸= 0,
then ϕ(u) = p(u)q(u)−1 is an element of k. The pole set of ϕ is the set of roots
of q and the zero set of ϕ is the set of roots of p. If u is not a pole of ϕ, then
f(u) = p(u)q(u)−1 is a well defined element of k. So if the pole set of ϕ is not
equal to k, ϕ defines a function on the complement of its pole set. The next theo-
rem provides an Eisenstein irreducibility criterion for polynomials in K[y]. It first
appeared in [21].

Theorem 3.7.10. Let k be a field and x, y indeterminates. Let K = k(x) be
the field of rational functions over k in the variable x. Let f(y) = f0+f1y+f2y

2+
· · ·+ fny

n be a polynomial in K[y] where n ≥ 1 and fn ̸= 0. If

(1) each fi is a polynomial in k[x],
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(2) x divides each of f0, f1, . . . , fn−1 and x does not divide fn, and
(3) x2 does not divide f0,

then f is irreducible in K[y].

Proof. For sake of contradiction, suppose

(7.2) f = (a0 + a1y + · · ·+ ary
r)(b0 + b1y + · · ·+ bsy

s)

where r ≥ 1, s ≥ 1, and each ai and bj is in K = k(x). We have

f0 = a0b0

f1 = a0b1 + a1b0

f2 = a0b2 + a1b1 + a2b0

...

fn = a0bn + · · ·+ anb0

By hypothesis (2), 0 = f0(0) = f1(0) = · · · = fn−1(0) and fn(0) ̸= 0. We start with
0 = f0(0) = (a0b0)(0). Write a0 = p/q, b0 = g/h, where p, q, g, h are polynomials
in k[x] and gcd(p, q) = gcd(g, h) = 1. Then pq = f0qh in k[x]. Since x | f0 we have
x | p or x | q. Suppose for contradiction’s sake that x | p and x | q. Then x does
not divide q and x does not divide h. Thus x2 divides f0, a contradiction. Assume
from now on that x | a0 and x does not divide b0. Equivalently, assume a0(0) = 0
and b0(0) ̸= 0. Now we consider

(7.3) 0 = f1(0) = (a0b1)(0) + (a1b0)(0).

From step one, a0(0) = 0, b0(0) ̸= 0, hence (7.3) reduces to 0 = a1(0). Now look at

(7.4) 0 = f2(0) = (a0b2)(0) + (a1b1)(0) + (a2b0)(0)

which reduces to a2(0) = 0 by applying the first two steps. Iterating this argument,
we see that 0 = a0(0) = a1(0) = a2(0) = · · · = ar(0). This implies fn(0) = 0, a
contradiction. □

7.2. Exercises.

Exercise 3.7.11. Let n ∈ Z and consider the polynomial f(x) = x3 + nx− 2.
Show that f(x) is reducible over Q if and only if n is in the set {1,−3,−5}.

Exercise 3.7.12. Let f(x) = 20x5 + 35x4 − 42x3 + 21x2 + 70 and g(x) =
80x5 + 18x3 − 24x− 15. Let F = Q[x]/(f) and G = Q[x]/(g). Show that F and G
are fields.

Exercise 3.7.13. Modify the method of Example 3.7.8 to show that the fol-
lowing polynomials are irreducible over Q.

(1) x4 + 1
(2) x4 + a2, where a ∈ Z is odd.
(3) x8 + 1
(4) x9 + 2
(5) x2

n

+ a2, where a ∈ Z is odd and n ≥ 1.
(6) xp

n

+ p− 1, where p is prime and n ≥ 1.

Exercise 3.7.14. Let k be a field. If f(x) = a0+ a1x+ · · ·+ anxn and an ̸= 0,
then the reverse of f is the polynomial fr(x) = a0x

n + a1x
n−1 + · · ·+ an−1x+ an.
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(1) Show that fr(x) = xnf(x−1).
(2) If a0 ̸= 0, show that f is irreducible over k if and only if fr is irreducible

over k.

Exercise 3.7.15. Let f = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anx
n be a

polynomial of degree n ≥ 1 in Z[x]. Let p be a prime and [f ] = [a0] + [a1]x +
[a2]x

2 + · · · + [an−1]x
n−1 + [an]x

n be the polynomial over the prime field Z/(p)
achieved by reducing the coefficients of f modulo p.

(1) If [f ] has degree n and is irreducible over Z/(p), then f is irreducible over
Q. Proof:

(2) Show by counterexample that (1) is false if the degree of [f ] is less than
n.

(3) Show by counterexample that the converse of (1) is false.

Exercise 3.7.16. Let f = x3 + 1. Prove that there is an isomorphism θ :
Q[x]/(f) → F1 ⊕ F2 where F1 and F2 are fields. Carefully describe the fields F1

and F2, and the map θ.

Exercise 3.7.17. Let k be a field, a, b, c some elements of k and assume a ̸= b.
Let f = (x− a)(x− b) and g = (x− c)2. Prove:

(1) The ring k[x]/(x− a) is isomorphic to k.
(2) There is an isomorphism of rings k[x]/(f) ∼= k ⊕ k.
(3) There is an isomorphism of rings k[x]/(g) ∼= k[x]/(x2).
(4) If h is a monic irreducible quadratic polynomial in k[x], then the rings

k[x]/(f), k[x]/(g), and k[x]/(h) are pairwise nonisomorphic.

Exercise 3.7.18. (Partial Fractions) Let k be a field. In this exercise we
outline a proof that a rational function in one variable over k has a partial fraction
decomposition. Prove:

(1) If f and g are two nonzero polynomials in k[x] and d = gcd(f, g), then
there exist polynomials u, v in k[x] such that d = fu+ gv, deg u < deg g,
and deg v < deg f .

(2) If 1 = gcd(f, g) and deg h < deg (fg), then there exist unique polynomials
u and v satisfying:

h

fg
=
u

f
+
v

g
,

deg u < deg f , and deg v < deg g.
(3) Let g be a polynomial of degree at least one. Let

g = pe11 · · · penn
be the unique factorization of g where p1, . . . , pn are distinct irreducibles,
n ≥ 2, and ei ≥ 1 for each i. If f is a polynomial and deg f < deg g, then
there exist unique polynomials q1, . . . , qn satisfying:

f

g
=

q1
pe11

+ · · ·+ qn
penn

,

and for each i, deg qi < deg peii .
(4) Let g be a polynomial of degree at least one, n ≥ 1, and f a polynomial sat-

isfying deg f < deg gn. Then there exist unique polynomials f0, . . . , fn−1

satisfying:
f = f0 + f1g + · · ·+ fn−1g

n−1
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and for each i, deg fi < deg g.
(5) Let g be a polynomial of degree at least one, n ≥ 1, and f a polynomial sat-

isfying deg f < deg gn. Then there exist unique polynomials f0, . . . , fn−1

satisfying:
f

gn
=
f0
gn

+
f1
gn−1

+ · · ·+ fn−1

g
,

and for each i, deg fi < deg g.

Exercise 3.7.19. Let R be a UFD with quotient field K. Let f be a monic
irreducible polynomial in R[x].

(1) Show that S = R[x]/(f) is an integral domain and L = K[x]/(f) is a field.
(2) Show that there is a commutative square

S // L

R

OO

// K

OO

where each arrow is the natural map and each arrow is one-to-one.
(3) Show that L is the quotient field of S.

Exercise 3.7.20. Let R be a unique factorization domain with quotient field
K. Let p(x) be a monic polynomial in R[x] and u ∈ K. Show that if u is a root of
p(x), then u is in R.

Exercise 3.7.21. Let k be a field. In Algebraic Geometry, the ring k[x2, x3] of
Exercise 3.6.21 corresponds to a cuspidal cubic curve and is not a UFD. The ring
k[x2, x+ x3] corresponds to a nodal cubic curve.

(1) Show that the quotient field of k[x2, x + x3] is k(x). In other words,
k[x2, x+ x3] and k[x] are birational.

(2) Prove that k[x2, x+ x3] is not a UFD.

Exercise 3.7.22. Let k be a field and A = k[x] the polynomial ring in one
variable over k. Let R denote a subring of A which contains k as a subring such
that k ⊊ R ⊊ A. Give specific examples of R satisfying the following.

(1) R is a principal ideal domain.
(2) R is not a principal ideal domain.
(3) The quotient field of R is equal to the quotient field of A.
(4) The quotient field of R is not equal to the quotient field of A.



CHAPTER 4

Modules, Vector Spaces, Algebras, Matrices

“What makes Linear Algebra linear?” is an important question that every
student of this subject should be prepared to answer. I have not forgotten the first
time I was asked this question. It was the beginning of the semester when I was
taking my first undergraduate course on Linear Algebra. I was living on campus,
and at the dining hall one evening one of the people at our table asked the above
question. The event has stuck with me because I did not have an answer for my
friend. Here is the answer to the question, and the response you should give when
you are asked. Algebra is the study of polynomial equations and in this light, Linear
Algebra is the study of linear equations.

As much as possible, we study linear algebra over a general ring. Nevertheless,
because of the introductory nature of this book, many of the results assume the
ground ring is commutative. We hope that a reasonable balance has been achieved
between accessibility and generality of results. We define a module over an ar-
bitrary ring and a vector space over a division ring. Algebras are defined over
commutative rings. In Proposition 4.5.7 below, the isomorphism between the ring
of endomorphisms of a finitely generated free module and the ring of matrices is
constructed for an arbitrary commutative ring. The basis theorem for finitely gen-
erated modules over a principal ideal domain is proved in both the invariant factor
form and the elementary divisor form.

1. Modules

1.1. Definitions and First Properties. In this section we introduce the
notion of a module over an arbitrary ring R. An abelian group M is an R-module
if multiplication by elements of R turns R into a ring of endomorphisms of M .

Definition 4.1.1. If R is a ring, a left R-module is an additive abelian group
M together with a left multiplication action by R such that for all r, s ∈ R and
x, y ∈M the rules

(1) r(x+ y) = rx+ ry
(2) r(sx) = (rs)x
(3) (r + s)x = rx+ sx
(4) 1x = x

are satisfied. If R is a field or a division ring, then M is called a vector space.
In the following text, an R-module is by default assumed to be a left R-module.

This is in agreement with our convention that functions act from the left (Sec-
tion 1.1.2). There will be occasions (for example, in Section 4.5.2) when we will
utilize right R-modules. A right R-module is an additive abelian group M together
with a right multiplication action by R such that for all r, s ∈ R and x, y ∈M the
rules

169
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(1) (x+ y)r = xr + yr
(2) (xr)s = x(rs)
(3) x(r + s) = xr + xs
(4) x1 = x

are satisfied.

In Lemma 2.4.1 we saw that a group G acts on a set X if and only if there is a
homomorphism of G into Perm(X). Lemma 4.1.2 is the counterpart of this notion
in the context of modules. By Exercise 2.8.13, if M is an abelian group, then the
set of all endomorphisms of M , Hom(M,M), is a ring. Endomorphisms are added
point-wise and multiplication is composition of functions.

Lemma 4.1.2. Let R be a ring and M an additive abelian group.

(1) M is a left R-module if and only if there is a homomorphism of rings
θ : R→ Hom(M,M).

(2) M is a right R-module if and only if there is a homomorphism of rings
θ : Ro → Hom(M,M).

Proof. We prove (1). The proof of (2) is similar and left to the reader.
First assume there is a homomorphism of rings θ : R → Hom(M,M). Instead

of θ(r)(x) we will write r ∗ x. This defines a left multiplication action by R on M .
Then

r ∗ (x+ y) = θ(r)(x+ y) = θ(r)(x) + θ(r)(y)) = r ∗ x+ r ∗ y
is Part (1) of Definition 4.1.1,

r ∗ (s ∗ x) = θ(r)(θ(s)(x) = (θ(r)θ(s))(x) = θ(rs)(x)) = (rs) ∗ x
is Part (2),

(r + s) ∗ x = θ(r + s)(x) = (θ(r) + θ(s))(x) = θ(r)(x) + θ(s)(x) = r ∗ x+ s ∗ x
is Part (3), and lastly,

1 ∗ x = θ(1)(x) = 1M (x) = x

is Part (4).
Conversely, assume M is a left R-module. For each r ∈ R, define λr : M →

M to be the “left multiplication by r” function defined by λr(x) = rx. By the
first distributive law, λr(x + y) = r(x + y) = rx + ry = λr(x) + λr(y), so λr ∈
Hom(M,M). Define θ : R → Hom(M,M) by θ(r) = λr. The associative law
implies λrs(x) = (rs)x = r(sx), so θ(rs) = θ(r)θ(s) and θ is multiplicative. By
the second distributive law, λr+s(x) = (r + s)x = rx + sx = λr(x) + λs(x), so
θ(r + s) = θ(r) + θ(s) and θ is additive. Lastly, λ1 = 1M , so θ(1) = 1, hence θ is a
homomorphism of rings. □

Definition 4.1.3. Let R be a ring, M an R-module, and θ : R→ Hom(M,M)
the homomorphism of Lemma 4.1.2. The kernel of θ is denoted annihR(M) and
is called the annihilator of M in R. Then annihR(M) is equal to {r ∈ R |
rx = 0 for all x ∈M}. Since θ is a homomorphism of rings, annihR(M) is a two-
sided ideal in R. If θ is one-to-one, then we say M is a faithful R-module.

Example 4.1.4. Standard examples of modules are listed here.

(1) If R is any ring, and I is a left ideal in R, then R acts on I from the left.
If x ∈ I and r ∈ R, then rx ∈ I. The associative and distributive laws in
R apply. Thus I is an R-module. In particular, R is a left R-module.
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(2) Let M be any additive abelian group. By Exercise 2.3.18, for any n ∈ Z,
left multiplication by n defines a homomorphism λn : M → M . We can
makeM into a Z-module by the following rule: for any x ∈M , define nx to
be λn(x). It is important to mention that this is the only way to make M
into a Z-module. By Example 3.2.2 (5), there is a unique homomorphism
of rings χ : Z → Hom(M,M). Consequently, by Lemma 4.1.2, there is
a unique way to make M into a Z-module. It is routine to verify that
χ(n) = λn.

(3) Let A be an abelian group written additively. Let m > 1 be an integer
and assume mx = 0 for all x ∈ A. It follows from Exercise 4.1.18 that A
is a Z/m-module by the action [n]x = nx. In particular, if p is a prime
and px = 0 for all x ∈ A, then A is a vector space over the field Z/p.

(4) Let ϕ : R → S be a homomorphism of rings. By (1), S is a left S-
module, and by Lemma 4.1.2, there is a homomorphism of rings θ : S →
Hom(S, S) where θ(s) : S → S is defined by θ(s)x = sx for all s, x ∈ S.
By Exercise 3.2.28, the composite function θϕ : R → Hom(S, S) is a
homomorphism of rings. Hence, S is an R-module and R acts on S by
the multiplication rule rx = ϕ(r)x, for r ∈ R and x ∈ S.

(5) Let ϕ : R → S be a homomorphism of rings. If M is an S-module, then
by Lemma 4.1.2, there is a homomorphism of rings θ : S → Hom(M,M).
By Exercise 3.2.28, the composite function θϕ : R → Hom(M,M) is a
homomorphism of rings. Therefore, M is an R-module and R acts on M
by the multiplication rule rx = ϕ(r)x, for r ∈ R and x ∈M .

Lemma 4.1.5. Let M be an R-module, x ∈M , and r ∈ R. Then the following
are true:

(1) r0 = 0.
(2) 0x = 0.
(3) −1x = −x.
Proof. (1): r0 = r(0 + 0) = r0 + r0. Since M,+ is a group, we cancel r0 to

get r0 = 0.
(2): 0x = (0 + 0)x = 0x + 0x. Since M,+ is a group, we cancel 0x to get

0x = 0.
(3): 0 = (1 − 1)x = 1x + (−1)x = x + (−1)x. Since M,+ is a group, we get

−x = (−1)x. □

1.2. Submodules and Homomorphisms.

Definition 4.1.6. Let R be a ring and M an R-module. A submodule of M
is a nonempty subset N ⊆M such that N is an R-module under the operation by
R on M . If X ⊆M , the submodule of M generated by X is{

n∑
i=1

rixi | n ≥ 1, ri ∈ R, xi ∈ X

}
.

The reader should verify that the submodule generated by X is equal to the inter-
section of the submodules ofM containing X. A submodule is principal, or cyclic, if
it is generated by a single element. The submodule generated by X is denoted (X).
If X = {x1, x2, . . . , xn} is finite, we sometimes write (X) = Rx1+Rx2+ · · ·+Rxn.
We say M is finitely generated if there exists a finite subset {x1, . . . , xn} ⊆M such
that M = Rx1 + · · ·+Rxn.
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Definition 4.1.7. If I is a left ideal of R and M is an R-module, then IM
denotes the R-submodule of M generated by the set {rx | r ∈ I, x ∈ M}. Notice
that a typical element of IM is not a product rx, but a finite sum of the form
r1x1 + · · ·+ rnxn.

Definition 4.1.8. Let R be a ring and M an R-module. If A and B are R-
submodules ofM , then A+B denotes the R-submodule generated by the set A∪B.
The reader should verify that the set of all submodules of M is a lattice.

Definition 4.1.9. If M and N are R-modules, an R-module homomorphism
from M to N is a function f :M → N satisfying

(1) f(x+ y) = f(x) + f(y) and
(2) f(rx) = rf(x)

for all x, y ∈ M and r ∈ R. The kernel of the homomorphism f is ker (f) = {x ∈
M | f(x) = 0}. The image of the homomorphism f is im (f) = {f(x) ∈ N | x ∈
M}. An epimorphism is a homomorphism that is onto. A monomorphism is a
homomorphism that is one-to-one. An isomorphism is a homomorphism f : M →
N that is one-to-one and onto. In this case we say M and N are isomorphic. An
endomorphism of M is a homomorphism from M to M .

Proposition 4.1.10. If f : M → N is an R-module homomorphism, then the
following are true:

(1) The kernel of f is a submodule of M .
(2) f is one-to-one if and only if ker (f) = (0).
(3) If A is a submodule of M , then f(A), the image of A under f , is a submodule

of N .
(4) If B is a submodule of N , then f−1(B), the preimage of B under f , is a

submodule of M .
(5) If g : N → P is an R-module homomorphism, then the composite map gf :

M → P is an R-module homomorphism.

Proof. Let A be a submodule of M and B a submodule of N . Since f is a
homomorphism of additive groups, ker (f) is a subgroup ofM,+, f(A) is a subgroup
of N,+, and f−1(B) is a subgroup of M,+, by Lemma 2.3.3. Part (2) follows from
the corresponding result for group homomorphisms, Lemma 2.3.8. Let x ∈ ker(f)
and r ∈ R. Then f(rx) = rf(x) = r0 = 0 by Lemma 4.1.5. This completes
Part (1). If x is an arbitrary element of A, then f(x) represents a typical element of
f(A). Then rf(x) = f(rx) ∈ f(A), which completes Part (3). Let x ∈M such that
f(x) ∈ B. Then x represents a typical element of f−1(B). Then f(rx) = rf(x) ∈ B,
which completes Part (4). By Lemma 2.3.8 (1), gf(x+y) = gf(x)+gf(y). If r ∈ R,
then gf(rx) = g(r(f(x)) = rg(f(x)), which proves Part (5). □

Definition 4.1.11. Let R be a ring, M an R-module and S a submodule. The
factor module ofM modulo S is the setM/S = {a+S | a ∈M} of all left cosets of
S in M . We sometimes call M/S the quotient module of M modulo S. We define
addition and scalar multiplication of cosets by the rules

(a+ S) + (b+ S) = (a+ b) + S

r(a+ S) = ra+ S.
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The reader should verify that M/S is an R-module. Let η : M → M/S be the
natural map defined by x 7→ x+ S. Then η is a homomorphism, im η =M/S, and
ker η = S.

Theorem 4.1.12, Corollary 4.1.14, and Theorem 4.1.15 are the counterparts for
modules of Theorems 2.3.12, 2.3.14 and 2.3.15.

Theorem 4.1.12. Let θ :M → N be a homomorphism of R-modules. Let S be
a submodule of M contained in ker θ. There exists a homomorphism φ :M/S → N
satisfying the following.

(1) φ(a+ S) = θ(a), or in other words θ = φη.
(2) φ is the unique homomorphism from M/S → N such that θ = φη.
(3) im θ = imφ.
(4) kerφ = η(ker θ) = ker(θ)/S.
(5) φ is one-to-one if and only if S = ker θ.
(6) φ is onto if and only if θ is onto.
(7) There is a unique homomorphism ϕ :M/S →M/ ker θ such that the diagram

M
θ //

$$
η

��

N

M/ ker θ

;;

M/S

ϕ

OO φ

DD

commutes.

Proof. On the additive groups, this follows straight from Theorem 2.3.12.
The rest is left to the reader. □

Corollary 4.1.13. If θ : M → N is a homomorphism of modules, then there
exists a unique monomorphism θ̄ such that θ = θ̄η. Hence θ factors into an epi-
morphism η followed by a monomorphism θ̄ and the diagram

M
θ //

η $$

N

M/ ker θ

θ̄

;;

commutes.

Proof. This is Theorem 4.1.12 (5). □

Corollary 4.1.14. (The Isomorphism Theorems) Let M be an R-module with
submodules A and B.

(1) If θ :M → N is a homomorphism of modules, then the map φ :M/ ker θ → im θ
sending the coset x+ ker θ to θ(x) is an isomorphism of modules.

(2) The natural map
A

A ∩B
→ A+B

B
sending the coset x+A ∩B to the coset x+B is an isomorphism.
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(3) If A ⊆ B, then B/A is a submodule of M/A and the natural map

M/A

B/A
→M/B

sending the coset containing x+A to the coset x+B is an isomorphism.

Proof. This follows from Theorem 4.1.12 and Theorem 2.3.14, its counterpart
for groups. □

Theorem 4.1.15. (The Correspondence Theorem) Let M be an R-module and
A a submodule of M . There is a one-to-one order-preserving correspondence be-
tween the submodules B such that A ⊆ B ⊆ M and the submodules of M/A given
by B 7→ B/A.

Proof. This follows from Proposition 4.1.10 and The Correspondence Theo-
rem for Groups, Theorem 2.3.15. □

Definition 4.1.16. If M and N are R-modules, the set of all R-module
homomorphisms from M to N is denoted HomR(M,N). Modules are additive
abelian groups and an abelian group has a natural structure as a Z-module (Ex-
ample 4.1.4 (2)). The set of all group homomorphisms from M to N is denoted
Hom(M,N) or HomZ(M,N). By Exercise 2.8.13, HomZ(M,N) is an abelian group
where addition of functions is defined point-wise. Since an R-module homomor-
phism ϕ : M → N is a homomorphism of additive abelian groups, there is a
set containment HomR(M,N) ⊆ HomZ(M,N). Hence HomR(M,N) is an abelian
group. The reader should be advised that whenR is noncommutative, HomR(M,N)
is not an R-module per se. IfM = N , then in Exercise 4.1.19 the reader is asked to
prove that HomR(M,M) is a ring. In general, HomR(M,M) is a noncommutative
ring.

Example 4.1.17. Let R be a commutative ring and M an R-module. If r ∈ R,
then “left multiplication by r” is the function λr :M →M , where λr(x) = rx. As
in Lemma 4.1.2, there is a homomorphism of rings θ : R → Hom(M,M) defined
by θ(r) = λr. Since R is commutative, if r, s ∈ R, then λr(sx) = r(sx) = (rs)x =
(sr)x = s(rx) = sλr(x). Therefore, λr is an R-module homomorphism from M to
M . This shows that the homomorphism θ factors through a homomorphism λ : R→
HomR(M,M) which we call the left regular representation of R in HomR(M,M).
The diagram of ring homomorphisms

R
θ //

λ %%

Hom(M,M)

HomR(M,M)

⊆

66

commutes. For any ϕ ∈ HomR(M,M), r ∈ R, and x ∈ M , rϕ(x) = ϕ(rx).
Therefore, λrϕ = ϕλr, which implies the image of R under the homomorphism λ
is a subring of the center of HomR(M,M). By λ, HomR(M,M) is turned into an
R-algebra (see Definition 4.4.1).
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1.3. Exercises.

Exercise 4.1.18. Let R be a commutative ring, I an ideal of R, and M an
R-module. As in Definition 4.1.7, IM denotes the R-submodule ofM generated by
the set {rx | r ∈ I, x ∈M}. Prove that M/IM is an R/I-module under the action
(r + I)(x+ IM) = rx+ IM .

Exercise 4.1.19. This exercise is based on Exercise 2.8.13. Let M be an
R-module, where R is any ring. Follow the outline below to show that the set
HomR(M,M) of all R-module endomorphisms of M is a ring.

(1) If f, g ∈ HomR(M,M), then f + g is the function defined by the rule:
(f + g)(x) = f(x)+ g(x). Show that this additive binary operation makes
HomR(M,M) into an abelian group.

(2) Show that composition of functions is a binary operation on HomR(M,M)
and the following are satisfied:
(a) f(gh) = (fg)h for all f, g, h in HomR(M,M). In other words, com-

position of functions is associative.
(b) f(g + h) = fg + fh and (f + g)h = fh + gh for all f, g, h in

HomR(M,M). In other words, composition distributes over addi-
tion.

Together with the two binary operations of addition and composition of endomor-
phisms, we call HomR(M,M) the ring of endomorphisms of M .

Exercise 4.1.20. This exercise is based on Exercise 4.1.19. Let M be an R-
module, where R is any ring. Let S = HomR(M,M) be the ring of R-module
endomorphisms ofM . Show thatM is a left S-module under the action ϕx = ϕ(x),
for all ϕ ∈ S and x ∈M .

Exercise 4.1.21. LetR be a commutative ring and I an ideal inR. The natural
ring homomorphism η : R → R/I turns R/I into an R-module (Example 4.1.4).
Define

ϕ : HomR(R/I,R/I) → R/I

by ϕ(f) = f(1 + I). Show that ϕ is an isomorphism of rings.

Exercise 4.1.22. Let R be a ring and M an R-module. Then M is said to be
simple if its only submodules are (0) and M .

(1) Prove that any simple R-module is cyclic.
(2) Let M be a nonzero simple R-module. Prove that any R-module homo-

morphism h : M → M is either an automorphism of M , or h(m) = 0 for
every m ∈M .

(3) (Schur’s Lemma) Let M be a nonzero simple R-module. Prove that
HomR(M,M) is a division ring.

(4) Say R = F is a field, M = V is a finite dimensional F -vector space.
Find necessary and sufficient conditions for V to be simple. Calculate
HomF (V, V ) for a nonzero simple F -vector space V .

(5) Say R = Z and M is a finitely generated Z-module. Find necessary and
sufficient conditions for M to be simple. Calculate HomZ(M,M) for a
nonzero simple Z-module M .

Exercise 4.1.23. Let R be a ring. The opposite ring of R is defined in Def-
inition 3.1.8. Show that there exists an isomorphism of rings HomR(R,R) ∼= Ro,
where R is viewed as a left R-module and Ro denotes the opposite ring.
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Exercise 4.1.24. (Module version of Finitely Generated over Finitely Gener-
ated is Finitely Generated) Let R → S be a homomorphism of rings such that S
is finitely generated as an R-module. If M is a finitely generated S-module, prove
that M is finitely generated as an R-module.

Exercise 4.1.25. Let θ : R→ S be a homomorphism of rings. LetM and N be
S-modules. Via θ, M and N can be viewed as R-modules (see Example 4.1.4 (5)).
Show that θ induces a well defined Z-module monomorphism

Hθ : HomS(M,N) → HomR(M,N).

Exercise 4.1.26. Let θ : R → S be a homomorphism of commutative rings.
If M is an S-module, show that there is a commutative diagram of ring homomor-
phisms

R
λR //

θ

��

HomR(M,M)

S
λS // HomS(M,M)

Hθ

OO

where λR and λS are the left regular representations of Example 4.1.17 and Hθ is
one-to-one.

Exercise 4.1.27. Let R be a ring andM a left R-module. Follow the following
outline to show that HomR(R,M) is isomorphic to M as a left R-module.

(1) Prove the following generalization to modules of Lemma 2.3.29 (2) (a). Let
x be an element of M . Define ρx : R → M to be “right multiplication
by x”. That is, ρx(a) = ax for every a in R. Then ρx is an R-module
homomorphism in HomR(R,M).

(2) Show that the assignment f 7→ f(1) defines an isomorphism of additive
abelian groups HomR(R,M) → M . This is a generalization of Exer-
cise 2.8.17.

(3) Show that HomR(R,M) can be turned into a left R-module by the action
(rf)(x) = f(xr) for every r ∈ R and f ∈ HomR(R,M).

(4) Show that HomR(R,M) and M are isomorphic as left R-modules.

2. Free Modules

Given a ring R and a family of R-modules {Mi | i ∈ I}, the R-module direct
product

∏
i∈IMi is defined. The construction is based on the direct product of

the underlying abelian groups together with coordinate-wise scalar multiplication.
For each i in I, the module Mi is mapped isomorphically onto a submodule of the
direct product under the canonical injection map ιi. Thus, we identify Mi with
the submodule ιi(Mi). The R-module direct sum of the family {Mi | i ∈ I} is the
submodule of

∏
i∈IMi generated by the submodules Mi and is denoted

⊕
i∈IMi.

For a finite index set I, the direct sum is equal to the direct product. In general the
direct sum and direct product are not equal. A free R-module is the direct sum of
copies of the left R-module R. Free modules play a fundamental role in the sense
that every module is the homomorphic image of a free module. A vector space is a
free module over a field, or more generally, over a division ring.
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2.1. Direct Product and Direct Sum of a Family of Modules. As men-
tioned above, we define the direct product and the direct sum of a family of R-
modules {Mi | i ∈ I} over an arbitrary index set I.

Definition 4.2.1. Let R be a ring, I an index set and {Mi | i ∈ I} a family of
R-modules indexed by I. By Definition 2.5.1, the direct product

∏
i∈IMi = {f :

I →
⋃
i∈I | f(i) ∈Mi} is an abelian group. The binary operation is coordinate-wise

addition: (f + g)(i) = f(i) + g(i). The identity element, denoted 0, is the constant
function 0(i) = 0. The inverse of f is defined by (−f)(i) = −f(i). We turn the
direct product

∏
i∈IMi into an R-module by defining the R-action coordinate-wise:

(rf)(i) = rf(i). The R-module
∏
i∈IMi is called the direct product of {Mi | i ∈ I}.

As in Definition 2.5.1, for each k ∈ I there are the canonical injection and projection
maps

Mk
ιk−→
∏
i∈I

Mi
πk−→Mk

such that πkιk = 1Mk
. The reader should verify that each ιk and πk is an R-module

homomorphism.
The direct sum of {Mi | i ∈ I} is denoted

⊕
i∈IMi and is defined to be the sub-

module of the direct product generated by the set
⋃
k∈I ιk(Mk). By Definition 4.1.6,

it is routine to check that⊕
i∈I

Mi =
{
f : I →

⋃
i∈I

Mi | f(i) ∈Mi and f(i) = 0 for all but finitely many i ∈ I
}
.

For each k ∈ I the canonical injection map ιk factors through the direct sum. That
is, ιk : Mk →

⊕
i∈IMi is a one-to-one homomorphism of R-modules. All of the

maps

Mk
ιk−→
⊕
i∈I

Mi
⊆−→
∏
i∈I

Mi
πk−→Mk

are R-module homomorphisms. The restriction of πk to the direct sum is an onto
homomorphism of R-modules πk :

⊕
i∈IMi → Mk. We have πkιk = 1Mk

. The
direct sum

⊕
i∈IMi is sometimes called the external direct sum to distinguish it

from the internal direct sum of submodules defined in Definition 4.2.3 below.
If the index set I is {1, . . . , n} and M1, . . . ,Mn are R-modules, then the direct

product and the direct sum are equal. Both are the R-module with underlying set
M1×· · ·×Mn and with addition and R-action defined coordinate-wise on n-tuples:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

r(x1, . . . , xn) = (rx1, . . . , rxn).

In this case, the direct sum is sometimes denoted M1 ⊕M2 ⊕ · · · ⊕Mn.

Proposition 4.2.2. Let R be a ring, I an index set and {Mi | i ∈ I} a family
of R-modules indexed by I. Let M be an R-module.

(1) (Universal Mapping Property) Given any family {ψi : M → Mi | i ∈ I}
of R-module homomorphisms, there exists a unique R-module homomorphism
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θ :M →
∏
i∈IMi such that for each j ∈ I the diagram∏

i∈IMi

πj

��
M

ψj

//

∃θ
;;

Mj

commutes and πjθ = ψj.
(2) (Universal Mapping Property) Given any family {ϕi : Mi → M | i ∈ I} of

R-module homomorphisms, there exists a unique R-module homomorphism θ :⊕
i∈IMi →M such that for each j ∈ I the diagram⊕

i∈IMi

∃θ

##
Mj

ϕj

//

ιj

OO

M

commutes and θιj = ϕj.

Proof. (1): Given x ∈ M , define θ(x) to be the choice function in
∏
i∈IMi

defined by θ(x)(i) = ψi(x). It is routine to check that θ is an R-module homomor-
phism, the diagram commutes, and θ is unique.

(2): Define θ :
⊕

i∈IMi → M by θ(f) =
∑
i∈I ϕi(f(i)). This is a well defined

R-module homomorphism since f(i) is nonzero on a finite subset of I. It is routine
to check that the diagram commutes and θ is unique. □

Definition 4.2.3. Let I be an index set and {Si | i ∈ I} a family of submodules
of the R-module M . The submodule of M generated by the set

⋃
i∈I Si is called

the sum of the submodules and is denoted
∑
i∈I Si. This is a generalization of

Definition 4.1.8. Let
⊕

i∈I Si be the external direct sum of the R-modules {Si | i ∈
I}. By Proposition 4.2.2 there exists an R-module homomorphism ϕ :

⊕
i∈I Si →

M defined by ϕ(f) =
∑
i∈I f(i). Therefore the image of ϕ is equal to the sum∑

i∈I Si. We say that M is the internal direct sum of the submodules {Si | i ∈ I}
in case ϕ is an isomorphism. In this case we write M =

⊕
i∈I Si.

Proposition 4.2.4 lists some useful necessary and sufficient conditions for a
module M to be the internal direct sum of a family of submodules.

Proposition 4.2.4. Let I be an index set and {Si | i ∈ I} a family of submod-
ules of the R-module M . Then the following are equivalent.

(1) M =
⊕

i∈I Si is the internal direct sum of the submodules {Si | i ∈ I}.
(2) For each x ∈M there is a unique representation of x in the form x =

∑
i∈I xi

where each xi comes from Si and for all but finitely many i ∈ I we have xi = 0.
(3) The following are satisfied:

(a) M =
∑
i∈I Si is the sum of the submodules {Si | i ∈ I}, and

(b) for every finite subset {k1, . . . , kn} of I, if xki ∈ Ski for 1 ≤ i ≤ n, and
0 =

∑n
i=1 xki , then xki = 0 for each i.

(4) The following are satisfied:
(a) M =

∑
i∈I Si is the sum of the submodules {Si | i ∈ I}, and

(b) for every k ∈ I, Sk ∩
∑
i∈I−{k} Si = {0}.



2. FREE MODULES 179

Proof. The proof that (1), (2) and (3) are equivalent to each other is left to
the reader.

(2) implies (4): Suppose x ∈ Sk ∩
∑
i∈I−{k} Si. Then there is a finite subset

{k1, . . . , kn} of I − {k} such that xki ∈ Ski for 1 ≤ i ≤ n, and x =
∑n
i=1 xki . Then

x−
∑n
i=1 xki = 0 and by (2) this implies x = 0.

(4) implies (3): Suppose there is a finite subset {k1, . . . , kn} of I such that
xki ∈ Ski for 1 ≤ i ≤ n and 0 =

∑n
i=1 xki . Then xk1 = −

∑n
i=2 xki . So xk1 ∈

Sk1 ∩
∑
i∈I−{k1} Si = {0}. This proves xk1 = 0. The same argument shows xki = 0

for each i. □

For convenience, Proposition 4.2.5 contains a version of Proposition 4.2.4 for
the special case where the index set I is finite. It is the module theoretic version
of Proposition 2.5.6.

Proposition 4.2.5. Suppose R is a ring, M is an R-module, and S1, . . . , Sn
are submodules of M . Then the following are equivalent.

(1) M = S1 ⊕ · · · ⊕ Sn is the internal direct sum of the submodules {S1, . . . , Sn}.
(2) For each x ∈ M there is a unique representation of x in the form x = x1 +

· · ·+ xn where xi comes from Si for each i.
(3) The following are satisfied:

(a) M = S1 + · · ·+ Sn, and
(b) if xi ∈ Si for each i and 0 = x1 + · · ·+ xn, then xi = 0 for each i.

(4) The following are satisfied:
(a) M = S1 + · · ·+ Sn, and
(b) for every 1 ≤ k ≤ n, Sk ∩

∑
i ̸=k Si = {0}.

Definition 4.2.6. Let M be an R-module. If N is a submodule of M , then
N is called a direct summand of M if there is a submodule L of M such that
M = N ⊕ L.

Example 4.2.7. Let A be a finite abelian group. By Example 4.1.4 (2), A is a
Z-module. We proved in Theorem 2.8.6 that if a is an element of maximal order in
G, then the cyclic subgroup ⟨a⟩ is a direct summand of A.

Proposition 4.2.8. Let R be a ring, M an R-module, and N an R-submodule
of M . The following are equivalent.

(1) N is a direct summand of M .
(2) There is an R-module homomorphism π :M → N such that π(x) = x for every

x ∈ N .
(3) There is an R-module homomorphism ϕ :M →M such that ϕ is an idempotent

in the ring HomR(M,M) (that is, ϕ2 = ϕ), and im(ϕ) = N .

Proof. (1) implies (2): There is a submodule L of M such that M = N ⊕ L.
The canonical projection map π : M → N is an R-module homomorphism and
π(x) = x for every x ∈ N .

(2) implies (3): Let ι : N →M be the set inclusion map, and ϕ the composite
map ιπ.

(3) implies (1): Let L = kerϕ. Given z ∈ M , let x = ϕ(z) and y = z − x.
Then ϕ(y) = ϕ(z) − ϕ(x) = x − x = 0 implies y ∈ L. This shows M = N + L.
Let z ∈ N ∩ L. Then z ∈ L implies ϕ(z) = 0 and z ∈ N implies z = ϕ(x) for
some x ∈ M . Hence ϕ(z) = ϕ(ϕ(x)) = ϕ(x) = z. This shows N ∩ L = (0). By
Proposition 4.2.5, M = N ⊕ L. □
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2.2. Free Modules. An R-module is free if it is isomorphic to a direct sum
of copies of R. A free module has a linearly independent generating set, or a
free basis. A free basis has no dependence relation, hence is “relation-free”, or
“relation-less”. Hence, as in Definition 2.5.13, the descriptor “free” is applied to
signify that a module has a relation-free basis. We saw in Section 2.5.3 that free
groups play a fundamental role in abstract group theory. Likewise, we show in the
present section that free modules are fundamental. Free modules satisfy a universal
mapping property. This implies every module is the homomorphic image of a free
module.

Definition 4.2.9. Let R be any ring. As defined in Definition 4.1.6, an R-
module M is finitely generated if there exist elements x1, . . . , xn in M such that
for each m ∈ M there exist r1, . . . , rn in R such that m = r1x1 + · · · + rnxn.
Equivalently, M is finitely generated if there is a finite subset {x1, . . . , xn} of M
such that M = Rx1 + · · · + Rxn. Thus, M is finitely generated if and only if M
is equal to the sum of a finite number of cyclic submodules. If M has a finite
generating set, then by the Well Ordering Principle, there exists a generating set
with minimal cardinality. We call such a generating set a minimal generating set .
The rank of M , written Rank(M), is defined to be the number of elements in a
minimal generating set.

Example 4.2.10. If k is a field and V is a finite dimensional k-vector space, then
we will see in Theorem 4.3.4 below that the rank of V as defined in Definition 4.2.9
is equal to dimk(V ), the dimension of V over k.

Definition 4.2.11. Let R be a ring and I any index set. For i ∈ I, let Ri = R
as R-modules. By Example 4.1.4 (1), R is a left R-module. Denote by RI the
R-module direct sum

⊕
i∈I Ri. Let M be an R-module. We say M is free if M is

isomorphic to RI for some index set I. If I = {1, 2, . . . , n}, then we will write R(n)

for the direct sum R⊕ · · · ⊕R of n copies of R. An R module M is said to be free
of finite rank n if M is isomorphic to R(n) for some n. In particular, Z(n) is a free
Z-module of rank n.

Definition 4.2.12. Let M be an R module. If X = {x1, . . . , xn} is a finite
subset of M , define ΣX : R(n) → M by ΣX(r1, . . . , rn) = r1x1 + . . . rnxn. Using
Exercise 4.1.27 (1) and Proposition 4.2.2 (2), the reader should verify that ΣX is an
R-module homomorphism and the image of ΣX is the R-submodule ofM generated
byX. We say X is a linearly independent set in case ΣX is one-to-one. An arbitrary
subset Y ⊆ M is a linearly independent set if every finite subset of Y is linearly
independent.

Definition 4.2.13. The function δ : I × I → {0, 1} defined by

(2.1) δij =

{
1 if i = j

0 otherwise

is called the Kronecker delta function, and is named after L. Kronecker. The stan-
dard basis for RI is {ei ∈ RI | i ∈ I} where ei(j) = δij . The reader should verify
that the standard basis is a linearly independent generating set for RI . The stan-
dard basis for R(n) is the set {ei | 1 ≤ i ≤ n} where ei is the n-tuple with 1 in
coordinate i and 0 elsewhere. A linearly independent generating set for M is called
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a free basis (or simply basis) for M . Lemma 4.2.14 shows that an R-module M is
free if and only if M has a free basis.

Lemma 4.2.14. Let R be any ring and M a nonzero R-module. Then M is free
if and only if M has a free basis. That is, M is free if and only if there exists a
subset X = {bi | i ∈ I} ⊆M which is a linearly independent generating set for M .

Proof. Given a linearly independent spanning set X = {bi | i ∈ I} for M ,
define ΣX : RI →M by ΣX(f) =

∑
i∈I f(i)bi. By Exercise 4.1.27 (1) and Proposi-

tion 4.2.2 (2), ΣX is a well defined R-module homomorphism and the image is equal
to the submodule of M generated by X. Because X generates M and is linearly
independent, ΣX is one-to-one and onto. The converse is left to the reader. □

Lemma 4.2.15. Let R be any ring and M a nonzero R-module. Let X =
{x1, . . . , xn} be a nonempty subset of M . Then X is a linearly independent subset
of M if and only if every v in the span of X has a unique representation as a linear
combination of the form v = α1x1 + · · · + αnxn where α1, . . . , αn are elements of
R.

Proof. This follows straight from Definition 4.2.12. □

Example 4.2.16. We have already seen examples of free modules. Let R be a
commutative ring.

(1) The natural mapping R → R[x] makes the ring of polynomials R[x] into
an R-module. In fact, R[x] is a free R-module and the set {1, x, x2, x3, . . . }
is a free basis.

(2) If G is a group, and R(G) the group ring (see Example 3.1.6), then R(G)
is a free R module with free basis {g | g ∈ G}.

The first part of Theorem 4.2.17 proves that a homomorphism on a free R-
module is completely determined by its values on a basis. The second part shows
that every R-module is the homomorphic image of a free R-module.

Theorem 4.2.17. Let R be a ring and M an R-module.

(1) (Universal Mapping Property) Let F be a free R-module and {bi | i ∈ I} a
basis for F . For any function y : I → M , there exists a unique R-module
homomorphism θ : F → M such that θ(bi) = y(i) for each i ∈ I and the
diagram

I
y //

b ��

M

F

∃θ

>>

commutes.
(2) There exists a free R-module F and a surjective homomorphism F →M .
(3) M is finitely generated if and only if M is the homomorphic image of a free

R-module R(n) for some n.

Proof. (1): Since {bi | i ∈ I} is a basis for F , there is an isomorphism of
R-modules ϕ : RI → F defined by ϕ(f) =

∑
i∈I f(i)bi. Suppose y : I → M .

Define ψ : RI → M by ψ(f) =
∑
i∈I f(i)y(i). Using Exercise 4.1.27 (1) and
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Proposition 4.2.2 (2), it is routine to check that ψ is an R-module homomorphism
and the image of ψ is the R-submodule of M generated by the image of y.

RI
ψ //

ϕ   

M

F
θ=ψϕ−1

>>

Take θ to be ψϕ−1. This is the existence part of the proof. The uniqueness of θ
follows from the fact that ψ is defined in terms of y.

(2) and (3): Let X be a generating set for M and F the free R-module on X.
Map the basis elements of RX to the generators for M . If M is finitely generated,
X can be taken to be finite. Conversely, if R(n) → M is an epimorphism, then a
basis for R(n) maps to a generating set for M . □

Example 4.2.18. Let A be any nontrivial ring. Let R =
∏∞
i=1A be the ring

direct sum of infinitely many copies of A. Let I =
⊕∞

i=1A be the direct sum of
copies of A as a left A-module with index set N. Then we view I as a proper subset
of R. It is routine to check that I is a two-sided ideal in R. Notice that the ideal I
is not generated by any finite subset. The ring R is an example of a non-noetherian
ring.

2.3. Projective Modules. Except for the superficial reference in Proposi-
tion 4.6.5, the topics and results of this section will not be used in the rest of the
text until Section 7.2. Proposition 4.2.19 lists three fundamental properties of a
projective module. The definition follows the proposition.

Proposition 4.2.19. Let R be a ring and M an R-module. The following are
equivalent.

(1) There is a free R-module F and M is isomorphic to a direct summand of
F .

(2) For every epimorphism β : B →M of R-modules there exists an R-module
homomorphism ψ :M → B such that βψ = 1M .

(3) For any diagram of R-module homomorphisms

M
∃ψ

~~
ϕ

��
A

α // B

with α onto, there exists an R-module homomorphism ψ : M → A such
that αψ = ϕ.

Proof. (3) implies (2): Consider the diagram

M
∃ψ

~~
1M
��

B
β // M

of R-module homomorphisms where 1M : M → M is the identity map. By (3)
there exists ψ :M → B such that βψ = 1M .

(2) implies (1): By Theorem 4.2.17 there is a free R-module F and an R-module
epimorphism ϕ : F → M . If M is finitely generated, we can assume F is finitely
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generated. By (2) there exists an R-module homomorphism ψ : M → F such that
ϕψ = 1M . Then M is isomorphic to the image of ψ which is a direct summand of
F , by Proposition 4.2.8.

(1) implies (3): Let F = RI be a free R-module and assume M is a direct
summand of F . By Proposition 4.2.8, there is an R-module homomorphism π :
F → M such that π(x) = x for all x ∈ M . Suppose ϕ : M → B and α : A → B
are R-module homomorphisms and α is onto. Let X = {xi | i ∈ I} be a basis for
F and set Y = {yi = ϕ(xi) | i ∈ I}. Since α is onto, α−1(yi) is nonempty for each
i ∈ I. By The Axiom of Choice (Proposition 1.3.5), pick Z = {zi | i ∈ I} ⊆ A
such that α(zi) = yi for each i. By Theorem 4.2.17 there is a unique R-module
homomorphism θ : F → A such that θ(xi) = zi. Since ϕπ(xi) = yi = αθ(xi) and
X = {xi | i ∈ I} is a generating set for F , we have αθ(x) = ϕπ(x) for all x ∈ F .
The outer triangle in the diagram

F

θ

��

π

��
Mψ

xx
ϕ

��
A

α // B

commutes. Define ψ : M → A to be the restriction of θ to M . If x ∈ M , then
π(x) = x, so αψ(x) = ϕ(x). □

Definition 4.2.20. If R is a ring and M is an R-module satisfying any of the
equivalent conditions of Proposition 4.2.19, then we sayM is a projective R-module.

Example 4.2.21. Here are some examples of modules that are projective and
modules that are not projective.

(1) A free R-module of finite rank satisfies Proposition 4.2.19 (1), hence a
finitely generated free R-module is a projective R-module. In particular,
R is a free R-module of rank 1.

(2) Let R be a ring containing proper two-sided ideals I and J such that R =
I ⊕ J . Then I and J are direct summands of the free R-module R, hence
are projective R-modules by Proposition 4.2.19 (1). By Theorem 3.3.4,
I = Re1 and J = Re2, where e1, e2 is a set of orthogonal idempotents.
Then e1e2 = 0 is a nontrivial dependence relation. This implies 0 ∈ J
does not have a unique representation in terms of any generating set for
J . Hence I and J are not free R-modules.

(3) Let p and q be distinct prime numbers. By the Chinese Remainder The-
orem, Theorem 1.2.11, Z/(pq) ∼= Z/(p) ⊕ Z/(q). By Part (2), Z/(p) is a
projective Z/(pq)-module which is not a free Z/(pq)-module.

(4) If R is a division ring, in particular if R is a field, then any R-module is
an R-vector space, hence is free. This is proved in Corollary 4.3.3 when
M is finitely generated. For the general case, see Exercise 4.3.18.

(5) We show in Proposition 4.6.5 below that a finitely generated projective
module over a principal ideal domain is free.

(6) For a list of more examples of rings for which projective modules are free
see [9, Example 6.2.6].
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Example 4.2.22. Let F be a field and M2(F ) the ring of two-by-two matrices

over F . Let D =

{(
a 0
0 d

)
| a, d ∈ F

}
be the subring of M2(F ) consisting of all

diagonal matrices. Let R =

{(
a b
0 d

)
| a, b, d ∈ F

}
be the ring of Example 3.3.14.

In this example we state facts about the rings D, R and M2(F ), leaving most of
the proofs to the reader. By Example 4.1.4 (4), M2(F ) is a left R-module and R
is a left D-module. As in Example 3.1.13, let eij be the elementary matrix with 1
in position (i, j) and 0 elsewhere. Then e11 and e22 are idempotents, e11 + e22 =
1, and by Exercise 3.3.15, D is the internal direct sum of the ideals De11 and

De22. Let c1 = e11 + e21. Then Dc1 = C1 =

{(
a 0
c 0

)
| a, c ∈ F

}
. As a D-

module, C1 is free of rank 1 with basis {c1}. Likewise, if c2 = e12 + e22, then

Dc2 = C2 =

{(
0 b
0 d

)
| b, d ∈ F

}
is a free D-module of rank 1 with basis {c2}.

Therefore, M2(F ) is a free D-module of rank 2 with basis c1, c2. In a similar way,
M2(F ) is the internal direct sum of the D-submodules De11, De12, De21, De22. By
Proposition 4.2.19, each submodule Deij is a projective D-module. An argument
similar to the one used in Example 4.2.21 (2) can be used to show none of the
modules Deij is a free D-module. As a D-module, R is the internal direct sum
of the D-submodules De11, De12, De22. This shows R is a projective D-module
which is not a free D-module. As an R-module, R is equal to the internal direct
sum of the R-submodules Re11 and Re22. The R-module M2(F ) is equal to the
internal direct sum of the R-submodules Re21 and Re22.

2.4. Exercises.

Exercise 4.2.23. Let F be a field and R = M2(F ) the ring of two-by-two
matrices over F . Let

e1 =

[
1 0
0 0

]
, e2 =

[
0 0
0 1

]
.

Follow the following outline to prove that the ideals Re1 and Re2 are finitely gen-
erated projective R-modules but not free R-modules.

(1) Show e21 = e1, e
2
2 = e2, e1e2 = e2e1 = 0. We say e1 and e2 are orthogonal

idempotents.
(2) Show that Re1 is the set of all matrices with second column consisting of

zeros.
(3) Show that Re2 is the set of all matrices with first column consisting of

zeros.
(4) Show that R = Re1 ⊕ Re2 as R-modules. Show that Rei is a finitely

generated projective R-module for i = 1, 2.
(5) For i = 1, 2, show that Rei is not a free R-module.

Exercise 4.2.24. Let R be any ring and M a free R-module of rank n with
basis X = {x1, . . . , xn}. Use Theorem 4.2.17 to show that the group of units in the
ring HomR(M,M) contains a subgroup isomorphic to Sn, the symmetric group on
n letters.

Exercise 4.2.25. Let R be a UFD with quotient field K. Let a be an element
of R which is not a square in R and let f = x2 − a ∈ R[x].
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(1) Show that S = R[x]/(f) is an integral domain and L = K[x]/(f) is a field.
(2) Show that S is a free R-module, RankR(S) = 2, and dimK(L) = 2.

Exercise 4.2.26. Let R be a commutative ring and f ∈ R[x] a monic polyno-
mial of degree n. Show that S = R[x]/(f) is a free R-module of rank n and the set
{1, x, x2, . . . , xn−1} is a free basis.

Exercise 4.2.27. Let R1 and R2 be rings and R = R1 ⊕R2.

(1) IfM1 andM2 are left R1 and R2-modules respectively, show how to make
M1 ⊕M2 into a left R-module.

(2) If M is a left R-module, show that there are R-submodules M1 and M2

of M such that M =M1 ⊕M2 and for each i, Mi is a left Ri-module.

Exercise 4.2.28. Let G be a group and H a subgroup. For any commutative
ring R, let θ : R(H) → R(G) be the homomorphism of rings induced by the set
inclusion man H → G (see Example 3.2.2 (3)). Show that R(G) is a free R(H)-
module.

Exercise 4.2.29. Let R be a commutative ring and F a free R-module with ba-
sis {b1, . . . , bn}. Prove that if J is a proper ideal of R and π : F → F/JF is the natu-
ral homomorphism, then F/JF is a free R/J-module with basis {π(b1), . . . , π(bn)}.

3. Vector Spaces

A vector space is a module over a division ring. A submodule of a vector space
is called a subspace. Elements of a vector space are called a vectors. IfD is a division
ring and V , W are D-vector spaces, then a homomorphism ϕ ∈ HomD(V,W ) is
called a linear transformation. A generating set for V as a D-module is called a
spanning set.

Lemma 4.3.1. Let V be a vector space over a division ring D.

(1) If v is a nonzero vector in V , then {v} is a linearly independent set. Equiva-
lently, if v ∈ V − (0), α ∈ D and αv = 0, then α = 0.

(2) If X = {x1, . . . , xn} is a linearly independent set in V and v ∈ V − (X), then
X ∪ {v} is a linearly independent set in V

Proof. (1): Assume αv = 0 and α ̸= 0. By Lemma 4.1.5, we have 0 = α−10 =
α−1αv = 1v = v.

(2): Apply Exercise 4.3.21. □

Lemma 4.3.2. Let D be a division ring and V a nonzero finitely generated
vector space over D. If B ⊆ V , then the following are equivalent.

(1) B is a basis for V . That is, B is a linearly independent spanning set for V .
(2) B is a spanning set for V and no proper subset of B is a spanning set for V .

Proof. (1) implies (2): For sake of contradiction, suppose there is a proper
subset B1 ⊊ B and B1 is also a spanning set for V . Let v ∈ B − B1. Since
B1 is a spanning set, there exist x1, . . . , xn in B1 and α1, . . . , αn in D such that
v = α1x1 + · · ·+ αnxn. Then v − α1x1 − · · · − αnxn = 0 is a dependency relation
in B, which is a contradiction.

(2) implies (1): Assume B = {x1, . . . , xn} is a spanning set. We prove that if
B is linearly dependent, then there is a proper subset of B that is a spanning set.
Since V is nonzero and B is a spanning set, we know B is nonempty. If 0 ∈ B, then
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the span of B is equal to the span of B − {0}. From now on we assume each xi is
nonzero. Assume α1x1 + · · ·+ αnxn = 0 where (α1, . . . , αn) is a nonzero vector in
D(n). Let k be the largest integer satisfying: αk ̸= 0 and if i > k, then αi = 0. By
Lemma 4.3.1, k > 1. Then

xk = −α−1
k (α1x1 + · · ·+ αk−1xk−1)

is in the subspace spanned by x1, . . . , xk−1. Therefore, B−xk is a spanning set for
V . □

Corollary 4.3.3. If V is a finitely generated vector space over a division ring
D, then V has a basis.

Proof. As in Definition 4.2.9, a minimal generating set exists. It follows from
Lemma 4.3.2 that a minimal generating set is a basis. □

Theorem 4.3.4. Let V be a finitely generated vector space over the division
ring D and B = {b1, . . . , bn} a basis for V .

(1) If Y = {y1, . . . , ym} is a linearly independent set in V , then m ≤ n. We can
re-order the elements of B such that {y1, . . . , ym, bm+1, . . . , bn} is a basis for
V .

(2) Every basis for V has n elements.

Proof. Step 1: Write y1 = α1b1 + · · ·+ αnbn where each αi ∈ D. For some i,
αi ̸= 0. Re-order the basis elements and assume α1 ̸= 0. Solve for b1 to get b1 =
α−1
1 y1−

∑n
i=2 α

−1
1 αibi. Therefore B ⊆ Dy1+Db2+· · ·+Dbn, hence {y1, b2, . . . , bn}

is a spanning set for V . Suppose 0 = β1y1 + β2b2 + · · ·+ βnbn. Then

0 = β1 (α1b1 + · · ·+ αnbn) + β2b2 + · · ·+ βnbn

= β1α1b1 + (β1α2 + β2)b2 + · · ·+ (β1αn + βn)bn,

from which it follows that β1α1 = 0, hence β1 = 0. Now 0 = β2b2 + · · · + βnbn
implies 0 = β2 = · · · = βn. We have shown that {y1, b2, . . . , bn} is a basis for V .

Step j: Inductively, assume j ≥ 2 and that {y1, y2, . . . , yj−1, bj , . . . , bn} is a
basis for V . Write yj = α1y1 + · · · + αj−1yj−1 + αjbj + · · · + αnbn where each
αi ∈ D. Since the set {y1, . . . , yj} is linearly independent, for some i ≥ j, αi ̸= 0.
Re-order the basis elements and assume αj ̸= 0. Solve for bj and by a procedure
similar to that used in Step 1, we see that {y1, . . . , yj , bj+1, . . . , bn} is a basis for V .

By finite induction, Part (1) is proved. For Part (2), assume {c1, . . . , cm} is
another basis for V . By applying Part (1) from both directions, it follows that
m ≤ n and n ≤ m. □

Definition 4.3.5. Suppose D is a division ring and V is a vector space over
D. If V is finitely generated and nonzero, then we define the dimension of V ,
written dimD(V ), to be the number of elements in a basis for V . If V = (0), set
dimD(V ) = 0 and if V is not finitely generated, set dimD(V ) = ∞.

Corollary 4.3.6. Let V be a finitely generated vector space over the division
ring D and X = {x1, . . . , xn} a spanning set for V . Then the following are true:

(1) There is a subset of X that is a basis for V .
(2) dimD V ≤ n.
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Proof. Assume V is nonzero. Then X contains a nonzero vector. Without
loss of generality assume x1 ̸= 0. By Lemma 4.3.1, {x1} is a linearly independent
set. Let S be the set of all subsets of X that are linearly independent. Choose
B ∈ S such that B has maximal cardinality. We show B is a spanning set for V .
For sake of contradiction, assume (B) ̸= V . Since X is a spanning set for V , this
implies X is not a subset of (B). Assume xn ̸∈ (B). By Lemma 4.3.1, B ∪ {xn} is
a linearly independent set, which contradicts the maximality of B. □

Definition 4.3.7. Let R be a commutative ring and M a free R-module with
a finite basis {b1, . . . , bn}. By Exercise 4.3.15, any other basis of M has n elements.
We call n the rank of M and write RankRM = n.

Proposition 4.3.8. (Free over Free is Free) Let θ : R→ S be a homomorphism
of rings such that S is a finitely generated free R-module. Let M be a finitely
generated free S-module. As in Example 4.1.4 (4), we view M as an R-module.
In this context, M is a finitely generated free R module. If R and S are both
commutative, then RankR(M) = RankS(M)RankR(S).

Proof. Let X = {s1, . . . , sm} be a basis for S over R and Y = {y1, . . . , yn} a
basis for M over S. Let Z = {siyj | i = 1, . . . ,m and j = 1, . . . , n}. We show Z is
basis for M over R.

Step 1: Z is a spanning set for M as an R-module. Let x be an arbitrary
element of M . There exist b1, . . . , bn in S such that x =

∑n
j=1 bjyj . For each j

there exist a1j , . . . , amj in R such that bj =
∑m
i=1 aijsi. Taken together, we have

x =

n∑
j=1

bjyj =

n∑
j=1

(
m∑
i=1

aijsi

)
yj =

n∑
j=1

m∑
i=1

aij (siyj)

which shows Z is a spanning set for M over R.
Step 2: Z is linearly independent over R. Assume there is a dependence relation

0 =
∑n
j=1

∑m
i=1 aij (siyj) where the elements aij are in R. Since Y is a basis for

M over S, for each j we have
∑m
i=1 aijsi = 0 in S. Since X is a basis for S over R,

we have aij = 0 for every i and for every j.
The cardinality of Z is equal to |Z| = |X||Y |, which proves the rank formula.

□

3.1. Exercises.

Exercise 4.3.9. Suppose D is a division ring, V is a finite dimensional vector
space over D, and W is a subspace of V . Prove:

(1) W is finite dimensional and dimD(W ) ≤ dimD(V ).
(2) There is a subspace U of V such that V = U ⊕W is an internal direct

sum and dimD(V ) = dimD(U) + dimD(W ).
(3) dimD(V/W ) = dimD(V )− dimD(W ).

Exercise 4.3.10. Suppose ϕ ∈ HomD(V,W ), where V andW are vector spaces
over the division ring D. Prove:

(1) If V is finite dimensional, then the kernel of ϕ is finite dimensional and
the image of ϕ is finite dimensional.

(2) If the kernel of ϕ is finite dimensional and the image of ϕ is finite dimen-
sional, then V is finite dimensional.
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Exercise 4.3.11. (The Rank-Nullity Theorem) Suppose ϕ ∈ Homk(V,W ),
where V andW are vector spaces over the field k. The rank of ϕ, written Rank (ϕ),
is defined to be the dimension of the image of ϕ. The nullity of ϕ, written Nullity (ϕ),
is defined to be the dimension of the kernel of ϕ. Prove that if V is finite dimensional,
then dimk(V ) = Rank(ϕ) + Nullity(ϕ).

Exercise 4.3.12. Suppose ϕ ∈ HomD(V, V ), where V is a finite dimensional
vector space over the division ring D. Prove that the following are equivalent:

(1) ϕ is invertible.
(2) Nullity(ϕ) = 0.
(3) Rank(ϕ) = dimD(V ).

Exercise 4.3.13. Let V be a finite dimensional vector space over a division
ring D. Let ϕ, ψ be elements of HomD(V, V ). Prove:

(1) Rank(ϕψ) ≤ Rank(ϕ).
(2) Rank(ϕψ) ≤ Rank(ψ).
(3) Rank(ϕψ) ≤ min(Rank(ϕ),Rank(ψ)).
(4) If ϕ is invertible, Rank(ϕψ) = Rank(ψϕ) = Rank(ψ).

Exercise 4.3.14. Let D be a division ring and V and W finitely generated
vector spaces over D. Suppose U is a subspace of V and ϕ : U →W an element of
HomD(U,W ). Show that there exists an element ϕ̄ of HomD(V,W ) such that the
diagram

U

⊆ ��

ϕ // W

V
ϕ̄

>>

commutes. That is, ϕ̄ is an extension of ϕ.

Exercise 4.3.15. Let R be a commutative ring and F a finitely generated free
R-module. Show that any two bases for F have the same number of elements.

Exercise 4.3.16. Let V be a finitely generated vector space over a division
ring D. Let X ⊆ V be a spanning set for V . Show that there is a subset of X that
is a basis for V . Do not assume X is finite.

Exercise 4.3.17. Let V be a vector space over a division ring D. Suppose
there exists a positive number n such that every linearly independent subset of
V has cardinality less than or equal to n. Show that V is finitely generated and
dimD(V ) ≤ n.

Exercise 4.3.18. Let D be a division ring and V a nonzero vector space over
D. As in Definition 4.2.13, a subset X ⊆ V is a basis for V if X is a linearly
independent spanning set for V . Apply Zorn’s Lemma (Proposition 1.3.3) to prove
the following.

(1) Every linearly independent subset of V is contained in a basis for V .
(2) If S ⊆ V is a spanning set for V , then S contains a basis for V .
(3) V is a free D-module.

Exercise 4.3.19. Let D be a division ring and V a vector space over D. Let
A and B be finite dimensional subspaces of V . Prove:
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(1) A+B is finite dimensional.
(2) dimD(A+B) = dimD(A) + dimD(B)− dimD(A ∩B).

Exercise 4.3.20. Let F be a field and M2(F ) the ring of two-by-two matri-

ces over F . Let R =

{(
a b
0 d

)
| a, b, d ∈ F

}
be the subring of M2(F ) of Exam-

ple 3.3.14. Let A =

{(
a b
0 a

)
| a, b ∈ F

}
, which is a subring of R. We identify F

with the subring of scalar matrices

{(
a 0
0 a

)
| a ∈ F

}
. There is a chain of sub-

rings: F ⊆ A ⊆ R ⊆M2(F ). By Example 4.1.4, any ring is a left module over any
of its subrings. Prove:

(1) dimF (A) = 2, dimF (R) = 3, dimF (M2(F )) = 4.
(2) R is not a free A-module.
(3) M2(F ) is a free A-module.
(4) Show that A is a local ring.
(5) Show that R is not a projective A-module.

Exercise 4.3.21. Let R be a ring, M an R-module, and X = {x1, . . . , xn} a
linearly independent subset of M . Let η : M → M/(X) be the natural map. Let
Y = {y1, . . . , ym} be another subset of M . Show that if {η(y1), . . . , η(ym)} is a
linearly independent subset of M/(X), then X ∪Y is a linearly independent subset
of M .

Exercise 4.3.22. State and prove a version of Exercise 4.3.21 in which X and
Y are not necessarily finite subsets of V .

Exercise 4.3.23. Let R be a ring. Show:

(1) If F1 and F2 are free R-modules, then F1 ⊕ F2 is a free R-module.
(2) If for each i, Fi is a finitely generated R-module, then F1⊕F2 is a finitely

generated R-module.
(3) If R is commutative and for each i, Fi is a finitely generated free R-

module of rank ni, then F1 ⊕ F2 is a finitely generated free R-module of
rank n1 + n2.

4. Algebras

Definition 4.4.1. Let R be a commutative ring, A a ring and θ : R → A a
homomorphism of rings such that θ(R) is a subring of the center of A. Then we
say A is an R-algebra and θ is the structure homomorphism. If A and B are two
R-algebras, then an R-algebra homomorphism from A to B is a function ϕ : A→ B
satisfying:

(1) ϕ is a ring homomorphism from A to B, and
(2) if θA : R → A and θB : R → B are the structure homomorphisms for A

and B respectively, then the diagram

A
ϕ // B

R

θA

__

θB

??

commutes. That is, ϕθA = θB .
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An R-algebra isomorphism from A to B is a homomorphism ϕ : A → B that is
one-to-one and onto. An R-algebra automorphism of A is a homomorphism from
A to A that is one-to-one and onto. The set of all R-algebra automorphisms is a
group and is denoted AutR(A).

If k is a field and A is a k-algebra, then the structure homomorphism is neces-
sarily one-to-one, so it is convenient to identify k as a subring of the center of A.
In this case, A is a left k-vector space by virtue of the multiplication and addition
operations on A.

Example 4.4.2. Let R be a commutative ring, and M an R-module. By Ex-
ample 4.1.17, the left regular representation λ : R→ HomR(M,M) is a ring homo-
morphism that makes the endomorphism ring HomR(M,M) into an R-algebra.

Example 4.4.3. Important examples of algebras over a field are listed here.

(1) If F and k are fields and k is a subfield of F , then we say F/k is an
extension of fields. In this case F is a k-algebra.

(2) The ring of polynomials k[x] is a k-algebra where we identify k with the
constant polynomials. Because 1, x, x2, . . . are linearly independent over
k, dimk(k[x]) = ∞.

(3) Let q ∈ k[x] be a polynomial of degree n > 0. In Lemma 4.4.5 below
we prove that the quotient ring k[x]/(q) is a commutative k-algebra of
dimension n.

Example 4.4.4. Let R be a commutative ring and A = Mn(R) the ring of
n-by-n matrices over R. By Example 3.1.13, the center of A is the subring of scalar
matrices. Therefore, A is an R-algebra. Let eij be the elementary matrix with 1 in
position (i, j) and 0 elsewhere. In Lemma 4.5.2 the reader is asked to prove that
the set {eij | 1 ≤ i ≤ n, 1 ≤ j ≤ n} is a free R-basis. That is, A is a free R-module
of rank n2.

Let k be a field, x an indeterminate, and q a polynomial in k[x]. The principal
ideal generated by q is (q) = {fq | f ∈ k[x]}, which is equal to the set of all
polynomials that are divisible by q. By 3.2.14, k[x]/(q) is a commutative ring.

Lemma 4.4.5. In the above context, the following are true.

(1) k[x]/(q) is a commutative k-algebra.
(2) k[x]/(q) is a k-vector space.

(3) dimk (k[x]/(q)) =

{
∞ if q = 0

deg q if q ̸= 0.

(4) If (q) ̸= k[x], then k[x]/(q) is a k-algebra.
(5) k[x]/(q) is a field if and only if q is irreducible.

Proof. Since k is a subring of k[x], k[x] is a k-algebra. If q = 0, then k[x]/(q) =
k[x] is not finite dimensional (Example 4.4.3 (3)). If q ̸= 0 and n = deg q, then by
Exercise 4.2.26, k[x]/(q) is a k-vector space and {[1], [x], . . . , [xn−1]} is a k-basis for
k[x]/(q). Since k[x] is a PID, k[x]/(q) is a field if and only if q is irreducible, by
Corollary 3.4.14 and Exercise 3.4.30. If deg q = 0, then k[x]/(q) is the trivial ring
and is not a k-algebra. Otherwise, k[x]/(q) is a k-algebra. □

Definition 4.4.6. Let A be a k-algebra. If X ⊆ A, then by k[X] we denote
the k-subalgebra of A generated by k and X. Thus k[X] is the smallest subring of
A that contains both k and X.
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Definition 4.4.7. Let k be a field, A a k-algebra, and α an element of A. If
there is a nonzero polynomial f ∈ k[x] and f(α) = 0, then we say α is algebraic
over k. Otherwise we say α is transcendental over k. We say A is algebraic over k
if every α ∈ A is algebraic over k.

Theorem 4.4.8 will play a fundamental role in the study of algebraic elements
in a k-algebra.

Theorem 4.4.8. Let k be a field, A a k-algebra, and α ∈ A− {0}. There is a
k-algebra homomorphism τ : k[x] → A satisfying the following.

(1) τ(x) = α.
(2) The kernel of τ is I(α) = {p ∈ k[x] | p(α) = 0}. There is a polynomial f ∈ k[x]

such that I(α) is equal to the principal ideal (f) generated by f .
(3) The image of τ is k[α], the subalgebra of A generated by k and α.
(4) α is transcendental over k if and only if I(α) = (0).
(5) α is algebraic over k if and only if I(α) ̸= (0). In this case, deg f > 0,

dimk k[α] = deg f , f can be taken to be monic, and if p ∈ I(α), then f | p.
(6) k[α] ∼= k[x]/(f).
(7) k[α] is a commutative principal ideal ring.

The polynomial f is called the minimal polynomial of α and is denoted min.polyk(α).
If α is algebraic and f is taken to be monic, then f is uniquely determined by α.

Proof. Given α ∈ A, the evaluation homomorphism τ : k[x] → A, is a k-
algebra homomorphism determined by x 7→ α (Theorem 3.6.2). Since k[x] is a
principal ideal domain (Corollary 3.6.5), there exists a polynomial f ∈ k[x] which
generates the kernel of τ . The image of τ is denoted k[α]. By Exercise 3.6.36, k[α] is
a commutative principal ideal ring and is the smallest subring of A containing k and
α. By Proposition 3.2.15, k[α] ∼= k[x]/(f). By Definition 4.4.7, α is transcendental
if and only if I(α) = (0). In this case, τ is one-to-one and k[α] ∼= k[x]. If I(α) ̸= (0),
then deg f ≥ 1 and f is unique up to associates in k[x]. Hence if f is taken to be
monic, then f is unique. Let f = xn + an−1x

n−1 + · · ·+ a1x+ a0 be the minimal
polynomial of α, where n ≥ 1. Exercise 4.2.26 says k[α] is a k-vector space of
dimension n spanned by 1, α, . . . , αn−1. □

Example 4.4.9. If x is an indeterminate, and k(x) is the field of rational
functions over k, then k[x] → k(x) is one-to-one (Lemma 3.5.1). Hence x is tran-
scendental over k.

Example 4.4.10. Let k be a field and A a k-algebra. Let α ∈ A − {0} be an
algebraic element and let f = min.polyk(α).

(1) Assume α is nilpotent. Then there exists n > 0 such that αn = 0 and
αn−1 ̸= 0. Let p = xn. Since p(α) = 0, by Theorem 4.4.8 (5), f divides p.
Since n is the minimal power that annihilates α, it is clear that f = xn.

(2) Assume α is a nontrivial idempotent. Let p = x2 − x. Then p(α) = 0
and by Theorem 4.4.8 (5), f is a divisor of p. Since α ̸= 1 and α ̸= 0, this
implies f = x2 − x.

Corollary 4.4.11. If k is a field and A is a finite dimensional k-algebra, then
A is algebraic over k. If α ∈ A and dimk(A) = n, then the degree of min.polyk(α)
is less than or equal to n.
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Proof. Let α ∈ A, and dimk(A) = n. It follows from Theorem 4.3.4 that the
set {un, un−1, . . . , u, 1} is linearly dependent. A dependence relation 0 = anu

n +
an−1u

n−1 + · · ·+ a1u+ a0 over k shows that u is algebraic over k. □

Example 4.4.12. We use the notation of Section 1.4. The field of complex
numbers, C, is a vector space of dimension two over the field of real numbers, R.
Let ζ = a+bi be a nonreal complex number. Since ζ is nonreal, by Corollary 4.4.11,
min.polyR(ζ) has degree two. The complex conjugate of ζ is ζ̄ = a − bi. Then
ζ + ζ̄ = 2a and ζζ̄ = a2 + b2 are real numbers. Let x be an indeterminate. The
polynomial f(x) = (x− ζ)(x− ζ̄) = x2 − 2ax− (a2 + b2) has coefficients in R. The
roots of f(x) are ζ and ζ̄. This implies that f(x) is equal to the minimal polynomial
of ζ over R.

Corollary 4.4.13. Let k be a field and A a k-algebra. If α ∈ A is algebraic
over k, then k[α] is algebraic over k.

Proof. By Theorem 4.4.8 (5), k[α] is finite dimensional over k. □

Corollary 4.4.14. Let k be a field, A a k-algebra, and u an element of A that
is algebraic over k. Then u is an invertible element of A if and only if min.polyk(u)
has a nonzero constant term.

Proof. Let f(x) = min.polyk(u) = xn + an−1x
n−1 + · · ·+ a1x+ a0. If u ∈ k,

then f(x) = x − u and in this case the result holds. Assume n ≥ 2. We have
f(u) = un + an−1u

n−1 + · · ·+ a1u+ a0 = 0. Solving for a0 and factoring, we get

(4.1) −a0 = u(un−1 + an−1u
n−2 + · · ·+ a1).

Assume a0 = 0 and for sake of contradiction assume u is invertible. Then multi-
plying (4.1) by u−1 on both sides we get un−1 + an−1u

n−2 + · · · + a1 = 0, which
contradicts the definition of the minimal polynomial of u in Theorem 4.4.8. Con-
versely, assume a0 ̸= 0. Multiplying both sides of (4.1) by −a−1

0 , we get

1 = u(−a−1
0 )(un−1 + an−1u

n−2 + · · ·+ a1)

which shows u is invertible in A. □

Theorem 4.4.15. Let k be a field and A a k-algebra which is algebraic over k.

(1) If u ∈ A and u is not a zero divisor, then u is invertible.
(2) If A is a domain (that is, A has no zero divisors), then A is a division ring.

Proof. The proof is by contraposition. Assume A contains a nonzero el-
ement u which is not invertible. We show that u is a zero divisor in A. Let
f = min.polyk(u) ∈ k[x]. By Corollary 4.4.14, u is invertible if and only if
f(0) ∈ k − (0). Assume f(x) = xn + an−1x

n−1 + · · · + a1x has zero constant
term. By Eq. (4.1),

0 = u(un−1 + an−1u
n−2 + · · ·+ a1).

Since the minimum polynomial for u has degree n, we know un−1 + an−1u
n−2 +

· · ·+ a1 ̸= 0. This shows u is a zero divisor in A. □

As an application of the previous results, we compute in Proposition 4.4.16
below the minimal polynomial for a 2-by-2 matrix α over a field k. If A =M2(k) is
the ring of all 2-by-2 matrices over k, then by Example 4.4.4, A is a k-algebra and
dimk(A) = 4.
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Proposition 4.4.16. Let k be a field, A = M2(k), the ring of all 2-by-2 ma-

trices over k, and α =

[
a b
c d

]
an element of A. Let λ be an indeterminate. Define

the polynomial f(λ) = λ2 − Tλ +D, where T = a + d is the trace of α (see Exer-
cise 6.3.26) and D = ad− bc is the determinant of α (see Example 2.1.21). Then
the following are true.

(1) (Cayley-Hamilton) f(α) = 0.
(2) If α ̸∈ k, then f(λ) = min.polyk(α).
(3) The following are equivalent.

(a) α is invertible.
(b) D ̸= 0.
(c) α is not a zero divisor.

(4) If α ̸∈ k, then α is nilpotent if and only if T = D = 0.
(5) If α ̸∈ k, then α is idempotent if and only if T = 1 and D = 0.

Proof. By direct computation, f(λ) = λ2− (a+d)λ+(ad− bc) = (a−λ)(d−
λ)− bc in k[λ]. Therefore,

f(α) = (a− α)(d− α)− bc

=

[
0 −b
−c a− d

] [
d− a −b
−c 0

]
−
[
bc 0
0 bc

]
=

[
bc 0
0 bc

]
−
[
bc 0
0 bc

]
= 0

which is (1). By Theorem 4.4.8, min.polyk(α) is a factor of the quadratic polyno-
mial f(λ). But α ∈ k if and only if min.polyk(α) has degree one. This proves (2).
For (3), apply Corollary 4.4.14. If α ̸∈ k, then by (1) we see that α is nilpotent if
and only if f(λ) = λ2 and α is idempotent if and only if f(λ) = λ2−λ. This proves
(4) and (5). □

4.1. Exercises.

Exercise 4.4.17. Let R be a commutative ring and A an R-algebra. Suppose
α ∈ A is a root of the polynomial p ∈ R[x]. Prove:

(1) If B is another R-algebra and ϕ : A→ B is an R-algebra homomorphism,
then ϕ(α) is a root of p.

(2) If u is a unit in A, then u−1αu is a root of p.

Exercise 4.4.18. (Universal Mapping Property) Let R be a commutative ring,
G a finite group, and R(G) the group ring (see Example 3.1.6). Let A be an R-
algebra and h : G → A∗ a homomorphism from G to the group of units of A.
Show that there is a unique homomorphism of R-algebras ϕ : R(G) → A such that
diagram

G

⊆
��

h

!!
R(G)

ϕ // A

commutes. Show that the same result holds if G is a group that is not necessarily
finite.
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Exercise 4.4.19. Let R be a commutative ring andM a finitely generated free
R-module of rank n. Using Exercises 4.2.24 and 4.4.18, show that there exists an
R-algebra homomorphism ϕ : R(Sn) → HomR(M,M) from the group ring to the
ring of endomorphisms. Show that in general ϕ is not one-to-one.

Exercise 4.4.20. Let k be a field, A a k-algebra, and α ∈ A. Assume α is
algebraic over k.

(1) Let θ : A→ B be a k-algebra homomorphism.
(a) Show that θ(α) is algebraic over k and the minimal polynomial of θ(α)

divides the minimal polynomial of α.
(b) If θ is one-to-one, show that the minimal polynomial of θ(α) is equal to

the minimal polynomial of α.
(2) If u is an invertible element in A, show that u−1αu is algebraic over k and the

minimal polynomial of α is equal to the minimal polynomial of u−1αu.

Exercise 4.4.21. Let F be a field, M2(F ) the ring of 2-by-2 matrices over F ,

and L =

{(
a 0
b c

)
| a, b, c ∈ F

}
the subring of all lower triangular matrices (see

Example 3.2.12). Follow the following outline to completely classify all ideals in L.

(1) Show that L has exactly three proper two-sided ideals, namely:

(a)

{(
0 0
b 0

)
| b ∈ F

}
= L

(
0 0
1 0

)
.

(b)

{(
a 0
b 0

)
| a, b ∈ F

}
= L

(
1 0
0 0

)
.

(c)

{(
0 0
b c

)
| b, c ∈ F

}
= L

(
0 0
1 0

)
+ L

(
0 0
0 1

)
=

(
0 0
0 1

)
L.

(2) Let α ∈ F and Iα =

{(
0 0
kα k

)
| k ∈ F

}
= L

(
0 0
α 1

)
.

(a) Show that Iα is a left ideal in L but not a right ideal.
(b) Show that every left ideal of L that is not a right ideal is equal to Iα

for some α ∈ F .

(3) Let α ∈ F and Jα =

{(
k 0
kα 0

)
| k ∈ F

}
=

(
1 0
α 0

)
L.

(a) Show that Jα is a right ideal in L but not a left ideal.
(b) Show that every right ideal of L that is not a left ideal is equal to Jα

for some α ∈ F .

Exercise 4.4.22. Let k be a field and A a finite dimensional k-algebra. If
α ∈ A and A is noncommutative, prove:

(1) k[α] ̸= A.
(2) If f = min.polyk(α), then 1 ≤ deg f < dimk(A).

Exercise 4.4.23. Let k = Z/2 be the field of order two. Let A be the ring
M2(k). Show:

(1) k[x]/(x2) is isomorphic to k[x]/(x2 + 1) as k-algebras.
(2) A has exactly seven subrings of order four, namely:

(a) There is one subfield of order four, and it is isomorphic to k[x]/(x2+
x+ 1). Call it F .

(b) There are three subrings, each of which is isomorphic to k[x]/(x2+1).
Call them N1, N2, N3.
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(c) There are three subrings, each of which is isomorphic to k[x]/(x2+x).
Call them E1, E2, E3.

(3) A has exactly three subrings of order eight. Call them U,L,M .
(4) Let u ∈ GL2(Z/2). As in Example 3.2.2 (2), let σu : A → A be the inner

automorphism of A defined by u.
(a) σu : F → F . That is, σu restricts to a k-automorphism of F . The

action by σu is nontrivial if and only if u has order two.
(b) σu acts as a permutation of {N1, N2, N3}. GLn(Z/2) acts as a group

of permutations on {N1, N2, N3}.
(c) σu acts as a permutation of {E1, E2, E3}. GLn(Z/2) acts as a group

of permutations on {E1, E2, E3}.
(d) σu acts as a permutation of {U,L,M}. GLn(Z/2) acts as a group of

permutations on {U,L,M}.
Exercise 4.4.24. Let p be a prime number. Consider the quotient ring R =(

Z/p2
)
[x]/(px, x2 − p). In the following, cosets in the ring R are written without

brackets or any extra adornment. Prove:

(1) R has order p3 and characteristic p2.
(2) Denote by (x) the principal ideal generated by x. Then (x) has order p2

and (x) is equal to RadR(0), the nil radical of R.
(3) R is a local ring, the maximal ideal is (x).
(4) The ideals (x2) and (p) are equal and they both have order p.
(5) Find the invariants (Theorem 2.8.7) of the abelian groups (R,+) and

(Rx,+).
(6) If p = 2, find the invariants of the group of units R∗.

Exercise 4.4.25. Let k be a field and k[x, y] the polynomial ring over k in
two variables. Consider the quotient ring R = k[x, y]/(x2, xy, y2). In the following,
cosets in the ring R are written without brackets or any extra adornment. Prove:

(1) The only prime ideal in R is m = Rx+Ry.
(2) m is equal to RadR(0), the nil radical of R.
(3) R is a local ring with maximal ideal m.
(4) dimk(R) = 3.

(5) R is isomorphic to the subring


α 0 0
β α 0
γ 0 α

 | α, β, γ ∈ k

 of M3(k).

Exercise 4.4.26. Let k be a field and k[x, y] the polynomial ring over k in two
variables. Consider the quotient ring R = k[x, y]/(x2 − y, xy, y2). In the following,
cosets in the ring R are written without brackets or any extra adornment. Prove:

(1) The only prime ideal in R is m = Rx+Ry.
(2) m is equal to RadR(0), the nil radical of R.
(3) R is a local ring with maximal ideal m.
(4) dimk(R) = 3.

(5) R is isomorphic to the subring


α 0 0
β α 0
γ β α

 | α, β, γ ∈ k

 of M3(k).

Exercise 4.4.27. Let k be a field and A a finite dimensional k-algebra. Let
m1, . . . ,mn be maximal ideals in A such that mi ̸= mj , if i ̸= j. Prove that
dimk(A) ≥ n.
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5. Matrix Theory

If R is a ring and M and N are finitely generated free modules over R, then
we show that any R-module homomorphism ϕ : M → N can be represented as a
matrix. The matrix representation of ϕ depends on a choice of bases for M and
N . When R is commutative, matrix multiplication corresponds to composition
of functions. This is proved in Proposition 4.5.5. If P is a free R-module and
ψ : N → P an R-module homomorphism, then upon fixing bases for M , N , and P ,
the matrix of the composite ψϕ is the product of the matrices for ψ and ϕ. If M
is free of rank n, then we show in Proposition 4.5.7 that there is an isomorphism
of R-algebras HomR(M,M) ∼= Mn(R). The analogs for the above results when R
is a noncommutative ring are also proven.

5.1. The Matrix of a Linear Transformation.

Definition 4.5.1. Let R be any ring and m,n positive integers. By Mnm(R)
we denote the set of all n-by-m matrices over R. If m = n, then we simply write
Mn(R) instead of Mnn(R). Addition of matrices is coordinate-wise (αij) + (βij) =
(αij + βij). We can multiply by elements of R from the left r(αij) = (rαij). If
(αij) ∈ Mnm(R) and (βjk) ∈ Mmp(R), then the matrix product is defined by
(αij)(βjk) = (γik) ∈ Mnp(R), where γik =

∑m
j=1 αijβjk. In Corollary 4.5.6 below

we prove that Mn(R) is a ring that contains R as a subring. If R is a commutative
ring, Mn(R) is an R-algebra. If eij is the matrix with 1 in position (i, j) and 0
elsewhere, then eij is called an elementary matrix (see Section 1.5).

Lemma 4.5.2. For a ring R, the set Mnm(R) of n-by-m matrices over R is a
free R-module. The set {eij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} of elementary matrices is a
free basis with nm elements.

Proof. See Definition 4.2.11 for the definition of free module. As an R-
module, Mnm(R) can be identified with R(nm) and the set {eij | 1 ≤ i ≤ n, 1 ≤
j ≤ m} of elementary matrices can be identified with the standard basis. The rest
of the proof is left to the reader. □

Definition 4.5.3. Let R be any ring, M a free R-module of rank m and N
a free R-module of rank n. Let X = {x1, . . . , xm} be a basis for M and Y =
{y1, . . . , yn} a basis for N . Given ϕ ∈ HomR(M,N), ϕ maps xj ∈ X to a linear
combination of Y . That is,

ϕ(xj) =

n∑
i=1

ϕijyi

where the elements ϕij are in R. The matrix of ϕ with respect to the bases X and
Y is defined to be M(ϕ,X, Y ) = (ϕij), which is a matrix in Mnm(R).

Proposition 4.5.4. Let R be any ring. If M is a free R-module of rank
m, and N is a free R-module of rank n, then there is a Z-module isomorphism
HomR(M,N) ∼= Mnm(R). If R is a commutative ring, then this is an R-module
isomorphism and HomR(M,N) is a free R-module of rank mn.

Proof. Let X = {x1, . . . , xm} be a basis for M and Y = {y1, . . . , yn} a basis
for N . The assignment ϕ 7→M(ϕ,X, Y ) defines a Z-module homomorphism

M(·, X, Y ) : HomR(M,N) →Mnm(R).
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Conversely, if (αij) ∈Mnm(R), define α in HomR(M,N) by

α(xj) =

n∑
i=1

αijyi.

The rest is left to the reader. □

Proposition 4.5.5. Let R be any ring. Let M , N , and P denote free R-
modules, each of finite rank. Let X, Y and Z be bases forM , N , and P respectively.
Let ϕ ∈ HomR(M,N) and ψ ∈ HomR(N,P ). If the matrices M(ψ, Y, Z) and
M(ϕ,X, Y ) are treated as having entries from the ring Ro, the opposite ring of R,
then

M(ψϕ,X,Z) =M(ψ, Y, Z)M(ϕ,X, Y ).

Proof. The opposite ring Ro is defined as in Definition 3.1.8. Let X =
{x1, . . . , xm}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zp}. Let M(ϕ,X, Y ) = (ϕij),
M(ψ, Y, Z) = (ψij). It follows from

ψϕ(xj) = ψ

(
n∑
i=1

ϕijyi

)
=

n∑
i=1

ϕij

p∑
k=1

ψkizk =

p∑
k=1

(
n∑
i=1

ϕijψki

)
zk

that M(ψϕ,X,Z) = (γkj), where γkj =
∑n
i=1 ϕijψki. Computing the product of

the two matrices over Ro, we get M(ψ, Y, Z)M(ϕ,X, Y ) = (τkj), where

τkj =

n∑
i=1

ψki ∗ ϕij =
n∑
i=1

ϕijψki.

□

Corollary 4.5.6. Let R be any ring. With the binary operations defined in
Definition 4.5.1, Mn(R) is a ring with identity element In = e11 + · · ·+ enn. The
set R · In of all scalar matrices in Mn(R) is a subring which is isomorphic to R.
The center of the ring Mn(R) is equal to the center of the subring R · In. If R is
commutative, the matrix ring Mn(R) is an R-algebra and the center of Mn(R) is
equal to R · In.

Proof. Use Proposition 4.5.5 to show that matrix multiplication is associative.
If R is commutative, as shown in Example 3.1.13, the center of Mn(R) is equal to
the set of scalar matrices. The same proof can be used to prove that the center of
Mn(R) is equal to the center of the subring R ·In. The rest is left to the reader. □

Proposition 4.5.7. Let R be any ring. If M is a free R-module of rank n, then
there is an isomorphism of rings HomR(M,M) ∼= Mn(R

o). If R is commutative,
this is an isomorphism of R-algebras.

Proof. Pick a basis for M . The map of Proposition 4.5.4 defines an isomor-
phism of abelian groups. It is multiplicative by Proposition 4.5.5. □

Definition 4.5.8. Let R be a commutative ring and n ≥ 1. If A,B are matrices
in Mn(R) and P is an invertible matrix in Mn(R) such that A = P−1BP , then we
say A and B are similar. The reader should verify that this defines an equivalence
relation on Mn(R). By Exercise 4.4.20, if R is a field, then two similar matrices in
Mn(R) have the same minimal polynomial.
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Proposition 4.5.9. Let R be a commutative ring and M a free R-module
of rank n. Let X and Y be two bases for M . If ϕ ∈ HomR(M,M), then the
matrix M(ϕ,X,X) of ϕ with respect to X and the matrix M(ϕ, Y, Y ) of ϕ with
respect to Y are similar. In fact, if 1 ∈ HomR(M,M) is the identity map, then
M(1, X, Y )−1 =M(1, Y,X) and M(ϕ,X,X) =M(1, Y,X)M(ϕ, Y, Y )M(1, X, Y ).

Proof. Let I ∈ Mn(R) be the identity matrix. It follows from Proposi-
tion 4.5.5 that I = M(1, X,X) = M(1, Y, Y ), M(1, X, Y )M(1, Y,X) = I, and
M(1, Y,X)M(1, X, Y ) = I. Also

M(ϕ,X, Y ) =M(1, X, Y )M(ϕ,X,X)

=M(ϕ, Y, Y )M(1, X, Y ).

□

Example 4.5.10. Let R be a commutative ring and A ∈ Mmn(R). Elements
of Rn can be viewed as n-by-1 column matrices in Mn1. As in Proposition 4.5.4,
multiplication by A from the left defines an element in HomR(R

n, Rm). In partic-
ular, if k is a field and A ∈ Mn(k), then left multiplication by A defines a linear
transformation from kn to kn. We define the rank of A and the nullity of A as in
Exercise 4.3.11. Define the column space of A to be the subspace of kn spanned by
the columns of A. The rank of A is seen to be the dimension of the column space
of A.

5.2. The Transpose of a Matrix and the Dual of a Module. If A = (aij)
is a matrix in Mnm(R), then the transpose of A is the matrix in Mmn(R) whose
entry in row i column j is equal to aji. The transpose of A is denoted AT .

Definition 4.5.11. Let R be a commutative ring. Let M be a left R-module.
The dual of M is defined to be M∗ = HomR(M,R). We turn M∗ into a right
R-module by the action (fr)(x) = (f(x))r, for r ∈ R, f ∈M∗, x ∈M . The reader
should verify that this is a well defined right R-module action on M∗. If N is
another left R-module, and ψ ∈ HomR(M,N), define ψ∗ : N∗ → M∗ by the rule
ψ∗(f) = f ◦ ψ, for any f ∈ N∗.

Lemma 4.5.12. Let R be a commutative ring. Let M and N be left R-modules.
If ψ : M → N is a homomorphism of left R-modules, then ψ∗ : N∗ → M∗

is a homomorphism of right R-modules. If L is another R-module, and ϕ ∈
HomR(L,M), then (ψϕ)∗ = ϕ∗ψ∗.

Proof. Let f, g ∈ N∗ and a ∈ R. The reader should verify that ψ∗(f + g) =
ψ∗(f) + ψ∗(g). If x ∈M , then

(ψ∗(fa))(x) = (fa)(ψ(x)) = (f(ψ(x)))a = (ψ∗(f)(x))a = (ψ∗(f)a)(x).

Lastly, ϕ∗ψ∗(f) = (ψϕ)∗(f). □

Definition 4.5.13. Let R be a commutative ring. Let M be a left R-module
which is free of finite rank. If B = {v1, . . . , vn} is a basis for M , then define
v∗1 , . . . , v

∗
n in M∗ by the rules

v∗i (vj) =

{
1 if i = j,

0 otherwise.
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Proposition 4.5.14. Let R be a commutative ring. If M is a free left R-
module with basis B = {v1, . . . , vn}, then M∗ is a free right R-module with basis
B∗ = {v∗1 , . . . , v∗n}.

Proof. By Proposition 4.5.4, M∗ is isomorphic toM1n(R) as Z-modules. Un-
der this isomorphism, v∗i is mapped to the row matrix e1i which has 1 in position
i and zeros elsewhere. This is therefore a homomorphism of right R-modules. □

Theorem 4.5.15. Let R be a commutative ring. Let M and N be free R-
modules, each of finite rank. Let X be a basis for M , and Y a basis for N . Let X∗

and Y ∗ be the corresponding bases for M∗ and N∗. Given ϕ ∈ HomR(M,N),

M(ϕ∗, Y ∗, X∗) =M(ϕ,X, Y )T .

That is, the matrix of ϕ∗ with respect to Y ∗ and X∗ is the transpose of the matrix
of ϕ with respect to X and Y .

Proof. Let X = {u1, . . . , um} and Y = {v1, . . . , vn}. Let M(ϕ,X, Y ) =
(ϕij). Consider ϕ∗(v∗l )(uj) = v∗l (ϕ(uj)) = v∗l (

∑n
i=1 ϕijvi) = ϕlj . Now consider

(
∑m
i=1 ϕliu

∗
i )(uj) = ϕlj . Therefore, ϕ∗(v∗l ) =

∑m
i=1 ϕliu

∗
i as elements of M∗ =

HomR(M,R) because they agree on a basis of M . This also shows that column l
of the matrix M(ϕ∗, Y ∗, X∗) is the transpose of (ϕl1, ϕl2, . . . , ϕlm), which is row l
of M(ϕ,X, Y ) □

Definition 4.5.16. If k is a field, the space V ∗∗ = Homk(V
∗, k) is called the

double dual of V . Given v ∈ V , let φv : V ∗ → k be the “evaluation at v” map.
That is, if f ∈ V ∗, then φv(f) = f(v). The reader should verify that φv is an
element of V ∗∗, and that the assignment v 7→ φv is a homomorphism of k-vector
spaces V → V ∗∗.

Theorem 4.5.17. Let V be a finitely generated vector space over a field k. The
map V → V ∗∗ which sends a vector v ∈ V to φv is a vector space isomorphism.

Proof. Let v be a nonzero vector in V . By Theorem 4.3.4, we can extend
{v} to a basis for V , say B = {v, v2, . . . , vn}. Define f ∈ V ∗ to be the projection
mapping onto the v-coordinate. Then f(v) = 1, and f(vi) = 0 for 2 ≤ i ≤ n. Then
φv(f) = f(v) = 1. This proves V → V ∗∗ is one-to-one. If V is finite dimensional,
then V → V ∗∗ is onto since dimk(V ) = dimk(V

∗∗). □

Theorem 4.5.17 extends to finitely generated projective modules over any ring
(see [9, Exercise 6.5.22]).

Theorem 4.5.18. Let D be a field and V and W finitely generated D-vector
spaces. Let ϕ ∈ HomD(V,W ). Let ϕ∗ :W ∗ → V ∗ be the associated homomorphism
of right D-vector spaces.

(1) If ϕ is one-to-one, then ϕ∗ is onto.
(2) If ϕ is onto, then ϕ∗ is one-to-one.
(3) The rank of ϕ is equal to the rank of ϕ∗.

Proof. (1): Assume ϕ is one-to-one. Let f : V → D be in V ∗. By Exer-
cise 4.3.14 there is f̄ :W → D in W ∗ such that f = f̄ϕ = ϕ∗(f̄).

(2): Assume ϕ is onto. A typical element of W is of the form w = ϕ(v), for
some v ∈ V . Assume g ∈W ∗ and gϕ = 0. Then g(w) = g(ϕ(v)) = 0.
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(3): Let n = dimD(V ). By Proposition 4.5.4, dimD(V
∗) = n. Let U = kerϕ.

Let ψ : U → V be the inclusion map. By (1), ψ∗ is onto. Then Rank(ψ∗) =
dim(U∗) = dim(U) = Nullity(ϕ) = n− Rankϕ. By Lemma 4.5.12, imϕ∗ ⊆ kerψ∗.
We prove the reverse inclusion. Suppose f ∈ V ∗ and ψ∗(f) = fψ = 0. Then
f factors through V/ kerϕ = imϕ. There is f̄ : imϕ → D such that f = f̄ϕ.
By Exercise 4.3.14, f̄ extends to W , so f is in the image of ϕ∗. This proves
Rankϕ∗ = Nullityψ∗ = n− Rankψ∗ = Rankϕ. □

Let k be a field and A ∈ Mnm(k). The column rank of A is defined to be the
dimension of the subspace of kn spanned by the column vectors of A. The row
rank of A is defined to be the dimension of the subspace of km spanned by the row
vectors of A.

Corollary 4.5.19. Let k be a field and A ∈ Mnm(k). The row rank of A is
equal to the column rank of A.

Proof. As in Proposition 4.5.4, define α in Homk(k
m, kn) to be “left multi-

plication by A”. Let α∗ be the associated map on dual spaces. By Theorem 4.5.15
the matrix of α∗ is AT . The column rank of A is equal to Rankα which is equal
to Rankα∗, by Theorem 4.5.18. But Rankα∗ is equal to the column rank of AT ,
which is the row rank of A. □

5.3. Exercises.

Exercise 4.5.20. Let k be a field and V a finite dimensional vector space over
k. Show that Homk(V, V ) is a commutative ring if and only if dimk(V ) ≤ 1.

Exercise 4.5.21. Suppose ϕ ∈ HomD(V, V ), where V is a finite dimensional
vector space over the field D. Prove:

(1) There is a chain of subspaces ker(ϕ) ⊆ ker(ϕ2) ⊆ ker(ϕ3) ⊆ · · · .
(2) There is a chain of subspaces ϕ(V ) ⊇ ϕ2(V ) ⊇ ϕ3(V ) ⊇ · · · .
(3) The kernel of ϕ : ϕ(V ) → ϕ2(V ) is equal to ker(ϕ)∩ϕ(V ). More generally,

ifm ≥ 1, the kernel of ϕm : ϕm(V ) → ϕ2m(V ) is equal to ker(ϕm)∩ϕm(V ).
(4) If m ≥ 1 and ϕm(V ) = ϕm+1(V ), then ϕm(V ) = ϕm+i(V ) for all i ≥ 1.
(5) If n = dimD(V ), then there exists m such that 1 ≤ m ≤ n and ϕm(V ) =

ϕm+1(V ).
(6) If n = dimD(V ), then there exists m such that 1 ≤ m ≤ n and ker(ϕm) ∩

ϕm(V ) = (0).

Exercise 4.5.22. Let R be a commutative ring. Let A ∈Mnm(R) and B,C ∈
Mml(R). Prove:

(1) (AT )T = A.
(2) (B + C)T = BT + CT .
(3) (AB)T = BTAT .

Exercise 4.5.23. If R is a commutative ring, show that the mappingMn(R) →
Mn(R)

o defined by A 7→ AT is an isomorphism of R-algebras.

Exercise 4.5.24. If R is any ring, show that the mapping Mn(R) →Mn(R
o)o

defined by A 7→ AT is an isomorphism of rings. Using the Morita Theorems, a very
general version of this is proved in [9, Corollary 6.9.3].
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Exercise 4.5.25. Let R be any ring, M and N finitely generated R-modules,
and ϕ ∈ HomR(M,N). Show that there exist positive integers m and n, epimor-
phisms f : R(m) → M , g : R(n) → N , and θ ∈ HomR(R

(m), R(n)) such that the
diagram

R(m) θ //

f

��

R(n)

g

��
M

ϕ // N

commutes. Therefore, given generators for M and N , ϕ can be represented as a
matrix.

Exercise 4.5.26. Let R be a commutative ring and n > 1. If A = (aij) is a
matrix in Mn(R), then the transpose of A with respect to the anti-diagonal is the
matrix Aτ = (bij), where bij = an+1−j,n+1−i. This notation and terminology are
from [13]. Let σ be the permutation in Sn which reverses the ordered list 1, 2, . . . , n.
In the notation of Example 2.1.15, σ can be represented an array of two rows:

σ =

[
1 2 3 . . . n
n n− 1 n− 2 . . . 1

]
.

As in Section 1.5, let Pσ be the permutation matrix in Mn(R) associated to σ.

(1) Show that Aτ = PσA
TPσ.

(2) Show that the mapping Mn(R) → Mn(R)
o defined by A 7→ Aτ is an

isomorphism of R-algebras.

Exercise 4.5.27. Let R be a commutative ring and n ≥ 2. As in Exam-
ple 3.1.12, we denote by L = {(rij) | rij = 0 if i < j} the subring ofMn(R) consist-
ing of all lower triangular matrices. Show that the isomorphism of Exercise 4.5.26 (2)
maps L isomorphically onto Lo.

Exercise 4.5.28. Let k be a field, A a k-algebra, and M a left A-module.
Assume that A is a simple ring and the dimension of M as a k-vector space is
dimk(M) = n.

(1) Prove that dimk(A) ≤ n2.
(2) If I is a left ideal in Mn(k), prove that dimk(I) ≥ n.

Exercise 4.5.29. (The Dual Basis Lemma) Let R be a ring and M a finitely
generated R-module. Let {x1, . . . , xn} be a generating set for M over R. Suppose
{f1, . . . , fn} is a subset of M∗ = HomR(M,R) such that for every x ∈ M , x =∑n
i=1 fi(x)xi. Then {(xi, fi) | 1 ≤ i ≤ n} is called a dual basis for M . Prove that

a finitely generated R-module M is projective if and only if M has a dual basis.

6. Finitely Generated Modules over a Principal Ideal Domain

Throughout this section, R is a principal ideal domain, or PID for short. The
main result of this section is the proof that a finitely generated R-module M is the
internal direct sum of cyclic submodules. The cyclic submodules forming this direct
sum decomposition are not unique, nevertheless we show that it is always possible
to find cyclic submodules of M such that the resulting factorization of M is in
so-called canonical form. In fact we derive two such canonical form decompositions
of M , called the Invariant Factor Form and the Elementary Divisor Form. When



202 4. MODULES, VECTOR SPACES, ALGEBRAS, MATRICES

the direct sum decomposition of the R module M is in one of the canonical forms,
the number of direct summands and the order of each summand are unique.

In Theorem 2.8.6 we proved that a finite abelian group is equal to the internal
direct sum of cyclic subgroups. Every abelian group is a Z-module and cyclic
subgroups correspond to cyclic submodules. Therefore, we have already proved
that every finite Z-module is equal to the internal direct sum of cyclic submodules.

The canonical form decomposition of a finitely generated R-moduleM consists
of two parts, which are sometimes called the free part and the torsion part. The
module M is the internal direct sum of two submodules, M = F ⊕ Mt. The
submodule F is a free R-module, the submodule Mt consists of so-called torsion
elements and is not free. This decomposition is not unique. The torsion subgroup
Mt is uniquely defined, the free part F is not. The lead-up to the proofs of the Basis
Theorems is therefore split into two parts. First the important properties of finitely
generated free R-modules are proved. This allows us to show that M is equal to
an internal direct sum M = F ⊕ Mt. The second phase is focused on deriving
the canonical form for the torsion subgroup Mt. This step is the counterpart for
R-modules of the Basis Theorem for finite abelian groups. In Theorem 2.8.7, the
invariants of the finite abelian group G are a special case of the elementary divisors
that appear in Theorem 4.6.12 below.

6.1. Finitely Generated Free Modules. Recall that if F is a free module
over R with a finite basis, then by Exercise 4.3.15, any two bases for F have the
same number of elements, namely RankR(F ).

Theorem 4.6.1. Let R be a principal ideal domain and F a free R-module
with a finite basis. If M is a submodule of F , then M is a free R-module and
RankR(M) ≤ RankR(F ).

Proof. Assume M ̸= (0). Let {b1, . . . , bn} be a free basis for F over R.
Let Rb1 be the submodule of F spanned by b1. By Theorem 4.2.17, there is a
homomorphism Σ : R → F defined by the assignment 1 7→ b1. This induces an
isomorphism of R-modules R ∼= Rb1. By Exercise 4.6.17, the nonzero submodules
of R are free R-modules of rank 1. IfM1 =M ∩Rb1, thenM1 is an R-submodule of
the free R-module Rb1. Then M1 is equal to the image under θ of an ideal I = Ra
for some a ∈ R. In other words, M1 = Rab1. If a = 0, then M1 = 0. Otherwise,
there is an isomorphism R ∼= M1 given by the assignment 1 7→ ab1. For each j in
the range 1 ≤ j ≤ n define Mj =M ∩ (Rb1 + · · ·+Rbj). The proof is by induction
on n. If n = 1, we are done. Assume 1 ≤ j < n and that Mj is a free R-module on
j or fewer generators. We now prove that Mj+1 =M ∩ (Rb1 + · · ·+Rbj+1) is free
of rank j + 1 or less. Assume M ̸= Mj . By Lemma 4.2.14, Rb1 + · · ·+ Rbj+1 is a
free R-module. Let π : Rb1 + · · ·+Rbj+1 → Rbj+1 be the projection onto the last
summand. The image ofMj+1 under π is a submodule of the free R-module Rbj+1.
By the basis step, π (Mj+1) = Rabj+1 for some a ∈ R. If a = 0, then Mj =Mj+1,
and we stop. If a ̸= 0, then Rabj+1 is free of rank 1. Let b ∈ Mj+1 such that
π(b) = abj+1. By Theorem 4.2.17, there is a homomorphism σ : Rabj+1 → Mj+1

defined by abj+1 7→ b. So πσ = 1 and σπ : Mj+1 → Rabj+1 such that σπ(rb) = rb
for all r ∈ R. By Proposition 4.2.8, Mj+1 = Mj ⊕ Rb. By Exercise 4.3.23 and
Mathematical Induction, we are done. □

Proposition 4.6.2. Let R be a ring and M an R-module. The following are
equivalent.
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(1) Every submodule of M is finitely generated.
(2) M satisfies the ascending chain condition (ACC) on submodules. That is,

given a chain of submodules I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ · · · , there exists
N ≥ 1 such that IN = IN+1 = · · · .

(3) M satisfies the maximum condition on submodules. That is, any nonempty
family of submodules in M has a supremum.

Proof. (1) implies (2): The reader should verify that the union U =
⋃
i≥1 Ii

is a submodule of M . By (1) there is a finite generating set {x1, . . . , xm} for U .
There is some N ≥ 1 such that IN contains every xi. Then U ⊆ Rx1+ · · ·+Rxm ⊆
IN ⊆ IN+1 ⊆ · · · ⊆ U . This proves that the ACC is satisfied by M .

(2) and (3) are equivalent by Exercise 1.3.7.
(3) implies (1): Let A be a submodule of M and let S be the set of all finitely

generated submodules of A. Let B be a maximal member of S. If B = A, then
we are done. Otherwise, let x be an arbitrary element of A − B. So B + Rx is a
finitely generated submodule of A which properly contains B. This contradicts the
maximality of B. □

Corollary 4.6.3. Let R be a principal ideal domain andM a finitely generated
R-module. Then every submodule of M is finitely generated, M satisfies the ACC
on submodules, and M satisfies the maximum condition on submodules.

Proof. By Theorem 4.2.17, there is is a surjection ψ : R(n) → M . If N is a
submodule of M , then ψ−1(N) is a submodule of R(n), which by Theorem 4.6.1
is free of rank n or less. This shows N is the homomorphic image of a finitely
generated free R-module. By Theorem 4.2.17, N is finitely generated. The rest
follows from Proposition 4.6.2. □

Definition 4.6.4. Let R be an integral domain andM an R-module. If x ∈M ,
then we say x is a torsion element of M in case there exists a nonzero r ∈ R such
that rx = 0. If every element of M is torsion, then we say M is torsion. Since R
is an integral domain, by Exercise 4.6.16 the set of all torsion elements in M is a
submodule of M , which is denoted Mt. If Mt = 0, then we say M is torsion free.

Proposition 4.6.5. Let R be a PID and M a finitely generated R-module. The
following are equivalent.

(1) M is torsion free.
(2) M is free.
(3) M is projective.

Proof. (2) implies (1): Is left to the reader.
(2) is equivalent to (3): By Proposition 4.2.19 (1), if M is a free R-module,

then M is projective. Also, if M is projective, then M is isomorphic to a direct
summand of a finitely generated free R-module. By Theorem 4.6.1, this implies M
is free.

(1) implies (2): Assume M = Ry1 + · · ·+ Ryn. Let {v1, . . . , vm} be a linearly
independent subset of {y1, . . . , yn} such thatm is maximal. If N = Rv1+· · ·+Rvm,
then N is a free R-module. By the choice of {v1, . . . , vm}, for each j = 1, . . . , n,
there is a nontrivial dependence relation

cjyj =

m∑
i=1

aijvi
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such that cj , a1j , . . . , amj are in R and cj ̸= 0. Since R is a domain, if c = c1c2 · · · cn,
then c ̸= 0. For each j, c factors into c = cjdj . Consider the submodule cM =
{cx | x ∈M} of M . A typical element of cM = c(Ry1 + · · ·+Ryn) looks like

cx = c

n∑
j=1

rjyj

=

n∑
j=1

rjcyj

=

n∑
j=1

rjdjcjyj

=
n∑
j=1

(
rjdj

m∑
i=1

aijyj

)
which is in N . Since N is free of rank m, Theorem 4.6.1 says that cM is free of
rank no more than m. Because c is nonzero and M is torsion free, the assignment
x 7→ cx defines an isomorphism M → cM . □

Corollary 4.6.6. Let R be a PID and M a finitely generated R-module. Let
Mt denote the submodule consisting of all torsion elements of M . Then there
is a finitely generated free submodule F such that M is the internal direct sum
M = F ⊕Mt. The rank of F is uniquely determined by M .

Proof. By Exercise 4.6.16,M/Mt is torsion free, and Proposition 4.6.5 implies
M/Mt is a finitely generated free R-module. Consider the exact sequence

0 →Mt →M
η−→M/Mt → 0

of R-modules. By Proposition 4.2.19, there is an R-module homomorphism ψ :
M/Mt → M such that ηψ = 1. Let F = imψ. By Proposition 4.2.8, M is the
internal direct sum M = F ⊕Mt. The rank of F is equal to the rank of M/Mt,
which is uniquely determined by M . □

6.2. Finitely Generated Torsion Modules. The results of this section are
similar to those we proved for finite abelian groups in Section 2.8.2. For example,
a finite abelian group is the direct sum of its Sylow subgroups. For torsion R-
modules, Theorem 4.6.10 is the corresponding theorem. In a finite abelian group
an element of maximal order generates a cyclic direct summand. In Lemma 4.6.11
we show that a torsion element of maximal order in a finitely generated torsion
R-module M generates a cyclic submodule that is a direct summand.

Definition 4.6.7. Let R be a principal ideal domain, M an R-module and
x ∈ M . The cyclic submodule generated by x is Rx. Define θx : R → M by
θ(r) = rx. Then θx is an R-module homomorphism. Denote by Ix the kernel of θx.
That is,

Ix = {r ∈ R | rx = 0}
which is an ideal in R, hence is principal. So Ix = Ra and up to associates in R, a
is uniquely determined by x. We call a the order of x. The image of θx is Rx and
by Theorem 4.1.12, Rx ∼= R/(Ix) ∼= R/Ra.
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Definition 4.6.8. Let R be a unique factorization domain and M a finitely
generated R-module. By Example 4.1.17, the left regular representation λ : R →
HomR(M,M) is a homomorphism of rings that maps r ∈ R to ℓr :M →M , where
ℓr(x) = rx is “left multiplication by r”. Let π be a prime element in R and n a
positive integer. The kernel of ℓπn is contained in the kernel of ℓπn+1 . Therefore
the union

M(π) =
⋃
n>0

ker (ℓπn)

= {x ∈M | there exists n > 0 such that πnx = 0}
is a submodule of M .

Lemma 4.6.9. Assume R is a PID, π is a prime in R, and M is an R-module.

(1) If (π, q) = 1, then ℓq :M(π) →M(π) is one-to-one.
(2) If M ∼= R/(πeR) is a cyclic R-module of order πe, where e ≥ 1, then

(a) πM is cyclic of order πe−1, and
(b) M/πM is a vector space of dimension one over the field R/πR.

Proof. (1): Suppose x ∈ ker(ℓq) and πnx = 0. Then (πn, q) = 1, so there
exist a, b ∈ R such that 1 = qa+ πnb. Therefore, x = aqx+ bπnx = 0.

(2): Is left to the reader. □

A finite abelian group decomposes into an internal direct sum of its Sylow
subgroups (Theorem 2.8.7 (1)). Theorem 4.6.10 is the counterpart of this theorem
for a finitely generated torsion R-module.

Theorem 4.6.10. If R is a PID and M a finitely generated torsion R-module,
then there exists a finite set π1, . . . , πn of primes in R such that M =M(π1)⊕· · ·⊕
M(πn).

Proof. Let x ∈ M and let a be the order of x. Since M is torsion, a ̸= 0.
Since R is a UFD, we factor a into primes, a = πe11 · · ·πemm where each ei > 0. For
each πi, let qi = a/πeii . Then Rq1 + · · · + Rqm = 1. There exist s1, . . . sm ∈ R
such that 1 = s1q1 + · · ·+ smqm. This means x = s1q1x+ · · ·+ smqmx. Note that
πeii qix = ax = 0 so qix ∈ M(πi). This proves x ∈ M(π1) + · · · +M(πm). Since
M is finitely generated, if necessary we add more πi so that π1, . . . , πn is a finite
set of distinct primes and for every x in a finite generating set, x is in the sum
M(π1) + · · ·+M(πn).

To show that the sum is direct, we apply Proposition 4.2.4 (4). Assume n > 1,

fix 1 ≤ k ≤ n and consider x ∈ M(πk)
⋂(∑

i̸=kM(πi)
)
. Because x is in the sum∑

i ̸=kM(πi), for t sufficiently large, if s =
∏
i̸=k π

t
i , then sx = 0. But (s, πk) = 1

and Lemma 4.6.9 says ℓs :M(πk) →M(πk) is one-to-one. This implies x = 0. □

In Theorem 2.8.6 we proved that a finite abelian group G is an internal direct
sum of cyclic subgroups. The key step of the proof showed that an element of
maximal order generates a subgroup which is a direct summand of G. Lemma 4.6.11
is the generalization of this result to R-modules.

Lemma 4.6.11. Let R be a PID and M a finitely generated torsion R-module
such that the annihilator of M in R is Rπn, where π is a prime and n > 0. Then
there exists an element a ∈ M of order πn such that the cyclic submodule Ra is a
direct summand of M .
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Proof. There exists a ∈ M such that πna = 0 and πn−1a ̸= 0. If Ra = M ,
then we are done. Otherwise continue.

Step 1: We show that there exists b ∈ M such that πb = 0, b ̸= 0 and
Ra ∩ Rb = 0. Start with any element c in M − Ra. Pick the least positive integer
j such that πjc ∈ Ra. Then 1 ≤ j ≤ n. Let πjc = r1a. Since R is factorial,
write r1 = rπk and assume (r, π) = 1. Now 0 = πnc = πn−jπjc = rπn−jπka. By
Lemma 4.6.9, πn−j+ka = 0. Since the order of a is πn, this implies 0 ≤ −j + k, so
we have 1 ≤ j ≤ k. Set b = πj−1c − rπk−1a. Since πj−1c ̸∈ Ra but rπk−1a ∈ Ra
we know b ̸= 0. Also, πb = πjc− rπka = 0. Now check that Ra ∩Rb = 0. Assume
otherwise. Then for some s ∈ R we have sb ∈ Ra and sb ̸= 0. Since the order of b
is π, this implies (s, πn) = 1. For some x, y ∈ R we can write xs+ yπn = 1. In this
case b = xsb+ yπnb = xsb ∈ Ra which is a contradiction.

Step 2: We show that Ra is a direct summand of M . Let S be the set of
all submodules S of M such that S ∩ Ra = 0. By Step 1, S is nonempty. By
Corollary 4.6.3, S has a maximal member, call it C. To complete the proof, it
suffices to show C +Ra =M , which is equivalent to showing M/C is generated by
a+C. For contradiction’s sake, assume M ̸= C +Ra. Since C ∩Ra = 0, the order
of a+C in M/C is πn. By Step 1, there exists b+C ∈M/C such that b+C ̸= C,
πb + C = C, and (Ra + C) ∩ (Rb + C) = C. It suffices to show that Rb + C is in
S. Suppose x ∈ (Rb+C) ∩Ra. We can write x in two ways, x = rb+ c ∈ Rb+C,
and x = sa ∈ Ra. Hence rb ≡ sa (mod C). The choice of b implies π | r. Then
x = (r/π)πb + c is an element of C. So x ∈ C ∩ Ra = 0, which says x = 0. This
says Rb+ C is in S, which contradicts the choice of C. □

6.3. The Basis Theorems. We state and prove two forms of the Basis The-
orem for a finitely generated module over a principal ideal domain. The elementary
divisors that appear in Theorem 4.6.12 below are a generalization of the group in-
variants of Theorem 2.8.7. Theorem 4.6.12 will play a central role in Section 6.2.2
when we define the Jordan canonical form of a linear transformation.

Theorem 4.6.12. (Basis Theorem – Elementary Divisor Form) Let R be a
PID and M a finitely generated R-module. In the notation established above, the
following are true.

(1) M = F ⊕Mt, where F is a free submodule of finite rank. The rank of F
is uniquely determined by M .

(2) Mt =
⊕

πM(π) where π runs through a finite set of primes in R.
(3) For each prime π such that M(π) ̸= 0, there exists a basis {a1, . . . , am}

such that M(π) = Ra1 ⊕ Ra2 ⊕ · · · ⊕ Ram where the order of ai is equal
to πei and e1 ≥ e2 ≥ · · · ≥ em.

(4) Mt is uniquely determined by the primes π that occur in (2) and the
integers ei that occur in (3).

The prime powers πei that occur are called the elementary divisors of M .

Proof. (1): This is Corollary 4.6.6.
(2): This is Theorem 4.6.10.
(3): SinceM(π) is a submodule ofM , it follows from Corollary 4.6.3 thatM(π)

is finitely generated. Let x1, . . . , xn be a generating set. Let k be the maximum
integer in the set {ki | xi has order πki}. Then πkM(π) = 0. There exists e1 > 0
such that πe1M(π) = 0 and πe1−1M(π) ̸= 0. By Lemma 4.6.11, there exists
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a1 ∈M(π) such that a1 has order πe1 and M = Ra1 ⊕ C1. If C1 ̸= 0, then we can
apply Lemma 4.6.11 and find a2 ∈ C1 such that a2 has order π

e2 , where e1 ≥ e2 ≥ 1
and C1 = Ra2 ⊕ C2. Notice that R/πR is a field, and

M(π)/πM(π) = (Ra1)/(πRa1)⊕ (Ra2)/(πRa2)⊕ C2/πC2.

is a finite dimensional vector space. Since (Rai)/(πRai) is a vector space of di-
mension one, the number of times we can apply Lemma 4.6.11 is bounded by the
dimension of the vector space M/πM . After a finite number of iterations we arrive
at (3).

(4): Fix a prime π in R such that M(π) is nonzero. In the proof of Step (3) we
saw that the integer m is uniquely determined since it is equal to the dimension of
the vector spaceM/πM over the field R/πR. Suppose there are two decompositions
of M(π) into direct sums of cyclic submodules

M(π) = Ra1 ⊕Ra2 ⊕ · · · ⊕Ram = Rb1 ⊕Rb2 ⊕ · · · ⊕Rbm,

where the order of ai is equal to π
ei where e1 ≥ e2 ≥ · · · ≥ em, and the order of bi

is equal to πfi , where f1 ≥ f2 ≥ · · · ≥ fm. We must show that ei = fi for each i.
Consider the submodule

πM(π) = πRa1 ⊕ πRa2 ⊕ · · · ⊕ πRam = πRb1 ⊕ πRb2 ⊕ · · · ⊕ πRbm.

By Lemma 4.6.9, the order of the cyclic module πRai is π
ei−1. If e1 = 1, then

πM(π) = 0 which implies f1 = 1. The proof follows by induction on e1. □

Theorem 4.6.13 will play an important role in Section 6.2.1 when we define the
rational canonical form of a linear transformation.

Theorem 4.6.13. (Basis Theorem – Invariant Factor Form) Let R be a PID
and M a finitely generated R-module. The following are true.

(1) M = F ⊕Mt, where F is a free submodule of finite rank. The rank of F
is uniquely determined by M .

(2) There exist r1, . . . , rℓ ∈ R such that r1 | r2 | r3 | · · · | rℓ and
Mt

∼= R/(r1R)⊕ · · · ⊕R/(rℓR).

The integer ℓ is uniquely determined by M . Up to associates in R, the
elements ri are uniquely determined by M .

The elements r1, . . . , rℓ are called the invariant factors of M .

Proof. By Theorem 4.6.12, there is a finite set of primes {πi | 1 ≤ i ≤ k} and
a finite set of nonnegative integers {eij | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} such that

Mt
∼=

k⊕
i=1

ℓ⊕
j=1

R/(π
eij
i R).

For each i we assume ei1 ≥ ei2 ≥ · · · ≥ eiℓ ≥ 0. Also assume for at least one of the
primes πi that eiℓ ≥ 1. For each j such that 1 ≤ j ≤ ℓ, set r′j =

∏k
i=1 π

eij
i . Then

r′ℓ | · · · | r′2 | r′1. Reverse the order by setting r1 = r′ℓ, r2 = r′ℓ−1, . . . , rℓ = r′1. By
Exercise 4.6.19 (3),

R/(r′j)
∼=

k⊕
i=1

R/(π
eij
i R)

from which it follows thatMt
∼= R/(r1R)⊕· · ·⊕R/(rℓR). This proves the existence

claim of Part (2).
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For the uniqueness claim, suppose we are given the elements r1, . . . , rℓ in R.
By unique factorization in R, rℓ = πe1ℓ1 · · ·πekℓ

k . Likewise, factor each of the other
ri. By stepping through the existence proof backwards, we get

Mt
∼=

k⊕
i=1

ℓ⊕
j=1

R/(π
eij
i R).

The uniqueness of the primes and the exponents follows from Theorem 4.6.12. This
gives the uniqueness of the ri. □

Example 4.6.14. Suppose M is a finitely generated abelian group of rank n.
Consider the cases that can arise when n ≤ 3.

(1) If n = 1, then M is cyclic. There are two cases: M ∼= Z, or M ∼= Z/r1,
for some r1 > 1.

(2) If n = 2, then there are three cases:
(a) M ∼= Z⊕ Z, or
(b) M ∼= Z/r1 ⊕ Z, where 1 < r1, or
(c) M ∼= Z/r1 ⊕ Z/r2, where 1 < r1 ≤ r2, and r1 | r2.

(3) If n = 3, then there are four cases:
(a) M ∼= Z⊕ Z⊕ Z, or
(b) M ∼= Z/r1 ⊕ Z⊕ Z, where 1 < r1, or
(c) M ∼= Z/r1 ⊕ Z/r2 ⊕ Z, where 1 < r1 ≤ r2, and r1 | r2, or
(d) M ∼= Z/r1 ⊕ Z/r2 ⊕ Z/r3, where 1 < r1 ≤ r2 ≤ r3, and r1 | r2 | r3.

Corollary 4.6.15. In the context of Theorem 4.6.13, there exist elements
x1, . . . , xn in M such that M is the internal direct sum of the cyclic submodules
M = Rx1 ⊕ · · · ⊕ Rxn, where n ≥ ℓ, Ixi

= Rri, r1 | r2 | · · · | rn, and ri = 0 if and
only if i > ℓ.

Proof. The proof is left to the reader. □

The “Basis” ofM mentioned in Theorem 4.6.13 is the set {x1, . . . , xn} of Corol-
lary 4.6.15. The invariant factors ri are zero for the basis elements xℓ+1, . . . , xn
corresponding to the basis of the free part F .

6.4. Exercises.

Exercise 4.6.16. Let R be an integral domain and M an R-module. Let Mt

be the set of all torsion elements in M (see Definition 4.6.4). Show that Mt is a
submodule of M . Show that M/Mt is a torsion free R-module.

Exercise 4.6.17. Let R be a PID. Show that every nonzero ideal of R is a
free R-module of rank 1.

Exercise 4.6.18. Let R be a PID. Let π be an irreducible element of R, e > 0
and A = R/(πe). Prove:

(1) Every ideal in A is principal.
(2) A is a field if and only if e = 1.
(3) A is a local ring, the unique maximal ideal is generated by π.
(4) A has exactly e+ 1 ideals, namely: (0) ⊆ (πe−1) ⊆ · · · ⊆ (π2) ⊆ (π) ⊆ A.

Exercise 4.6.19. Let R be a PID. Let π1, . . . , πn be irreducible elements
of R that are pairwise nonassociates. Let e1, . . . , en be positive integers. If x =
πe11 π

e2
2 · · ·πenn , and A = R/(x), prove:
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(1) The ideals in A correspond to the divisors of x. Including the two trivial
ideals (0) and A, there are exactly (e1 +1)(e2 +1) · · · (en+1) ideals in A.

(2) A has exactly n maximal ideals, namely (π1), . . . , (πn).
(3) A is isomorphic to the direct sum of the local rings

⊕
iR/(π

ei
i ).

Exercise 4.6.20. (The abelian group Q/Z) This exercise is a continuation of
Exercises 2.2.31 and 2.3.23. For any integer r ≥ 1, let ℓr : Q/Z → Q/Z be the left
multiplication by r map. Prove the following.

(1) Show that ℓr is onto for all r ≥ 1. We say Q/Z is a divisible abelian group.
(2) Q/Z is a torsion Z-module.
(3) The kernel of ℓr is a cyclic group of order r.
(4) If H is a finite subgroup of Q/Z, then H is cyclic.
(5) If H is a finite subgroup of Q/Z, then (Q/Z)/H is isomorphic to Q/Z.

Exercise 4.6.21. (The p-torsion subgroup of Q/Z) Let p be a prime number.
As in Section 4.6, let

Q/Z(p) =
⋃
n>0

ker(ℓpn)

be the subgroup of Q/Z consisting of all elements annihilated by some power of p.
Some authors denote the group Q/Z(p) by Z(p∞). Prove the following.

(1) Every proper subgroup of Q/Z(p) is a finite cyclic group.
(2) Q/Z(p) is a divisible group (see Exercise 4.6.20 (1)).
(3) Q/Z is equal to the internal direct sum

⊕
p∈P Q/Z(p), where P is the set

of all prime numbers.
(4) If H is a proper subgroup of Q/Z(p), then the quotient Q/Z(p)/H is

isomorphic to Q/Z(p).

Exercise 4.6.22. Let R be a local ring (see Exercises 3.2.43 and 3.5.7). Let n
denote the characteristic of R. Prove that n = 0 or there is a prime p and t > 0
such that n = pt.

Exercise 4.6.23. Let M be a finitely generated module over a principal ideal
domain R. State and prove a version of Corollary 4.6.15 for Theorem 4.6.12, the
elementary divisor form of the Basis Theorem.





CHAPTER 5

Fields

A field is a commutative ring in which 0 ̸= 1 and every nonzero element is
invertible. In this chapter, the study of an arbitrary field F is always in relation
to its subfields. That is, F will be viewed as an extension of a subfield k. In
this context, F is a k-algebra. Therefore, elements of F are either algebraic or
transcendental over k. A central theme of this book is that Algebra is the study of
polynomial equations. To study a polynomial equation over a field k, we consider
those extension fields F that contain solutions to the given polynomial equation.
The algebraic properties of the field F provide information about the polynomials
over k.

If p(x) is a polynomial with coefficients over a field k, then we show in Kro-
necker’s Theorem (see Theorem 5.2.4 and its corollary) that there is an extension
field of k which contains all of the roots of p(x). A minimal extension field of k
containing all of the roots of p(x) is called a splitting field of p(x) and is unique up
to isomorphism. A polynomial p(x) over k is called separable if every irreducible
factor of p(x) has only simple roots in a splitting field. An extension field of k that
is the splitting field of a separable polynomial is called a Galois extension of k. If
F is a Galois extension of k, the group G = Autk(F ) of k-algebra automorphisms
is called the Galois group. For a Galois extension, the group G acts as a group
of automorphisms of the field F , and the subset fixed by G is the field k. Groups
arise as permutation groups of the roots of the polynomial p(x). Since a polynomial
has only a finite number of roots, in this chapter we restrict our attention to finite
groups. There is a connection between the groups acting on the roots of p(x) and
the intermediate fields between k and F . This relationship is encapsulated in the
Fundamental Theorem of Galois Theory.

In Section 5.5 we consider Galois extensions in some particular cases. A cyclo-
tomic extension of order n over the field k is the splitting field F of the polynomial
xn − 1. Thus, F is the smallest extension field of k containing all of the nth roots
of unity. Section 5.5.5 contains an introduction to the study of finite fields.

A Galois extension F of a field k is called a cyclic extension if the Galois group
G is a cyclic group. Section 5.6 includes a theorem of E. Artin and O. Schreier on
cyclic extensions of degree p of a field with characteristic p. There is a theorem on
Kummer Theory that classifies cyclic extensions of a cyclotomic extension. Radical
extensions of a field k arise as intermediate fields of the splitting field of a polynomial
of the form xn − a, where a ∈ k.

Section 5.7 contains an introduction to the theory of symmetric rational func-
tions. In this context we prove a theorem of Abel that a general polynomial of
degree n ≥ 5 is not solvable by radicals. That is, there is no formula involving
only square roots, cube roots, fourth roots, . . . , nth roots for factoring a general
polynomial of degree n.
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If k is a field, there is a unique homomorphism η : Z → k and the kernel of η is
either (0), or (p) for some prime p (Example 3.2.2 (5) and Exercise 3.2.30 (2)). If η
is one-to-one, then the characteristic of k is zero and k contains the quotient field
of im η, which is isomorphic to the field of rational numbers Q (Exercise 3.5.2).
Otherwise, the characteristic of k is positive and the image of η is a finite field
isomorphic to Z/p, where p = char k. The image of η is contained in every subring
of k. The prime subfield of k is the smallest subfield P of k. Since P contains
the image of η, if char k = 0, then P is isomorphic to Q. Otherwise, char k = p is
positive and P is isomorphic to Z/p.

1. Field Extensions

This section serves as the preparation site for the rest of the chapter. The results
in Section 5.1.1 are basic and of a foundational nature. Section 5.1.1 contains an
illustration of how Algebra can be applied to Geometry. Using field extensions,
three questions of antiquity involving straightedge and compass constructions are
answered in Theorem 5.1.17.

1.1. Algebraic Extensions and Transcendental Extensions. Let k and
F be fields. If k is a subring of F , then we say F is an extension of k, k is a subfield
of F , or that F/k is an extension of fields. An intermediate field of F/k is a field
E such that k ⊆ E ⊆ F , k is a subfield of E, and E is subfield of F .

Definition 5.1.1. Let F/k be an extension of fields. Then F is a k-algebra,
and in particular F is a vector space over k. If X ⊆ F , then as in Definition 4.4.6
we denote by k[X] the k-subalgebra of F generated by k and X. By k(X) we
denote the subfield of F generated by k and X. If F = k(u1, . . . , un), then we say
F is a finitely generated field extension of k. If F = k(u), then we say F is a simple
extension of k and u is a primitive element. The degree of the extension F/k is the
dimension of F as a k-vector space.

Example 5.1.2. Let F be a finite field of order q. Let k be the prime subfield
of F . If F has characteristic p, then k is isomorphic to Z/p. If dimk F = n, then
q = pn. By Corollary 3.6.12, the group of units of F is a cyclic group of order q−1.
Let ζ ∈ F ∗ be an element of order q − 1. Then F = k(ζ) is a simple extension and
ζ is a primitive element.

Lemma 5.1.3. Let F/k be an extension of fields and X ⊆ F . Then

k[X] = {g(u1, . . . , un) | n ≥ 1, ui ∈ X, g ∈ k[x1, . . . , xn]}, and

k(X) =

{
g(u1, . . . , un)

h(v1, . . . , vn)
| n ≥ 1, ui, vj ∈ X, g, h ∈ k[x1, . . . , xn], h(v1, . . . , vn) ̸= 0

}
.

As k-algebras, the quotient field of k[X] is isomorphic to k(X).

Proof. Is left to the reader. □

Let F/k be an extension of fields and u ∈ F . By Definition 4.4.7, u is algebraic
over k if there is a nonzero polynomial f ∈ k[x] and f(u) = 0. Otherwise, u is
transcendental over k. If each element of F is algebraic over k, then F/k is an
algebraic extension.

Theorem 5.1.4. Let F/k be an extension of fields. Let u ∈ F be an element
that is algebraic over k. Let x be an indeterminate. Then the following are true.
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(1) k[u] = k(u).
(2) k[u] ∼= k[x]/(f) where f is a polynomial in k[x] satisfying:

(a) f is monic and irreducible,
(b) f(u) = 0, and
(c) if g ∈ k[x] and g(u) = 0, then f | g. The polynomial f is uniquely

determined by u. We call f the irreducible polynomial of u and write
f = Irr.polyk(u). Sometimes we call f the minimal polynomial of u and
write f = min.polyk(u).

(3) If f = Irr.polyk(u), and deg f = n, then {1, u, . . . , un−1} is a basis for k[u] as
a k-vector space.

(4) dimk k[u] = n.

Proof. Since u is algebraic, we know from Theorem 4.4.8 that deg f > 0.
If f = gh, then 0 = f(u) = g(u)h(u). Since F is a field, this implies g(u) = 0
or h(u) = 0. Theorem 4.4.8 implies that f | g or f | h. So deg g = deg f or
deg h = deg f . This proves f is irreducible. The rest follows from Theorem 4.4.8
and Lemma 4.4.5. □

Theorem 5.1.5. Let F/k be an extension of fields and u ∈ F an element that is
transcendental over k. Let x be an indeterminate. Then k(x) ∼= k(u) by a k-algebra
isomorphism that maps x to u.

Proof. Define τ : k[x] → F to be the “evaluation at u” map. By The-
orem 4.4.8, τ maps k[x] isomorphically onto k[u]. By Exercise 3.5.2, τ factors
through k(x). Hence there is a k-algebra isomorphism k(x) ∼= k(u). □

Theorem 5.1.6. Let F/k be an extension of fields and u ∈ F . Assume L/K is
another extension of fields and v ∈ L. Let σ : k → K be an isomorphism of fields
and assume either

(1) u is transcendental over k and v is transcendental over K, or
(2) there exists an irreducible polynomial f ∈ k[x] such that f(u) = 0 and (σf)(v) =

0.

Then there is an isomorphism τ : k(u) → K(v) such that τ(u) = v and τ |k = σ.

Proof. (1): Follows straight from Theorem 5.1.5.
(2): Because σ is an isomorphism of fields, by Theorem 3.6.2 (1), we have an

isomorphism of polynomial rings σ : k[x] → K[x], where σ
(∑

aix
i
)
=
∑
σ(ai)x

i.
Therefore, σ(f) is irreducible in K[x]. Then ker ησ = (f) and the diagram

k[x]
σ //

��

K[x]

η

��
k[x]
(f)

τ // K[x]
(σf)

commutes. By Corollary 3.2.16, τ is an isomorphism. The rest follows from Theo-
rem 5.1.4. □

The next two corollaries play a fundamental role in Galois Theory.

Corollary 5.1.7. Let F/k be an extension of fields and assume u, v ∈ F .
Assume either

(1) u and v are transcendental over k, or
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(2) u and v are algebraic and satisfy the same irreducible polynomial.

Then there is a k-algebra isomorphism τ : k(u) → k(v) such that τ(u) = v.

Corollary 5.1.8. Let F/k be an extension of fields. Assume u, v ∈ F are
algebraic over k and that there is a k-algebra isomorphism τ : k(u) → k(v) such
that τ(u) = v. Then u and v satisfy the same irreducible polynomial.

Proof. Let ϕ : k[x] → k[u] where ϕ(x) = u. Let ψ : k[x] → k[v] where
ψ(x) = v. The diagram of k-algebra homomorphisms

k[x]
ϕ //

=

��

k[u]

τ

��
k[x]

ψ // k[v]

commutes. Let ker(ϕ) = (f), where f is the monic irreducible polynomial for u.
The diagram commutes, so f ∈ ker(ψ). It follows that f(v) = 0. By Theorem 5.1.4,
it follows that ker(ψ) is generated by f . □

Example 5.1.9. In Q[x], let p(x) = x3+2x+1. By the Rational Root Theorem,
p(1) = 4 and p(−1) = −2 imply p(x) has no root in Q. Therefore, p is irreducible.
Since p′(x) = 3x2 + 2 is positive, we see that p(x) has exactly one real root, call it
α. In C there are two nonreal roots of p(x), call them β1, β2. By Example 4.4.12,
β1 and β2 are complex conjugates of each other. By Corollary 5.1.7, the fields
Q(α),Q(β1),Q(β2) are pairwise isomorphic to each other. Since Q(α) ⊆ R and
βi ̸∈ R, we know that as subsets of C, Q(α) is not equal toQ(βi). By Corollary 3.6.9,
the polynomial p(x) factors over the field Q(α) into p(x) = (x−α)q(x), where q(x)
is an irreducible quadratic with roots β1, β2. This implies Q(α)(β1) has degree 2
over Q(α). Any field that contains two of the three roots contains the third, since
p(x) has degree three. Therefore, Q(α)(β1) = Q(α)(β2) = Q(β1)(β2).

Q(α, β1) = Q(α, β2) = Q(β1)(β2)

Q(α)

dim=2

55

Q(β1)

dim=2

OO

Q(β2)

dim=2

ii

Q
dim=3

ii

dim=3

OO

dim=3

44

This shows that although the fields Q(α), Q(β1), Q(β2) are pairwise isomorphic, no
two of them are equal as sets. Using Galois Theory, we will see in Example 5.3.23
below that there is a fourth intermediate field which is a quadratic extension of Q.

Proposition 5.1.10. Let F/k be an extension of fields.

(1) (Finite Dimensional is Finitely Generated and Algebraic) If F is finite dimen-
sional over k, then F is finitely generated and algebraic over k.

(2) (Finitely Generated and Algebraic is Finite Dimensional) Given a finite subset
X = {u1, . . . , un} ⊆ F such that each ui is algebraic over k, it follows that the
field extension k(X)/k is finite dimensional.

(3) If F = k(X) and every element of X is algebraic over k, then F is algebraic
over k.
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(4) (Algebraic over Algebraic is Algebraic) Let E be an intermediate field of F/k.
If F/E is algebraic and E/k is algebraic, then F/k is algebraic.

(5) (Algebraic Closure of k in F Exists) If E = {u ∈ F | u is algebraic over k},
then E is an intermediate field of F/k.

Proof. (1): Since F is finite dimensional over k, F is finitely generated (Def-
inition 4.3.5). By Corollary 4.4.11, F is algebraic over k.

(2): By Theorem 4.4.8 (5), dimk k(u1) < ∞. Now use induction and Proposi-
tion 4.3.8.

(3): Let u ∈ k(X). By Lemma 5.1.3 there exist u1, . . . , um, v1, . . . , vn in X and
polynomials f, g over k such that

u =
f(u1, . . . , um)

g(v1, . . . , vn)
.

This shows u ∈ k(u1, . . . , um, v1, . . . , vn). By Parts (2) and (1) this shows u is
algebraic over k.

(4): Let u ∈ F . There is a polynomial f =
∑n
i=0 aix

i in E[x] such that
f(u) = 0. Let K = k(a0, . . . , an). Then u is algebraic over K and dimK K(u) <∞.
Since each ai is algebraic over k, by Part (2), dimkK < ∞. By Proposition 4.3.8,
dimkK(u) <∞. By Part (1), u is algebraic over k.

(5): Let u, v be algebraic over k. By Part (3), k(u, v) is an algebraic extension
of k. So k(u, v) ⊆ E. Therefore, u+ v, u− v, uv, u/v are all in E. It follows that
E is a field. □

Definition 5.1.11. Let K/k be an extension of fields. Let E and F be inter-
mediate fields. That is, k ⊆ E ⊆ K and k ⊆ F ⊆ K. The composite of E and F ,
denoted EF , is k(E ∪ F ). The reader should verify that the set of all intermediate
fields of K/k is a lattice.

Theorem 5.1.12. Let K/k be an extension of fields. Let E and F be interme-
diate fields.

EF

E F

E ∩ F

k

Assume dimk F = n is finite and that {v1, . . . , vn} is a basis for F as a k-vector
space. The following are true.

(1) As a vector space over E, EF is spanned by {v1, . . . , vn}.
(2) dimE (EF ) ≤ dimk F .
(3) If dimk E = m is finite and {u1, . . . , um} is a basis for E as a k-vector space,

then dimk EF ≤ dimk E dimk F and as a vector space over k, EF is spanned
by {uivj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

(4) If dimk E and dimk F are both finite and relatively prime to each other, then
dimk EF = dimk F dimk E.
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(5) If dimk EF = dimk F dimk E, then k = E ∩ F .

Proof. (1): We have F = k(v1, . . . , vn). It follows that EF = k(E ∪ F ) =
k(E)(F ) = E(F ) = E(k(v1, . . . , vn)) = E(v1, . . . , vn). By Exercise 5.1.22, a typical
element u in EF is a linear combination u = e1M1 + · · ·+ erMr where each ei is in
E and eachMi is a monomial of the formMi = v

ϵi,1
1 · · · vϵi,nn , where ϵi,j ≥ 0 for each

i, j. In the field F , each monomial Mi can be written as a k-linear combination in
the form Mi = ai,1v1 + · · ·+ ai,nvn, where ai,j ∈ k for each i, j. Therefore,

u = e1M1 + · · ·+ erMr

=

r∑
i=1

ei

 n∑
j=1

ai,jvj


=

r∑
i=1

 n∑
j=1

eiai,jvj


=

n∑
j=1

(
r∑
i=1

eiai,j

)
vj

This proves (1) since each eiai,j is in E.
(2): This follows from (1) and Corollary 4.3.6.
(3): This follows from (2) and Proposition 4.3.8.
(4): We have dimk (E) = m and dimk (F ) = n both divide dimk (EF ). Since

m and n are relatively prime, it follows that mn is the least common multiple of m
and n. Thus mn ≤ dimk (EF ). This and (3) proves (4).

(5): We have dimk (EF ) = dimk (F ) dimk (E) = dimE (EF ) dimk (E), which
implies dimE (EF ) = dimk (F ). By this and (2), dimE (EF ) = dimk (F ) ≤
dimE∩F (F ). It follows from Proposition 4.3.8 that k = E ∩ F . □

1.2. Classical Straightedge and Compass Constructions. In this sec-
tion we apply field extensions to answer three questions of antiquity on geometric
constructions using straightedge and compass. The results of this section are not
applied anywhere else in the book.

A real number a in R is constructible if by use of straightedge and compass we
can construct a line segment of length |a|. We are given that 1 is constructible.
Ruler and compass constructions involve:

(1) Drawing lines through two points.
(2) Intersecting two lines.
(3) Drawing a circle with a given center and radius.
(4) Intersecting a line and a circle.
(5) Intersecting two circles.

Lemma 5.1.13. The set of all constructible numbers is a subfield of R containing
Q.

Proof. Using the straightedge we can construct the x-axis. Given the unit
length 1 and compass we can construct any n ∈ Z. In fact, for any constructible
numbers a and b, the compass can be used to construct a±b. Using the straightedge
and compass we can construct the y-axis, by erecting a perpendicular to the x-axis
at the number 0. The line L through the points (0, 0) and (1, b) in R2 is the set
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of solutions to y = bx. The point (a, ab) is the intersection of L with the vertical
line through (a, 0). If b ̸= 0, the point (a/b, b) is the intersection of L with the
horizontal line through (0, b). Therefore, ab and a/b are constructible. □

Let F be any subfield of R. Let F 2 = {(x, y) | x, y ∈ F} be the plane over F ,
which we view as a subset of the euclidean plan R2. A linear equation over F in
two variables is an equation of the form ax+by+c = 0, where a and b are in F and
are not both equal to 0. A line in F 2 is the set of solutions (x, y) ∈ F 2 to a linear
equation over F . A circle in F 2 is the set of solutions (x, y) ∈ F 2 to a quadratic
equation of the form x2 + y2 + ax+ by + c = 0, where a, b, c ∈ F .

Lemma 5.1.14. The following are true.

(1) Given A0 = (x0, y0) and A1 = (x1, y1) in F 2, if A0 ̸= A1, there is a line L in
F 2 passing through A0 and A1.

(2) Given a point A0 = (x0, y0) in F
2 and a positive r ∈ F , there is a circle in F 2

with center A0 and radius r.
(3) If L1 and L2 are non-parallel lines in F 2, then L1 ∩ L2 is a point in F 2.
(4) If L is a line and C a circle, both in F 2, and L ∩ C is nonempty in R2, then

L ∩ C is nonempty in the plane over F (
√
γ), for some γ ∈ F , γ ≥ 0.

(5) If C0 and C1 are circles in F 2, and C0 ∩ C1 is nonempty in R2, then C0 ∩ C1

is nonempty in the plane over F (
√
γ), for some γ ∈ F , γ ≥ 0.

Proof. (1), (2) and (3): Proofs are left to the reader.
(4): Suppose the equation for C is x2 + y2 + ax+ by+ c = 0, and the equation

for L is dx+ey+f = 0, where a, b, c, d, e, f ∈ F . Without loss of generality, assume
e ̸= 0. Solve for y on the line L to get y = −(f + dx)/e. Substituting into C,

x2 + (f + dx)2/e2 + ax− b(f + dx)/e+ c = 0.

This is a quadratic equation over F of the form Ax2 + Bx + C = 0, where A =
(e2 + d2)/e2 > 0. In the field of complex numbers C the solutions are

x =
−B ±

√
B2 − 4AC

2A
.

Let γ = B2 − 4AC. Then γ ∈ F . If γ = 0, then L ∩ C consists of one point in F 2.
If γ < 0, then in R2, L ∩ C = ∅. If γ > 0, then there are two points in L ∩ C, and
both belong to the plane over F (

√
γ).

(5): Suppose the equation for C0 is x
2+y2+a0x+b0y+c0 = 0, and the equation

for C1 is x2 + y2 + a1x+ b1y + c1 = 0. If C0 = C1, then take γ to be 1. Otherwise
subtract to get (a0 − a1)x+ (b0 − b1)y+ (c0 − c1) = 0. If a0 = a1 and b0 = b1, then
C0 ∩C1 = ∅. Otherwise the linear equation (a0 − a1)x+ (b0 − b1)y + (c0 − c1) = 0
defines a line, which we call L. Then C0 ∩ L = C1 ∩ L = C0 ∩ C1, and we reduce
to part (4). □

Proposition 5.1.15. If u ∈ R is constructible, then for some r ≥ 0, dimQ(Q(u))
is equal to 2r.

Proof. To construct u, a finite sequence of straightedge and compass con-
structions are performed. By Lemma 5.1.14, u belongs to a field extension of Q
obtained by a finite number of quadratic extensions, each of which is inside R.
There exist positive real numbers γ1, . . . , γn such that u belongs to Q(γ1) · · · (γn),
a subfield of R. Moreover, γ21 ∈ Q and for 1 < i ≤ n, γ2i ∈ Q(γ1, . . . , γi−1). By
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Proposition 4.3.8, degrees of consecutive extensions multiply. The degree of each
consecutive extension is either 1 or 2. This means dimQ(Q(γ1, . . . , γn)) is 2s for
some s ≥ 0. Since dimQ(Q(u)) divides 2s, we are done. □

Corollary 5.1.16. Suppose u ∈ R is algebraic over Q and the degree of
Irr.polyQ(u) has degree d. If d is not of the form 2r, then u is not constructible.

Theorem 5.1.17. It is impossible by straightedge and compass alone to

(1) trisect the angle 60◦ (that is, cos 20◦ is not constructible),

(2) double the cube (that is, 3
√
2 is not constructible), or

(3) square the circle (that is,
√
π is not constructible).

Proof. (1): Take θ to be 60◦. Then cos θ = 1
2 . By trigonometry, cos θ =

4 cos3
(
θ
3

)
− 3 cos

(
θ
3

)
. Let u = 2 cos 20◦. Then u satisfies u3 − 3u − 1 = 0. The

irreducible polynomial for u over Q is x3 − 3x − 1, which has degree 3. Then u is
not constructible, cos 20◦ is not constructible, and it is impossible to trisect 60◦.

(2): The irreducible polynomial for 3
√
2 over Q is x3 − 2, which has degree 3.

(3): We have not proved it here, but π is transcendental. Hence
√
π is not

constructible. □

1.3. Exercises.

Exercise 5.1.18. Let p be an odd prime and k = Z/p the field of order p.
Show that there are (p−1)/2 elements α ∈ Up such that ϕα = x2−α is irreducible.
Show that in this case k[x]/(ϕα) is a field of order p2.

Exercise 5.1.19. Let k = Z/3 be the field of order 3. Show that f = x2 +1 is
irreducible over k. Let F = k[x]/(f). Let u ∈ F be the coset represented by x. By
Corollary 3.6.12, the group F ∗ is cyclic. A generator for F ∗ is called a primitive
element. Show that u+ 1, u− 1,−u+ 1,−u− 1 are the four primitive elements in
F ∗.

Exercise 5.1.20. Let p(x) = x3 − 3x − 1 ∈ Q[x]. Show that p is irreducible
and let F = Q[x]/(p) be the quotient. Let u denote the element of F corresponding
to the coset containing x.

(1) Exhibit a basis for F as a Q-vector space.
(2) Write the following in terms of the basis given in (1): u−1, u4 + 2u3 + 3,

u−2.

Exercise 5.1.21. Let k be a field, x an indeterminate, and K = k(x) the field
of rational functions. Let α denote the rational function x4/(4x3 − 1) in K. Then
F = k(α) is a field extension of k and K is a field extension of F . There is a lattice
of subfields

K = k(x)

F = k(α)

ff

k

OO

88

where an arrow denotes set containment. Show that K is algebraic over F . Deter-
mine the minimal polynomial of x over F and the dimension dimF (K).
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Exercise 5.1.22. Let K/k be an extension of fields and u1, . . . , un elements
of K, where n ≥ 1. As in Definition 5.1.1, k[u1, . . . , un] is the k-subalgebra of K
generated by k and u1, . . . , un. Show that a typical element in k[u1, . . . , un] can be
written as a sum of the form k1M1 + · · ·+ krMr where ai ∈ k for each i and each
Mi is a product of the form Mi = u

ϵi,1
1 · · ·uϵi,nn where ϵi,j ≥ 0 for each i, j.

Exercise 5.1.23. Let F/k be a finite dimensional extension of fields. If E is
an intermediate field of F/k, show that F/E is finite dimensional, E/k is finite
dimensional, and dimk(F ) = dimk(E) dimE(F ).

Exercise 5.1.24. Let K/k be an extension of fields and u an element in K
that is algebraic over k. Prove that if dimk k(u) is odd, then k(u

2) = k(u).

2. Algebraic Field Extensions

There are two main results in this section. Let k be a field and f a polynomial
over k. The main result of Section 5.2.1 is the proof that there is a unique extension
F/k generated by adjoining the roots of f to k (Corollary 5.2.8). The main result
of Section 5.2.2 is the Primitive Element Theorem (Theorem 5.2.14) which contains
sufficient conditions for an algebraic extension of fields to be a simple extension.

2.1. Existence and Uniqueness of a Splitting Field. Let k be a field and
p a polynomial in k[x] of positive degree. If F/k is an extension of fields, then we
say that p splits in F if each irreducible factor of p in F [x] is linear. Equivalently,
p factors in F [x] into a product of linear polynomials.

Lemma 5.2.1. Let F be a field. The following are equivalent.

(1) Every nonconstant polynomial p ∈ F [x] has a root in F .
(2) Every nonconstant polynomial p ∈ F [x] splits in F .
(3) Every irreducible polynomial p ∈ F [x] has degree 1.
(4) If K/F is an algebraic extension of fields, then F = K.
(5) F contains a subfield k such that F/k is algebraic and every polynomial in k[x]

splits in F .

Proof. (1), (2), and (3) are clearly equivalent.
(2) implies (5): Is trivial.
To show (3) and (4) are equivalent, use Theorem 5.1.4.
(5) implies (4): If K/F is algebraic, then by Proposition 5.1.10 (4), K/k is

algebraic. If u ∈ K, then the irreducible polynomial of u over k splits in F .
Therefore u ∈ F . □

Definition 5.2.2. If F is a field that satisfies any of the equivalent statements
of Lemma 5.2.1, then we say F is algebraically closed. If F/k is an extension of
fields, we say F is an algebraic closure of k in case F is algebraic over k, and F is
algebraically closed.

Definition 5.2.3. Let F/k be an extension of fields and p a nonconstant poly-
nomial in k[x]. We say that F is a splitting field of p if

(1) p splits in F , and
(2) F = k(u1, . . . , un) where p(ui) = 0 for each i.

Theorem 5.2.4. (Kronecker’s Theorem) Let k be a field and f a polynomial
of positive degree in k[x]. There exists an extension field F of k and an element
u ∈ F satisfying
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(1) u is a root of f ,
(2) dimk(k[u]) ≤ deg(f), and
(3) if f is irreducible, then dimk(k[u]) = deg(f) and k[u] is unique up to a k-algebra

isomorphism.

Proof. Let p be an irreducible factor of f . Write f = pq. Let F = k[x]/(p)
and take u to be the coset represented by x in F . Then p(u) = p([x]) = [p(x)] = [0].
Then f(u) = p(u)q(u) = 0. The rest follows from Theorems 5.1.4 and 5.1.6. □

Example 5.2.5. Let p be a prime and k a field of characteristic p. Let α ∈ k
and f = xp − α. In this example we show that f is either irreducible, or splits.
The Frobenius homomorphism θ : k → k is defined by a 7→ ap (Exercise 3.2.32).
If α = ap for some a ∈ k, then f = xp − ap = (x − a)p by (Exercise 3.2.31).
This shows that f splits over k if f has a root in k. Now assume that α is not
in the image of the Frobenius map. Thus f does not have a root in k. For sake
of contradiction assume f is reducible over k. By our assumption, an irreducible
factor of f has degree at least 2. This also implies 2 < p. Let f = gg1 where g is
irreducible and deg g = m where 1 < m < p. Let F = k[x]/(g). By Theorem 5.2.4,
F is an extension field of k containing a root u of g. Every root of g is a root of
f . By the first part, f = (x − u)p in F [x]. By Corollary 3.6.5, F [x] is a UFD.
This implies g = (x − u)m in F [x]. But g ∈ k[x]. By the Binomial Theorem,
g = xm−muxm−1+ · · ·+(−u)m, which implies mu ∈ k. But gcd(m, p) = 1 implies
u ∈ k. This contradicts our original assumption that f does not have a root in k.
We have shown that f = xp − α is either irreducible, or splits.

Corollary 5.2.6. If k is a field and f a polynomial in k[x] of positive degree
n, then there exists a splitting field F/k for f such that dimk(F ) ≤ n!.

Proof. Factor f = p1 . . . pm in k[x] where each pi is irreducible. If deg pi = 1
for each i, then take F = k and stop. Otherwise, assume deg p1 > 1. By Kronecker’s
Theorem (Theorem 5.2.4), there is an extension field F1/k such that F1 = k(α) and
p1(α) = 0. Note that f(α) = 0 and dimk(F1) = deg p1 ≤ n. Factor f = (x−α)g in
F1[x]. By induction on n, there exists a splitting field F/F1 for g and dimF1(F ) ≤
(n − 1)!. So f splits in F and there exist roots u1, . . . , um of f such that F =
F1(u1, . . . , um) = k(α, u1, . . . , um). Lastly, dimk(F ) = dimk(F1) dimF1

(F ) ≤ n!, by
Proposition 4.3.8. □

Lemma 5.2.7. Let k be a field, f a polynomial in k[x] of positive degree n, and
F a splitting field for f over k. Let σ : k → K be an isomorphism of fields, σ(f) the
image of f in K[x]. Let L/K be an extension field such that σ(f) splits in L. Then
σ extends to a homomorphism of k-algebras σ̄ : F → L making a commutative

F
σ̄ // L

k

OO

σ // K

OO

diagram. Every root of f in F is mapped by σ̄ to a root of σ(f) in L. If L is a
splitting field for σ(f), then σ̄ is an isomorphism.

Proof. If F = k, then take σ̄ = σ and stop. Otherwise, dimk(F ) > 1 and
there is an irreducible factor g of f such that deg g > 1. Let α be a root of g in
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F and β a root of σ(g) in L. By Theorem 5.1.6 there is a k-algebra isomorphism
τ : k(α) → K(β) such that τ(α) = β and the bottom square of the diagram

F
∃σ̄ // L

k(α)

OO

τ
∼=
// K(β)

OO

k

OO

σ
∼=

// K

OO

commutes. Also, F is a splitting field for f over k(α), and dimk(α)(F ) < dimk(F ).
By induction on dimk(F ), τ can be extended to a k-algebra homomorphism σ̄ :
F → L such that the entire diagram above commutes. A root of f is mapped under
σ̄ to a root of σ(f). Since f splits in F , σ(f) splits in σ̄(F ). The polynomial σ(f)
has at most deg(f) roots in L by Corollary 3.6.9, and they all belong to σ̄(F ). If
λ ∈ L is a root of σ(f), then λ ∈ σ̄(F ). If L/K is generated by roots of σ(f), then
L ⊆ σ̄(F ) and σ̄ is an isomorphism. □

Corollary 5.2.8. Let k be a field and f ∈ k[x]. A splitting field for f exists
and is unique up to k-algebra isomorphism.

Proof. This follows straight from Corollary 5.2.6 and Lemma 5.2.7. □

Example 5.2.9. Let n ≥ 2. In C, let ζ = e2πi/n. Then ζ is a primitive nth
root of unity. That is, {ζk | 0 ≤ k ≤ n− 1} are the n distinct roots of xn − 1 in C.
Therefore, in C[x]

xn − 1 = (x− 1)(x− ζ)(x− ζ2) · · · (x− ζn−1)

is the unique factorization of xn − 1. For each k, ζk ∈ Q(ζ). This shows that Q(ζ)
is a splitting field for xn − 1 over Q. Consider the polynomial

Φn(x) = 1 + x+ · · ·+ xn−1 =
xn − 1

x− 1

of degree n − 1. The distinct roots of Φn in C are ζ, ζ2, . . . , ζn−1. By the same
reasoning as above, Q(ζ) is a splitting field for Φn over Q. If p is a prime, then
by Example 3.7.8, Φp is irreducible over Q. By Theorem 5.1.4, Φp = Irr.polyQ(ζ),

Q(ζ) = Q[x]/(Φp), and {1, ζ, ζ2, . . . , ζp−2} is a basis for Q(ζ) as a Q-vector space.
The polynomial Φp(x) is called the pth cyclotomic polynomial.

2.2. The Primitive Element Theorem. Let k be a field, f ∈ k[x], and F/k
a splitting field for f . By Corollary 5.2.8, F exists and is unique up to a k-algebra
isomorphism. We say f is separable in case for every irreducible factor p of f ,
every root of p in F is a simple root. If K/k is a extension of fields, then we say
K/k is a separable extension if every u ∈ K is the root of a separable polynomial
in k[x]. If u ∈ K is the root of a separable polynomial in k[x], then we say u is
separable. A separable extension is an algebraic extension. If char k = 0, then by
Theorem 3.6.17 (1), every polynomial f ∈ k[x] is separable. The purpose of this
section is to prove Theorem 5.2.14 which shows that a finite separable extension of
fields is a simple extension.
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Example 5.2.10. Let k be a field of prime characteristic p. The Frobenius
homomorphism θ : k → k is defined by a 7→ ap (Exercise 3.2.32). The image of θ is
denoted kp. Assume θ is not onto and let α ∈ k − kp. As shown in Example 5.2.5,
the polynomial f = xp − α is irreducible in k[x] but is not separable.

Lemma 5.2.11. Let k be a field and f an irreducible polynomial in k[x]. The
formal derivative of f is denoted f ′ (see Definition 3.6.15).

(1) The following are equivalent:
(a) f is separable.
(b) gcd(f, f ′) = 1.
(c) f ′ ̸= 0.

(2) If f is not separable, then char k = p is a prime number and there exists a
polynomial g(x) ∈ k[x] such that f(x) = g(xp).

Proof. This follows from Theorem 3.6.17. □

In Theorem 5.2.12 we assemble various properties of finite fields. In particular,
a finite field F is a simple separable extension of its prime subfield k and is uniquely
determined by its order.

Theorem 5.2.12. Let F be a finite field with charF = p. Let k be the prime
subfield of F and n = dimk(F ).

(1) The group of units of F is a cyclic group.
(2) F = k(u) is a simple extension, for some u ∈ F .
(3) The order of F is pn.
(4) F/k is a separable extension.
(5) F is the splitting field for the separable polynomial xp

n − x over k.
(6) Any two finite fields of order pn are isomorphic as fields.

Proof. As a k-vector space, F is isomorphic to kn, which has cardinality |k|n,
by Exercise 1.1.12. By Corollary 3.6.12, the group of units of F is a finite cyclic
group of order pn − 1. If u is a generator for F ∗, then F = k(u). The polynomial
xp

n −x = x(xp
n−1−1) has pn distinct roots in F . Therefore F is the splitting field

for the separable polynomial xp
n − x over k and every element of F is separable

over k. By Corollary 5.2.8, F is unique up to k-algebra isomorphism. □

The Primitive Element Theorem is proved in Theorem 5.2.14 below. Our proof
is by Mathematical Induction on the number of generators. The inductive step is
proved in Lemma 5.2.13.

Lemma 5.2.13. Let F/k be an extension of fields. Let α and β be elements of
F that are algebraic over k. If β is separable over k, then there exists γ ∈ F such
that k(α, β) = k(γ).

Proof. First we prove the lemma for some special cases. Let K = k(α, β).
If α ∈ k, then K = k(β), so set γ = β. If β ∈ k, then K = k(α), so set γ = α.
If k is a finite field, then K is a finite field by Proposition 5.1.10 (2). In this case
K = k(γ) is a simple extension, by Theorem 5.2.12 (2). Assume from now on that
α ̸∈ k, β ̸∈ k, and k is infinite. The proof of the general case is split into a sequence
of three steps.

Step 1 is to define a candidate for γ. Let f = min.polyk(α) be the minimal
polynomial for α and g = min.polyk(β) the minimal polynomial for β. Let F1 be
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a splitting field for fg over F . Let α = α1, α2, . . . , αm be the distinct roots of f in
F1. Let β = β1, β2, . . . , βn be the distinct roots of g in F1. By our hypotheses, m
and n are positive, and since g is separable we know n ≥ 2. Consider

S =

{
α1 − αi
βj − β1

| i = 1, . . . ,m and j = 2, . . . , n

}
which is a finite subset of F1. Since k is infinite, there exists c ∈ k∗ such that c ̸∈ S.
Set γ = α + cβ. So γ ∈ k(α, β). To finish, it is enough to show α ∈ k(γ) and
β ∈ k(γ).

Step 2 is to show that γ = αi + cβj if and only if i = j = 1. If 1 ≤ i ≤ m and
1 ≤ j ≤ n and γ = αi + cβj , then αi + cβj = α + cβ. So c(βj − β) = α − αi. If
j = 1, then i = 1. If j ̸= 1, then c = (α−αi)/(βj − β). This contradicts the choice
of c. This completes Step 2.

Step 3 is to show that k(α, β) ⊆ k(γ). Define h(x) ∈ k(γ)[x] by h(x) =
f(γ − cx). Then h(β) = f(γ − cβ) = f(α) = 0. If j > 1, then γ − cβj ̸= αi for
any i. Thus h(βj) = f(γ − cβj) ̸= 0. Thus, β2, . . . , βn are not roots of h(x). Let
g1 = min.polyk(γ)(β). Since h(β) = 0, by Theorem 5.1.4 we know g1 | h. Likewise,
g(β) = 0 implies g1 | g. Every root of g1 is a root of h and g. We proved that the
only root g and h have in common is β. Since g is separable, β is a simple root. It
follows that gcd(g, h) = x − β. Hence g1 is linear with one root, β, which implies
β ∈ k(γ). Moreover, α = γ − cβ ∈ k(β, γ) = k(γ). □

Theorem 5.2.14. (The Primitive Element Theorem) Let F/k be a finite di-
mensional separable extension of fields. Then there is a separable element u ∈ F
such that F = k(u).

Proof. Let dimk(F ) = n. Let α1, . . . , αn be a basis for F as a k-vector space.
For i = 1, . . . , n, let Fi = k(α1, . . . , αi). Then F2 = k(α1, α2). Lemma 5.2.13
implies there exists γ2 ∈ F such that F2 = k(γ2). By the same argument, F3 =
F2(α3) = k(γ2, α3) and there exists γ3 ∈ F such that F3 = k(γ3). Iterate this
process n− 1 times. Hence F = Fn = k(γn) for some γn. □

2.3. Exercises.

Exercise 5.2.15. Show that two finite fields E and F are isomorphic if and
only if the order of E is equal to the order of F .

Exercise 5.2.16. Let α = 3
√
2 be the cube root of 2 in R and ζ = e2πi/3 a

primitive cube root of 1 in C.
(1) Show that the splitting field for x3 − 2 over Q is Q(ζ, α) and that the

dimension of the extension is dimQ Q(ζ, α) = 6.
(2) Show that Q(ζ, α) is equal to the composite field EF where E and F are

any two fields from this list: Q(ζ), Q(α), Q(ζα), Q(ζ2α).
(3) Show that Irr.polyQ(ζ) (α) has degree 3. Show that Irr.polyQ(ζ) (ζα) has

degree 3. Show that Irr.polyQ(ζ) (ζ
2α) has degree 3.

(4) Show that Irr.polyQ(ζα) (α) has degree 2. Show that Irr.polyQ(ζ2α) (α)
has degree 2.

Exercise 5.2.17. Let F/k be an extension of fields and assume dimk F = p is
prime. Let u be any element of F that is not in k. Prove that F = k(u).
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Exercise 5.2.18. Let F/k be an extension of fields and assume dimk F = 2.
We say F/k is a quadratic extension of fields. Let u be an element of F that is not
in k and f = Irr.polyk u. Show that F is a splitting field for f over k.

Exercise 5.2.19. Let K/k be an extension of fields. Let F1, F2 be two inter-
mediate fields where k ⊆ Fi ⊆ K and dimk Fi = 2 for each i. Suppose there exists
a k-algebra isomorphism σ : F1 → F2. Show that F1 and F2 are equal as sets.

Exercise 5.2.20. Let k = F2 be the field of order 2. In k[x], let f = x2,
g = x2 + x, and h = x2 + x + 1. Show that the following four rings are distinct
in the sense that no two are isomorphic to each other: Z/(4), k[x]/(f), k[x]/(g),
k[x]/(h). For a continuation of this exercise, see Exercise 5.5.25.

Exercise 5.2.21. Let k be a field and A a finite dimensional k-algebra. Prove
that if dimk(A) = 2, then A is commutative. For an example of a noncommutative
k-algebra L such that dimk(L) = 3, see Exercise 4.4.21.

Exercise 5.2.22. True or False. Justify your answers.

(1) Q(
√
2) ∼= Q(

√
3)

(2) R(
√
−2) ∼= R(

√
−3)

Exercise 5.2.23. Let k be a field and K = k(x) the field of rational functions
over k in the variable x. Let σ : K → K be the function which maps a typical
rational function f(x) ∈ K to the rational function f(x−1). Show that σ is an
automorphism of the field K.

Exercise 5.2.24. Let R be a unique factorization domain with quotient field
K. Assume char(R) ̸= 2. Let F/K be a quadratic extension of fields. In other
words, assume dimK F = 2. Show that there exists a square free element a ∈ R
such that F = K[x]/(x2 − a) = K(

√
a).

Exercise 5.2.25. Let k be a field, f an irreducible polynomial in k[x] and F
the splitting field of f . Assume that the degree of f is at least 2 and that a and
b are distinct roots of f in F . Show that there exists a k-algebra automorphism
σ ∈ Autk(F ) such that σ(a) = b.

3. Galois Theory

In this section we study Galois Theory for fields. For the most part, we follow
the traditional presentation which is attributed to Emil Artin [2].

Let k be a field, f ∈ k[x] a separable polynomial, and F a splitting field for f
over k. The roots of f are the solutions to the algebraic equation f(x) = 0. The field
extension F/k is generated by the roots of f . As in Definition 4.4.1, by Autk(F )
we denote the group of all k-algebra automorphisms of F . In Theorem 5.3.18 we
show that F/k is a so-called Galois extension. For a Galois extension, the group
Autk(F ) acts not only on F , but on the set of roots of f(x). Moreover the action
of the group Autk(F ) on F is entirely determined by its action on the roots of
f(x). In the Fundamental Theorem of Galois Theory (Theorem 5.3.21), we show
that there is a one-to-one correspondence between the intermediate fields of F/k
and the subgroups of Autk(F ). By this theorem, the study of the roots of the
polynomial equation f(x) = 0 is reduced to the study of the action of a finite group
acting on the set of roots. It was Galois himself who emphasized the importance
of studying the set of roots of a polynomial under the action by a finite group of
permutations (see [12]).
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3.1. A Group Acting on a Field. In this section we will be using some
results as well as some terminology from Group Theory. For instance, if a group
of permutations G acts on a set X, there is the well defined notion of the subset
of X fixed by G. Also, for any subset S of X there is the subgroup of G fixing
S. The reader is referred to Section 2.4.1, especially Definition 2.4.10. While the
underlying theory applies, the notation and terminology in the present context are
slightly different than that of Chapter 2. Proposition 5.3.1 extends to the context
of field extensions these important notions from Group Theory.

Proposition 5.3.1. Let F/k be an extension of fields and G = Autk(F ).

(1) If H is a subset of G, then

FH = {v ∈ F | σ(v) = v for all σ ∈ H}
is an intermediate field of F/k which is called the fixed field of H. Note that
H ⊆ AutFH (F ).

(2) If E is an intermediate field of F/k, then

GE = {σ ∈ G | σ(v) = v for all v ∈ E}
is a subgroup of G which is called the subgroup of G fixing E. Note that GE =
AutE(F ).

Proof. The proof is left to the reader. □

Proposition 5.3.2. Let F/k be an extension of fields.

(1) Let f ∈ k[x], σ ∈ Autk(F ), and u ∈ F . If f(u) = 0, then f(σ(u)) = 0.
(2) Assume u ∈ F is algebraic over k and E = k[u]. If σ ∈ Autk(E), then σ is

completely determined by σ(u).

Proof. (1): If f =
∑n
i=0 aix

i, then

f(σ(u)) =

n∑
i=0

ai(σ(u))
i =

n∑
i=0

σ(aiu
i) = σ(

n∑
i=0

aiu
i) = σ(f(u)) = σ(0) = 0.

(2): By Theorem 5.1.4, there is a k-basis for E of the form 1, u, u2, . . . , un−1

where n = dimk(E). □

Example 5.3.3. Let F2 = {0, 1} be the field of order 2, which is isomorphic to
the ring Z/2. Let p(x) = x2 + x + 1 ∈ F2[x]. Since p(0) = p(1) = 1, p(x) has no
root in F2 and is irreducible in F2[x]. Let F be the splitting field of p(x). Then F
has order 4. Let α be a root of p(x) in F . Then α2 = α+1 and by Theorem 5.1.4,
F = {0, 1, α, α + 1}. By Theorem 5.2.12, F is unique up to isomorphism. Let
ϕ ∈ Aut(F ). Then ϕ(0) = 0, ϕ(1) = 1 and ϕ(α) is equal to α or α+1. If ϕ(α) = α,
then ϕ is equal to 1 ∈ Aut(F ), the identity function. By Proposition 5.3.2, ϕ is
determined by the value of ϕ(α). Therefore, Aut(F ) has order at most 2. We prove
that there is an automorphism of order two in Aut(F ). By Exercise 3.2.32, the
Frobenius homomorphism θ : F → F defined by θ(a) = a2 is a homomorphism.
Since F is a finite field, θ is necessarily one-to-one and onto (Exercises 3.2.29 and
1.1.11). Since θ(α) = α2 = α+ 1, we have shown that Aut(F ) has order two.

Example 5.3.4. The polynomial p(x) = x2 + 1 is irreducible in Q[x]. The
roots of p(x) in C are i,−i. Let F = Q(i) = Q(i) be the splitting field for p(x)
over Q. By Theorem 5.1.4, a basis for F over Q is 1, i. By Corollary 5.1.7, there
exists an automorphism χ : Q(i) → Q(i) such that χ(i) = −i. The automorphism
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χ is usually called complex conjugation (see Section 1.4). By Proposition 5.3.2 (1),
if ϕ ∈ AutQ(F ), then ϕ(i) is equal to either i or −i. By Proposition 5.3.2 (2), this
implies AutQ(F ) has order at most two. This proves AutQ(F ) = ⟨σ⟩ is a cyclic
group of order two.

Example 5.3.5. Let t > 2 be an odd integer and f(x) = xt + 3x − 6. By
Theorem 3.7.6, f is irreducible over Q. Consider f : R → R as a continuous real
valued function. Since f ′(x) = txt−1 + 3 is a sum of squares in R, f ′(x) > 0 and f
is increasing. Therefore, f has exactly one real root, call it u. The other t−1 roots
of f are nonreal. Then Q(u) is a subfield of R and Q(u) contains exactly one root
of f . If σ ∈ AutQ(Q(u)), then by Proposition 5.3.2, σ(u) = u and σ is the identity
function. This shows AutQ(Q(u)) = ⟨1⟩.

Lemma 5.3.6. Let F/k be an extension of fields and Homk(F, F ) the ring of
k-linear endomorphisms of F .

(1) There is a one-to-one homomorphism of rings F → Homk(F, F ) defined by
a 7→ ℓa, where ℓa is “left multiplication by a”. That is, ℓa(x) = ax.

(2) The automorphism group Autk(F ) is a subgroup of the group of units of the
ring Homk(F, F ).

(3) If dimk(F ) = n is finite, then Homk(F, F ) is a finite dimensional F -vector
space of dimension n.

Proof. (1): By Exercise 4.1.26 there is a commutative diagram of k-algebra
homomorphisms

k
λk //

θ

��

Homk(F, F )

F
λF // HomF (F, F )

Hθ

OO

where λk and λF are the left regular representations of Example 4.1.17. All of the
maps are one-to-one.

(2): Since each σ ∈ Autk(F ) is a k-linear transformation of F , we view Autk(F )
as a subgroup of the group of units of the ring Homk(F, F ).

(3): By Proposition 4.5.4, Homk(F, F ) is a k-vector space of dimension n2. By
Proposition 4.3.8, Homk(F, F ) is an F -vector space of dimension n. □

Theorems 5.3.7, 5.3.9, and 5.3.11 play key roles in Galois Theory. The proof
we give below of the Fundamental Theorem (Theorem 5.3.21) relies heavily on
these three theorems. The statements of the theorems concern a field and its group
of automorphisms. Because the topic of this section is Galois Theory, this is to
be expected. But, upon a close look at the proofs of these results, the common
feature that stands out is that they are strictly of a linear algebra nature. From
this perspective, we see that Galois Theory is inherently a part of Linear Algebra.

Theorem 5.3.7. Let F be a field and σ1, . . . , σn a finite set of distinct auto-
morphisms of F . If u1, . . . , un are elements of F and

(3.1) u1σ1(x) + · · ·+ unσn(x) = 0

for all x ∈ F , then each ui is equal to zero.
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Proof. For sake of contradiction assume a nontrivial dependence relation of
the type (3.1) exists. Pick one such relation involving a minimal number of the
automorphisms. If necessary, relabel the automorphisms and assume

(3.2) u1σ1 + · · ·+ urσr = 0

where u1, . . . , ur are all nonzero and r is minimal. Since σi(1) = 1 for each i, in
(3.2) we have r ≥ 2. For some y ∈ F we have σ1(y) ̸= σr(y). Evaluating (3.2) at
yx, we have:

(3.3) u1σ1(y)σ1(x) + · · ·+ urσr(y)σr(x) = 0

for all x ∈ F . Multiplying (3.2) by σr(y), we have:

(3.4) u1σr(y)σ1(x) + · · ·+ urσr(y)σr(x) = 0

for all x ∈ F . Subtracting (3.3) and (3.4), we have:

u1(σ1(y)− σr(y))σ1(x) + · · ·+ ur−1(σr−1(y)− σr(y))σr−1(x) = 0

which is a shorter dependence relation, a contradiction. □

Corollary 5.3.8. Let F/k be an extension of fields. Then Autk(F ) is a
linearly independent subset of the F -vector space Homk(F, F ).

Proof. This follows from Lemma 5.3.6, Theorem 5.3.7, and Definition 4.2.12.
□

Theorem 5.3.9. Let F/k be a finite dimensional extension of fields. Then the
order of the group of automorphisms Autk(F ) is less than or equal to dimk(F ).

We present two proofs of Theorem 5.3.9. Both are based on Theorem 5.3.7.
The first is deceptively brief. The second is more traditional.

First Proof of Theorem 5.3.9. Let n = dimk(F ). By Lemma 5.3.6, the
ring Homk(F, F ) is an F -vector space of dimension n. By Corollary 5.3.8, Autk(F )
is a linearly independent subset of the F -vector space Homk(F, F ). By Theo-
rem 4.3.4, Autk(F ) has order less than or equal to n. □

Second Proof of Theorem 5.3.9. If Autk(F ) = ⟨1⟩, then there is nothing
to prove. Let r = dimk(F ). For sake of contradiction assume Autk(F ) contains a
set of r+1 distinct automorphisms, which we enumerate: σ0, . . . , σr. Let v1, . . . , vr
be a basis for F as a k-vector space. By Theorem 4.3.4, the r + 1 vectors

x0 =
(
σ0(v1), σ0(v2), . . . , σ0(vr)

)
,

x1 =
(
σ1(v1), σ1(v2), . . . , σ1(vr)

)
,

...

xr =
(
σr(v1), σr(v2), . . . , σr(vr)

)
,

in F r are linearly dependent over F . Hence there exists a nonzero vector in F r+1,
call it (c0, c1, . . . , cr), such that

(3.5) c0σ0(vj) + c1σ1(vj) + · · ·+ crσr(vj) = 0
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for j = 1, . . . , r. Let u be an arbitrary element of F . In terms of the k-basis, u has
a representation u = a1v1 + · · · + arvr for unique a1, . . . , ar in k. For each σi we
have:

(3.6) σi(u) = a1σi(v1) + · · ·+ arσi(vr).

Consider:
r∑
i=0

ciσi(u) =

r∑
i=0

ci (a1σi(v1) + · · ·+ arσi(vr))

=

r∑
j=1

aj

(
r∑
i=0

ciσi(vj)

)
= 0

(3.7)

where the last equation follows from (3.5). Since u was arbitrary, (3.7) is a contra-
diction to Theorem 5.3.7. □

Example 5.3.10. Let F = Fq be a finite field with order q and char (F ) = p.
If k = Fp is the prime subfield and dimk(F ) = n, then q = pn. By Exercise 3.2.32,
the Frobenius homomorphism θ : F → F defined by θ(x) = xp is a homomorphism.
Since F is a finite field, θ is necessarily one-to-one and onto (Exercises 3.2.29 and
1.1.11). Let α be a generator for the group of units of F (Corollary 3.6.12). Then
in F ∗, the order of α is |α| = pn − 1. Therefore αp

n

= α and if 1 < i < pn,

then αi ̸= α. It follows from θ(α) = αp ̸= α, θ2(α) = θ(αp) = (αp)p = αp
2 ̸= α,

. . . , θi(α) = αp
i ̸= α, . . . , θn(α) = αp

n

= α that θ has order n in Aut(F ). By
Theorem 5.3.9, Aut(F ) is cyclic of order n and the Frobenius homomorphism θ is
a generator.

If G is a group and H is a subgroup, the index of H in G is denoted [G : H].
The order of G is [G : 1].

Theorem 5.3.11. Let F/k be an extension of fields, G a finite subgroup of
Autk(F ), and K = FG. Then F/K is finite dimensional and dimK(F ) ≤ [G : 1].

Proof. Assume [G : 1] = n and G = {σ1, . . . , σn}. For sake of contradiction,
assume the statement of the theorem is false. By Exercise 4.3.17, there exists a
subset {v0, . . . , vn} ⊆ F which is linearly independent over K. By Theorem 4.3.4,
the n+ 1 vectors

x0 =
(
σ1(v0), σ2(v0), . . . , σn(v0)

)
,

x1 =
(
σ1(v1), σ2(v1), . . . , σn(v1)

)
,

...

xn =
(
σ1(vn), σ2(vn), . . . , σn(vn)

)
in Fn are linearly dependent over F . Let V be the subspace of Fn spanned by
X = {x0, x1, . . . , xn}. Then dimF (V ) ≤ n so a linearly independent subset of X
has cardinality at most n. By Corollary 4.3.6, there is a linearly independent subset
of X that is a spanning set for V . If necessary, reorder the vectors in X such that
x0 is in the linear span of {x1, . . . , xn}. If c0 is an arbitrary element of F , then
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there exist n elements c1, . . . , cn in F such that 0 = c0x0 + c1x1 + · · ·+ cnxn. This
is equivalent to

(3.8) 0 =

n∑
i=0

ciσj(vi)

for j = 1, . . . , n. For each i = 0, . . . , n, consider

ai = σ1(ci) + · · ·+ σn(ci).

By Theorem 5.3.7, σ1, . . . , σn are linearly independent so we can find c0 in F such
that a0 ̸= 0. By the comment above, we can pick c1, . . . , cn so that (3.8) holds for
j = 1, . . . , n. Since G is a group,

σj(ai) = σjσ1(ci) + · · ·+ σjσn(ci)

= σ1(ci) + · · ·+ σn(ci)

= ai

implies ai ∈ K = FG, for i = 0, 1, . . . , n. Consider

n∑
i=0

aivi =

n∑
i=0

 n∑
j=1

σj(ci)

 vi

=

n∑
i=0

 n∑
j=1

σj(ci)σj(σ
−1
j (vi))


=

n∑
j=1

σj

(
n∑
i=0

ciσ
−1
j (vi)

)
= 0

(3.9)

where the last 0 is from (3.8). The left hand side of (3.9) is a nontrivial K-linear
combination of v0, v1, . . . , vn. This is a contradiction. □

3.2. Galois Extensions. In this section useful necessary and sufficient con-
ditions for an extension of fields F/k to be a Galois extension are derived. As
an application, in Corollary 5.3.20 we prove the important result that any finite
separable extension can be embedded as an intermediate field of a Galois extension.

Definition 5.3.12. Let F/k be an extension of fields and G a finite subgroup
of Autk(F ). If k = FG, then we say F/k is a Galois extension with Galois group
G. We also say F is a G-Galois extension of k.

Proposition 5.3.13. Let F/k be an extension of fields and G a finite subgroup
of Autk(F ).

(1) If K = FG, then dimK(F ) = [G : 1], G = AutK(F ), and F is a G-Galois
extension of K.

(2) If F is a G-Galois extension of k, then dimk(F ) = [G : 1] and G = Autk(F ).
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Proof. (1): Since K = FG, by Proposition 5.3.1, we have G is a subgroup of
AutK(F ). By Lemma 5.3.6 there is a commutative diagram

Autk(F ) // Homk(F, F )

G // AutK(F )

OO

// HomK(F, F )

OO

where all of the maps are one-to-one. The left vertical arrow is a homomorphism of
groups, the right vertical arrow is a homomorphism of rings. By Theorem 5.3.11,
we have dimK(F ) ≤ [G : 1]. By Theorem 5.3.9, we have [G : 1] ≤ [AutK(F ) : 1] ≤
dimK(F ).

(2): Since k = FG, this is a special case of (1). □

Proposition 5.3.14. Let F be a G-Galois extension of k and α ∈ F . The
subgroup of G fixing α is denoted Gα (Definition 2.4.10). If Gα = ⟨1⟩, then F =
k(α).

Proof. Let f = min.polyk(α). The orbit of α under the group G is R =
{σ(α) | σ ∈ G}. By Theorem 2.4.11, the length of the orbit is equal to the index
of the stabilizer. That is, |R| = [G : 1]. By Proposition 5.3.2, every element of
R is a root of f . So deg f ≥ [G : 1]. By Theorem 5.1.4, dimk k(α) = deg f . By
Proposition 5.3.13, all of the numbers in the string of inequalities:

[G : 1] ≤ deg f = dimk k(α) ≤ dimk(F )

are equal. Hence k(α) = F . □

Proposition 5.3.15. Let F/k be a finite dimensional extension of fields and
σ1, . . . , σn a finite set of distinct automorphisms in Autk(F ). If dimk(F ) = n, then
F/k is Galois with group Autk(F ) = {σ1, . . . , σn}.

Proof. We have {σ1, . . . , σn} ⊆ Autk(F ), hence n ≤ [Autk(F ) : 1]. By Theo-
rem 5.3.9, n = dimk(F ) ≥ [Autk(F ) : 1] ≥ n. Therefore, Autk(F ) = {σ1, . . . , σn}.
In particular, this proves the set {σ1, . . . , σn} is a group. For notational simplicity,
let G = Autk(F ) and K = FG. By Proposition 5.3.13, F/K is a G-Galois extension
and dimK(F ) = n. By Exercise 5.1.23 applied to the tower of fields: k ⊆ K ⊆ F ,
we conclude that k = K = FG. □

Example 5.3.16. Let F = Fq be a finite field with characteristic char (F ) = p
and order q. If k = Fp is the prime subfield and dimk(F ) = n, then q = pn.
By Example 5.3.10, Autk(F ) = ⟨θ⟩ is cyclic of order n where θ is the Frobenius
homomorphism defined by θ(x) = xp. By Proposition 5.3.15, Fq/Fp is Galois with
cyclic Galois group.

Definition 5.3.17. Let F/k be an algebraic extension of fields. We say F/k
is a normal extension if every irreducible polynomial over k that has a root in F
actually splits over F .

Theorem 5.3.18 provides very useful necessary and sufficient conditions for an
extension of fields to be Galois.

Theorem 5.3.18. Let F/k be a finite dimensional extension of fields. The
following are equivalent.



3. GALOIS THEORY 231

(1) F/k is a Galois extension.
(2) F/k is normal and separable.
(3) F is the splitting field over k of a separable polynomial in k[x].

Proof. (1) implies (2): Suppose F/k is Galois with group G = {σ1, . . . , σn}.
We prove F/k is normal and separable. Let f(x) ∈ k[x] be an irreducible poly-
nomial and suppose u ∈ F is a root of f . Look at the orbit of α under G:
R = {σ1(u), . . . , σn(u)}. Suppose R has r elements which we enumerate: R =
{u1, . . . , ur}. Then G acts as a group of permutations of R. The polynomial
g(x) = (x − u1)(x − u2) · · · (x − ur) is in F [x] and is fixed by every element of G.
Since k = FG, we have g(x) ∈ k[x]. Now u ∈ R, so g(u) = 0. Since f(x) is the
irreducible polynomial of u, by Theorem 5.1.4 we have f | g. This proves f splits
over F . Since g is separable, so is f . We have proved that F/k is normal. Let
v be an arbitrary element of F . Then by the previous argument, min.polyk(v) is
separable. This proves F/k is separable.

(2) implies (1): By Theorem 5.2.14, F = k(α) for some α ∈ F . If f =
Irr.polyk(α), then f is separable and splits over F . If n = deg(f), then by The-
orem 5.1.4, n = dimk(F ). Let α1, . . . , αn be the distinct roots of f in F . Then
for each i we have f = Irr.polyk(αi). Since k(αi) is an intermediate field of F/k
and dimk k(αi) = dimk F , we have F = k(αi). By Corollary 5.1.7 there is a
k-automorphism σi : F → F such that σi(α) = αi. By Proposition 5.3.2 (2),
σ1, . . . , σn are distinct elements of Autk(F ). By Proposition 5.3.15, F/k is Galois.

(2) implies (3): By Theorem 5.2.14, The Primitive Element Theorem, F = k(α)
for some α ∈ F . If f = Irr.polyk(α), then f is separable and splits in F .

(3) implies (1): Suppose f ∈ k[x] is separable and F is the splitting field
for f over k. Let n = dimk(F ). If n = 1, then F = k, so F/k is Galois with
group ⟨1⟩. Inductively, assume n > 1 and that (3) implies (1) for any extension of
fields of dimension less than n. Let G = Autk(F ). To finish the proof, we show
FG = k. Let g be a monic irreducible factor of the polynomial f and assume
deg g = d > 1. Since g is separable and splits in F , there are d distinct roots
α1, . . . , αd in F and g = (x − α1) · · · (x − αd). Now k(α1) is an intermediate
field of F/k and F is a splitting field of the separable polynomial f over k(α1).
By the induction hypothesis, we can assume F/k(α1) is a Galois extension with
group H and [H : 1] = dimk(α1)(F ). By Corollary 5.1.7, for each i, there is a
k-algebra isomorphism σi : k(α1) → k(αi). By Lemma 5.2.7, each σi extends to an
automorphism also denoted σi, in G = Autk(F ). Let θ be an arbitrary element of
FG. Since H is a subgroup of G = Autk(F ), θ ∈ FH = k(α1). By Theorem 5.1.4(3)
there are c0, c1, . . . , cd−1 in k such that

(3.10) θ = c0 + c1α1 + · · ·+ cd−1α
d−1
1 .

Applying σi to (3.10) we have

(3.11) θ = c0 + c1αi + · · ·+ cd−1α
d−1
i

since θ is fixed by G. Let p(x) = (c0 − θ) + c1x+ · · ·+ cd−1x
d−1 ∈ k(αi)[x]. Then

in F , there are d distinct roots α1, . . . , αd of p(x). Since deg p(x) ≤ d− 1, we must
have p = 0. In particular, θ = c0 is in k. □

Corollary 5.3.19. Let k be a field, f a separable polynomial in k[x], and F a
splitting field for f over k. If α1, . . . , αn are the distinct roots of f in F , then the
following are true:



232 5. FIELDS

(1) F/k is a Galois extension with group G = Autk(F ).
(2) G acts as a group of permutations of the set {α1, . . . , αn}.
(3) G is isomorphic to a subgroup of Sn, the symmetric group on n letters.

Proof. By Theorem 5.3.18, F/k is Galois with group G = Autk(F ). By
Proposition 5.3.2, every σ ∈ G is a permutation of the set of roots of f . By
Lemma 2.4.1, there is a homomorphism θ : G → Sn. Since F = k(α1, . . . , αn),
if two automorphisms define the same permutation of α1, . . . , αn, they define the
same automorphism of F . This proves θ is one-to-one. □

Corollary 5.3.20. (Embedding Theorem for Fields) Let F/k be a finite dimen-
sional extension of fields. If F/k is separable, then there exists a finite dimensional
Galois extension K/k which contains F as an intermediate field.

Proof. Pick a finite set of separable elements u1, . . . , un that generate F/k.
For each i, if fi = Irr.polyk(ui), then fi is separable over k. Let K be the splitting
field for f1 · · · fn over k. So K contains a generating set for F , hence F is an
intermediate field of K/k. By Theorem 5.3.18, K/k is a Galois extension. □

3.3. The Fundamental Theorem of Galois Theory. In this section, we
prove the Fundamental Theorem of Galois Theory. To illustrate the theorem, non-
trivial examples are given for which the Galois group is completely determined.

Theorem 5.3.21. (The Fundamental Theorem of Galois Theory) Let F/k be a
Galois extension of fields with finite group G. There is a one-to-one order inverting
correspondence between the subgroups H of G and the intermediate fields E of F/k.
A subgroup H corresponds to the fixed field FH . An intermediate field E corresponds
to the subgroup of G fixing E, GE. If E is an intermediate field of F/k, then

(1) dimE(F ) = [GE : 1], dimk(E) = [G : GE ], GE = AutE(F ),
(2) F/E is a Galois extension with group GE, and
(3) E/k is a Galois extension if and only if GE is a normal subgroup of G and in

this case, G/GE ∼= Autk(E).

Proof. By Proposition 5.3.1 there are functions

{H | H is a subgroup of G}
ρ // {E | E is an intermediate field of F/k}
λ
oo

defined by ρ(H) = FH and λ(E) = GE . It is clear that if H1 ⊆ H2, then ρ(H1) ⊇
ρ(H2). Likewise, if E1 ⊆ E2, then λ(E1) ⊇ λ(E2). Suppose A and B are two
subgroups of G such that FA = FB . Let E = FA = FB . Proposition 5.3.13
says dimE(F ) = [A : 1] = [B : 1]. For contradiction’s sake, suppose there exists
σ ∈ B−A. Then Fσ ⊇ FB = FA. If we write H = {σ}∪A, then FH = FA∩Fσ =
FA. This contradicts Theorem 5.3.9. So B ⊆ A. Similarly, A ⊆ B. This shows
ρ is one-to-one. Let E be an intermediate field of F/k. Since F/k is Galois, by
Theorem 5.3.18, F is the splitting field of a separable polynomial f in k[x]. Then f
is a separable polynomial in E[x] and F is the splitting field of f over E. Since F/E
is finite dimensional, Theorem 5.3.18 implies F/E is Galois. By Proposition 5.3.2,
GE = AutE(F ) is the subgroup of Autk(F ) fixing E and dimE(F ) = [GE : 1]. This
implies E = ρλ(E), so ρ is a one-to-one correspondence. By Lagrange’s Theorem
(Corollary 2.2.14), [G : 1] = [G : GE ][GE : 1]. By Exercise 5.1.23 dimk(F ) =
dimk(E) dimE(F ). This says dimk(E) = [G : GE ]. We have proved (1) and (2).
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The rest of the proof is devoted to proving (3). Assume E/k is Galois. We
prove that GE = AutE(F ) is a normal subgroup of G = Autk(F ) and Autk(E) is
isomorphic to the quotient G/GE . First we show that there is a homomorphism of
groups:

G = Autk(F )
h−→ Autk(E)

defined by ϕ 7→ ϕ|E . The binary operation in both groups is composition of func-
tions, so it suffices to show that if ϕ ∈ G, then ϕ(E) = E. By Theorem 5.2.14,
E = k(ξ) is a simple extension. Say g(x) = min.polyk(ξ) and deg g = m.
Since E/k is normal, g splits over E and has m distinct roots in E, call them
ξ1, . . . , ξm. Given ϕ ∈ Autk(F ), ϕ(ξ) = ξj for some j, by Proposition 5.3.2.
Therefore, ϕ(E) = ϕ(k(ξ)) ⊆ E. Since ϕ is one-to-one, ϕ(E) = E by, Exer-
cise 4.3.11. From this is follows that ϕ|E is an automorphism of E, and h is a
homomorphism of groups. The kernel of h is GE , the set of all ϕ ∈ G fixing E.
Therefore, GE = AutE(F ) is a normal subgroup of G = Autk(F ). To show that
Autk(E) is isomorphic to the quotient G/GE , it suffices to show h is onto (The-
orem 2.3.14). We are given that E/k is a Galois extension. This and (1) yield
[Autk(E) : 1] = dimk(E) = [G : GE ]. Theorem 2.3.14 and Lagrange’s Theorem
(Corollary 2.2.14) yield: [G : GE ] = [imh : 1]. Therefore, [imh : 1] = [Autk(E) : 1].
Since the groups are finite, h is onto.

Conversely, assume GE = AutE(F ) is a normal subgroup of G and prove E/k
is Galois. First we show that there is a homomorphism of groups

G = Autk(F )
h−→ Autk(E)

defined by ψ 7→ ψ|E . To show that h is well defined, we use the fact that
ψ−1 AutE(F )ψ = AutE(F ) (Lemma 2.3.5). Let ϕ ∈ AutE(F ). Then ψ−1ϕψ =
ϕ1 ∈ AutE(F ). Let y be an arbitrary element of E. Then ψ−1ϕψ(y) = ϕ1(y) = y.
Therefore, ϕψ(y) = ψ(y). This shows ψ(y) is fixed by each ϕ in AutE(F ). By (2),
this means ψ(y) ∈ E, hence h is well defined. The kernel of h is GE = AutE(F ),
the subgroup of Autk(F ) fixing E. By Theorem 2.3.12, the diagram

Autk(F )
h //

η
((

Autk(E)

Autk(F )/AutE(F )

h̄

66

commutes and h̄ is one-to-one. From (1) and Lagrange’s Theorem,

dimk(E) = dimk(F )/dimE(F )

= [Autk(F ) : 1]/[AutE(F ) : 1]

= [im(h) : 1]

≤ [Autk(E) : 1]

By Proposition 5.3.15, E/k is Galois. □

Example 5.3.22. This is an example of a Galois extension of Q with Galois
group the full symmetric group Sp. Let p be a prime number and f ∈ Q[x] an
irreducible polynomial of degree p such that f has exactly two nonreal roots. In
this example we show that the Galois group of f is isomorphic to Sp, the symmetric
group on p letters. Let F be the splitting field for f in C. By Theorem 5.3.18, F is
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Galois over Q. Let a and b be the nonreal roots of f . If p = 2, then F = Q(a) has
degree two over Q and AutQ(F ) has order two hence is isomorphic to S2. Assume
p > 2 and let c be a real root of f . Then dimQ Q(c) = p and by Theorem 5.3.21, p
divides the order of AutQ(F ). By Cauchy’s Theorem (Corollary 2.4.15), AutQ(F )
contains an element σ of order p. By Corollary 5.3.19, we know that AutQ(F ) is
a group of permutations of the roots of f . By Corollary 2.6.4 we know that σ is
a p-cycle and can be written in the form σ = (s1s2 · · · sp). For some i and j we
have a = si and b = sj . Then σj−i(si) = sj . By Lemma 2.2.18, the order of
σj−i is p. Therefore, we can write σj−i in the cycle form (abt3 · · · tp). Let χ be
the automorphism of C defined by complex conjugation (Example 5.3.4). Then χ
maps F to F . Also, χ(a) = b and χ fixes every real root of f . So χ corresponds to
the transposition χ = (ab). By Exercise 2.6.20, the group Sp is generated by the
transposition (12) and the p-cycle (123 · · · p). Therefore, AutQ(F ) is generated by
χ and σj−i, hence is isomorphic to Sp. For the polynomial f , the upper bound of
Corollary 5.2.6 is attained.

Example 5.3.23. In Q[x], let p(x) = x3 + 2x + 1. In Example 5.1.9 we saw
that p(x) is irreducible, has one real root α and two nonreal roots β1, β2. The
splitting field of p(x) over Q is F = Q(α)(β1). By Example 5.3.22, the Galois
group G = AutQ(F ) is isomorphic to S3. Under the Galois correspondence, the
three subgroups of S3 of order two correspond to the three intermediate fields
Q(α), Q(β1), and Q(β2). Since S3 has one subgroup of order three, there is an
intermediate field of F/Q that has dimension two over Q. For completeness’ sake,
we give a formula for this quadratic extension. Set ∆ = (α− β1)(α− β2)(β1 − β2).
Identify G with the symmetric group S3. Given any σ ∈ S3, σ(∆) = sign(σ)∆.
Therefore, ∆ ̸∈ Q, ∆2 ∈ Q. Consequently, Q(∆) is an intermediate field of F/Q
and has dimension two over Q. The formula for ∆ is an example of a discriminant
formula. See Section 5.7.4 for the general construction.

Example 5.3.24. In Q[x], let f(x) = x4−2. Let u be the positive real number
such that u4 = 2 and let i ∈ C be a root of x2 + 1. Then the four roots of f(x) in
C are

(3.12) {u,−u, ui,−ui}.
Let F = Q(u, ui) be the splitting field of f over Q. Then F is a Galois extension
of Q with group G = AutQ(F ). The group G is called the Galois group of f . First
we determine generators for the Galois group G. The elements of G are described
as permutations of the set (3.12) and G is identified with a subgroup of S4. The
subgroup lattice ofG is then presented. Lastly, the corresponding lattice of subfields
is determined.

By Theorem 5.1.4, (Q(u) : Q) = (Q(ui) : Q) = 4. Since u ∈ R is real and
ui is nonreal, we know Q(u) ̸= Q(ui). Over Q(u2) we have the factorization f =
(x2 − u2)(x2 + u2) into irreducibles. The irreducible polynomial for ui over Q(u) is
x2+u2. The irreducible polynomial for u over Q(ui) is x2−u2. Then (F : Q(u)) =
(F : Q(ui)) = 2. By Corollary 5.1.7, there is an isomorphism σ : Q(u) → Q(ui)
which is given by σ(u) = ui. By Lemma 5.2.7, σ can be extended to an isomorphism
F = Q(u)(ui) → Q(ui)(u) = F which is defined by sending ui to one of u or −u.
Let τ be the automorphism of F defined by τ(u) = ui, τ(ui) = −u. Let θ be
the automorphism of F defined by θ(u) = ui, θ(ui) = u. By Theorem 5.3.18, F
is Galois over Q with group G = AutQ(F ). By Exercise 5.3.32, we can view G



3. GALOIS THEORY 235

as a subgroup of S4. Using the ordering of the roots given in (3.12), the cycle
representations of τ and θ are τ = (1324), θ = (13)(24). We can now compute
the elements of G: ⟨e, τ = (1324), τ2 = (12)(34), τ3 = (1423), θ = (13)(24), τθ =
(12), τ2θ = (14)(23), τ3θ = (34)⟩. Therefore, G is isomorphic to the dihedral group
D4 (Example 2.1.17). The subgroup lattice of G was computed in Example 2.3.41:

G = ⟨τ, θ⟩

⟨τ2, θ⟩ ⟨τ⟩ ⟨τ2, τθ⟩

⟨τ2θ⟩ ⟨θ⟩ ⟨τ2⟩ ⟨τθ⟩ ⟨τ3θ⟩

⟨e⟩

By Example 2.3.36, the center of G is ⟨τ2⟩ which is normal. The three subgroups
of order four are normal. The other four subgroups of order two, ⟨τ2θ⟩, ⟨θ⟩, ⟨τθ⟩,
and ⟨τ3θ⟩, are not normal. Notice that τ3θ is complex conjugation. The reader
should verify the following.

F ⟨τ2⟩ = Q(i, u2)

F ⟨τθ⟩ = Q(ui)

F ⟨τ3θ⟩ = Q(u)

F ⟨τ2,θ⟩ = Q(u2i)

F ⟨τ⟩ = Q(i)

F ⟨τ2,τθ⟩ = Q(u2)

F ⟨τ2θ⟩ = Q(u− ui)

F ⟨θ⟩ = Q(u+ ui).

The subfield lattice of F is

F = Q(u, ui)

Q(u− ui) Q(u+ ui) Q(i, u2) Q(ui) Q(u)

Q(u2i) Q(i) Q(u2)

Q

Notice that Q(u) is Galois over Q(u2), Q(u2) is Galois over Q, but Q(u) is not Galois
over Q. This example shows that the property of being Galois is not transitive. In
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other words, Galois over Galois is not Galois. The analogous statement for groups
is also true. Namely, normal over normal is not normal.

3.4. Exercises.

Exercise 5.3.25. Show that the group of automorphisms of a prime field is
trivial. In other words, prove: Aut(Q) = ⟨1⟩ and Aut(Zp) = ⟨1⟩.

Exercise 5.3.26. Let F be a field, k the prime field of F , and σ an automor-
phism of F . Show that σ(a) = a for every a ∈ k.

Exercise 5.3.27. This exercise outlines a proof that Aut(R) = ⟨1⟩. In the
following, assume a, b, c are real numbers and r, s are rational numbers. For this
exercise you can assume that if a < b, then there exists a rational number r such
that a < r < b. Let σ be an automorphism of R. Prove:

(1) σ(a2) = σ(a)2.
(2) If b > 0, then σ(b) > 0.
(3) If r < c < s, then r < σ(c) < s.
(4) For every c ∈ R, σ(c) = c.

Exercise 5.3.28. Let f(x) = x3 + 3x + 3. Show that f is irreducible in Q[x]
and f has exactly one real root and two nonreal roots. Let α ∈ R be the real root
and β1, β2 be the nonreal roots of f(x). Show that Q[α, β1] is the splitting field
for f over Q and dimQ Q[α, β1] = 6. Show that AutQ(Q[α]) = ⟨1⟩. Show that
AutQ(Q[α, β1]) is isomorphic to S3, the group of permutations of {α, β1, β2}.

Exercise 5.3.29. Prove the following for f = x3 + x− 1.

(1) f is irreducible in Q[x].
(2) If F = Q[x]/(f) and σ is an automorphism of F , then σ is the identity

function.
(3) In R[x], f factors into a product of a linear polynomial and an irreducible

quadratic.
(4) If F is the splitting field of f over Q, then the Galois group AutQ(F ) is a

nonabelian group of order six.

Exercise 5.3.30. Let F be the splitting field of f = x3 − 5 over Q.

(1) Show that the Galois group AutQ(F ) is a nonabelian group of order six.
(2) Find all intermediate fields K between Q and F .
(3) Prove or give a counterexample: Each intermediate field K is a Galois

extension of Q.

Exercise 5.3.31. Let F be the splitting field of f = (x2 − 2)(x2 − 3) over Q.

(1) Show that the Galois group AutQ(F ) is a noncyclic abelian group of order
four.

(2) Find all intermediate fields K between Q and F .
(3) Prove or give a counterexample: Each intermediate field K is a Galois

extension of Q.

Exercise 5.3.32. Let f ∈ k[x] be an irreducible separable polynomial of degree
n over the field k. Let F/k be the splitting field for f over k and let G = Autk(F )
be the Galois group. We call G the Galois group of f . Prove the following.
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(1) G acts transitively on the roots of f . That is, given two roots α, β of f ,
there is σ ∈ G such that σ(α) = β.

(2) n divides [G : 1].

Exercise 5.3.33. Consider the polynomial f = x4 + p2 in Q[x], where p is a
prime number. Determine the following.

(1) The splitting field of f over Q. Call this field K.
(2) The Galois group of f over Q.
(3) The lattice of intermediate fields of K/Q. Determine which intermediate

fields are normal over Q.

Exercise 5.3.34. Let F be a field and f(x) a polynomial in F [x] such that
f ′(x) = 0. That is, the derivative of f(x) is the zero polynomial.

(1) If F has characteristic 0, show that f(x) = α, for some α ∈ F .
(2) If F has characteristic p > 0, show that there exists g(x) ∈ F [x] such that

f(x) = g(xp).

Exercise 5.3.35. Let F/k be an extension of fields. Let α ∈ F . Prove that
F (α) is a separable extension of k if and only if α is separable over k.

Exercise 5.3.36. Let F/k be a quadratic extension of fields. That is, dimk(F ) =
2. Prove that if F/k is separable, then F/k is a Galois extension.

Exercise 5.3.37. Let F be a field, ϕ ∈ Aut(F ) and k = F ⟨ϕ⟩. Let f ∈ F [x] be
a polynomial satisfying:

(1) f is monic,
(2) f splits in F [x],
(3) f has no repeated root, and
(4) if α ∈ F and f(α) = 0, then f(ϕ(α)) = 0.

Show that f ∈ k[x].

Exercise 5.3.38. Let F/k be an extension of fields where char k = p > 0. Let
α ∈ F . Prove that α is separable over k if and only if k(α) = k(αp).

Exercise 5.3.39. Determine the group of automorphisms AutQ(Q(
√
2)).

Exercise 5.3.40. Let p be a prime number and ζ = e2πi/p a primitive pth root
of unity in C. Show that the group of automorphisms AutQ(Q(ζ)) is isomorphic to
the group of units in the ring Z/p, hence is a cyclic group of order p− 1. This is a
special case of Corollary 5.5.9 (3).

Exercise 5.3.41. Let F be the splitting field for x3 − 2 over Q (see Exer-
cise 5.2.16). Show that the group of automorphisms AutQ(F ) is isomorphic to the
symmetric group S3.

Exercise 5.3.42. Let F/k be a Galois extension of fields with finite group G.
Let α be an arbitrary element of F , and set

g =
∏
σ∈G

(x− σ(α)).

Show that g ∈ k[x] and the only irreducible factor of g in k[x] is Irr.polyk(α).

Exercise 5.3.43. Determine the Galois group of the polynomial x4 + x2 − 6
over Q.
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Exercise 5.3.44. Determine the smallest Galois extension K/Q containing
21/2 + 21/3. Determine AutQ(K).

Exercise 5.3.45. Determine the Galois group of the polynomial x6 − 8 over
each of these fields: Q, Q

(√
2
)
, and Q (ζ), where ζ = e2πi/3 is a primitive third

root of 1 in C.

Exercise 5.3.46. For the polynomial
(
x2 − 2

) (
x3 + 2

)
determine the Galois

group over each of these fields: R, Q, Q
(√

2
)
, Q
(

3
√
2
)
, and Q (ζ), where ζ = e2πi/6

is a primitive third root of −1 in C.

Exercise 5.3.47. Let F denote the splitting field of x8 − 1 over the field Q of
rational numbers. Determine the lattice of subfields and show that the Galois group
AutQ(F ) is a noncyclic group of order 4. This is a special case of Corollary 5.5.9 (3).

Exercise 5.3.48. Let k be a field of characteristic zero and f an irreducible
polynomial in k[x]. Let F/k be an extension of fields and assume f splits over F .
Prove that if α ∈ F and f(α) = 0, then f(α+ 1) ̸= 0.

Exercise 5.3.49. Let F/k be an extension of fields and G a finite subgroup
of Autk(F ). As in Corollary 5.3.8 we view G as a linearly independent subset of
the F -vector space Homk(F, F ). Let ∆(F/k,G) denote the F -vector subspace of
Homk(F, F ) spanned by {σ | σ ∈ G}. Show that ∆(F/k,G) is a k-subalgebra of
Homk(F, F ). The ring ∆(F/k,G) is an example of a trivial crossed product (see
[10, Section 12.1]).

Exercise 5.3.50. For the polynomial f = x4 − 5, find the Galois group of f
over over each of these fields: R, Q, Q(

√
5), Q(i

√
5).

Exercise 5.3.51. Let f = (2x2 − 4x + 1)(x4 + 1). Find a splitting field and

determine the Galois group of f over each of these fields: R, Q, Q(
√
2), Q(i), and

Q (ζ), where ζ = e2πi/8 is a primitive eighth root of 1 in C.

Exercise 5.3.52. Let f = (4x2 + 2x + 1)(x6 − 1). Find a splitting field and

determine the Galois group of f over each of the following fields: R, Q, Q(
√
3),

Q(i), and Q (ζ), where ζ = e2πi/6 is a primitive sixth root of 1 in C.

4. Separable Closure

Given an algebraic extension of fields F/k we construct the separable closure
of k in F . This result is then applied to show that the property of being separable
is transitive. As another application, we prove in Theorem 5.4.5 a characterization
of perfect fields. As we saw in Example 5.3.24, the property of being Galois is
not transitive. Nevertheless, we prove in Theorem 5.4.6 that the property of being
Galois is preserved under a change of base field. As an application of Galois Theory,
in Theorem 5.4.10 we give a proof of the Fundamental Theorem of Algebra.

4.1. The Existence of a Separable Closure.

Lemma 5.4.1. Let F/k be an extension of fields and assume char k = p > 0.
Let u ∈ F and assume u is algebraic over k. There exists n ≥ 0 such that up

n

is
separable over k.
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Proof. If u is separable over k, then take n = 0. Let f = Irr.polyk(u) and
use induction on the degree of f . Assume f is not separable and d = deg f > 1.
By Lemma 5.2.11, there exists g ∈ k[x] such that f(x) = g(xp). Because f is
irreducible, so is g. Therefore, f(u) = g(up) = 0, up is algebraic over k, and the
degree of Irr.polyk(u

p) is equal to d/p. By induction on d, there is some n ≥ 0
such that (up)p

n

is separable over k. □

Theorem 5.4.2. Let F/k be an algebraic extension of fields. If

S = {u ∈ F | u is separable over k},

then S is an intermediate field of F/k, and S/k is separable. The field S is called
the separable closure of k in F .

Proof. It is enough to show S is a field. Let α and β be elements of S − k.
If f = Irr.polyk(α), then f is separable and irreducible over k. Likewise, g =
Irr.polyk(β) is separable and irreducible over k. By Theorem 5.3.18, if E is the
splitting field over k of fg, then E/k is a separable extension of fields. Since k(α, β)
is an intermediate field of E/k, it is itself a separable extension of k. Therefore, S
contains α+ β, α− β, αβ, α/β. It follows that S is a field. □

Theorem 5.4.3. (Separable over Separable is Separable) Let k ⊆ F ⊆ K be a
tower of algebraic field extensions. If F is separable over k and K is separable over
F , then K is separable over k.

Proof. By Proposition 5.1.10 (4), K is algebraic over k. If char k = 0, then
an algebraic extension is separable, so assume char k = p > 0. By Theorem 5.4.2,
let S be the separable closure of k in K. Then F ⊆ S ⊆ K. It is enough to show
S = K. Let u ∈ K. By Lemma 5.4.1, there exists n ≥ 0 such that α = up

n

is
in S. Then u satisfies the polynomial xp

n − α ∈ S[x] and in K[x] we have the
factorization xp

n − α = (x − u)p
n

. If f = Irr.polyS(u), then f divides (x − u)p
n

in K[x]. If g = Irr.polyF (u), then g is separable and since f divides g in S[x], we
know that f has no multiple roots in K. So f = x− u and u ∈ S. □

Definition 5.4.4. A field k is said to be perfect if char k = 0, or char k = p
is a prime number and the Frobenius homomorphism θ : k → k by a 7→ ap is onto
(see Exercise 3.2.32).

We will show in Lemma 5.5.12 below that a finite field is a perfect field.

Theorem 5.4.5. Let k be a field. The following are equivalent.

(1) k is a perfect field.
(2) Every irreducible polynomial in k[x] is separable.
(3) Every algebraic extension of k is separable over k.

Proof. If char k = 0, then this is immediate.
(2) is equivalent to (3): This is Exercise 5.4.12.
(3) implies (1): Assume k has positive characteristic p and every algebraic

extension of k is separable. Let θ : k → k be the Frobenius homomorphism (Exer-
cise 3.2.32). Let α ∈ k. We show α = θ(u) for some u ∈ k. Consider the polynomial
xp−α in k[x]. Let F be an extension of k containing a root u of xp−α. In F [x] we
have the factorization xp − α = (x− u)p. By assumption, F/k is separable, which
implies this factorization occurs in k[x]. That is, u ∈ k and α = θ(u).
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(1) implies (3): Assume char k = p > 0 and the Frobenius homomorphism
θ : k → k is an automorphism of k. Let F/k be an algebraic extension. Let
α ∈ F − k. We show that k(α) is a separable extension of k. Let f ∈ k[x]
be the irreducible polynomial of α over k. By Theorem 3.6.2, θ(f) = g is an
irreducible polynomial in k[x] such that deg g = deg f . Since g(αp) = (f(α))p = 0,
we see that k(αp) is a field extension of k which is an intermediate field of k(α)/k
such that dimk(k(α

p)) = dimk(k(α)). It follows that k(αp) = k(α), hence the
Frobenius homomorphism is an automorphism θ : k(α) → k(α). For any m > 0,
θm(x) = xp

m

. Since k[α] = k(α), a typical element in k(α) can be represented in

the form u =
∑
i aiα

i where ai ∈ k. Therefore θm(u) =
∑
i a
pm

i (αp
m

)i is in k(αp
m

).

This shows k(αp
m

) = k(α) for all m > 0. By Theorem 5.4.2, let S be the separable
closure of k in k(α). For some n ≥ 0, αp

n ∈ S. Therefore k(α) = k(αp
n

) ⊆ S so
k(α) is a separable extension of k. □

4.2. A Change of Base Theorem for a Galois Extension. Theorem 5.4.6
is what is called a “change of base” theorem for a Galois extension. It says that if
F1/k is a Galois extension and F2/k is a finite field extension, then F = F1F2 is a
Galois extension of F2. The base field is extended from k to F2. This useful result
also gives sufficient conditions such that the Galois group is preserved.

Theorem 5.4.6. Let K/k be a finite dimensional extension of fields. Let F1

and F2 be intermediate fields. Set F = F1F2 and F0 = F1 ∩ F2.

F = F1F2

F1 F2

F0 = F1 ∩ F2

k

(1) If F1 is a Galois extension of k, then F is a Galois extension of F2 and there
is an isomorphism of groups AutF2

(F ) ∼= AutF0
(F1) defined by the assignment

ϕ 7→ ϕ|F1 .
(2) If F1 and F2 are both Galois extensions of k, then F is a Galois extension of

k. If F1 ∩ F2 = k, then Autk(F ) ∼= AutF1
(F )×AutF2

(F ).

Proof. (1): By Theorems 5.3.18 and 5.2.14, F1 = k(u) is a simple extension.
Let f = Irr.polyk(u). By Theorem 5.1.12, F = F2(u). Let g = Irr.polyF2

(u).
Theorem 5.1.4 implies g divides f . Then every root of g is in F , hence F is a split-
ting field for g. By Theorem 5.3.18, F/F2 is a Galois extension. If ϕ ∈ AutF2

F ,
then ϕ is completely determined by the value of ϕ(u). But ϕ(u) is a root of f .
Since F1 is a splitting field for f , ϕ(F1) ⊆ F1. Since ϕ fixes F2 point-wise, ϕ
fixes k point-wise. Therefore, θ : AutF2(F ) → Autk(F1) is a homomorphism
of groups. If ϕ fixes F1 point-wise, then ϕ(u) = u and ϕ is the identity func-
tion on F . This proves θ is one-to-one. Using θ, we identify AutF2

(F ) with a

subgroup of Autk F1. Let E = F
AutF2

(F )
1 . By Theorem 5.3.21, F1/E is a Ga-

lois extension and dimE(F1) = |AutF2
(F )| = dimF2

(F ). Since F1 ⊆ F , we have
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E ⊆ FAutF2
(F ) = F2. Since dimF2

(F ) = dimE(F1), Exercise 5.1.23 implies that
dimE(F ) = dimE(F1) dimE(F2). By Theorem 5.1.12 (5), we have E = F1 ∩ F2,
which completes the proof.

(2): This is Exercise 5.4.13. □

4.3. Examples. In this section we include some examples that did not seem
to fit in elsewhere.

Example 5.4.7. This is an example of a Galois extension of Q with abelian
Galois group of order 8. Let a be a positive odd integer and f = x8 + a4. By
Exercise 3.7.13, f is irreducible over Q. Let ζ be the complex number e2πi/16.
Then ζ8 = −1. Let α be the positive real number such that α2 = a. For any
integer k, f(ζ2k+1α) = ζ8ζ16kα8 + a4 = 0. Therefore the eight roots of f in C are
S = {ζ2k+1α | 0 ≤ k ≤ 7}. By Theorem 5.1.4, the set {1, ζα, ζ2α2, . . . , ζ7α7} is
a basis for Q(ζα) as a Q-vector space. Since (ζα)2k+1 = ζ2k+1akα, we see that
S ⊆ Q(ζα). Hence Q(ζα) is a splitting field for f . By Corollary 5.1.7 applied to
ζα and ζ3α, there is an automorphism τ ∈ AutQ(Q(ζα)) such that τ(ζα) = ζ3α.
Since ζ2α2 = ζ2a, it follows that ζ2 ∈ Q(ζα). We have τ(ζ2) = τ((ζα)2a−1) =
τ(ζα)2a−1 = (ζ3α)2a−1 = (ζ6a)a−1 = ζ6. Using this it is now possible to compute
the action of τ on S: τ(ζα) = ζ3α, τ(ζ3α) = −ζα, τ(−ζα) = −ζ3α, τ(−ζ3α) = ζα,
τ(ζ5α) = −ζ7α, τ(−ζ7α) = −ζ5α, τ(−ζ5α) = ζ7α, τ(ζ7α) = ζ5α. So τ has two
disjoint orbits, each of length four. Fix this ordering of the 8 elements of S:

(4.1) S = {ζα, ζ3α,−ζα,−ζ3α, ζ7α, ζ5α,−ζ7α,−ζ5α}.

Then τ has the cycle representation τ = (1234)(5678) (see Example 2.1.15). Let
χ : C → C be complex conjugation (see Example 5.3.4). Then χ restricts to a
permutation of S, hence defines an automorphism of Q(ζα). Based on the ordering
of S in (4.1), χ = (17)(28)(35)(46) is the disjoint cycle representation of χ. By
direct computation, we see that τχ = (1836)(2547) = χτ . By Exercise 2.5.22,
τ and χ generate an abelian group, call it G, isomorphic to Z/4 ⊕ Z/2. Since
dimQ(Q(ζα)) = 8 = [G : 1], by Proposition 5.3.15, Q(ζα) is Galois over Q and the
Galois group is G = ⟨τ, χ⟩. This also shows G = AutQ(Q(ζα)).

Example 5.4.8. This is a generalization of Example 5.4.7. In this example we
construct a Galois extension over Q such that the Galois group is isomorphic to
the group of units in Z/(2n+1). As in Example 2.1.3, the set of invertible elements
in the ring Z/(2n+1) is denoted U2n+1 and the order of this group is 2n. Let a be

a positive odd integer and n ≥ 2. Let f = x2
n

+ a2
n−1

. When n = 3, this example
agrees with Example 5.4.7. By Exercise 3.7.13, f is irreducible over Q. Let ζ be

the complex number e2πi/2
n+1

, a primitive 2n+1th root of unity. Then ζ2
n+1

= 1
and ζ2

n

= −1. Let α be the positive real number such that α2 = a. For any integer
k,

f(ζ2k−1α) = (ζ2k−1α)2
n

+a2
n−1

= ζ−2n(ζ2
n+1

)kα2n +a2
n−1

= −a2
n−1

+a2
n−1

= 0.

Therefore the 2n roots of f in C are

S = {ζ2k−1α | 1 ≤ k ≤ 2n} = {ζα, ζ3α, . . . , ζ2
n+1−1α}.

By Theorem 5.1.4, the set

{(ζα)j | 0 ≤ j < 2n} = {1, ζα, (ζα)2, . . . , (ζα)2
n−1}
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is a basis for Q(ζα) as a Q-vector space. Since (ζα)2k+1 = ζ2k+1akα, we see
that S ⊆ Q(ζα). Hence Q(ζα) is a splitting field for f . Let t be an arbitrary
odd integer. By Corollary 5.1.7 applied to ζα and ζtα, there is an automorphism
τt ∈ AutQ(Q(ζα)) such that τt(ζα) = ζtα. Let s be another odd integer. Since ζ
is a primitive 2n+1th root of unity, Proposition 5.3.2 (2) implies that τt = τs if and
only if s ≡ t (mod 2n+1). Since ζ2α2 = ζ2a, it follows that ζ2 ∈ Q(ζα). We have

τt(ζ
2) = τt((ζα)

2a−1) = τt(ζα)
2a−1 = (ζtα)2a−1 = (ζ2ta)a−1 = ζ2t.

Using this, we see that

τt(ζ
2k+1α) = τt((ζ

2)kζα) = (ζ2t)k(ζtα) = (ζ2k+1)tα

and

τsτt(ζα) = τs(ζ
tα) = ζtsα = τts(ζα).

Let σ denote an arbitrary automorphism in AutQ(Q(ζα)). Then Proposition 5.3.2 (1)
implies σ(ζα) = ζtα for a unique t ∈ {1, 3, . . . , 2n+1−1}. By Proposition 5.3.2 (2), σ
is equal to τt. The computations above show that the assignment θ(t) = τt defines
an isomorphism of groups θ : U2n+1 → AutQ(Q(ζα)). Since dimQ(Q(ζα)) = 2n,
Proposition 5.3.15 implies Q(ζα) is Galois over Q and the Galois group is iso-
morphic to U2n+1 . See Corollary 5.5.9 for a related result concerning cyclotomic
extensions.

The next proposition shows that for a Galois extension F/k, if f is an irreducible
separable polynomial in k[x], then the irreducible factors of f in F [x] all have the
same degree.

Proposition 5.4.9. Let F/k be a Galois extension of fields and f an irre-
ducible separable polynomial in k[x]. If the unique factorization of f in F [x] is
f = f1 · · · fm, then deg f1 = deg f2 = · · · = deg fm.

Proof. We prove this in two steps.
Step 1: Suppose K/k is a Galois extension of fields with group G. Assume

f splits in K[x]. Let N be a normal subgroup of G and assume F = KN . We
prove that the irreducible factors of f in F [x] all have the same degree. Let X =
{α1, . . . , αn} be the roots of f in K. If L = k(X) is the splitting field for f in K,
then L/k is Galois by Theorem 5.3.18. By Exercise 5.3.32, Autk(L) acts transitively
on X. By Theorem 5.3.21, Autk(L) is a homomorphic image of G, hence G acts
transitively on X. Let a, b be two arbitrary elements of X. Let τ ∈ G such that
τ(a) = b. Since N is normal, τN = Nτ . Therefore τNa = Nτa = Nb. This shows
the orbit containing a is in one-to-one correspondence with the orbit containing b.
Let O1, . . . , Om be the orbits of N acting on X. Then |O1| = · · · = |Om|. For each
1 ≤ i ≤ m, set fi =

∏
a∈Oi

(x− a). We have

f =
∏
a∈X

(x− a)

=

m∏
i=1

∏
a∈Oi

(x− a)

= f1 · · · fm.
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Since deg fi = |Oi|, all of the fi have the same degree. Now we prove that each fi
is in F [x]. If τ ∈ N , then τOi = Oi, hence

τ(fi) =
∏
a∈Oi

(x− τ(a)) =
∏
a∈Oi

(x− a) = fi

so the coefficients of fi are fixed by N . Hence fi ∈ F [x]. Now we prove that each fi
is irreducible in F [x]. Fix one element of Oi, say ai. If pi = Irr.polyF (ai), then by
Theorem 5.1.4 we have pi | fi. For each τ ∈ N , pi(τai) = τ(pi(ai)) = 0 shows that
every element of Oi is a root of pi. Therefore, deg pi ≥ deg fi. This proves fi = pi
and in particular, fi is irreducible over F . We have proved that f = f1 · · · fm is the
factorization of f into irreducibles in the ring F [x] and all of the factors fi have
the same degree.

Step 2. In the context of the proposition, assume F/k is a Galois extension.
Let U/F be a splitting field for f over F . Let X = {α1, . . . , αn} be the roots of f
in U . Let L = k(X) be the splitting field for f over k in U . Then L/k is Galois by
Theorem 5.3.18.

U

K = FL

F L

k

By Theorem 5.4.6, K = FL is a Galois extension of k containing K. By Theo-
rem 5.3.21, Step 2 reduces to Step 1. □

4.4. The Fundamental Theorem of Algebra. The purpose of this section
is to apply Galois Theory and some facts about the completion of the metric space
R to prove the Fundamental Theorem of Algebra.

As in Section 1.4, the field of real numbers is denoted R and the field of complex
numbers is denoted C. The proof of the Fundamental Theorem of Algebra utilizes
results from Calculus. By Theorem 1.4.2, an irreducible polynomial of odd degree
in R[x] is linear. By Proposition 1.4.3 (5), the ring C[x] contains no irreducible
quadratic polynomial.

Theorem 5.4.10. The field of complex numbers is algebraically closed. In par-
ticular, an irreducible polynomial over C is linear.

Proof. By Lemma 5.2.1, we show that every irreducible polynomial over C
is linear. Let F be a finite dimensional extension field of C. By Theorem 5.2.4, it
suffices to show that F = C. Since F is a finite dimensional separable extension
field of R, by Corollary 5.3.20, there is a finite dimensional Galois extension K/R
which contains F as an intermediate field. Let G be the Galois group of K over
R. Let S be a Sylow-2 subgroup of G. Then KS is an extension field of R and
dimRK

S is odd. If α ∈ KS , then dimR R(α) divides dimRK
S , hence is odd. By

Theorem 5.1.4, the degree of Irr.polyR(α) is odd. By Theorem 1.4.2, an irreducible
polynomial of odd degree in R[x] is linear. Therefore, KS = R. This proves S = G
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is a 2-group. For sake of contradiction, assume AutC(K) is a nontrivial 2-group.
By Theorem 2.7.1, there exists a normal subgroup H of AutC(K) of index 2. Then
KH is a field extension of C of degree 2. This is a contradiction, because by
Proposition 1.4.3 (5), the ring C[x] contains no irreducible quadratic polynomial.

K

F KH KS

C

R

□

Theorem 5.4.11. An irreducible polynomial in R[x] has degree 1 or 2. If f is
a monic polynomial of positive degree in R[x], then the unique factorization of f
into irreducible polynomials has the general form

f = (x− u1)
m1 · · · (x− ur1)

mr1 qn1
1 · · · qnr2

r2

where u1, . . . , ur1 are the distinct real roots of f , r1 ≥ 0, each mi ≥ 1, q1, . . . , qr2
are the distinct irreducible monic quadratic factors of f in R[x], r2 ≥ 0, and each
nj ≥ 1.

Proof. In C[x], f factors into linear factors. Let z = a + bi be a nonreal
complex number. By Example 4.4.12, the irreducible polynomial of z over R is
Irr.polyR(z) = (x− z)(x− z̄) = x2 − 2ax− (a2 + b2). The nonreal roots of f come
in conjugate pairs. The rest of the proof is left to the reader. □

4.5. Exercises.

Exercise 5.4.12. Prove that (2) is equivalent to (3) in Theorem 5.4.5.

Exercise 5.4.13. Prove Theorem 5.4.6 (2).

5. Galois Extensions, Some Special Cases

We begin this section by showing that to a Galois extension F/k there is asso-
ciated a k-linear functional TFk : F → k, called the trace, and a multiplicative map
NF
k : F → k, called the norm. In Section 5.5.2, Hilbert’s Theorem 90 is proved for

the special case when the Galois group Autk(F ) is a cyclic group. When F is the
splitting field over k of the polynomial xn−1, we say F/k is a cyclotomic extension
of k. Cyclotomic extensions are the subject of Section 5.5.3. In Section 5.5.4 we
prove Wedderburn’s Theorem which says that a finite division ring is a field. The
proof uses results from Chapters 2 and 5. In Section 5.5.5, many results and theo-
rems about finite fields are assembled into a fundamental theorem on finite fields.
Results from Section 5.5 will be applied in Section 5.6.
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5.1. The Trace Map and Norm Map. In this section we show that to a
Galois extension F/k are associated the trace map TFk : F → k and the norm
map NF

k : F → k. By Lemma 5.3.6, the left regular representation embeds F as
a subring of Homk(F, F ). Using this embedding, we show how to make the group
of linear functionals Homk(F, k) into an F -vector space. Since F/k is Galois, we
show that Homk(F, k) has dimension one over the field F and the trace map is a
generator.

Let F/k be a Galois extension with finite group G. For x ∈ F , define

(5.1) TFk (x) =
∑
σ∈G

σ(x)

and

(5.2) NF
k (x) =

∏
σ∈G

σ(x).

Since G is a group, for any τ ∈ G,

τ
(∑
σ∈G

σ(x)
)
=
∑
σ∈G

τσ(x)

=
∑
σ∈G

σ(x)

so the right hand side of (5.1) is fixed by every τ ∈ G. Likewise,

τ
(∏
σ∈G

σ(x)
)
=
∏
σ∈G

τσ(x)

=
∏
σ∈G

σ(x)

so the right hand side of (5.2) is fixed by G as well. Since FG = k, this means that
both TFk and NF

k are mappings from F to k. We call the mapping TFk the trace
from F to k and the mapping NF

k is called the norm from F to k. If x, y ∈ F and
a, b ∈ k, then

TFk (ax+ by) =
∑
σ∈G

σ(ax+ by)

= a
∑
σ∈G

σ(x) + b
∑
σ∈G

σ(y)

= aTFk (x) + bTFk (y).

Therefore, the trace is k-linear and represents an element of Homk(F, k). Also

NF
k (xy) =

∏
σ∈G

σ(xy)

=
∏
σ∈G

σ(x)
∏
σ∈G

σ(y)

= NF
k (x)NF

k (y).

Hence, the norm induces a homomorphism of multiplicative groups F ∗ → k∗.

Lemma 5.5.1. Let F/k be a Galois extension of fields with finite group G. Let
Homk(F, F ) be the ring of k-linear transformations of F .
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(1) If n = [G : 1], then Homk(F, F ) is an F -vector space of dimension n and
{σ | σ ∈ G} is a basis.

(2) There exists c ∈ F such that TFk (c) = 1.
(3) Homk(F, k) is an F -vector space of dimension 1 and {TFk } is a basis.

Proof. (1): Let n = dimk(F ). By Proposition 5.3.13, n = [G : 1]. By
Lemma 5.3.6, the left regular representation embeds F as a subring of Homk(F, F )
and by Proposition 4.3.8, and the F -vector space Homk(F, F ) has dimension n.
By Corollary 5.3.8, the set G = Autk(F ) is a linearly independent subset of the
F -vector space Homk(F, F ). By Theorem 4.3.4, G is a basis for the F -vector space
Homk(F, F ).

(2): By Theorem 5.3.7, there exists y ∈ F such that x =
∑
σ∈G σ(y) ̸= 0. Since

G is a group, τ(x) = x for every τ ∈ G. Therefore, x ∈ FG = k. Define c = x−1y.
Then TFk (c) =

∑
σ∈G σ(x

−1y) = x−1
∑
σ∈G σ(y) = 1.

(3): Using λ : F → Homk(F, F ) we can turn Homk(F, k) into an F -vector space.
For every f ∈ Homk(F, k) and a ∈ F , define af to be f ◦ ℓa. By Proposition 4.3.8,
Homk(F, k) is an F -vector space of dimension one. As an F -vector space, any
nonzero element f ∈ Homk(F, k) is a generator. By (2), the trace mapping TFk
is a generator for Homk(F, k) over F . This implies for every f ∈ Homk(F, k)
there is a unique α ∈ F such that f(x) = TFk (αx) for all x ∈ F . The mapping
F → Homk(F, k) given by α 7→ TFk ◦ ℓα is an isomorphism of k-vector spaces. □

Proposition 5.5.2. Suppose F/k is G-Galois where the group G has order
[G : 1] = n. Then there exist elements a1, . . . , an, y1, . . . , yn in F such that

(1) TFk (yjai) = δij (Kronecker delta), and

(2) for each σ ∈ G: a1σ(y1) + · · ·+ anσ(yn) =

{
1 if σ = 1

0 if σ ̸= 1
.

Proof. Let {a1, . . . , an} be a k-basis for F . For each j = 1, 2, . . . , n, let
fj : F → k be the projection onto coordinate j. That is, fj(ai) = δij (Kronecker
delta). For each x ∈ F ,

x =

n∑
j=1

fj(x)aj .

We say {(aj , fj) | j = 1, . . . , n} is a dual basis for F . By Lemma 5.5.1 (3), TFk is
a generator for Homk(F, k) over F . There exist unique y1, . . . , yn in F such that
for each x ∈ F , fj(x) = TFk (yjx) =

∑
σ∈G σ(yjx). Part (1) follows by substituting

x = ai. Combining these facts,

x =

n∑
j=1

fj(x)aj

=

n∑
j=1

∑
σ∈G

σ(yjx)aj

=
∑
σ∈G

(
σ(x)

n∑
j=1

σ(yj)aj

)
.

By Lemma 5.5.1 (1), G is a basis for Homk(F, F ) over F . Therefore,
∑n
j=1 σ(yj)aj =

δσ,1, which is (2). □
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Lemma 5.5.3. Suppose F/k is a Galois extension of fields with finite group
G. If H is a normal subgroup of G and E = FH , then TFk = TEk ◦ TFE and
NF
k = NE

k ◦NF
E .

Proof. Let x ∈ F . Then

TEk

(
TFE (x)

)
= TEk

(∑
σ∈H

σ(x)
)

=
∑

τ∈G/H

τ
(∑
σ∈H

σ(x)
)

=
∑

τ∈G/H

∑
σ∈H

τσ(x)

=
∑
ρ∈G

ρ(x)

= TFk (x).

The proof of the second identity is left to the reader. □

5.2. Hilbert’s Theorem 90. In Theorem 5.5.4 we prove Hilbert’s Theorem
90 for the special case where F/k is a Galois extension with finite cyclic Galois
group. For generalizations of Theorem 5.5.4, see [9, Theorem 12.5.25]

Theorem 5.5.4. (Hilbert’s Theorem 90) Let F/k be a Galois extension of fields
with finite group G. Assume G = ⟨σ⟩ is cyclic and u ∈ F . Then

(1) TFk (u) = 0 if and only if u = v − σ(v) for some v ∈ F .
(2) NF

k (u) = 1 if and only if u = v/σ(v) for some v ∈ F ∗.

Proof. Throughout the proof, assume G = {1, σ, σ2, . . . , σn−1} and σn = 1.
(1): If v ∈ F , then T (σ(v)) =

∑
τ∈G τσ(v) =

∑
ρ∈G ρ(v) = T (v). It follows

that T (v − σ(v)) = 0. Conversely, assume T (u) = 0. By Lemma 5.5.1 (2), there
exists w ∈ F with T (w) = 1. Starting with

v = uw + (u+ σ(u))σ(w) + (u+ σ(u) + σ2(u))σ2(w) + . . .

+ (u+ σ(u) + σ2(u) + · · ·+ σn−2(u))σn−2(w),

apply σ to get

σ(v) = σ(u)σ(w) + (σ(u) + σ2(u))σ2(w) + . . .

+ (σ(u) + σ2(u) + · · ·+ σn−1(u))σn−1(w).

Subtract σ(v) from v. Use the identities T (u) = u+ σ(u) + · · ·+ σn−1(u) = 0 and
T (w) = 1 to simplify

v − σ(v) = uw + uσ(w) + uσ2(w) + · · ·+ uσn−2(w)

−
(
σ(u) + σ2(u) + · · ·+ σn−1(u)

)
σn−1(w)

= u
(
(w + σ(w) + σ2(w) + · · ·+ σn−2(w)

)
− (−u)σn−1(w)

= u
(
(w + σ(w) + σ2(w) + · · ·+ σn−2(w) + σn−1(w)

)
= uT (w) = u.
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(2): If v ∈ F ∗, then N(σ(v)) =
∏
τ∈G τσ(v) = N(v). This shows N (v/σ(v)) =

1. Conversely, assume N(u) = 1. By Theorem 5.3.7 we know that

v = ux+ uσ(u)σ(x) + uσ(u)σ2(u)σ2(x) + · · ·+ uσ(u)σ2(u) · · ·σn−1(u)σn−1(x)

is nonzero for some x ∈ F . In this case, we have

u−1v = x+ σ(u)σ(x) + σ(u)σ2(u)σ2(x) + · · ·+ σ(u)σ2(u) · · ·σn−1(u)σn−1(x)

and

σ(v) = σ(u)σ(x) + σ(u)σ2(u)σ2(x) + · · ·+ σ(u)σ2(u) · · ·σn(u)σn(x)
= σ(u)σ(x) + σ(u)σ2(u)σ2(x) + · · ·+N(u)x

= σ(u)σ(x) + σ(u)σ2(u)σ2(x) + · · ·+ x.

This shows σ(v) = u−1v, hence u = v/σ(v). □

5.3. Cyclotomic Extensions. Let k be a field. We say F is a cyclotomic
extension of k of order n if F is the splitting field over k of xn−1. If char k = p > 0,
then we can factor n = pem where (m, p) = 1. Then xn − 1 = (xm)p

e − 1p
e

=
(xm − 1)p

e

, so the splitting field of xn − 1 is equal to the splitting field of xm − 1.
For this reason, we assume n is relatively prime to char k and xn − 1 is separable.
In the following, ϕ(n) denotes the Euler ϕ-function.

Lemma 5.5.5. Let k be any field. If m and n are positive integers and m | n,
then xm − 1 divides xn − 1 in the ring k[x]. Conversely, if the characteristic of k
does not divide m and xm − 1 divides xn − 1, then m | n.

Proof. We are given that n = km, for some k ≥ 1. Use Mathematical Induc-
tion on k. If k = 1, then this is trivial. Assume 1 < k and that the result holds for
k − 1. Consider

xn − 1 = (xm − 1)xn−m + (xn−m − 1).

Since n − m = (k − 1)m, by Mathematical Induction, xm − 1 divides xn−m − 1.
Therefore, xm − 1 divides the right hand side.

For the converse, let F be a field extension of k containing all of the roots of
xn − 1. By hypothesis, we can factor xn − 1 = (xm − 1)q(x) for some q(x) ∈ k[x].
If we let f = xm − 1, then f splits over F . Since char k does not divide m, we
have gcd(f, f ′) = 1. By Theorem 3.6.17 (1), f = xm − 1 has m distinct roots in
F . By Corollary 3.6.11, the set of roots of xm − 1 is a cyclic subgroup of F ∗ of
order m. That is, there exists an element α ∈ F ∗ such that α has order m. Then
αn − 1 = (αm − 1)q(α) = 0 says αn = 1. By Lemma 2.2.18, we have m | n. □

Theorem 5.5.6. Let F be a cyclotomic extension of k of order n. If char k =
p > 1, assume gcd(n, p) = 1. Then

(1) F = k(ζ) where ζ is a primitive nth root of 1 over k.
(2) F is a Galois extension of k and Autk(F ) is a subgroup of the group of units

in Z/n. The dimension dimk(F ) is a divisor of ϕ(n).

Proof. (1): By assumption, xn−1 is separable, and the group µn of nth roots
of unity in F is a cyclic group of order n, by Corollary 3.6.11. Let ζ be a primitive
nth root of unity in F . Therefore F = k(ζ) is a simple extension.

(2): Since F is the splitting field of a separable polynomial, F/k is Galois by
Theorem 5.3.18. The Galois group G = Autk(F ) acts on the cyclic group of order
n generated by ζ (Corollary 5.3.19). This defines a homomorphism G→ Aut(⟨ζ⟩).
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Since F = k(ζ), this mapping is one-to-one. By Theorem 2.3.30, the order of
Aut(⟨ζ⟩) is ϕ(n). □

Let F be a cyclotomic extension of k of order n. If char k = p > 1, assume
(n, p) = 1. By Theorem 5.5.6 (1), the group µn of nth roots of unity in F is a cyclic
group of order n. There are ϕ(n) generators of µn. The nth cyclotomic polynomial
over k is

Φn(x) = (x− ζ1) · · · (x− ζϕ(n))

where ζ1, . . . , ζϕ(n) are the ϕ(n) primitive nth roots of unity in µn. We have seen
in Examples 5.2.9 and 3.7.8 that if p is a prime number and k = Q, then Φp(x) =
xp−1 + xp−2 + · · ·+ x+ 1 is irreducible in Q[x].

Proposition 5.5.7. Assume k is the prime subfield of F and F is a cyclotomic
extension of k of order n. If char k = p > 1, assume (n, p) = 1. Then

(1) xn − 1 =
∏
d|nΦd(x).

(2) Φn(x) ∈ k[x].
(3) If k = Q, then Φn(x) ∈ Z[x].

Proof. (1): By Theorem 2.3.27, we can partition µn into disjoint subsets

µn =
⋃
d|n

{ζ ∈ µn | |ζ| = d}.

The set elements of order d in µn has cardinality ϕ(d). The corresponding factor-
ization of xn − 1 is xn − 1 =

∏
d|n Φd(x).

(2): The proof is by induction on n. For n = 1, Φ1(x) = x − 1 is in k[x].
Assume n > 1 and that (2) is true for all 1 ≤ m < n. Define g(x) =

∏
d|n
d̸=n

Φd(x).

By our induction hypothesis, g(x) ∈ k[x]. By (1), xn − 1 = g(x)Φn(x). By the
Division Algorithm, Theorem 3.6.3, Φn(x) ∈ k[x].

(3): In the proof of (2), by the induction hypothesis, g(x) ∈ Z[x]. Moreover,
g(x) is monic, so Theorem 3.6.3 implies Φn(x) ∈ Z[x]. □

Proposition 5.5.8. If Φn(x) is the nth cyclotomic polynomial over Q, then
Φn(x) is irreducible.

Proof. Let F be a cyclotomic extension of order n over the field Q and Φn(x)
the nth cyclotomic polynomial over Q. We know from Proposition 5.5.7 that Φn(x)
is a monic polynomial in Z[x] and has degree ϕ(n). By Theorem 3.7.4 (Gauss’
Lemma) it suffices to show that Φn(x) is irreducible in Z[x]. Let f(x) be a monic
irreducible factor of Φn(x) in Z[x] and write Φn(x) = f(x)g(x). To complete the
proof, we show that Φn(x) = f(x). To do this, we show that f(x) has degree ϕ(n).
Let ζ ∈ F be a root of f . Then ζ is a root of Φn(x), hence is a primitive nth root
of unity. By Theorem 2.3.27, a typical primitive nth root of unity is of the form
ζd, where 0 < d < n and gcd(d, n) = 1. We show that each such ζd is a root of f .
We do this is several steps.

First let p be a prime divisor of d. Then ζp is a root of Φn(x) = f(x)g(x). We
show ζp is a root of f . For contradiction’s sake, assume g(ζp) = 0. Then ζ is a root
of g(xp). Since f(x) is irreducible, f = Irr.polyQ(ζ) and by Theorem 5.1.4 we have
f(x) | g(xp) in Q[x]. By Theorem 3.6.3 applied over Z and Q, we have g(xp) =
f(x)h(x) where h ∈ Z[x]. We apply Theorem 3.6.2 (1) to reduce the coefficients
of the polynomials modulo p. The image of the polynomial g(xp) = f(x)h(x)
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under the natural map Z[x] → Z/(p)[x] will be denoted [g(xp)] = [f(x)][h(x)].
The Frobenius homomorphism Z/(p)[x] → Z/(p)[x] of Exercise 3.2.32 fixes the
field Z/(p), hence [g(xp)] = [g(x)]p = [f(x)][h(x)]. By unique factorization, some
irreducible factor of [f(x)] divides [g(x)]. By Proposition 5.5.7 (1), for some q(x) ∈
Z[x] we have xn−1 = Φn(x)q(x) = f(x)g(x)q(x). Reduce modulo p to get xn−1 =
[f(x)][g(x)][q(x)]. Since [f(x)] and [g(x)] have a common factor, this proves xn− 1
is not separable, a contradiction. This proves ζp is a root of f(x).

Now assume 0 < d < n and gcd(d, n) = 1. We show that ζd is a root of f .
Factor d = p1 · · · pm into a product of primes. If m = 1, then by the first step, ζd

is a root of f . Inductively assume m > 1 and that ζp1···pm−1 is a root of f . Then
by the first step, ζd = (ζp1···pm−1)

pm is a root of f . Since there are ϕ(n) choices for
d, we have shown f has ϕ(n) roots, hence Φn(x) = f(x) is irreducible. □

Corollary 5.5.9. Let F be a cyclotomic extension of order n over the field Q
and Φn(x) the nth cyclotomic polynomial over Q. Then the following are true.

(1) If ζ ∈ F is a primitive nth root of unity, then Φn(x) = Irr.polyQ(ζ).
(2) F ∼= Q[x]/(Φn).
(3) F is a Galois extension of Q, the Galois group AutQ(F ) is isomorphic to the

group of units in the ring Z/(n), and dimQ(F ) = ϕ(n).

Corollary 5.5.10. If n > 1, then xn − 1 =
∏
d|n Φd(x) is the factorization of

xn − 1 into irreducible factors in the unique factorization domain Z[x].

5.4. Wedderburn’s Theorem. In Theorem 5.5.11, we apply Corollary 5.5.10
and the Class Equation (Corollary 2.4.14) to prove that every finite division ring is
a field. This is a classic result of J. H. M. Wedderburn, [19]. The proof given here
is due to E. Witt, [32].

Theorem 5.5.11. (Wedderburn’s Theorem) Let D be a ring. The following are
equivalent.

(1) D is a finite field.
(2) D is a finite domain.
(3) D is a finite division ring.

Proof. (2) implies (3): This is Theorem 3.2.21.
(1) implies (3) and (3) implies (2): These are by Definition 3.1.3.
(3) implies (1): Let k be the center of D. It is routine to check that k is a field.

Let q denote the order of k. Then D is a finite k-vector space of dimension n, for
some n ≥ 1. Hence, the order of D is qn. We prove that n = 1, hence k = D.
For contradiction’s sake, assume n > 1. Then D∗, the group of units of D, is a
nonabelian group of order qn − 1. The first part of the proof is to write a formula
for the class equation of D∗ in terms of the number q. Given a noncentral element
u ∈ D−k, we wish to represent the order of the normalizer of u in D∗ as a function
of q. The inner automorphism defined by u is σu : D → D which is the function
defined by σu(x) = u−1xu (see Example 3.2.2 (2)). Let Nu = {x ∈ D | ux = xu} be
the subset of D fixed by σu. As in Proposition 5.3.1, it is routine to check that Nu
is a subring of D and Nu is a division ring. Since u is not central, Nu is a proper
subring of D which contains k. Then Nu is a finite dimensional k-vector space, and
has order qr, where 1 ≤ r < n. Also, D is a finite dimensional vector space over Nu.
If m is the dimension of D as a vector space over Nu, then by Proposition 4.3.8,
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qn = (qr)m, which implies r divides n. The group of units N∗
u is the normalizer

of u in the group D∗. Since Nu is a division ring, the order of N∗
u is qr − 1. The

index [D∗ : N∗
u ] is equal to (qn − 1)/(qr − 1) (Corollary 2.2.14). Let u1, . . . , ut be

a complete set of representatives for the noncentral conjugacy classes of D∗. For
each i, Nui

has order qri , for some ri such that 1 ≤ ri < n. By Corollary 2.4.14,

(5.3) |D∗| = |k∗|+
t∑
i=1

[D∗ : N∗
ui
]

is the class equation for D∗. From the above, in terms of q, (5.3) is

(5.4) qn − 1 = (q − 1) +

t∑
i=1

qn − 1

qri − 1
.

This completes the first part of the proof. The second part of the proof is to
show that (5.4) leads to a contradiction, if n > 1. By the factorization formula of
Corollary 5.5.10, we see that the integer Φn(q) divides the left hand side of (5.4) as
well as each term (qn − 1)/(qri − 1) appearing in the summation on the right hand
side. Therefore, Φn(q) divides q− 1. The proof is complete after we show that this
is impossible. Since q ≥ 2, for any primitive nth root of unity ζ in C∗, the reader
should verify that |q − ζ| > q − 1. Therefore, if ζ1, . . . , ζϕ(n) are the primitive nth
roots of unity in C∗, then |Φn(q)| = |q − ζ1| · · · |q − ζϕ(n)| > (q − 1). Therefore,
Φn(q) is not a divisor of q − 1. □

5.5. Finite Fields. A finite field has positive characteristic and is finite di-
mensional over its prime subfield. We prove in Theorem 5.5.14 (9) that a finite
extension of finite fields is a cyclic extension.

Lemma 5.5.12. Let F be a field and assume charF = p is positive. For any
r > 0, the mapping φ : F → F defined by x 7→ xp

r

is a homomorphism of fields. If
F is finite, then φ is an automorphism and F is a perfect field. If r = 1, then φ is
called the Frobenius homomorphism.

Proof. It follows from Exercise 3.2.32 that φ is a monomorphism. If F is
finite, then φ is an automorphism, by Exercise 1.1.11. By Definition 5.4.4, F is a
perfect field. □

Lemma 5.5.13. For each prime number p and for every n ≥ 1, there exists a
field F of order pn.

Proof. Let k denote the field Z/p. Let f = xp
n − x ∈ k[x]. Let F be the

splitting field of f over k. Since f ′ = −1, by Theorem 3.6.17, f has no multiple
roots in F . Therefore, f is separable and there are pn distinct roots of f in F . Let
φ : F → F be the automorphism of F defined by x 7→ xp

n

. If u ∈ F is a root of
f , then φ(u) = u. By Exercise 5.3.25, the prime field k is fixed by φ. Since F is
generated over k by roots of f , F is fixed point-wise by φ. Every u in F is a root
of f , and F has order pn. □

Theorem 5.5.14. Let F be a finite field with charF = p. Let k be the prime
subfield of F and n = dimk(F ).

(1) The group of units of F is a cyclic group.
(2) F = k(u) is a simple extension, for some u ∈ F .
(3) The order of F is pn.
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(4) F is the splitting field for the separable polynomial xp
n − x over k.

(5) F/k is a separable extension. F is a perfect field.
(6) Any two finite fields of order pn are isomorphic as fields.
(7) F/k is a Galois extension.
(8) The Galois group Autk(F ) is cyclic of order n and is generated by the Frobenius

homomorphism φ : F → F defined by φ(x) = xp.

(9) If d is a positive divisor of n, then E = {u ∈ F | upd = u} is an intermediate
field of F/k which satisfies the following.
(a) dimE(F ) = n/d, and dimk(E) = d.
(b) If φ is the generator for Autk(F ), then AutE(F ) is the cyclic subgroup

generated by φd.
(c) E/k is Galois and Autk(E) is the cyclic group of order d generated by the

restriction φ|E.
(10) If E is an intermediate field of F/k, and d = dimk(E), then d divides n and E

is the field described in Part (9).

Proof. Parts (1) – (6) are from Theorem 5.2.12 and Lemma 5.5.12. Parts (7)
and (8) are from Example 5.3.16. The proofs of Parts (9) and (10) follow straight
from Theorem 5.3.21 and Part (8). □

5.5.1. Irreducible Polynomials over Finite Fields. Throughout this section, p
will be a fixed prime number and Fp = Z/p is the prime field of order p.

Theorem 5.5.15. The factorization of the polynomial xp
n − x in Fp[x] into

irreducible factors is equal to the product of all the monic irreducible polynomials
of degree d where d runs through all divisors of n.

Proof. Is left to the reader. □

Theorem 5.5.16. Let ψ(n) denote the number of distinct monic irreducible
polynomials of degree n in Fp.

(1) If µ is the Möbius function, then ψ(n) =
1

n

∑
d|n

µ(d)pn/d =
1

n

∑
d|n

µ
(n
d

)
pd.

(2) ψ(n) >
pn

2n
.

Proof. (1): By Theorem 5.5.15, pn =
∑
d|n

dψ(d). Now apply the Möbius In-

version Formula (Theorem 1.2.16).
(2): The reader should verify the identities:

nψ(n) = pn +
∑

d|n,d<n

µ
(n
d

)
pd

≥ pn −
∑

d|n,d<n

pd

≥ pn −
∑

1≤d≤n/2

pd

≥ pn − p⌊n/2⌋+1
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where ⌊n/2⌋ is the greatest integer less than n/2. If n > 2, then ⌊n/2⌋+1 ≤ n− 1,
so

ψ(n) >
1

n

(
pn − pn−1

)
=
pn

n

(
1− 1

p

)
≥ pn

2n
.

If n = 2, the formula can be derived from ψ(2) = (1/2)(p2 − p). □

5.6. Exercises.

Exercise 5.5.17. Let k be a field. Show that for any n ≥ 1 there exists a
polynomial f ∈ F [x] of degree n such that f has no repeated roots.

Exercise 5.5.18. Let F/k be a Galois extension of fields with finite group G.
Assume G = ⟨σ⟩ is cyclic.

(1) Show that the function D : F ∗ → F ∗ defined by D(u) = u/σ(u) is a
homomorphism of abelian groups.

(2) Show that the kernel of D is k∗, and the image of D is the kernel of
NF
k : F ∗ → k∗.

Exercise 5.5.19. For the cyclic Galois extension C/R of degree two, determine
the image of the norm map NC

R : C∗ → R∗ and show that it is a subgroup of R∗ of
index two.

Exercise 5.5.20. Let F/k be a Galois extension of fields with finite group
G. Assume G = ⟨σ⟩ is cyclic. This exercise outlines another proof of Part (1) of
Hilbert’s Theorem 90. Without using Theorem 5.5.4, prove:

(1) The function D : F → F defined by D(x) = x− σ(x) is a homomorphism
of k-vector spaces.

(2) The kernel of D is k, and the image of D is the kernel of the trace map
TFk : F → k.

Exercise 5.5.21. Let F/k be an extension of fields and assume dimk F = n
is finite. As in Lemma 5.3.6, the left regular representation λ : F → Homk(F, F )
makes Homk(F, F ) into a left F -vector space. Prove:

(1) If {v1, . . . , vn} is a k-basis for F and {ϕ1, . . . , ϕn} is an F -basis for the
ring of endomorphisms Homk(F, F ), then the matrix (ϕi(vj)) is invertible
in Mn(F ).

(2) If F/k is a Galois extension of fields with group G = {σ1, . . . , σn}, then
the matrix (σi(vj)) in Mn(F ) is invertible.

Exercise 5.5.22. Prove Theorem 5.5.15.

Exercise 5.5.23. Let K be a finite field of order pd. As in Theorem 5.5.16, let
ψ(n) be the number of irreducible monic polynomials of degree n in Fp[x]. If d | n,
show that there are at least ψ(n) irreducible monic polynomials of degree n/d in
K[x].

Exercise 5.5.24. Let k be a finite field and K/k a finite dimensional extension
of fields, with dimkK = d. Let n be an arbitrary positive integer and A = K ⊕
· · · ⊕K the direct sum of n copies of K.

(1) Show that if there exists a surjective k-algebra homomorphism f : k[x] →
A, then there exist at least n distinct irreducible monic polynomials in
k[x] of degree d.



254 5. FIELDS

(2) Find an example of k and A such that the k-algebra A is not the homo-
morphic image of k[x].

(3) Show that for some integer m ≥ 1, there exist n distinct irreducible monic
polynomials h1, . . . , hn in k[x] such that each hi has degree md.

(4) Show that for some integer m ≥ 1, if F/k is a finite extension field with
dimk F = md, then the direct sum F ⊕ · · · ⊕ F of n copies of F is the
homomorphic image of k[x]. Show that m can be chosen to be relatively
prime to d.

(5) Show that there is a separable polynomial g ∈ k[x] such that A is isomor-
phic to a subalgebra of k[x]/(g).

Exercise 5.5.25. Classify up to isomorphism all finite rings of order four.
For a generalization of this result to rings of order p2, p a prime number, see
Exercise 5.5.26. The reader interested in rings that do not necessarily contain a
unit element is referred to the classification obtained in [26].

Exercise 5.5.26. Let p be a prime number and A a finite ring of order p2.

(1) Prove that either A is isomorphic to Z/(p2), or the characteristic of A is
p and A is isomorphic as Z/p-algebras to (Z/p)[x]/(ϕ), for some monic
quadratic polynomial ϕ with coefficients in the field Z/p.

(2) Prove that A is commutative.
(3) Prove that A is isomorphic to exactly one of the following four rings:

(a) Z/(p2) (if char(A) = p2).
(b) Z/p⊕ Z/p (if char(A) = p and ϕ factors and is separable).
(c) (Z/p)[x]/(x2) (if char(A) = p and ϕ is a square).
(d) a finite field of order p2 (if char(A) = p and ϕ is irreducible).

Exercise 5.5.27. If F/k is an extension of finite fields, show that the image of
the norm map NF

k : F ∗ → k∗ is equal to k∗.

Exercise 5.5.28. Let k = F2 be the finite field of order 2. Show that the factor
ring F = k[x, y]/(x2 + x+ 1, y3 + y + 1) is a field. Determine the order of F .

6. Cyclic Galois Extensions

We say a finite Galois extension of fields F/k is cyclic of degree n if the group
Autk(F ) is a cyclic group of order n.

6.1. Artin-Schreier Theorem. Let p be a prime number and k a field of
characteristic p. In [3], E. Artin and O. Schreier described the Galois extensions
F/k of degree p. Their results are summarized in Theorem 5.6.2 below, the so-called
Artin-Schreier Theorem.

Example 5.6.1. Let k be a field of positive characteristic p. For any a ∈ k,
the polynomial f = xp − x− a ∈ k[x] is separable over k. To see this, assume u is
a root of f in any extension field F/k. Let i ∈ Z/p be any element of the prime
field of k. Then f(u+ i) = (u+ i)p − (u+ i)− a = up + i− u− i− a = f(u) = 0.
Therefore, f has p distinct roots in F , namely u, u+ 1, . . . , u+ p− 1.

Theorem 5.6.2. (Artin-Schreier) Let k be a field of positive characteristic p.

(1) If F/k is a cyclic Galois extension of degree p, then there exists a ∈ k such
that f = xp − x− a is an irreducible separable polynomial over k and F is the
splitting field for f over k. In this case F = k(u), where u is any root of f .
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(2) If a ∈ k and f = xp − x− a, then
(a) f is separable, and
(b) either f is irreducible over k, or splits in k[x].

(3) If a ∈ k and f = xp − x− a is irreducible over k, then
(a) F = k[x]/(f) is a splitting field for f , and
(b) F/k is a cyclic Galois extension of k of degree p.

Proof. (1): Let G = Autk(F ) = ⟨σ⟩. Since G is simple and abelian (Ex-
ercise 2.2.30), there are no proper intermediate fields for F/k. Since char(k) =
dimk(F ) = p, TFk (1) = p = 0. By Theorem 5.5.4, there is v ∈ F such that
v − σ(v) = 1. If u = −v, then σ(u) = 1 + u. This shows u ̸∈ k, hence F = k(u).
Note that σ(up) = (σ(u))

p
= (1 + u)

p
= 1 + up, and σ(up − u) = σ(up) − σ(u) =

(1+up)− (u+1) = up−u. If a = up−u, then a ∈ k and u satisfies the polynomial
f = xp − x− a. Since the dimension of k(u) over k is p, this implies f is equal to
the irreducible polynomial of u. By Example 5.6.1, f is separable and splits in F .

(2) and (3): Let f = xp − x − a in k[x]. Let F be a splitting field for f . As
was shown in Example 5.6.1, f is separable and if u ∈ F is a root of f , then the p
distinct roots of f are u, u+ 1, . . . , u+ p− 1, hence F = k(u). By Theorem 5.3.18,
F/k is a Galois extension. For any τ in Autk(F ), by Proposition 5.3.2, τ(u) is a
root of f . Thus, τ(u) − u is an element of the prime field Z/p. Define a function
θ : Autk(F ) → Z/p by θ(τ) = τ(u) − u. If σ is another element of Autk(F ), then
σ(τ(u)− u) = τ(u)− u. Hence στ(u)− σ(u) = τ(u)− u. From this we see that

(6.1) στ(u)− u = σ(u) + τ(u)− u− u.

The left hand side of (6.1) is θ(στ), the right hand side is θ(σ) + θ(τ). This shows
θ is a homomorphism from the group Autk(F ) to the additive cyclic group Z/p.
By Proposition 5.3.2, θ is one-to-one. Since Z/p is a simple group, either Autk(F )
has order 1 or p. By Theorem 5.3.21, if Autk(F ) has order 1, then F = k and
f splits in k[x]. If Autk(F ) has order p, then dimk(F ) = p. Since F = k(u), by
Theorem 5.1.4, Irr.polyk(u) has degree p. Therefore, f = Irr.polyk(u). □

6.2. Kummer Theory. Kummer Theory is the study of cyclic Galois exten-
sions of a field containing sufficiently many roots of unity and is named after E.
Kummer, a nineteenth century German number theorist. If ζ ∈ k∗ and ζ generates
a subgroup of order n in k∗, then we say ζ is a primitive nth root of 1 in k and
write ζ = n

√
1. There are at most n solutions to xn − 1 in k, so by Theorem 2.3.27

the subgroup ⟨ζ⟩ has ϕ(n) generators. That is, if k contains a primitive nth root of
1, then k contains ϕ(n) primitive nth roots of 1. A cyclic extension F/k of degree

n is called a Kummer extension if n
√
1 ∈ k.

Theorem 5.6.3. Let n > 0 and assume k is a field containing a primitive nth
root of 1. The following are equivalent.

(1) F/k is a cyclic Galois extension of degree d, for some positive divisor d of n.
(2) F is a splitting field over k of xn − a for some a ∈ k∗.
(3) F is a splitting field over k of xd−a for some a ∈ k∗ and some positive divisor

d of n.

Proof. Throughout the proof, let ζ = n
√
1 be a primitive nth root of 1 in k.

(2) implies (1): Let α be a root of xn − a in F . For each i ≥ 0 we have(
ζiα
)n

= (ζn)
i
αn = a, so the roots of xn − a in F are {ζiα | 0 ≤ i < n}. This
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shows xn − a is separable. Also, since ζ ∈ k, this implies F = k(α) is a simple
extension. If σ ∈ G = Autk(F ), then σ(α) = ζiα for some i such that 0 ≤ i < n.
As σ runs through the nonidentity elements of G, consider the positive numbers i
such that σ(α) = ζiα and pick the smallest. Fix σ ∈ G, such that σ(α) = ζiα and
i is minimal. We prove that G is generated by σ. Let τ be any element of G. Then
τ(α) = ζjα and we can assume 0 < i ≤ j < n. Dividing, j = iq+r, where 0 ≤ r < i.
Now σq(α) = ζqiα. Therefore, σ−qτ(α) = σ−q(ζjα) = ζjσ−q(α) = ζjζ−qiα = ζrα.
By the choice of i we conclude that r = 0, so τ = σq. The order of G is equal to
the order of ζi, which is a divisor of n.

(3) implies (2): Assume F is the splitting field of xd− a where d is a divisor of

n, and a ∈ k. Let ρ = ζn/d. Then ρ = d
√
1. Let α ∈ F satisfy αd = a. Then xd − a

factors in F [x] as (x− α)(x− ρα) · · · (x− ρd−1α). This implies F = k(α), because
ρ ∈ k. Consider the polynomial xn − an/d. For any i such that 0 ≤ i < n we see

that
(
ζiα
)n

= αn =
(
αd
)n/d

= an/d. So xn − an/d splits in F .
(1) implies (3): Assume F/k is cyclic of degree d and that σ is a generator for

G = Autk(F ). Since ρ = ζn/d = d
√
1 is in k, the norm of ρ is N(ρ) = ρd = 1. By

Theorem 5.5.4, there is u ∈ F ∗ such that ρ = u/σ(u). Setting v = u−1, we have
ρ = v−1σ(v), or σ(v) = ρv. Then σ(vd) = (ρv)d = vd. This says vd ∈ k and v
satisfies the polynomial xd − vd. The roots of xd − vd are {v, ρv, . . . , ρd−1v}. Note
that σi(v) = ρiv, for all i such that 0 ≤ i < d. If f is the irreducible polynomial
for v, then f has d roots in F . Therefore deg(f) = d and f = xd − vd. We have
shown that F is the splitting field of f and F = k(v). □

6.3. Radical Extensions. Let α and β be elements of a field F , such that
αn = β, for some n ≥ 2. Then β is the nth power of α, and α is an nth root of β. In
this case we say α is a radical of β. Before stating the general definition of solvability
by radicals, we consider a case familiar to everyone, the solution of a quadratic
equation. If k is a field with characteristic not equal to 2 and f = ax2 + bx + c is
a polynomial of degree 2 over k, then the roots of f in a splitting field for f over
k are given by the quadratic formula. They are

(
−b±

√
b2 − 4ac

)
/(2a). If we set

u =
√
b2 − 4ac, then the field k(u) is a splitting field for f . The element u is a

radical of b2 − 4ac and we say k(u) is a radical extension of k. Since the roots of
f lie in a radical extension, the quadratic polynomial f is said to be solvable by
radicals.

Definition 5.6.4. Let k be a field. A radical tower over k is a tower of field
extensions

k = F0 ⊆ F1 ⊆ · · · ⊆ Fn

such that for each i ≥ 1, Fi = Fi−1(ui) and urii ∈ Fi−1 for some positive integer
ri. We say Fn is a radical extension of k. Notice that Fi = k(u1, . . . , ui), for
i = 1, . . . , n. If f(x) ∈ k[x], we say f is solvable by radicals in case there is a radical
extension F/k such that f splits over F .

In Lemma 5.6.5 below we prove that when the Embedding Theorem, Corol-
lary 5.3.20, is applied to embed a radical extension F/k in a Galois extension K/k,
then the extension K/k is also a radical extension.

Lemma 5.6.5. Let F/k be a finite dimensional separable extension of fields.
Then there is a field K satisfying the following.
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(1) k ⊆ F ⊆ K is a tower of field extensions.
(2) K/k is a Galois extension.
(3) There exist intermediate fields F1, . . . , Fm of K/k such that

(a) each Fi is isomorphic to F as a k-algebra, and
(b) K = F1F2 · · ·Fm.

(4) If F/k is a radical extension, then K/k is a radical extension.

Proof. Write F = k(u1, . . . , un). For each i in {1, . . . , n}, let fi be the ir-
reducible polynomial Irr.polyk(ui). Let K be the splitting field for f1 · · · fn over
F . By Corollary 5.3.20, the field K satisfies parts (1) and (2). We prove that K
satisfies (3). Let α ∈ K be an arbitrary root of f1 · · · fn. Then α is a root of fi, for
some i. By Theorem 5.1.5, there is a k-algebra isomorphism θ : k(ui) → k(α). By
Lemma 5.2.7, θ extends to a k-algebra automorphism θ̄ : K → K. Then θ̄(F ) is an
intermediate field of K/k which is k-isomorphic to F and contains α. Since K/k is
generated by the roots α of f1 · · · fn, there is a finite number of fields of the form
θ̄(F ) that generate K.

(4): We are given F = k(u1, . . . , un), where urii is in k(u1, . . . , ui−1). Let
F1, . . . , Fm be as in (3). For each i, there is a k-algebra isomorphism Fi ∼= F .
Therefore, Fi is a radical extension of k. For each j we have Fj = k(uj1, . . . , ujn),
where uriji is in k(uj1, . . . , uj,i−1). Therefore

K = F1F2 · · ·Fm = k(u11, . . . , u1n, u21, . . . , u2n, . . . , um1, . . . , umn)

is a radical extension of k. □

Although Theorems 5.6.6 and 5.6.7 below are true in more generality, we assume
in both that the base field k has characteristic zero. Moreover, in Theorem 5.6.6
we assume that the polynomial xn− 1 splits in k for each n ≥ 1. These restrictions
are for the sake of brevity of the presentation as well as the simplification of the
proofs. In Theorem 5.6.6 we show that if f is a polynomial over k that is solvable
by radicals, then the Galois group of f is necessarily a solvable group. In other
words, if the Galois group of f over k is not solvable, then f is not solvable by
radicals. In Theorem 5.6.7 we show that if the Galois group of f is solvable, then f
is solvable by radicals. We know from Corollary 2.10.14 that the symmetric group
Sn is solvable if and only if n ≤ 4. By Corollary 5.3.19, the splitting field of an
irreducible polynomial of degree 4 or less embeds as a subgroup of S4. Hence, we
prove that in characteristic zero a polynomial of degree 4 or less is solvable by
radicals. The famous theorem of Abel says that the general polynomial of degree 5
or higher is not solvable by radicals. This is proved below in Corollary 5.7.11.

Theorem 5.6.6. Let k be a field of characteristic zero and assume for each
n > 0 that xn − 1 splits over k. Let p(x) ∈ k[x]. If p(x) is solvable by radicals over
k, then the Galois group of p(x) is a solvable group.

Proof. Since p(x) is solvable by radicals, there is a radical tower

k = F0 ⊆ F1 ⊆ · · · ⊆ Fn

positive integers r1, . . . , rn such that Fi = Fi−1(ui), u
ri
i ∈ Fi−1, and p(x) splits

over Fn. By Lemma 5.6.5, we can assume Fn is a Galois extension over k. By
Kummer Theory (Theorem 5.6.3), Fi is a Galois extension of Fi−1 and AutFi−1

Fi
is cyclic. By the Fundamental Theorem of Galois Theory (Theorem 5.3.21), Fn is
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Galois over Fi, AutFi
(Fn) is a normal subgroup of AutFi−1

(Fn) and

AutFi−1
Fi ∼= AutFi−1

(Fn)/AutFi
(Fn).

Therefore the series of groups

Autk (Fn) ⊇ AutF1 (Fn) ⊇
· · · ⊇ AutFi−1 (Fn) ⊇ AutFi (Fn) ⊇ · · ·

⊇ AutFn−1
(Fn) ⊇ ⟨e⟩

is a normal series and at each step the quotient is an abelian group. So the series
is a solvable series for Autk Fn. Let E be the splitting field for p(x) over k in Fn.
Then E is an intermediate field. By Theorem 5.3.18, E is a Galois extension of k.
By the Fundamental Theorem of Galois Theory, Autk E is a homomorphic image
of Autk Fn. By Exercise 2.10.18 , Autk E is solvable. □

Theorem 5.6.7 is a partial converse to Theorem 5.6.6. In characteristic zero, if
f is a polynomial with solvable Galois group, then f is solvable by radicals.

Theorem 5.6.7. Let k be a field of characteristic zero, f ∈ k[x] a separable
polynomial and E a splitting field for f . If Autk(E) is solvable, then f is solvable
by radicals. That is, there exists a radical extension of k that contains E.

Proof. Let n = dimk(E). Let F = E(ζ) be a cyclotomic extension of E of
order n. That is, ζ is a primitive nth root of unity over k.

F = E(ζ)

E k(ζ)

k

By Theorem 5.3.18, E/k is a Galois extension and by hypothesis Autk(E) is a
solvable group. By Theorem 5.4.6, F = E(ζ) is a Galois extension of k(ζ) and
G = Autk(ζ)(F ) embeds as a subgroup of Autk(E). By Exercise 2.10.18, G is a
solvable group. By Exercise 2.10.20, G has a composition series G = G0 ⊇ G1 ⊇
G2 ⊇ · · · ⊇ Gm = ⟨e⟩ where the factor group Gi/Gi+1 is cyclic of order [Gi : Gi+1],
a prime divisor of |G|. By Theorem 5.3.21 there is a tower of field extensions
F = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fm = k(ζ) and Fi/Fi+1 is a cyclic extension, hence a
Kummer extension. By Theorem 5.6.3, Fi = Fi+1(vi) is a radical extension. Since
k(ζ) is a radical extension, this proves F/k is a radical extension. □

6.4. Exercises.

Exercise 5.6.8. Let k be a field, n ≥ 1 and a ∈ k. Let f = xn − a and F/k a
splitting field for f . Show that the following are equivalent

(1) Every root of f in F is a simple root.
(2) F [x]/(f) is a direct sum of fields.
(3) n = 1 or na ̸= 0.
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Exercise 5.6.9. This exercise is a continuation of Exercise 4.2.25. Let R be
a UFD with quotient field K. Assume the characteristic of R is not equal to 2.
Let a ∈ R be an element which is not a square in R and f = x2 − a ∈ R[x]. Let
S = R[x]/(f), L = K[x]/(f).

(1) Show that there is a commutative square

S // L

R

OO

// K

OO

where each arrow is the natural map and each arrow is one-to-one.
(2) Show that L is the quotient field of S.
(3) AutK L = ⟨σ⟩ is a cyclic group of order two and L/K is a Galois extension.
(4) If σ : L → L is the automorphism of order two, then σ restricts to an

R-automorphism of S.
(5) The norm map NL

K : L→ K restricts to a norm map NS
R : S → R.

Exercise 5.6.10. Let p be a prime number, and F/k an extension of fields
which is cyclic of degree pn. If E is an intermediate field such that F = E(a), and
E/k is cyclic of degree pn−1, then F = k(a).

Exercise 5.6.11. Let k be a field of positive characteristic p.

(1) The map a 7→ ap−a defines a homomorphism of additive groups φ : k → k.
Prove that a cyclic extension field E/k of degree p exists if and only if the
map φ is not onto.

(2) In this exercise, we outline a proof that a cyclic extension field E/k of
degree pn−1 can be embedded in a cyclic extension field F/k of degree pn.
For the complete classification of cyclic extensions F/k of degree pn, the
interested reader is referred to [1]. Assume n > 1, E/k is cyclic of degree
pn−1, and Autk(E) = ⟨σ⟩.
(a) Show that there exists a, b ∈ E satisfying: TEk (a) = 1 and σ(b)− b =

ap − a.
(b) Show that xp − x− a is irreducible in E[x].
(c) Let F = E[x]/(xp − x− a). Show that F/E is cyclic of degree p and

F/k is cyclic of degree pn.

Exercise 5.6.12. Let K be a finite extension field of Q. Prove that K contains
only a finite number of roots of unity.

7. Transcendental Field Extensions

For a finite extension of fields K/k we prove that a transcendence base exists
and any two transcendence bases have the same number of elements. Therefore, the
transcendence degree of the extension is well defined. These notions play important
roles in Algebraic Geometry. The field of rational functions K on an algebraic
variety V is a finite extension of the ground field k. The transcendence degree of
K/k is equal to the dimension of V . In other words, the number of topological
degrees of freedom on V is equal to the number of algebraic degrees of freedom in
K. In a fundamental theorem on symmetric rational functions we prove that the
transcendence degree of the field of symmetric rational functions in n variables over
k is equal to n. Moreover, we show that the field of symmetric rational functions is
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generated by the elementary symmetric polynomials, hence a transcendence base
is constructed. In a fundamental theorem on symmetric polynomials we prove
that the ring of symmetric polynomials is generated by the elementary symmetric
polynomials. In fact, we show that the ring of symmetric polynomials contains a
transcendence base for the field of symmetric rational functions. This is called a
globalization result, because rational functions in general have a nonempty pole
set, but polynomials do not. There is a version of Emmy Noether’s Normalization
Lemma (see [10, Theorem 8.4.6]) that says under certain sufficient conditions a
transcendence base can be constructed globally.

7.1. Transcendence Bases.

Definition 5.7.1. Let F/k be an extension of fields and Ξ ⊆ F . We say Ξ is
algebraically dependent over k if there exist n distinct elements ξ1, . . . , ξn in Ξ and
a nonzero polynomial f ∈ k[x1, . . . , xn] such that f(ξ1, . . . , ξn) = 0. Otherwise we
say Ξ is algebraically independent. A transcendence base for F/k is a subset Ξ ⊆ F
which satisfies

(1) Ξ is algebraically independent over k and
(2) if Ξ ⊆ Z and Z is algebraically independent over k, then Ξ = Z.

Lemma 5.7.2. Let F/k be an extension of fields and Ξ a subset of F which is
algebraically independent over k. For u ∈ F − k(Ξ), the following are equivalent

(1) Ξ ∪ {u} is algebraically independent over k.
(2) u is transcendental over k(Ξ).

Proof. (2) implies (1): Suppose there exist a polynomial f in k[x1, . . . , xn]
and elements ξ1, . . . , ξn−1 in Ξ such that f(ξ1, . . . , ξn−1, u) = 0. Expand f as a
polynomial in xn with coefficients in k[x1, . . . , xn−1], say f =

∑
j hjx

j
n. Then

0 = f(ξ1, . . . , ξn−1, u) =
∑
j hj(ξ1, . . . , ξn−1)u

j . But u is transcendental over k(Ξ),

so hj(ξ1, . . . , ξn−1) = 0 for each j. But Ξ is algebraically independent, so each
polynomial hj = 0. Thus f = 0.

(1) implies (2): We prove the contrapositive. Assume u is algebraic over k(Ξ)
and f = min.polyk(Ξ)(u) = xm + hm−1x

m−1 + · · ·+ h1x+ h0. Each hj is in k(Ξ),
so there is a finite subset ξ1, . . . , ξn of Ξ and polynomials α0, . . . , αm, β0, . . . , βm in
k[x1, . . . , xn] such that hj = αj(ξ1, . . . , ξn)/βj(ξ1, . . . , ξn). Multiply across by the
least common multiple, β, of the denominators to get

f(x)β(ξ1, . . . , ξn) =
∑
j

γj(ξ1, . . . , ξn)x
j

where β(ξ1, . . . , ξn) ̸= 0 and each γj is in k[x1, . . . , xn]. Since (fβ)(ξ1, . . . , ξn, u) =
0, we are done. □

Lemma 5.7.3. Let F/k be an extension of fields and Ξ a subset of F which is
algebraically independent over k. The following are equivalent.

(1) F is algebraic over k(Ξ).
(2) Ξ is a transcendence base for F over k.

Proof. (1) implies (2): Suppose Z is linearly independent, Z ⊇ Ξ, and z ∈ Z.
Then z is algebraic over k(Ξ), so by Lemma 5.7.2, Ξ ∪ {z} is linearly dependent.
Therefore, z ∈ Ξ, which implies Z = Ξ.
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(2) implies (1): We prove the contrapositive. Suppose u ∈ F − k(Ξ) and u is
transcendental over k(Ξ). By Lemma 5.7.2, Ξ ∪ {u} is algebraically independent,
so Ξ is not a transcendence base. □

Lemma 5.7.4. Let F be a finitely generated field extension of k. Then the
following are true:

(1) If Ξ is a finite subset of F such that F is algebraic over k(Ξ), then there is a
subset of Ξ that is a transcendence base for F/k.

(2) There is a finite transcendence base for F/k.

Proof. We prove (1). The reader should verify (2). Let Ξ be a finite subset
of F such that F is algebraic over k(Ξ). Consider the finite set

S = {Z ⊆ Ξ | Z is algebraically independent over k}

ordered by set containment. Then S contains a maximal member, call it X. Given
u ∈ Ξ, by Lemma 5.7.2, u is algebraic over k(X). By Proposition 5.1.10 (3), k(Ξ)
is algebraic over k(X). By Proposition 5.1.10 (4), F is algebraic over k(X). By
Lemma 5.7.3, X is a transcendence base. □

Theorem 5.7.5. Let F/k be an extension of fields and assume Ξ = {ξ1, . . . , ξn}
is a transcendence base for F over k. If Z is another transcendence base for F over
k, then Z also has cardinality n.

Proof. Step 0: If n = 0, then by Exercise 5.7.19, F/k is an algebraic extension.
Since Z is algebraically independent over k, we conclude that Z = ∅. Assume from
now on that n > 0.

Step 1: There exists ζ1 ∈ Z such that ζ1, ξ2, . . . , ξn is a transcendence base
for F/k. First we show that there exists ζ ∈ Z such that ζ is transcenden-
tal over K = k(ξ2, . . . , ξn). Assume the contrary. Then F is algebraic over
K(Z) and K(Z) is algebraic over K, hence F is algebraic over K. Then ξ1
is algebraic over K, which contradicts Lemma 5.7.2. Suppose ζ1 ∈ Z and ζ1
is transcendental over K. By Lemma 5.7.2, {ζ1, ξ2, . . . , ξn} is algebraically in-
dependent over k. The set {ζ1, ξ2, . . . , ξn} ∪ {ξ1} is algebraically dependent, so
Lemma 5.7.2 says ξ1 is algebraic over k(ζ1, ξ2, . . . , ξn). In this case, the field
k(Ξ)(ζ1) = k(ζ1, ξ2, . . . , ξn)(ξ1) is algebraic over k(ζ1, ξ2, . . . , ξn) and F is algebraic
over k(Ξ)(ζ1) = k(ζ1, ξ2, . . . , ξn)(ξ1), hence by Proposition 5.1.10 (4), F is algebraic
over k(ζ1, ξ2, . . . , ξn). By Lemma 5.7.3, the set ζ1, ξ2, . . . , ξn is a transcendence base
for F/k.

Step 2: Iterate Step 1 n−1 more times to get a subset {ζ1, . . . , ζn} of Z which is
a transcendence base for F/k. By Definition 5.7.1, this implies Z = {ζ1, . . . , ζn}. □

Definition 5.7.6. Let F/k be an extension of fields such that a finite tran-
scendence base exists. The transcendence degree of F/k, denoted tr.degk(F ), is the
number of elements in any transcendence base of F over k.

Theorem 5.7.7. Suppose k ⊆ F ⊆ K is a tower of field extensions. Assume
Ξ = {ξ1, . . . , ξn} is a transcendence base for F/k and Z = {ζ1, . . . , ζm} is a tran-
scendence base for K/F . Then

(1) Ξ ∪ Z is a transcendence base for K/k, and
(2) tr.degk(K) = tr.degk(F ) + tr.degF (K).
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Proof. (2): Follows straight from (1).
(1): The reader should verify that K is algebraic over k(Z ∪ Ξ)(F ) and k(Z ∪

Ξ)(F ) is algebraic over k(Z∪Ξ). Therefore, K is algebraic over k(Z∪Ξ). Let f be a
polynomial in k[x1, . . . , xn][z1, . . . , zm] such that f(ξ1, . . . , ξn, ζ1, . . . , ζm) = 0. Since
Z is algebraically independent over F , this implies f(ξ1, . . . , ξn, z1, . . . , zm) is the
zero polynomial in the ring k(ξ1, . . . , ξn)[z1, . . . , zm]. Therefore, each coefficient of
f(ξ1, . . . , ξn, z1, . . . , zm) is an algebraic relation over k involving ξ1, . . . , ξn. Because
ξ1, . . . , ξn are algebraically independent over k, we conclude that f = 0. This proves
Z ∪ Ξ is algebraically independent over k. By Lemma 5.7.3 we are done. □

7.2. Symmetric Rational Functions. Throughout this section n ≥ 2, k is
a field and A = k[x1, . . . , xn] is the ring of polynomials over k in the variables
x1, . . . , xn (see Section 3.6.1). The field of rational functions in x1, . . . , xn over k is
denoted K = k(x1, . . . , xn). Let Sn be the symmetric group on {1, 2, . . . , n}. The
group Sn acts on A as a group of k-algebra automorphisms in the following way.
By Exercise 2.7.10, Sn acts on the set {x1, . . . , xn} by the rule σ ∗ xi = xσ−1(i), for
any permutation σ ∈ Sn. Therefore, if f(x1, . . . , xn) is any polynomial in A, define
σ(f) to be the polynomial f(xσ−1(1), . . . , xσ−1(n)). Using Theorem 3.6.2 we see that
σ defines an automorphism of A that fixes each element of k. By Exercise 3.5.2, the
permutation σ induces an automorphism of K and Sn can be viewed as a group of
automorphisms of K. Then K is a Galois extension of KSn with group Sn. The
degree of the extension K/KSn is equal to the order of the group Sn, which is n!,
by Example 2.1.15. The fixed field KSn is called the field of symmetric rational
functions in n variables over k. The subring of A fixed by Sn is denoted ASn . We
call ASn the ring of symmetric polynomials in n variables over k. Let λ be another
indeterminate. Consider the polynomial

Λ = (λ− x1)(λ− x2) · · · (λ− xn)

in A[λ]. Notice that Λ is symmetric in x1, . . . , xn. In other words, if we extend the
action by Sn on A to an action on the ring A[λ], then Λ is fixed by Sn. Therefore,
the coefficients of Λ are symmetric polynomials and belong to the ring ASn . The
elementary symmetric polynomial of degree i in the variables x1, . . . , xn, denoted
σi,n, is the coefficient of λn−i in the expansion of Λ:

Λ = λn − σ1,nλ
n−1 + σ2,nλ

n−2 − · · ·+ (−1)iσi,nλ
n−i + · · ·+ (−1)nσn,n.

We see that

σ1,n = x1 + x2 + · · ·+ xn

σ2,n =
∑
i1<i2

xi1xi2

σ3,n =
∑

i1<i2<i3

xi1xi2xi3

...

σn,n = x1x2 . . . xn

By Exercise 5.7.23, if 1 < i < m ≤ n, then the polynomials σi,m satisfy the
recurrence relation: σi,m = σi,m−1 + xmσi−1,m−1. Therefore, we have the tower of
fields: k(σ1,n, . . . , σn,n) ⊆ k(x1, . . . , xn)

Sn ⊆ k(x1, . . . , xn).
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Theorem 5.7.8. Let k be a field and k(x1, . . . , xn) the field of rational functions
in the variables x1, . . . , xn over k. Let Sn be the symmetric group on {1, . . . , n} and
k(x1, . . . , xn)

Sn the field of symmetric rational functions in the variables x1, . . . , xn
over k. Then the following are true.

(1) k(x1, . . . , xn) is a Galois extension of k(x1, . . . , xn)
Sn with Galois group Sn.

(2) The degree of the extension k(x1, . . . , xn)/k(x1, . . . , xn)
Sn is n!.

(3) If σ1,n, . . . , σn,n are the elementary symmetric polynomials in x1, . . . , xn, then
k(x1, . . . , xn)

Sn = k(σ1,n, . . . , σn,n).
(4) k(x1, . . . , xn) is the splitting field of the polynomial

Λ = λn − σ1,nλ
n−1 + σ2,nλ

n−2 − · · ·+ (−1)iσi,nλ
n−i + · · ·+ (−1)nσn,n

over the field k(x1, . . . , xn)
Sn = k(σ1,n, . . . , σn,n).

Proof. Parts (1) and (2) were proved in the paragraph preceding this the-
orem. By definition, Λ = (λ − x1)(λ − x2) · · · (λ − xn) splits over k(x1, . . . , xn)
and k(x1, . . . , xn) is generated by the roots of Λ. This proves k(x1, . . . , xn) is
the splitting field for Λ over k(σ1,n, . . . , σn,n), which is (4). By Corollary 5.2.6
and and Corollary 5.2.8, the dimension of k(x1, . . . , xn) as a vector space over
k(σ1,n, . . . , σn,n) is at most n!. Part (2) and Exercise 5.1.23 imply k(x1, . . . , xn)

Sn =
k(σ1,n, . . . , σn,n), which proves (3). □

Corollary 5.7.9. Let k be a field and k[x1, . . . , xn] the ring of polynomials
in the variables x1, . . . , xn over k. If σ1,n, . . . , σn,n are the elementary symmet-
ric polynomials in x1, . . . , xn and t1, . . . , tn are indeterminates, then the k-algebra
homomorphism k[t1, . . . , tn] → k[σ1,n, . . . , σn,n] defined by ti 7→ σi,n is an isomor-
phism.

Proof. By Exercise 5.7.21, K = k(x1, . . . , xn) has transcendence degree n
over k. By Theorem 5.7.8, K is algebraic over k(s1,n, . . . , sn,n). By Lemma 5.7.4
and Theorem 5.7.5, {s1,n, . . . , sn,n} is a transcendence base forK over k. Therefore,
the k-algebra homomorphism k[t1, . . . , tn] → k[s1,n, . . . , sn,n] defined by ti 7→ σi,n
is a k-algebra isomorphism. □

Corollary 5.7.10. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.

Proof. Let [G : 1] = n. By Cayley’s Theorem, Theorem 2.4.5, we can identify
G with a subgroup of Sn. By Theorem 5.7.8 and Theorem 5.3.21, k(x1, . . . , xn) is
a Galois extension of k(x1, . . . , xn)

G with Galois group G. □

7.3. The General Polynomial is Not Solvable by Radicals. Let k be
a field of characteristic zero and assume xd − 1 splits over k, for each d > 1. Let
t0, t1, . . . , tn−1 be indeterminates, and K = k(t0, t1, . . . , tn−1) the field of rational
functions over k. The general polynomial of degree n over the field k is

p(x) = xn − tn−1x
n−1 + . . . (−1)n−1t1x+ (−1)nt0

which is an element of the ring K[x].

Corollary 5.7.11. (Abel) If n ≥ 5, the general polynomial of degree n is not
solvable by radicals.
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Proof. Let σ1, . . . , σn be the elementary symmetric polynomials in the n vari-
ables x1, . . . , xn. By Theorem 5.7.8, K = k(x1, . . . , xn) is the splitting field of the
polynomial

Λ = (λ− x1)(λ− x2) · · · (λ− xn)

= λn − σ1,nλ
n−1 + · · ·+ (−1)n−1σn−1,nλ+ (−1)nσn,n.

over k(σ1,n, . . . , σn,n). By Corollary 5.7.9, the field k(σ1,n, . . . , σn,n) is isomorphic
to the field of rational functions k(t0, t1, . . . , tn−1) in n variables over k. There-
fore, Λ is a general polynomial of degree n over k. The Galois group of K over
k(σ1,n, . . . , σn,n) is Sn, the symmetric group on n letters. By Corollary 2.10.14, Sn
is not solvable. By Theorem 5.6.6, Λ is not solvable by radicals, □

7.4. The Discriminant. Throughout this section the characteristic of the
ground field k is assumed to be different from 2. In the context of Theorem 5.7.8,
the field of rational functions k(x1, . . . , xn) is a Galois extension of the field of sym-
metric rational functions k(x1, . . . , xn)

Sn , which is equal to k(σ1,n, . . . , σn,n). The
Galois group is Sn. The alternating group An is the only subgroup of Sn of index
two. By Theorem 5.3.21 there is a unique quadratic extension (an extension of
degree 2) of k(σ1,n, . . . , σn,n) in k(x1, . . . , xn). In Theorem 5.7.12 below we define
the discriminant polynomial ∆2, show that it is a symmetric rational polynomial
in k[x1, . . . , xn]

Sn , and show that under the Galois correspondence the interme-
diate field corresponding to An is the quadratic extension of k(x1, . . . , xn)

Sn in
k(x1, . . . , xn) obtained by adjoining ∆.

Theorem 5.7.12. In the above context, let k be a field of characteristic different
from 2, n ≥ 2, and ∆ =

∏n−1
i=1

∏n
j=i+1(xi − xj).

(1) For any σ ∈ Sn, σ(∆) = sign(σ)∆.
(2) ∆ ̸∈ k(x1, . . . , xn)

Sn and ∆2 ∈ k(x1, . . . , xn)
Sn .

(3) There is exactly one quadratic extension of k(x1, . . . , xn)
Sn in k(x1, . . . , xn). It

is the field obtained by adjoining ∆ to k(x1, . . . , xn)
Sn .

Proof. Consider the polynomial ∆ =
∏n−1
i=1

∏n
j=i+1(xi − xj) in k[x1, . . . , xn].

For any σ ∈ Sn, we have

σ(∆) =

n−1∏
i=1

n∏
j=i+1

σ(xi − xj)

=

n−1∏
i=1

n∏
j=i+1

(xσ−1(i) − xσ−1(j))

=

n−1∏
i=1

n∏
j=i+1

±(xi − xj)

= ±∆.

This proves that under the group action by Sn, the orbit of ∆ has length at most
two. To see that the orbit has length at least two, consider the transposition
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τ = (12) acting on ∆. Only the factors xi−xj containing x1 or x2 are transformed.

τ(∆) =

n−1∏
i=1

n∏
j=i+1

τ(xi − xj)

=

 2∏
i=1

n∏
j=i+1

τ(xi − xj)

n−1∏
i=3

n∏
j=i+1

(xi − xj)


= (x2 − x1)(x2 − x3) · · · (x2 − xn)(x1 − x3) · · · (x1 − xn)

n−1∏
i=3

n∏
j=i+1

(xi − xj)

= −∆.

This proves that the orbit of ∆ is equal to {∆,−∆}. By Theorem 2.4.11, the
stabilizer of ∆ is a subgroup of Sn of index 2. By Corollary 2.6.15, the only
subgroup of Sn of index two is the alternating group An. Thus, the stabilizer of
∆ is An. If σ ∈ Sn, it follows that σ(∆) = sign(σ)∆. In particular, σ

(
∆2
)
= ∆2,

which implies ∆2 ∈ k(x1, . . . , xn)
Sn . We have proved parts (1) and (2). Since there

is only one subgroup of Sn of index 2, by Theorem 5.3.21, there is only one quadratic
extension of k(x1, . . . , xn)

Sn in k(x1, . . . , xn). By (2), the irreducible polynomial of
∆ is x2 −∆2, which has degree 2. By Theorem 5.1.4, the field extension obtained
by adjoining ∆ is a quadratic extension. □

Definition 5.7.13. Let k be a field with characteristic different from 2. Let f
be a separable polynomial in k[x] and F is a splitting field for f over k. Assume
the distinct roots of f in F are α1, . . . , αn and that n ≥ 2. Let

∆ =

n−1∏
i=1

n∏
j=i+1

(αi − αj),

which is an element of F . Then the discriminant of f is defined to be ∆2, which
by Theorem 5.7.14 below is an element of k.

Theorem 5.7.14. Let k be a field with characteristic different from 2, f a
separable polynomial in k[x], F a splitting field for f over k, and assume the distinct

roots of f in F are α1, . . . , αn, where n ≥ 2. If ∆ =
∏n−1
i=1

∏n
j=i+1(αi − αj), then

the following are true.

(1) F/k is a Galois extension and the group G = Autk(F ) is isomorphic to a
subgroup of Sn.

(2) If σ ∈ Autk(F ), then σ(∆) = sign(σ)∆.
(3) The discriminant of f , ∆2, is an element of k.
(4) Under the Galois correspondence of Theorem 5.3.21, the intermediate field k(∆)

corresponds to the subgroup G ∩An.

Proof. (1): By Theorem 5.3.18, F/k is a Galois extension. The Galois group
Autk(F ) acts on the set α1, . . . , αn and can be identified with a subgroup of Sn, by
Corollary 5.3.19.

(2): This follows from Theorem 5.7.12 (1).
(3): For any σ ∈ Autk(F ), σ(∆

2) = ∆2. Thus ∆2 is in the fixed field FG which
is equal to k by Part (1).
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(4): By Part (2), σ is in the subgroup of G fixing ∆ if and only if sign(σ) = 1.
The set of all even permutations in G is equal to G ∩An. □

When n = 2, Theorem 5.7.14 simplifies to the familiar “quadratic formula”.
This is summarized in Corollary 5.7.15 below. When n = 3, Theorem 5.7.14 shows
that the Galois group of an irreducible cubic is either the cyclic group of order
three, A3, or the nonabelian group of order six, S3. This result is summarized in
Corollary 5.7.16 below.

Corollary 5.7.15. Let k be a field with characteristic different from 2 and f
a monic separable polynomial in k[x] of degree 2. Let F be a splitting field for f
over k. Then the following are equivalent.

(1) f is irreducible in k[x].
(2) dimk(F ) = 2 and the Galois group Autk(F ) is a cyclic group of order two.
(3) If α1, α2 are the roots of f in F , then ∆ = α1 − α2 is not in k.

Proof. The roots of f in F are given by the quadratic formula. For instance,
let f(x) = x2 + bx + c. After completing the square, we see that solving f(x) = 0
is equivalent to adjoining the square root of b2 − 4c to k. Therefore, α1 and α2 are
equal to (−b ±

√
b2 − 4c)/2 and ∆ = α1 − α2 is equal to ±

√
b2 − 4c. We see that

∆ is in k if and only if f splits in k. The rest is left to the reader. □

Corollary 5.7.16. Let k be a field with characteristic different from 2 and f
an irreducible separable polynomial in k[x] of degree 3. Let F be a splitting field for
f over k and ∆2 the discriminant of f . Then the following are true.

(1) ∆ ∈ k if and only if dimk(F ) = 3. In this case the Galois group Autk(F ) is
isomorphic to A3.

(2) ∆ ̸∈ k if and only if dimk(F ) = 6. In this case the Galois group Autk(F ) is
isomorphic to S3.

Proof. By Corollary 5.3.19, we identify the Galois group G = Autk(F ) with
a subgroup of S3. By Lemma 4.4.5, dimk(F ) ≥ 3, which implies dimk(F ) is a
multiple of 3. Therefore 3 divides the order of the group G. It follows that G is
either A3 or S3. By Theorem 5.7.14 (4), ∆ ∈ k if and only if G = A3. □

7.5. Symmetric Polynomials. Theorem 5.7.8 (3) says that every symmetric
rational function is a rational function in the elementary symmetric polynomials. In
Theorem 5.7.17, which is due to Gauss, we improve this result by proving that every
symmetric polynomial is a polynomial in the elementary symmetric polynomials.

Theorem 5.7.17. Let k be a field and k[x1, . . . , xn] the ring of polynomials in
the variables x1, . . . , xn over k. Let Sn be the symmetric group on {1, . . . , n} and
k[x1, . . . , xn]

Sn the ring of symmetric polynomials in the variables x1, . . . , xn over
k. If σ1,n, . . . , σn,n are the elementary symmetric polynomials in x1, . . . , xn, then
the following are true.

(1) If f is a nonzero symmetric polynomial, then there exists a polynomial g ∈
k[t1, . . . , tn] such that f = g(σ1,n, . . . , σn,n).

(2) k[x1, . . . , xn]
Sn = k[σ1,n, . . . , σn,n].

(3) The polynomial g in (1) is unique.

The proof of the theorem will utilize the following lemma.
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Lemma 5.7.18. In the context of Theorem 5.7.17, let f be a nonzero symmetric
polynomial in k[x1, . . . , xn]

Sn . If the leading term of f (see Lemma 3.6.18) is
M = rxe11 · · ·xenn , then e1 ≥ e2 ≥ · · · ≥ en.

Proof. For sake of contradiction assume 1 ≤ i < j ≤ n and ei < ej . Apply
the transposition τ = (i, j) to f . Since τf = f , we know that f has the monomial

τM = rxe11 · · ·xei−1

i−1 x
ei
j x

ei+1

i+1 · · · · · ·xej−1

j−1 x
ej
i x

ej+1

j+1 · · ·xenn = rxe11 · · ·xeji · · ·xeij · · ·xenn .

Thus in the monomial τM , the exponents of xi and xj are swapped. But

M = rxe11 · · ·xeii · · ·xejj · · ·xenn < rxe11 · · ·xeji · · ·xeij · · ·xenn = τM.

This is a contradiction, since M is the leading term of f . □

Proof of Theorem 5.7.17. (1) and (2): Let f be a nonzero symmetric
polynomial in k[x1, . . . , xn]

Sn and assume the leading term of f is r1x
e1
1 · · ·xenn .

By Lemma 5.7.18, e1 ≥ e2 ≥ · · · ≥ en. Set d1 = e1 − e2, d2 = e2 − e3,
. . . , dn−1 = en−1 − en, and dn = en. By Exercise 5.7.25, the leading term of

sd11,ns
d2
2,n · · · sdnn,n is equal to

xd1+d2+···+dn
1 xd2+···+dn

2 · · ·xenn = xe11 x
e2
2 · · ·xenn .

Let g1 = r1s
d1
1,ns

d2
2,n · · · sdnn,n. Then g1 ∈ k[s1,n, . . . , sn,n] and f1 = f − g1 is a

symmetric polynomial in k[x1, . . . , xn]
Sn . The leading terms of f and g1 are equal,

so if f1 is nonzero, the leading term of f1 is less than the leading term of f in
the lexicographical order (see Section 3.6.1). If f1 is nonzero, then we repeat the
above steps to get g2 ∈ k[s1,n, . . . , sn,n] with the same leading term as f1. Hence
f2 = f1 − g2 is either zero, or has a leading term less than the leading term of f1.
Iterating, we get a sequence of symmetric polynomials f, f1, f2, . . . such that the
leading terms form a strictly decreasing sequence. By Lemma 3.6.18 (3), after a
finite number of iterations we have fm = 0. This shows that f = g1 + g2 + · · ·+ gm
is in k[s1,n, . . . , sn,n], proving (1) and (2).

(3): This follows from Corollary 5.7.9, because the map induced by sending ti
to σi,n is a k-algebra isomorphism k[t1, . . . , tn] ∼= k[s1,n, . . . , sn,n]. □

7.6. Exercises.

Exercise 5.7.19. If F/k is an extension of fields, show that ∅ is a transcendence
base if and only if F/k is an algebraic extension.

Exercise 5.7.20. If F/k is an extension of fields, and Ξ ⊆ F is algebraically
independent over k, show that there exists a transcendence base Z such that Z ⊇ Ξ.

Exercise 5.7.21. Let k is a field, and x1, . . . , xn a set of indeterminates.
Show that tr.degk k(x1, . . . , xn) = n and {x1, . . . , xn} is a transcendence base for
k(x1, . . . , xn) over k.

Exercise 5.7.22. If F is a finitely generated extension field of the field k, show
that tr.degk(F ) is equal to the least integer n such that there exist ξ1, . . . , ξn in F
and F is algebraic over k(ξ1, . . . , ξn).
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Exercise 5.7.23. Let x1, . . . , xn be a set of indeterminates. If 1 ≤ i ≤ m ≤
n, let σi,m be the elementary symmetric polynomial of degree i in the variables
x1, . . . , xm. Prove the following recursive formula:

σi,m =


x1 + x2 + · · ·+ xm if i = 1,

x1x2 . . . xm if i = m,

σi,m−1 + xmσi−1,m−1 if 1 < i < m ≤ n.

Exercise 5.7.24. Let Sn be the symmetric group on {1, 2, . . . , n} and Sn−1

the symmetric group on {1, 2, . . . , n−1}. We view Sn−1 as a subgroup of Sn. Let k
be a field. Prove that if f(x1, . . . , xn) ∈ k[x1, . . . , xn]

Sn , then f(x1, . . . , xn−1, 0) ∈
k[x1, . . . , xn−1]

Sn−1 . Show that there exists a commutative diagram

An = k[x1, . . . , xn]
α // An−1 = k[x1, . . . , xn−1]

ASn
n

a ⊆

OO

β // ASn−1

n−1

b ⊆

OO

k[σ1,n, . . . , σn,n]
γ //

c ⊆

OO

k[σ1,n−1, . . . , σn−1,n−1]

d =

OO

of commutative rings satisfying the following:

(1) The maps a, b, c, d are homomorphisms defined by set inclusion.
(2) The epimorphism α is defined by xn 7→ 0.
(3) The homomorphism β is the restriction of α to ASn

n .
(4) The epimorphism γ is the restriction of α to k[σ1,n, . . . , σn,n].

Exercise 5.7.25. Let ei ≥ 0 for each i. In the context of Theorem 5.7.17, show
that the leading term of se11,ms

e2
2,m · · · semm,m is equal to xe1+e2+···+em

1 xe2+···+em
2 · · ·xemm .

Exercise 5.7.26. Follow the steps below to show that the map γ in Exer-
cise 5.7.24 has a section.

(1) Show that there is a k-algebra homomorphism

ϵ : k[σ1,n−1, . . . , σn−1,n−1] → k[σ1,n, . . . , σn,n]

defined by σi,n−1 7→ σi,n.
(2) Show that γϵ is the identity map on k[σ1,n−1, . . . , σn−1,n−1].

Exercise 5.7.27. Let F/k be an extension of fields. Apply Zorn’s Lemma,
Proposition 1.3.3, to prove: If Ξ is a subset of F such that F is algebraic over k(Ξ),
then Ξ contains a subset which is a transcendence base for F over k.

Exercise 5.7.28. Determine whether each of the following polynomials f is
a symmetric polynomial or not. If yes, then write f in terms of the elementary
symmetric polynomials (Theorem 5.7.17).

(1) f = x21 − x1x2 + x22 − 1
(2) f = (x1 + x2)(x1 + x3)(x2 + x3)
(3) f = x21 − x1x2 − x1x3 − x2x3 + x22 + x23



CHAPTER 6

Linear Transformations

This subject of this chapter are R-module homomorphisms ϕ : M → N where
M and N are free R-modules of finite rank. We showed in Section 4.5 that if R is
a ring and M and N are free R-modules of finite rank, then a homomorphism ϕ
from M to N can be represented as a matrix. The matrix of ϕ depends only on the
choice of bases for M and N . If M = N , and ϕ :M →M , then the matrix of ϕ is
unique up to a similarity transformation. That is, two matrix representations are
similar and the similarity transformation corresponds to a change of basis forM . If
k is a field and V is a finite dimensional k-vector space, then associated to a linear
transformation ϕ from V to V are important invariants. The first that we define
are the so-called invariant factors and elementary divisors. These invariants are
defined using the corrsponding basis theorems of Section 4.6.3 for finitely generated
modules over the principal ideal domain k[x]. Given the invariant factors of ϕ, we
show that there is a matrix representation which is in so-called canonical form. For
any square matrix A over k, there is a unique member of the similarity class of A
which is in canonical form. In Definition 6.3.11 we define the determinant function
from HomR(M,M) to R, for any commutative ring R and free R-module M of
finite rank. The characteristic polynomial of ϕ is defined using the determinant
function. The Normal Basis Theorem for a cyclic Galois extension is proved in
Section 6.4. The proof uses results from Chapters 5 and 6.

1. A Linear Transformation on a Vector Space

In this section we study properties of a linear transformation ϕ on a finite
dimensional vector space V over a field k. In Section 6.1.1 we show that ϕ can be
used to turn V into a module over the principal ideal domain k[x]. This is called
the k[ϕ]-module structure on V and is denoted Vϕ. Since V is finitely generated
over k, Vϕ is a finitely generated k[x]-module. Therefore, the important theorems
on finitely generated modules over a principal ideal domain of Section 4.6 apply
to Vϕ. First, we show that the k[ϕ]-module Vϕ decomposes into an internal direct
sum of cyclic k[ϕ]-modules (Proposition 6.1.2). The results of this section and the
basis theorems of Section 4.6.3 are applied to the module Vϕ in Section 6.2. The
invariant factors and the elementary divisors associated to Vϕ allow us to define
important invariants of the linear transformation ϕ. The basis theorems permit us
to define two matrix canonical forms for ϕ. These are the rational canonical form
of ϕ, which always exists, and if the minimal polynomial of ϕ splits, then we can
define the Jordan canonical form. In Section 6.1.2 we define the eigenvalues and
eigenvectors of ϕ. These correspond to k[ϕ]-submodules of Vϕ that have dimension
one over k. The eigenvalues of ϕ correspond to the roots of the minimal polynomial
of ϕ. In Theorem 6.1.12 we show that the minimal polynomial of ϕ splits in k and
has no multiple roots if and only if there is a basis for V such that the matrix of ϕ

269
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is a diagonal matrix. In this case the diagonal entries are the eigenvalues of ϕ. In
Section 6.1.3 we show that the minimal polynomial splits in k if and only if there is
a basis for V such that the matrix of ϕ is lower triangular and the diagonal entries
are the eigenvalues of ϕ. As an application we show that the degree of the minimal
polynomial of ϕ is less than or equal to the dimension of V .

1.1. A Vector Space as a k[ϕ]-Module. Let k be a field and V a finite di-
mensional k-vector space. We begin by reviewing properties of the ring Homk(V, V )
of k-linear transformations of V . By Example 4.4.2, Homk(V, V ) is a k-algebra.
By Proposition 4.5.4, Homk(V, V ) is finite dimensional as a k-vector space. By
Corollary 4.4.11, Homk(V, V ) is algebraic over k. By Theorem 4.4.8, every ϕ in
Homk(V, V ) has a minimal polynomial, f = min.polyk(ϕ). By Proposition 4.5.7, if
dimk(V ) = n, then the ring of matices Mn(k) and the ring Homk(V, V ) are isomor-
phic as k-algebras. If X is a basis for V , and A =M(ϕ,X,X), then min.polyk(ϕ)
is equal to min.polyk(A) (Exercise 4.4.20).

By Exercise 4.1.20, V is a left Homk(V, V )-module by the action ψv = ψ(v),
for any ψ ∈ Homk(V, V ) and v ∈ V . Let ϕ ∈ Homk(V, V ). Using this ϕ, we
make V into a left k[x]-module. By Theorem 3.6.2, the evaluation homomorphism
λϕ : k[x] → Homk(V, V ) which maps x to ϕ is a homomorphism of rings.

k
λ //

��

Homk(V, V )

k[x]

λϕ

99

If p(x) = a0 + a1x+ · · ·+ anx
n ∈ k[x], then λϕ(p(x)) = a0 + a1ϕ+ · · ·+ anϕ

n. The
image of k[x] under λϕ is the commutative subring of Homk(V, V ) denoted k[ϕ].
The kernel of λϕ is the principal ideal generated by f = min.polyk(ϕ) and there is
a k-algebra isomorphism k[x]/(f) ∼= k[ϕ] (Theorem 4.4.8). Since k[x] is a principal
ideal domain, by Corollary 3.2.18 every ideal in k[ϕ] is a principal ideal. The ideals
in k[ϕ] correspond up to associates to the divisors of f in k[x] (see Exercises 4.6.18
and 4.6.19).

By Example 4.1.4 (4), λϕ turns V into a k[x]-module. For any v ∈ V and
p(x) ∈ k[x], the left multiplication of v by p(x) is given by the formula:

p(x)v = λϕ(p(x))v

= (a0 + a1ϕ+ · · ·+ anϕ
n)v

= a0v + a1ϕ(v) + · · ·+ anϕ
n(v).

Definition 6.1.1. We denote by Vϕ the left k[x]-module structure on V in-
duced by λϕ. A k[x]-submodule of Vϕ is also called a ϕ-invariant subspace of V .

Given a linear transformation ϕ : V → V on a finite dimensional vector space V
over a field k, we have the associated finitely generated module Vϕ over the principal
ideal domain k[x]. We are in the context of Section 4.6. In Proposition 6.1.2 we
exploit the fact that k[x] is a principal ideal domain to show that the k[x]-module
Vϕ decomposes into an internal direct sum of cyclic submodules.

Proposition 6.1.2. Let k be a field, V a finite dimensional k-vector space,
and ϕ ∈ Homk(V, V ). The k[x]-module Vϕ is the internal direct sum of cyclic
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submodules. That is, there exist v1, . . . , vq in V such that Vϕ = (v1) ⊕ · · · ⊕ (vq),
where (vi) = k[ϕ]vi.

Proof. Since V is finitely generated as a k-vector space, Vϕ is finitely gen-
erated as a k[x]-module. By Corollary 3.6.5, k[x] is a principal ideal domain. By
Corollary 4.6.15, Vϕ is the internal direct sum of cyclic submodules. That is, there
exist v1, . . . , vq in V such that Vϕ = (v1)⊕ · · · ⊕ (vq), where (vi) = k[ϕ]vi. □

If the minimal polynomial of ϕ has more than one distinct irreducible factor,
then Proposition 6.1.3 shows that the ring k[ϕ] decomposes into a direct sum of
idempotent generated ideals and there is a corresponding decomposition of Vϕ into
k[x]-submodules.

Proposition 6.1.3. Let k be a field, V a finite dimensional k-vector space, ϕ ∈
Homk(V, V ), and f = min.polyk(ϕ). In the polynomial ring k[x], let f = pe11 · · · perr
be the unique factorization of f where p1, . . . , pr are distinct monic irreducible poly-
nomials, r ≥ 1, and ei ≥ 1 for each i. Then there exist submodules V1, . . . , Vr of
the k[x]-module Vϕ such that the following are true.

(1) The minimal polynomial of the restriction of ϕ to a linear transformation ϕ :
Vi → Vi is p

ei
i .

(2) Vϕ = V1 ⊕ · · · ⊕ Vr.

Proof. By the Chinese Remainder Theorem (Corollary 3.3.13),

k[ϕ] = k[x]/(f) ∼= k[x]/(pe11 )⊕ · · · ⊕ k[x]/(pe11 ).

By Exercise 4.2.27 there is a corresponding internal direct sum decomposition
Vϕ = V1 ⊕ · · · ⊕ Vr into k[x]-submodules. Moreover, for each i, the left regular
representation λϕ : k[x] → Homk(Vi, Vi) factors through k[x]/(peii ). The minimal
polynomial of ϕ restricted to Vi is p

ei
i . □

Proposition 6.1.4. Let k be a field, V a k-vector space of dimension n, and ϕ
a nonzero linear transformation in Homk(V, V ). Let Vϕ be the k[x]-module structure
on V induced by the ring homomorphism k[x] → Homk(V, V ) which maps x to ϕ.
If Vϕ is a cyclic k[x]-module with generator u, then the following are true.

(1) The set B = {u, ϕu, ϕ2u, . . . , ϕn−1u} is a k-basis for V .
(2) As k[x]-modules, Vϕ ∼= k[x]/(f).
(3) If min.polyk(ϕ) = f , then deg f = n and f is the monic polynomial of minimal

degree such that f(ϕ)u = 0.

Proof. If f = xn + an−1x
n−1 + · · · + a1x + a0 is the minimal polynomial of

ϕ, then a k-basis for k[ϕ] is {ϕn−1, . . . , ϕ, 1} (Theorem 4.4.8). If u ∈ V , the cyclic
k[x]-submodule of Vϕ generated by u is therefore equal to

k[ϕ]u = {p(ϕ)u | p ∈ k[x]} = kϕn−1u+ · · ·+ kϕu+ ku.

Since ϕ maps this subspace to itself, we say k[ϕ]u is ϕ-invariant. If u is nonzero,
the k[x]-module homomorphism k[x] → k[ϕ]u is onto. The kernel is a principal
ideal Iu = (q), and we have

k[ϕ]u ∼= k[x]/(q).

The polynomial q is called the order of u. Since u is nonzero and k[ϕ]u is finite
dimensional over k, by Lemma 4.4.5 we know q is a monic polynomial of positive
degree. In fact, q is the polynomial of minimal degree such that q(ϕ)u = 0. By
Exercise 6.1.27, q is a divisor of the minimal polynomial f of ϕ. Because the
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dimension of the k-vector space k[ϕ]u is equal to the degree of q, we see that q is
the minimal polynomial of the restriction of ϕ to the ϕ-invariant subspace k[ϕ]u. □

The ring of matrices Mn(k) is a k-algebra where we identify k with the set
of scalar matrices. The center of the ring of matrices is k. By Proposition 4.5.4,
dimk(Mn(k)) = n2. Since Mn(k) is finite dimensional over k, every matrix A ∈
Mn(k) has a minimal polynomial min.polyk(A) (see Theorem 4.4.8). We will show
in Corollary 6.1.19 that the degree of the minimal polynomial is at most n. The
evaluation homomorphism θ : k[x] →Mn(R) which is defined by x 7→ A maps k[x]
onto the commutative subring k[A] of Mn(R). The kernel of θ is the principal ideal
generated by f = min.polyk(A).

k[x]
θ //

η
$$

k[A]
⊆ // Mn(R)

k[x]/(f)

∼=

OO

In Examples 6.1.5 and 6.1.6 we compute the minimal polynomials of some matrices.

Example 6.1.5. Let k be a field, n ≥ 2, and A = Mn(k) the ring of n-by-n
matrices over k. Let est be the elementary matrix with 1 in position (s, t) and 0
elsewhere (see Section 1.5). Notice that

esteuv =

{
esv if t = u,

0 otherwise.

Therefore, estest = 0 if s ̸= t and essess = ess. From this it follows that

min.polyk(est) =

{
x2 − x if s = t,

x2 if s ̸= t.

In both cases we see that the minimal polynomial of est is not irreducible.

k[est] ∼=

{
k[x]/x2 − x if s = t,

k[x]/x2 if s ̸= t.

Therefore, k[est] is not a field.

Example 6.1.6. Let k be a field, a ∈ k, A =M3(k) the ring of 3-by-3 matrices

over k, and α =

0 0 a
1 0 0
0 1 0

. Notice that α2 =

0 a 0
0 0 a
1 0 0

 and α3 =

a 0 0
0 a 0
0 0 a

 =

aI3. Therefore, α3 is in k. Let p(x) = x3 − a. Then p(α) = 0. Let f(x) =
min.polyk(α). Then f(x) divides p(x). To show that f(x) is equal to p(x), it
suffices to show f(x) has degree greater than 2. First, since α is not a diagonal
matrix we know f(x) has degree greater than 1. For contradiction’s sake, suppose
f(x) = x2 + bx+ c for some b, c ∈ k. Then α2 + bα ∈ k. But

α2 + bα =

0 a 0
0 0 a
1 0 0

+

0 0 ab
b 0 0
0 b 0

 =

0 a ab
b 0 a
1 b 0


is not a diagonal matrix. This contradiction implies f(x) has degree greater than
2, hence min.polyk(α) = x3 − a. This example is a special case of Exercise 6.3.17.
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The matrix α is called the companion matrix of the polynomial x3−a. Notice that
k[α] ∼= k[x]/(x3−a) is a field if and only if x3−a is irreducible in k[x]. For instance,
if k = Q, and a = 8, then x3 − 8 = (x − 2)(x2 + 2x + 4) is not irreducible, hence
Q[α] is not a field. On the other hand, if k = Q and a = 10, then α is a root of
x3 − 10 in M3(Q), Q[α] is an extension field of k inside of A, and there is a lattice
of subrings

A =M3(Q)

Q[α]

dim=3

ee

Q

dim=9

OO

dim=3

99

where an arrow denotes set containment. Using the fact that Q[α] is a subring of
A we can view A as a vector space over Q[α]. We have 9 = (A : Q) = (Q[α] :
Q)(Q[α] : Q) = 3 · 3. Notice that Q[α] is not contained in the center of A, hence A
is not an algebra over Q[α].

1.2. Eigenvalues. Let k be a field, V a finite dimensional k-vector space, and
ϕ ∈ Homk(V, V ). Suppose there exists a nonzero vector v ∈ V such that the cyclic
submodule k[ϕ]v has dimension one over k. Then this implies ϕ(v) = λv for some
scalar λ. We say λ is an eigenvalue of ϕ and v is called an eigenvector corresponding
to λ. There is a correspondence between eigenvalues of ϕ and roots of the minimal
polynomial. In particular, there is a basis for V consisting of eigenvectors, if and
only if the minimal polynomial of ϕ splits in k and has no repeated root.

Definition 6.1.7. Let k be a field, V a finite dimensional k-vector space, and
ϕ ∈ Homk(V, V ). If ϕ is not invertible, then we say ϕ is singular.

Theorem 6.1.8 is stated here for reference. In it we assemble many results that
have already been proven.

Theorem 6.1.8. Let k be a field, V a finite dimensional k-vector space, and
ϕ ∈ Homk(V, V ). The following are true.

(1) ϕ ̸= 0 if and only if there exists v ∈ V such that ϕ(v) ̸= 0.
(2) min.polyk(ϕ) has degree less than or equal to n2.
(3) k[ϕ] is a commutative k-subalgebra of Homk(V, V ).
(4) The following are equivalent.

(a) ϕ is singular.
(b) The constant term of min.polyk(ϕ) is zero.
(c) There exists σ ∈ Homk(V, V ) such that σ ̸= 0 and ϕσ = σϕ = 0.
(d) There exists v ∈ V − (0) such that ϕ(v) = 0.

(5) The following are equivalent.
(a) ϕ is invertible.
(b) Rank(ϕ) = dimk(V ).
(c) Nullity(ϕ) = 0.

Proof. For the proof, apply Proposition 4.5.4, Theorems 4.4.8 and 4.4.15,
Corollaries 4.4.11 and 4.4.14, and Exercise 4.3.11. □
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Definition 6.1.9. Let k be a field, V a finite dimensional k-vector space. If
ϕ ∈ Homk(V, V ) and λ ∈ k, then λ is called an eigenvalue or characteristic root of
ϕ if ϕ − λ is singular. The set U(λ) = ker(ϕ − λ) = {x ∈ V | ϕ(x) = λx} is called
the eigenspace of λ. By Theorem 6.1.8 (4), U(λ) ̸= (0). If v ∈ U(λ) and v ̸= 0, then
ϕ(v) = λv and we say v is an eigenvector corresponding to λ. Since ϕ restricts to
an endomorphism ϕ : U(λ) → U(λ), U(λ) is a ϕ-invariant subspace of V .

Theorem 6.1.10. Let k be a field, V a finite dimensional vector space over
k and ϕ ∈ Homk(V, V ). Then the eigenvalues of ϕ are precisely the roots of the
minimal polynomial of ϕ.

Proof. Let λ ∈ k and f(x) = min.polyk(ϕ). By Synthetic Division (Corol-
lary 3.6.4), f(x) = q(x)(x− λ) + f(λ). Then f(ϕ) = 0 implies

f(λ) = −q(ϕ)(ϕ− λ) = −(ϕ− λ)q(ϕ).

If λ is an eigenvalue of ϕ, then there exists a nonzero v ∈ V such that (ϕ−λ)(v) = 0.
Therefore, f(λ)v = 0 and Lemma 4.3.1 implies f(λ) = 0. Conversely, assume
f(λ) = 0. Since deg(q) < deg(f), we know q(ϕ) ̸= 0. By Theorem 6.1.8 (1), there
exists u ̸= 0 such that v = q(ϕ)u ̸= 0. Then 0 = (ϕ − λ)q(ϕ)u = (ϕ − λ)v.
Theorem 6.1.8 (4) implies ϕ− λ is singular, hence λ is an eigenvalue of ϕ. □

Theorem 6.1.11. Let k be a field, V a finite dimensional k-vector space, and
ϕ ∈ Homk(V, V ). Suppose {λ1, . . . , λn} is a set of n distinct eigenvalues of ϕ in
k. For i = 1, . . . , n, assume vi is an eigenvector in V corresponding to λi. Then
{v1, . . . , vn} is a linearly independent set in V .

Proof. Assume for contradiction’s sake that there exists a nonzero vector
(α1, . . . , αn) in k

(n) such that α1v1 + · · · + αnvn = 0. Out of all such dependency
relations, pick one such that the number of nonzero coefficients is minimal. Without
loss of generality, rearrange the lists and assume

(1.1) α1v1 + · · ·+ αmvm = 0

where 1 ≤ m ≤ n, α1, . . . , αm are all nonzero, and m is minimal. By Lemma 4.3.1,
we know 1 < m. Apply ϕ to (1.1), multiply (1.1) by λm, and subtract. This results
in

(1.2) α1(λ1 − λm)v1 + · · ·+ αm−1(λm−1 − λm)vm−1 = 0.

Since the λi are distinct elements of k, (1.2) is a nontrivial dependence relation of
length m− 1. This contradicts the minimal choice of m. □

Theorem 6.1.12. Let k be a field, V a finite dimensional vector space over k
and ϕ ∈ Homk(V, V ). Then the following are equivalent.

(1) There is a basis B for V such that M(ϕ,B) is diagonal.
(2) There is a basis of V consisting of eigenvectors of ϕ.
(3) The minimal polynomial min.polyk(ϕ) factors into a product of linear factors

in k[x] and has no multiple roots.

Proof. (1) is equivalent to (2): This follows straight from Definitions 4.5.3
and 6.1.9.

(2) implies (3): Let {v1, . . . , vn} be a basis for V such that each vj is an
eigenvector of ϕ. Let {λ1, . . . , λm} be the distinct eigenvalues of ϕ, where 1 ≤ m ≤
n, by Theorem 6.1.11. Let g(x) = (x − λ1) · · · (x − λm). We show that g(ϕ) = 0.
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It suffices to show g(ϕ)vj = 0, for each 1 ≤ j ≤ n. For some 1 ≤ ℓ ≤ m, vj
is an eigenvector corresponding to λℓ. Hence ϕvj = λℓvj . Since the ring k[ϕ] is
commutative, we have

g(ϕ)vj = (ϕ− λ1) · · · (ϕ− λm)vj

=
(∏
i ̸=ℓ

(ϕ− λi)
)
(ϕ− λℓ)vj

= 0.

By Theorem 4.4.8, min.polyk(ϕ) divides g. It follows from Theorem 6.1.10 that
g = min.polyk(ϕ).

(3) implies (1): Suppose f = min.polyk(ϕ) = (x − λ1) · · · (x − λm), where f
has no repeated roots. By Proposition 6.1.3, V decomposes into k[ϕ]-submodules
V1 ⊕ · · · ⊕ Vm where the action of ϕ on Vi is multiplication by λi. In other words,
Vi ⊆ U(λi), for each i. If Bi is a basis for Vi, then Bi consists of eigenvectors of ϕ.
Concatenating we get a basis B1 + · · ·+Bm for V . □

Proposition 6.1.13. Let k be a field and V a finite dimensional vector space
over k. Let ϕ and ψ be linear transformations in Homk(V, V ) and assume ψ is
invertible. Then the following are true.

(1) min.polyk(ϕ) = min.polyk(ψ
−1ϕψ).

(2) If λ ∈ k, then λ is a eigenvalue of ϕ if and only if λ is an eigenvalue of ψ−1ϕψ.

Proof. (1): This follows from Exercise 4.4.20.
(2): If λ is an eigenvalue of ϕ with corresponding eigenvector v, then(

ψ−1ϕψ
) (
ψ−1v

)
= ψ−1 (ϕv) = ψ−1 (λv) = λ

(
ψ−1v

)
.

This shows λ is an eigenvalue of ψ−1ϕψ with corresponding eigenvector ψ−1v. The
converse follows by a symmetric argument. □

Definition 6.1.14. Let k be a field, and A a matrix inMn(k). With respect to
the standard basis on k(n), left multiplication by A defines a linear transformation
ℓA in Homk(k

(n), k(n)). The eigenvalues of A are defined to be the corresponding
eigenvalues of ℓA. By Proposition 6.1.13, similar matrices have the same eigenval-
ues.

1.3. Triangular Matrices. In this section we prove that a linear transfor-
mation ϕ on a finite dimensional k-vector space V has a matrix representation that
is lower triangular if and only if the minimal polynomial of ϕ splits in k. As an
application, we show that the degree of the minimal polynomial of ϕ is less than or
equal to the dimension dimk(V ). We first prove Lemma 6.1.15 which shows that
the minimal polynomial of a matrix is invariant under change of base field.

Lemma 6.1.15. Let F/k be an extension of fields. Then we view k[x] as a
subring of F [x] and Mn(k) as a subring of Mn(F ). If A is a matrix in the ring
Mn(k), then the minimal polynomials min.polyk(A) and min.polyF (A) are equal.

Proof. By k[A] we denote the commutative subring of Mn(k) generated by
k and A. By F [A] we denote the commutative subring of Mn(F ) generated by F
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and A. We have the commutative diagram of rings,

F // F [A] // Mn(F )

k

OO

// k[A]

OO

// Mn(k)

OO

where each arrow is the set inclusion map. If f = min.polyk(A), and deg f = d,
then k[A] ∼= k[x]/(f) is a k-vector space of dimension d, and the set {1, A, . . . , Ad−1}
is a k-basis. If g = min.polyF (A), then dim(F [A]) = deg g. Since f(A) = 0,
by Theorem 4.4.8, we have g | f . This implies dimF (F [A]) = deg g ≤ d. By
Exercise 6.1.20, the set {1, A, . . . , Ad−1} is a linearly independent set of vectors in
the F -vector space Mn(F ). This implies dimF (F [A]) ≥ d. We have shown that
deg g = dimF (F [A]) = d. Since g | f , this implies g = f . □

The following two technical lemmas characterize the rank of a lower triangular
matrix and the eigenvalues in terms of the diagonal entries.

Lemma 6.1.16. Let k be a field, and A = (aij) a lower triangular matrix in
Mn(k). If n ≥ 2, then assume a22, . . . , ann are all nonzero elements in k. For
j = 1, . . . , n, let Aj denote column j of A. Then {A1, A2, . . . , An} is a linearly

independent set of vectors in k(n) if and only if a11 ̸= 0.

Proof. Let e1, . . . , en denote the standard basis vectors for k(n). For 1 ≤ m ≤
n, view k(m) as the subspace of k(n) spanned by en−m+1, . . . , en. For j = 1, . . . , n,
we have Aj is in the span of ej , . . . , en. The proof follows by Lemma 4.3.1 and
a standard induction argument. The basis for the induction is Lemma 4.3.1 (1).
Assume n > 1 and that the span of {A2, . . . , An} is equal to the span of {e2, . . . , en}.
If a11 ̸= 0, then A1 is not in the span of {A2, . . . , An}, so by Lemma 4.3.1 (2), the
set {A1, A2, . . . , An} is linearly independent. If a11 = 0, then A1 is in the span of
{A2, . . . , An}. □

Lemma 6.1.17. Let k be a field and A = (aij) a lower triangular matrix in
Mn(k).

(1) A is invertible if and only if aii ̸= 0 for each 1 ≤ i ≤ n.
(2) The eigenvalues of A are {aii | 1 ≤ i ≤ n}.

Proof. (1): As in Proposition 4.5.7, define α in Homk(k
(n), k(n)) to be “left

multiplication by A”. Then A is invertible if and only if α is invertible. By The-
orem 6.1.8 (5), A is invertible if and only if α has rank n. The rank of α is equal
to the column rank of A. By Lemma 6.1.16, A has column rank n if and only if
aii ̸= 0 for each 1 ≤ i ≤ n.

(2): Let λ ∈ k. Then λ is an eigenvalue of A if and only if the matrix A − λ
is singular. But A− λ is lower triangular and by Part (1), A− λ is singular if and
only if λ is equal to aii for some i. □

Next we show that a linear transformation has a matrix in triangular form if
and only if the minimal polynomial splits.

Theorem 6.1.18. Let k be a field, V a finite dimensional k-vector space, and
ϕ ∈ Homk(V, V ). Then there exists a basis B for V such that M(ϕ,B) is lower
triangular if and only if min.polyk(ϕ) splits in k.
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Proof. Let n = dimk(V ). If B = {v1, . . . , vn} is a basis for V , then the reader
should verify that the matrix M(ϕ,B) is lower triangular if and only if for each i,
ϕ(vi) is in the span of {vj | i ≤ j ≤ n}.

Let f = min.polyk(ϕ) and assume f splits in k. Let λ be a root of f . By
Theorem 6.1.10, λ is an eigenvalue of ϕ. Let vn be an eigenvector corresponding
to λ. By Lemma 4.3.1, {vn} is a linearly independent set. If n = 1, then take
B = {vn} and stop. Otherwise, assume inductively that the triangular basis exists
for a linear transformation on a vector space of dimension n − 1, whenever the
minimal polynomial splits. If (vn) is the subspace of V spanned by vn, then (vn)
is a k[ϕ]-submodule of V . If η : V → V/(vn) is the natural map, then (vn) is in the
kernel of ηϕ, so there exists a linear transformation ϕ̄ such that the diagram

V
ϕ //

η

��

V

η

��
V/(vn)

ϕ̄ // V/(vn)

commutes. The dimension of V/(vn) is n − 1. Since f(ϕ̄) = 0, the minimal poly-
nomial of ϕ̄ divides f hence splits in k. By the induction hypothesis, there is a
set of vectors v1, . . . , vn−1 in V such that {vi + (vn) | 1 ≤ i ≤ n − 1} is a basis
for V/(vn) and ϕ(vi) is in the span of {vj | i ≤ j ≤ n}. By Exercise 4.3.21, the
set B = {v1, . . . , vn−1, vn} is a basis for V . Moreover, the matrix M(ϕ,B) is lower
triangular.

For the converse, suppose B = {v1, . . . , vn} is a basis for V such that the
matrix A = M(ϕ,B) is lower triangular. By Lemma 6.1.17, if A = (aij), then the
eigenvalues of ϕ are {aii | 1 ≤ i ≤ n}. Let f = min.polyk(ϕ). If F is a splitting
field for f containing k, then by Theorem 6.1.10 and Lemma 6.1.15, the roots of f
are {aii | 1 ≤ i ≤ n}. Therefore, f splits in k. □

Corollary 6.1.19. Let k be a field, V a finite dimensional k-vector space, and
ϕ ∈ Homk(V, V ). If dimk(V ) = n, then

(1) the degree of min.polyk(ϕ), and
(2) the dimension of the k-vector space k[ϕ]

are both less than or equal to n.

Proof. By Lemma 6.1.15 we assume f = min.polyk(ϕ) splits in k. We use the
notation from the proof of Theorem 6.1.18. There exists a basis B = {v1, . . . , vn}
for V such that for each i, ϕ(vi) is in the span of {vj | i ≤ j ≤ n}. There is nothing
to prove if n = 1. Inductively assume n > 1 and that the result is true for any
linear transformation on a vector space of dimension n − 1. By induction on n
applied to ϕ̄ ∈ Homk(V/(vn), V/(vn)), there is a polynomial p(x) ∈ k[x] such that
deg p ≤ n−1 and p(ϕ̄)(vj+(vn)) = 0+(vn), for 1 ≤ j ≤ n−1. Thus p(ϕ)(V ) ⊆ (vn).
Since vn is an eigenvector of ϕ, there exists λ ∈ k such that ϕ(vn) = λvn. Consider
the polynomial q(x) = (x− λ)p(x) which has degree n. We see that

q(ϕ)(V ) = (ϕ− λ)p(ϕ)(V )

= (ϕ− λ)(vn)

= (0).

By Theorem 4.4.8, f divides q and dimk k[ϕ] = deg f ≤ deg q = n. □
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1.4. Exercises.

Exercise 6.1.20. Let F/k be an extension of fields. View the k-vector space
k(n) as a subset of F (n) and the ring of matrices Mn(k) as a subring of Mn(F ).
Prove the following.

(1) Let A ∈Mn(k). Then A is invertible inMn(k) if and only if A is invertible
in Mn(F ).

(2) IfX is a basis for the k-vector space k(n), thenX is a basis for the F -vector
space F (n).

(3) If Y = {y1, . . . , ym} is a linearly independent set of vectors in the k-vector
space k(n), then Y is a linearly independent set of vectors in the F -vector
space F (n).

Exercise 6.1.21. Let F/k be an extension of fields. In the context of Exer-
cise 6.1.20, let A ∈Mn(k) and assume A ̸= 0 and A ̸= 1. Prove the following.

(1) A is nilpotent in Mn(k) if and only if A is nilpotent in Mn(F ).
(2) A is an idempotent in Mn(k) if and only if A is an idempotent in Mn(F ).

Exercise 6.1.22. Let k be a field, V a finite dimensional k-vector space and
ϕ ∈ Homk(V, V ). If λ ∈ k is an eigenvalue of ϕ and v ∈ V is a corresponding
eigenvector, prove:

(1) For any n ≥ 0, ϕnv = λnv.
(2) For any f(x) ∈ k[x], f(λ) is an eigenvalue of f(ϕ).

Exercise 6.1.23. Let k be a field and A = (aij) a lower triangular matrix in
Mn(k). Let f ∈ k[x]. Prove that the eigenvalues of f(A) are {f(aii) | 1 ≤ i ≤ n}.

Exercise 6.1.24. Let k be a field and A ∈ Mn(k). Let λ1, . . . , λm be the
(not necessarily distinct) eigenvalues of A in k. Let f ∈ k[x]. Assume the minimal
polynomial of A splits in k. Show that the eigenvalues of f(A) are f(λ1), . . . , f(λm).

Exercise 6.1.25. Let k be a field. As in Example 3.2.12, let N be the set of all
lower triangular matrices A = (aij) in Mn(k) such that aii = 0 for every diagonal
entry. Prove the following.

(1) Every A in N is nilpotent.
(2) If A is a nilpotent matrix in Mn(k), then there is an invertible matrix S

in Mn(k) such that S−1AS is in N .

Exercise 6.1.26. Let k be a field, {v1, . . . , vn} a basis for kn, and (λ1, . . . , λn) ∈
kn. Show how to construct a matrix A ∈ Mn(k) such that λi is an eigenvalue for
A with corresponding eigenvector vi. That is, Avi = λivi for each 1 ≤ i ≤ n.

Exercise 6.1.27. Let k be a field, V a finite dimensional k-vector space, u a
nonzero vector in V , and ϕ ∈ Homk(V, V ). Let f ∈ k[x] be the monic polynomial
of minimal degree such that f(ϕ)u = 0. Prove that f divides min.polyk(ϕ).

Exercise 6.1.28. Let k be a field, V a finite dimensional k-vector space, and
ϕ ∈ Homk(V, V ). Let {u1, . . . , un} be a generating set for the k[ϕ]-module Vϕ. For
each 1 ≤ i ≤ n, let fi(x) be the monic polynomial of minimal degree in k[x] such
that fi(ϕ)ui = 0. Let f(x) = lcm(f1, . . . , fn) be the least common multiple of
f1, . . . , fn. Show that f(x) is equal to min.polyk(ϕ), the minimal polynomial of ϕ.
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2. The Canonical Form of a Linear Transformation

If k is a field, V a finite dimensional k-vector space, and ϕ : V → V a linear
transformation, then we show that there is basis for V such that the matrix of
ϕ is in so-called rational canonical form. As in Definition 6.1.1, Vϕ denotes the
k[x]-module structure on V associated to ϕ. Since Vϕ is a finitely generated k[x]-
module, we are in the context of Section 4.6. In particular, the invariant factor form
of the basis theorem for finitely generated modules over a principal ideal domain,
Theorem 4.6.13, applies. Starting with the k[x]-basis for Vϕ that results from
applying Theorem 4.6.13, we derive a basis for V over k such that the matrix of ϕ
is in rational canonical form (Corollary 6.2.5). Assuming the minimal polynomial
for ϕ splits over k, we show that there is a basis for V such that the matrix of ϕ
is in so-called Jordan canonical form (Corollary 6.2.7). The proof is an application
of the elementary divisor form of the basis theorem, Theorem 4.6.12. With respect
to the standard basis, a matrix in Mn(k) defines a linear transformation on k(n).
By treating a matrix A as a linear transformation, in Section 6.2.3, we define
the rational canonical form for A. The canonical form is a unique matrix in the
similarity class containing A. Two matrices are similar if and only if they have the
same canonical form. In Section 6.2.4 we show that a matrix over a field has a
unique reduced row echelon form.

2.1. Rational Canonical Form. This section should be treated as a con-
tinuation of Section 6.1.1. Given a linear transformation ϕ : V → V on a finite
dimensional vector space V over a field k, we have the k[ϕ]-module Vϕ (Defini-
tion 6.1.1). By Proposition 6.1.3 we can decompose Vϕ into cyclic submodules over
k[x]. Theorem 4.6.13, the invariant factor form of the basis theorem for a finitely
generated module over a principal ideal domain, associates to ϕ a direct sum de-
composition of Vϕ into cyclic submodules and additionally a corresponding set of
invariant factors q1, . . . qr in k[x]. In Proposition 6.1.4 we showed that a genera-
tor for a cyclic k[x]-module gives rise to a k-basis. This allows us to show that
there exists a basis B for the k-vector space V such that the matrix M(ϕ,B) is in
so-called rational canonical form.

Theorem 6.2.1. If V is a finite dimensional vector space over the field k,
and ϕ is a nonzero linear transformation in Homk(V, V ), then there is a basis
{u1, u2, . . . , ur} for the k[ϕ]-module Vϕ such that the following are true.

(1) The k[ϕ]-module Vϕ is equal to the internal direct sum U1⊕U2⊕· · ·⊕Ur where
Ui = k[ϕ]ui is the cyclic submodule of Vϕ spanned by ui.

(2) Ui ∼= k[x]/(qi) where qi is the order of ui and q1 | q2 | · · · | qr.
(3) Ui is a ϕ-invariant subspace of V and the minimal polynomial of ϕ|Ui

is qi.
(4) The minimal polynomial of ϕ is qr.
(5) The sequence of polynomials (q1, q2, . . . , qr) is uniquely determined by ϕ.

The polynomials q1, . . . , qr are called the invariant factors of ϕ.

Proof. Apply Theorem 4.6.13 to the finitely generated k[x]-module Vϕ. □

Before we derive the rational canonical form of a linear transformation ϕ, we
consider the possible sequences of invariant factors that can arise when the minimal
polynomial min.polyk(ϕ) has at most two irreducible factors.
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Example 6.2.2. Let k be a field and V a k-vector space of dimension n ≥ 2.
Let ϕ ∈ Homk(V, V ) and assume the minimal polynomial of ϕ is irreducible. Say
min.polyk(ϕ) = q, and deg(q) = d. What are the possible invariant factors of ϕ?
We use the notation of Theorem 6.2.1. Say the decomposition of Vϕ into cyclic
submodules is Vϕ = U1 ⊕ · · · ⊕ Ur where Ui = k[ϕ]ui and ui has order qi. Then
q1 | q2 | · · · | qr. Since qr = q is irreducible, this means each qi is equal to q. Since
dimk(Ui) = deg(q), this implies n = dr. This shows that if the minimal polynomial
of ϕ is an irreducible polynomial q of degree d, then d | n, and the invariants of ϕ
are q1 = · · · = qr = q, where r = n/d.

Example 6.2.3. Let k be a field and V a k-vector space of dimension n > 2. Let
ϕ ∈ Homk(V, V ) and assume the minimal polynomial of ϕ factors into two distinct
monic irreducible factors. Suppose q = min.polyk(ϕ) = π1π2, where deg(πi) = di
and deg(q) = d1+d2 = d. What are the possible invariant factors of ϕ? We use the
notation of Theorem 6.2.1. Say the decomposition of Vϕ into cyclic submodules is
Vϕ = U1 ⊕ · · · ⊕ Ur where Ui = k[ϕ]ui and ui has order qi. Then q1 | q2 | · · · | qr.
Since qr = π1π2, this means each qi is one of π1, π2, or π1π2. There are three
general configurations for the sequence q1, . . . , qr, depending on whether q1 is π1,
π2, or π1π2.

(1) If q1 = π1π2, then this means q1 = q2 = · · · = qr = π1π2. In this case,
dimk(Ui) = d for each i. This implies n = dr.

(2) If q1 = π1, then there exists some p < r such that q1 = · · · = qp = π1, and
qp+1 = · · · = qr = π1π2.

(3) If q1 = π2, then there exists some p < r such that q1 = · · · = qp = π2, and
qp+1 = · · · = qr = π1π2.

Example 6.2.4. Let k be a field and V a k-vector space of dimension n > 2.
Let ϕ ∈ Homk(V, V ) and assume the minimal polynomial of ϕ is the square of a
monic irreducible polynomial. Suppose q = min.polyk(ϕ) = π2, where deg(π) = d.
What are the possible invariant factors of ϕ? We use the notation of Theorem 6.2.1.
Say the decomposition of Vϕ into cyclic submodules is Vϕ = U1 ⊕ · · · ⊕ Ur where
Ui = k[ϕ]ui and ui has order qi. Then q1 | q2 | · · · | qr. Since qr = π2, this means
each qi is either π or π2. There are two general configurations for the sequence
q1, . . . , qr, depending on whether q1 is π or π2.

(1) If q1 = π2, then this means q1 = q2 = · · · = qr = π2. In this case, dimk(Ui) = 2d
for each i. This implies n = 2dr.

(2) If q1 = π, then there exists some p < r such that q1 = · · · = qp = π, and qp+1 =
· · · = qr = π2. In this case, dimk(Ui) = d for 1 ≤ i ≤ p and dimk(Ui) = 2d for
p < i ≤ r. This implies n = d(2r − p).

Now we determine a canonical form for the matrix of ϕ. In other words, we try
to find a basis B of V for which the matrix M(ϕ,B) is simplified. If V and ϕ are
as in Theorem 6.2.1, then V = U1 ⊕ · · · ⊕ Ur where ϕ(Ui) ⊆ Ui for each i. Then
each Ui is a k-subspace of V . We can pick a k-basis Bi for each subspace Ui and
concatenate to get a k-basis B = B1 + · · · + Br for V . It is clear that the matrix
of ϕ with respect to B is the block diagonal matrix

M(ϕ,B) = diag(M(ϕ|U1 , B1), . . . ,M(ϕ|Ur , Br))

where there are r blocks and block i is the matrix with respect toBi of the restriction
of ϕ to Ui. Based on this observation, we consider the case where Vϕ = k[ϕ]u is a
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cyclic module over the ring k[ϕ]. We are in the context of Proposition 6.1.4. Suppose
the minimal polynomial of ϕ is min.polyk(ϕ) = p = xn+an−1x

n−1+ · · ·+a1x+a0.
The k[x]-module homomorphism k[x] → k[ϕ]u defined by 1 7→ u is surjective and
the kernel is the principal ideal Iu = (p) generated by p. Therefore, as a k[x]-
module, Vϕ is isomorphic to k[x]/(p). Applying the division algorithm, we see
that 1, x, x2, . . . , xn−1 is a k-basis for k[x]/(p). Therefore, a k-basis for V is B =
{u, ϕu, ϕ2u, . . . , ϕn−1u}. Introduce the notation xi = ϕi−1u. The action of ϕ on
B = {x1, x2, . . . , xn} determines the matrix M(ϕ,B). Computing, we get

ϕx1 = ϕu = x2

ϕx2 = ϕϕu = x3

...

ϕxn−1 = ϕn−1u = xn

ϕxn = ϕnu = −an−1ϕ
n−1u− · · · − a1ϕ

1u− a0u = −a0x1 − a1x2 − · · · − an−1xn

so the matrix is

(2.1) M(ϕ,B) =



0 0 0 . . . 0 0 −a0
1 0 0 . . . 0 0 −a1
0 1 0 . . . 0 0 −a2
...

...
...

...
...

0 0 0 . . . 0 0 −an−3

0 0 0 . . . 1 0 −an−2

0 0 0 . . . 0 1 −an−1


.

We call (2.1) the companion matrix of the polynomial p = xn + an−1x
n−1 + · · ·+

a1x + a0. If p ∈ k[x] is a monic polynomial of degree n ≥ 1, denote the compan-
ion matrix of p in Mn(k) by C(p). Conversely, by Exercise 6.2.22, the minimal
polynomial of (2.1) is again p = xn + an−1x

n−1 + · · ·+ a1x+ a0.

Corollary 6.2.5. If V is a finite dimensional vector space over the field k,
ϕ ∈ Homk(V, V ), and q1, q2, . . . , qr are the invariant factors of ϕ, then there is a
basis B for V such that the matrix of ϕ with respect to B is the block diagonal
matrix

M(ϕ,B) = diag (C(q1), C(q2), . . . , C(qr))

where block i is the companion matrix of qi. The matrix M(ϕ,B) is called the
rational canonical form for ϕ.

2.2. Jordan Canonical Form. Given a finite dimensional vector space V
over a field k, and a linear transformation ϕ : V → V , we apply the Elementary
Divisor Form of the Basis Theorem for a Finitely Generated Module over a Principal
Ideal Domain to associate to ϕ a set of elementary divisors {πeiji | 1 ≤ i ≤ s; 1 ≤
j ≤ νi} in k[x]. Assuming the minimal polynomial of ϕ splits in k, we show that
there exists a basis B for the k-vector space V such that the matrix M(ϕ,B) is in
so-called Jordan canonical form.

Theorem 6.2.6. If V is a finite dimensional vector space over the field k, and ϕ
is a nonzero linear transformation in Homk(V, V ), then there exist positive integers
s, ν1, . . . , νs and a basis {uij | 1 ≤ i ≤ s; 1 ≤ j ≤ νi} for the k[ϕ]-module Vϕ such
that the following are true.
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(1) The k[ϕ]-module Vϕ is equal to the internal direct sum

Vϕ =

s⊕
i=1

νi⊕
j=1

Uij

where Ui = k[ϕ]uij is the cyclic submodule of Vϕ spanned by uij.
(2) Uij ∼= k[x]/(π

eij
i ) where

(a) π1, . . . , πs are distinct monic irreducible polynomials,
(b) the order of uij is π

eij
i , and

(c) ei1 ≥ ei2 ≥ · · · ≥ eiνi ≥ 1.
(3) Uij is a ϕ-invariant subspace of V and the minimal polynomial of ϕ|Uij is π

eij
i .

(4) The minimal polynomial of ϕ is

min.polyk(ϕ) =

s∏
i=1

πei1i

(5) The sequence of irreducible polynomials (π1, π2, . . . , πs) and the positive integers
{eij} are uniquely determined by ϕ.

The polynomials π
eij
i are called the elementary divisors of ϕ.

Proof. Apply Theorem 4.6.12 to the finitely generated k[x]-module Vϕ. □

Using the basis for Vϕ given by Theorem 6.2.6, we determine a canonical form
for the matrix of ϕ. The minimal polynomial for ϕ restricted to Uij is a power of the
irreducible polynomial πi. We assume each πi is a linear polynomial, because the
canonical form of ϕ in this case is particularly simplified. This case will occur if and
only if the minimal polynomial of ϕ factors into a product of linear polynomials in
k[x]. The k-bases for the individual ϕ-invariant subspaces Uij can be concatenated
for a basis of V . We now determine a canonical form for the matrix of ϕ under the
following assumptions.

(1) Vϕ is a cyclic k[ϕ]-module spanned by u.
(2) min.polyk(ϕ) = (x− b)n is a power of a linear polynomial.

We are in the context of Proposition 6.1.4. Since k[ϕ] = k[ϕ − b], it follows that
Vϕ is a cyclic k[ϕ − b]-module, spanned by u. If θ : k[x] → Homk(V, V ) is defined
by x 7→ ϕ, then ker θ is the principal ideal generated by (x − b)n. If τ : k[x] →
Homk(V, V ) is defined by x 7→ ϕ− b, then the minimal polynomial of ψ = ϕ− b is
the monic generator of ker τ , which is xn. Therefore B = {u, ψu, ψ2u, . . . , ψn−1u}
is a k-basis for V . The matrix of ψ = ϕ− b with respect to the basis B is

M(ϕ− b, B) =



0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

0 0 0 . . . 0 0 0
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0
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which is the companion matrix of the polynomial xn. The matrix of ϕ with respect
to the basis B is equal to M(ϕ,B) =M(ϕ− b, B) +M(b, B). Therefore,

(2.2) M(ϕ,B) =



b 0 0 . . . 0 0 0
1 b 0 . . . 0 0 0
0 1 b . . . 0 0 0
...

...
...

0 0 0 . . . b 0 0
0 0 0 . . . 1 b 0
0 0 0 . . . 0 1 b


.

We denote the n-by-n matrix (2.2) by Jn(b) and refer to it as the basic Jordan
block for the polynomial (x − b)n. The matrix Jn(b) and the canonical form of
Corollary 6.2.7 are named after Camille Jordan.

Corollary 6.2.7. Assume V is a finite dimensional vector space over the field
k, ϕ ∈ Homk(V, V ), and that the minimal polynomial min.polyk(ϕ) factors into a
product of linear factors in k[x]. If b1, . . . , bs are the distinct roots of min.polyk(ϕ)
and {eij} is the set of exponents of the elementary divisors of ϕ, then there is a
basis B for V such that the matrix of ϕ with respect to B is the block diagonal
matrix

M(ϕ,B) = diag
(
Je11(b1), Je12(b1), . . . , Jeij (bi), . . .

)
where the block corresponding to the ordered pair (i, j) is the Jordan matrix of
(x − bi)

eij . The matrix M(ϕ,B) is called the Jordan canonical form for ϕ and B
is called a Jordan basis.

Example 6.2.8. Let k be a field and V a vector space of dimension n over k. Let
ϕ : V → V be a linear transformation and assume ϕ is a nontrivial idempotent in the
ring Homk(V, V ). Then ϕ2−ϕ = 0, ϕ ̸= 1, ϕ ̸= 0. Therefore, min.polyk(ϕ) = x2−x.
Let V1 = ker(ϕ) and V2 = im(ϕ). For each v ∈ V1, we have ϕ(v) = 0. For
each v ∈ V2, we have ϕ(v) = v. Then each Vi is a ϕ-invariant subspace of V .
By Proposition 4.2.8, V = V1 ⊕ V2. Let B1 be a basis for V1 and B2 a basis
for V2. If ni = dimk(Vi), then n = n1 + n2. The matrix of ϕ with respect to
the basis B = B1 + B2 is M(ϕ,B) = diag(0, . . . , 0, 1, . . . , 1) =

∑n
i=n1+1 eii. By

Corollary 6.2.7, the matrix M(ϕ,B) is is the Jordan canonical form of ϕ, and B is
a Jordan basis.

2.3. Canonical Form of a Matrix. Let k be a field, and A a matrix in
Mn(k). With respect to the standard basis on k(n), left multiplication by A defines
a linear transformation ℓA in Homk(k

(n), k(n)). The invariant factors, elementary
divisors, rational canonical form, and the Jordan canonical form of A are defined
to be the corresponding invariants of ℓA.

Example 6.2.9. Let k be a field, n ≥ 2 and est the elementary matrix in
Mn(k) where s ̸= t. As in Example 6.1.5, the matrix est is nilpotent and the
minimal polynomial is min.polyk(est) = x2. Left multiplication by est defines the
linear transformation ϕst in Homk(k

(n), k(n)) defined by

ϕst(ei) = estei =

{
et if i = s

0 otherwise.
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Let B1 = {e1, . . . , en}−{es, et} be the standard basis with es and et deleted. Since
each vector in B1 is in the kernel of ϕst, if U1 is the subspace of k(n) spanned by B1,
then U1 is ϕst-invariant. The matrix M(ϕst |U1

, B1) is the zero matrix in Mn−2(k).
Let B2 = {es, et}. Since ϕst(es) = et and ϕst(et) = 0, if U2 is the subspace of k(n)

spanned by B2, then U2 is ϕst-invariant. The matrix M(ϕst |U2
, B2) is the matrix

J2(0) =

(
0 0
1 0

)
in M2(k). If B = B1 + B2, then the matrix of ϕst with respect

to B is the block diagonal matrix M(ϕst, B) = diag(0, J2(0)). This shows that the
Jordan canonical form of est is equal to the elementary matrix en,n−1 and B is a
Jordan basis.

Example 6.2.10. Let k be a field, n ≥ 2 and ess the elementary matrix in
Mn(k). As in Example 6.1.5, ess is idempotent. By Example 6.2.8, the Jordan
canonical form of ess is equal to the elementary matrix en,n.

Lemma 6.2.11. Let V be a finite dimensional vector space over the field k. Let
ϕ and ψ be linear transformations in Homk(V, V ). The k[x]-modules Vϕ and Vψ
are isomorphic if and only if there exists an invertible linear transformation ρ in
Homk(V, V ) such that ϕ = ρ−1ψρ.

Proof. Let f : Vϕ → Vψ be an isomorphism of k[x]-modules. Then f is an
isomorphism of k-vector spaces. That is, f = ρ for some invertible element ρ in
Homk(V, V ). For each u ∈ V we have f(ϕu) = ψf(u). Therefore, ϕ = ρ−1ψρ.
Conversely, if ϕ = ρ−1ψρ, define f : Vϕ → Vψ by f(u) = ρu. For i ≥ 1, we have
ρϕi = ψiρ. Then f(ϕiu) = ρϕiu = ψiρu = ψif(u). The rest follows from the fact
that ρ is k-linear. □

Corollary 6.2.12. Let k be a field, and A and B two matrices in Mn(k). The
following are equivalent.

(1) A and B are similar.
(2) A and B have the same invariant factors.
(3) A and B have the same rational canonical form.

Proof. If A and B have the same invariant factors, say q1, q2, . . . , qr, then they
are both similar to the block diagonal matrix C = diag (C(q1), C(q2), . . . , C(qr)).
The matrix C is in rational canonical form. The reader should verify that the in-
variant factors of C are q1, . . . , qr. If A and B are similar, then by Proposition 4.5.7
and Lemma 6.2.11, the k[x]-modules that they induce on kn are isomorphic. So
they have the same invariant factors. □

Example 6.2.13. Consider the matrix A =

 1 1 1
−1 −1 −1
1 1 0

 over the field

Q. Let S = {e1, e2, e3} be the standard basis for V = Q(3). By Proposition 4.5.4,
A =M(ϕ, S, S), where ϕ is the linear transformation in HomQ(V, V ) defined by mul-

tiplication by A from the left. Notice that A2 =

 1 1 0
−1 −1 0
0 0 0

, and A3 = 0. Thus,

A is nilpotent and the index of nilpotency is 3. This proves that min.poly(A) = x3.
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Since the minimal polynomial of A has only one root and is split, the rational canon-

ical form of A is equal to the Jordan canonical form, which is J3(0) =

0 0 0
1 0 0
0 1 0

.
Let u1 = (1, 0, 0)T , u2 = Au1 = (1,−1, 1)T , and u3 = Au2 = (1,−1, 0)T . Then

B = {u1, u2, u3} is a Jordan basis for ϕ. If P =

1 1 1
0 −1 −1
0 1 0

 is the matrix

with columns u1, u2, u3, the reader should verify that P−1 =

1 1 0
0 0 1
0 −1 −1

 and

P−1AP = J3(0).

2.4. Reduced Row Echelon Form. In this section we show that any matrix
over a field has a unique reduced row echelon form. This canonical form exists
whether the matrix is square or not. Using gaussian elimination and elementary
row operations, an algorithm which is not included in this book, the reduced row
echelon form can be efficiently computed. The application to the augmented matrix
associated to a system of linear equations is in Proposition 6.2.20.

Definition 6.2.14. Let k be a field and R ∈ Mmn(k) an m-by-n matrix. We
say R is in reduced row echelon form, if the following conditions are satisfied:

(1) Any row that consists only of zeros is below any nonzero row.
(2) The left-most nonzero entry of a row is equal to 1. We call this 1 a leading

1.
(3) The leading ones form a staggered, or echelon pattern from left to right

and top to bottom. That is, if i < j and rows i and j are nonzero, then
the leading 1 in row i is to the left of the leading 1 in row j.

(4) Above and below any leading 1 are zeros.

Lemma 6.2.15. Let k be a field and R ∈Mmn(k) an m-by-n matrix in reduced
row echelon form.

(1) The rank of R is equal to the number of nonzero rows.
(2) The rank of R is equal to the number of leading ones.
(3) The nullity of R is equal to the number of columns that do not contain a leading

1.
(4) The columns that contain a leading one make up a basis for the column space

of R.
(5) Let R1, . . . , Rn be the columns of R. If Rj does not contain a leading 1, then

Rj is a unique linear combination of the columns in the set {R1, . . . , Rj−1} that
contain a leading one. In other words, there is a unique vector in the kernel of
R of the form (x1, . . . , xj−1, 1, 0, . . . , 0) such that xi = 0, if 1 ≤ i < j and Ri
does not contain a leading 1.

Proof. The (m − 1)-by-n submatrix of R consisting of rows 2, . . . ,m is in
reduced row echelon form. Each nonzero row of R contains a leading one. For
1 ≤ i < m, since R is in row echelon form, if row i has a leading one, then row i is
not in the span of rows i+1, . . . ,m. Therefore, (1) and (2) follow from induction on
the number of nonzero rows. By Corollary 4.5.19 and Exercise 4.3.11, the nullity
of R plus the rank of R is equal to n. Therefore, (3) follows from (2). The columns
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that contain a leading one are a subset of the standard basis {e1, . . . , em} for k(m).
By (2), the number of columns that contain a leading one is equal to the rank of R.
This proves (4). Let Rj be a column that does not contain a leading one. Then Rj
is a unique linear combination of the columns that contain a leading one. There is
a unique vector (x1, . . . , xj−1, 1, xj+1, . . . , xn) in the kernel of R such that xi = 0
if i ̸= j and Ri does not contain a leading one. Moreover, since R is in row echelon
form, xi = 0 for j < i ≤ n. This proves (5). □

Proposition 6.2.16. Let k be a field and A ∈Mmn(k).

(1) There is an invertible matrix Q in Mm(k) such that QA is in reduced row
echelon form.

(2) The reduced row echelon form of A is unique in the sense that if Q1 is another
invertible matrix in Mm(k) and Q1A is in reduced row echelon form, then
QA = Q1A.

Proof. (1): Let X = {A1, A2, . . . , An} be the columns of A. The column
space of A is equal to the span of X in k(m). By Corollary 4.3.6 there exists a
subset of X that is a basis for the column space of A. Let U ⊆ X be a basis for
the column space of A such that U is minimal with respect to the ordering on 2X

defined in Exercise 1.2.24. Then U ⊆ X has the property that if Aj ∈ X −U , then
Aj is a linear combination of {Ai ∈ U | i < j}. By Theorem 4.3.4, we can extend

U to a basis for k(m). Call the resulting basis B. Let Q be the change of basis
matrix. Then Q is an invertible matrix in Mm(k). Let QA = R. We show that R
is a matrix in reduced row echelon form. Let Rank(A) = r and MU = (u1, . . . , ur)
the m-by-r matrix with columns the r vectors in U . Then QMU is the m-by-r
matrix equal to the first r columns of the identity matrix Im in Mm(k). Therefore,
the columns of A in U correspond to the standard basis vectors e1, . . . , er in R.
The column space of R is spanned by e1, . . . , er, hence rows r + 1, . . . ,m of R are
zeros. As mentioned above, if Aj ∈ X−U , then Aj is a linear combination of those
columns of A that are in U and to the left of Aj . This says that every nonzero row
of R has a leading one.

(2): Since Q is invertible, the kernel of ℓQA is equal to the kernel of ℓA. Suppose
Q1A = R1 and Q2A = R2 are two reduced row echelon forms for A. For sake of
contradiction, suppose there is a difference in the columns containing leading ones.
Say there is a leading 1 in column i of R1 but not in column i of R2. Then this
contradicts Lemma 6.2.15 (5) because a column containing a leading 1 is not linearly
dependent on the columns to its left. The uniqueness of those columns that do not
contain leading ones follows from Lemma 6.2.15 (5) and the fact that the kernels of
ℓR1 and ℓR2 are equal. □

Proposition 6.2.17. Let k be a field, A a matrix in Mmn(k), and Q an in-
vertible matrix in Mm(k) such that QA is in reduced row echelon form.

(1) The columns of QA containing leading ones correspond to a set of columns of
A that make up a basis for the column space of A.

(2) If A has rank r, then the n − r vectors defined by applying Lemma 6.2.15 (5)
to QA make up a basis for the kernel of A.

Proof. (1): Since Q is invertible, left multiplication by Q maps the column
space of A isomorphically onto the column space of QA. A basis for the column
space of QA corresponds to a basis for the column space of A. By Lemma 6.2.15 (4),
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the columns of QA that contain a leading one make up a basis for the column space
of QA.

(2): The kernel of QA is equal to the kernel of A, since Q is invertible. □

Example 6.2.18. Consider the matrix A =

1 2 −1 0
2 1 1 3
1 −1 2 3

 over a field k,

where we assume char k ̸= 3. Notice that Q =

−1/3 2/3 0
2/3 −1/3 0
1 −1 1

 is invertible

and the inverse is Q−1 =

1 2 0
2 1 0
1 −1 1

. Multiplying, QA =

1 0 1 2
0 1 −1 −1
0 0 0 0


is in reduced row echelon form. The rank of A is 2, the nullity of A is 2. By
Proposition 6.2.17 (1), the first two columns of A make up a basis for the column
space of A. By Proposition 6.2.17 (2), we obtain a basis for the kernel of A by
writing columns 3 and 4 of QA as linear combinations of columns 1 and 2: 1

−1
0

 =

10
0

−

01
0

 ,
 2
−1
0

 = 2

10
0

−

01
0


A basis for the kernel of A is (−1, 1, 1, 0)T , (−2, 1, 0, 1)T .

2.4.1. A System of Linear Equations. Let k be a field. Consider a system of m
linear equations in n variables over k:

(2.3)

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Then the matrix of coefficients A = (aij) is in Mmn(k) and the vector b =

(b1, . . . , bm)T on the right-hand side is in k(m). If x = (x1, . . . , xn)
T , then (2.3)

can be expressed in matrix form: Ax = b. With respect to the standard bases
on k(n) and k(m), left multiplication by A defines a linear transformation ℓA in
Homk(k

(n), k(m)). The image of ℓA is the column space of A. The rank of A is the
dimension of the column space of A. The nullity of A is the dimension of the kernel
of ℓA.

Proposition 6.2.19. In the above context,

(1) If b is in the image of ℓA, then the system of linear equations (2.3) has a
solution and we say the system of equations is consistent. Let c = (c1, . . . , cn)

T

be a particular solution. Then the general solution to (2.3) is x = c+ z, where
z = (z1, . . . , zn)

T represents a typical element in the kernel of ℓA. The nullity
of A is equal to the number of degrees of freedom in the solution. The solution
x is unique if and only if the nullity of A is zero. If the nullity of A is positive,
then we say the system of equations is underdetermined.

(2) If b is not in the image of ℓA, then there is no solution to (2.3). In this case,
we say the system of equations is inconsistent, or overdetermined.

Proof. (1): The preimage ℓ−1
A (b) is equal to the left coset c + ker(ℓA). The

rest of the proof is left to the reader. □
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Let A ∈ Mmn(k) and B ∈ Mmp(k). Consider the matrix equation AX = B,
where X is a variable. A solution to AX = B is therefore a matrix X in Mnp(k).
The augmented matrix is the block matrix

(
A B

)
, which is in Mm,n+p(k). Then(

A B
)
is the matrix whose first n columns are the columns of A and whose last

p columns are those of B.

Proposition 6.2.20. Let k be a field, A ∈Mmn(k), B ∈Mmp(k) and
(
A B

)
the augmented matrix. If Q is an invertible matrix inMm(k) such that Q

(
A B

)
=(

QA QB
)
is in reduced row echelon form, then the equation AX = B has a

solution X ∈Mnp if and only if every column of
(
QA QB

)
with a leading one is

in QA.

Proof. First assume X exists. Then (QA)X = QB says every column of QB
in the column space of QA. By Lemma 6.2.15, QB has no column with a leading
one. If p = 1, the converse follows from Propositions 6.2.17 (1) and 6.2.19 (1). The
general case of the converse can be proved by induction on p. □

Example 6.2.21. This is a continuation of Example 6.2.18. Consider the sys-
tem of 3 linear equations in 4 variables:

x1 + 2x2 − x3 = 2
2x1 + x2 + x3 + 3x4 = 7
x1 − x2 + 2x3 + 3x4 = 5

Then the matrix of coefficients is A =

1 2 −1 0
2 1 1 3
1 −1 2 3

 and the right-hand side

vector is b = (2, 7, 5)T . From Example 6.2.18, the reduced row echelon form of A is

obtained by multiplying by Q =

−1/3 2/3 0
2/3 −1/3 0
1 −1 1

. Let x = (x1, x2, x3, x4)
T . A

basis for the kernel of A is (−1, 1, 1, 0)T , (−2, 1, 0, 1)T . Multiply both sides of the
matrix equation Ax = b by Q:

QAx =

1 0 1 2
0 1 −1 −1
0 0 0 0



x1
x2
x3
x4

 =

 4
−1
0


Then the general solution is:

x1
x2
x3
x4

 =


4
−1
0
0

+ a


−1
1
1
0

+ b


−2
1
0
1


where a and b represent arbitrary elements of k.

2.5. Exercises.

Exercise 6.2.22. Let k be a field, V a k-vector space of dimension n, and
ϕ ∈ Homk(V, V ). Suppose B = {x1, . . . , xn} is a k-basis for V and a0, . . . , an−1

are elements of k such that ϕx1 = x2, ϕx2 = x3, . . . , ϕxn−1 = xn, and ϕxn =
−a0x1 − a1x2 − · · · − an−1xn. Prove:
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(1) Vϕ = k[ϕ]x1. In other words, Vϕ is a cyclic k[ϕ]-module and is generated
by x1.

(2) min.polyk(ϕ) = xn + an−1xn−1 + · · ·+ a1x+ a0.

Exercise 6.2.23. Assume A is an n-by-n matrix over the field Q such that the
minimum polynomial of A in Q[x] is equal to (x2 + 1)(x+ 2). If n = 7, exhibit all
possible rational canonical forms for A.

Exercise 6.2.24. Let k be a field. Let q and ℓ be monic polynomials in k[x],
where q is an irreducible quadratic and ℓ is linear. If A is a 7-by-7 matrix over k
such that the minimum polynomial of A in k[x] is qℓ, exhibit all possible rational
canonical forms for A.

Exercise 6.2.25. Let k be a field. Let q and ℓ be monic polynomials in k[x],
where q is an irreducible quadratic and ℓ is linear. Let A be a 6-by-6 matrix over
k. Exhibit all possible rational canonical forms for A, if the minimum polynomial
of A in k[x] is q2ℓ. Do the same if the minimum polynomial of A in k[x] is ℓ2q.

Exercise 6.2.26. Let k be a field. Let q and t be irreducible monic polynomials
in k[x], where deg q = 2 and deg t = 3. Let A be a 15-by-15 matrix over k. Exhibit
all possible rational canonical forms for A, if the minimum polynomial of A in k[x]
is q2t2. Do the same if the minimum polynomial of A in k[x] is q3t.

Exercise 6.2.27. Let k be a field. Let q1, q2 and ℓ be distinct irreducible
monic polynomials in k[x], where q1 and q2 are quadratics and ℓ is linear. Let A
be a 10-by-10 matrix over k. Exhibit all possible rational canonical forms for A, if
the minimum polynomial of A in k[x] is ℓq21q2.

Exercise 6.2.28. Let k be a field. Let ℓ1, ℓ2 be distinct monic polynomials
in k[x], where deg ℓ1 = deg ℓ2 = 1. Let A be an 8-by-8 matrix over k. Exhibit all
possible rational canonical forms for A, if the minimum polynomial of A in k[x] is
ℓ21ℓ

3
2.

Exercise 6.2.29. Let F/k be an extension of fields. Prove the following.

(1) If A ∈ Mn(k), then the invariant factors of A in k[x] are the same as the
invariant factors of A in F [x].

(2) Let A,B ∈ Mn(k). Then A is similar to B in Mn(k) if and only if A is
similar to B in Mn(F ).

Exercise 6.2.30. Let k be a field and b ∈ k. Let B ∈ Mn(k) be the Jordan
block corresponding to (x− b)n. That is, B is the matrix which has main diagonal
entries all equal to b, first lower subdiagonal entries all equal to 1 and 0 elsewhere.
Prove that the transpose of B is similar to B. For a continuation of this exercise,
see Exercise 6.2.32.

Exercise 6.2.31. Let k be a field, V a finite dimensional k-vector space of
dimension n > 1. Let α ∈ Homk(V, V ) be a nilpotent linear transformation on V .
Prove:

(1) There exist unique positive integers n1 ≤ n2 ≤ · · · ≤ nr such that the
invariant factors of α are {qi = xni | 1 ≤ i ≤ r}.

(2) The rational canonical form and the Jordan canonical form of α are both
equal to the block diagonal matrix diag(Jn1(0), . . . , Jnr (0)).

Exercise 6.2.32. Let k be a field and A a matrix in Mn(k). Prove that A is
similar to the transpose of A.
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3. The Determinant

Throughout this section, R is a commutative ring and n is a fixed positive
integer. First we prove that the determinant function det :Mn(R) → R exists and
is the unique alternating multilinear form (on the columns) such that if In is the
identity matrix, then det(In) = 1. Then we show that the determinant function
is multiplicative and constant on similarity classes. The formulas for computing
determinants by cofactor expansion are derived. The formula for the inverse of a
matrix involving the adjoint matrix is derived. Using the isomorphism of Proposi-
tion 4.5.7, the determinant function extends to a function det : HomR(M,M) → R
for any free R-module M of finite rank.

3.1. The Determinant of a Matrix. Let J = {1, . . . , n} and Jn = J×· · ·×J
(n times). We view the symmetric group Sn as the subset of Jn consisting of n-

tuples j⃗ = (j1, . . . , jn) that are permutations of J . The sign of a permutation
σ ∈ Sn is denoted sign(σ).

Definition 6.3.1. Let R be a commutative ring, n ≥ 1, and (Rn)n =
⊕n

i=1R
n.

Consider a function f : (Rn)n → R. We say that f is a multilinear form if for each
i,

f(x1, . . . , xi−1, αu+ βv, xi+1, . . . , xn) =

αf(x1, . . . , xi−1, u, xi+1, . . . , xn) + βf(x1, . . . , xi−1, v, xi+1, . . . , xn).

We say that f is an alternating form if f(x1, , . . . , xn) = 0 whenever xi = xj for
some pair i ̸= j.

Lemma 6.3.2. If f : (Rn)n → R is an alternating multilinear form and σ ∈ Sn
is a permutation on the set {1, . . . , n}, then

f(xσ1, . . . , xσn) = sign(σ)f(x1, , . . . , xn).

We say that f is skew symmetric.

Proof. Because σ factors into a product of transpositions, it is enough to
show that acting on the variables by a transposition changes the sign of f . For
simplicity’s sake, assume σ = (i, j) = (1, 2). Look at

0 = f(x1 + x2, x1 + x2, x3, . . . , xn)

= f(x1, x1, x3, . . . , xn) + f(x1, x2, x3, . . . , xn)+

f(x2, x1, x3, . . . , xn) + f(x2, x2, x3, . . . , xn)

= f(x1, x2, x3, . . . , xn) + f(x2, x1, x3, . . . , xn).

This shows f(x1, x2, x3, . . . , xn) = −f(x2, x1, x3, . . . , xn). □

Lemma 6.3.3. If R is a commutative ring and r ∈ R, there is a unique alternat-
ing multilinear form f : (Rn)n → R such that f(e1, . . . , en) = r, where (e1, . . . , en)
is the standard basis for Rn.
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Proof. (Uniqueness) Given (x1, . . . , xn) ∈ (Rn)n, for each i we can write
xi = a1ie1 + · · ·+ anien. Since f is multilinear,

f(x1, . . . , xn) = f

(∑
j∈J

aj1ej , . . . ,
∑
j∈J

ajnej

)

=
∑
j1∈J

aj11f(ej1 ,∑
j∈J

aj2ej , . . . ,
∑
j∈J

ajnej

)
=
∑
j1∈J

∑
j2∈J

aj11aj22f(ej1 , ej2 , . . . ,∑
j∈J

ajnej

)
...

=
∑

(j1,...,jn)∈Jn

aj11 · · · ajnnf
(
ej1 , . . . , ejn

)
.

(3.1)

If j⃗ = (j1, . . . , jn) ∈ Jn is not a permutation, then f(ej1 , . . . , ejn) = 0 since f is

alternating. We can restrict the last summation in Eq. (3.1) to those j⃗ in Sn. In this

case, since f is skew symmetric, f(ej1 , . . . , ejn) = sign(⃗j)f(e1, . . . , en) = sign(⃗j)r.
This proves that

(3.2) f(x1, . . . , xn) = r
∑
j⃗∈Sn

sign(⃗j)aj11 · · · ajnn

is completely determined by r and (x1, . . . , xn).
(Existence) The formula in (3.2) defines a function f : (Rn)n → R. Notice that

f(e1, . . . , en) = r

since only for j⃗ = (1, 2, . . . , n) is the product formula in the summation (3.2)
nonzero. We need to prove f is an alternating multilinear form. Let α, β ∈ R,
u, v ∈ Rn and (x1, . . . , xn) ∈ (Rn)n where xk = αu+βv. Write xj =

∑n
i=1 aijei. If

we write u =
∑
uiei and v =

∑
viei, then aik = αui+βvi, so that xk =

∑
aikei =∑

(αui + βvi)ei = αu+ βv. Then

f(x1, . . . , αu+ βv, . . . , xn) = r
∑
j⃗∈Sn

sign(⃗j)aj11 · · · ajkk · · · ajnn

= r
∑
j⃗∈Sn

sign(⃗j)aj11 · · · (αujk + βvjk) · · · ajnn

= rα
∑
j⃗∈Sn

sign(⃗j)aj11 · · ·ujk · · · ajnn+

rβ
∑
j⃗∈Sn

sign(⃗j)aj11 · · · vjk · · · ajnn

= αf(x1, . . . , u, . . . , xn) + βf(x1, . . . , v, . . . , xn)

shows f is multilinear.
Now we show f is alternating. Suppose i < j and let τ be the transposition

that switches i and j. The alternating group An has index 2 in Sn, so every
odd permutation is of the form στ for some σ ∈ An. Assume xi = xj and show
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f(x1, . . . , xn) = 0. For all k we have aki = akj . Also, if σ ∈ An then στ(i) = σ(j)
and στ(j) = σ(i).

f(x1, . . . , xn) = r
∑
σ∈Sn

sign(σ)aσ(1)1 · · · aσ(n)n

= r
∑
σ∈An

(
aσ(1)1 · · · aσ(n)n − aστ(1)1 · · · aστ(n)n

)
= r

∑
σ∈An

(
aσ(1)1 · · · aσ(n)n − aστ(1)1 · · · aστ(i)i · · · aστ(j)j · · · aστ(n)n

)
= r

∑
σ∈An

(
aσ(1)1 · · · aσ(n)n − aσ(1)1 · · · aσ(j)i · · · aσ(i)j · · · aσ(n)n

)
= r

∑
σ∈An

(
aσ(1)1 · · · aσ(n)n − aσ(1)1 · · · aσ(j)j · · · aσ(i)i · · · aσ(n)n

)
= 0.

□

Definition 6.3.4. By viewing the columns of a matrix in Mn(R) as vectors
in Rn, we identify Mn(R) with (Rn)n. The determinant is the unique alternating
multilinear form det :Mn(R) → R such that det(In) = 1. By Lemma 6.3.3,

det(aij) =
∑
j⃗∈Sn

sign(⃗j)aj1,1 · · · ajn,n.

Lemma 6.3.5. Let A,B ∈Mn(R).

(1) det(AB) = det(A) det(B).
(2) If A and B are similar, then det(A) = det(B).
(3) det(A) = det(AT ).
(4) The determinant is an alternating multilinear form on the rows of matrices in

Mn(R).

Proof. (1): Fix A. Taking r = det(A) in (3.2) defines an alternating multi-
linear form g :Mn(R) → R, where g(C) = det(A) det(C). Define another function
f : Mn(R) → R by f(C) = det(AC). Since f(In) = det(A), by Lemma 6.3.3, it is
enough to prove that f is alternating and multilinear. Assume α, β ∈ R, u, v ∈ Rn

and C = (c1, . . . , cn) ∈Mn(R) where ck = αu+ βv. Then

f(c1, . . . , αu+ βv, . . . , cn) = det (A(c1, . . . , αu+ βv, . . . , cn))

= det (Ac1, . . . , αAu+ βAv, . . . , Acn)

= α det (Ac1, . . . , Au, . . . , Acn)+

β det (Ac1, . . . , Av, . . . , Acn)

= αf(c1, . . . , u, . . . , cn) + βf(c1, . . . , v, . . . , cn).

If two columns of C are equal, then two columns of AC are equal, so f is alternating.
(2): If A = X−1BX, then

det(A) = det(X−1) det(B) det(X)

= det(B) det(X−1) det(X)

= det(B) det(X−1X)

= det(B).
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(3): Since R is commutative, for every σ ∈ Sn we have

aσ(1),1 · · · aσ(n),n = a1,σ−1(1) · · · an,σ−1(n).

This together with the fact that sign(σ) = sign(σ−1) lead to

det(A) =
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n

=
∑
σ∈Sn

sign(σ)a1,σ−1(1) · · · an,σ−1(n)

=
∑
σ∈Sn

sign(σ)a1,σ(1) · · · an,σ(n)

= det(AT ).

(4): Follows from (3). □

Definition 6.3.6. For A ∈Mn(R), let Aij be the matrix inMn−1(R) obtained
by deleting row i and column j from A. Then det(Aij) is called the minor of A in
position (i, j) and (−1)i+j det(Aij) is called the cofactor of A in position (i, j).

Lemma 6.3.7. If A is a matrix in Mn(R), then the following are true.

(1) For each row i, det(A) =
∑n
j=1 aij(−1)i+j det(Aij), and

(2) For each column j, det(A) =
∑n
i=1 aij(−1)i+j det(Aij).

Proof. We prove that the determinant can be computed by cofactor expansion
of row i. The statement about column expansion follows from Lemma 6.3.5 (3).
Define a function f :Mn(R) → R by the formula f(A) =

∑n
j=1 aij(−1)i+j det(Aij).

The reader should verify that f(In) = 1. By Lemma 6.3.3 it is enough to show that
f is alternating and multilinear.

Assume the columns of A are (A1, . . . , An) and assume Ak = Aℓ and k < ℓ.
Therefore aik = aiℓ. If j ̸= k and j ̸= ℓ, then Aij has two columns that are equal,
so det(Aij) = 0. The formula for f reduces to

f(A) = aik(−1)i+k det(Aik) + aiℓ(−1)i+ℓ det(Aiℓ)

= aik(−1)i+k det(Aik) + aik(−1)i+ℓ det(Aiℓ)

= aik
(
(−1)i+k det(Aik) + (−1)i+ℓ det(Aiℓ)

)
.

But Aik is obtained from Aiℓ by permuting the columns. In fact, ℓ − k − 1 trans-
positions are sufficient. Since the determinant form is skew symmetric, det(Aik) =
(−1)ℓ−k−1 det(Aiℓ). The reader should verify that (−1)i+k+(−1)i+ℓ(−1)ℓ−k−1 = 0,
hence

f(A) = aik
(
(−1)i+k det(Aik) + (−1)i+ℓ det(Aiℓ)

)
= aik

(
(−1)i+k det(Aik) + (−1)i+ℓ(−1)ℓ−k−1 det(Aik)

)
= aik det(Aik)

(
(−1)i+k + (−1)i+ℓ(−1)ℓ−k−1

)
= 0

which proves f is alternating.
Assume the columns of A are (A1, . . . , An) where Ak = αu + βv for some

u, v ∈ Rn. Let B = (bij) be the matrix obtained by replacing column k of A with
the vector u. Let C = (cij) be the matrix obtained by replacing column k of A
with the vector v. We show that f(A) = αf(B) + βf(C). Because they differ only
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in column k, we have Aik = Bik = Cik. The determinant is multilinear, so if j ̸= k,
then det(Aij) = α det(Bij) + β det(Cij). Therefore

f(A) =

n∑
j=1

aij(−1)i+j det(Aij)

=
∑
j ̸=k

aij(−1)i+j (α det(Bij) + β det(Cij)) + (αbik + βcik)(−1)i+k det(Aik)

= α

n∑
j=1

bij(−1)i+j det(Bij) + β

n∑
j=1

cij(−1)i+j det(Cij)

= αf(B) + βf(C)

□

Definition 6.3.8. Let A ∈ Mn(R). The adjoint of A, denoted Aa, is the
transpose of the matrix of cofactors of A. Therefore, Aa =

(
(−1)i+j det(Aji)

)
.

Lemma 6.3.9. AaA = AAa = det(A)In.

Proof. Assume i ̸= j. Let B be the matrix which is equal to A with column i
replaced with a copy of column j. Compute det(B) = 0 by column expansion down
column i. Use the facts that Bki = Aki and bki = bkj = akj for each k.

0 =

n∑
k=1

bki(−1)i+k det(Bki)

=

n∑
k=1

akj(−1)i+k det(Aki)

Let AaA = (cij). Then

cij =

n∑
k=1

(−1)i+k det(Aki)akj =

{
det(A) if i = j

0 if i ̸= j.

□

Corollary 6.3.10. Let R be a commutative ring and A ∈Mn(R). Then A is
invertible if and only if det(A) is a unit in R.

Proof. If AB = In, then det(A) det(B) = 1. The converse follows from
Lemma 6.3.9 because in this case A−1 = det(A)−1Aa. □

Definition 6.3.11. By Lemma 6.3.5 (2), the determinant function is constant
on similarity classes. If M is a finitely generated free R-module of rank n and
ϕ ∈ HomR(M,M), then the determinant of ϕ is defined to be the determinant of
the matrix of ϕ with respect to any basis B ofM . GivenM and a basis B, using the
isomorphism of Proposition 4.5.7, the determinant function extends to a function
det : HomR(M,M) → R such that the diagram

HomR(M,M)

det
%%

M(·,B) // Mn(R)

det
||

R
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commutes.

3.2. The Characteristic Polynomial. Using determinants, the character-
istic polynomial is defined for a square matrix over a commutative ring R. As
in Definition 6.3.11, the definition of characteristic polynomial extends to any
ϕ ∈ HomR(M,M), if M is a finitely generated free R-module of finite rank.

Definition 6.3.12. Let R be a commutative ring and M ∈Mn(R). If x is an
indeterminate, then we can view M as a matrix in Mn(R[x]). The characteristic
polynomial of M is char.polyR(M) = det(xIn−M), which is a polynomial in R[x].
Computing the determinant using row expansion (Lemma 6.3.7) along row one, it
is easy to see that char.polyR(M) is monic and has degree n. The characteristic
polynomial is constant on similarity classes, by Exercise 6.3.18. If P is a finitely
generated free R-module and ϕ ∈ HomR(P, P ), then the characteristic polynomial
of ϕ is defined to be the characteristic polynomial of the matrix of ϕ with respect
to any basis of P .

Theorem 6.3.13. Let k be a field and V a finite dimensional vector space over
k. Let ϕ ∈ Homk(V, V ). As in Theorem 6.2.1, let q1, q2, . . . , qr be the invariant
factors of ϕ.

(1) char.polyk(ϕ) = q1q2 · · · qr.
(2) (Cayley-Hamilton) If p(x) = char.polyk(ϕ), then p(ϕ) = 0. The minimal poly-

nomial of ϕ divides the characteristic polynomial of ϕ. That is, min.polyk(ϕ) |
char.polyk(ϕ).

(3) If f ∈ k[x] is irreducible, then f | char.polyk(ϕ) if and only if f | min.polyk(ϕ).
The roots of the minimal polynomial min.polyk(ϕ) are precisely the roots of the
characteristic polynomial char.polyk(ϕ).

Proof. (1): By Corollary 6.2.5 there is a basis for V such that the matrix of ϕ
is the block diagonal matrix (C(q1), C(q2), . . . , C(qr)), where C(qi) is the companion
matrix for qi. By Exercise 6.3.17, the characteristic polynomial of C(qi) is qi. Apply
Exercise 6.3.19 iteratively to show that char.polyk(ϕ) = q1q2 · · · qr.

(2): By Theorem 6.2.1, min.polyk(ϕ) = qr.
(3): By Theorem 6.2.1, q1 | q2 | · · · | qr. The irreducible factors of char.polyk(ϕ)

are equal to the irreducible factors of min.polyk(ϕ). □

Example 6.3.14. Consider the matrix B =

 1 1 1
−1 −1 −1
0 1 1

 over the field Q.

Then B2 =

 0 1 1
0 −1 −1
−1 0 0

, and B3 =

−1 0 0
1 0 0
−1 −1 −1

. Using determinants we

compute the characteristic polynomial of B:

char.poly(B) = det(x−B)

=

∣∣∣∣∣∣
x− 1 −1 −1
1 x+ 1 1
0 −1 x− 1

∣∣∣∣∣∣
= (x− 1)(x+ 1)(x− 1) + 1 + (x− 1) + (x− 1)

= x(x2 − x+ 1).
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The roots of the characteristic polynomial are 0, α = (1 −
√
3i)/2 and β = (1 +√

3i)/2. By Theorem 6.1.10, 0, α, β are also roots of the minimal polynomial of B.
This proves that min.poly(B) = x(x2−x+1). The rational canonical form of B over
Q is therefore equal to the companion matrix of x(x2−x+1), which is C(x3−x2+

x) =

0 0 0
1 0 −1
0 1 1

. Let V = Q(3) and ψ ∈ HomQ(V, V ) the linear transformation

corresponding to left multiplication by B. Since min.poly(ψ) has degree 3, we
know V is a cyclic Q[ψ]-module. Let u1 = (1, 0, 0)T , u2 = Bu1 = (1,−1, 0)T ,
and u3 = Bu2 = (0, 0,−1)T . Then U = {u1, u2, u3} is a basis for V such that

M(ψ,U, U) = C(x3 −x2 +x). Set P =

1 1 0
0 −1 0
0 0 −1

. Then we see that P = P−1

and PBP = C(x3−x2+x). The Jordan canonical form of ψ exists over F = Q(α),
the splitting field of x2−x+1. Since B has 3 distinct eigenvalues, the Jordan form

of ψ is the diagonal matrix

0 0 0
0 α 0
0 0 β

. By Theorem 6.1.12, a Jordan basis for B is

a basis of eigenvectors. Using elementary row operations and gaussian elimination,

the reduced row echelon form of B is

1 0 0
0 1 1
0 0 0

. Therefore, v1 = (0, 1,−1)T is

an eigenvector for 0. Using the identity α2 − α + 1 = 0, we find the reduced row

echelon form of B − α is

1 0 α− 1
0 1 1− α
0 0 0

. Therefore, v2 = (1 − α, α − 1, 1)T is an

eigenvector for α. Likewise, v3 = (1 − β, β − 1, 1)T is an eigenvector for β. Then
V = {v1, v2, v3} is a Jordan basis for ψ. Let P be the matrix with columns v1, v2, v3.
Using a symbolic calculator such as [28], for instance, one can show that P−1BP
is equal to the matrix with diagonal (0, α, β).

Example 6.3.15. Consider the matrix A =

 2 3 1
−1 2 1
4 −1 −1

 over the field Q.

Using determinants we compute the characteristic polynomial of A:

char.poly(A) = det(x−A)

=

∣∣∣∣∣∣
x− 2 −3 −1
1 x− 2 −1
−4 1 x+ 1

∣∣∣∣∣∣
= (x− 2)2(x+ 1)− 12− 1 + (x− 2) + 3(x+ 1)− 4(x− 2)

= x2(x− 3).

The roots of the characteristic polynomial are 0, and 3. Since the matrix

A(A− 3) =

−1 2 1
3 −6 −3
−7 14 7


has rank 1, we see from Theorem 6.1.10, that the minimal polynomial of A is
min.poly(A) = x2(x − 3). The rational canonical form of A over Q is therefore
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equal to the companion matrix of x3 − 3x2, which is C(x3 − 3x2) =

0 0 0
1 0 0
0 1 3

.
Let V = Q(3) and ϕ ∈ HomQ(V, V ) the linear transformation corresponding to left
multiplication by A. Since min.poly(ϕ) has degree 3, we know V is a cyclic Q[ϕ]-
module. Let u1 = (1, 0, 0)T , u2 = Au1 = (2,−1, 4)T , and u3 = Au2 = (5, 0, 5)T .
Then U = {u1, u2, u3} is a basis for V such that M(ϕ,U, U) = C(x3 − 3x2). Set

Q =

1 2 5
0 −1 0
0 4 5

. Then we see that AQ = QC(x3 − 3x2). The Jordan canonical

form of ψ exists over Q. By Theorem 4.6.12, the elementary divisors of ϕ are

x2, x − 3. The Jordan canonical form for ϕ is J(ϕ) =

0 0 0
1 0 0
0 0 3

. The cyclic

submodule of V corresponding to the eigenvalue 0 has dimension 2. The matrix

A− 3 =

−1 3 1
−1 −1 1
4 −1 −4

 has rank 2 and A2(A− 3) = 0. Set w1 = (1, 1,−4)T and

w2 = Aw1 = (1,−3, 7)T . Then A2w1 = 0 and Aw2 = 0. Set w3 = (1, 0, 1)T . Then
(A − 3)w3 = 0, so w3 is an eigenvector for 3. Let P be the matrix with columns
w1, w2, w3. The reader should verify that P is invertible and AP = PJ(ϕ). So
w1, w2, w3 is a Jordan basis for ϕ.

Example 6.3.16. Let k be a field and A =

[
1 1
1 1

]
. The characteristic poly-

nomial of A is (x − 1)2 − 1 = x2 − 2x = x(x − 2). If char k ̸= 2, then A has two

distinct eigenvalues, hence the Jordan form of A is diagonal: J(A) =

[
0 0
0 2

]
. A

Jordan basis for A is a basis of eigenvectors, (1,−1)T , (1, 1)T . If char k = 2, then 0

is the only eigenvalue of A. The Jordan form of A is therefore J(A) =

[
0 0
1 0

]
and

a Jordan basis for A is (1, 0)T , (1, 1)T .

3.3. Exercises.

Exercise 6.3.17. Suppose k is a field and

M =



0 0 0 . . . 0 0 −a0
1 0 0 . . . 0 0 −a1
0 1 0 . . . 0 0 −a2
...

...
...

...
...

0 0 0 . . . 0 0 −an−3

0 0 0 . . . 1 0 −an−2

0 0 0 . . . 0 1 −an−1


is a matrix in Mn(k).

(1) Prove that min.polyk(M) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

(2) Prove that char.polyk(M) = min.polyk(M).
(3) Prove that the rank of M is equal to the rank of the transpose of M .

Exercise 6.3.18. Let R be a commutative ring and A and B similar matrices
in Mn(R). Prove that char.polyR(A) = char.polyR(B).
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Exercise 6.3.19. Let R be a commutative ring, A ∈ Mm(R), B ∈ Mn(R).
Define the direct sum of A and B by

A⊕B =

[
A 0
0 B

]

which is a matrix in Mm+n(R). The direct sum A⊕B is sometimes called a block
diagonal matrix and is denoted diag(A,B). Prove:

(1) det(A⊕B) = det(A) det(B).
(2) char.polyR(A⊕B) = char.polyR(A) char.polyR(B).
(3) Rank(A⊕B) = Rank(A) + Rank(B).

Exercise 6.3.20. (Cramer’s Rule) Let R be a commutative ring. Suppose
A ∈ Mn(R), x, b ∈ Rn such that Ax = b. Prove that xi det(A) = det(Bi), where
Bi = (a1, . . . , b, . . . , an) is the matrix obtained by replacing column i of A with the
column vector b.

Exercise 6.3.21. Let θ : R→ S be a homomorphism of commutative rings.

(1) Show that θ induces a homomorphism of rings θ :Mn(R) →Mn(S).
(2) Show that θ(det(M)) = det(θ(M)), for every M in Mn(R).
(3) We know from Theorem 3.6.2 that θ induces a homomorphism of rings

R[x] → S[x]. Show that θ(char.polyR(M)) = char.polyS(θ(M)).

Exercise 6.3.22. Let A =

 0 1 1
−4 −4 −1
0 0 −2

 in the ring of 3-by-3 matrices over

the field Q.

(1) Find char.poly(A), the characteristic polynomial.
(2) Find min.poly(A), the minimal polynomial.
(3) Find the invariant factors of A in Q[x].
(4) Find the elementary divisors of A in Q[x].
(5) Find the rational canonical form of A.
(6) Find the Jordan canonical form of A.
(7) Find an invertible matrix P such that P−1AP is equal to the Jordan

canonical form of A. In other words, find a Jordan basis for the linear
transformation on Q(3) defined by A.

Exercise 6.3.23. Let R be a commutative ring and A ∈ Mn(R). For each i,
let Ai denote column i. Assume 1 ≤ i < j ≤ m and α ∈ R. If B is the matrix
obtained by replacing Aj with αAi +Aj , show that det(B) = det(A).

Exercise 6.3.24. This exercise is a generalization of Example 6.3.16. Let k be
a field and A = (aij) the n-by-n matrix in Mn(k) with aij = 1 for every pair (i, j).

(1) Assume the characteristic of k does not divide n. Prove the following:
(a) min.polyk(A) = x(x− n).
(b) char.polyk(A) = ±xn−1(n− x).
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(c) The set

v1 =



−1
1
0
0
...
0


, v2 =



−1
0
1
0
...
0


, . . . , vn−1 =



−1
0
0
...
0
1


, vn =



1
1
1
...
1
1


is a Jordan basis for A.

(2) Assume the characteristic of k divides n. Prove the following:
(a) min.polyk(A) = x2.
(b) char.polyk(A) = ±xn.
(c) The set v1, v2, . . . , vn−2, vn−1 = (0, 0, . . . , 0, 1)T , vn is a Jordan basis

for A, where v1, . . . , vn−2 and vn are the vectors from Part (1) (c).

Exercise 6.3.25. Let R be an integral domain and M a finitely generated
R-module. Let ϕ ∈ HomR(M,M). Show that there exists a monic polynomial
p(x) ∈ R[x] such that p(ϕ) = 0.

Exercise 6.3.26. Let R be a commutative ring and n ≥ 1. Define the trace of
a matrix α = (αij) ∈Mn(R) by trace(α) =

∑n
i=1 αii.

(1) Prove that the trace mapping is an R-module homomorphism fromMn(R)
to R.

(2) Prove that trace(αβ) = trace(βα).
(3) Prove that if α and β are similar, then trace(α) = trace(β).

Exercise 6.3.27. Let R be a commutative ring, M a finitely generated free
R-module, and X a basis for M over R. Define the trace of ϕ ∈ HomR(M,M)
to be trace(ϕ) = trace(M(ϕ,X)). Show that this definition is independent of the
choice for X. Show that the trace mapping is an R-module homomorphism from
HomR(M,M) to R.

Exercise 6.3.28. Let k be a field, n ≥ 1, f = xn + an−1x
n−1 + · · ·+ a0 ∈ k[x]

and M = C(f) the companion matrix of f . Prove the following.

(1) det(M) = (−1)na0.
(2) trace(M) = −an−1.

Exercise 6.3.29. Let R be a commutative ring and M a finitely generated
free R-module of rank n. Let ϕ ∈ HomR(M,M). Show that if char.polyR(ϕ) =
xn + an−1x

n−1 + · · ·+ a0, then trace(ϕ) = −an−1 and det(ϕ) = (−1)na0.

Exercise 6.3.30. Let k be a field, V a finitely generated vector space over k,
and ϕ ∈ Homk(V, V ). Suppose q = min.polyk(ϕ) = xm + am−1x

m−1 + · · · + a0 is
irreducible in k[x]. Prove the following.

(1) char.polyk(ϕ) = qr for some integer r.
(2) det(ϕ) = (−1)mrar0.
(3) trace(ϕ) = −ram−1.

Exercise 6.3.31. Let k be a field andA a matrix inMn(k) such that Rank(A) =
r < n. Prove:

(1) det(A) = 0.
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(2) If B is an r + 1-by-r + 1 submatrix of A, then det(B) = 0.
(3) A contains an r-by-r submatrix of rank r.

Exercise 6.3.32. Let k be a field and f an irreducible polynomial with coeffi-
cients in k. Show that if M is an n-by-n matrix over k such that f(M) = 0, then
deg(f) ≤ n.

Exercise 6.3.33. Let R be a commutative ring and n ≥ 1. If A ∈ Mn(R),
show that the trace of A (see Exercise 6.3.26) satisfies:

n∑
i=1

n∑
j=1

eijAeji = trace(A)In

where eij denotes the elementary matrix and In = e11 + · · · + enn the identity
matrix (see Section 1.5).

Exercise 6.3.34. Let R be a commutative ring and A = Mn(R) the ring of
n-by-n matrices over R. The so-called trace pairing τ : A × A → R is defined by
τ(α, β) = trace(αβ), where the trace map is defined in Exercise 6.3.26. Show that
τ satisfies these properties:

(1) τ(α, β) = τ(β, α).
(2) τ(a1α1 + a2α2, β) = a1τ(α1, β) + a2τ(α2, β) for a1, a2 ∈ R.
(3) τ(α, b1β1 + b2β2) = b1τ(α, β1) + b2τ(α, β2) for b1, b2 ∈ R.
(4) If α ̸= 0 is fixed, then τ(α, ) : A → R is nonzero. That is, there exists β

such that τ(α, β) ̸= 0.

We say that τ is a symmetric nondegenerate bilinear form.

Exercise 6.3.35. Let n ≥ 2. As in Section 1.5, if σ ∈ Sn, then Pσ denotes the
n-by-n permutation matrix associated to σ. Show that detPσ = sign(σ).

Exercise 6.3.36. As in Exercise 6.3.35, let Pσ be the n-by-n permutation
matrix in Mn(Q) associated to σ ∈ Sn.

(1) If σ is the n-cycle (1, 2, 3, . . . , n), show that char.poly(Pσ) is equal to
xn − 1.

(2) If σ is an arbitrary n-cycle in Sn, show that char.poly(Pσ) is equal to
xn − 1.

(3) If σ = σ1σ2 · · ·σk is a product of disjoint cycles where |σi| = si and

n = s1 + s2 + · · ·+ sk, show that char.poly(Pσ) is equal to
∏k
i=1(x

si − 1).

Exercise 6.3.37. As in Exercise 6.3.36, let Pσ be the n-by-n permutation
matrix in Mn(Q) associated to σ ∈ Sn. If σ = σ1σ2 · · ·σk is a product of disjoint
cycles where |σi| = si and n = s1+ s2+ · · ·+ sk, show that µ(x) = min.poly(Pσ) is
equal to the square free part of χ(x) = char.poly(Pσ). That is, if δ(x) = gcd(χ, χ′),
then µ(x) = χ(x)/δ(x).

Exercise 6.3.38. Let R be a commutative ring and A a square matrix in
Mn(R). Show that the following are equivalent: (1) A is invertible. (2) A is left
invertible. (3) A is right invertible. (For a generalization see [11, Exercise 2.4.19].)

4. The Normal Basis Theorem

Let F/k be a Galois extension of fields with a cyclic Galois group Autk(F ) =
⟨σ⟩. Let n = dimk(F ). By Lemma 5.3.6, we can view σ as an element of
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Homk(F, F ). As in Section 6.2, the k-linear transformation σ turns F into a k[σ]-
module. In Theorem 6.4.1, we apply results from Sections 6.2 and 6.3.2 to show
that F is a cyclic k[σ]-module. This implies that F has a so-called normal basis.

Theorem 6.4.1. (The Normal Basis Theorem) Let F/k be a Galois extension
of degree n with finite cyclic group Autk(F ) = ⟨σ⟩. Then there exists α ∈ F such
that the set {α, σ(α), σ2(α), . . . , σn−1(α)} is a basis for F as a k-vector space. We
call the basis {α, σ(α), σ2(α), . . . , σn−1(α)} a normal basis for F/k.

Proof. We have dimk(F ) = n. View 1, σ, σ2, . . . , σn−1 as elements of the
ring of endomorphisms Homk(F, F ). Then char.polyk(σ) has degree n (see Def-
inition 6.3.12). Since Autk(F ) = ⟨σ⟩ has order n, the minimal polynomial of σ
divides xn − 1. By Theorem 5.3.7, the automorphisms 1, σ, σ2, . . . , σn−1 are lin-
early independent over k, so the degree of min.polyk(σ) is at least n. Therefore,
min.polyk(σ) = xn − 1. Since the minimal polynomial and the characteristic poly-
nomial of σ both have degree n, this implies they are equal. By Theorem 6.3.13,
F is a cyclic k[σ]-module. By Theorem 6.2.1, there exists α ∈ F such that the set
{α, σ(α), σ2(α), . . . , σn−1(α)} is a k-basis for F . □





CHAPTER 7

Ideal Class Groups

The goal of this chapter is to construct the group of ideal classes of a special
type of commutative ring. We focus our attention on the class of all integrally closed
noetherian integral domains S such that every nonzero prime ideal of S is maximal.
These rings are commonly called Dedekind domains. An algebraic number field is a
finite algebraic extension L of Q. The integral closure of Z in an algebraic number
field L is a Dedekind domain. Another important class of examples are the affine
coordinate rings of nonsingular algebraic curves.

There is a brief introduction to the notion of integral extensions of commutative
rings presented in Section 7.1. Included is a proof that the integral closure R̄ of
a principal ideal domain R in a finite separable extension L of its quotient field
K is finitely generated and free as an R-module and the rank RankR(R̄) is equal
to the dimension dimK(L). Fractional ideals of an integral domain in its field
of fractions are defined in Section 7.2. In Section 7.3 we restrict our attention
to Dedekind domains. An integral domain S with field of fractions L is called a
Dedekind domain if S ̸= L, S is integrally closed in L, S satisfies the ascending
chain condition on ideals, and every nonzero prime ideal in S is maximal. Let S be
the integral closure of a principal ideal domain R in a finite separable extension L/K
of the quotient field K of R. We show that the ring S is a Dedekind domain, a very
useful existence theorem for constructing a Dedekind domain as an extension of a
principal ideal domain. We show that for a Dedekind domain S, every fractional
ideal is invertible, the set of all fractional ideals is a free Z-module and the set of
nonzero prime ideals is a free basis. The ideal class group of S is defined, and a
special case of Nagata’s Theorem is proved.

Section 7.4 is a short introduction to the theory of Algebraic Curves over a
field. Two elementary examples are studied. The first is an irreducible affine conic,
the second a nonsingular affine elliptic curve. These are examples of rings which
are not unique factorization domains. As an application of Nagata’s Theorem, we
show that the class group of the ring k[x, y]/(x2 + y2 − 1) is a cyclic group of order
2. Using the ideal class group of the affine coordinate ring k[x, y]/(y2 − x(x2 − 1)),
we describe the group law on the set of rational points of the affine elliptic curve
defined by y2 = x(x2 − 1). Our treatment of the group law on the elliptic curve is
not self-contained. For the proof that the cubic curve is integrally closed, we refer
the reader to a treatment of nonsingular curves. For the proof that two distinct
prime divisors represent different ideal classes, the reader is referred to a book on
algebraic curves.

1. Integral Extensions

Let A be a ring with center Z(A) and assume R is a subring of Z(A). Since
Z(A) is a commutative ring, R is a commutative ring. Since every r ∈ R is central,
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we have rx = xr for all x ∈ A. In the terminology of Definition 4.4.1, A is an
R-algebra. If α ∈ A, then by R[α] we denote the subring of A generated by R and
α. As in Theorem 4.4.8, the evaluation homomorphism τ : R[x] → A defined by
x 7→ α is an R-algebra homomorphism. By Exercise 3.6.36, the image of τ is R[α],
and R[α] is a commutative ring. If there is a monic polynomial p(x) in the kernel
of τ , then we say α is integral over R. In this case, p(α) = 0. Note that if R is a
field, then α is algebraic over R if and only if α is integral over R. Let R̄ be the set
of all α ∈ A such that α is integral over R. Then R̄ is called the integral closure of
R in A. Notice that every element of R is integral over R. In fact, if r ∈ R, then
r is a root of the monic polynomial x − r. Hence we have R ⊆ R̄ ⊆ A. If R̄ = A,
then every element of A is integral over R and we say A is an integral extension of
R. If R̄ = R, then no element of A − R is integral over R and in this case we say
R is integrally closed in A.

Proposition 7.1.1. If R is a unique factorization domain with quotient field
K, then R is integrally closed in K.

Proof. By Exercise 3.7.20, if p(x) is a monic polynomial in R[x], u ∈ K, and
u is a root of p(x), then u is in R. □

Example 7.1.2. The following examples follow immediately from of Proposi-
tion 7.1.1.

(1) The ring of integers Z is integrally closed in Q.
(2) If k is a field, then the ring of polynomials k[x] is integrally closed in k(x).
(3) If R is a UFD, then by Theorem 3.7.5, the polynomial ring R[x1, . . . , xn]

is a UFD and is integrally closed in its quotient field.

Example 7.1.3. Let D be a square free integer such that D ≡ 1 (mod 4).

If u =
√
D, then we saw in Example 3.7.9 that the ring S = Z[u] is an integral

domain, the quotient field of S is L = Q[u], and α = (1 + u)/2 is an element of
L − S that is integral over S. Hence S is not integrally closed in L. Question: Is
Z[α] integrally closed in L?

Example 7.1.4. Let R be an integral domain with field of fractions K. Let
Mn(R) denote the ring of n-by-n matrices over R. Viewing R as a subring of K,
we can therefore view Mn(R) as a subring of Mn(K). Let α ∈ Mn(R) be an n-
by-n matrix over R. By Definition 6.3.12 we see that the characteristic polynomial
p(x) = char.polyR(α) is the determinant of the matrix xIn−α. Therefore, p(x) is a
monic polynomial of degree n with coefficients in R. This implies char.polyR(α) =
char.polyK(α). The Cayley-Hamilton Theorem (Theorem 6.3.13 (2)) implies that
p(α) = 0. Hence, α is both algebraic over K and integral over R. This proves
Mn(R) is an integral extension of R.

Example 7.1.5. Let R be an integral domain and M a finitely generated R-
module. Let ϕ ∈ HomR(M,M). By Exercise 6.3.25, there exists a monic poly-
nomial p(x) ∈ R[x] such that p(ϕ) = 0. If we assume M is a faithful R-module,
the left regular representation map θ : R → HomR(M,M) is one-to-one. Hence,
HomR(M,M) is an integral extension of R.

Proposition 7.1.6. Let A be a ring and R a subring of the center of A. If
R is an integral domain and A is finitely generated as an R-module, then A is an
integral extension of R.
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Proof. Let α ∈ A. Then R[α] is a commutative subring of A, and as in
Example 4.1.4 (4), A is a left R[α]-module. Let θ : R[α] → Hom(A,A) be the
left regular representation of Lemma 4.1.2. Since R[α] is a subring of A, as a left
R[α]-module, A is faithful. Hence θ is one-to-one. As in Example 4.1.17, the image
of θ is a subring of HomR(A,A) and the diagram of ring homomorphisms

R[α]
θ //

λ %%

Hom(A,A)

HomR(A,A)

⊆

77

commutes. Therefore, λ is one-to-one. By Example 7.1.5, every ϕ ∈ HomR(A,A)
is integral over R. Therefore, every element of R[α] is integral over R. □

Example 7.1.7. Let k be a field and R = k[x2, x3] the subring of k[x] consisting
of all polynomials such that the coefficient of x is zero (see Exercise 3.6.21). Then
R is an integral domain and the quotient field of R is equal to k(x). Since x2

is an element of R, this means x is integral over R. Thus, R is not integrally
closed in k(x). A typical polynomial f(x) in k[x] can be written in the form f(x) =
a0 + a1x+ a2x

2 + · · ·+ adx
d. If we set g(x) = f(x)− a1x, then g(x) is in R. This

shows f(x) = a1x+ g(x), which is in the R-submodule of k[x] generated by 1 and
x. Thus, k[x] is a finitely generated R-module. By Proposition 7.1.6, k[x] is an
integral extension of R. By Proposition 7.1.1, k[x] is integrally closed in k(x). This
proves that k[x] is equal to the integral closure of R in k(x).

Example 7.1.8. Let k be a field and R = k[x2, x + x3] the ring of Exer-
cise 3.7.21. Then R is a subring of the principal ideal domain k[x], R is an integral
domain, and the quotient field of R is equal to k(x). Since x2 is an element of R,
this means x is integral over R. Thus, R is not integrally closed in k(x). As in
Example 7.1.7, the reader should verify that k[x] is generated as an R-module by
1 and x, and the integral closure of R in k(x) is equal to k[x].

Proposition 7.1.9. Let A be a ring and R a subring of Z(A). For α ∈ A, the
following are equivalent.

(1) α is integral over R.
(2) R[α] is a finitely generated R-module.

Proof. (1) implies (2): Assume α is integral over R. Then there exists a
monic polynomial p(x) = xn + rn−1x

n−1 + · · · + r1x + r0 in R[x] such that n ≥ 1
and p(α) = 0. Let B = R+Rα+ · · ·+Rαn−1 be the R-submodule of A generated
by the set {1, α, . . . , αn−1}. Then B is a finitely generated R-submodule of A and
B ⊆ R[α]. To finish the proof, we show R[α] ⊆ B. It suffices to show αm ∈ B for
all m ≥ n. Since p(α) = 0, we have αn = −(rn−1α

n−1 + · · · + r1α + r0) is in B.
Since αn+k = −(rn−1α

n+k−1 + · · ·+ r1α
k+1 + r0α

k), a routine induction argument
shows αn+k ∈ B for k ≥ 0.

(2) implies (1): Suppose there exist u1, . . . , un in R[α] such that R[α] = Ru1 +
· · · + Run. Since R[x] → R[α] is onto, there exist p1, . . . , pn in R[x] such that
ui = pi(α) for 1 ≤ i ≤ n. Pick N ∈ N such that N is greater than deg pi for
each i. Since αN ∈ Ru1 + · · · + Run, there exist r1, . . . , rn in R such that αN =
r1p1(α) + · · ·+ rnpn(α). This proves α is integral over R. □
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Theorem 7.1.10. Let A/R be an extension of commutative rings. If R is an
integral domain, then the following are true.

(1) If a1, . . . , an ∈ A are integral over R, then R[a1, . . . , an] is a finitely gen-
erated R-module.

(2) If R̄ is the integral closure of R in A, then R̄ is an R-subalgebra of A.
(3) (Integral over Integral is Integral) Let R ⊆ S ⊆ A be three rings such that

A is integral over S and S is integral over R. Then A is integral over R.
(4) Let R̄ be the integral closure of R in A. Then R̄ is integrally closed in A.

Proof. (1): By Proposition 7.1.9, R[a1] is a finitely generated R-module.
Since A is commutative, R[a1, a2] = R[a1][a2]. Since a2 is integral over R, a2 is
integral over R[a1]. By Proposition 7.1.9, R[a1, a2] is a finitely generated R[a1]-
module. By Exercise 4.1.24, R[a1, a2] is a finitely generated R-module. A routine
induction argument proves Part (1).

(2): We have R ⊆ R̄ ⊆ A. Since R is a subring of A, it suffices to show R̄ is a
ring. For this, it suffices to show addition and multiplication are binary operations
on R̄. Let x and y be arbitrary elements of R̄. We show x+ y and xy are in R̄. By
Part (1), R[x, y] is a finitely generated R-module. By Proposition 7.1.6, R[x, y] is
an integral extension of R. Therefore, x+ y and xy are integral over R and belong
to R̄.

(3): Let a ∈ A and p ∈ S[x] a monic polynomial such that p(a) = 0. Suppose
p = s0 + s1x + · · · + sn−1x

n−1 + xn. Set T = R[s0, . . . , sn−1]. By Part (1), T is
a finitely generated R-module. Since p ∈ T [x], it follows that a is integral over
T . By Proposition 7.1.9, that T [a] is finitely generated over T . By Exercise 4.1.24,
T [a] = R[s0, . . . , sn−1, a] is a finitely generated R-module. Proposition 7.1.6 implies
a is integral over R.

(4): By the proof of Part (3), if a ∈ A is integral over R̄, then a is integral over
R. □

Theorem 7.1.11 is a version of Theorem 3.7.4 for an integral domain that is
integrally closed in its quotient field.

Theorem 7.1.11. (Gauss’ Lemma) Let R be an integral domain which is inte-
grally closed in its quotient field K. Let f ∈ R[x] be a monic polynomial. Then f
is irreducible in R[x] if and only if f is irreducible in K[x].

Proof. If f is reducible in R[x], then f is reducible in K[x]. Suppose there
is a nontrivial factorization f = gh in K[x]. Since f is monic, we factor out the
leading coefficients and assume g and h are both monic polynomials in K[x]. By
Corollary 5.2.6, let L/K be an extension of fields such that L is a splitting field
for f over K. By Theorem 7.1.10, let S be the integral closure of R in L. Since
f splits in L[x], so does g. Let g = (x − α1) · · · (x − αn) be the factorization of
g in L[x]. Each αi is a root of f , hence is integral over R, hence lies in S. Thus
g = (x−α1) · · · (x−αn) is in the ring S[x]. So each coefficient of g is in S∩K which
is equal to R since R is integrally closed in K. So g ∈ R[x]. The same argument
applies to h. □

Corollary 7.1.12. Let R be an integral domain which is integrally closed in
its quotient field K. Let A be a K-algebra and α an element of A which is algebraic
over K. Then α is integral over R if and only if min.polyK(α) is in R[x].
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Proof. Suppose α is integral over R. Then there exists a monic polynomial
p(x) in R[x] such that p(α) = 0. Let f = min.polyK(α) ∈ K[x]. By Theo-
rem 4.4.8 (5), there exists g ∈ K[x] such that p = fg. By Theorem 7.1.11, this
implies f ∈ R[x]. □

Corollary 7.1.13. Let R be an integral domain which is integrally closed in
its quotient field K. Let L/K be an extension of fields and R̄ the integral closure
of R in L. If I is a proper ideal in R̄, then I ∩R ̸= (0).

Proof. Let α ∈ I − (0). Let f(x) = min.polyK(α). By Corollary 7.1.12,
f ∈ R[x]. There exist n ≥ 1 and ri ∈ R such that f = xn + rn−1x

n−1 + · · · +
r1x + r0. Since α is invertible in the field L, by Corollary 4.4.14, r0 ̸= 0. Then
r0 = −(αn + rn−1α

n−1 + · · ·+ r1α) is a nonzero element of I ∩R. □

Proposition 7.1.14. Let R be an integral domain which is integrally closed in
its quotient field K. Let L/K be a Galois extension with finite group G. Let S be
the integral closure of R in L. For each σ ∈ G, σ : S → S. That is, σ restricts
to an automorphism of S and G acts as a group of automorphisms of S. We have
SG = R, TLK : S → R, and NL

K : S → R.

Proof. Let α ∈ S and f = min.polyK(α). By Corollary 7.1.12, f ∈ R[x]. If
σ ∈ G, then f(σ(α)) = 0, by Proposition 5.3.2. Therefore, σ(α) ∈ S. If α ∈ SG,
then α is in S ∩ K, which is equal to R since R is integrally closed in K. As in
Section 5.5.1, the trace and the norm are functions from S to R. □

Theorem 7.1.15. Let R be an integral domain which is integrally closed in its
quotient field K. Let L/K be a Galois extension with finite group G and let S be
the integral closure of R in L. There exist bases {λ1, . . . , λn} and {µ1, . . . , µn} for
L/K such that Rλ1 + · · ·+Rλn ⊆ S ⊆ Rµ1 + · · ·+Rµn.

Proof. Our proof is based on [5, Theorem 5.17]. Let n = dimK(L). Given
λ ∈ L, by Exercise 7.1.20, there is a nonzero r ∈ R such that rλ ∈ S. Let λ1, . . . , λn
be a basis for L as a K-vector space. Without loss of generality, we can assume
each λi is in S. By Proposition 5.5.2, there is a K-basis µ1, . . . , µn for L such that
TLK(λiµj) = δij (the Kronecker delta function). Let s be an arbitrary element of S.
View s as an element of L and write s = α1µ1 + · · · + αnµn, where each αi ∈ K.
By Proposition 7.1.14, TLK : S → R. For each i, sλi ∈ S. Then

TLK(sλi) = TLK

( n∑
j=1

αjµjλi

)
=

n∑
j=1

TLK (αjλiµj) =

n∑
j=1

αjT
L
K (λiµj) = αi

shows that each αi is in R. It follows that S ⊆ Rµ1 + · · ·+Rµn. □

Corollary 7.1.16. Let R be a principal ideal domain with quotient field K.
If L/K is a finite dimensional separable extension of fields and R̄ is the integral
closure of R in L, then R̄ is a finitely generated free R-module of rank dimK(L).

Proof. By Corollary 5.3.20 there exists a Galois extension F/K which con-
tains L/K as an intermediate field. Let S be the integral closure of R in F . By
Theorem 7.1.15, there is a K-basis µ1, . . . , µn for F such that S ⊆ Rµ1+ · · ·+Rµn.
The set µ1, . . . , µn is linearly independent over R, because it is linearly independent
over K. The R-module Rµ1 + · · ·+Rµn is free of rank n. Since R̄ ⊆ S this means
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R̄ and S are both submodules of a finitely generated free R-module. By Theo-
rem 4.6.1, R̄ and S are both finitely generated free R-modules. By Exercise 7.1.20,
L is the quotient field of R̄. By Exercise 7.1.23, the rank of R̄ over R is equal to
m = dimK(L). □

Remark 7.1.17. Most of the results of this section are true under more gen-
eral hypotheses. For example, Proposition 7.1.6 and Theorem 7.1.10 hold without
the assumption that R is an integral domain. A version of Theorem 7.1.15 is true
when L/K is finite dimensional and separable but not necessarily Galois. In The-
orem 7.1.15, if R is a noetherian integral domain which is integrally closed in its
quotient field, then S is a finitely generated R-module. For these and more results,
see for example, [9, Chapter 10].

Example 7.1.18. Let n > 2 be an integer and ζ a primitive nth root of unity
in C. By Corollary 5.5.9, the irreducible polynomial for ζ is the nth cyclotomic
polynomial Φn(x) which has degree ϕ(n). The cyclotomic extension of order n over
Q is Q[ζ] ∼= Q[x]/(Φn). The Galois group of Φn is isomorphic to the group of units
in the ring Z/n. Although we do not prove it here, the integral closure of Z in
Q[ζ] is the ring Z[ζ]. By Corollary 7.1.16, as a Z-module, Z[ζ] is free with basis
{ζj | j = 1, . . . , ϕ(n)− 1}. The interested reader is referred to a book on Algebraic
Number Theory, for example, [22, Section 13.4].

Lemma 7.1.19. Let S/R be an integral extension of commutative rings. Let P
be a prime ideal in S. Then P is a maximal ideal of S if and only if P ∩ R is a
maximal ideal of R.

Proof. By Proposition 3.2.25, P∩R is a prime ideal in R. Both rings S/P and
R/(P ∩ R) are integral domains. By Exercise 7.1.21, S/P is an integral extension
of R/(P ∩ R). If P ∩ R is a maximal ideal, then R/(P ∩ R) is a field and by
Theorem 4.4.15, S/P is a field. Therefore, P is a maximal ideal in S. For the
converse, assume S/P is a field. Then S/P is integral over R/(P ∩ R) and by
Exercise 7.1.27, every nonzero element of R/(P ∩R) is invertible. □

1.1. Exercises.

Exercise 7.1.20. Let R be an integral domain with quotient field K. Let L/K
be an extension of fields. If λ ∈ L is algebraic over K, then there exists r ∈ R− (0)
such that rλ is integral over R. If L/K is an algebraic extension and S is the
integral closure of R in L, then L is equal to the quotient field of S.

Exercise 7.1.21. Let A be a ring and R a subring of the center of A. If A
is integral over R and I is a two-sided ideal in A, prove that A/I is an integral
R/(I ∩R)-algebra.

Exercise 7.1.22. Let R be a commutative ring and A = R[x] the polynomial
ring in one variable over R. Show that R is integrally closed in A if and only if
RadR(0) = (0).

Exercise 7.1.23. Let S/R be an extension of commutative rings. Assume R
and S are both integral domains. Denote by K the quotient field of R and by L
the quotient field of S.

(1) Using Exercise 3.5.2, show that L can be viewed as a field extension of K.
(2) Prove that if S is integral over R, then L is algebraic over K.
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(3) If S is a free R-module of finite rank n, prove that dimK(L) = n.

Exercise 7.1.24. Let k be a field, x an indeterminate, and n > 1 an integer.
For the extension of fields F = k(xn) ⊆ K = k(x), prove the following.

(1) yn − x is an irreducible polynomial in K[y].
(2) yn − xn is an irreducible polynomial in F [y].
(3) dimF (K) = n.
(4) Irr.polyF (x

n+1) has degree n.
(5) yn − xn+1 is an irreducible polynomial in K[y].

Exercise 7.1.25. Let k be a field, x an indeterminate, and n > 1 an integer.
Let T = k[x], S = k[xn, xn+1], andR = k[xn]. For the tower of subringsR ⊆ S ⊆ T ,
prove:

(1) T is free over R of rank n.
(2) S is free over R of rank n.
(3) T is not free over S.

For a continuation of this example, see Exercise 7.1.26.

Exercise 7.1.26. This exercise is a generalization of Example 7.1.7. Let k be a
field, x an indeterminate, and n > 1 an integer. In the notation of Exercise 7.1.25,
let T = k[x] and S = k[xn, xn+1]. Let K = k(x). Prove that T is equal to the
integral closure of S in K.

Exercise 7.1.27. Let A be a ring, R a subring of the center of A. If A/R is
an integral extension and α ∈ R− (0), prove that α is invertible in A if and only if
α is invertible in R.

2. Fractional Ideals

Lemma 7.2.1. Let R be an integral domain with field of fractions K. If F is a
nonzero R-submodule of K, then the following are equivalent.

(1) There exists a finitely generated R-submodule N such that F ⊆ N ⊆ K.
(2) There are nonzero elements a, b in K such that aR ⊆ F ⊆ bR.
(3) There exists a nonzero c in R such that cF ⊆ R.
(4) There exists a nonzero d in K such that dF ⊆ R.

Proof. (1) implies (3): Write N = Rx1 + · · · + Rxn where x1, . . . , xn are
elements of K. If c is the product of the denominators of x1, . . . , xn, then for each
i we have cxi ∈ R. Therefore cF ⊆ cN ⊆ Rcx1 + · · ·+Rcxn ⊆ R.

(3) implies (4): Is trivial.
(4) implies (2): Suppose dF ⊆ R and d ∈ K − (0). If b = d−1 and a ∈ F − (0),

then we have aR ⊆ F = bdF ⊆ bR.
(2) implies (1): Take N = bR. □

Definition 7.2.2. Let R be an integral domain with field of fractions K. A
fractional ideal of R is a nonzero R-submodule F of K satisfying any of the four
equivalent conditions of Lemma 7.2.1. If E and F are two fractional ideals of R,
then we define the sum and product as in Definition 3.2.4. The sum, denoted
E + F is the R-submodule of K generated by E and F . The product, EF , is the
R-submodule generated by the set {xy | x ∈ E and y ∈ F}. The colon ideal or
ideal quotient of E over F is E : F = {x ∈ K | xF ⊆ E. We sometimes write F−1

for R : F .
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Lemma 7.2.3. Let R be an integral domain with quotient field K. If E and F
are fractional ideals of R, then the following are true.

(1) E + F , E ∩ F , EF , E : F , F−1 are fractional ideals of R.
(2) F−1F ⊆ R and F−1F is an ideal of R.
(3) F : F is a subring of K that contains R.

Proof. By Lemma 7.2.1 there exist c, d nonzero elements of R such that cE ⊆
R and cF ⊆ R. The proof is left as an exercise for the reader. □

Definition 7.2.4. In the context of Lemma 7.2.3, let Frac(R) denote the set of
all fractional ideals of R in K. Then multiplication is a binary operation on FracR
which makes FracR into an abelian monoid, with R being the identity element. A
fractional ideal F is said to be an invertible fractional ideal, if F−1F = R.

Proposition 7.2.5. Let R be an integral domain with field of fractions K. If
F is an invertible fractional ideal of R in F , then F is a finitely generated projective
R-module.

Proof. Since F−1F is equal to the unit ideal R, there exists a presentation
of 1 in the form 1 =

∑n
i=1 xiyi, where each xi is in F−1 and each yi is in F . Let

λi : F → R be the “left multiplication by xi” function defined by: λi(y) = xiy.
The reader should verify that {(yi, λi) | 1 ≤ i ≤ n} is a dual basis for F over R.
By Exercise 4.5.29, F is a finitely generated projective R-module. □

3. The Ideal Class Group of a Dedekind Domain

The subject of this section is an important class of commutative rings called
Dedekind domains, named for the nineteenth century algebraist R. Dedekind.

Definition 7.3.1. Let S be an integral domain with quotient field L. Then
we say S is a Dedekind domain if the following properties are satisfied.

(1) S is integrally closed in L.
(2) S satisfies the ascending chain condition on ideals. Equivalently, every

ideal of S is finitely generated and S satisfies the maximum condition on
ideals (Proposition 4.6.2).

(3) S is not a field and every nonzero prime ideal of S is maximal.

In Definition 7.3.1, an integral domain that satisfies (1) is said to be integrally
closed. A commutative ring that satisfies (2) is said to be noetherian (after E.
Noether). A commutative ring that satisfies (3) is said to have Krull dimension
one (after W. Krull). Hence, a Dedekind domain is an integrally closed noetherian
integral domain with Krull dimension one.

The purpose of this section is to prove a unique factorization theorem for ideals
of a Dedekind domain S. If A is a proper ideal of S, then there exist prime ideals
P1, . . . , Pn in S such that A = P1 · · ·Pn. The number n is uniquely determined by
A and the sequence of primes P1, . . . , Pn is also unique up to permuting the list
entries. The proof given below is based on ideas found in [7].

In Theorem 7.3.2 below, we show that the integral closure of a principal ideal
domain in a finite separable extension of its quotient field is a Dedekind domain.
This is a very common scenario in Algebraic Geometry as well as Algebraic Number
Theory. A Dedekind domain is not necessarily a unique factorization domain. For
some examples, see Section 7.4.
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Theorem 7.3.2. Let R be a principal ideal domain with quotient field K. If
L/K is a finite dimensional separable extension of fields and S is the integral closure
of R in L, then the following are true.

(1) S is a finitely generated free R-module and RankR(S) is equal to dimK(L).
(2) If P is a nonzero prime ideal of S, then P is a maximal ideal.
(3) If F is a fractional ideal of S in L, then F is a finitely generated S-module.
(4) S satisfies the ascending chain condition (ACC) on ideals. That is, given

a chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ · · · , there exists N ≥ 1 such
that IN = IN+1 = · · · .

(5) S satisfies the maximum condition on ideals. That is, any nonempty fam-
ily of ideals in S has a supremum.

Proof. (1): This is Corollary 7.1.16.
(2): By Corollary 7.1.13, P∩R is a nonzero prime ideal of R. By Exercise 3.4.30,

P ∩R is a maximal ideal of R. By Lemma 7.1.19, P is a maximal ideal of S.
(3): By Part (1), S is a finitely generated R-module. If F is a fractional ideal

of S, then by Lemma 7.2.1, F is an R-submodule of bS, for some b ∈ L. By
Theorem 4.6.1, F is a finitely generated free R-module. A generating set for F over
R is definitely a generating set for F over S. This proves (3).

(4) and (5): By (3), every ideal of S is finitely generated. Parts (4) and (5)
follow from (3) and Proposition 4.6.2. □

For the remainder of this section, S is a Dedekind domain. An ideal I of S will
be called a proper ideal if (0) ̸= I ̸= S. As stated above, our goal in this section is to
prove that a proper ideal A in a Dedekind domain S has a unique factorization as
a product of prime ideals. Lemma 7.3.3 is the first step in proving the existence of
a prime factorization. In the following, a product of prime ideals implicitly means
a product of nonzero prime ideals.

Lemma 7.3.3. If A is a proper ideal in S, then the following are true.

(1) A contains a product of prime ideals. That is, either A is a prime ideal,
or there exist nonzero primes P1, . . . , Pn such that P1 · · ·Pn ⊆ A.

(2) In the context of (1), if m is a maximal ideal of S such that P1 · · ·Pn ⊆
A ⊆ m, then there exists 1 ≤ i ≤ n such that Pi = m.

Proof. (1): For contradiction’s sake, assume there exists a proper ideal A of
S which does not contain a product of prime ideals. By Definition 7.3.1 (2), we
can assume A is a maximal counterexample. Then A is not a prime ideal. By
Exercise 7.3.12, there exist proper ideals I and J of S such that A ⊊ I, A ⊊ J , and
IJ ⊆ A. Since A is a maximal counterexample, the ideals I and J both contain a
product of prime ideals. Then so does A, a contradiction.

(2): This is Exercise 7.3.13. □

Lemma 7.3.4. If A is a proper ideal of S, then S ⊊ A−1.

Proof. By Definition 7.2.2, A−1 = S : A = {x ∈ L | xA ⊆ A. Therefore,
S ⊆ A−1. We show S ̸= A−1. Pick an element a ∈ A − (0). By Lemma 7.3.3 (1),
there exist prime ideals Pi such that P1 · · ·Pn ⊆ aS ⊆ A. Out of all products of
prime ideals contained in aS, pick one such that n is minimal. Let m be a maximal
ideal containing A. By Lemma 7.3.3 (2), m is equal to one of the primes in the
factorization. Without loss of generality, say P1 = m. We have mP2 · · ·Pn ⊆ aS ⊆
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A, where it is understood that P2 · · ·Pn = S, if n = 1. By the minimal choice of n,
P2 · · ·Pn is not contained in aS. Let b ∈ P2 · · ·Pn such that a does not divide b.
Then in the quotient field L we have a−1b ∈ L− S. It follows from

a−1bA ⊆ a−1bm

⊆ a−1mP2 · · ·Pn
⊆ S

that a−1b ∈ A−1. □

Lemma 7.3.5. If P is a proper prime ideal of S, then P−1P = S. That is, P
is an invertible ideal.

Proof. By Lemma 7.2.3, P−1P is an ideal in S. By Lemma 7.3.4, S ⊊
P−1. Therefore, P ⊆ P−1P ⊆ S. By Definition 7.3.1 (3), P is a maximal ideal.
Therefore, either P = P−1P or P−1P = S. If P = P−1P , then P−1 ⊆ P : P . By
Exercise 7.3.14 (3), this implies P−1 ⊆ S, a contradiction to Lemma 7.3.4. □

Theorem 7.3.6. If A is a proper ideal in S, then there are prime ideals
P1, . . . , Pn in S such that A = P1 · · ·Pn. This factorization is unique in the sense
that if A = Q1 · · ·Qm is another prime factorization of A, then n = m and after a
suitable permutation of the prime factors we have Pi = Qi for each i.

Proof. First we prove the existence claim. By Lemma 7.3.3, there exist prime
ideals P1, . . . , Pn such that P1 · · ·Pn ⊆ A. Define n(A) to be the minimal number
such that A contains a product of n(A) primes. Then n(A) = 1 if and only if A is
a prime ideal of S. The proof is by induction on n(A). Suppose A is a proper ideal
of S such that n(A) ≥ 2 and that a prime factorization exists for any ideal B such
that n(B) < n(A). Start with P1 · · ·Pn(A) ⊆ A. Let m be a maximal ideal such
that A ⊆ m. By Lemma 7.3.3, after permuting the factors if necessary, we have
P1 = m. Then mP2 · · ·Pn(A) ⊆ A ⊆ m. By Lemma 7.3.5, m−1m = S. Therefore,

P2 · · ·Pn(A) ⊆ m−1A ⊆ S. Since A is not prime, we know A ̸= m, which implies

m−1A ̸= S. By the induction hypothesis, m−1A is equal to a product Q1 · · ·Qm for
certain prime ideals Qi in S. Then A = mQ1 · · ·Qm is a prime factorization of A.

Now we prove the uniqueness claim. Let A be a proper ideal of S and assume
P1, . . . , Pn, Q1, . . . , Qm are prime ideals such that A = P1 · · ·Pn = Q1 · · ·Qm. Since
P1 · · ·Pn ⊆ P1, by Lemma 7.3.3, there is some 1 ≤ j ≤ m such that Qj = P1. After
a suitable permutation of the factors, assume Q1 = P1. By Lemma 7.3.5, P1 is
invertible, so after multiplying both sides by P−1

1 we have the identity P2 · · ·Pn =
Q2 · · ·Qm. A familiar induction argument completes the proof. □

Corollary 7.3.7. Every fractional ideal of S in L is invertible. The set
Frac(S) of all fractional ideals of S is an abelian group, where the binary operation
is multiplication. The set Prin(S) of all principal fractional ideals is a subgroup.
The abelian group Frac(S) is a free Z-module, the set of nonzero prime ideals of S
is a free basis.

Proof. A nonzero prime ideal of S is invertible by Lemma 7.3.5. If α ∈ L∗,
then (αS)(α−1S) = S, so a principal ideal is invertible. If F is a fractional ideal,
then there is some α ∈ L∗ such that αF ⊆ S, by Lemma 7.2.1. By Theorem 7.3.6,
αF ⊆ S is a product of invertible fractional ideals. It follows that F is invertible.
The rest is left to the reader. □



3. THE IDEAL CLASS GROUP OF A DEDEKIND DOMAIN 313

Definition 7.3.8. Let S be a Dedekind domain with quotient field L. Let
Frac(S) be the set of all fractional ideals of S in L and Prin(S) the set of all
principal fractional ideals. The quotient group Frac(S)/Prin(S) is called the class
group of S and is denoted Cl(S).

As shown in Corollary 7.3.9 below, the class group of S measures how close S
is to being a principal ideal domain.

Corollary 7.3.9. Let S be a Dedekind domain. Then S is a principal ideal
domain if and only if Cl(S) is the trivial group.

Proof. If S is a principal ideal domain, then every ideal in S is principal. By
Corollary 7.3.7, every fractional ideal of S is principal, hence the class group of S is
trivial. Conversely, if S is a Dedekind domain which is not a principal ideal domain,
then Prin(S) is not equal to Frac(S) and the class group of S is nontrivial. □

We end this section with a proof of a special case of Nagata’s Theorem. The
interested reader is referred to [9, Theorem 15.4.16] for a more general version. For
computing the class group of an integrally closed integral domain R, localization
methods are particularly useful. If K is the quotient field of R and f ∈ R − {0},
then by R[f−1] we denote the subring of K generated by R and f−1. A typical
element of R[f−1] is a quotient of the form r/fk, where k ≥ 0. If F is a fractional
ideal of R in K, then the product FR[f−1] is a fractional ideal of R[f−1] in K. By
Lemma 7.3.10 and Exercise 7.3.17, if S is a Dedekind domain, then so is S[f−1] for
any f ∈ S − {0}.

Lemma 7.3.10. Let R be an integral domain with quotient field K and f ∈
R− {0}.

(1) If J is an ideal in R[f−1], then J = (J ∩R)[f−1].
(2) If P is a prime ideal in R and f ̸∈ P , then P [f−1] is a prime ideal in

R[f−1].
(3) There is a one-to-one correspondence between prime ideals of R[f−1] and

the set of all prime ideals of R that do not contain f .

Proof. The proof is left as an exercise for the reader. □

Theorem 7.3.11. (Nagata’s Theorem) Let S be a Dedekind domain with quo-
tient field L. If f ∈ S−{0}, then there is an onto homomorphism of abelian groups
γ : Cl(S) → Cl(S[f−1]). Let Sf = P e11 · · ·P enn be the prime factorization of the
principal ideal Sf , where the Pi are pairwise distinct primes and ei ≥ 1 for each i.
Then the kernel of γ is generated by the ideal classes of P1, . . . , Pn.

Proof. The abelian group Frac(S) is a free Z-module with basis the set of
nonzero prime ideals of S. By Lemma 7.3.10, we can view Frac(S[f−1]) as the
submodule of Frac(S) generated by those prime ideals of S which do not contain
f . Let π : Frac(S) → Frac(S[f−1]) be the projection map. Then π is an onto
homomorphism. The kernel of π is the free Z-submodule ZP1 ⊕ · · · ⊕ ZPn. It is
clear that

(3.1) π : Prin(S) → Prin(S[f−1])

is a homomorphism. A principal fractional ideal of S[f−1] in L is equal to S[f−1] =
(Su)[f−1] for some u ∈ L. Therefore, the map in (3.1) is onto. By Theorem 2.3.12
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there is a commutative diagram

Frac(S)

π

��

// Cl(S)

γ

��
Frac(S[f−1]) // Cl(S[f−1])

and γ is onto. By Exercise 7.3.16, the kernel of γ is generated by the ideal classes
of the prime ideals P1, . . . , Pn. □

3.1. Exercises.

Exercise 7.3.12. Let R be a commutative ring in which 0 ̸= 1. Prove that R
is not an integral domain if and only if there exist ideals I and J such that I ̸= (0),
J ̸= (0) and IJ = (0).

Exercise 7.3.13. LetR be a commutative ring, n > 0, andm1, . . . ,mn maximal
ideals in R. If m is a maximal ideal in R such that m1 · · ·mn ⊆ m, then there exists
1 ≤ i ≤ n such that mi = m.

Exercise 7.3.14. Let S be a Dedekind domain with quotient field L and F a
fractional ideal of S in L. Prove the following:

(1) F is isomorphic as an S-module to a proper ideal of S.
(2) F is finitely generated as an S-module.
(3) F : F = S.
(4) F is a free S-module if and only if F is a principal fractional ideal.

Exercise 7.3.15. Prove Lemma 7.3.10.

Exercise 7.3.16. The purpose of this exercise is to prove a special case of the
so-called Snake Lemma ([9, Theorem 6.6.2]). Let R be a ring, A an R-module
with a submodule A0, B an R-module with a submodule B0, and π : A → B an
epimorphism such that π(A0) = B0. Prove:

(1) There is an epimorphism γ : A/A0 → B/B0.
(2) If η : A→ A/A0 is the natural map, then η(ker(π)) = ker(γ).

Exercise 7.3.17. Let R be an integral domain with quotient field K. Let
f ∈ R− {0}. Prove:

(1) If R is integrally closed in K, then R[f−1] is integrally closed in K.
(2) If R is a Dedekind domain, then R[f−1] is a Dedekind domain.
(3) If R is a principal ideal domain, then R[f−1] is a principal ideal domain.

Exercise 7.3.18. Let S be a Dedekind domain, P a nonzero prime ideal in S,
e > 0 and A = S/(P e). Prove the following generalization of Exercise 4.6.18:

(1) Every ideal in A is principal.
(2) A is a field if and only if e = 1.
(3) A is a local ring with maximal ideal P/P e.
(4) A has exactly e + 1 ideals, namely: (0) ⊆ P e−1/P e ⊆ · · · ⊆ P 2/P e ⊆

P/P e ⊆ A.

Exercise 7.3.19. Let S be a Dedekind domain, P1, . . . , Pn distinct nonzero
prime ideals of S, e1, . . . , en positive integers, I = P e11 P e22 · · ·P enn , and A = S/I.
Prove the following generalization of Exercise 4.6.19:
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(1) A is isomorphic to the direct sum of the local rings
⊕

i S/P
ei
i .

(2) Every ideal in A is principal.
(3) Including the two trivial ideals (0) and A, there are exactly (e1 + 1)(e2 +

1) · · · (en + 1) ideals in A.
(4) A has exactly n maximal ideals, namely P1/I, . . . , Pn/I.

Exercise 7.3.20. Let S be a Dedekind domain, I a proper ideal in S, and
α ∈ I − (0). Show that there exists β ∈ I such that I = Sα+ Sβ.

Exercise 7.3.21. Let S be a Dedekind domain and P1, . . . , Pn distinct nonzero
prime ideals of S. Let e1, . . . , en, f1, . . . , fn be nonnegative integers and set I =∏
P eii and J =

∏
P fii . Prove the following generalization of Exercise 3.4.28.

(1) I ⊆ J if and only if ei ≥ fi for each i.
(2) If mi = min(ei, fi) for each i, then I + J =

∏
Pmi
i .

(3) If Mi = max(ei, fi) for each i, then I ∩ J =
∏
PMi
i .

Exercise 7.3.22. Let S be a Dedekind domain. Show that if A and B are
ideals in S such that A ⊆ B, then there exists an ideal C in S such that A = BC.

Exercise 7.3.23. Let S be a Dedekind domain. Show that if I and J are
proper ideals in S, then there exists an element β in S and an ideal C in S satisfying
J + C = S and IC = Sβ.

Exercise 7.3.24. Let S be a Dedekind domain. Show that if I and J are proper
ideals in S such that I + J = S, then there exists an isomorphism of S-modules
I ⊕ J ∼= S ⊕ IJ .

Exercise 7.3.25. Let S be a Dedekind domain with quotient field L. Suppose
E and F are fractional ideals of S in L. Prove:

(1) For any α ∈ L∗, there is an S-module isomorphism E ∼= αE defined by
x 7→ αx.

(2) There exist α, β in L such that αE and βF are proper ideals of S and
αE + βF = S.

(3) There exists an isomorphism of S-modules E ⊕ F ∼= S ⊕ EF .

4. Applications to Algebraic Curves

If k is a field, then the affine plane over k is the cartesian product k2 = k × k.
If x and y are indeterminates and f(x, y) ∈ k[x, y], then

Z(f) = {(a, b) ∈ k2 | f(a, b) = 0}

is the set of solutions of the equation f(x, y) = 0 in k2. We call Z(f) an affine
algebraic curve. This terminology agrees with that of Section 5.1.2 where we dis-
cussed lines and circles in the affine plane. The commutative ring R = k[x, y]/(f) is
known as the affine coordinate ring of the curve Z(f). There is a correspondence be-
tween points (a, b) on the curve Z(f) and maximal ideals in R. For instance, given
(a, b) ∈ Z(f), consider the ideal (x − a, y − b) in k[x, y]. Applying Exercise 3.6.37
twice, once for x − a and once for y − b, we see that k[x, y]/(x− a, y − b) ∼= k.
Hence (x − a, y − b) is a maximal ideal. Applying Theorem 3.6.2 for x and y,
there is a k-algebra homomorphism θ : k[x, y] → k defined by x 7→ a and y 7→ b.
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Clearly θ is onto and the maximal ideal (x− a, y − b) is contained in ker θ. Hence
ker θ = (x− a, y − b). By Theorem 3.2.15, there is a commutative diagram

k[x, y]
θ //

η $$

k

k[x,y]
(x−a,y−b)

∼=

<<

of k-algebras where η is the natural map. Since θ(f) = f(a, b) = 0, f ∈ ker θ =
(x − a, y − b). If we set m = (x − a, y − b) in R, then by Corollary 3.2.17, R/m =
k[x, y]/(x − a, y − b) = k and m is a maximal ideal of R. The correspondence
between points of Z(f) and maximal ideals of R is not onto. That is, if M is a
maximal ideal of R, then R/M is in general an extension field of k, hence M does
not have the form (x − a, y − b) and does not correspond to a point on Z(f). In
this case, the maximal ideal M is called an R/M -rational point of the curve Z(f).
In the example of Section 7.4.1 below, we show that when k is not algebraically
closed, the affine coordinate ring R of the circle Z(x2 + y2 − 1) has maximal ideals
such that the residue field R/M is strictly greater than k (see Proposition 7.4.1 (4)).
Although we do not prove it here, since R/M is a finitely generated k-algebra, by
the Hilbert Basis Theorem, R/M is finitely generated and algebraic over k (see
[9, Proposition 10.2.4] or [5, Proposition 7.9], for example). Therefore, if k is
algebraically closed, then every point of Z(f) is k-rational.

The example we consider below in Section 7.4.1 is an affine curve C of degree
2 such that the class group Cl(R) of the affine coordinate ring R is an abelian
group of order 2. The example studied in Section 7.4.2 below is an affine cubic
curve C such that the class group Cl(R) of the affine coordinate ring R contains a
subgroup corresponding to the set Z(f) of k-rational points on C. This is a very
elementary example of a group defined by an elliptic curve. The coordinate rings
of the curves studied in the following sections are examples of the type of rings
featured in Section 7.3.

4.1. A Nonsingular Affine Conic. If k is a field, then the unit circle C in
the plane k2 is the set of solutions of the equation x2 + y2 − 1 = 0. That is,

C = {(x, y) ∈ k2 | x2 + y2 − 1 = 0}.

This terminology agrees with that of Section 5.1.2. In this section we investigate the
commutative ring R = k[x, y]/(x2+ y2− 1) which is known as the affine coordinate
ring of the unit circle C over the field k.

First we establish notation that will be in effect throughout this section. Let
k be a field such that x2 + 1 is irreducible over k. In particular, this implies that
the characteristic of the base field k is not 2 (Exercise 3.2.31). Let k[x] be the
polynomial ring in one variable over k. Then k[x] is a PID (Corollary 3.6.5) and
x−1 is a prime in k[x]. Let k(x) be the field of rational functions, the quotient field
of k[x]. Consider the polynomial x2 + y2 − 1 in k[x][y]. By Eisenstein’s Criterion
(Theorem 3.7.6) with prime p = x − 1, y2 + (x2 − 1) is irreducible in k[x][y]. By
Theorem 3.7.5, the polynomial ring k[x][y] is a UFD. Therefore,

R =
k[x, y]

(x2 + y2 − 1)
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is an integral domain, by Corollary 3.4.14. The ring R is known as the affine
coordinate ring of the unit circle C in the affine plane k2. By Gauss’ Lemma
(Theorem 3.7.4), x2 + y2 − 1 is irreducible in k(x)[y] and

F =
k(x)[y]

(y2 + x2 − 1)

is a field. By Exercise 5.3.36, F is a Galois extension of k(x). The Galois group
Autk(x) F is cyclic of order 2, and generated by the automorphism τ defined by

y 7→ −y. Let K = k(i) be the splitting field for x2 + 1 over k. The Galois group of
K/k is the cyclic group ⟨σ⟩, where σ(i) = −i. In the following, cosets in the factor
rings R and F are written without brackets or any extra adornment.

Proposition 7.4.1. In the above context, the following properties hold for R
and F :

(1) F is the quotient field of R.
(2) As a k[x]-module, R is free of rank two with basis 1, y.
(3) There is a norm map NR

k[x] : R → k[x] defined by a+ by 7→ (a+ by)(a− by) =

a2 − b2y2 = a2 − b2(1− x2).
(4) In general, R contains K-rational points.

Proof. (1): The diagram of ring homomorphisms

R = k[x,y]
(x2+y2−1)

ϕ // F = k(x)[y]
(x2+y2−1)

k[x, y]
α //

η

OO

k(x)[y]

η

OO
(4.1)

commutes. The vertical maps are the natural maps. The horizontal map α exists
by Theorem 3.6.2 applied to k[x] → k(x). Since ηα(x2 + y2 − 1) = 0, ϕ exists by
Theorem 3.2.15. Using Gauss’ Lemma (Theorem 3.7.4), we see that the kernel of
ηα is the principal ideal (x2+y2−1). Therefore, ϕ is one-to-one. By Exercise 3.5.2,
we can view the quotient field of R as a subfield of F . In this context, we show
that F is equal to the quotient field of R. By Lemma 4.4.5, a k(x)-basis for F is
{1, y}. Since y ∈ R we know y is in the quotient field of R. The quotient field of
k[x] is k(x), hence k(x) is in the quotient field of R. A typical element of F is of
the form f(x) + g(x)y, where f(x) and g(x) are in k(x). Hence a typical element
of F is in the quotient field of R.

(2): By Lemma 4.4.5, a k(x)-basis for F is {1, y}. Therefore, {1, y} is linearly
independent over k[x]. Since the image of ηα is generated by polynomials over k
in the variables x and y, {1, y} is a generating set for the image of ϕ as a k[x]-
module. In Diagram (4.1), ϕ is one-to-one. So {1, y} is a generating set for R as
an A-module.

(3): The norm map NF
k(x) : F → k(x) restricts to a norm map R→ k[x].

(4): To see that for general k, R has K-rational points, suppose for instance

that 2 is a square in k. Then R/(y −
√
2) ∼= k[x]/(x2 + 1) ∼= K. Therefore, the

principal ideal (y −
√
2) is a maximal ideal of R with residue field K. □

We retain the notation from Proposition 7.4.1. The affine coordinate ring of
the unit circle in the plane K2 is S = K[x, y]/(x2 + y2 − 1). Identifying K with
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k[z]/(z2 + 1), we see that

S =
k[x, y, z]

(x2 + y2 − 1, z2 + 1)

=
R[z]

(z2 + 1)

= R[i].

By Exercise 4.2.26, S is a free R-module with rank 2 and basis 1, i. The diagram

K(x)[y]
(x2+y2−1)

S = K[x,y]
(x2+y2−1)

77

K = k[i]

88

F = k(x)[y]
(x2+y2−1)

OO

R = k[x,y]
(x2+y2−1)

OO

77

k

OO

77

commutes. By Proposition 7.4.1, the quotient field of S is

K(x)[y]

(x2 + y2 − 1)
=

k(x)[y][z]

(x2 + y2 − 1, z2 + 1)
= F [i].

The field extension F [i]/F is Galois with group ⟨σ⟩ where σ(i) = −i. Notice that
σ restricts to an R-algebra automorphism of S and the norm NS

R : S∗ → R∗ is a
homomorphism of groups. We can also view R as the ramified quadratic extension
of k[x] defined by adjoining the square root of 1 − x2. Likewise, S is the ramified
quadratic extension of K[x] defined by adjoining the square root of 1 − x2. The
diagram

R = k[x,y]
(x2+y2−1)

// S = K[x,y]
(x2+y2−1)

k[x]

OO

// K[x]

OO

commutes, every arrow is the set inclusion map. Geometrically, the extension
R/k[x] or S/K[x] corresponds to the projection of the circle C onto the x-axis.

Proposition 7.4.2. In the above context, the following are true.

(1) S is a PID. S is integrally closed in F [i].
(2) S∗ = K∗ × ⟨x+ iy⟩.
(3) R∗ = k∗.
(4) R is not a PID or UFD. In fact, x, y + 1, y − 1 are irreducible in R and

x2 = (1 + y)(1− y).
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(5) R is integrally closed in F .

Proof. (1) and (2): To show that S is a PID, by Exercise 3.6.30, it suffices to
show that S is isomorphic to the ring of Laurent polynomials K[u, u−1]. In S we
have x2 + y2 − 1 = (x+ iy)(x− iy)− 1. Define K-algebra homomorphisms

K[u, v]

(uv − 1)

ϕ−→ K[x, y]

(x2 + y2 − 1)

θ−→ K[u, v]

(uv − 1)

by ϕ(u) = x+ iy, ϕ(v) = x− iy, θ(x) = u+v
2 and θ(y) = u−v

2i . One can check that
ϕ and θ are well defined K-algebra homomorphisms. Since ϕ and θ are inverses of
each other, they are isomorphisms. There is an isomorphism of K-algebras

K[u, v]

(uv − 1)

∼=−→ K[u, u−1]

induced by v 7→ u−1. By Exercise 3.6.30, K[u, u−1] is a PID and the group of units
is equal to the internal direct product K∗ × ⟨u⟩. Using the isomorphism θ, this
proves S is a PID and

S∗ = K∗ × ⟨x+ iy⟩.
Notice that the inverse of x+ iy is x− iy. By Proposition 7.1.1, a PID is integrally
closed in its quotient field. This proves (1) and (2).

(3): We have the homomorphism of groups NS
R : S∗ → R∗ and if a ∈ R∗, then

NS
R(a) = a2. Since NS

R(x + iy) = (x + iy)(x − iy) = x2 + y2 = 1, we see that

R∗ = (K∗)⟨σ⟩ = k∗.
(4): To prove that x is irreducible in R, we use the norm map R → k[x] of

Proposition 7.4.1 (3). Look at the norm of x from R to k[x]:

NR
k[x](x) = x2.

For sake of contradiction, assume x has a nontrivial factorization x = αβ in R.
Since R∗ = k∗, this means the norm of α is equal to cx for some c ∈ k∗. Suppose
α = a+ by for some a, b ∈ k[x]. Then the equation NR

k[x](a+ by) = cx becomes

a2 − b2(1− x2) = cx.

Substitute x = 1 and x = −1 to get c = a(1)2 and −c = a(−1)2. Hence

−1 = a(1)2a(−1)−2

which contradicts our assumption that −1 is not a square in k. Therefore, x is
irreducible in R. Since

NR
k[x](1 + y) = NR

k[x](1− y) = (1 + y)(1− y) = x2

the same argument proves that y+1 and y− 1 are irreducible in R. This proves R
is not a UFD, since the identity

x2 = (1− y)(1 + y)

holds in R. Theorem 3.4.15 implies R is not a PID.
(5): Let α be an element of F and assume α is integral over R. We can view α

as an element of F [i] which is integral over S. Since S is integrally closed in F [i],
this means α is in S = R[i]. Since S is free over R with rank 2, there are unique
a, b in R such that α = a+ bi. Since α ∈ F , this implies b = 0, hence α ∈ R. □

Lemma 7.4.3. In the above context, the ideal m = (x, y − 1) of R has the
following properties:
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(1) m is a maximal ideal.
(2) m is not a principal ideal.
(3) m is a projective R-module.
(4) m is not a free R-module.
(5) m2 is equal to the principal ideal (y − 1).

Proof. (1): Since R/m = k[x, y]/(x, y−1) = k is a field, m is a maximal ideal.
(2): Assume m = (z) is a principal ideal. Then z divides x. Since x is irre-

ducible, this implies z and x are associates. But R/(x) = k[y]/(y2 − 1) is not a
field. Therefore, m ̸= (x), a contradiction.

(3) and (4): These follow from (1), (2), Proposition 7.2.5 and Exercise 7.3.14.
(5): Notice that m2 = (x, y−1)2 is generated by the three elements x2 = 1−y2,

x(y − 1), and (y − 1)2, all of which are in the principal ideal (y − 1). Conversely,
since x2 + y2 = 1 in R,

x2 + (y − 1)2 = x2 + y2 − 2y + 1

= 2(1− y)

which shows y − 1 is in m2. This proves m2 = (y − 1) is a principal ideal in R. □

Corollary 7.4.4. In the above context, the divisor class group of R, Cl(R),
is a cyclic group of order 2, and is generated by the ideal class of m = (x, y − 1).
This ideal corresponds to the point (0, 1) on the circle C.

Proof. First we show that the localization R[x−1] is isomorphic to the local-
ization of k[u, v]/(u2 − v2 − 1) with u−1 inverted. For this, we define k-algebra
homomorphisms

k[x, y][x−1]

(x2 + y2 − 1)

ϕ−→ k[u, v][u−1]

(u2 − v2 − 1)

θ−→ k[x, y][x−1]

(x2 + y2 − 1)

by ϕ(x) = u−1, ϕ(y) = vu−1, θ(u) = x−1, θ(v) = yx−1. One can check that ϕ and
θ are well defined k-algebra homomorphisms. Since ϕ and θ are inverses of each
other, they are isomorphisms. Likewise, the k-algebra homomorphism

k[u, v]

(u2 − v2 − 1)

ψ−→ k[s, t]

(st− 1)

defined by ψ(u) = (t + s)/2, ψ(v) = (t − s)/2 is an isomorphism. As shown in
the proof of Proposition 7.4.2, k[s, t]/(st− 1) is isomorphic to k[z, z−1]. By Exer-
cise 7.3.17 the localization of a PID is a PID. Therefore, k[z, z−1], k[s, t]/(st− 1),
and R[x−1] are all principal ideal domains. By Corollary 7.3.9, the class group of
a PID is trivial. By Theorem 7.3.11, the ideal class group Cl(R) is generated by
m = (x, y− 1) and n = (x, y+1), the primes that contain x. But mn = m∩ n = (x)
is principal. Together with Lemma 7.4.3 (5), this proves (6). □

4.2. A Nonsingular Affine Elliptic Curve. This short section is devoted
to an example of an algebraic curve that is nonsingular and nonrational. Assume
that the characteristic of k, the base field, is not 2. Let A = k[x] be the polynomial
ring in one variable over k. Then A is a UFD (Example 3.4.12) and x is a prime in A.
Let K = k(x) be the quotient field of A. Consider the polynomial y2−x(x2− 1) in
A[y]. By Eisenstein’s Criterion (Theorem 3.7.6) with prime p = x, y2−x(x2−1) is
irreducible in A[y]. By Gauss’ Lemma (Theorem 3.7.4), y2−x(x2−1) is irreducible
in K[y] and F = K[y]/(y2 − x(x2 − 1)) is a field. By Exercise 5.3.36, F/K is a
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Galois extension, AutK(F ) = ⟨σ⟩ has order 2, and σ is defined by y 7→ −y. The
norm map is NF

K : F → K.
In the following, cosets in the factor ring F are written without brackets or any

extra adornment. By Theorem 3.7.5, the polynomial ring A[y] = k[x, y] is a UFD.
Therefore, R = k[x, y]/(y2 − x(x2 − 1)) is an integral domain, by Corollary 3.4.14.
The diagram of ring homomorphisms

(4.2) A = k[x] //

��

K = k(x)

��
A[y]

α //

η

��

K[y]

η

��
R = A[y]/(y2 − x(x2 − 1))

ϕ // F = K[y]/(y2 − x(x2 − 1))

commutes. The vertical maps are the natural maps. The horizontal map α exists
by Theorem 3.6.2 applied to A → K. Since ηα(y2 − x(x2 − 1)) = 0, ϕ exists by
Theorem 3.2.15. Using Gauss’ Lemma (Theorem 3.7.4), we see that the kernel of
ηα is the principal ideal (y2 − x(x2 − 1)). Therefore, ϕ is one-to-one.

Proposition 7.4.5. In the above context, the following are true.

(1) The quotient field of R is F .
(2) As an A-module, R is free of rank 2. The set {1, y} is a free basis. The image

of ϕ is {p(x) + q(x)y | where p(x) and q(x) are in A = k[x]}.
(3) The homomorphism A → R defined by sending x to its image in R is one-to-

one.
(4) The automorphism σ ∈ AutK(F ) defined by y 7→ −y restricts to an automor-

phism σ : R→ R.
(5) For any a ∈ R, define the norm of a to be N(a) = aσ(a). Then N(1) = 1,

N : R→ A, and N is multiplicative.
(6) The map on groups of units k∗ → R∗ is an isomorphism. That is, the units of

R are precisely the units of k.
(7) x and y are irreducible elements of R.
(8) R is not a unique factorization domain.
(9) R is not a principal ideal domain.

Proof. (1): By Exercise 3.5.2, we can view the quotient field of R as a subfield
of F . In this context, we show that F is equal to the quotient field of R. By
Lemma 4.4.5, a k(x)-basis for F is {1, y}. Since y ∈ R we know y is in the quotient
field of R. The quotient field of k[x] is k(x), hence k(x) is in the quotient field of
R. A typical element of F is of the form f(x) + g(x)y, where f(x) and g(x) are in
k(x). Hence a typical element of F is in the quotient field of R.

(2): By Lemma 4.4.5, a K-basis for F is {1, y}. Therefore, {1, y} is linearly
independent over A. Since the image of ηα is generated by polynomials over k in
the variables x and y, {1, y} is a generating set for the image of ϕ as an A-module.
As mentioned in the paragraph that precedes the proposition, ϕ is one-to-one. So
{1, y} is a generating set for R as an A-module.

(3): The composite map A→ K → F is one-to-one and factors through R.
(4): Using Theorem 3.6.2, we see that the map σ : A[y] → A[y] defined by

y 7→ −y is an automorphism and maps the principal ideal (y2 − x(x2 − 1)) onto
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itself.

(4.3) A[y]
σ //

η

��

A[y]

η

��
R // R

The kernel of ησ is the principal ideal (y2 − x(x2 − 1)). Hence σ : R → R is an
automorphism.

(5): Let a ∈ R. By (2), a has a unique representation in the form a = f+gy, for
polynomials f and g in A = k[x]. ThenN(a) = aσ(a) = f2−g2y2 = f2−g2x(x2−1)
is in the image of A→ R. Notice that N : R→ A is the restriction of NF

K : F → K,
hence N(1) = 1 and N(ab) = N(a)N(b) by Section 5.5.1.

(6): The map k → R is one-to-one because k is a field. We show that k∗ → R∗

is onto. Let a, b ∈ R and assume ab = 1. Then N(a)N(b) = 1 in A. But A∗ = k∗.
This proves N(a) ∈ k. By (2), a has a unique representation in the form a = f+gy,
for polynomials f and g in A = k[x]. Then N(a) = f2 − g2x(x2 − 1) = u for some
u ∈ k∗. Then (f(0))2 = u. If g ̸= 0, then the leading term of f2 which is even is
equal to the leading term of g2x(x2 − 1), which is odd, a contradiction. Therefore,
g = 0 and a = f = f(0) is in k.

(7): If x is not irreducible, then there is a nontrivial factorization x = ab.
By (5), we have the factorization N(x) = x2 = N(a)N(b) in A = k[x]. Therefore,
N(a) = x up to associates. By (2), a has a representation in the form a = f+gy, for
polynomials f and g in A = k[x]. Then up to associates, N(a) = f2−g2x(x2−1) =
x. Then f2 = g2x(x2 − 1) + x which is impossible because the degree of the left
hand is even and that of the right hand side is odd. This proves x is not in the
image of the norm map N : R→ A, hence x is irreducible in R.

If y is not irreducible in R, then there is a nontrivial factorization y = ab. By
(5), we have the factorization N(y) = x(x2−1) = N(a)N(b) in A = k[x]. Therefore,
up to associates, one of N(a) or N(b) is in {x, x+ 1, x− 1}. The same proof from
above shows that x+ 1 and x− 1 are not in the image of N : R→ A. Therefore, y
is irreducible in R.

(8): In R we have the identity y2 = x(x2 − 1). By the proof of (7), N(x) = x2

and N(y) = x(x2 − 1). Therefore, x and y are not associates of each other. So
unique factorization does not exist.

(9): Consider the ideal m = (x, y). Then R/m = k[x, y]/(x, y) = k is a field,
hence m is a maximal ideal. If m = (a) is principal, then a | x and a | y. Since x
and y are irreducible, by Lemma 3.4.5, this implies x and y are associates of each
other, a contradiction to (8). □

Now we show how the class group of R = k[x, y]/(y2 − x(x2 − 1)) induces an
abelian group structure on the cubic curve in k2 defined by y2 = x(x2 − 1). Set
f(x, y) = y2 − x(x2 − 1) and denote by C the cubic curve Z(f) in k2. To make
C into a group, it is necessary to add a point which plays the role of the group
identity. The point we adjoin is denoted ∞ and is called the point at infinity on C.
The group identity in Cl(R) is the ideal class represented by the unit ideal R. A
rational point on C corresponds to an ordered pair (a, b) in k2 such that f(a, b) = 0.
The ideal I(a, b) = (x−a, y−b) is a maximal ideal in R. The residue field R/I(a, b)
is k. To define the group law on the points of C, we embed C ∪ {∞} into Cl(R)
by mapping a point (a, b) ∈ C to the ideal class represented by the maximal ideal
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I(a, b) = (x − a, y − b), and map ∞ to the ideal class represented by R. To make
C ∪{∞} into a group, we show that the image of the function C ∪{∞} → Cl(R) is
a subgroup of Cl(R). Therefore, the group Cl(R) induces a group law on the cubic
curve C. It is customary to write the binary operation on C ∪ {∞} using additive
notation. The binary operation in the ideal class group Cl(R) = Frac(R)/Prin(R)
is written multiplicatively.

This section is not self-contained. References are given for the proof of Propo-
sition 7.4.6.

Proposition 7.4.6. In the above context, the following are true.

(1) The ring R = k[x, y]/(y2 − x(x2 − 1)) is integrally closed in F .
(2) If (a1, b1) and (a2, b2) are two distinct points on C, then the maximal ideals

(x− a1, y − b1) and (x− a2, y − b2) represent distinct classes in Cl(R).

Proof. (1): A good technique for proving this is to use the so-called jacobian
criterion to show that R is regular. For example, see [9, Theorem 15.6.5].

(2): For a proof, see [14, see Exercise I.6.2 and Example II.6.10.1]. □

Proposition 7.4.7. In the above context, let I : C ∪ {∞} → Cl(R) be the
function which maps ∞ to the ideal class represented by R and assigns a point
(a, b) to the ideal class represented by the maximal ideal I(a, b) = (x − a, x − b).
Then the following are true.

(1) The function I : C ∪ {∞} → Cl(R) is one-to-one.
(2) The image of I is a subgroup of Cl(R).

Proof. (1): This is Proposition 7.4.6 (2).
(2): By Lemma 2.2.2 it suffices to show that if A and B are two elements in

the image of I, then A−1 and AB are in the image of I.
Let (a, b) ∈ C. We show that I(a, b) and I(a,−b) are inverses of each other in

Cl(R). It suffices to show that the product (x − a, y − b)(x − a, y + b) is equal to
the principal ideal (x− a). If b = 0, this is Exercise 7.4.10. If b ̸= 0, then the ideals
are comaximal, hence their product is equal to their intersection. Then clearly
(x − a) ⊆ (x − a, y − b)(x − a, y + b). To show the reverse inclusion, it suffices to
show y2−b2 ∈ (x−a). This follows from the identities y2 = x3−x and b2 = a3−a.

Now let P1 = (a1, b1) and P2 = (a2, b2) be two points in C. We show that in
Cl(R) the product (x − a1, y − b1)(x − a2, y − b2) is in the image of the function
I. If P1 ̸= P2, let L be the line in k2 through P1 and P2. If P1 = P2, let L be
the tangent line to C at P1. If L is parallel to the x = 0 line, then by the above
argument we know the classes of the ideals I(a, b) and I(a,−b) are inverses of each
other in Cl(R). So we can assume the equation for L is of the form y − ℓ(x) = 0.
To compute the intersection of the line L and the cubic C, solve the system of
equations y = ℓ(x) and y2 = x3 − x. Eliminating y, we get the cubic equation
ℓ2 − x3 + x = 0. Two roots are a1 and a2. So there is a third root, call it a3.
Set b2 = ℓ(a3). Then f(a3, b3) = 0. The only maximal ideals of R that contain
y − ℓ(x) are I1 = (x − a1, y − b1), I2 = (x − a2, y − b2), I3 = (x − a3, y − b3). By
Exercise 4.6.19,

R/(y − ℓ(x)) ∼= k[x]/(x− a1)(x− a2)(x− a3)

∼= R/I1I2I3.
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In R the prime factorization of the principal ideal (y− ℓ(x)) is I1I2I3. Hence, I3 is
in the image of I. The product of ideal classes in Cl(R) restricts to a product on
the image of I. □

Example 7.4.8. In the above context, here is the geometric interpretation of
the group law on C. From Proposition 7.4.7 (2), the inverse of a point P = (a, b)
on C is the point (a,−b). To multiply two points P1 = (a1, b1) and P2 = (a2, b2),
let L be the line through P1 and P2. If L is vertical, then P1P2 = ∞. Otherwise,
let P3 = (a3, b3) be the third point on the intersection L ∩ C. Then P1P2 and P3

are inverses. Hence P1P2 is the point (a3,−b3).

4.3. Exercises.

Exercise 7.4.9. Let k be a field. Assume the characteristic of k is not 2 or 3
and that k contains a primitive sixth root of unity denoted ζ6.

(1) Show that k(x) is a cyclic Galois extension of k(x6) of degree 6 (in other
words, a Kummer extension). Let G = ⟨σ⟩ be the Galois group. Deter-
mine the lattice of subfields and lattice of subgroups guaranteed by the
Fundamental Theorem of Galois Theory.

(2) Show that G acts on k[x] and the fixed subring is k[x6]. Determine the
lattice of fixed subrings of k[x] corresponding to the subgroups of G.

(3) As in Exercise 3.6.21, let R = k[x2, x3]. Then the quotient field of R is
k(x). We say that R is birational to k[x]. Determine the subgroup of G
that fixes R point-wise (that is, the stabilizer of R in G).

(4) True or False?
(a) k[x] is a free k[x2]-module.
(b) k[x] is a free k[x2, x3]-module.
(c) k[x2, x3] is a free k[x2]-module.

Exercise 7.4.10. In the context of Proposition 7.4.5, consider the maximal
ideals m0 = (x, y), m−1 = (x, y + 1), and m1 = (x, y − 1). Show that in Cl(R) each
of these ideals represent a class of order two. That is, show that the ideals m2

0, m
2
−1,

and m2
1 are principal.

Exercise 7.4.11. Let k = Z/5 be the field of order 5 and C be the cubic curve
in k2 defined by y2 − x(x2 − 1). Show that the group C ∪∞ has order 8 and the
group invariants are 2, 4.

Exercise 7.4.12. Let k = Z/17 be the field of order 17 and C be the cubic
curve in k2 defined by y2−x(x2−1). Show that the group C ∪∞ has order 16 and
the group invariants are 4, 4. For this exercise, a computer algebra system such as
[28] will be helpful.



Hints to Selected Exercises

Chapter 1

Exercise 1.1.20. Use Exercise 1.1.14.

Exercise 1.2.17 (3). Use vectors in Z2. Let P = (x, y), P0 = (x0, y0), D =
(−b/d, a/d), U = (u, v). Use (1) to write P −P0 = tD+ sU . Take the dot product
of both sides with D⊥ to show that s = 0.

Exercise 1.2.18. Part (3). Show that the line ab− a− b = ax+ by contains the
two lattice points (−1, a − 1) and (b − 1,−a). Part (5). For sake of contradiction
assume ab − a − b < n < ab and n is not in L. Show that there exists an ordered
pair (x1, y1) such that n = ax1+ by1, (x1, y1) is in Quadrant IV and (x1− b, y1+a)
is in Quadrant II. Show that (x1, y1) is not in the parallelogram with vertices (b, 0),
(0, a), (−1, a− 1), (b− 1,−1). Show that this is impossible.

Exercise 1.2.21 (5). Use The Binomial Theorem, Exercise 1.1.18.

Exercise 1.2.25 (2). Start with a solution to the linear diophantine equation
a = bx + cy. Apply the Division Algorithm to write y = bq + r, where 0 ≤ r < b.
Take e = r and f = x+ cq.

Chapter 2

Exercise 2.1.24. Show that the function defined by x 7→ x−1 is an isomorphism
from G to Go.

Exercise 2.3.45. Apply The Fundamental Theorem on Cyclic Groups Theo-
rem 2.3.27.)

Exercise 2.3.47. If σ = (123 · · ·n), show that G′ is the cyclic group generated
by σ2.

Exercise 2.4.35. Apply Exercise 2.4.28.

Exercise 2.4.37. Apply Exercise 2.4.28.

Exercise 2.4.38. Apply Exercise 2.4.28.

Exercise 2.4.39. If x and y are conjugates, then |NG(x)| = |NG(y)|.
Exercise 2.5.25. Part (2) (a). See Exercise 2.3.17 (6). Part (4). A homomor-

phism θ corresponds to an element of the set of ordered pairs {(a, b) ∈ G×G | ab =
ba} = {(a, b) ∈ G×G | b ∈ NG(a)}. Apply Exercise 2.4.39.

Exercise 2.5.30. Let A be an abelian group written additively. Let G = (A ×
A) ⋊ ⟨θ⟩ be the nonabelian group of Exercise 2.5.29. Let σ : A → A be the
automorphism of A defined by σ(x) = −x. Show that the quotient G/Z(G) is
isomorphic to the semidirect direct product A⋊ ⟨σ⟩ of Proposition 2.4.19.
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Exercise 2.6.22. Suppose a ∈ A, b ̸∈ A, and σ fixes Nn −A. Look at (ab)σ(ab).

Exercise 2.6.24. Apply Exercise 2.3.43. Show that every automorphism of S3

is an inner automorphism.

Exercise 2.6.25. Apply Proposition 1.5.3 to show that the map θ : Sn →
GLn(Z) defined by θ(σ) = Pσ is a homomorphism.

Exercise 2.8.12. Apply Theorem 2.3.27, Theorem 2.8.7, Exercise 2.8.11, and
Theorem 2.5.2. Prove the following implications: (1) implies (2). (1) implies (4).
(2) implies (3). (3) implies (2). (4) is equivalent to (5). (4) implies (3). (2) implies
(1).

Exercise 2.8.14. Apply Exercises 2.8.13 and 2.4.24.

Exercise 2.8.16. First prove this if G is abelian. If G is nonabelian use induction
on n. Consider the group G/Z(G).

Exercise 2.8.19. Use Proposition 2.7.8 to reduce the case where G is a finite
cyclic p-group.

Exercise 2.10.19 (1). Apply Example 2.3.36.

Chapter 3

Exercise 3.1.16 (1). Apply Theorem 2.3.30.

Exercise 3.1.17 (1). Apply Theorem 2.3.30.

Exercise 3.1.20. Find matrices that play the roles of i and j.

Exercise 3.2.31. Apply Exercise 1.2.21.

Exercise 3.2.33. Part (1). Apply Exercise 2.1.23. Part (2). R−(0) is a monoid.

Exercise 3.2.34 (3). Use multiplication by the various eij .

Exercise 3.2.44 (3). For all p sufficiently large, if x1, . . . , xp are elements of
A ∪B, show that x1 · · ·xp = 0.

Exercise 3.2.46. Apply Exercise 2.1.24 and Example 3.2.2 (3).

Exercise 3.2.53. Let λ : R → Hom(I, I) be the homomorphism of rings from
Exercise 3.2.52. Apply Example 3.1.11 and Exercises 3.1.16 and 3.1.17 to show that
λ is onto. Lastly, apply Corollary 3.2.16.

Exercise 3.3.15. Show that 1−e is a central idempotent. Show that e and 1−e
are orthogonal idempotents. Take J = R(1− e).

Exercise 3.3.17. Use Exercise 3.3.23.

Exercise 3.3.26. Show that Ring (1) is isomorphic to Ring (2) by the mapping

a + bσ 7→
(
a b
b a

)
. Show that Ring (1) is isomorphic to Ring (3) by the mapping

a+ bσ 7→ (a− b, a+ b).

Exercise 3.4.30. Given x ̸∈ P , apply Corollary 3.4.9 to show that the ideal
Rx+ P is the unit ideal.

Exercise 3.5.5. Apply Theorem 3.2.21.
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Exercise 3.5.7. For (1) implies (2) use Exercise 3.2.43). For (3) implies (1) use
Exercise 3.1.26 to show the set m = R−R∗ is an ideal.

Exercise 3.5.8. Use Exercises 3.3.15 and 3.5.7.

Exercise 3.6.21. Part (2). x2 and x3 are both irreducible. Part (3). Neither x2

nor x3 is prime.

Exercise 3.6.31. Let x ∈ P − (0). Show that P contains at least one prime
divisor of x.

Exercise 3.6.35 (1). Apply Exercise 3.2.31.

Exercise 3.7.13. For Parts (5) and (6), apply Exercise 3.6.35.

Exercise 3.7.19 (2). Apply Example 3.6.6.

Chapter 4

Exercise 4.1.18. Use Theorem 4.1.12 to show that there is a natural homo-
morphism of rings Hom(M,M) → Hom(M/IM,M/IM). Use Theorem 3.2.15 to
show that there is a homomorphism of rings R/I → Hom(M/IM,M/IM). Apply
Lemma 4.1.2.

Exercise 4.1.22 (5). Apply Corollary 2.2.21.

Exercise 4.3.9 (1). To show that M is finitely generated, use Lemma 4.3.1,
induction, and Theorem 4.3.4.

Exercise 4.3.15. By Proposition 3.2.27, R contains a maximal ideal. Let m be
a maximal ideal in R and consider F/mF as a vector space over R/m.

Exercise 4.3.19 (2). Apply Exercise 4.3.9 and Corollary 4.1.14 (2).

Exercise 4.3.20. Part (3). Consider the A-submodules Ae11 and A.
Part (5). This is a challenge and may involve results not proven in this book.

The interested reader is referred to [9, Section 7.4.1].

Exercise 4.4.25. Part (1). Since x and y are nilpotent, they necessarily belong
to any prime ideal. Part (4). A basis for R over k is 1, x, y.) Part (5). Map x to0 0 0
1 0 0
0 0 0

, and y to

0 0 0
0 0 0
1 0 0

.
Exercise 4.4.26. Part (1). Since x and y are nilpotent, they necessarily belong

to any prime ideal. Part (4). A basis for R over k is 1, x, y.) Part (5). Map x to0 0 0
1 0 0
0 1 0

, and y to

0 0 0
0 0 0
1 0 0

.
Exercise 4.4.27. Apply Corollary 3.3.13 and Exercise 4.3.9.

Exercise 4.5.29. Given a generating set {x1, . . . , xn} for M over R, let Σ :
R(n) → M be defined by Σ(r1, . . . , rn) =

∑n
i=1 rixi. Given a dual basis {(xi, fi) |

1 ≤ i ≤ n}, define θ : M → R(n) by θ(x) = (f1(x), . . . , fn(x)). Show that F is
isomorphic to im θ and im θ is a direct summand of R(n). For the converse, let
πi : R

(n) → R be the natural projection map onto coordinate i. If M is projective,
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let ψ : M → R(n) be a map satisfying Proposition 4.2.19 (2). Define fi ∈ M∗ by
fi(x) = πi(ψ(x)).

Exercise 4.6.18. Show that if (a) is a principal ideal in R containing (πe), then
a is an associate of πk for some integer k such that 0 ≤ k ≤ e.

Exercise 4.6.20 (4). Apply Exercise 2.8.12.

Exercise 4.6.22. Assume char(R) = n > 0 and that n is divisible by at least
two distint primes. Let C denote the canonical subring of R isomorphic to Z/n.
Apply Exercise 4.6.19 to C and use Exercise 3.5.7 (3) to show that R is not a local
ring.

Chapter 5

Exercise 5.1.21. Apply Theorem 3.7.10 to show that y4 − α(4y3 − 1) is an
irreducible polynomial in K[y].

Exercise 5.2.23. Apply Corollary 5.1.7.

Exercise 5.2.25. Apply Corollary 5.1.7 and Lemma 5.2.7.

Exercise 5.3.25. Apply Exercise 3.2.49.

Exercise 5.3.32 (1). Apply Exercise 5.2.25.

Exercise 5.3.48. Show that f(x + 1) and f(x) cannot both be equal to the
irreducible polynomial of α over k.

Exercise 5.5.20. Show that TFk D(x) = 0. Compute the rank and nullity of the
linear transformations D and TFk .

Chapter 6

Exercise 4.5.28. Show that the left regular representation λ : A→ Homk(M,M)
is a homomorphism of k-algebras. Apply Proposition 4.5.7 and Exercise 3.2.34.

Exercise 6.1.20 (1). Apply Theorem 4.4.15.

Exercise 6.1.23. Use the function τ : L→ D of Example 3.2.12.

Exercise 6.1.24. If S is an invertible matrix, show that S−1f(A)S = f(S−1AS).
Apply Theorem 6.1.18, Exercise 4.4.20, and Exercise 6.1.23.

Exercise 6.1.26. Apply Proposition 4.5.9 and Theorem 6.1.12.
Exercise 6.3.20. If A = (a1, . . . , an) is written in columnar form, then b =

x1a1 + · · ·+ xnan. Use the multilinear and alternating properties when computing
det(Bi).

Exercise 6.3.25. Apply Exercise 4.5.25, Lemma 3.5.1, and Theorem 6.3.13 (2).

Exercise 6.3.26 (2). First show trace(αeij) = trace(eijα) if eij is an elementary
matrix and α is arbitrary.

Exercise 6.3.36. Part (1). Use Exercise 6.3.17.
Part (2). Use Lemma 2.6.9, Exercise 6.3.18, and Part (1).
Part (3). Use Part (2) and Exercise 6.3.19.

Exercise 6.3.37. If |σ| = d, then min.poly(Pσ) divides xd − 1 which has no
repeated roots. Use Exercise 6.3.36 and Theorem 6.3.13 (3).
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Exercise 6.3.38. Use determinants.

Chapter 7

Exercise 7.1.25. Apply Exercise 7.1.24.

Exercise 7.1.26. Apply Exercise 7.1.25.

Exercise 7.1.27. If α−1 ∈ A, then there exist n ≥ 1 and ri ∈ R such that
α−n + rn−1α

1−n + · · ·+ r1α
−1 + r0 = 0. Use this to prove that α−1 ∈ R.

Exercise 7.3.13. Use Proposition 3.2.24 and induction on n.

Exercise 7.3.14. Part (3). Use Lemma 7.2.3. Part (4). Show that if F is free,
then an S-basis is linearly independent over L.

Exercise 7.3.17. Part (1). Prove this directly. If α ∈ K is integral over R[f−1],
then for some r > 0, αfr is in R. Part (2). Use Lemma 7.3.10 and Part (1).

Exercise 7.3.18. The only maximal ideal of S that contains P e is P . Use
Theorem 7.3.6 and Corollary 3.2.18.

Exercise 7.3.19. Part (1). Use Corollary 3.3.13 and Exercise 7.3.18. Part (2).
Apply Exercises 7.3.18 and 3.3.25. Part (3). Use Theorem 3.3.4.

Exercise 7.3.20. By Exercise 7.3.19, S/Sα is a principal ideal ring. Let β ∈
I − Sα be a generator for I/Sα.

Exercise 7.3.23. By Exercises 7.3.19 and 7.3.20, there exists β ∈ I − IJ such
that IJ +Sβ = I. By Exercise 7.3.22, Sβ = IC. From IJ + IC = I, conclude that
J + C = S.

Exercise 7.3.24. Let ϕ : I ⊕ J → S be defined by ϕ(x, y) = x− y. Show that ϕ
is onto and the kernel is isomorphic to IJ . Use Propositions 4.2.19 and 4.2.8.

Exercise 7.3.25. Part (2). Pick α such that αE is a proper ideal in S. Pick
δ such that δF−1 is a proper ideal in S. Apply Exercise 7.3.23 to get an ideal C
in S and γ ∈ S such that Sγ = δF−1C and αE + C = S. Set β = γδ−1. Then
αE + βF = S. Part (3). Use Parts (1) and (2) and Exercise 7.3.24.

Exercise 7.4.9 (4). k[x2] is a PID, in fact it is a euclidean domain. Section 4.6
applies.

Exercise 7.4.11. Use the geometric method of Example 7.4.8.

Exercise 7.4.12. Use the geometric method of Example 7.4.8.
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Acronyms

ACC Ascending Chain Condition
DCC Descending Chain Condition
GCD Greatest Common Divisor
PID Principal Ideal Domain
UFD Unique Factorization Domain
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Glossary of Notations

(X) ideal generated by X, 123
(X) submodule generated by X, 171
1X identity map on X, 14
2X power set of X, 13
[G : 1] order of the group G, 36
[G : H] index of the subgroup H in the group G, 44
[x] congruence class of x modulo m, 21
annihR(M) annihilator of M in R, 170
Aut(G) group of automorphisms of G, 51
AutR(A) automorphism group of an R-algebra A, 190⋂
i∈I Xi intersection of a family of sets, 13⋃
i∈I Xi union of a family of sets, 13⊕
i∈IMi direct sum of a family of modules, 177(

n
k

)
binomial coefficient, 17

char(R) characteristic of R, 123
Cl(R) class group of R, 313
deg(f) degree of a polynomial f , 153
δij Kronecker δ function, 180
diag(a1, . . . , an) diagonal matrix, 31
dimD(V ) dimension of the D-vector space V , 186
ℓ(G) length of a composition series of G, 113
∅ empty set, 13
FracR set of all fractional ideals of R in K, 310
gcd(a1, . . . , an) greatest common divisor of {a1, . . . , an}, 20
GLn(F ) general linear group of n-by-n matrices over F , 39
Hom(A,A) endomorphism ring of an abelian group, 101
HomR(M,N) group of R-module homomorphisms, 174
im (f) image of a homomorphism f , 122
Inn(G) group of inner automorphisms of G, 62
ker (f) kernel of a homomorphism f , 122
λn left multiplication by n map, 53
⟨X | Y ⟩ group defined by generators X and relations Y , 80
⟨X⟩ subgroup generated by X, 43
⌈x⌉ ceiling of x, 19
lcm(a, b) least common multiple, 22
⌊x⌋ floor of x, 19
|a| order of the element a, 36
|X| cardinality of the set X, 16
Map(X) set of all functions from X to X, 17
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334 GLOSSARY OF NOTATIONS

C complex numbers, 14
N natural numbers, 14
Nn {1, 2, . . . , n}, 15
Q rational numbers, 14
Q/Z rational numbers modulo the integers, 54
Q/Z(p) p-torsion subgroup of Q/Z, 209
R real numbers, 14
Z integers, 14
Z/(m) integers modulo m, 21
min.polyk(α) minimal polynomial of α over k, 191
µ the group of all roots of unity in C, 54
µn the group of nth roots of unity, 54
Perm(X) set of all permutations of X, 34
PGLn(F ) projective general linear group, 60
ϕ(n) Euler ϕ-function, 23
πn nth power map, 54
PrinR set of all principal fractional ideals of R in K, 312∏
i∈IMi direct product of a family of modules, 177∏
i∈I Ri direct product of a family of rings, 133∏
i∈I Xi product of a family of sets, 28

ψ∗ the dual of ψ ∈ HomR(M,N), 198
RadR(0) nil radical of R, 131
Rank(M) rank of the module M , 180
sign(σ) sign of a permutation, 85
SLn(F ) special linear group, 60
trace(α) trace of a matrix, 299
trace(ϕ) trace of a homomorphism, 299
tr.degk(F ) transcendence degree of F/k, 261
Units(R) or R∗ group of units in the ring R, 116
a+ I left coset of I containing a, 126
a | b a divides b, 20
An powers of an ideal, 132
AT transpose of a matrix, 198
An alternating group on n letters, 84
Dn dihedral group of order 2n, 37
eij elementary matrix, 118
F (X) free group on the set X, 79
f ′ formal derivative of the polynomial f , 157
G ∼= G′ G is isomorphic to G′, 36
G/H set of all left cosets of G modulo H, 44
G′ commutator subgroup, 62
Go opposite group, 40
H ⋊K semidirect product of H and K, 69
H\G set of all right cosets of G modulo H, 44
I : J ideal quotient, 131
I1 + I2 + · · ·+ In sum of ideals, 134
I1 ⊕ I2 ⊕ · · · ⊕ In internal direct sum of ideals, 134
k(x) field of rational functions over k in the variable x, 155
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M(ϕ,X, Y ) matrix of ϕ with respect to the bases X, Y , 196
M(π) submodule of M annihilated by powers of π, 205
M/S factor module of M modulo S, 172
M∗ HomR(M,R), the dual module, 198
M1 ⊕M2 ⊕ · · · ⊕Mn direct sum of modules, 178
Mn(R) ring of n-by-n matrices over R, 116
Mnm(R) set of all n-by-m matrices over R, 196
N ⊴G N is a normal subgroup of G, 50
NG(X) normalizer of X in G, 67
o(G) order of the group G, 36
Q8 quaternion eight group, 38
R(G) group ring, 116
R/I residue class ring, 126
R[x] ring of polynomials over R in the variable x, 152
RI the free R-module on the index set I, 180
Ro opposite ring of R, 117
R(n) free R-module of rank n, 180
R1 ⊕R2 ⊕ · · · ⊕Rn external direct sum of a finite family of rings, 134
Sn symmetric group on n letters, 16
Un units modulo n, 23
X = Y equality of sets, 13
X ∩ Y intersection of sets, 13
X ∪ Y union of sets, 13
x ≡ y (mod H) x is congruent to y modulo H, 43
x ≡ y (mod m) x is congruent to y modulo m, 21
x ∈ X x is an element of X, 13
X ⊆ Y X is a subset of Y , 13
X × Y product of sets, 13
X1 ∩ · · · ∩Xn intersection of a family of sets, 14
X1 ∪ · · · ∪Xn union of a family of sets, 14
X1 × · · · ×Xn product of a family of sets, 14
xH left coset of x modulo H, 44
Y −X complement of a set, 13
Z(A) center of a ring A, 117
Z(G) center of a group G, 58
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p-Sylow subgroup, 93–96, 98, 99, 101, 102,

104–106

p-groups, 74, 90–92, 95, 101, 102

are nilpotent, 111

are solvable, 112

center, 96

simple, 48

Abel, Niels, 257, 263

abelian group, 33

Z-module, 171

nth power homomorphism, 54, 96–98

x2 = e criterion, 40, 58

center of a group, 82

examples

groups of various orders, 95

of order 36, 81

of order six, 58

of order three, 36

of order two, 36

the additive integers, 34

the group of units modulo n, 34,

100–101, 159

the integers modulo n, 34, 41

left multiplication by n homomorphism,
53, 97, 101

algebra, 189–193

algebraic, 191

finite dimensional is, 191

algebraic element of, 191, 192, 212

example

k[x], 190

k[x]/(q), 190

dimension 3, 195

finite dimensional, 192

upper bound on the number of
maximal ideals, 195

quadratic, 224

transcendental element of, 191, 212, 213

algebraic curve, 315–324

rational point, 316, 317

algebraic extension

sufficient conditions, 308

algebraic number field, 152, 165, 308

Algebraic over Algebraic is Algebraic, 215

alternating group, 70, 84, 86–89

A4, 89, 90

alternating multilinear form, 290–295

Artin, Emil, 211, 224, 254

Artin-Schreier Theorem, 254–255

ascending central series of a group, 111–112

ascending chain condition

on submodules, 202

associates, 141

automorphism of a field

example

Aut(R) = ⟨1⟩, 236
AutQ(F ) = ⟨1⟩, 226
k(x), 224

fixes the prime field, 236

linearly independent, 226

permutation of roots of a polynomial, 225

uniquely determined by a generating set,

225

automorphism of a group, 49

Aut(Z), 57
Aut(Z,+), 119

Aut(Z/n), 120
automorphism of a cyclic group, 57

conjugation, 50

group of all, Aut(G), 51, 62, 64, 66, 67,

73, 101

inner, 51, 62, 64, 67

automorphism of a module, 172

automorphism of a ring, 122

Aut(Z), 132
Aut(Z/n), 132
group of all, Aut(R), 132

inner, 122, 132

automorphism of an R-algebra, 190

group of all, AutR(A), 190, 224

Axiom of Choice, 26–28, 76, 183

Bézout’s Identity, 21–24, 56, 148

Basis Theorem

for Finite Abelian Groups, 98–99, 102

Elementary Divisor Form, 99, 205

for Modules over a PID, 206–208
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Elementary Divisor Form, 206

Invariant Factor Form, 207

binary operation, 17, 33

associative law, 17, 33

associative law fails for cross product, 18

commutative law, 17

distributive law, 17

distributive law for intersection and

union, 17, 18

General Associative Law, 34

identity element, 17, 33

inverse element, 33

multiplication table, 36–38, 40–41

binary relation, see also equivalence

relation, 15–16

partial order, see also partially ordered

set, 25

reflexive, symmetric, antisymmetric,

transitive, 15

binomial coefficient, 17, 25, 161

Pascal’s Identity, 17

Binomial Theorem, 19, 325

for a ring, 120

cardinal number, 16

Cauchy’s Theorem, 54, 57, 68, 72, 73, 92,

93, 234

p = 2 case, 40

for abelian groups, 58

Cayley’s Theorem, 66, 263

Cayley, Arthur, 65

Cayley-Hamilton Theorem, 295

for M2(k), 193

center of a group, 58–62

can be any abelian group, 82

various properties, 62, 64

center of a ring, 117

central element, 117

chain, see also partially ordered set

Change of Base Theorem

Galois Extension, 240

minimal polynomial of a matrix, 275

characteristic

of a field, 212

of a ring, 123, 130

Chinese Remainder Theorem, 22, 23, 76,
104

for rings, 136, 137, 139, 160, 167

circle group in the complex plane, 54, 64,
82

Class Equation, 68, 75, 82

class group, see also Dedekind domain

classification

elements in a finite dimensional algebra,

192

elements in a finite ring, 152

finite rings of order p1 · · · pm, 139

groups of order 12, 102–103

groups of order 171, 105–106

groups of order 225, 106–107

groups of order 2p, 73

groups of order 30, 104

groups of order 4, 56

groups of order 6, 58

groups of order 63, 104–105, 110

groups of order 8, 110

groups of order 99, 110

groups of order p, 48, 91, 102

groups of order p2, 91, 102

groups of order p3, 107–109

groups of order pq, 72, 102

quadratic extensions of a field, 167

rings of order 4, 224, 254

rings of order p2, 254

comaximal ideals, 136, 137, 140, 183

commutative diagram, 15

commutator identity, 108

commutator subgroup, 62–64, 108, 112

companion matrix of a polynomial, 281,

288, 297

determinant and trace, 299

complex conjugation, 30, 145, 214, 226,

234, 235, 241

complex numbers, 14, 29–30, 54, 64, 82,
217, 243–244

field, 116

root of unity, 54, 241

composition series, 113

congruence modulo m, 21

gcd constant on congruence classes, 23,

25

congruence modulo a subgroup, 43

coset, see also coset

equivalence relation, 43

conjugacy class, 68, 75, 82

conjugate of a subgroup

is a subgroup, 54

conjugation, 67

content of a polynomial, 162

Correspondence Theorem

for equivalence relations, 19

for Groups, 53, 56, 91, 93, 111, 127

for Modules, 174

for Rings, 127, 129

coset

complete set of left coset representatives,
44

correspondence between left and right,

44, 48

definition, 44, 126

Cramer’s Rule, 298

crossed product algebra, 238

cyclic group, 55, 80

equivalent conditions, 101, 102

finite, 46

infinite, 46
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lattice of subgroups, 102

simple, 48, 58, 255

cyclotomic extension, 248–250

order 8, 238

order p, 237

cyclotomic polynomial, 165, 221, 249, 250

Dedekind domain

definition, 310

existence criteria, 311

exponential notation for ideals, 315

external direct sum of fractional ideals,

315

group law on fractional ideals, 312, 315

ideal class group, 313

localization of, 314

modulo a prime power, 314

modulo a proper ideal, 314

Nagata’s Theorem, 313

one and a half generator property for
ideals, 315

prime ideal is invertible, 312

unique factorization of ideals, 311, 312

Dedekind, Richard, 310

degree of a polynomial, 153, 158

DeMorgan’s Laws, 18

derived series, 112, 113

determinant, 290–295

adjoint formula, 294

alternating multilinear form, 292

cofactor expansion of rows or columns,

293

constant on similarity class, 292

constant under elementary column
operation, 298

homomorphic image, 298

multiplicative property, 292

of the transpose, 292

diagonal matrix, 31

dihedral group, 37–38, 41, 48, 70, 73, 80,

110, 114, 235

D4, conjugacy classes, 74

D4, subgroup lattice, 61, 64, 71, 75

D5, conjugacy classes, 74

ascending central series, 114

center of, 59, 114, 235

commutator subgroup, 62

internal direct sum of subgroups, 114

semidirect product, 73

direct product

of groups, 40, 48, 55, 76, 77

is a semidirect product, 75

of modules, 177

over a direct product of rings, 185

of quotient groups, 82

of rings, 133, 135

direct sum

of free modules is free, 189

of modules, 177, 178

discriminant, 234, 264–266

divides, 20, 140, 141
divisible group, 209

Division Algorithm, 20, 22, 46, 145

for polynomials, 154
division ring, 116, 130

real quaternions, 120
domain, 116, 127, 128

double dual module, 199

double the cube, 218
dual basis, 201

dual module, 198–200

dual basis, 198, 199
functorial property, 198, 199

Eisenstein’s Irreducibility Criterion, 164,
165

elementary matrix, 31, 118, 130, 196

Jordan form, 283, 284
elliptic curve

example

k[x, y]/(y2 − x(x2 − 1)), 320
group of points, 322, 323

Embedding Theorem for Fields, 232

empty set, 13
endomorphism of a group, 49

endomorphism of a module, 172, 184, 194

endomorphism ring, see also ring of
endomorphisms, 133

epimorphism of groups, 49
epimorphism of modules, 172

equivalence relation, 15, 18, 19, 22

Correspondence Theorem, see also
Correspondence Theorem

defined by a function, 18, 67

equivalence class, 15
full set of representatives, 22

natural map, 15, 18, 19

Euclid’s Lemma, 21
for a commutative ring, 149

Euclidean Algorithm, 146

euclidean domain
definition, 145

is a PID, 146
various properties, 146

Euler ϕ-function, 23, 47, 55, 62, 248
Euler’s generalization of Fermat’s Little

Theorem, 47

Euler, Leonhard, 23

Extended Euclidean Algorithm, 148
extension of a ring by a module, 139

factor group, see also quotient group
factor ring, see also quotient ring
Fermat’s Little Theorem, 47

field, 116, 130
algebraically closed, 219

finite, see also finite field
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perfect, 239

field extension, 212

dimFG (F ) ≤ |G|, 228
|Autk(F )| ≤ dimk(F ), 227

algebraic, 212

algebraic closure, 219

algebraic element of, 212

irreducible polynomial, 213, 214

is a unit or zero divisor, 192, 308

algebraic over algebraic is algebraic, 215

degree of, 212

example

Q(
√
2) and Q(

√
3), 224

Q[i], 120

Q[x]/(x3 − 3x− 1), 218

R(
√
−2) and R(

√
−3), 224

k(x)/k(x4/(4x3 − 1)), 218

k(x)/k(xn), 309

splitting field of x3 + 2x+ 1, 214, 234

splitting field of x3 − 2, 223

splitting field of xp − α, 220

splitting field of cyclotomic

polynomial, 221, 308

existence of algebraic closure, 215

finite dimensional, 219

necessary and sufficient conditions, 214

finitely generated, 212

generated by X, 212, 219

inseparable

example, 161

intermediate field, 212

composite, 215, 223, 240, 243

fixed by G, 225

subgroup fixing, 225

is an example of an algebra, 190

normal, 230

quadratic extension, 219, 224

separable, 221, 237, 238

separable closure, 239

simple, 212

sufficient criterion, 223, 230

transcendental element of, 213, 260

field of rational functions, 155, 165–166

finite field

example

order 26, 254

order 4, 224

order 9, 218

order p, 116

order p2, 254

existence of, 251

existence of primitive element, 156, 212

image of the norm map, 254

irreducible polynomial

number of, 252, 253

quadratic, 218

uniquely determined by its order, 223

various properties, 222

Finitely Generated over Finitely Generated

is Finitely Generated, 176

formal derivative of a polynomial, 157

fractional ideal, 309, 310, 314

invertible, 310

free group on X, 78–80

free module, 180

basis, 181

finitely generated is projective, 183

finitely generated over a PID, 202–204

modulo an ideal, 185

of finite rank n, 180, 187

over a PID

submodules are free, 202

over a commutative ring has a rank, 188

Free over Free is Free, 187, 219

Frobenius homomorphism, 130, 161, 251

Frobenius, Ferdinand Georg, 130

function, 14

composition, 14, 18

identity map, 14

inclusion map, 14

inverse, 14, 28

one-to-one correspondence, 14, 16, 18

onto, one-to-one, 14, 18

preimage, image, 14

restriction map, 14

surjective, injective, bijective, 14

Fundamental Theorem

of Algebra, 243

of Arithmetic, 21, 95, 131, 143

of Galois Theory, 232–236

on p-groups, 91

on Algebraic Elements, 191

in a Field Extension, 212

on Composite Fields, 215

on Cyclic Groups, 55, 325

on Finite Fields, 251

on Group Homomorphisms, 51, 52

on Internal Direct Sums of Ideals,

134–135

on Module Homomorphisms, 173

on Principal Ideal Domains, 144–145

on Ring Homomorphisms, 126

on Symmetric Polynomials, 266

on Symmetric Rational Functions, 263

Galois extension

cyclic, 230, 237, 301

of degree pn, 259

cyclotomic, see also cyclotomic extension

definition, 229

example

Q(21/2 + 21/3)/Q, 238

Q(
√
2)/Q, 237

Q(i)/Q, 225

k[x]/k[x6], 324

abelian group of order 2n, 241



INDEX 341

abelian group of order 8, 241

field of order 4, 225

finite field of order q, 228, 230

quadratic, 259

splitting field of

(2x2 − 4x+ 1)(x4 + 1), 238

splitting field of
(4x2 + 2x+ 1)(x6 − 1), 238

splitting field of (x2 − 2)(x2 − 3), 236

splitting field of (x2 − 2)(x3 + 2), 238

splitting field of x3 + 3x+ 3, 236

splitting field of x3 + x− 1, 236

splitting field of x3 − 5, 236

splitting field of x3 − 2, 237

splitting field of x4 + p2, 237

splitting field of x4 − 2, 234

splitting field of x4 + x2 − 6, 237

splitting field of x4 − 5, 238

splitting field of x6 − 8, 238

splitting field of x8 − 1, 238

splitting field of xp − 1, 237

symmetric group Sp, p a prime, 233

existence of a dual basis, 246

existence theorem, 263

necessary and sufficient conditions,

229–231

norm map, 245–253, 259

C → R, 253
kernel of, 253

quadratic, 237

trace map, 245–253

kernel of, 253

Galois group, 229

group of permutations, 224, 232, 233,

236, 238

of a polynomial, 236–238, 257, 258

Galois, Évariste, 33

Gauss’ Lemma, 163, 165

for an integrally closed integral domain,
306, 307

Gauss, Carl Friedrich, 266

gaussian integers

definition, 120

is a PID, 146

is a euclidean domain, 145

general linear group GLn, 39, 59, 103, 106,

107, 116, 184

GL2, 63, 64

GL2(Z/2), 40
GL2(Z/3), 81
GL2(Z/5), 110
center of GL2, 59

greatest common divisor, 20, 142, 149, 150

existence, 142

of polynomials under a change of base,

161

uniqueness, 142

group

nth power map, 35, 42, 43, 48

p-group, see also p-groups

abelian, see also abelian group

cyclic, see also cyclic group

defined by generators and relations, 80

definition, 33

divisible, see also divisible group

finiteness criterion, 47

inverse of a product, 35

inverse of an inverse, 35

left multiplication by n map, 35, 46, 53

nonabelian, see also nonabelian group

of permutations of a set, 34, 37, 51

order of, 36

order of an element, see also order of an
element in a group, 97

product, see also product

simple, see also simple group

solvability and cancellation properties,

35, 36

subgroup, see also subgroup

uniqueness of idempotent, 35

group action

definition, 66

equivalent conditions, 65

faithful, 66

group acting on a group, 66, 67, 69, 73

group acting on a normal subgroup, 67,

73, 104, 105

group acting on itself, 36, 66

group acting on left cosets, 66, 74, 89,

92, 94

orbit decomposition, 67

orbit of an element, 67

stabilizer of a set, 66, 74, 225

stabilizer of an element, 67

subset fixed by G, 67, 225

group of nth roots of unity, 54, 156

group of all roots of unity in C, 54
group of homomorphisms

HomR(M,N) for modules M and N , 174

HomZ(A,B), 101

HomZ(Z, A), 102

HomZ(Z/m,Z/n), 73, 101
group of inner automorphisms, 62, 64

of a ring, 132

group of units, 116, 121

functorial property, 131, 140, 160

group ring, 116, 132, 194

is a free module, 181

over Z/2, 140
over the Klein four group, 120

Hamilton, William Rowan, 38, 119

Hilbert’s Theorem 90, 247

additive part, 253

Hilbert, David, 247

homogeneous polynomial, 158
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homomorphism of algebras, 190

homomorphism of groups, 49

composition of, 51

homomorphism on a cyclic group, 22, 24,

56, 75, 76

homomorphism on a free abelian group,

82

image, 49, 53

kernel, 49, 51

natural map, 50

preimage, 49, 51

various properties, 53

homomorphism of modules, 172, 181

composition of, 172, 175

kernel, image, 172

lifting to a matrix, 201, 299

homomorphism of rings, 122

composite is a homomorphism, 130

group rings, 122, 185

image, 122, 130

kernel, 122, 130

makes an S-module into an R-module,
171, 187

natural map, 122, 125, 126, 131, 150

polynomial rings, 154, 160

evaluation homomorphism, 154

section to, 138

unique map from Z to R, 123

zero mapping, 123

hyperelliptic curve, 165

ideal

{0}, 124
definition, 121

equivalent properties, 125

example, 121, 125

of subgroup that is not an ideal, 135

existence criterion for a two-sided ideal,

133

generated by a set, 123–124

homomorphic preimage and image, 123

intersection of, 130, 131, 136

is an R-module, 170

lattice of all ideals in R, 124

principal, 123, 124

sufficient criterion, 149, 150

proper, 311

unit ideal, 124, 125

ideal class group, see also Dedekind domain

ideal quotient, 131

idempotent, 134

central, 134, 139

homomorphic image, 140

orthogonal, 134, 135

identity matrix, 30

indeterminate, 152

index of a subgroup in a group, 44

indicator function, 25

inseparable polynomial

example, 161, 220, 222

necessary and sufficient conditions, 222,

237

integers, 14, 19, 46

ring, 116, 123, 124

is a UFD, 143

is a euclidean domain, 145

is integrally closed, 304

integers modulo m, 21, 34, 46

addition, multiplication, 22

ring, 116, 139

integral closure, 304

R in R[x], 308

existence of, 306

finiteness criteria, 307

in a Galois extension, 307

in an algebraic extension field, 308

is integrally closed, 306

integral domain, 116, 128

finite is a field, 128

integrally closed, 304

necessary and sufficient condition, 314

subring of a field, 128, 150

integral extension, 304

modulo an ideal, 308

of integral domains, 308

restriction of a maximal ideal, 308

sufficient conditions, 304, 305

units in the subring, 309

Integral over Integral is Integral, 306

internal direct product

of normal subgroups, 77, 78, 81, 94, 134,
139

a counterexample, 81

internal direct sum

of ideals, 134, 136–139

example, 137

example of a ring that is not, 138

of submodules

necessary and sufficient conditions,

178, 179

invertible element in a ring, 115, 121, 130

invertible fractional ideal, see also
fractional ideal

involution, 119

irreducible element in a ring, 141, 160

irreducible polynomial

over Q, 166

over k(x), 165

over a finite field, 252, 253

over a unique factorization domain, 164

over an infinite field, 162

reduction modulo p criterion, 167

isomorphism of algebras, 190

isomorphism of groups, 36, 49, 51

counterexample, 41

isomorphism of modules, 172
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isomorphism of rings, 119, 122

Isomorphism Theorem

for Groups, 52, 53, 55, 76, 91, 96, 97,

127, 174, 233

for Modules, 173

for Rings, 126, 127

Jordan, Camille, 283

Klein four group, 38, 39, 41, 56, 80, 102

Kronecker’s Theorem, 219

Kronecker, Leopold, 180, 219

Krull, Wolfgang, 310

Kummer Theory, 255–256

Kummer, Ernst, 255

Lagrange basis polynomials, 155

Lagrange Interpolation, 155

Lagrange’s Theorem, 44–47, 58, 69, 91, 93,

97, 232, 233

lattice, 16

Laurent polynomial ring, 161

Laurent, Pierre Alphonse, 161

leading coefficient, 153

least common multiple, 22

left regular representation, 133, 174, 190,

205, 226

lexicographical ordering, 25, 158, 267

linear diophantine equation, 24

linear transformation, 185

characteristic polynomial, 295

defines a k[x]-module, 270–273, 278

determinant, 294, 299

diagonalizable, 274, 278

eigenvalue, characteristic root, 274

eigenvalues invariant under inner
automorphism, 275

eigenvector, characteristic vector, 274

elementary divisors, 281

extension of, 188

idempotent, 179, 283

image and kernel, 187

invariant factors, 279, 280, 289

invertible, 188, 273

Jordan canonical form, 281–283

minimal polynomial, see also minimal

polynomial

nilpotent, 289

powers of, 200

rank and nullity, 188

rational canonical form, 279–281, 289

singular, 273

trace, 299

triangular form, 276

linearly independent set, 180, 181, 185, 188,
189

local ring, 132

characteristic of, 209

equivalent conditions, 152

idempotents in, 152

localization at a multiplicative subset,
151–152, 313, 314

lower triangular matrix, 31, 276, 278

eigenvalues, 276

rank, 276

Möbius function, 24, 25, 252

Möbius Inversion Formula, 24, 252

Mathematical Induction, 20

matrices over R, 196

binary operations, 30

free R-module, 196

matrix

adjoint, 294

canonical form, invariant factors,

283–285, 289

example, 295–298

characteristic polynomial, 295, 298

constant on similarity class, 297

under a change of base, 298

column rank equal to row rank, 200

column space and kernel, 198, 286

defines a linear transformation, 198

direct sum, block diagonal, 298

eigenvalues, 275, 278

eigenvalues invariant under inner
automorphism, 275

elementary, see also elementary matrix

inverse

adjoint formula, 294

left inverse equals right inverse, 300

lower triangular, 118, 122, 125, 194, 201,

224, 278

minimal polynomial, see also minimal
polynomial

minor, cofactor, 293

nilpotent, 278

properties preserved by a change of base

field, 289

rank and nullity, 198, 285

reduced row echelon form, 285–287

singular, 299

trace, 299, 300

transpose, 198–200, 289

with respect to anti-diagonal, 201

various properties preserved by a change
of base field, 278

with assigned eigenvalues, 278

matrix of a linear transformation, 196–200,
279–283, 294, 295

multiplication rule, 197

maximal ideal, 128, 314

equivalent conditions, 129

existence of, 26, 129, 327

homomorphic preimage, 129

in Z/n, 131
maximal left ideal, 132
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maximum condition

on submodules, 202

McKay, J., 92

minimal polynomial

definition, 191, 213

divides characteristic polynomial, 295

example of a 3-by-3 matrix, 272

invariant under inner isomorphism, 194,

197, 275

irreducible, 299

of a 2-by-2 matrix, 193

of a linear transformation, 270, 277, 278

of a nilpotent, 191

of an n-by-n matrix, 300

of an elementary matrix, 272

of an idempotent, 191

under change of base, 275

module

annihilator, 170

definition, 169

direct summand of, 179

vector space, 187

equivalent definition, 170

examples, 170

faithful, 170

finitely generated, 171, 180

over a PID, 201–209

finitely generated and projective, 183,

184

generating set, 171

minimal generating set, 180

order of an element, 204

projective, 182, 183, 310

rank, 180

torsion element, 203

torsion free, 203

monic polynomial, 153

monoid, 33, 39

group criterion, 40

inverse of inverse, 40

invertible times invertible is invertible, 40

uniqueness of identity element, 39

uniqueness of inverses, 40

monomial, 153, 158

monomorphism of groups, 49

trivial kernel criterion, 51

monomorphism of modules, 172

monomorphism of rings, 130

multiplicative subset, 151

Nagata’s Theorem, 313

Nagata, Masayoshi, 313

natural numbers, 14, 19

nil radical of a ring, 131

Z/n, 139
nilpotent element in a ring, 131, 132

nilpotent group, 111–112

is solvable, 112

nilpotent ideal, 132

Noether, Emmy, 144, 260, 310
noetherian module

equivalent conditions, 202

nonabelian group
example of order 6 · n, 70
example of order 9 · 37, 74
of order (p− 1)p2, 96
of order 40, 74

of order 55, 74

of order 6, 58
of order 7 · 29, 74
of order 75, 110

of order 8, 110
of order p3, 107–109

of order pq, 72–74
norm map, see also Galois extension, 317,

321

Normal Basis Theorem, 301
normal subgroup, 51, 53, 54, 232, 233

definition, 50

generated by X, 63
index 2 criterion, 54, 104

index p criterion, 75

intersection of is normal, 63
normal over normal is not normal, 64,

95, 236

subgroup of an abelian group is, 50
sufficient conditions, 54, 58

trivial subgroup is, 50
various properties, 64

normalizer, 67, 68, 75, 82

opposite group, 40, 132
opposite ring, 117, 132, 175

order of an element in a group, 36, 46–48,

56, 58, 62, 77, 98, 156

partial fractions

for rational functions, 167
for rational numbers, 26

partially ordered set, 16
chain, 16
comparable elements, 16
descending and ascending chain

conditions, 16, 28
infimum, supremum, 16

least element, 16, 19
lower bound, upper bound, 16, 19

minimal element, maximal element, 16
minimum condition, maximum condition,

16, 28

Pascal’s Identity, see also binomial

coefficient
permutation, 16

k-permutation, 16
array notation, 37
cycle decomposition, 83, 84

cycle notation, 37, 83, 86, 241
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even, 84

number of, 17

odd, 84

order of, 84

sign of, 85, 86

transposition, 37

permutation matrix, 31, 90, 201

characteristic polynomial, 300

determinant, 300

minimum polynomial, 300

Pigeonhole Principle, 18, 19, 42, 89, 128,

225, 228

pole set, 165

power series

cosine, 29

exponential, 29

sine, 29

power set, 13

cardinality of, 19, 26

well ordered, 26, 286

prime element in a ring, 141, 160, 161

prime ideal, 128

equivalent conditions, 128, 132

homomorphic preimage, 129, 132

prime number, 20

prime ring, 123

primitive element, 212

Primitive Element Theorem, 222–223

primitive polynomial, 162

principal ideal domain

an irreducible element is prime, 143

class group is trivial, 313

counterexample

k[x, y], 156

k[x, y]/(y2 − x(x2 − 1)), 321

k[x2, x+ x3], 168

k[x2, x3], 160

definition, 123

free modules

equivalent conditions, 203

ideals are free, 208

is a Bézout domain, 142

is a noetherian ring, 203

prime ideals are maximal, 150

principal ideal ring

definition, 123

direct product of, 140

example

R/(πe), 208

R/(πe1
1 πe2

2 · · ·πen
n ), 208

product

of a family of sets, 14, 28

canonical injection map, 76, 136

canonical projection map, 28, 76, 136,

199, 246

of ideals, 123, 124, 132, 136, 160

of normal subgroups, 53, 54, 95, 104

of subsets of a group, 43, 45, 48, 102

projective general linear group, 60

quaternion eight group, 38, 41, 80, 81, 110,

119

center of, 59, 73

conjugacy classes, 74

not a semidirect product, 73

subgroup lattice, 64, 75

quaternions, the ring of, 118–119

over C, 120
over R, 120
over Z/2, 120

quotient field, 150–151

example

R[x]/(f), 168

Z[
√
D], 152, 165

quotient group, 50

quotient module, 172

over the quotient ring, 175, 185

quotient ring, 125, 126, 155

radical extension, 256–258

Rank-Nullity Theorem, 188

rational numbers, 14

field, 116

modulo the integers, 54, 209

p-torsion subgroup, 209

Rational Root Theorem, 162

real numbers, 14, 17, 28, 29, 216, 236, 243

exponential and logarithm maps, 53, 64,
82

field, 116

group of units, 71, 82

modulo the integers, 54

relation, 14

binary, see also binary relation

domain, range, 14

relatively prime numbers, 20

residue class ring, see also quotient ring

reverse of a polynomial, 166

ring

definition, 115

example

R[x]/(f), 168, 185

Z/4[i], 120
Z[
√
D], 152, 165, 304

Z[i], 120
k[x, y]/(x2 + y2 − 1), 316–320

k[x, y]/(y2 − f(x)), 165

k[x, y]/(y2 − x(x2 − 1)), 320–324

k[x]/(x2 − a), 184, 259

k[x]/(xn), 160

k[x2, x+ x3], 168, 305

k[x2, x3], 160, 168, 305, 324

k[xn, xn+1], 309

non-noetherian, 182

rings of order 4, 224

rings of order p2, 254
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rings of order p3, 195

rings of order p1 · · · pm, 139

trivial ring (0), 116

ring of 2-by-2 matrices, 193

over Z/2, 194
ring of n-by-n matrices, 30, 116, 118, 125,

196, 197

algebra over its center, 190

center, 118

is algebraic, 272

is integral, 304

not a domain, 128

over C, 120
over Z/2, 120
over a field, see also simple ring

subring of upper triangular, 138

ring of endomorphisms

HomR(M,M) for a module M , 174, 175,

190, 197, 304

HomR(R/I,R/I), 175

Homk(V, V ) for a vector space V , 200

HomZ(A,A), 101, 117, 170, 174

HomZ(Z,Z), 57, 117, 119
HomZ(Z/n,Z/n), 117, 119

ring of integers in a number field, 308

ring of polynomials

as a ring of functions, 160

group of units, 160

in several variables, 158–159

is a free module, 181

nil radical, 160

over a UFD

is a UFD, 164

is integrally closed, 304

over a commutative ring, 152

over a field

is a PID, 146

is a euclidean domain, 145, 154

is integrally closed, 304

over an integral domain, 153

root of a polynomial, 155

equivalent conditions, 155

homomorphic image of, 193

multiplicity, 155, 156

simple root, 156

criteria in characteristic p, 157

jacobian criterion, 157

Schreier, Otto, 211, 254

Schur’s Lemma, 175

semidirect product, 69–73

direct product, 75

example, 70, 73, 74, 90, 96, 103, 104,
106–108, 110

nonabelian group, 75

of solvable groups is solvable, 114

sufficient conditions, 70

semigroup, 33

Separable over Separable is Separable, 239

separable polynomial

conjugate splitting, 237, 242

definition, 221

example

xn − a, 258

existence of, 253

necessary criteria, 222

sufficient criteria, 157, 222

set, 13–14

k-subset

number of, see also binomial coefficient

n-set, 17

element, 13

equality, subset, 13

equivalent sets, 15

finite, infinite, 16

index set, 13

infinite, 19

partition of, 15

product, 13

cardinality of, 18, 22, 222

union, intersection, complement, 13

similar matrices, 197, 275, 289

change of bases, 198

simple group, 48, 54, 113

examples, 95, 96

An, 87, 88, 113

necessary condition, 74

simple module, 175

simple ring

definition, 124

division ring, 124

modules over, 201

ring of matrices over a field, 124, 130

Snake Lemma, 314

solvable by radicals

definition, 256

general polynomial is not, 263

necessary and sufficient conditions, 257,

258

solvable group, 112–113

has composition series with cyclic
factors, 114

various properties, 113

special linear group, 60, 63, 64

SL2(Z/3), 81
splitting field, 219

existence and uniqueness of, 220–221

square the circle, 218

straightedge and compass constructions,

216–218

subalgebra

generated by X, 190, 212, 219

generated by an element, 161

subfield, 212

prime, 212

subgroup
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HK = KH criterion, 45

cyclic, 43, 46–47

definition, 42

finitely generated, 43

generated by a subset, 43

intersection of, 48

is a subgroup, 43, 47

lattice, 43, 61, 62

trivial and proper subgroups, 42

submodule

annihilated by powers of π, 205

definition, 171

generated by a set, 171

of all torsion elements, 208

principal, cyclic, 171

subring, 117

Z/n has no proper subring, 117

example, 118, 125

generated by a set, 121

ideal is not a subring, 117

intersection of, 121

subring of k[x], 168

subspace, 185, 187, 188

ϕ-invariant, 270, 271, 274

sum

of ideals, 123, 124

Sylow’s First Theorem, 93, 94

Sylow’s Second Theorem, 94

Sylow’s Third Theorem, 94

symmetric group, 16, 37, 66, 70, 83–90,
232, 262–264, 268, 290

S3, 37, 40, 48, 58, 60, 103, 113, 237

Sp, p a prime, 233

acting on n-tuples, 95, 184, 194, 262

center of, 59

commutator subgroup, 89, 113

conjugacy classes, 63, 86–87

generated by transpositions, 84

generating set, 90

number of k-cycles, 90

solvable if and only if n ≤ 4, 113

subgroups of the form Sk × Sn−k, 90

symmetric polynomial, 266–267

elementary, 262, 268

ring of, 268

symmetric rational functions, 262–263

Synthetic Division, 154

system of linear equations, 287–288

torsion module

finitely generated over a PID, 204–206

cyclic direct summand, 205

prime decomposition, 205

total ring of quotients, 152

trace map, see also Galois extension

trace pairing, 300

transcendence base, 260–262, 267–268

existence of, 261, 268

transcendence degree, 261, 267

Transfinite Induction Principle, 27, 28

trisect the angle, 218

unique factorization domain

an irreducible element is prime, 143
counterexample

Z[
√
D], 165

k[x, y]/(x2 + y2 − 1), 318

k[x, y]/(y2 − x(x2 − 1)), 321

k[x2, x+ x3], 168
k[x2, x3], 160

definition, 143

exponential notation, 149
greatest common divisors exist, 143

is integrally closed, 163, 168, 304

unit circle, 316
unit in a ring, 115

units modulo n, 23, 34, 47, 57, 100–101,

120, 159, 237, 241, 248
Universal Mapping Property

for a direct product of modules, 177
for a direct sum of modules, 178

for a free group, 79

for a free module, 181
for a group ring, 193

for a localization, 152

for a quotient field, 151
for an equivalence relation, 18, 52

for integers modulo m, 22, 24, 56

for polynomial rings, 154
upper triangular matrix, 31

vector space, 185–187
as a k[ϕ]-module, 270

basis, 185, 186, 188

definition, 169
dimension, 186, 188

direct sum of k[ϕ]-submodules, 271

direct sum of cyclic k[ϕ]-submodules, 270
Replacement Theorem, 186

spanning set, 185, 188
vector, 185

Viergruppe, see also Klein four group

Wadsworth, A., 24
Wedderburn, J. H. M., 128, 250

well ordered set, 16, 25, 26

Well Ordering Principle, 19, 20, 22, 26–28,
46

Wielandt, H., 93
Witt, Ernst, 250

zero divisor in a ring, 115

zero set, 165
Zorn’s Lemma, 26, 27, 129, 188, 268

Zorn, Max, 26
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