
Abstract Algebra

Timothy J. Ford

Department of Mathematics, Florida Atlantic University, Boca
Raton, FL 33431

Email address: ford@fau.edu
URL: https://tim4datfau.github.io/Timothy-Ford-at-FAU/



Last modified August 14, 2024. Copyright © 2022 Timothy J. Ford. All rights
reserved.



Contents

Preface 13

Chapter 1. Preliminaries and Prerequisites 15
1. Background Material from Set Theory 15
1.1. Sets and operations on sets 15
1.2. Relations and functions 15
1.3. Binary relations 16
1.4. Permutations and combinations 18
1.5. Binary operations 19
1.6. Exercises 19
2. Background Material from Number Theory 21
2.1. Exercises 25
3. The Well Ordering Principle and Some of Its Equivalents 27
4. Topological Spaces 29
4.1. Exercises 31
5. Background Material from Calculus 31

Chapter 2. Groups 33
1. First properties of groups 33
1.1. Definitions and Terminology 33
1.2. Examples of groups 35
1.3. Exercises 39
2. Subgroups and cosets 40
2.1. First properties of subgroups 40
2.2. Cosets and Lagrange’s Theorem 42
2.3. A counting theorem 43
2.4. Cyclic subgroups 44
2.5. Exercises 46
3. Homomorphisms and normal subgroups 46
3.1. Definition and first properties of normal subgroups 46
3.2. The Isomorphism Theorems 47
3.3. Exercises 50
3.4. More on Cyclic groups 51
3.5. The center of a group 54
3.6. Exercises 57
4. Group actions 59
4.1. Group actions, orbits and stabilizers 59
4.2. Conjugates and the Class Equation 61
4.3. Exercises 62
5. Direct products 64

3



4 CONTENTS

5.1. External direct product 64
5.2. Internal direct product 65
5.3. Free Groups 67
5.4. Exercises 69
6. Permutation Groups 70
6.1. The cycle decomposition of a permutation 70
6.2. The sign of a permutation 71
6.3. Conjugacy classes of the symmetric group 72
6.4. The Alternating Group 73
6.5. Exercises 75
7. The Sylow Theorems 76
7.1. p-Groups 76
7.2. Cauchy’s Theorem 77
7.3. The Sylow Theorems 77
7.4. Exercises 80
8. Finite Abelian Groups 81
8.1. The n-th power map 81
8.2. The Basis Theorem 83
8.3. Exercises 84
9. Classification of Finite Groups 85
9.1. Groups of order 12 85
9.2. Groups of order 30 86
9.3. Groups of order 63 87
9.4. Groups of order 171 88
9.5. Groups of order 225 89
9.6. Groups of order p3 89
9.7. Exercises 90
10. Chain Conditions 91
10.1. Nilpotent Groups and Solvable Groups 91
10.2. Composition Series 93
10.3. Infinite Chains 94
10.4. Exercises 95

Chapter 3. Rings 97
1. Definitions and Terminology 97
1.1. Exercises 101
2. Homomorphisms and Ideals 102
2.1. Exercises 106
3. Direct Products and Direct Sums of Rings 109
3.1. Exercises 114
4. Factorization in Commutative Rings 115
4.1. Greatest Common Divisors 116
4.2. Principal Ideal Domains 118
4.3. Euclidean Domains 120
4.4. Exercises 121
5. Ring of Quotients 122
5.1. Exercises 125
6. Polynomial Rings 125
6.1. Polynomials in Several Variables 130



CONTENTS 5

6.2. Exercises 131
7. Polynomials over a Unique Factorization Domain 133
7.1. Exercises 136

Chapter 4. Linear Algebra 139
1. Modules and Algebras 139
1.1. Definitions and First Properties 139
1.2. Submodules 141
1.3. Homomorphisms 142
1.4. Exercises 144
2. Free Modules and Vector Spaces 145
2.1. Products and Sums of Modules 145
2.2. Free Modules 146
2.3. Exercises 149
2.4. Vector Spaces 151
2.5. Exercises 153
3. Finitely Generated Modules over a Principal Ideal Domain 154
3.1. Exercises 158
3.2. The Basis Theorems 159
4. Matrix Theory 161
4.1. The Endomorphism Ring of a Module 161
4.2. The Matrix of a Linear Transformation 162
4.3. The Dual of a Module 164
4.4. Exercises 166
5. Minimal Polynomial 168
5.1. Exercises 171
6. Canonical Forms 171
6.1. Rational Canonical Form 172
6.2. Jordan Canonical Form 173
6.3. Exercises 176
6.4. Smith Normal Form 177
6.5. Reduced Row Echelon Form 180
7. The Determinant 183
7.1. Alternating Multilinear Forms 183
7.2. The Characteristic Polynomial 188
7.3. Block Matrices 192
7.4. Exercises 194
8. Polynomial Functions 197
8.1. The Ring of Polynomial Functions on a Module 197
8.2. Resultant of Two Polynomials 199

Chapter 5. Fields 203
1. Algebraic Extensions and Transcendental Extensions 203
1.1. Classical Straightedge and Compass Constructions 208
1.2. Exercises 210
2. The Fundamental Theorem of Galois Theory 211
2.1. Exercise 217
3. Splitting Fields 217
3.1. Exercises 221



6 CONTENTS

4. Separable Extensions 222
4.1. Exercises 226
5. Finite Fields 226
5.1. Irreducible Polynomials 227
5.2. Exercises 228
6. Separable Closure 229
6.1. The Fundamental Theorem of Algebra 231
7. The Trace Map and Norm Map 232
7.1. Exercises 235
8. Cyclic Galois Extensions 236
8.1. Artin-Schreier Theorem 236
8.2. Kummer Theory 237
8.3. Cyclotomic Extensions 238
8.4. Radical Extensions 238
9. Exercises 240
10. Transcendental Field Extensions 243
10.1. Symmetric Rational Functions and Symmetric Polynomials 245
10.2. Exercises 248

Chapter 6. Modules 249
1. Categories and Functors 249
2. Progenerator Modules 252
3. Nakayama’s Lemma 257
3.1. Exercises 259
4. Tensor Product 263
4.1. Tensor Product of Modules and Homomorphisms 263
4.2. Tensor Functor 269
4.3. Exercises 274
5. Hom Groups 277
5.1. Hom Functor 278
5.2. Various Identities Involving the Hom Functor 279
5.3. Hom Tensor Relations 280
5.4. Exercises 283
6. Some Homological Algebra 285
6.1. The Five Lemma 285
6.2. The Snake Lemma 285
6.3. The Product Lemma 287
6.4. Exercise 288
7. Injective Modules 288
7.1. Exercises 291
7.2. Injective Modules and Flat Modules 292
8. Direct Limits and Inverse Limits 294
8.1. The Direct Limit 294
8.2. The Inverse Limit 299
8.3. Inverse Systems Indexed by Nonnegative Integers 301
8.4. Exercises 303
9. The Morita Theorems 306
9.1. The Functors 306
9.2. The Morita Theorems 308



CONTENTS 7

9.3. Exercises 311

Chapter 7. Modules over Commutative Rings 313
1. Localization of Modules and Rings 313
1.1. Local to Global Lemmas 314
1.2. Exercises 317
2. Module Direct Summands of Rings 318
2.1. Exercises 319
3. The Prime Spectrum of a Commutative Ring 320
3.1. Idempotents and Subsets that are Open and Closed 322
3.2. Exercises 324
4. Locally Free Modules 326
4.1. Finitely Generated Projective over a Local Ring is Free 326
4.2. A Finitely Generated Projective Module is Locally Free 327
4.3. Exercises 328
5. Faithfully Flat Modules and Algebras 330
5.1. Faithfully Flat Modules 330
5.2. Faithfully Flat Algebras 332
5.3. Another Hom Tensor Relation 334
5.4. Faithfully Flat Base Change 337
5.5. Faithfully Flat Descent of Central Algebras 339
5.6. Exercises 340
5.7. Locally of Finite Type is Finitely Generated as an Algebra 342
6. Chain Conditions 343
6.1. Exercises 347
6.2. Composition Series 347
6.3. Exercises 349
7. Locally Free Modules 349
7.1. Locally Free of Finite Rank Equals Finitely Generated Projective 349
7.2. Invertible Modules and the Picard Group 351
7.3. Exercises 353
8. Flat Modules and Algebras 354
8.1. Flat if and only if Locally Flat 354
8.2. A Finiteness Criterion for Flat 355
8.3. Finitely Presented and Flat is Projective 358
8.4. Flat Algebras 359
8.5. Exercises 360
9. Multilinear Algebra 361
9.1. Graded Algebras 361
9.2. The Tensor Algebra of a Module 362
9.3. The Symmetric Algebra of a Module 365
9.4. The Exterior Algebra of a Module 367
9.5. Exercises 370

Chapter 8. Artinian and Noetherian Rings and Modules 373
1. The Jacobson Radical and Nakayama’s Lemma 373
1.1. Idempotents and the Jacobson Radical 375
1.2. Exercises 375
2. Semisimple Modules and Semisimple Rings 376



8 CONTENTS

3. Simple Rings and the Wedderburn-Artin Theorem 378
3.1. Central Simple Algebras 380
3.2. Exercises 382
4. Commutative Artinian Rings 383
4.1. Finitely Generated Projective of Constant Rank is Free 385
4.2. Exercises 385
5. Examples 387
5.1. Three Dimensional Algebras 387
5.2. Finite Rings of Order p3 390
5.3. Exercises 393

Chapter 9. Separable Algebras, Definition and First Properties 395
1. Separable Algebra, the Definition 395
1.1. Exercises 398
2. Examples of Separable Algebras 399
3. Separable Algebras Under Change of Base Ring 401
4. Homomorphisms of Separable Algebras 404
4.1. Exercises 408
5. Separable Algebras over a Field 410
5.1. Central Simple Equals Central Separable 410
5.2. A Separable Field Extension is a Separable Algebra 412
5.3. The Skolem-Noether Theorem 414
5.4. Exercises 414
6. Commutative Separable Algebras 415
6.1. Algebras over Local Rings 416
6.2. Separability and the Trace 417
6.3. Twisted Form of the trivial extension 421
6.4. The Trivial Galois Extension of a Field 421
6.5. Exercises 423

Chapter 10. The Integral Closure of a Commutative Ring 425
1. Integral Extensions 425
1.1. Integral elements 425
1.2. Integrally Closed Domains 426
1.3. Exercises 429
2. Some Theorems of Hilbert 430
2.1. The Hilbert Basis Theorem 430
2.2. Algebraic Varieties 432
2.3. A Nonsingular Affine Elliptic Curve 435
2.4. An Application to Characteristic Polynomials 437
2.5. Exercises 437
3. Integral Extensions and Prime Ideals 440
3.1. Prime Ideals 440
3.2. Going Up and Going Down Theorems 440
3.3. Exercises 443

Chapter 11. The Topological Completion of Rings and Modules 445
1. I-adic Topology and Completion 445
1.1. Completion of a Linear Topological Module 445



CONTENTS 9

1.2. Functorial Properties of Completion 447
1.3. Exercises 449
2. Graded Rings and Graded Modules 449
2.1. Definitions and First Principles 449
2.2. The Grading Associated to a Filtration 450
2.3. The Artin-Rees Theorem 452
3. The Completion of a Noetherian Ring 454
3.1. The Completion of a Noetherian Ring is Flat 454
3.2. The Krull Intersection Theorem 456
3.3. Exercises 457
3.4. The Completion of a Noetherian Ring is Noetherian 457
3.5. Exercises 460
4. Lifting of Idempotents and Hensel’s Lemma 460

Chapter 12. Homological Algebra 465
1. Homology Group Functors 465
1.1. Chain Complexes 465
1.2. Exercises 466
1.3. The long exact sequence of homology 468
1.4. Homotopy Equivalence 469
1.5. Exercises 471
1.6. Left Derived Functors 472
1.7. The Long Exact Sequence 474
1.8. Exercises 479
1.9. Left Derived Groups of an Acyclic Resolution 479
1.10. Bifunctors 481
2. Cohomology Group Functors 484
2.1. Cochain Complexes 484
2.2. Exercises 485
2.3. The long exact sequence of cohomology 486
2.4. Homotopy Equivalence 486
2.5. Exercises 489
2.6. Right Derived Functors 489
2.7. The Long Exact Sequence 492
2.8. Exercises 498
2.9. Right Derived Groups of an Acyclic Resolution 498
2.10. Bifunctors 501
3. Introduction to Tor and Ext Groups 504
3.1. Introduction to Tor groups 504
3.2. Tor and Torsion 508
3.3. Exercises 508
3.4. Introduction to Ext Groups 508
4. Cohomological Dimension of a Ring 512
4.1. Exercises 517
5. Group Cohomology 519
5.1. The Resolutions of Z by Free G-Modules 519
5.2. Exercises 523
5.3. Cocycle and Coboundary Groups in Low Degree 524
5.4. Applications and Computations 525



10 CONTENTS

5.5. Exercises 531
6. Theory of Faithfully Flat Descent 534
6.1. The Amitsur Complex 534
6.2. The Descent of Elements 535
6.3. Descent of Homomorphisms 536
6.4. Descent of Modules 537
6.5. Descent of Algebras 541
6.6. Applications 543
7. Hochschild Cohomology 546
7.1. The Standard Complex 546
7.2. Cocycle and Coboundary Groups in Low Degree 547
8. Amitsur Cohomology 548
8.1. The Definition and First Properties 548
8.2. Twisted Forms 552

Chapter 13. Prime Ideals in Commutative Rings 555
1. Primary Ideals in a Commutative ring 555
1.1. Exercises 556
2. The Associated Primes of a Module 557
2.1. Exercises 561
3. Primary Decomposition Theorem 563
3.1. Primary Submodules 563
3.2. Primary Decomposition 564
3.3. Exercise 566
3.4. Flat Algebras and Associated Primes 566
4. Zariski’s Main Theorem 569
4.1. Quasi-finite Algebras 569
4.2. Zariski’s Main Theorem 570
4.3. Exercises 575
5. Graded Rings and Modules 576
5.1. Associated Prime Ideals of a Graded Module 576
5.2. Numerical Polynomials 579
5.3. The Hilbert Polynomial 580
6. Krull Dimension of a Commutative Noetherian Ring 581
6.1. Definitions 581
6.2. The Krull Dimension of a Noetherian Semilocal Ring 582
6.3. Exercises 587
6.4. The Krull Dimension of a Fiber of a Morphism 587
7. The Krull-Akizuki Theorem 589

Chapter 14. Derivations, Differentials 593
1. Derivations 593
1.1. The Definition and First Results 593
1.2. Exercises 597
1.3. More Tests for Separability 598
1.4. Exercises 601
2. Differentials 601
2.1. The Definition and Fundamental Exact Sequences 602
2.2. More Tests for Separability 605



CONTENTS 11

2.3. An Application to Algebraic Varieties 607
2.4. Exercises 608
3. Noether Normalization 609
3.1. First Form of the Normalization Lemma 609
3.2. Separably Generated Extension Fields 612
3.3. Second Form of the Normalization Lemma 614
4. More Flatness Criteria 617
4.1. Constructible Sets 617
4.2. Local Criteria for Flatness 622
4.3. Theorem of Generic Flatness 628
5. Complete I-adic Rings and Inverse Limits 630

Chapter 15. Normal Integral Domains 635
1. Normal Rings and Regular Rings 635
1.1. Normal Integral Domains 635
1.2. Regular Local Rings 637
1.3. Exercises 639
2. Valuations and Valuation Rings 639
2.1. Valuation Rings 639
2.2. Exercise 642
2.3. Discrete Valuation Rings 643
3. Some Local Algebra 644
3.1. Regular Sequences 644
3.2. Exercises 651
3.3. Cohen-Macaulay Modules 651
3.4. Exercises 655
3.5. Cohomological Theory of Regular Local Rings 655
3.6. Exercises 659
4. Noetherian Normal Integral Domains 659
4.1. A Noetherian Normal Integral Domain is a Krull Domain 659
4.2. Serre’s Criteria for Normality 661
4.3. The Approximation Theorem 664
4.4. Divisor Classes of Integral Domains 664
4.5. Exercises 667
5. Fibers of a Faithfully Flat Morphism 669
5.1. Flat Algebras and Depth 669
5.2. Existence of a Flat Extension 672
5.3. Ramified Radical Extensions 674
6. Tests for Regularity 677
6.1. A Differential Criterion for Regularity 677
6.2. A Jacobian Criterion for Regularity 678

Chapter 16. Divisor Class Groups 681
1. Lattices 681
1.1. Definition and First Properties 681
1.2. Reflexive Lattices 684
1.3. Exercises 690
2. The Class Group of Rank One Projective Modules 690
2.1. Exercises 693



12 CONTENTS

3. Dedekind Domains 695
3.1. Exercises 698
4. The Class Group of Rank One Reflexive Modules 699
4.1. Reflexive Fractional Ideals 699
4.2. A Nodal Cubic Curve 702
4.3. Exercises 703
5. Functorial Properties of the Class Group 705
5.1. Flat Extensions 705
5.2. Finite Extensions 707
5.3. Galois Descent of Divisor Classes 711
5.4. Exercises 714
6. Reflexive Lattices over Regular Domains 715
6.1. A Theorem of Auslander and Goldman 715
6.2. The Class Group of a Regular Domain 720
6.3. Exercise 721
7. The Class Group of a Graded Ring 722
8. The Ring of Integers in a Global Field 724
8.1. The Class Group of a Global Field is Finite 724
8.2. The Dirichlet Units Theorem 728

Acronyms 733

Bibliography 735



PREFACE 13

Preface

The purpose of this book is to provide an introduction to the theory of abstract
algebra.

The first six chapters provide a solid foundation for the subjects of group theory,
ring theory, linear algebra, fields, and modules.

Chapter seven contains a deeper study of modules over commutative rings.
Chapters eight and nine are a deeper study of ring theory.

Chapter 12 is an introduction to homological algebra. Chapters 10, 11, 13, 15
and 16 are mostly about commutative algebra.





CHAPTER 1

Preliminaries and Prerequisites

1. Background Material from Set Theory

1.1. Sets and operations on sets. A set is a collection of objects X with
a membership rule such that given any object x it is possible to decide whether x
belongs to the set X. If x belongs to X, we say x is an element of X and write
x ∈ X. Suppose X and Y are sets. If every element of X is also an element of Y ,
then we say X is a subset of Y , or that X is contained in Y , and write X ⊆ Y .
If X and Y are subsets of each other, then we say X and Y are equal and write
X = Y . The set without an element is called the empty set and is denoted ∅. The
set of all subsets of X is called the power set of X, and is denoted 2X . Notice that
∅ and X are both elements of 2X . The union of X and Y , denoted X∪Y , is the set
of all elements that are elements of X or Y . The intersection of X and Y , denoted
X ∩ Y , is the set of all elements that are elements of X and Y . The complement
of X with respect to Y , denoted Y −X, is the set of all elements of Y that are not
elements of X. The product of X and Y , denoted X × Y , is the set of all ordered
pairs of the form (x, y) where x is an element of X and Y is an element of Y .

Let I be a set and suppose for each i ∈ I there is a set Xi. Then we say
{Xi | i ∈ I} is a family of sets indexed by I. The union of the family is denoted⋃
i∈I Xi and is defined to be the set of all elements x such that x ∈ Xi for some

i ∈ I. The intersection of the family is denoted
⋂
i∈I Xi and is defined to be the

set of all elements x such that x ∈ Xi for all i ∈ I.
The set of integers is Z = {. . . ,−2,−1, 0, 1, 2, . . . }. The set of natural numbers

is N = {1, 2, 3, . . . }. The set of nonnegative integers is Z≥0 = {0, 1, 2, 3, 4, . . . }. The
set of rational numbers is Q = {n/d | n ∈ Z, d ∈ N} where it is understood that
n/d = x/y if ny = dx. The set of real numbers is denoted R, the set of complex
numbers is denoted C.

If n ∈ N and {X1, . . . , Xn} is a family of sets indexed by {1, 2, . . . , n}, then we
sometimes write X1 ∪ · · · ∪ Xn instead of

⋃n
i=1Xi, and X1 ∩ · · · ∩ Xn instead of⋂n

i=1Xi. The product of the family, written X1 × · · · ×Xn or
∏n
i=1Xi, is the set

{(x1, . . . , xn) | xi ∈ Xi}.

1.2. Relations and functions. Let X and Y be nonempty sets. A relation
between X and Y is a nonempty subset R of the product X×Y . Two relations are
equal if they are equal as sets. The domain of R is the set of all first coordinates
of the pairs in R. The range of R is the set of all second coordinates of the pairs
in R.

A function (or map) from X to Y is a relation f ⊆ X × Y such that for each
x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f . In this case, we say y is
the image of x under f , and write y = f(x). The range of a function f is also
called the image of f . The image of f is denoted f(X), or im(f). The notation

15



16 1. PRELIMINARIES AND PREREQUISITES

f : X → Y means f is a function from X to Y . If T ⊆ Y , the preimage of T
under f , denoted f−1(T ), is the set of all elements x ∈ X such that f(x) ∈ T . If
y ∈ Y , we usually write f−1(y) instead of f−1({y}). If S ⊆ X, the restriction of
f to S is the function f |S : S → Y defined by f |S(x) = f(x) for all x ∈ S. The
identity map from X to X, 1X : X → X, is defined by 1X(x) = x for all x ∈ X.
If S ⊆ X, the inclusion map from S to X is the restriction of the identity map
1X to the subset S. If f : X → Y and g : Y → Z, the product or composition
map is gf : X → Z defined by gf(x) = g(f(x)). If h : Z → W , the reader should
verify that h(gf) = (hg)f so the product of functions is associative. We say that
f : X → Y is one-to-one (or injective) in case f−1(y) is a singleton set for each
y ∈ f(X). We say that f : X → Y is onto or (surjective) in case the image of f is
equal to Y . If f : X → Y is one-to-one and onto, then we say that f is a one-to-one
correspondence (or f is bijective). The reader should verify that the identity map
1X is a one-to-one correspondence. If S ⊆ X, the reader should verify that the
inclusion map S → X is one-to-one.

Proposition 1.1.1. Let f : X → Y .

(1) f is one-to-one if and only if there exists g : Y → X such that gf = 1X .
In this case g is called a left inverse of f .

(2) If f is a one-to-one correspondence, then the function g of Part (1) is
unique and satisfies fg = 1Y . In this case g is called the inverse of f and
is denoted f−1.

(3) If there exists a function g : Y → X such that gf = 1X and fg = 1Y ,
then f is a one-to-one correspondence and g is equal to f−1.

Proof. (1): View f as a subset of X × Y and define g as a subset of Y ×X.
Because f is not onto, our definition of g on Y −f(X) is ad hoc. For this reason, let
x0 be any element of X. Define g = {(f(x), x) | x ∈ X} ∪ {(y, x0) | y ∈ Y − f(X)}.
Then g has the desired properties.

The rest is left to the reader. □

A commutative diagram is a finite family of sets DV = {X1, . . . , Xv} together
with a finite collection of functions DE = {f1, . . . , fe} satisfying the following prop-
erties.

(1) Each f in DE is a function from one set in DV to another set in DV .
(2) Given two sets X, Y in DV and any two paths

X = A0

fa1−−→ A1

fa2−−→ · · · → Ar−1
far−−→ Ar = Y

X = B0

gb1−−→ B1

gb2−−→ · · · → Bs−1
gbs−−→ Bs = Y

from X to Y consisting of functions fa1 , . . . , far , gb1 , . . . , gbs in DE , the
composite functions far · · · fa1 and gbs · · · gb1 are equal.

1.3. Binary relations. A binary relation on X is a subset of X×X. Suppose
∼ is a binary relation on X. If (x, y) is an element of the relation, then we say
x is related to y and write x ∼ y. Otherwise we write x ̸∼ y. If x ∼ x for every
x ∈ X, then we say ∼ is reflexive. We say ∼ is symmetric in case x ∼ y whenever
y ∼ x. We say ∼ is antisymmetric in case x ∼ y and y ∼ x implies x = y.
We say ∼ is transitive if x ∼ z whenever x ∼ y and y ∼ z. If ∼ is reflexive,
symmetric and transitive, then we say ∼ is an equivalence relation on X. If ∼ is
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an equivalence relation on X, and x ∈ X, then the equivalence class containing x
is [x] = {y ∈ X | x ∼ y}. By X/ ∼ we denote the set of all equivalence classes.
The function η : X → X/ ∼ defined by η(x) = [x] is called the natural map.

Proposition 1.1.2. Let X be a nonempty set and ∼ an equivalence relation
on X.

(1) If x ∈ X, then [x] ̸= ∅.
(2)

⋃
x∈X

[x] = X =
⋃

[x]∈X/∼

[x]

(3) If x, y ∈ X, then [x] = [y] or [x] ∩ [y] = ∅.

Proof. Is left to the reader. □

Let X be a nonempty set. A partition of X is a family P of nonempty subsets
of X such that X =

⋃
P∈P P and if P,Q ∈ P, then either P = Q, or P ∩ Q = ∅.

If ∼ is an equivalence relation on X, then Proposition 1.1.2 shows that X/ ∼ is a
partition of X. Conversely, suppose P is a partition of X. There is an equivalence
relation ∼ on X corresponding to P defined by x ∼ y if and only if x and y belong
to the same element of P.

Proposition 1.1.3. Let X be a nonempty set. There is a one-to-one corre-
spondence between the set of all equivalence relations on X and the the set of all
partitions of X. The assignment maps an equivalence relation ∼ to the partition
X/ ∼.

Proof. Is left to the reader. □

Let U be any set, which we assume contains N as a subset. Define a binary
relation on the power set 2U by the following rule. If X and Y are subsets of U ,
then we say X and Y are equivalent if there exists a one-to-one correspondence
α : X → Y . The reader should verify that this is an equivalence relation on 2U . If
X and Y are equivalent sets, then we say X and Y have the same cardinal number.
Define I0 = ∅. For n ≥ 1 define In = {1, . . . , n}. If a set X is equivalent to In, then
we say X has cardinal number n and write |X| = n. We say a set X is finite if X
is equivalent to In for some n. Otherwise, we say X is infinite.

Let X be a set and ≤ a binary relation on X which is reflexive, antisymmetric
and transitive. Then we say ≤ is a partial order on X. We also say X is partially
ordered by ≤. If x, y ∈ X, then we say x and y are comparable if x ≤ y or y ≤ x.
A chain is a partially ordered set with the property that any two elements are
comparable. If S ⊆ X is a nonempty subset, then S is partially ordered by the
restriction of ≤ to S × S. If the restriction of ≤ to S is a chain, then we say S is a
chain in X.

Let X be partially ordered by ≤ and suppose S is a nonempty subset of X.
Let a ∈ S. We say a is the least element of S if a ≤ x for all x ∈ S. If it exists,
clearly the least element is unique. We say a is a minimal element of S in case
x ≤ a implies x = a for all x ∈ S. We say a is a maximal element of S in case
a ≤ x implies x = a for all x ∈ S. A well ordered set is a partially ordered set X
such that every nonempty subset S has a least element. The reader should verify
that a well ordered set is a chain. An element u ∈ X is called an upper bound for S
in case x ≤ u for all x ∈ S. An element l ∈ X is called a lower bound for S in case
l ≤ x for all x ∈ S. An element U ∈ X is a supremum, or least upper bound for S,
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denoted U = sup(S), in case U is an upper bound for S and U is a lower bound for
the set of all upper bounds for S. The reader should verify that the supremum is
unique, if it exists. An element L ∈ X is an infimum, or greatest lower bound for
S, denoted L = inf(S), in case L is a lower bound for S and L is an upper bound
for the set of all lower bounds for S. The reader should verify that the infimum is
unique, if it exists.

Let X be partially ordered by ≤. We say that X satisfies the minimum con-
dition if every nonempty subset of X contains a minimal element. We say that X
satisfies the maximum condition if every nonempty subset of X contains a max-
imal element. We say that X satisfies the descending chain condition (DCC) if
every chain in X of the form {. . . , x3 ≤ x2 ≤ x1 ≤ x0} is eventually constant.
That is, there is a subscript n such that xn = xi for all i ≥ n. We say that
X satisfies the ascending chain condition (ACC) if every chain in X of the form
{x0 ≤ x1 ≤ x2 ≤ x3, . . . } is eventually constant.

Let I be a set and suppose for each i ∈ I there is a set Xi. Then we say
{Xi | i ∈ I} is a family of sets indexed by I. The union of the family is denoted⋃
i∈I Xi and is defined to be the set of all elements x such that x ∈ Xi for some

i ∈ I. The intersection of the family is denoted
⋂
i∈I Xi and is defined to be the

set of all elements x such that x ∈ Xi for all i ∈ I.

1.4. Permutations and combinations. Let n ≥ 1 and Nn = {1, 2, . . . , n}.
A bijection σ : Nn → Nn is also called a permutation. Let Sn denote the set of all
permutations of Nn. In Example 2.1.14 we will call Sn the symmetric group on n
letters. If σ ∈ Sn, then we can view σ = (x1, . . . , xn) as an n-tuple in the product∏n
i=1 Nn. The fact that σ is a bijection is equivalent to the statement that the

n-tuple (x1, . . . , xn) contains no repeated elements. Therefore,

Sn =

{
(x1, . . . , xn) ∈

n∏
i=1

Nn | if i ̸= j, then xi ̸= xj

}
.

Because there are n ways to pick x1, n−1 ways to pick x2, and so forth, a straight-
forward induction proof shows that the number of elements in Sn is equal to n!. If
1 ≤ k ≤ n, then a k-permutation of Nn is a one-to-one function σ : Nk → Nn. The
k-permutations of Nn correspond to k-tuples (x1, . . . , xk) where each xi ∈ Nn and
if i ̸= j, then xi ̸= xj . Again, a straightforward induction proof shows that the
number of k-permutations of Nn is equal to n(n− 1) · · · (n− k + 1) = n!/(n− k)!.

If X is a finite set with cardinality |X| = n, then we say X is an n-set. If
S ⊆ X and |S| = k, then we say S is a k-subset of X. The number of k-subsets of
an n-set X is denoted

(
n
k

)
. The symbol

(
n
k

)
is called the binomial coefficient and

is pronounced n choose k because it is the number of different ways to choose k
objects from a set of n objects.

As we saw above, the number of different k-permutations of Nn is equal to
n!/(n− k)!. But a k-permutation of Nn can be viewed as a two step process. The
first step is choosing a k-subset, which can be done in

(
n
k

)
different ways. Then the

elements of the k-set are permuted, which can be done in k! ways. Viewing the
number of k-permutations of Nn in these two different ways, we see that n!/(n−k)!
is equal to

(
n
k

)
(k!). This leads to Part (3) of the next lemma.

Lemma 1.1.4. The following are true.

(1) If n < 0 or k > n, then
(
n
k

)
= 0.
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(2) If n ≥ 0, then
(
n
0

)
=
(
n
n

)
= 1.

(3) If 0 ≤ k ≤ n, then
(
n

k

)
=

n!

k!(n− k)!
.

(4) (Pascal’s Identity) If 0 < k < n, then
(
n
k

)
=
(
n−1
k−1
)
+
(
n−1
k

)
.

Proof. Parts (1) and (2) follow straight from the definition of binomial coef-
ficient. Part (3) follows from the paragraph above. Part (4) follows directly from
the formula in (3) and is left as an exercise for the reader. □

1.5. Binary operations. Let X be a nonempty set. A binary opreation on
X is a function X × X → X. If ∗ is a binary operation on X, the image of an
ordered pair (x, y) is denoted x ∗ y. The binary operation is said to be associative
if (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ X. If e is a special element in X such
that x ∗ e = e ∗ x = x for all x ∈ X, then we say e is an identity element for ∗. If
x∗y = y∗x for all x, y ∈ X, then we say ∗ is commutative. If (x, y) 7→ x·y is another
binary operation on X such that x·(y∗z) = (x·y)∗(x·z) and (x∗y)·z = (x·z)∗(y ·z)
for all x, y, z ∈ X, then we say · distributes over ∗.

Example 1.1.5. Here are some common examples of binary operations on sets.

(1) Addition of numbers is a binary operation on the set of real numbers R.
Addition is associative, commutative, and 0 is the identity element. Mul-
tiplication of numbers is a binary operation on the set of real numbers R.
Multiplication is associative, commutative, and 1 is the identity element.
Multiplication distributes over addition.

(2) Let U be a nonempty set and X = 2U . If A and B are in X, then so are
A ∪ B, A ∩ B, and A − B. In other words, union, intersecton, and set
difference all define binary operations on X. Union and intersection are
both associative and commutative. The distributive laws for union and
intersection are in Exercise 1.1.6.

(3) LetX be a nonempty set and Map(X) the set of all funtions mappingX to
X. If f, g ∈ Map(X), then so is the composite function fg. Composition
of functions is a binary operation on Map(X) which is associative. If
|X| > 1, then composition of functions in Map(X) is noncommutative.
The identity map 1X is the identity element.

(4) Let R3 = {(x1, x2, x3) | x1, x2, x3 ∈ R} be the set of all ordered 3-tuples
over R. The cross product of the vector x = (x1, x2, x3) and the vector
y = (y1, y2, y3) is the vector x × y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 −
x2y1). Therefore, cross product is a binary operation on R3. This binary
operation is not associative and not commutative.

1.6. Exercises.

Exercise 1.1.6. (Distributive Laws for Intersection and Union) Let {Xi | i ∈
I} be a family of sets indexed by I and let Y be any set. Prove:

(1) Y ∩
(⋃

i∈I Xi

)
=
⋃
i∈I(Y ∩Xi)

(2) Y ∪
(⋂

i∈I Xi

)
=
⋂
i∈I(Y ∪Xi)

Exercise 1.1.7. (DeMorgan’s Laws) Let {Xi | i ∈ I} be a family of sets
indexed by I and suppose U is an arbitrary set. Prove:

(1) U −
(⋃

i∈I Xi

)
=
⋂
i∈I(U −Xi)

(2) U −
(⋂

i∈I Xi

)
=
⋃
i∈I(U −Xi)
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Exercise 1.1.8. Let f : X → Y . Prove:

(1) f is one-to-one if and only if there exists a function g : Y → X such that
gf = 1X . In this case g is called a left inverse of f .

(2) f is onto if and only if there exists a function g : Y → X such that
fg = 1Y . In this case g is called a right inverse of f . (Hint: Use The
Axiom of Choice.)

Exercise 1.1.9. Let f : X → Y and g : Y → Z. Prove:

(1) If gf is onto, then g is onto.
(2) If gf is one-to-one, then f is one-to-one.
(3) If f is onto and g is onto, then gf is onto.
(4) If f is one-to-one and g is one-to-one, then gf is one-to-one.

Exercise 1.1.10. Recall that the set of natural numbers is N = {1, 2, . . . } and
if n ∈ N, then Nn = {1, 2, . . . , n}. Prove:

(1) If f : Nn → Nn is one-to-one, then f is onto.
(2) If f : Nn → Nn is onto, then f is one-to-one.

Exercise 1.1.11. (The Pigeonhole Principle) Let f : Nm → Nn. Prove:
(1) If m > n, then f is not one-to-one.
(2) If m < n, then f is not onto.

Exercise 1.1.12. Let X and Y be finite sets. Show that |X × Y | = |X||Y |.
Exercise 1.1.13. Let f : X −→ Y be a function. Let ∼ be an equivalence

relation on X, and η : X → X/∼ the natural map. Show that if f has the property
that a ∼ b implies f(a) = f(b) for all a, b ∈ X, then there exists a function
f̄ : X/∼ → Y such that f = f̄η. Hence the diagram

X
f //

η

��

Y

X/∼
∃f̄

==

commutes. This shows that if f is constant on equivalence classes, then f factors
through the natural map η.

Exercise 1.1.14. Let f : X −→ Y be a function. Define a relation ≈ on X by
the rule: x ≈ y if and only if f(x) = f(y). Prove:

(1) ≈ is an equivalence relation on X.
(2) There exists a function f̄ : X/ ≈ → Y such that f factors through the

natural map η : X → X/≈. That is, f = f̄η.
(3) f̄ is one-to-one.
(4) f̄ is a one-to-one correspondence if and only if f is onto.

Exercise 1.1.15. Let X be an infinite set. Prove that X contains a subset
that is equivalent to N.

Exercise 1.1.16. Let X be a set. Prove that X is infinite if and only if there
exists a one-to-one function f : X → X which is not onto.

Exercise 1.1.17. If x ∈ R, the floor of x, written ⌊x⌋, is the maximum of the
set {k ∈ Z | k ≤ x}. The ceiling of x, written ⌈x⌉, is the minimum of the set
{k ∈ Z | k ≥ x}. Let f : Nm → Nn. Prove:
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(1) There exists a ∈ Nn such that the cardinality of the set f−1(a) is greater
than or equal to ⌈m/n⌉.

(2) There exists b ∈ Nn such that the cardinality of the set f−1(b) is less than
or equal to ⌊m/n⌋.

Exercise 1.1.18. Prove the Binomial Theorem:

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i

where x and y are indeterminates and n ≥ 0.

Exercise 1.1.19. Let X be a finite set. Prove that |2X | = 2|X|.

Exercise 1.1.20. Let X, Y and Z be sets. Prove:

(1) (X ∪ Y )× Z = (X × Z) ∪ (Y × Z)
(2) (X ∩ Y )× Z = (X × Z) ∩ (Y × Z)

2. Background Material from Number Theory

Axiom 1.2.1. (The Well Ordering Principle) If S is a nonempty subset of Z
and S has a lower bound, then S contains a least element.

Proposition 1.2.2. (Mathematical Induction) Let S be a subset of N such that
1 ∈ S. Assume S satisfies one of the following.

(1) For each n ∈ N, if n ∈ S, then n+ 1 ∈ S.
(2) For each n ∈ N, if {1, . . . , n} ⊆ S, then n+ 1 ∈ S.

Then S = N.

Proof. Assume S ⊆ N, 1 ∈ S, and S satisfies (1) or (2). Let C = N− S. For
contradiction’s sake assume C ̸= ∅. By Axiom 1.2.1, C has a least element, say ℓ.
Since 1 ∈ S, we know ℓ > 1. Therefore, ℓ− 1 ∈ S and ℓ ̸∈ S, which contradicts (1).
Since ℓ is the least element of C, {1, . . . , ℓ − 1} ⊆ S and ℓ ̸∈ S, which contradicts
(2). We conclude that C = ∅, hence S = N. □

Proposition 1.2.3. (The Division Algorithm) If a, b ∈ Z and a ̸= 0, then there
exist unique integers q, r ∈ Z such that 0 ≤ r < |a| and b = aq + r.

Proof. First we prove the existence claim. Let S = {b−ax | x ∈ Z and b− ax ≥ 0}.
If x > |b|, then it follows that b + |a|x ≥ 0. Therefore, either b + ax or b − ax is
in S. By Axiom 1.2.1, S has a least element, say r = b − aq, for some q ∈ Z. For
contradiction’s sake, assume r ≥ |a|. Then 0 ≤ r− |a| = b− aq− |a| = b− a(q± 1).
This implies r − |a| ∈ S, contradicting the minimal choice of r.

To prove the uniqueness claim, suppose b = aq + r = aq1 + r1 and 0 ≤ r ≤
r1 < |a|. Then |r1 − r| = |a||q − q1|. Since 0 ≤ r1 − r < |a|, this implies q − q1 = 0.
Hence r1 − r = 0. □

Let a, b ∈ Z. We say a divides b, and write a | b, in case there exists q ∈ Z such
that b = aq. In this case, a is called a divisor of b, and b is called a multiple of a.

Proposition 1.2.4. Let {a1, . . . , an} be a set of integers and assume at least
one of the ai is nonzero. There exists a unique positive integer d such that

(1) d | ai for all 1 ≤ i ≤ n, and
(2) if e | ai for all 1 ≤ i ≤ n, then e | d.
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We call d the greatest common divisor of the set, and write d = gcd(a1, . . . , an).

Proof. Let S be the set of all positive linear combinations of the ai

S = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ Z, x1a1 + · · ·+ xnan > 0}.

The reader should verify that S ̸= ∅. By Axiom 1.2.1, there exists a least element
of S which we can write as d = k1a1 + · · ·+ knan for some integers k1, . . . , kn. Fix
one i and apply the division algorithm to write ai = dq+ r where 0 ≤ r < d. Solve
ai = (k1a1 + · · ·+ knan)q + r for r to see that

r = ai − (k1a1 + · · ·+ knan)q

is a linear combination of a1, . . . , an. Because r < d, we conclude that r is not in
S. Therefore r = 0. This proves Part (1). The reader should verify Part (2) and
the claim that d is unique. □

We say the set of integers {a1, . . . , an} is relatively prime in case gcd(a1, . . . , an) =
1. An integer π ∈ Z is called a prime in case π > 1 and the only divisors of π are
−π,−1, 1, π.

Lemma 1.2.5. Let a, b and c be integers. Assume a ̸= 0 or b ̸= 0.

(1) (Bézout’s Identity) If d = gcd(a, b), then there exist integers u and v such
that d = au+ bv.

(2) (Euclid’s Lemma) If gcd(a, b) = 1 and a | bc, then a | c.
(3) If there exist integers u and v such that 1 = au+ bv, then gcd(a, b) = 1.

Proof. (1): This is immediate from the proof of Proposition 1.2.4.
(2): Assume gcd(a, b) = 1. By Part (1) there exist integers u and v such that

1 = au+ bv. Then c = acu+ bcv. Since a divides the right hand side, a divides c.
(3): This is immediate from the proof of Proposition 1.2.4. □

Lemma 1.2.6. Let π be a prime number. Let a and a1, . . . , an be integers.

(1) If π | a, then gcd(π, a) = π, otherwise gcd(π, a) = 1.
(2) If π | a1a2 · · · an, then π | ai for some i.

Proof. (1): The proof is an exercise for the reader.
(2): For sake of contradiction, assume the statement is false. Let π and

a1, . . . , an be a counterexample such that n is minimal. Then π divides the product
a1 · · · an and by (1) gcd(π, ai) = 1 for each i. Again by (1), n > 1. By Lemma 1.2.5
applied to a1(a2 · · · an), π | a2 · · · an. By the minimal choice of n, π divides one of
a2, . . . , an. This is a contradiction. □

Proposition 1.2.7. (The Fundamental Theorem of Arithmetic) Let n be a
positive integer which is greater than 1. There exist unique positive integers k,
e1, . . . , ek and unique prime numbers p1, . . . , pk such that n = pe11 · · · p

ek
k .

Proof. First we prove the existence claim. If n is a prime, then set k = 1,
p1 = n, e1 = 1, and we are done. In particular, the result is true for n = 2. The
proof is by induction on n. Assume that every number in the set {2, 3, . . . , n −
1} has a representation as a product of primes. Assume n = xy is composite
and that 2 ≤ x ≤ y ≤ n − 1. By the induction hypothesis, both x and y have
representations as products of primes. Then n = xy also has such a representation.
By Proposition 1.2.2, we are done.
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For the uniqueness claim, assume

(2.1) n = pe11 · · · p
ek
k = qf11 · · · q

fℓ
ℓ

are two representations of n as products of primes. Let M =
∑k
i=1 ei and N =∑ℓ

i=1 fi. Without loss of generality, assume M ≤ N . The proof is by induction on
M . If M = 1, then n = p1 is prime. This implies ℓ = 1 = f1 and q1 = p1. Assume
inductively that M > 1 and that the uniqueness claim is true for any product
involving M − 1 factors. Using Lemma 1.2.6 we see that p1 divides one of the qi.
Since qi is prime, this implies p1 is equal to qi. Canceling p1 and qi from both sides
of Eq.(2.1) results in a product of primes with M − 1 factors. By the induction

hypothesis, we conclude that k = ℓ and the sets {pe11 , . . . , p
ek
k } and {qf11 , . . . , q

fk
k }

are equal. □

Definition 1.2.8. Let m be a positive integer. Define a binary relation on Z
by the following rule. Given x, y ∈ Z, we say x is congruent to y modulo m, and
write x ≡ y (mod m), in case m | (x − y). By Proposition 1.2.9 this defines an
equivalence relation on Z. The set of all equivalence classes of integers modulo m
is denoted Z/(m).

Proposition 1.2.9. Let m be a positive integer.

(1) Congruence modulo m is an equivalence relation on Z.
(2) {0, 1, . . . ,m−1} is a full set of representatives for the equivalence classes.

In other words, every integer is congruent to one of 0, 1, . . . ,m−1 and no
two distinct elements of {0, 1, . . . ,m− 1} are congruent to each other.

(3) If u ≡ v (mod m) and x ≡ y (mod m), then u+ x ≡ v + y (mod m) and
ux ≡ vy (mod m).

(4) If gcd(a,m) = 1 and ax ≡ ay (mod m), then x ≡ y (mod m).

Proof. (1): Since m | 0, x ≡ x (mod m) for every x ∈ Z. If x− y = mq, then
y − x = m(−q). Therefore, x ≡ y (mod m) implies y ≡ x (mod m). If x− y = mq
and y − z = mr, then adding yields x− z = m(q + r). Therefore, x ≡ y (mod m)
and y ≡ z (mod m) implies x ≡ z (mod m).

(2): By Proposition 1.2.3, if x ∈ Z, then there exist unique integers q and
r such that x = mq + r and 0 ≤ r < m. This implies x ≡ r (mod m), and
Z/(m) ⊆ {0, 1, . . . ,m− 1}. Equality of the two sets follows from the uniqueness of
q and r.

(3): Write u − v = mq and x − y = mr for integers q, r. Adding, we get
u − v + x − y = (u + x) − (v + y) = m(q + r), hence u + x ≡ v + y (mod m).
Multiplying the first equation by x and the second by v we have ux − vx = mxq
and xv − yv = mvr. Adding, we get ux − vx + xv − yv = ux − yv = m(xq + vr),
hence ux ≡ vy (mod m).

(4): By Lemma 1.2.5 we write 1 = au + mv for integers u, v. We are given
that a(x − y) = mq for some integer q. Multiply by u to get au(x − y) = muq.
Substitute au = 1 − mv and rearrange to get x − y = mv(x − y) + muq. Hence
x ≡ y (mod m). □

If a, b ∈ Z−{0}, then |ab| ∈ S is a common multiple of both a and b. Therefore,
the set S = {x ∈ Z | a | x, b | x and x > 0} is nonempty. By Axiom 1.2.1, S has a
least element, which is called the least common multiple of a and b, and is denoted
lcm(a, b).
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Proposition 1.2.10. Suppose a > 0 and b > 0. Then the following are true.

(1) If c ∈ Z and a | c and b | c, then lcm(a, b) | c.
(2) gcd(a, b) lcm(a, b) = ab.

Proof. (1): Let lcm(a, b) = L. By Proposition 1.2.3, c = Lq + r where
0 ≤ r < L. Since a | c and a | L, we see that a divides r = c − Lq. Likewise, b | c
and b | L implies that b divides r. So r is a common multiple of a and b and r < L.
By the definition of L, we conclude that r = 0.

(2): Write d = gcd(a, b). Then (ab)/d = a(b/d) = (a/d)b is a common multiple
of a and b. By (1), L | (ab)/d, or equivalently, dL | ab. By Lemma 1.2.5, d = ax+by
for some integers x, y. Multiply by L to get dL = aLx+ bLy. Since L is a common
multiple of a and b we see that ab divides aLx + bLy = dL. We have shown that
dL | ab and ab | dL. Both numbers are positive, so we have equality. □

Theorem 1.2.11. (Chinese Remainder Theorem) Let m and n be relatively
prime positive integers. Then the function

Z/mn ψ−→ Z/m× Z/n
defined by ψ([x]) = ([x], [x]) is a one-to-one correspondence.

Proof. We know that ψ is well defined, by Exercise 1.2.19. By Exercise 1.1.12
and Proposition 1.2.9, |Z/m × Z/n| = |Z/mn| = mn. By Exercise 1.1.10, it is
enough to show ψ is one-to-one. Suppose ψ([x]) = ψ([y]). Then x ≡ y (mod m)
and x ∼= y (mod n), which implies x − y is a common multiple of m and n. By
Proposition 1.2.10, x − y is divisible by lcm(m,n). But lcm(m,n) = mn since
gcd(a, b) = 1. This implies x ≡ y (mod mn), and we have shown that ψ is one-to-
one. □

Let n ≥ 1. By Exercise 1.2.20, if x ≡ y (mod n), then gcd(x, n) = gcd(y, n).
This says the function Z → Z defined by x 7→ gcd(x, n) is constant on congruence
classes. The set Un = {[k] ∈ Z/n | gcd(k, n) = 1} is called the set of units modulo
n. The Euler ϕ-function is defined to be the number of units modulo n. That is,
ϕ(n) = |Un|. In the terminology of Definition 2.1.1, Lemma 1.2.12 shows that Un
is an abelian group of order ϕ(n).

Lemma 1.2.12. Let n ≥ 1.

(1) If [a] ∈ Un, then there exists [b] ∈ Un such that [a][b] = [1].
(2) If a, b ∈ Z and ab ≡ 1 (mod n), then [a] ∈ Un and [b] ∈ Un.

Proof. (1): If [a] ∈ Un, then gcd(a, n) = 1. By Proposition 1.2.5, there exist
integers b, c such that ab+ nv = 1. Therefore, ab ≡ 1 (mod n).

(2): If ab ≡ 1 (mod n), then ab = nq + 1 for some integer q. By Proposi-
tion 1.2.5, gcd(a, n) = 1 and gcd(b, n) = 1. □

Proposition 1.2.13. If p is a prime and k ≥ 1, then ϕ(pk) = pk − pk−1 =
pk(1− 1/p).

Proof. The multiples of p in the set {1, 2, . . . , pk} are p, 2p, . . . , pk−1p. Since
there are pk−1 multiples of p, there are pk−pk−1 numbers that are relatively prime
to p. □

Proposition 1.2.14. Let m and n be relatively prime positive integers. Then
ϕ(mn) = ϕ(m)ϕ(n).
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Proof. By Theorem 1.2.11, the function ψ : Z/mn→ Z/m× Z/n defined by
ψ([x]) = ([x], [x]) is a one-to-one correspondence. We show that the restriction of
ψ to Umn induces a one-to-one correspondence ρ : Umn → Um × Un.

If gcd(x,mn) = 1, then by Proposition 1.2.5 there exist integers u, v such that
1 = xu +mnv, hence gcd(x,m) = 1 and gcd(x, n) = 1. This proves that ρ is well
defined. Since ψ is one-to-one, so is ρ. To finish the proof we show that ρ is onto.
Let ([a], [b]) ∈ Um×Un. By Lemma 1.2.12 there exists ([x], [y]) ∈ Um×Un such that
ax ≡ 1 (mod m) and by ≡ 1 (mod n). Since ψ is onto, there exists [k] ∈ Z/mn
such that k ≡ a (mod m) and k ≡ b (mod n). Likewise, there exists [ℓ] ∈ Z/mn
such that ℓ ≡ x (mod m) and ℓ ≡ y (mod n). By Proposition 1.2.9, kℓ ≡ ax ≡ 1
(mod m) and kℓ ≡ by ≡ 1 (mod n). Since ψ is one-to-one, kℓ ≡ 1 (mod mn). By
Lemma 1.2.12 this implies [k] ∈ Umn, which proves ρ is onto. □

Definition 1.2.15. Let n ≥ 1 be an integer. The notation
∑
d|n or

∏
d|n

denotes the sum or product over the set of all positive numbers d such that d | n.
An integer n is said to be square free if for every prime p, n is not a multiple of p2.
The Möbius function is defined by

µ(n) =


1 if n = 1,

0 if n is not square free,

(−1)r if n factors into r distinct primes.

Theorem 1.2.16. (Möbius Inversion Formula) Let f be a function defined on
N and define another function on N by

F (n) =
∑
d|n

f(d).

Then

f(n) =
∑
d|n

µ(d)F
(n
d

)
.

Proof. The proof can be found in any elementary number theory book, and
is left to the reader. □

2.1. Exercises.

Exercise 1.2.17. Let a and b be integers that are not both zero and let d be
the greatest common divisor of a and b. Consider the linear diophantine equation:
d = ax + by. Bézout’s Identity says that there exist integers u and v such that
d = au+ bv.

(1) Show that the matrix

(
u v

u− b/d v + a/d

)
is invertible. Find its inverse.

(2) If c is an integer, show that the linear diophantine equation c = ax + by
has a solution if and only if d | c.

(3) Assume d | c. Prove that the general solution to the linear diophantine
equation c = ax + by is x = x0 − tb/d, y = y0 + ta/d, where t ∈ Z and
(x0, y0) is any particular solution.

Exercise 1.2.18. This exercise is based on Problem 1.3 of Adrian Wadsworth’s
book [62]. Let a and b be relatively prime positive integers and consider the set

L = {ax+ by | x and y are nonnegative integers}.
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The problem is to find the integer ℓ satisfying these two properties: (1) ℓ − 1 ̸∈ L
and (2) if n is an integer and n ≥ ℓ, then n ∈ L.

You should attempt to solve this interesting problem yourself. Alternatively,
you may follow the six steps below which outline a solution.

(1) Prove that if a = 1 or b = 1, then L contains the set of all nonnegative
integers.

(2) Prove that the integers a, b, ab, (a− 1)(b− 1) are in L.
(3) Prove that ab − a − b = (a − 1)(b − 1) − 1 is not in L. Hint: Show that

the line ab − a − b = ax + by contains the two lattice points (−1, a − 1)
and (b− 1,−a).

(4) Prove that if n ≥ ab, then n is in L.
(5) Assume a > 1, b > 1, and let n be an integer satisfying ab−a−b < n < ab.

Prove that n is in L. Hints: For sake of contradiction assume ab−a− b <
n < ab and n is not in L. Show that there exists an ordered pair (x1, y1)
such that n = ax1+by1, (x1, y1) is in Quadrant IV and (x1−b, y1+a) is in
Quadrant II. Show that (x1, y1) is not in the parallelogram with vertices
(b, 0), (0, a), (−1, a− 1), (b− 1,−1). Show that this is impossible.

(6) Let ℓ = (a− 1)(b− 1). Prove that ℓ− 1 ̸∈ L and if ℓ ≤ n, then n is in L.

Exercise 1.2.19. Let m,n ∈ N. Consider the diagram

Z
ηn

""
ηm

��
Z/m

∃θ
// Z/n

where ηm and ηn are the natural maps. Show that there exists a function θ making
the diagram commute if and only if n divides m.

Exercise 1.2.20. Let n ≥ 1. Show that the function Z → Z defined by
x 7→ gcd(x, n) is constant on congruence classes. In other words, show that x ≡ y
(mod n) implies gcd(x, n) = gcd(y, n).

Exercise 1.2.21. Let p be a prime.

(1) If 1 ≤ k ≤ p− 1, show that p divides
(
p
k

)
.

(2) Show that (a + b)p ≡ ap + bp (mod p) for any integers a and b. (Hint:
Exercise 1.1.18.)

(3) Use (2) and Proposition 1.2.2 to prove that (a+ b)p
n ≡ apn + bpn (mod p)

for any integers a and b and for all n ≥ 0.

See Exercise 3.6.35 for a generalization of this result.

Exercise 1.2.22. Show that the Möbius function µ is multiplicative in the
sense that if gcd(m,n) = 1, then µ(mn) = µ(m)µ(n).

Exercise 1.2.23. Let n ≥ 0 and X =
∏n
i=1 Z≥0 = {(x1, . . . , xn) | xi ∈ Z≥0},

where Z≥0 = {x ∈ Z | x ≥ 0} is the set of nonnegative integers. The lexicographical
ordering (also called alphabetical or dictionary ordering) onX is defined recursively
on n. For n = 1, the usual ordering on Z is applied. If n > 1, then (v1, v2, . . . , vn) <
(w1, w2, . . . , wn) if and only if: (v1, v2, . . . , vn−1) < (w1, w2, . . . , wn−1) or (v1, v2, . . . , vn−1) =
(w1, w2, . . . , wn−1) and vn < wn. If α, β ∈ X, then we write α ≤ β in case α < β
or α = β.
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(1) Show that ≤ is a partial order on X. Show that X is a chain.
(2) If α ∈ X, the segment of X determined by α, written (−∞, α), is {x ∈

X | x < α}. For which α ∈ X is
(a) (−∞, α) = ∅?
(b) (−∞, α) finite?
(c) (−∞, α) infinite?

(3) Show that X with the lexicographical ordering ≤ is a well ordered set.
That is, show that if S ⊆ X and S ̸= ∅, then S has a least element.

Exercise 1.2.24. Let X = {x0, x1, . . . , xn−1} be a finite set and Z≥0 the set
of nonnegative integers. If U ⊆ X, the so-called indicator function on U , denoted
χU : U → {0, 1}, is defined by

χU (x) =

{
1 if x ∈ U
0 if x ̸∈ U .

Define f : 2X → Z≥0 by f(U) =
∑n−1
i=0 χU (xi)2

i. Prove:

(1) f is a one-to-one correspondence between 2X and {0, 1, . . . , 2n−1}.
(2) |2X | = 2|X|.
(3) The ordering on 2X induced by the function f makes 2X into a well

ordered set.

Exercise 1.2.25. Let I1 be a well ordered set with binary relation R1 ⊆ I1×I1.
Let I2 be a well ordered set with binary relation R2 ⊆ I2 × I2. Using the identity
from Exercise 1.1.20, the set R1 ∪ (I1 × I2) ∪R2 is a subset of (I1 ∪ I2)× (I1 ∪ I2)
and hence defines a binary relation on I1 ∪ I2. Show that this makes I1 ∪ I2 into a
well ordered set. Usually this well ordered set is denoted I1 + I2 and in words we
say, “elements of I1 are comparable by R1, elements of I1 are less than elements of
I2, and elements of I2 are comparable by R2”.

Exercise 1.2.26. Let X and Y be two well ordered sets. Generalize Exer-
cise 1.2.23 by defining a lexicographical ordering on X × Y which makes it into a
well ordered set.

3. The Well Ordering Principle and Some of Its Equivalents

Axiom 1.3.1. (The Well Ordering Principle) If X is a nonempty set, then
there exists a partial order ≤ on X such that X is a well ordered set. That is, every
nonempty subset of X has a least element.

Let X be a set and ≤ a partial order on X. If x, y ∈ X, then we write x < y
in case x ≤ y and x ̸= y. Suppose C ⊆ X is a chain in X and α ∈ C. The segment
of C determined by α, written (−∞, α), is the set of all elements x ∈ C such that
x < α. A subset W ⊆ C is called an inductive subset of C provided that for any
α ∈ C, if (−∞, α) ⊆W , then α ∈W .

Proposition 1.3.2. (The Transfinite Induction Principle) Suppose X is a well
ordered set and W is an inductive subset of X. Then W = X.

Proof. Suppose X −W is nonempty. Let α be the least element of X −W .
ThenW contains the segment (−∞, α). SinceW is inductive, it follows that α ∈W ,
which is a contradiction. □
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Proposition 1.3.3. (Zorn’s Lemma) Let X be a partially ordered set. If every
chain in X has an upper bound, then X contains a maximal element.

Proof. By Axiom 1.3.1, there exists a well ordered set W and a one-to-one
correspondence ω : W → X. Using Proposition 1.3.2, define a sequence {C(w) |
w ∈ W} of well ordered subsets of X. If w0 is the least element of W , define
C(w0) = {ω(w0)}. Inductively assume α ∈W −{w0} and that for all w < α, C(w)
is defined and the following are satisfied

(1) if w0 ≤ w1 ≤ w2 < α, then C(w1) ⊆ C(w2),
(2) C(w) is a well ordered chain in X, and
(3) C(w) ⊆ {ω(i) | w0 ≤ i ≤ w}.

Let x = ω(α) and

F =
⋃
w<α

C(w).

The reader should verify that F is a well ordered chain in X and F ⊆ {ω(i) | w0 ≤
i < α}. Define C(α) by the rule

C(α) =

{
F ∪ {x} if x is an upper bound for F

F otherwise.

The reader should verify that C(α) satisfies

(4) if w0 ≤ w1 ≤ w2 ≤ α, then C(w1) ⊆ C(w2),
(5) C(α) is a well ordered chain in X, and
(6) C(α) ⊆ {ω(i) | w0 ≤ i ≤ α}.

By Proposition 1.3.2, the sequence {C(w) | w ∈ W} is defined and the properties
(4), (5) and (6) are satisfied for all α ∈W . Now set

G =
⋃
w<α

C(w).

The reader should verify that G is a well ordered chain in X. By hypothesis, G
has an upper bound, say u. We show that u is a maximal element of X. For
contradiction’s sake, assume X has no maximal element. Then we can choose the
upper bound u to be an element of X −G. For some w1 ∈W we have u = ω(w1).
For all w < w1, u is an upper bound for C(w). By the definition of C(w1), we have
u ∈ C(w1). This is a contradiction, because C(w1) ⊆ G. □

Definition 1.3.4. Let I be a set and {Xi | i ∈ I} a family of sets indexed by
I. The product is ∏

i∈I
Xi =

{
f : I →

⋃
Xi | f(i) ∈ Xi

}
.

An element f of the product is called a choice function, because f chooses one
element from each member of the family of sets.

Proposition 1.3.5. (The Axiom of Choice) Let I be a set and {Xi | i ∈ I}
a family of nonempty sets indexed by I. Then the product

∏
i∈I Xi is nonempty.

That is, there exists a function f on I such that f(i) ∈ Xi for each i ∈ I.

Proof. By Axiom 1.3.1, we can assume
⋃
i∈I Xi is well ordered. We can view

Xi as a subset of
⋃
i∈I Xi. For each i ∈ I, let xi be the least element of Xi. The

set of ordered pairs (i, xi) defines the choice function. □
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4. Topological Spaces

Definition 1.4.1. Let X be a set. A topology on X is a subset T of 2X that
satisfies the following properties:

(1) X ∈ T .
(2) ∅ ∈ T .
(3) If A,B ∈ T , then A ∪B ∈ T .
(4) If {Ai | i ∈ I} is a family of sets such that each Ai ∈ T , then ∩iAi ∈ T .

The elements of T are called closed sets. If A ∈ T , then X−A is called an open set.
If Y ⊆ X, then T restricts to a topology on Y whose closed sets are {A∩Y | A ∈ T }.

Definition 1.4.2. Let X and Y be topological spaces and f : X → Y a
function. Then f is said to be continuous, if f−1(Y ) is closed whenever Y is
closed. Equivalently, f is continuous if f−1(U) is open whenever U is open. If f is
continuous, and g : Y → Z is continuous, then one can check that gf : X → Z is
continuous. We say X and Y are homeomorphic, if there exist continuous functions
f : X → Y and g : Y → X such that gf = 1X and fg = 1Y .

Definition 1.4.3. Let X be a topological space and Y a nonempty subset.
We say Y is irreducible if whenever Y ⊆ Y1 ∪ Y2 and Y1, Y2 are closed subsets of
X, then Y ⊆ Y1, or Y ⊆ Y2. We say Y is connected if whenever Y ⊆ Y1 ∪ Y2 and
Y1, Y2 are disjoint closed subsets of X, then Y ⊆ Y1, or Y ⊆ Y2. The empty set
is not considered to be irreducible or connected. Notice that an irreducible set is
connected.

If Z is a subset of the topological space X, then the closure of Z, denoted Z̄,
is the smallest closed subset of X that contains Z. Equivalently, Z̄ is equal to the
intersection of all closed sets that contain Z.

Lemma 1.4.4. Let X be a topological space.

(1) If X is irreducible and U ⊆ X is a nonempty open of X, then U is
irreducible and dense.

(2) Let Z be a subset of X and denote by Z̄ the closure of Z in X. Then Z
is irreducible if and only if Z̄ is irreducible.

(3) If X is irreducible, then X is connected.

Proof. Is left to the reader. □

A topological space X is said to be noetherian if X satisfies the ascending chain
condition on open sets. Some equivalent conditions are given by the next lemma.

Lemma 1.4.5. The following are equivalent, for a topological space X.

(1) X satisfies the ascending chain condition on open sets.
(2) X satisfies the maximum condition on open sets.
(3) X satisfies the descending chain condition on closed sets.
(4) X satisfies the minimum condition on closed sets.

Proof. Exercise 1.4.11 shows the equivalence of (1) and (2), as well as the
equivalence of (3) and (4). The rest is left to the reader. □

Lemma 1.4.6. Let X be a topological space.

(1) If X = X1 ∪ · · · ∪Xn and each Xi is noetherian, then X is noetherian.
(2) If X is noetherian and Y ⊆ X, then Y is noetherian.
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(3) If X is noetherian, then X is compact. That is, every open cover of X
contains a finite subcover.

Proof. Is left to the reader. □

Proposition 1.4.7. Let X be a noetherian topological space and Z a nonempty
closed subset of X.

(1) There are unique irreducible closed subsets Z1, . . . , Zr such that Z = Z1 ∪
· · · ∪ Zr and Zi ̸⊆ Zj for all i ̸= j. The sets Zi are called the irreducible
components of Z.

(2) There are unique connected closed subsets Y1, . . . , Yc such that Z = Y1 ∪
· · · ∪Yc and Yi ∩Yj = ∅ for all i ̸= j. The sets Yi are called the connected
components of Z.

(3) The number of connected components is less than or equal to the number
of irreducible components.

Proof. (1): We first prove the existence of the decomposition. For contra-
diction’s sake, assume there is a nonempty closed subset Y such that Y cannot
be written as a union of a finite number of irreducible closed sets. Let S be the
collection of all such subsets. By Lemma 1.4.5 (4), S has a minimal member, call it
Y . Then Y is itself not irreducible, so we can write Y = Y1 ∪ Y2 where each Yi is a
proper closed subset of Y . By minimality of Y , it follows that each Yi is not in S.
Therefore each Yi can be decomposed into irreducibles. This means Y = Y1 ∪ Y2
can also be decomposed into irreducibles, which is a contradiction. So Z is not a
counterexample. In other words, we can write Z = Z1 ∪ · · · ∪Zr such that each Zi
is irreducible. If Zi ⊆ Zj for some j different from i, then Zi may be excluded.

Now we prove the uniqueness of the decomposition. Let Z = Z1 ∪ · · · ∪Zr and
Z =W1 ∪ · · · ∪Wp be two such decompositions. Then

Z1 = (Z1 ∩W1) ∪ · · · ∪ (Z1 ∩Wp).

Since Z1 is irreducible, Z1 = Z1 ∩Wi for some i. Therefore Z1 ⊆ Wi. Likewise
Wi ⊆ Zj for some j. This implies

Z1 ⊆Wi ⊆ Zj .

It follows that Z1 =Wi. By a finite induction argument, we are done.
(2): Existence follows by the minimal counterexample method of Part (1). The

rest is left to the reader.
(3): Each Zi is connected, by Lemma 1.4.4. Then each Zi belongs to a unique

connected component of X. □

A topological space X is said to be a T1-space if for every point x ∈ X the
subset {x} is closed. We say X is separated (or Hausdorff , or a T2-space), if for any
two distinct points x, y ∈ X, there are neighborhoods x ∈ U and y ∈ V such that
U ∩V = ∅. We say X is compact if for any open cover {Ui | i ∈ D} of X, there is a
finite subset J ⊆ D such that {Ui | i ∈ D} is an open cover of X. Let {Xi | i ∈ D}
be a family of topological spaces indexed by a set D. The product topology on∏
i∈DXi is defined to be the finest topology such that all of the projection maps

πi :
∏
i∈DXi → Xi are continuous. For proofs of Theorems 1.4.8 and 1.4.9, the

reader is referred to a book on Point Set Topology, for example [32].
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Theorem 1.4.8. (Tychonoff Product Theorem) If {Xi | i ∈ D} is a family
of compact topological spaces indexed by a set D, then with the product topology,∏
i∈DXi is a compact topological space.

Theorem 1.4.9. If {Xi | i ∈ D} is a family of Hausdorff indexed by a set D,
then with the product topology,

∏
i∈DXi is a Hausdorff topological space.

4.1. Exercises.

Exercise 1.4.10. Let I be a set and {Xi | i ∈ I} a family of nonempty sets
indexed by I. For each k ∈ I define πk :

∏
i∈I Xi → Xk by the rule πk(f) = f(k).

We call πk the projection onto coordinate k. Show that πk is onto.

Exercise 1.4.11. Let X be a set that is partially ordered by ≤.
(1) Prove that X satisfies the descending chain condition (DCC) if and only

if X satisfies the minimum condition.
(2) Prove that X satisfies the ascending chain condition (ACC) if and only if

X satisfies the maximum condition.

Exercise 1.4.12. Let X be a topological space. We say that a family {Zi ⊆
X | i ∈ D} of closed subsets of X has the finite intersection property if for every
finite subset J ⊆ D,

⋂
j∈J Zj ̸= ∅. Show that the following are equivalent.

(1) X is compact.
(2) For any family {Zi ⊆ X | i ∈ D} of closed subsets of X with the finite

intersection property,
⋂
i∈D Zi ̸= ∅.

5. Background Material from Calculus

As in Section 1.1.1, the set of real numbers is denoted R.

Theorem 1.5.1. If a is a positive real number, then there exists a real number
x such that x2 = a. In other words, a positive real number has a square root.

Proof. See, for instance, [58, Theorem 7.8, p. 124]. □

Theorem 1.5.2. If n is a positive odd integer and a0, a1, . . . , an−1 are real
numbers, then there exists a real number x such that xn+an−1x

n−1+· · ·+a1x+a0 =
0. In other words, a polynomial over R of odd degree has a root.

Proof. See, for instance, [58, Theorem 7.9, p. 125]. □

For properties of the complex numbers, the reader is referred, for example,
to [58, Chapter 25]. The set of complex numbers, denoted C, is identified with
R2 and is a two-dimensional real vector space. A complex number is an ordered
pair (a, b). A basis for C is (1, 0), also denoted 1, and (0, 1), also denoted i. In
terms of this basis, the complex number (a, b) has representation a+ bi. Addition
of complex numbers is coordinate-wise: (a + bi) + (c + di) = (a + c) + (b + d)i.
The additive identity is 0 = (0, 0) and the additive inverse of a + bi is −a − bi.
Multiplication distributes over addition, and i2 = −1, hence (a + bi)(c + di) =
ac + (ad + bc)i + bdi2 = (ac − bd) + (ad + bc)i. The multiplicative identity is

1 = (1, 0) = 1 + 0i. If z = a + bi, then the absolute value of z is |z| =
√
a2 + b2,

which is equal to the length of the vector (a, b). Let r = |a + bi|. If θ is the angle
determined by the vectors z = a + bi and 1 = (1, 0), then the representation of z
in polar coordinates is z = a + bi = r cos θ + ir sin θ. The complex conjugate of
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z = a + bi is χ(z) = a − bi. Then zχ(z) = a2 + b2 = |z|2 is a nonnegative real
number. This implies if z ̸= 0, then z is invertible and

z−1 =
a− bi
a2 + b2

.

The power series for the functions ex, cosx, and sinx are

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
+
x8

8!
+ . . .

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ . . .

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . . .

These power series converge for every real number x. We define eix to be the
substitution of ix into the power series. Using the identities i2 = −1, i3 = −i,
i4 = 1, and i5 = i, we have

eix = 1 + ix+
i2x2

2!
+
i3x3

3!
+
i4x4

4!
+
i5x5

5!
+
i6x6

6!
+
i7x7

7!
+
i8x8

8!
+ . . .

= 1 + ix− x2

2!
− ix3

3!
+
x4

4!
+
ix5

5!
− x6

6!
− ix7

7!
+
x8

8!
+ . . .

=

(
1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ . . .

)
+ i

(
x− x3

3!
+
x5

5!
− x7

7!
+ . . .

)
= cosx+ i sinx.

Therefore, if z = a + bi has polar representation r cos θ + ir sin θ, then the repre-
sentation for z in exponential form is a+ bi = reiθ.

Proposition 1.5.3. In exponential notation, arithmetic in C satisfies the fol-
lowing formulas.

(1) (Additive inverse) −reiθ = rei(θ+π).
(2) (Multiplication) reiθseiϕ = (rs)ei(θ+ϕ).
(3) (Complex conjugation) χ

(
reiθ

)
= re−iθ.

(4) (Multiplicative inverse)
(
reiθ

)−1
= r−1e−iθ.

(5) (Square root) If r ≥ 0, then z1/2 =
√
reiθ =

√
reiθ/2.

(6) (nth root) If r ≥ 0, then z1/n =
(
reiθ

)1/n
= r1/neiθ/n.

Proof. The proof is left to the reader. □

Theorem 1.5.4. If X is a compact metric space and f : X → R is a continuous
function, then f(X) is a closed bounded subset of R. There exist l, u ∈ X such that
f(l) = inf f(X) and f(u) = sup f(X).

Proof. See, for instance, [51]. □



CHAPTER 2

Groups

1. First properties of groups

The notion of a binary operation on a set was introduced in Section 1.1.5. The
main ideas remain the same, but we recast them in light of the present context.
Let G be a nonempty set with a binary operation G × G → G. Usually the
binary operation on a group will be written multiplicatively or additively. In the
multiplicative notation, an identity element will usually be denoted e or 1 and the
inverse of an element a will be written a−1. If additive notation is used, an identity
is usually denoted 0 and −a denotes the inverse of a.

1.1. Definitions and Terminology.

Definition 2.1.1. Let G be a nonempty set with a multiplicative binary op-
eration. If a(bc) = (ab)c for all a, b, c ∈ G, then the binary operation is said to
be associative. In this case, G is called a semigroup. If G is a semigroup and G
contains an element e satisfying ae = ea = a for all a ∈ G, then e is said to be an
identity element and G is called a monoid. Let G be a monoid with identity ele-
ment e. An element a ∈ G is said to be invertible if there exists a−1 ∈ G such that
aa−1 = a−1a = e. The element a−1 is called the inverse of a. A monoid in which
every element is invertible is called a group. In other words, a group is a nonempty
set G together with an associative binary operation such that an identity element
e exists in G, and every element of G is invertible. If xy = yx for all x, y ∈ G, then
the binary operation is said to be commutative. A commutative group is called an
abelian group.

If G has an additive binary operation, then the associative law is (a + b) +
c = a + (b + c) for all a, b, c ∈ G. The element 0 ∈ G is an identity element if
a+0 = 0+a = a for all a ∈ G. The element a is invertible if there exists an inverse
element −a ∈ G such that a + (−a) = (−a) + a = 0. The commutative law is
a+ b = b+a for all a, b ∈ G. As a rule, additive notation is not used for nonabelian
groups.

Example 2.1.2. Let X be a nonempty set. A one-to-one correspondence σ :
X → X is also called a permutation of X. The set of all permutations of X is
denoted Perm(X). If σ and τ are permutations of X, then so is the composite
function στ , by Proposition 1.1.1. Therefore, Perm(X) is a group with identity
element 1X . If |X| > 1, then Perm(X) is nonabelian.

Example 2.1.3. Here are some examples of abelian groups.

(1) Under addition, Z is an abelian group with identity 0. The inverse of x is
written −x.

33
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(2) Let n ∈ N. Proposition 1.2.9 shows that under addition, Z/(n) is an
abelian group with identity [0]. The inverse of [x] is [−x]. We have
|Z/(n)| = n.

(3) Let n ∈ N. Lemma 1.2.12 shows that the set of units modulo n, Un, is a
multiplicative abelian group. The identity element is [1] and |Un| = ϕ(n).

LetG be a multiplicative semigroup. The associative law onG says that (ab)c =
a(bc). In other words, a product of length three has a unique value regardless of how
we associate the multiplications into binary operations using parentheses. When
writing a product abc it is not necessary to use parentheses. The next lemma
extends this result to products of arbitrary finite length.

Lemma 2.1.4. (General Associative Law) Let G be a semigroup, n ≥ 1, and
x1x2 · · ·xn a product involving n elements of G. Then the product has a unique
value regardless of how we associate the multiplications into binary operations using
parentheses.

Proof. First we define a standard value for x1x2 · · ·xn by the recursive for-
mula:

x1x2 · · ·xn =

{
x1 if n = 1

(x1x2 · · ·xn−1)xn if n > 1.

Now we show that any association of x1x2 · · ·xn will result in the value defined
above. The proof is by induction on n. If n ≤ 3, then this is true by the associative
law on G. Inductively assume n > 3 and that the result holds for any product
of length less than n. Let x1x2 · · ·xn be a product involving n elements. Assume
the product is associated into binary operations using parentheses. Then the last
binary operation can be written as

(x1x2 · · ·xm)(xm+1 · · ·xn)
and by the induction hypothesis, the two products x1x2 · · ·xm and xm+1 · · ·xm
have unique values regardless of how they are associated. If m = n−1, then we are
done, by the induction hypothesis. Assume 1 ≤ m < n − 1. Using the associative
law on G and the induction hypothesis, we get

(x1x2 · · ·xm)(xm+1 · · ·xn) = (x1x2 · · ·xm)((xm+1 · · ·xn−1)xn)
= ((x1x2 · · ·xm)(xm+1 · · ·xn−1)xn)
= (x1x2 · · ·xn−1)xn)
= x1x2 · · ·xn

which completes the proof. □

Definition 2.1.5. Let G be a group, a ∈ G, and n a nonnegative integer.

(1) If G is a multiplicative group, then the n-th power of a is defined recur-
sively by the formula:

an =

{
e if n = 0

aan−1 if n > 0.

We define a−n to be (a−1)n, which is equal to (an)−1.
(2) If A and B are nonempty subsets of G, then

AB = {xy | x ∈ A, y ∈ B}.
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(3) For an additive group G, the counterpart of the n-th power is left multi-
plication of a by n, which is defined recursively by:

na =

{
0 if n = 0

a+ (n− 1)a if n > 0.

and (−n)a is defined to be n(−a), which is equal to −(na).
(4) If A and B are nonempty subsets of the additive group G, then we define

A+B = {x+ y | x ∈ A, y ∈ B}.

Proposition 2.1.6. Let G be a group and a, b, c elements of G.

(1) There exists a unique x in G such that ax = b.
(2) There exists a unique y in G such that ya = b.
(3) We have ab = ac if and only if b = c.
(4) We have ab = cb if and only if a = c.

Parts (1) and (2) are called the solvability properties, Parts (3) and (4) are called
the cancellation properties.

Proof. (3): Assume we have ab = ac. Multiply both sides on the left by a−1

to get a−1ab = a−1ac. Since a−1ab = eb = b and a−1ac = ec = c, we get b = c.
Conversely, multiplying both sides of b = c from the left with a yields ab = ac.

(1): Let x = a−1b. Multiply by a on the left to get ax = aa−1b = eb = b. If x′

is another solution, then ax = ax′ and by Part (3) we have x = x′.
Parts (4) and (2) are proved in a similar manner. □

Example 2.1.7. Let G be a group. Let a ∈ G be a fixed element. Then “left
multiplication by a” defines a function λa : G → G, where λa(x) = ax. Part (1)
of Proposition 2.1.6 says that λa is onto and Part (3) says that λa is one-to-one.
Therefore, λa is a one-to-one correspondence. Likewise, “right multiplication by a”
defines a one-to-one correspondence ρa : G→ G where ρa(x) = xa.

Definition 2.1.8. If G is a group, then the order of G is the cardinality of the
underlying set. The order of G is denoted [G : e] or |G| or o(G).

Definition 2.1.9. Let G be a group and a ∈ G. The order of a, written |a|,
is the least positive integer m such that am = e. If no such integer exists, then we
say a has infinite order.

Definition 2.1.10. Let G and G′ be groups. A function θ : G → G′ is called
an isomorphism of groups, if θ is a one-to-one correspondence and θ(xy) = θ(x)θ(y)
for all x, y ∈ G. In this case, we say G and G′ are isomorphic and write G ∼= G′.
From an abstract algebraic point of view, isomorphic groups are indistinguishable.

1.2. Examples of groups.

Example 2.1.11. In this example we show that there is up to isomorphism only
one group of order two. By Example 2.1.3, a group of order two exists, namely the
additive group Z/2. Let G = {e, a} be an arbitrary group of order two, where e is
the identity element. By Example 2.1.7, left multiplication by a is a permutation
of G. Since ae = a, this implies aa = e. In other words, there is only one binary
operation that makes {e, a} into a group. If G′ = {e, b} is a group, then the function
that maps e 7→ e, a 7→ b is an isomorphism.
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Example 2.1.12. We know from Example 2.1.3 that the additive group Z/3 is
an abelian group of order three. In this example we show that up to isomorphism
there is only one group of order three. Let G = {e, a, b} be an arbitrary group
of order three, where e is the identity element. By Example 2.1.7, λa and ρa are
permutations of G. By cancellation, ab = b leads to the contradiction a = e. Since
ae = a, we conclude that ab = e and aa = b. Similarly, ba = b is impossible, hence
we conclude that ba = e. We have shown that G = {e, a, a2} and a has order 3.
Suppose G′ = {e, c, c2} is another group of order 3. Then the assignments ai 7→ ci

for i = 0, 1, 2 define an isomorphism.

Example 2.1.13. If X = {x1, . . . , xn} is a finite set, then a binary operation on
X can be represented as an n-by-n matrix with entries from X. Sometimes we call
the matrix the “multiplication table” or “addition table”. If the binary operation
is ∗, then the entry in row i and column j of the associated matrix is the product
xi ∗ xj . For instance, the multiplication and addition tables for Z/6 are:

∗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

If the binary operation ∗ on X is commutative, then the matrix is symmetric with
respect to the main diagonal. If X, ∗ is a group, then by Example 2.1.7, each row
of the multiplication table is a permutation of the top row and each column is a
permutation of the leftmost column. See Exercise 2.1.28 for more examples.

Example 2.1.14. Let n ≥ 1 and Nn = {1, 2, . . . , n}. The set of all permutations
of Nn is called the symmetric group on n letters and is denoted Sn. In Example 2.1.2
we saw that composition of functions makes Sn = Perm(X) into a group. As in
Section 1.1.3, the group Sn has order n!. A permutation can be specified using an
array of two rows. For example,

σ =

[
1 2 3 . . . n
a1 a2 a3 . . . an

]
represents the permutation σ(i) = ai. The so-called cycle notation is a very con-
venient way to represent elements of Sn. Let {a1, . . . , ak} ⊆ Nn. The k-cycle
σ = (a1a2 . . . ak) is the permutation of Nn defined by:

σ(x) =


x if x ̸∈ {a1, . . . , ak}
a1 if x = ak

ai+1 if x = ai and 1 ≤ i < k.

Notice that a k-cycle has order k in the group Sn. The identity element of Sn is
usually denoted e. For example, (abc)(ab) = (ac) and (ab)(abc) = (bc). Therefore,
Sn is nonabelian if n > 2. The group table for S3 = {e, (abc), (acb), (ab), (ac), (bc)}
is:
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∗ e (abc) (acb) (ab) (ac) (bc)
e e (abc) (acb) (ab) (ac) (bc)

(abc) (abc) (acb) (e) (ac) (bc) (ab)
(acb) (acb) (e) (abc) (bc) (ab) (ac)
(ab) (ab) (bc) (ac) (e) (acb) (abc)
(ac) (ac) (ab) (bc) (abc) (e) (acb)
(bc) (bc) (ac) (ab) (acb) (abc) (e)

Example 2.1.15. Let T be a regular triangle with vertices labeled 1, 2, 3. A
symmetry of T is any transformation σ : T → T that preserves distances. Therefore,
σ is a permutation of the three vertices. Conversely, a permutation of {1, 2, 3}
uniquely determines a symmetry of T . The group of symmetries of T is therefore
equal to S3.

Example 2.1.16. Now let n > 2 and let Tn be a regular n-gon with vertices
labeled 1, 2, . . . , n consecutively. A symmetry of Tn is any transformation σ : Tn →
Tn that preserves distances. Therefore, σ is a permutation of the n vertices. If
n > 3, a permutation of {1, 2, . . . , n} does not necessarily determine a symmetry of
Tn. When n > 3, the group of symmetries of Tn is therefore a proper subgroup of
Sn. The group of all symmetries of Tn is called the dihedral group Dn. A rotation
of Tn through an angle of 2π/n corresponds to the permutation

R =

[
1 2 3 . . . n− 1 n
2 3 4 . . . n 1

]
which in cycle notation is the n-cycle R = (12 . . . n). Therefore, Rk is a rotation
of Tn through an angle of 2πk/n, hence R has order n. A top to bottom flip of
Tn across the line of symmetry containing vertex 1 corresponds to the permutation
defined by

H =



[
1 2 3 . . . k k + 1 . . . n− 1 n

1 n n− 1 . . . k + 2 k + 1 . . . 3 2

]
if n = 2k is even,

[
1 2 3 . . . k k + 1 . . . n− 1 n

1 n n− 1 . . . k + 1 k . . . 3 2

]
if n = 2k − 1 is odd.

In cycle notation, H can be represented as

H =

{
(2, n)(3, n− 1) · · · (k, k + 2) if n = 2k is even,

(2, n)(3, n− 1) · · · (k, k + 1) if n = 2k − 1 is odd.

Then HH = e, hence H has order 2. The reader should verify that HRH = R−1.
Any symmetry of Tn is either a rotation or a flip followed by a rotation. Therefore
we see that Dn = {HiRj | 0 ≤ i ≤ 1, 0 ≤ j < n} is a nonabelian group of order 2n.

Example 2.1.17. Let R4 be a nonsquare rectangle with vertices labeled con-
secutively 1, 2, 3, 4. The group of symmetries of R3 can be viewed as a subgroup
of S4 as well as a subgroup of D4. In the notation of Example 2.1.16, the group
of symmetries of R4 is {HiRj | 0 ≤ i ≤ 1, 0 ≤ j ≤ 1}, which is a group of order
four. In cycle notation, this group is {e, (14)(23), (12)(34), (13)(24)}. Note that the
group is abelian and every element satisfies the identity x2 = e.
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Example 2.1.18. The quaternion 8-group is Q8 = {1,−1, i,−i, j,−j, k,−k}
with identity element 1. The multiplication rules are: (−1)2 = 1, i2 = j2 = k2 =
−1, ij = −ji = k. This is an example of a nonabelian group of order eight. For a
continuation of this example, see Exercise 2.4.19.

Example 2.1.19. Let F be a field. If α is a nonzero element of F , then α has
a multiplicative inverse, denoted α−1. The set of all nonzero elements of F is a
multiplicative group. This group is denoted F ∗ and is called the group of units of
F .

Example 2.1.20. Let F be a field. The set of all m-by-n matrices over F
is denoted Mmn(F ). If m = n, we sometimes write Mn(F ) instead of Mnn(F ).
In this example, we assume the reader is familiar with the basic properties for
multiplication of matrices. In particular, multiplication of matrices is associative.
We will not include the tedious but elementary proof of this fact here. Instead, we
refer the reader to Section 4.4.2. In this example our goal is to show that the set
of 2-by-2 matrices over F with nonzero determinant is a group. For n = 2, the
determinant function det :M2(F )→ F is defined by

det

(
a b
c d

)
= ad− bc.

To show that the determinant function is multiplicative, start with the product of
two arbitrary 2-by-2 matrices:(

a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
.

The determinant formula applied on the left hand side yields: (ad− bc)(eh− fg) =
adeh − adfg − bceh + bcfg. The reader should verify that this is equal to the
determinant of the right hand side: (ae + bg)(cf + dh) − (ce + dg)(af + bh). A

matrix α is invertible if there is a matrix β such that αβ = βα =

(
1 0
0 1

)
. Taking

determinants, this implies detα detβ = 1. In other words, if α is invertible, then
detα ̸= 0. Notice that(

a b
c d

)(
d −b
−c a

)
=

(
ad− bc 0

0 ad− bc

)
= (ad− bc)

(
1 0
0 1

)
.

If det

(
a b
c d

)
= ad− bc ̸= 0, then the matrix is invertible and the inverse is given

by the formula (
a b
c d

)−1
= (ad− bc)−1

(
d −b
−c a

)
.

The set

GL2(F ) =

{(
a b
c d

)
∈M2(F ) | ad− bc ̸= 0

}
is the set of all invertible 2-by-2 matrices over F and is called the general linear
group of 2-by-2 matrices over F . For a continuation of this example when F is Z/2,
the field of order 2, see Exercise 2.1.26.

Example 2.1.21. The Klein Viergruppe, or 4-group, is V = {e, a, b, c} with
multiplication rules: a2 = b2 = c2 = e, ab = ba = c. Notice that V is isomorphic to
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the group of symmetries of a nonsquare rectangle presented in Example 2.1.17 by
the mapping: a 7→ (14)(23), b 7→ (12)(34), c 7→ (13)(24).

1.3. Exercises.

Exercise 2.1.22. Let G be a monoid with identity element e.

(1) Show that G has exactly one identity element. In other words, show that
if e′ ∈ G has the property that ae′ = e′a = a, then e = e′.

(2) Show that an invertible element of G has a unique inverse. In other words,
if aa−1 = a−1a = e and aa′ = a′a = e, then a−1 = a′.

(3) Suppose a, r, ℓ ∈ G satisfy the identities: ar = e and ℓa = e. Show that
r = ℓ and a is invertible.

(4) Suppose every element of G has a left inverse. In other words, assume
for every a ∈ G there exists al ∈ G such that ala = e. Show that G is a
group. If a ∈ G is invertible, then a−1 is invertible and (a−1)−1 = a.

(5) If a and b are invertible elements of G, then ab is invertible and (ab)−1 =
b−1a−1.

Exercise 2.1.23. Let G be a group and x, y ∈ G. Prove the following:

(1) If x2 = x, then x = e. We say that a group has exactly one idempotent.
(2) If xy = e, then y = x−1.
(3) (x−1)−1 = x.
(4) (xy)−1 = y−1x−1.

Exercise 2.1.24. Let G be a group. The opposite group of G is denoted Go.
As a set, Go is equal to G. The binary operation on Go is reversed from that of
R. Writing the multiplication of R by juxtaposition and multiplication of Ro with
the asterisk symbol, we have x ∗ y = yx. Show that Go is a group. Show that
G is isomorphic to Go. (Hint: Show that the function defined by x 7→ x−1 is an
isomorphism from G to Go.)

Exercise 2.1.25. Let G be a group. Prove the following:

(1) If x2 = e for all x ∈ G, then G is abelian.
(2) If |G| = 2n for some n ∈ N, then there exists x ∈ G such that a ̸= e and

a2 = e.

Exercise 2.1.26. As in Example 2.1.20, we assume the reader is familiar with
the basic properties for multiplication of matrices. In particular, multiplication of
matrices is associative and the product of a two-by-two matrix times a two-by-one
column vector is defined by:(

a b
c d

)(
u
v

)
=

(
au+ bv
cu+ dv

)
.

Let G = GL2(Z/2) be the group of two-by-two invertible matrices over the field Z/2
(see Example 2.1.20). List the elements of G and construct the group table (see
Example 2.1.13). Show that G has two elements of order three and three elements
of order two. Let

a =

(
1
0

)
, b =

(
0
1

)
, c =

(
1
1

)
and consider the set of column vectors {a, b, c} over F2. For every matrix α in
G, show that left multiplication by the matrix α defines a permutation of the
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set {a, b, c}. Comparing the group table for G with the group table given in Ex-
ample 2.1.14 for S3, the symmetric group on 3 letters, show that GL2(Z/2) is
isomorphic to S3.

Exercise 2.1.27. Let K and H be groups. Define a binary operation on K×H
by (x1, y1)(x2, y2) = (x1x2, y1y2). Show that this makes K ×H into a group with
identity element (e, e), and the inverse of (x, y) is (x−1, y−1). Show that K ×H is
abelian if and only if K and H are both abelian.

Exercise 2.1.28. For various values of n, each of the following matrices is
an n-by-n multiplication table representing a binary operation ∗ on the set In =
{0, 1, . . . , n − 1}. In each case, determine whether the binary operation (a) is
commutative, (b) is associative, (c) has an identity element, and (d) is a group.

(1)

∗ 0 1 2 3
0 0 0 0 0
1 0 1 1 3
2 0 2 3 0
3 0 3 1 2

(2)

∗ 0 1 2 3 4 5 6 7
0 4 2 6 0 7 1 5 3
1 5 4 0 1 6 7 3 2
2 1 7 4 2 5 3 0 6
3 0 1 2 3 4 5 6 7
4 7 6 5 4 3 2 1 0
5 6 0 3 5 2 4 7 1
6 2 3 7 6 1 0 4 5
7 3 5 1 7 0 6 2 4

(3)

∗ 0 1 2 3 4 5 6 7
0 4 5 3 2 0 1 7 6
1 7 4 5 6 1 2 3 0
2 3 7 4 0 2 6 5 1
3 2 6 0 4 3 7 1 5
4 0 1 2 3 4 5 6 7
5 6 0 1 7 5 3 2 4
6 5 3 7 1 6 0 4 2
7 1 2 6 5 7 4 0 3

(4)

∗ 0 1 2 3 4 5 6 7
0 7 2 1 4 3 6 5 0
1 2 7 0 5 6 3 4 1
2 1 0 7 6 5 4 3 2
3 4 5 6 7 0 1 2 3
4 3 6 5 0 7 2 1 4
5 6 3 4 1 2 7 0 5
6 5 4 3 2 1 0 7 6
7 0 1 2 3 4 5 6 7

(5)

∗ 0 1 2
0 2 0 1
1 0 1 2
2 1 2 0

(6)

∗ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 0 2 1
4 4 3 5 1 0 2
5 5 4 3 2 1 0

2. Subgroups and cosets

2.1. First properties of subgroups.

Definition 2.2.1. If G is a group and H is a nonempty subset of G that is
a group under the binary operation on G, then we say H is a subgroup of G and
write H ≤ G.

Lemma 2.2.2. Let G be a group and H a nonempty subset of G. The following
are equivalent.

(1) H is a subgroup of G.



2. SUBGROUPS AND COSETS 41

(2) For all a, b in H we have ab ∈ H and a−1 ∈ H.
(3) For all a, b in H we have ab−1 ∈ H.

Proof. (2) implies (1): Let a ∈ H. Then e = aa−1 ∈ H. The associative law
applies on G, hence on H. The other group properties are included in (2).

(1) implies (3): Let a and b be elements of H. If H is a group, then b−1 ∈ H
and ab−1 ∈ H.

(3) implies (2): Let a and b be elements of H. By (3) we have aa−1 = e ∈ H,
ea−1 = a−1 ∈ H, and a(b−1)−1 = ab ∈ H. □

Example 2.2.3. Let G be a group. Then {e} and G are both subgroups of
G. We call these the trivial subgroups of G. A nontrivial subgroup is also called a
proper subgroup.

Proposition 2.2.4. Let G be a group and H a finite subset of G. If for all
a, b ∈ H we have ab ∈ H, then H is a subgroup of G.

Proof. Assume a, b ∈ H implies ab ∈ H. By Lemma 2.2.2, to show H is a
subgroup it suffices to show that a ∈ H implies a−1 ∈ H. Let |H| = n. Define
f : Nn+1 → H be defined by f(i) = ai. Since a ∈ H, we see from Definition 2.1.5
that f is well defined. The Pigeonhole Principle (Exercise 1.1.11) implies that there
exists a pair 0 < i < j ≤ n + 1 such that ai = aj . Then j − i > 0, so e = aj−i

is in H. If j − i = 1, then a = e, which implies a−1 = e ∈ H. If j − i > 1, then
e = aj−i = aaj−i−1, which implies a−1 = aj−i−1 ∈ H. □

Lemma 2.2.5. Let G be a group and X ⊆ G. Let S = {H ≤ G | X ⊆ H}, and
let

⟨X⟩ =
⋂
H∈S

H

be the intersection of all subgroups of G containing X. Then the following are true.

(1) ⟨X⟩ is the smallest subgroup of G containing X.
(2) ⟨X⟩ is the trivial subgroup {e} if X = ∅, otherwise

⟨X⟩ = {xe11 · · ·xenn | n ≥ 1, ei ∈ Z, xi ∈ X} .

Proof. (1): We know S is nonempty because G ∈ S. Therefore, (1) follows
straight from Exercise 2.2.21.

(2): IfX = ∅, then {e} ∈ S, so ⟨X⟩ = {e}. AssumeX ̸= ∅. By Lemma 2.2.2 (1),
the set S = {xe11 · · ·xenn | n ≥ 1, ei ∈ Z, xi ∈ X} is a subgroup ofG. SinceX ⊆ S, we
have ⟨X⟩ ⊆ S. Let xe11 · · ·xenn be a typical element of S. For each i, xi ∈ X implies
xi is in the group ⟨X⟩. By Definition 2.1.5, the power xeii is in ⟨X⟩. Therefore, the
product xe11 · · ·xenn is in ⟨X⟩. This proves S ⊆ X. □

Definition 2.2.6. In the context of Lemma 2.2.5, the set ⟨X⟩ is called the
subgroup of G generated by X. If X = {x1, . . . , xn} is a finite subset of G, then
we sometimes write ⟨X⟩ in the form ⟨x1, . . . , xn⟩. A subgroup H ≤ G is said
to be finitely generated if there exists a finite subset {x1, . . . , xn} ⊆ H such that
H = ⟨x1, . . . , xn⟩. We say H is cyclic if H = ⟨x⟩ for some x ∈ H.

Definition 2.2.7. Let G be a group and H a subgroup of G. If x and y are
elements of G, then we say x is congruent to y modulo H if x−1y ∈ H. In this case
we write x ≡ y (mod H).
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Lemma 2.2.8. Let G be a group and H a subgroup. Then congruence modulo
H is an equivalence relation on G.

Proof. If x ∈ G, then x−1x = e ∈ H, so x ≡ x (mod H). Assume x ≡ y
(mod H). Then x−1y ∈ H, which implies y−1x = (x−1y)−1 ∈ H, hence y ≡ x
(mod H). Assume x ≡ y (mod H) and y ≡ z (mod H). Then x−1yy−1z = x−1z ∈
H, which implies x ≡ z (mod H). □

Lemma 2.2.9. Let G be a group, H a subgroup, and x, y ∈ G. The following
are equivalent.

(1) x ≡ y (mod H).
(2) y = xh for some h ∈ H.
(3) xH = yH.

Proof. (1) is equivalent to (2): We have x ≡ y (mod H) if and only if x−1y ∈
H which is true if and only if x−1y = h for some h ∈ H which is equivalent to
y = xh for some h ∈ H.

(3) implies (2): We have y = ye ∈ yH = xH. Therefore, y = xh for some
h ∈ H.

(2) implies (3): Suppose y = xh, for some h ∈ H. For every z ∈ H, yz =
x(hz) ∈ xH. Hence yH ⊆ xH. Also, x = yh−1 implies xz = y(h−1z) ∈ yH, which
implies xH ⊆ yH. □

2.2. Cosets and Lagrange’s Theorem. Let G be a group and H a sub-
group. By Lemma 2.2.8, congruence modulo H is an equivalence relation on G.
Therefore G is partitioned into equivalence classes. If x ∈ G, then by Lemma 2.2.9,
the equivalence class of x is xH = {y ∈ G | y = xh for some h ∈ H}. The set xH
is called the left coset of x modulo H. The set of all left cosets of G modulo H is
G/H = {xH | x ∈ G}. By Proposition 1.1.2 two cosets are either disjoint or equal
as sets. The index of H in G is the cardinality of the set G/H and is denoted
[G : H].

There is a right hand version of the above, which we will briefly describe here.
We say x is right congruent to y modulo H if yx−1 ∈ H. This defines an equivalence
relation on G. The equivalence class of x is the set Hx which is called the right
coset of x modulo H. The set of all right cosets is denoted H\G. In general, the
partitions G/H and H\G are not equal. That is, a left coset is not necessarily a
right coset (see Lemma 2.3.4). In Exercise 2.2.23 the reader is asked to show that
there is a one-to-one correspondence between G/H and H\G.

Lemma 2.2.10. Let G be a group and H ≤ G. Given x, y ∈ G there is a one-
to-one correspondence ϕ : xH → yH defined by ϕ(z) = (yx−1)z. If |H| is finite,
then all left cosets of H have the same number of elements.

Proof. For any h ∈ H, yx−1xh = yh ∈ yH. We see that ϕ is a well defined
function. The function ψ(w) = xy−1w is the inverse to ϕ. □

If H is a subgroup of G, then complete set of left coset representatives for H
in G is a subset {ai | i ∈ I} of G where we have exactly one element from each left
coset. The index set I can be taken to be G/H. If {ai | i ∈ I} is a complete set of
left coset representatives, then G = ∪i∈IaiH is a partition of G.

Theorem 2.2.11. If K ≤ H ≤ G, then [G : K] = [G : H][H : K]. If two of the
three indices are finite, then so is the third.
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Proof. Let {ai | i ∈ I} be a complete set of left coset representatives for H in
G and Let {bj | j ∈ J} be a complete set of left coset representatives for K in H.
Then G = ∪i∈IaiH is a partition of G and H = ∪j∈JbjK is a partition of H. So

G =
⋃
i∈I

aiH

=
⋃
i∈I

ai

⋃
j∈J

bjK


=
⋃
i∈I

⋃
j∈J

aibjK

 .

To finish the proof, we show that aibj | (i, j) ∈ I × J} is a complete set of left
coset representatives for K in G. It suffices to show the cosets aibjK are pairwise
disjoint. Assume aibjK = asbtK. Then aibj = asbtk for some k ∈ K. Recall that
bj , bt, k are in H. Then we have ai = ash, for some h ∈ H. Hence aiH = asH,
which implies i = s. Canceling, we get bj = btk, or bjK = btK, which implies
j = t. This proves [G : K] = [G : H][H : K]. The index [G : K] is infinite if and
only if [G : H] is infinite or [H : K] is infinite. This proves the theorem. □

Corollary 2.2.12. (Lagrange’s Theorem) If G is a group and H ≤ G, then
|G| = [G : H]|H|.

Proof. Apply Theorem 2.2.11 with K = ⟨e⟩. □

2.3. A counting theorem.

Lemma 2.2.13. Let G be a group containing subgroups H and K. Then HK
is a subgroup of G if and only if HK = KH.

Proof. See Definition 2.1.5 (2) for the definition of the set HK. First as-
sume HK = KH. To show HK is a subgroup we show that the criteria of
Lemma 2.2.2 (1) are satisfied. In the following, h, h1, h2, h3 denote elements of
H and k, k1, k2, k3 denote elements of K. Let h1k1 and h2k2 be arbitrary ele-
ments of HK. Since HK = KH, there exist h3, k3 such that k1h2 = h3k3. Now
(h1k1)(h2k2) = h1(k1h2)k2 = h1(h3k3)k2 = (h1h3)(k3k2) is an element of HK. By
Exercise 2.1.23, (hk)−1 = k−1h−1 is is an element of KH = HK. This proves HK
is a subgroup.

Conversely, suppose HK is a subgroup. Consider the function i : G → G
defined by i(x) = x−1. By Exercise 2.1.23, i2 is the identity function. Thus
i is a one-to-one correspondence. Since HK is a group, the restriction of i to
HK is a one-to-one correspondence. That is, i(HK) = HK. If hk ∈ HK, then
i(hk) = (hk)−1 = k−1h−1 is in KH, which shows HK = i(HK) ⊆ KH. Consider
kh ∈ KH. Then i(kh) = (kh)−1 = h−1k−1 is in HK. Therefore, kh is the inverse
of an element in the subgroup HK. By Lemma 2.2.2, kh ∈ HK, which implies
KH ⊆ HK. □

Theorem 2.2.14. Let G be a group. If H and K are finite subgroups of G,
then

|HK| = |H||K|
|H ∩K|

.
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Proof. We do not assume HK is a group. Let C = H ∩ K. Then C is a
subgroup of H. Let {h1, . . . , hn} be a full set of left coset representatives of C in
H, where n = [H : C]. Then H = ∪ni=1hiC is a disjoint union. Since C ⊆ K we
have CK = K, hence

HK =

n⋃
i=1

hiCK =

n⋃
i=1

hiK.

The last union is a disjoint union. To see this, suppose hiK = hjK. Then h−1j hi ∈
H∩K = C, which implies i = j. By Lemma 2.2.10 we can now count the cardinality
of HK:

|HK| =
n∑
i=1

|K| = n|K| = [H : H ∩K]|K|.

By Corollary 2.2.12, we are done. □

2.4. Cyclic subgroups. In the next theorem we show that the additive group
Z is cyclic and every subgroup is of the form ⟨n⟩ for some n ≥ 0. Moreover, the
equivalence relation of Definition 2.2.7 defined in terms of the subgroup ⟨n⟩ is equal
to the equivalence relation of Definition 1.2.8 defined in terms of divisibility by n.

Theorem 2.2.15. Let Z be the additive group of integers.

(1) Every subgroup of Z is cyclic. The trivial subgroups of Z are: ⟨0⟩ and
Z = ⟨1⟩. If H is a nontrivial subgroup, then there is a unique n > 1 such
that H = ⟨n⟩ = nZ = {nk | k ∈ Z}.

(2) If n ≥ 1 and H = ⟨n⟩, then x ≡ y (mod H) if and only if x ≡ y (mod n).
That is, the coset x+ ⟨n⟩ in Z/⟨n⟩ is equal to the congruence class [x] in
Z/n.

Proof. Let H ≤ Z and assume H ̸= ⟨0⟩. If x ∈ H−⟨0⟩, then so is −x. By the
Well Ordering Principle (Axiom 1.2.1) there is a least positive integer in H, say n.
We prove that H = nZ. Let x ∈ H. By the Division Algorithm (Proposition 1.2.3)
we can write x = nq + r where 0 ≤ r < n. By Definition 2.1.5, nq ∈ H. Therefore,
r = x− nq is in H. By the choice of n, this implies r = 0. Hence x ∈ nZ. □

Let G be a group and a an element of finite order in G. Recall (Definition 2.1.9)
that the order of a, written |a|, is the least positive integer m such that am = e.

Lemma 2.2.16. Let G be a group, a ∈ G, and assume |a| = m is finite. Then
the following are true.

(1) |a| = |⟨a⟩|.
(2) ⟨a⟩ = {e, a, a2, . . . , am−1}.
(3) For each n ∈ Z, an = e if and only if m divides n.
(4) For each n ∈ Z, |an| = m/ gcd(m,n).
(5) Let b ∈ G. Assume |b| = n is finite, ab = ba, and ⟨a⟩ ∩ ⟨b⟩ = ⟨e⟩. Then
|ab| = lcm(m,n).

Proof. (1) and (2): Let m = |a|. Then m > 0, am = e, and if m > 1, then
am−1 ̸= e. Let n ∈ Z. Applying Proposition 1.2.3, there exist unique integers q
and r such that n = mq + r and 0 ≤ r < m. Then an = (am)qar = ar. Therefore,
⟨a⟩ = {e, a, a2, . . . , am−1}. It follows that |⟨a⟩| = m.
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(3): First assume n = mq. Then we have amq = (am)q = eq = e. Conversely
assume an = e. By Parts (1) and (2), if n = mq + r and 0 ≤ r < m, then ar = e,
which implies r = 0.

(4) and (5): This part of the proof is Exercise 2.2.27. □

Corollary 2.2.17. If |G| is finite, and a ∈ G, then the following are true.

(1) |a| is finite.
(2) |a| divides |G|.
(3) a|G| = e.

Proof. (1): Proposition 2.2.4 shows that |a| is finite.
(2) and (3): These follow immediately from Lemma 2.2.16 and Corollary 2.2.12.

□

Corollary 2.2.18. Let a ∈ Z. Then the following are true.

(1) (Euler) If m ∈ N and gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).
(2) (Fermat) If p is prime and gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).

Proof. As noted in Example 2.1.3, Un, the group of units modulo n, has order
ϕ(n). If p is prime, then ϕ(p) = p− 1. □

Corollary 2.2.19. Let G be a group satisfying |G| > 1. If G has no proper
subgroup, then |G| is finite, |G| is prime, and G is cyclic.

Proof. Let a ∈ G − ⟨e⟩. Since G has no proper subgroup and ⟨e⟩ ≠ ⟨a⟩
is a subgroup of G, we have ⟨a⟩ = G. Look at the set S = {e, a, a2, . . . }. If
there is a relation of the form ak = am, where k < m, then |a| is finite, hence
G is finite. Conversely, if G is finite, then Proposition 2.2.4 shows that there is a
relation ak = am, where k < m. Assume for contradiction’s sake that G is infinite.
Then a ̸= an, for all n > 1. Thus, ⟨a2⟩ is a proper subgroup of G, a contradiction.
We conclude that G = ⟨a⟩ = {e, a, . . . , an−1} is a finite cyclic group of order n,
for some n. Assume for contradiction’s sake that n = xy where 1 < x ≤ y < n.
By Lemma 2.2.16 (4), ⟨ax⟩ = {e, ax, a2x, . . . , a(y−1)x} has order y, hence G has a
proper subgroup, which is a contradiction. This proves n is prime. □

Corollary 2.2.20. Let G be a group. If G has only a finite number of sub-
groups, then G is finite.

Proof. Suppose G is an infinite group. We prove that G has infinitely many
subgroups. Let x1 ∈ G and set X1 = ⟨x1⟩. By Theorem 2.2.15, the additive group
of integers Z has infinitely many distinct subgroups, namely {⟨n⟩ | n ≥ 0}. If X1 is
infinite, then the same proof shows that X1 has infinitely many distinct subgroups,
namely {⟨xn1 ⟩ | n ≥ 0}. From now on assume every element of G has finite order.
Then G−⟨x1⟩ is infinite. Pick x2 ∈ G−⟨x1⟩. Then ⟨x1⟩ ≠ ⟨x2⟩. Assume inductively
that n ≥ 1 and x1, x2, . . . , xn are in G such that X1 = ⟨x1⟩, . . . , Xn = ⟨xn⟩ are n
distinct subgroups. Then ∪ni=1Xi is finite. Pick xn+1 ∈ G − X1 − X2 − · · · − Xn

and set Xn+1 = ⟨xn+1⟩. Then by induction there exists an infinite collection
{Xi | i ≥ 1} of distinct subgroups of G. □
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2.5. Exercises.

Exercise 2.2.21. (An intersection of subgroups is a subgroup.) Let G be a
group, I a nonempty set, and {Hi | i ∈ I} a family of subgroups of G indexed by
I. Show that ⋂

i∈I
Hi

is a subgroup of G.

Exercise 2.2.22. Let G be a group and X,Y, Z subgroups of G. Prove that if
Y ⊆ X, then X ∩ Y Z = Y (X ∩ Z).

Exercise 2.2.23. Let G be a group and H a subgroup of G. We denote by
G/H the set of all left cosets of H in G, and by H\G the set of all right cosets of H
in G. Show that the assignment xH 7→ Hx−1 defines a one-to-one correspondence
between G/H and H\G.

Exercise 2.2.24. Let G be a group containing finite subgroups H and K. If
|H| and |K| are relatively prime, show that H ∩K = ⟨e⟩.

Exercise 2.2.25. This exercise is a continuation of Exercise 2.1.27. Let K
and H be groups and K ×H the product group. Show that {(x, e) | x ∈ K} and
{(e, y) | y ∈ H} are subgroups of K ×H.

Exercise 2.2.26. Consider the symmetric group S3 of order 6. Show that
S3 has 4 proper subgroups. Let H be the subgroup of order 2 generated by the
transposition (12). Compute the three left cosets of H and the three right cosets
of H.

Exercise 2.2.27. Prove Parts (4) and (5) of Lemma 2.2.16.

Exercise 2.2.28. Let p be a prime number and G a finite group of order p.
Prove:

(1) G has no proper subgroup.
(2) There exists a ∈ G such that G = ⟨a⟩.

3. Homomorphisms and normal subgroups

3.1. Definition and first properties of normal subgroups.

Definition 2.3.1. A homomorphism of groups is a function ϕ : G → G′ from
a group G to a group G′ such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G. If ϕ is onto,
we say ϕ is an epimorphism. If ϕ is one-to-one, we say ϕ is a monomorphism. If
ϕ is one-to-one and onto, we say ϕ is an isomorphism. A homomorphism from G
to G is called an endomorphism of G. An isomorphism from G to G is called an
automorphism of G.

Definition 2.3.2. Let ϕ : G→ G′ be a homomorphism of groups. The kernel
of ϕ is ker(ϕ) = {x ∈ G | ϕ(x) = e}.

Definition 2.3.3. Let G be a group. For every a ∈ G, let αa : G → G be
defined by αa(x) = a−1xa. If X is a nonempty subset of G, then αa(X) = a−1Xa
is called the conjugate of X by a.

The next lemma lists the fundamental properties of normal subgroups. The
definition follows the lemma.
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Lemma 2.3.4. Let G be a group and H a subgroup of G. The following are
equivalent.

(1) For each x ∈ G, x−1Hx ⊆ H.
(2) For each x ∈ G, x−1Hx = H.
(3) For each x ∈ G there exists y ∈ G such that xH = Hy.
(4) For each x ∈ G, xH = Hx.
(5) For each x ∈ G and y ∈ G, xHyH = xyH.
(6) There is a well defined binary operation G/H × G/H → G/H on G/H

defined by the rule (xH, yH) 7→ xyH.
(7) There is a binary operation on G/H such that the natural map η : G →

G/H is a homomorphism of groups.
(8) There exists a group G′ and a homomorphism of groups θ : G→ G′ such

that H = ker θ.

Proof. (1) implies (2): Let x ∈ G. First apply (1) to x, yielding x−1Hx ⊆ H.
Now conjugate by x−1 and apply (1) with x−1 to get H = (xx−1)H(xx−1) ⊆
xHx−1 ⊆ H.

(2) implies (3): Let x ∈ G. Apply (2) to x−1 to get xHx−1 = H. This implies
xH = Hx.

(3) implies (4): Given x ∈ G, there exists y ∈ G such that xH = Hy. Since
x is in xH = Hy, this implies x = hy for some h ∈ H. Therefore y = h−1x and
Hy = Hh−1x = Hx.

(4) implies (5): Let x ∈ G and y ∈ G. By (4) applied to y, yH = Hy.
Therefore, xHyH = x(Hy)H = x(yH)H = xyH.

(5) implies (6): This is immediate.
(6) implies (7): By (6), (xH, yH) 7→ xyH defines a binary operation on G/H.

The associative law on G implies the associative law also holds on G/H. The
identity element is the coset eH and (xH)−1 = x−1H. Therefore G/H is a group
and it is now clear that the natural map η : G→ G/H is a homomorphism.

(7) implies (8): The kernel of η : G→ G/H is η−1(eH) = H.
(8) implies (1): Let θ : G → G′ be a homomorphism of groups and assume

H = ker θ. Given x ∈ G and h ∈ H we have θ(h) = e. Hence θ(x−1hx) =
θ(x)−1θ(h)θ(x) = θ(x)−1θ(x) = e. Therefore, x−1Hx ⊆ ker θ = H. □

Definition 2.3.5. If G is a group and H is a subgroup of G satisfying any of
the equivalent conditions of Lemma 2.3.4, then we say H is a normal subgroup of
G. The group G/H is called the quotient group, or factor group. If N is a normal
subgroup of G, we sometimes write N ⊴G.

Example 2.3.6. Let G be a group.

(1) The trivial subgroups ⟨e⟩ and G are normal in G.
(2) If G is abelian and H is a subgroup of G, then for every x ∈ G, xH = Hx,

hence H is normal. The quotient group G/H is abelian because G is
abelian.

3.2. The Isomorphism Theorems. The Fundamental Theorem of Group
Homomorphisms, Theorem 2.3.11, says that any homomorphism of groups θ : A→
B factors in a natural way into a surjection A→ A/ ker(θ) followed by an injection
A/ ker(θ)→ B. This provides us with a valuable tool for defining a homomorphism
on a quotient group A/N . As applications, we prove the Isomorphism Theorems
(Theorem 2.3.12) and the Correspondence Theorem (Theorem 2.3.13).
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Lemma 2.3.7. Let ϕ : G→ G′ and ϕ1 : G′ → G′′ be homomorphisms of groups.
Then the following are true.

(1) The composite ϕ1ϕ : G→ G′′ is a homomorphism of groups.
(2) The kernel of ϕ, ker(ϕ), is a normal subgroup of G.
(3) The function ϕ is one-to-one if and only if ker(ϕ) = ⟨e⟩.

Proof. (1): This follows straight from: ϕ1ϕ(xy) = ϕ1(ϕ(x)ϕ(y)) = ϕ1ϕ(x)ϕ1ϕ(y).
(2): By Exercise 2.3.15, the preimage of a subgroup of G′ is a subgroup of G.

Therefore, ker(ϕ) = ϕ−1(⟨e⟩) is a subgroup of G. If ϕ(x) = e and a ∈ G, then
ϕ(a−1xa) = ϕ(a)−1ϕ(x)ϕ(a) = ϕ(a)−1ϕ(a) = e. Hence ker(ϕ) is normal.

(3): If ϕ is one-to-one, then ker(ϕ) = ϕ−1(⟨e⟩) = ⟨e⟩. If ker(ϕ) = ⟨e⟩ and
ϕ(x) = ϕ(y), then ϕ(xy−1) = ϕ(x)ϕ(y)−1 = e, so xy−1 ∈ ker(ϕ). Therefore, x = y
and ϕ is one-to-one. □

Example 2.3.8. If ϕ : G→ G′ is an isomorphism of groups, then we say G is
isomorphic to G′ and write G ∼= G′. If ϕ1 : G′ → G′′ is another isomorphism of
groups, then by Lemma 2.3.7 and Exercise 1.1.9, the composite ϕ1ϕ is an isomor-
phism. The reader should verify that isomorphism defines an equivalence relation
on the set of all groups.

Example 2.3.9. Let G be a group. The set of all automorphisms of G is
denoted Aut(G). By Lemma 2.3.7 the composition of automorphisms is an auto-
morphism. In the notation of Example 2.1.2, Aut(G) is a subgroup of Perm(G).

Example 2.3.10. Let G be a group and a ∈ G. Then conjugation by a defines
the function αa : G → G, where αa(x) = a−1xa (see Definition 2.3.3). In Exer-
cise 2.3.39 the reader is asked to prove that αa is an automorphism of G. We call
αa the inner automorphism of G defined by a. The set of all inner automorphisms
is a subgroup of Aut(G).

Theorem 2.3.11. (Fundamental Theorem of Group Homomorphisms) Let θ :
A→ B be a homomorphism of groups. Let N be a normal subgroup of A contained
in ker θ. There exists a homomorphism φ : A/N → B satisfying the following.

(a) φ(aN) = θ(a), or in other words θ = φη.
(b) φ is the unique homomorphism from A/N → B such that θ = φη.
(c) im θ = imφ.
(d) kerφ = η(ker θ) = ker(θ)/N .
(e) φ is one-to-one if and only if N = ker θ.
(f) φ is onto if and only if θ is onto.
(g) There is a unique epimorphism ϕ : A/N → A/ ker θ such that the diagram

A
θ //

##
η

��

B

A/ ker θ

;;

A/N

ϕ

OO φ

EE

commutes.
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Proof. The map φ exists by Exercise 1.1.13. The proofs of (a) – (f) are left
as an exercise for the reader. Part (g) results from an application of Parts (a) – (f)
to the natural map A→ A/ ker θ. □

Theorem 2.3.12. (The Isomorphism Theorems) Let G be a group.

(a) If θ : G→ G′ is a homomorphism of groups, then the map φ : G/ ker θ → im θ
sending the coset x ker θ to θ(x) is an isomorphism of groups.

(b) If A and B are subgroups of G and B is normal, then natural map

A

A ∩B
→ AB

B

sending the coset x(A ∩B) to the coset xB is an isomorphism of groups.
(c) If A and B are normal subgroups of G and A ⊆ B, then B/A is a normal

subgroup of G/A and the natural map

G/A

B/A
→ G/B

sending the coset containing xA to the coset xB is an isomorphism of groups.

Proof. (a): By Exercise 2.3.15, the image of G is a subgroup of G′. This is
Parts (e) and (f) of Theorem 2.3.11.

(b): By Exercise 2.3.18, AB is a group, B is normal in AB, and A∩B is normal
in A. Let f : A → (AB)/B be the set containment map A → AB followed by the
natural map AB → (AB)/B. If a ∈ A and b ∈ B, then abB = aB, hence f is onto.
Let a ∈ A. Then aB = B if and only if a ∈ B. Therefore the kernel of f is A ∩B.
Part (b) follows from Part (a) applied to the homomorphism f .

(c): By Theorem 2.3.11 (g) applied to the natural map G → G/B, there is a
natural epimorphism ϕ : G/A → G/B defined by ϕ(xA) = xB. The kernel of ϕ
consists of those cosets xA such that x ∈ B. That is, kerϕ = B/A. Part (c) follows
from Part (a) applied to the homomorphism ϕ. □

Theorem 2.3.13. (The Correspondence Theorem) Let G be a group and A
a normal subgroup of G. There is a one-to-one order-preserving correspondence
between the subgroups B such that A ⊆ B ⊆ G and the subgroups of G/A given by
B 7→ B/A. Moreover, B is a normal subgroup of G if and only if B/A is a normal
subgroup of G/A.

Proof. Let η : G→ G/A be the natural homomorphism. By Exercise 2.3.15,
if B is a subgroup of G, then η(B) is a subgroup of G/A, and if H is a subgroup
of G/A, then η−1(H) is a subgroup of G containing A. If B1 ⊆ B2, then η(B1) ⊆
η(B2). Likewise, if H1 ⊆ H2, then η

−1(H1) ⊆ η−1(H2). Since η is onto, ηη−1(H) =
H. By Exercise 2.3.15, if B is a subgroup of G containing A, then B = η−1η(B).
This proves the first claim.

For the last claim, let B be a subgroup of G containing A. If B is normal,
then by Theorem 2.3.12 (c), η(B) is normal in G/A. Conversely assume η(B) is
normal in G/A. Then B is equal to the kernel of the composite map G→ G/A→
(G/A)/η(B), hence is normal in G. □

Example 2.3.14. Let (R,+) be the additive abelian group of real numbers
and (R>0, ·) the multiplicative abelian group of positive real numbers. Define ϕ :
(R,+) → (R>0, ·) by ϕ(x) = ex. Then ϕ(x + y) = ex+y = exey = ϕ(x)ϕ(y),
so ϕ is a homomorphism. Define ψ : (R>0, ·) → (R,+) by ψ(x) = lnx. Then
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ψ(xy) = lnxy = lnx + ln y = ψ(x) + ψ(y), so ψ is a homomorphism. Since ϕ and
ψ are inverses of each other, they are isomorphisms. Hence (R,+) and (R>0, ·) are
isomorphic groups.

3.3. Exercises.

Exercise 2.3.15. Let f : G→ G′ be a homomorphism of groups. Prove:

(1) f(e) = e.
(2) f(x−1) = f(x)−1.
(3) If H ≤ G, then f(H) ≤ G′. If there is a containment relation H1 ⊆ H2,

then f(H1) ⊆ f(H2).
(4) If H ′ ≤ G′, then f−1(H ′) ≤ G and ker f ≤ f−1(H ′). If there is a

containment relation H ′1 ⊆ H ′2, then f−1(H ′1) ⊆ f−1(H ′2).
(5) If H ≤ G and ker f ⊆ H, then f−1f(H) = H.
(6) If G is abelian, then im(f) is abelian.

Exercise 2.3.16. Let G,+ be an additive abelian group. Let n ∈ Z and x ∈ G.
If n > 0, then nx =

∑n
i=1 x = x+ · · ·+x is the sum of n copies of x. If n < 0, then

nx = |n|(−x) =
∑|n|
i=1(−x), and 0x = 0.

(1) Show that “left multiplication by n” defines a function λn : G → G by
the rule λn(x) = nx. Show that λn is an endomorphism of G.

(2) Show that the kernel of λn is G(n) = {x ∈ G | |x| | n}, hence G(n) is a
subgroup of G.

(3) Show that the image of λn is nG = {nx | x ∈ G}, hence nG is a subgroup
of G.

When the group operation is written multiplicatively, the counterpart of λn is the
“n-th power map” which is denoted πn : G→ G and is defined by πn(x) = xn. In
this case, im(πn) is denoted Gn.

Exercise 2.3.17. Let G be a group and H a subgroup. Prove that if [G : H] =
2, then H is a normal subgroup.

Exercise 2.3.18. Let G be a group containing subgroups H, K, and N . Prove
the following:

(1) If N is a normal subgroup of G, then NK is a subgroup of G. Moreover,
K is a subgroup of NK, and N is a normal subgroup of NK.

(2) If N is normal, then N ∩H is a normal subgroup of H.
(3) If H and K are both normal, then HK is a normal subgroup of G.

Exercise 2.3.19. Let G be a group. For every a ∈ G, let αa : G → G be
defined by αa(x) = a−1xa. In the terminology of Definition 2.3.3, αa(x) is the
conjugate of x by a. Prove that αa is an automorphism of G.

Exercise 2.3.20. (The conjugate of a subgroup is a subgroup.) Let G be a
group, S a nonempty subset of G, and a ∈ G. The conjugate of S by a is defined
to be Sa = a−1Sa. Prove that S is a subgroup of G if and only if Sa is a subgroup
of G.

Exercise 2.3.21. Let S1 = {z ∈ C | |z| = 1}. Then S1 = {e2πiθ | 0 ≤ θ < 1}
is the unit circle in the complex plane (see Section 1.5).

(1) Show that multiplication in C makes S1 into a group.
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(2) Let (R,+) denote the additive group on R. Show that the function f :
(R,+)→ S1 defined by f(θ) = e2πiθ is an epimomorphism. Compute the
kernel of f . Show that f induces an isomorphism R/Z ∼= S1.

(3) If n ∈ N, then the n-th power map z 7→ zn is an endomorphism of S1 (see
Exercise 2.3.16). Let µn denote the kernel of the n-th power map. Show
that µn = {e2πik/n | k ∈ Z} is the set of all n-th roots of unity in C.

(4) Show that the function ϕ : Z → µn defined by ϕ(k) = e2πik/n is an epi-
morphism. Compute the kernel of ϕ. Show that ϕ induces an isomorphism
Z/n ∼= µn.

(5) Let µ = ∪n≥1µn. Show that µ is a group. Define h : Q → µ by h(r) =
e2πir. Show that h is an epimorphism. Compute the kernel of h. Show
that h induces an isomorphism Q/Z ∼= µ.

Exercise 2.3.22. Let G be a finite group of order n = [G : e]. Let p be a prime
number such that p | n and p2 > n. Assume G contains a subgroup H of order p.
(This always true, by Cauchy’s Theorem, Theorem 2.7.3.) Prove:

(1) H is the unique subgroup of G of order p.
(2) H is a normal subgroup of G.

Exercise 2.3.23. A group G is said to be simple if the only normal subgroups
of G are ⟨e⟩ and G. Prove that a group G is simple if and only if for every nontrivial
homomorphism of groups f : G→ G′, f is a monomorphism.

Exercise 2.3.24. This exercise is a continuation of Exercise 2.2.25. Let K and
H be groups and K ×H the product group. Define four functions

(1) ι1 : K → K ×H, ι1(x) = (x, e)
(2) ι2 : H → K ×H, ι2(y) = (e, y)
(3) π1 : K ×H → K, π1(x, y) = x
(4) π2 : K ×H → H, π2(x, y) = y

Show that ι1 and ι2 are monomorphisms. Show that π1 and π2 are epimorphisms.
Show that im ι1 = kerπ1 = K × {e} and im ι2 = kerπ2 = {e} ×H.

3.4. More on Cyclic groups. A cyclic group A = ⟨a⟩ is generated by a
single element. Theorem 2.3.25 shows that if A is infinite, then A is isomorphic to
the additive group Z. In this case A has two generators, namely a, and a−1. If A is
finite of order n, then A is isomorphic to Z/n and A has ϕ(n) generators, namely
{ai | 1 ≤ i ≤ n− 1, gcd(i, n) = 1}. Lemma 2.3.26 shows that any homomorphism
A→ G of groups defined on A is completely determined by the image of a generator.
Necessary and sufficient conditions for the existence of a homomorphism A → G
are derived. In Theorem 2.3.27 we show that the group of all automorphisms of a
cyclic group of order n is isomorphic to the group of units modulo n. The group of
automorphisms of an infinite cyclic group is a group of order two. As an application
of these theorems on cyclic groups, we exhibit the classic proof by mathematical
induction that a finite abelian group of order n contains an element of order p if p
is a prime divisor of n (Theorem 2.3.28).

Theorem 2.3.25. (Fundamental Theorem on Cyclic Groups) Let A = ⟨a⟩ be a
cyclic group. Then the following are true.

(1) A is abelian.
(2) Every subgroup of A is cyclic.
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(3) Every homomorphic image of A is cyclic.
(4) There is a unique n ≥ 0 such that A is isomorphic to Z/⟨n⟩.
(5) If n = 0, then

(a) A is infinite and
(b) A is isomorphic to Z.

(6) If n > 0, then
(a) A isomorphic to Z/n, hence A is finite of order n,
(b) if H is a subgroup of A, then |H| divides n,
(c) for every positive divisor d of n, A has a unique subgroup of order d,

namely ⟨an/d⟩,
(d) if d is a positive divisor of n, then A has ϕ(d) elements of order d,

where ϕ is the Euler function.

Proof. (4): Let θ : Z → A be the function defined by θ(i) = ai. Since A is
generated by a, θ is onto, by Lemma 2.2.5. Since θ(i+ j) = ai+j = aiaj = θ(i)θ(j),
θ is an epimorphism. By Theorem 2.2.15 there is a unique n ≥ 0 such that ker(θ) =
⟨n⟩. By Theorem 2.3.12 (1), θ induces an isomorphism θ̄ : Z/⟨n⟩ → A.

(1): This follows from (4) and Exercise 2.3.15 (6).
(2) and (3) and (5): These follow from (4) and Theorems 2.2.15 and 2.3.13.
(6): Assume n > 0 and d is a positive divisor of n. By Lemma 2.2.16, |an/d| = d.

Thus, ⟨an/d⟩, is a subgroup of order d. Now suppose |ax| = d. By Lemma 2.2.16,
gcd(x, n) = n/d. By Bézout’s Identity, Lemma 1.2.5, we can write n/d = xu +
nv, for some u, v ∈ Z. Since an/d = (ax)u(an)v = (ax)u we see that ⟨an/d⟩ ⊆
|ax| = d. Both groups have order d, hence they are equal. By Lemma 2.2.16, the
number of elements of order n in A is equal to the cardinality of the set {x ∈ Z |
1 ≤ x ≤ n and gcd(x, n) = 1}, which is equal to ϕ(n). Therefore, the number of
elements of order d in a cyclic group of order d is ϕ(d). □

Lemma 2.3.26. Let A = ⟨a⟩ be a cyclic group and G any group.

(1) Let ϕ : A → G be a homomorphism of groups. Then ϕ is completely
determined by the value ϕ(a).

(2) Let x ∈ G.
(a) If the order of A is infinite, then there is a homomorphism θ : A→ G

defined by θ(a) = x.
(b) If A has finite order |A| = n, then there is a homomorphism θ : A→

G defined by θ(a) = x if and only if x has finite order |x| = d and
d | n.

Proof. (1): We have ϕ(ai) = ϕ(a)i.
(2): Part (a) was proved in the proof of Part (4) of Theorem 2.3.25. We prove

Part (b). Assume A is finite and |A| = n. If there is a homomorphism θ : A→ G,
then by Exercise 2.3.40 the order of θ(a) is a divisor of n. Conversely, assume
|x| = d < ∞ and d | n. By Theorem 2.3.25 there is an isomorphism A ∼= Z/n
defined by ai 7→ [i] and a commutative diagram

Z
β

!!

ηn

||
ηd

��
A

∼= // Z/n α // Z/d
∼= // ⟨x⟩ ⊆ // G
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where β(1) = x, ηn and ηd are the natural maps, and α exists by Exercise 1.2.19.
The homomorphism θ is the composition of the four homomorphisms in the bottom
row. □

Theorem 2.3.27. Let n ∈ N be a positive integer. The group of automorphisms
of the cyclic group of order n is isomorphic to the group of units modulo n. That
is,

Aut(Z/n) ∼= Un

which is a group of order ϕ(n). The group of automorphisms of the infinite cyclic
group Z is isomorphic to the group of order two. That is,

Aut(Z) ∼= {1,−1}.

Proof. We utilize Theorem 2.3.25, Lemma 2.3.26, and Exercise 2.3.16. Let
A = ⟨a⟩. Given r ∈ Z, the rth power map on A is denoted πr : A → A and is
defined by πr(a) = ar. If α : A→ A is an endomorphism of A, then α(a) = as for
some integer s. Since

(3.1) α(at) = α(a)t = (as)t = ast

we see that α = πs. That is, every endomorphism of A is πr for some r ∈ Z. This
also shows πsπt = πst. The image of πr is the subgroup ⟨ar⟩.

Case 1: Assume A is finite of order n. Then ar = as if and only if r ≡ s
(mod n). This proves there are n distinct endomorphisms ofA, namely {π0, π1, . . . , πn−1}.
The generators of A are {ar | gcd(r, n) = 1}, which is a set of order ϕ(n). Since
πr is one-to-one and onto if and only if ar is a generator of A, this proves that
there are ϕ(n) automorphisms of A, namely {πr | 1 ≤ r ≤ n− 1, gcd(r, n) = 1}.
By Example 2.1.3, the group of units modulo n is an abelian group of of order
ϕ(n). Define θ : Aut(Z/n) → Un by θ(πr) = r. Then we have shown that θ is an
isomorphism of groups.

Case 2: Assume A is infinite. Then ar = as if and only if r = s. By Theo-
rem 2.2.15, the two generators of A are {a, a−1}. Therefore, the two automorphisms
of A are π1 and π−1. □

In general, if G is a finite group and p is a prime divisor of |G|, then G has
an element of order p. This is known as Cauchy’s Theorem and we will eventually
present two proofs in Corollary 2.4.14 and Theorem 2.7.3. As an application of
Theorem 2.3.25, an abelian version of Cauchy’s Theorem is stated and proved in
Theorem 2.3.28 below. The proof is by induction on the order of G. The induction
step uses Lagrange’s Theorem (Corollary 2.2.12) and the fact that ifN is a subgroup
of G, then G/N is an abelian group (Example 2.3.6). The key step in the induction
argument is that an element of order p in the quotient group G/N “lifts” to an
element in G whose order is a multiple of p.

Theorem 2.3.28. (Cauchy’s Theorem for Abelian Groups) Let G be a finite
abelian group and p a prime number. If p divides |G|, then G contains an element
of order p.

Proof. The proof is by induction on the order of G. Let n = |G|. Since p
divides n, we know n > 1. If p = |G|, then by Exercise 2.2.28, there exists a ∈ G
such that G = ⟨a⟩, hence |a| = p. Inductively assume n is composite and that the
result holds for all abelian groups of order less than n. By Corollary 2.2.19, we
know G has a proper subgroup, call it N . If p divides |N |, then by our induction
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hypothesis, N has an element of order p. Therefore, assume p does not divide |N |.
Since G is abelian, by Example 2.3.6, N is a normal subgroup and G/N is abelian.
By Corollary 2.2.12, p divides |N |[G : N ]. Since p does not divide |N |, we have
p divides [G : N ]. By our induction hypothesis, G/N has an element of order p.
Suppose b ∈ G and bN has order p in G/N . Since G is finite, b has finite order.
By Exercise 2.3.40, p divides the order of b. By Theorem 2.3.25, ⟨b⟩ contains an
element of order p. □

Example 2.3.29. In this example we show that up to isomorphism there are
exactly two groups of order six. By Example 2.1.3 that Z/6 is an abelian group of
order six. We know from Example 2.1.14 that the symmetric group on 3 letters,
S3, is a nonabelian group of order 6. Let G be a group of order six. Let a ∈ G
and set A = ⟨a⟩. By Corollary 2.2.17, |a| ∈ {1, 2, 3, 6}. If G has an element of
order 6, then by Theorem 2.3.25, G is isomorphic to Z/6. Assume from now on
that G has no element of order 6. For contradiction’s sake, suppose G has no
element of order 3. Then every element of G satisfies x2 = e. By Exercise 2.1.25,
G is abelian and there exists a ∈ G such that |a| = 2. Then A = ⟨a⟩ is normal
and G/A has order three. By Exercise 2.3.40, if the generator of G/A is bA, then
b has order 3 or 6, a contradiction. We have shown that G has an element a
of order 3. If A = ⟨a⟩, then by Exercise 2.3.22, A is the unique subgroup of
order 3. Then G − A consists of elements of order 2. Let b ∈ G − A. The
coset decomposition of G is A ∪ bA = {e, a, a2} ∪ {b, ba, ba2}. Since [G : A] = 2,
by Exercise 2.3.17 A is normal. Since A is normal, bA = Ab, by Lemma 2.3.4.
Therefore, ab ∈ {b, ab, a2b}. We know ab ̸= b since a ̸= e. If ba = ab, then by
Lemma 2.2.16, |ab| = 6, a contradiction. Therefore, ab = a2b. We have proved that
G = {e, a, a2, b, ab, a2b} where a3 = b2 = e and ab = a2b. The reader should verify
that the assignments a 7→ (123), a2 7→ (132), b 7→ (12), ab 7→ (13), and a2b 7→ (23)
defines an isomorphism G ∼= S3.

3.5. The center of a group. The center of a group is defined and as an
exercise the reader is asked to prove that the center is a normal subgroup. As
examples, we compute the center of the quaternion 8-group, the dihedral groups,
the symmetric groups, and the general linear group of 2-by-2 matrices over a field.

Definition 2.3.30. Let G be a group. The center of G, denoted Z(G), is
defined to be {x ∈ G | xa = ax for all a ∈ G}. In Exercise 2.3.38 the reader is
asked to prove that Z(G) is a normal subgroup of G.

Example 2.3.31. Let Q8 be the quaternion 8-group of Example 2.1.18. In
Exercise 2.4.19 the reader is asked to prove that the center of Q8 is the unique
subgroup of order two.

Example 2.3.32. Let n ≥ 3 and let Dn be the dihedral group of Exam-
ple 2.1.16. Then Dn is the group of symmetries of a regular n-gon. If H is the
horizontal flip and R the rotation, then Dn = {HiRj | 0 ≤ i ≤ 1, 0 ≤ j < n} is
a nonabelian group of order 2n. The relations H2 = Rn = e and HRH = R−1

hold. Hence the conjugate of R by H is R−1. We show that if n = 2k is even,
then Z(Dn) is the subgroup of order two generated by Rk. Conjugation by H is an
automorphism, so if 0 < i < n, then HRiH = R−i. We see that Ri is in Z(Dn) if
and only if Ri = R−i, which is true if and only if i = 0 or n = 2k is even and i = k.
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It follows that the center of Dn = ⟨e⟩ if n is odd. In summary, we have shown that

Z(Dn) =

{
⟨Rn/2⟩ if n is even

⟨e⟩ if n is odd.

Example 2.3.33. Let n ≥ 3 and let Sn be the symmetric group on n letters
(see Example 2.1.14). We show that Z(Sn) = ⟨e⟩. Let π ∈ Sn and assume π ̸= e.
First assume π(a) = b and π(b) = c, where a, b, c are distinct. Let τ be the 2-cycle
(ab). Then πτ(a) = π(b) = c and τπ(a) = τ(b) = a, which shows π is not central.
Now suppose π(a) = b and π(b) = a. Let σ be the 2-cycle (bc), where a, b, c are
distinct. Then πσ(a) = π(a) = b and σπ(a) = σ(b) = c, which shows π is not
central. If π ̸= e, then π falls into one of these two cases. This shows Z(Sn) = ⟨e⟩.

Example 2.3.34. As in Example 2.1.20, let F be a field and GL2(F ) the general
linear group of invertible 2-by-2 matrices over F . Then

GL2(F ) =

{(
a b
c d

)
| ad− bc ̸= 0

}
.

To compute the center, assume

(
a b
c d

)
is a central matrix. Then(

0 1
1 0

)(
a b
c d

)(
0 1
1 0

)
=

(
d c
b a

)
shows that a = d and b = c. Now(

1 −1
0 1

)(
a b
b a

)(
1 1
0 1

)
=

(
a− b 0
b a+ b

)
shows that b = 0. Therefore, a central matrix is diagonal. It is routine to show that

a diagonal matrix

(
a 0
0 a

)
is central. This computation shows that Z(GL2(F )) is

equal to

{(
a 0
0 a

)
| a ∈ F ∗}

}
. If we define δ : F ∗ → GL2(F ) to be the diagonal

map, δ(x) =

(
x 0
0 x

)
, then δ is a monomorphism and im(δ) = Z(GL2(F )). The

quotient, GL2(F )/F
∗, is denoted PGL2(F ) and is called the projective general linear

group of 2-by-2 matrices over F .

Example 2.3.35. Let F be a field. Let det : GL2(F )→ F ∗ be the determinant

function, where det

(
a b
c d

)
= ad − bc. In Example 2.1.20 we showed that det is

an epimorphism on multiplicative groups. The kernel, ker(det), which is the set
of all matrices with determinant equal to 1, is denoted SL2(F ) and is called the
special linear group of 2-by-2 matrices over F . By Theorem 2.3.12 (a) there is an
isomorphism of groups

GL2(F )/ SL2(F ) ∼= F ∗.

See Exercise 2.5.15 for a computation of SL2(Z/3).

Example 2.3.36. As in Example 2.1.14, the group of permutations of the set
{1, 2, 3} is

S3 = {e, (123), (132), (12), (13), (23)}
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and is called the symmetric group on 3 elements. The group S3 is isomorphic to
D3, the group of symmetries of an equilateral triangle (see Example 2.1.15). Also,
S3 is isomorphic to GL2(Z/2), the group of invertible 2-by-2 matrices over the field
of order 2 (see Exercise 2.1.26x). The group table for S3 is listed in Example 2.1.14.
The cyclic subgroups of S3 are:

⟨e⟩ = {e}
⟨(123)⟩ = ⟨(132)⟩ = {e, (123), (132)}

⟨(12)⟩ = {e, (12)}
⟨(13)⟩ = {e, (13)}
⟨(23)⟩ = {e, (23)}

Since S3 is a subgroup of itself, there are exactly 6 subgroups. The center of S3

is the trivial subgroup ⟨e⟩, by Example 2.3.33. The commutator subgroup (see
Exercise 2.3.42) of S3 is the cyclic subgroup ⟨(123)⟩, by Exercise 2.3.43. There is
one subgroup of order 6, one subgroup of order 3, three subgroups of order 2, and
one subgroup of order 1. The three elements of order 2 are not central, hence the
subgroups of order 2 are not normal. The commutator subgroup and the trivial
subgroups are normal. The subgroup lattice of S3 is

S3

⟨(123)⟩

⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩

⟨e⟩

Example 2.3.37. In Example 2.1.16 we defined the dihedral group Dn as the
group of symmetries of a regular n-gon. For instance, if n = 4, the dihedral group

D4 = {e, (1234), (13)(24), (1432), (13), (24), (12)(34), (14)(23)}
is a group of order 8 and is the group of symmetries of a square. In this example
we use cycle notation, so R = (1234) represents a rotatation of the square through
an angle of 90 degrees. The horizontal flip that fixes vertex 1 is H = (24). The
multiplicative powers of each element of D4 are given in the rows of the following
table. The order of the element is listed in the last column.

x x2 x3 x4 |x|
e 1

(1234) (13)(24) (1432) e 4
(13)(24) e 2
(1432) (13)(24) (1234) e 4
(13) e 2
(24) e 2

(12)(34) e 2
(14)(23) e 2
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There are 2 elements of order 4, 5 elements of order 2, and 1 element of order 1.
Each element of order 2 generates a cyclic subgroup of order 2. The elements of
order 4 are inverses of each other and generate the only cyclic subgroup of order 4
in D4. There are two more subgroups of order 4 that are not cyclic:

⟨(13), (24)⟩ = {e, (13), (13)(24), (24)}
⟨(12)(34), (14)(23)⟩ = {e, (12)(34), (13)(24), (14)(23)}.

The trivial subgroups ⟨e⟩ and D4 are normal. The three subgroups of order 4 are
normal, by Exercise 2.3.17. The center of D4 is the cyclic subgroup ⟨(13)(24)⟩ by
Example 2.3.32, and is normal, by Exercise 2.3.38. The commutator subgroup of
D4 is the cyclic subgroup ⟨(13)(24)⟩, by Exercise 2.3.43. The only subgroups of D4

that are not normal are the four cyclic subgroups of order 2 that are not central.
The subgroup lattice of D4 is

D4

⟨(13), (24)⟩ ⟨(1234)⟩ ⟨(12)(34), (14)(23)⟩

⟨(13)⟩ ⟨(24)⟩ ⟨(13)(24)⟩ ⟨(12)(34)⟩ ⟨(14)(23)⟩

⟨e⟩

where a line indicates set containment.

3.6. Exercises.

Exercise 2.3.38. Let G be a group. The center of G is the set Z(G) = {x ∈
G | xy = yx for every y ∈ G}. Prove the following:

(1) Z(G) is an abelian group.
(2) Z(G) is a normal subgroup of G.
(3) If H and K are groups, then Z(H ×K) = Z(H)× Z(K).
(4) If G/Z(G) is a cyclic group, then G is abelian.

Exercise 2.3.39. Let G be a group and Aut(G) the group of all automorphisms
of G. As in Exercise 2.3.19, for every a ∈ G, let αa : G→ G be defined by αa(x) =
a−1xa. Define θ : G → Aut(G) by θ(a) = αa−1 . Show that θ is a homomorphism
of groups. The image of θ is called the group of inner automorphisms of G. Show
that ker(θ) is equal to Z(G), the center of G (see Exercise 2.3.38). Conclude that
the group of inner automorphisms of G is isomorphic to G/Z(G).

Exercise 2.3.40. Let θ : G→ G′ be a homomorphism of groups and x ∈ G an
element of finite order. Show that |θ(x)| divides |x|.

Exercise 2.3.41. Let n be a positive integer. Prove that
∑
d|n ϕ(d) = n. See

Definition 1.2.15 for the notation
∑
d|n. (Hint: Apply Theorem 2.3.25.)

Exercise 2.3.42. Let G be a group. The commutator subgroup of G is the
subgroup of G generated by the set {xyx−1y−1 | x, y ∈ G} and is denoted G′.
Prove:
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(1) G′ is a normal subgroup of G.
(2) G/G′ is abelian.
(3) If N is a normal subgroup of G such that G/N is abelian, then G′ ⊆ N .
(4) If H is a subgroup of G and G′ ⊆ H, then H is normal in G.

Exercise 2.3.43. Let G = Dn be the dihedral group of order 2n. Compute
the commutator subgroup G′ (see Exercise 2.3.42). (Hint: If σ = (123 · · ·n), show
that G′ is the cyclic group generated by σ2.)

Exercise 2.3.44. Let

σ =

[
1 2 3 4 5 6 7
4 6 1 5 3 7 2

]
, τ =

[
1 2 3 4 5 6 7
5 2 4 3 6 1 7

]
be permutations in S7. Compute τστ−1. Write σ, τ , τστ−1 using cycle notation.
Show that σ factors into a 4-cycle times a 3-cycle. Show that τστ−1 factors into a
4-cycle times a 3-cycle. This is a special case of Lemma 2.6.6.

Exercise 2.3.45. Let G be a group and X ⊆ G. Let S be the set of all normal
subgroups H in G such that X ⊆ H. Prove that N =

⋂
H∈S H is a subgroup of G

satisfying:

(1) N is a the smallest normal subgroup of G containing X.
(2) N is equal to the subgroup of G generated by the set

⋃
g∈G gXg

−1.

We call N the normal subgroup of G generated by X.

Exercise 2.3.46. Let F be a field and G = GL2(F ) the general linear group
of 2-by-2 matrices over F (see Example 2.1.20). Show that the commutator sub-
group G′ (see Exercise 2.3.42) is a subgroup of the special linear group SL2(F ) (see
Example 2.3.35). For a continuation of this example, see Exercise 2.3.50.

Exercise 2.3.47. Let GL2(F ) be the general linear group of invertible 2-by-2
matrices over the field F and det : GL2(F ) → F ∗ the determinant function (see
Example 2.1.20). Consider the following sets consisting of upper triangular matrices
in GL2(F ):

U =

{(
a b
0 d

)
∈M2(F ) | ad ̸= 0

}
,

D =

{(
1 b
0 1

)
∈M2(F ) | b ∈ F

}
.

(1) Show that U is a subgroup of GL2(F ).
(2) Show that det : U → F ∗ is an epimorphism of groups and describe the

kernel as a set of matrices.
(3) Show that D is isomorphic to (F,+), the additive group of the field F .
(4) Show that D is a normal subgroup of U and U/D ∼= F ∗ × F ∗.
(5) Show thatD is equal to the commutator subgroup of U (see Exercise 2.3.42).

For a continuation of this example, see Exercise 2.3.48.

Exercise 2.3.48. As in Exercise 2.3.47, let F be a field, GL2(F ) the general
linear group of 2-by-2 matrices over F , and U the subgroup of GL2(F ) consisting
of all upper triangular invertible matrices.

(1) Define θ : U → F ∗ by θ

(
a b
0 d

)
= d. Show that θ is a group epimorphism.

Let T = ker θ. Describe T as a set of matrices.
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(2) Show that

W =

{(
a 0
0 1

)
∈M2(F ) | a ∈ F ∗

}
is a subgroup of U . Assume F ̸= Z/2. In other words, assume F contains
at least three elements. Show:
(a) W is not a normal subgroup of U .
(b) The normal subgroup of U generated by W (for this terminology, see

Exercise 2.3.45) is the group T of Part (1).

For a continuation of this example, see Exercise 2.5.21.

Exercise 2.3.49. Let C∗ be the group of all nonzero complex numbers under
multiplication and S1 = {z ∈ C | |z| = 1} the subgroup of all complex numbers
of absolute value 1 (see Exercise 2.3.21). Show that the quotient group C∗/S1 is
isomorphic to (R>0, ·), the multiplicative abelian group of positive real numbers.

Exercise 2.3.50. This exercise is a continuation of Exercise 2.3.46. Let F
be a field and assume F ̸= Z/2. In other words, assume F is a field that has at
least three elements. Show that the commutator subgroup of GL2(F ), the general
linear group of 2-by-2 matrices over F , is equal to SL2(F ), the special linear group.
(Although the proof is relatively long and tedious, it is elementary and involves
only material already covered in this book.)

Exercise 2.3.51. Let Q8 be the quaternion 8-group of Example 2.1.18 and D4

the dihedral group of Example 2.1.16. Let C4 be a cyclic group of order 4. For each
of the following statements, either exhibit an example to substantiate the claim, or
prove that the claim is false.

(1) There exists a monomorphism of groups C4 → Q8.
(2) There exists an epimorphism of groups Q8 → C4.
(3) There exists a monomorphism of groups C4 → D4.
(4) There exists an epimorphism of groups D4 → C4.

4. Group actions

4.1. Group actions, orbits and stabilizers.

Lemma 2.4.1. Let G be a group and S a nonempty set. The following are
equivalent.

(1) There is a homomorphism of groups θ : G→ Perm(S).
(2) There is a function G×S → S, where the image of the ordered pair (g, x)

is denoted g ∗ x, and the properties
(a) (associative law) (g1g2) ∗ x = g1 ∗ (g2 ∗ x) for all g1, g2 ∈ G, x ∈ S

and
(b) (e ∈ G acts as the identity function) e ∗ x = x, for all x ∈ S
are satisfied.

Proof. (1) implies (2): Instead of θ(g)(x) we will write g ∗x. The assignment
(g, x) 7→ g ∗ x defines a function G × S → S. Then (g1g2) ∗ x = θ(g1g2)(x) =
θ(g1)(θ(g2)(x)) = g1 ∗ (g2 ∗ x) and e ∗ x = θ(e)(x) = 1S(x) = x.

(2) implies (1): For each g ∈ G, define λg : S → S to be the “left multiplication
by g” function defined by λg(x) = g ∗ x. Since g ∗ g−1 = g−1 ∗ g = e, λg is a
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permutation of S. Define θ : G → Perm(S) by θ(g) = λg. The associative law
implies θ(g1g2) = θ(g1)θ(g2), so θ is a homomorphism. □

In light of Lemma 2.4.1 we make the following definition.

Definition 2.4.2. Let G be a group and S a nonempty set. We say G acts on S
as a group of permutations, if there is a homomorphism of groups θ : G→ Perm(S).
If g ∈ G and x ∈ S, instead of θ(g)(x) we usually write g ∗ x. If θ is one-to-one,
then the group action is said to be faithful.

Example 2.4.3. Let G be a group. As in Example 2.1.7, if a ∈ G, then
λa : G → G is the “left multiplication by a” function and λa is a permutation of
the set G. Since λab = λaλb, the assignment a 7→ λa defines a homomorphism of
groups λ : G→ Perm(G). Proposition 2.1.6 shows that λ is one-to-one.

Theorem 2.4.4. (Cayley’s Theorem) A finite group of order n is isomorphic
to a subgroup of the symmetric group Sn.

Proof. Let G = {g1, . . . , gn} be a fixed enumeration of the elements of G.
Then we can identify Perm(G) with the symmetric group Sn. By Example 2.4.3,
G is isomorphic to a subgroup of Sn. □

Example 2.4.5. Let G be a group and H a subgroup. If xH = yH, then
axH = ayH because (ax)−1ay = x−1y ∈ H. So a ∈ G and xH ∈ G/H, then
a ∗xH = (ax)H defines an action by G on the set G/H by left multiplication. The
reader should verify that the criteria of Lemma 2.4.1 (2) are satisfied.

Lemma 2.4.6. Let H and K be groups. The following are equivalent.

(1) There is a homomorphism of groups θ : K → Aut(H).
(2) There is a function K × H → H, where the image of the ordered pair

(k, x) is denoted k ∗ x, and the properties
(a) (associative law) (k1k2) ∗ x = k1 ∗ (k2 ∗ x) for all k1, k2 ∈ k, x ∈ H

and
(b) (e ∈ K acts as the identity function) e ∗ x = x, for all x ∈ H
(c) (distributive law) k ∗ (xy) = (k ∗ x)(k ∗ y) for all k ∈ K, x, y ∈ H.
are satisfied.

Proof. (1) implies (2): We identify Aut(H) with a subgroup of Perm(H).
Then by Lemma 2.4.1, K acts on H as a group of permutations. The action by K
on H is defined by k ∗ x = θ(k)(x) and properties (a) and (b) are satisfied. The
distributive law follows from the fact that θ(k) is a homomorphism if k ∈ K.

(2) implies (1): By Lemma 2.4.1, K → Perm(H) is a homomorphism of groups,
where k 7→ λk. For k ∈ K, λk is a permutation of H. The distributive law implies
λk is a homomorphism. □

In light of Lemma 2.4.6 we make the following definition.

Definition 2.4.7. Let H and K be groups. We say K acts on H as a group
of automorphisms, if there is a homomorphism of groups θ : K → Aut(H).

Example 2.4.8. Let G be a group. If g ∈ G, then αg is the inner automorphism
of G defined by conjugation by g. That is, αg(x) = g−1xg. By Exercise 2.3.39, there
is a homomorphism of groups G → Aut(G) defined by a 7→ αa−1 . More generally,
if N is a normal subgroup of G, and g ∈ G, then αg restricts to an automorphism
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of N . Therefore there is a homomorphism G→ Aut(N) defined by a 7→ αa−1 . See
Exercise 2.4.16 for a continuation of this example.

Definition 2.4.9. Let G be a group acting as a group of permutations of a
nonempty set X. Define a relation ∼ on X by the rule x ∼ y if y = g ∗ x for some
g ∈ G. Then x = e ∗ x implies x ∼ x, and if y = g ∗ x, then x = g−1 ∗ y. Moreover,
if y = g1 ∗ x and z = g2 ∗ y, then z = g2g1 ∗ x. This proves that ∼ is an equivalence
relation on X. The equivalence class of x is called the orbit of x. The orbit of x is
equal to G ∗ x = {g ∗ x | g ∈ G}. The set of orbits is denoted X/G. If x ∈ X, then
the stabilizer of x in G is Gx = {g ∈ G | g ∗ x = x}. By Theorem 2.4.10, Gx is a
subgroup of G, therefore, Gx is sometimes called the subgroup fixing x. If Gx = G,
then we say x is fixed by G. The set X0 = {x ∈ X | g ∗ x = x for all g ∈ G} is the
set of all x in X that are fixed by G.

Theorem 2.4.10. Let G be a group acting on a nonempty set X. If x ∈ X,
then Gx, the stabilizer of x in G satisfies the following properties.

(1) Gx is a subgroup of G.
(2) The length of the orbit G ∗ x is equal to the index [G : Gx].

Proof. (1): Since e ∈ Gx, we have Gx ̸= ∅. If a, b ∈ Gx, then ab ∗ x =
a ∗ (b ∗ x) = a ∗ x = x, hence ab ∈ Gx. If a ∗ x = x, then x = a−1 ∗ x. This proves
Gx is a subgroup of G.

(2): We show that there is a one-to-one correspondence between the set of left
cosets of Gx in G and the set G∗x. Define a function f : G→ G∗x by f(g) = g∗x.
Then f is onto. Define a relation on G by the rule: g ≈ h if and only if f(g) = f(h).
By Exercise 1.1.14, ≈ is an equivalence relation. Notice that g ≈ h if and only if
g−1h ∈ Gx, which is equivalent to g ≡ h (mod Gx). Therefore, f̄ : G/Gx → G ∗ x
is a one-to-one correspondence. □

4.2. Conjugates and the Class Equation.

Example 2.4.11. Let G be a group and X = 2G the power set of G. If S
is a subset of G, and a ∈ G, then a ∗ S = aSa−1 defines an action by G on X.
The associative law is ab ∗ S = abS(ab)−1 = a(bSb−1)a−1 = a ∗ (b ∗ S). The
stabilizer of S in G is usually called the normalizer of S in G and is denoted
NG(S) = {a ∈ G | aSa−1 = S}. The orbit of S under this action is the set
{a−1Sa | a ∈ G} of all distinct conjugates of S by elements of G.

Proposition 2.4.12. Let G be a group and S a subset of G. The normalizer
of S in G satisfies the following properties.

(1) NG(S) is a subgroup of G.
(2) If H is a subgroup of G, then NG(H) is the largest subgroup of G contain-

ing H as a normal subgroup.
(3) The number of distinct conjugates of S by elements in G is [G : NG(S)].

Proof. (1) and (3): These follow from Theorem 2.4.10.
(2): Since H is a subgroup, a−1Ha = H for all a ∈ H. Therefore, H ⊆ NG(H).

If x ∈ NG(H), then x−1Hx = H. Therefore, H is normal in NG(H). Suppose
H ≤ K ≤ G and H is a normal subgroup of K. For all x ∈ K, x−1Hx = H, hence
K ⊆ NG(H). □

Let G be a group acting on itself by conjugation. If x ∈ G, the orbit of x
is Cx = {a−1xa | a ∈ G} and is called the conjugacy class of x. The number of
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conjugates of x is the length of the orbit Cx. By Theorem 2.4.10, |Cx| = [G :
NG(x)]. If x is in Z(G), the center of G, then NG(x) = G and Cx = {x}. Since
|G| is finite, there are a finite number of conjugacy classes. If x1, . . . , xn is a
full set of representatives for the conjugacy classes that are not in Z(G), then
G = Z(G)∪(G−Z(G)) = Z(G)∪(∪ni=1Cxi

) is a disjoint union. Taking cardinalities
of both sides of this equation yields the next corollary.

Corollary 2.4.13. (The Class Equation) Let G be a finite group and x1, . . . , xn
a full set of representatives for the conjugacy classes that are not in Z(G). Then

|G| = |Z(G)|+
n∑
i=1

[G : NG(xi)].

As an application of Corollary 2.4.13, we prove Cauchy’s Theorem. Recall that
we already proved Theorem 2.3.28, which is the abelian version of this result. A
second more concise proof of Cauchy’s Theorem is given below in Theorem 2.7.3.

Corollary 2.4.14. (Cauchy’s Theorem) Let G be a finite group of order n
and p a prime divisor of n. Then G contains an element of order p.

Proof. The proof is by induction on n. If G is abelian, then G has an element
of order p, by Theorem 2.3.28. Inductively assume n ≥ 6, G is nonabelian, and
that the result holds for any group of order less than n. Let x1, . . . , xm be a full set
of representatives for the conjugacy classes that are not in Z(G). By our induction
hypothesis, m ≥ 1. Solving the Class Equation of Corollary 2.4.13 for |Z(G)|, we
have

(4.1) |Z(G)| = |G| −
m∑
i=1

[G : NG(xi)].

For each xi, NG(xi) is a proper subgroup of G. If p divides |NG(xi)| for some
i, then by our induction hypothesis, there is an element of order p in NG(xi).
Therefore, assume for every i that p does not divide |NG(xi)|. By Corollary 2.2.12,
|G| = |NG(xi)|[G : NG(xi)]. Since p divides |G| and p does not divide |NG(xi)|, we
have p divides [G : NG(xi)], for every i. Therefore, p divides the right hand side
of (4.1). Hence p divides |Z(G)|. By Theorem 2.3.28, we know that Z(G) has an
element of order p. □

4.3. Exercises.

Exercise 2.4.15. Let H and K be groups. Recall (Definition 2.4.7) that we
say K acts as a group of automorphisms of H if there is a homomorphism of groups
θ : K → Aut(H). In this case, write k ∗ x instead of θ(k)(x). Prove the following:

(1) k ∗ e = e for all k ∈ K.
(2) (k ∗ x)−1 = k ∗ x−1 for all k ∈ K, x ∈ H.

Exercise 2.4.16. Let G be a group containing a normal subgroup N . Let K
be an arbitrary subgroup of G. Generalize Example 2.4.8 by showing that K acts
on N as a group of automorphisms. Specifically, show that if k ∈ K and x ∈ N ,
then k ∗ x = kxk−1 defines an action by K on N as a group of automorphisms.

Exercise 2.4.17. (Semidirect product) As in Definition 2.4.7, let H and K be
groups and assume K acts on H as a group of automorphisms. Define a binary
operation on H ×K by the rule:

(x1, k1)(x2, k2) = (x1(k1 ∗ x2), k1k2).
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(1) Show that the binary operation defined above makes H ×K into a group
where the identity element is (e, e) and the inverse of (x, k) is (k−1 ∗
x−1, k−1). This group is denoted H ⋊ K and is called the semidirect
product of H and K.

(2) Show that N = {(x, e) | x ∈ H} is a normal subgroup of H ⋊K and the
quotient (H ⋊K)/N is isomorphic to K. Show that H is isomorphic to
N .

(3) Show that C = {(e, k) | k ∈ K} is a subgroup of H ⋊ K and K is
isomorphic to C.

Exercise 2.4.18. Let G be a group containing subgroups N and K satisfying:

(1) G = NK,
(2) N is normal in G, and
(3) N ∩K = ⟨e⟩.

As in Exercise 2.4.16, let K act on N by conjugation. Prove that the semidirect
product N ⋊K (see Exercise 2.4.17) is isomorphic to G.

Exercise 2.4.19. Let Q8 = {±1,±i,±j,±k} be the quaternion 8-group of
Example 2.1.18. Show that every subgroup of Q8 is normal. Let Z denote the center
of Q8. Show that Z is a group of order two and is contained in every nontrivial
subgroup of Q8. Show that Q8 is not a semidirect product of two subgroups.

Exercise 2.4.20. Let m,n ∈ N be positive integers. Show that there are
gcd(m,n) distinct homomorphisms from Z/m to Z/n. See Exercises 3.1.18 and
2.8.12 for a continuation of this exercise.

Exercise 2.4.21. If n ≥ 3, show that the dihedral group Dn is isomorphic to
the semidirect product of a cyclic subgroup of order n and a cyclic subgroup of
order two.

Exercise 2.4.22. Let p be an odd prime. Let G be a group of order 2p. Show
that G has a unique subgroup of order p. Denote by P the subgroup of G of order
p. Show that G is isomorphic to the semidirect product of P and a cyclic subgroup
of order two that acts on P by conjugation. Show that G is isomorphic to either
the cyclic group Z/2p or the dihedral group Dp.

Exercise 2.4.23. Show how to construct a nonabelian group of order 9 · 37
that contains a cyclic subgroup of order 9 and a cyclic subgroup of order 37.

Exercise 2.4.24. Let G be a group acting on a set X (see Definition 2.4.2).
Let G0 = {g ∈ G | g ∗ x = x for all x ∈ X}. Show that G0 is a normal subgroup of
G.

Exercise 2.4.25. Let G be a group and H a subgroup of G. As in Exam-
ple 2.4.5, G acts on G/H by left multiplications. By Lemma 2.4.1, there is a a
homomorphism of groups θ : G → Perm(G/H). As in Exercise 2.4.24, denote the
kernel of θ by G0. Show that G0 is a normal subgroup of G contained in H.

Exercise 2.4.26. Let p be a prime and G be a group of order p2. Apply
Exercise 2.4.25 to show that every subgroup of G is normal. If G has order pr,
r > 1, show that every subgroup of order pr−1 is normal in G.

Exercise 2.4.27. Let p and q be primes such that q ≡ 1 (mod p). Show how
to construct a nonabelian group of order pq.
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Exercise 2.4.28. Let Q8 = {±1,±i,±j,±k} be the quaternion 8-group. Show
that Q8 = {1} ∪ {−1} ∪ {±i} ∪ {±j} ∪ {±k} is the decomposition of Q8 into
conjugacy classes.

Exercise 2.4.29. The group of symmetries of a square is

D4 = {e, (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)}.

Show thatD4 = {e}∪{(13)(24)}∪{(1234), (1432)}∪{(24), (13)}∪{(12)(34), (14)(23)}
is the decomposition of D4 into conjugacy classes.

Exercise 2.4.30. The group of symmetries of a regular pentagon is

D5 = {e, (12345), (13524), (14253), (15432),
(25)(34), (15)(24), (13)(45), (12)(35), (14)(23)}.

Show that

D5 = {e} ∪ {(12345), (15432)} ∪ {(13524), (14253)}
∪ {(25)(34), (15)(24), (13)(45), (12)(35), (14)(23)}

is the decomposition of D5 into conjugacy classes.

Exercise 2.4.31. Show how to construct two nonisomorphic nonabelian groups
of order 40 each of which is a semidirect product of two cyclic groups.

Exercise 2.4.32. Let G be a finite group and H a subgroup of G. Suppose
the only normal subgroup of G contained in H is ⟨e⟩. Show that G is isomorphic
to a subgroup of Sn, where n = [G : H].

Exercise 2.4.33. For the following choices of p and q, show how to construct
a nonabelian group of order pq which is a semidirect product of two cyclic groups.

(1) p = 5, q = 11.
(2) p = 7, q = 29.

Exercise 2.4.34. Let p be a prime number and n an integer such that 0 <
n < p. If G is a finite group of order pn and P is a subgroup of order p, then P is
normal. (Hint: Exercise 2.4.25.)

5. Direct products

5.1. External direct product.

Definition 2.5.1. Let I be an index set and {Gi | i ∈ I a family of multi-
plicative groups indexed by I. Although the groups Gi in general are not equal
as sets and have no common elements, we abuse notation and use the same sym-
bol e to denote the identity element of each group Gi. The cartesian product is∏
i∈I Gi = {f : I → ∪i∈I | f(i) ∈ Gi}. The cartesian product is a group if the

binary operation is defined to be coordinate-wise multiplication: (fg)(i) = f(i)g(i).
The identity element is the constant function e(i) = e and the inverse of f is defined
by f−1(i) = (f(i))−1, the coordinate-wise inverse. The associative law holds for the
product because it holds coordinate-wise. The group

∏
i∈I Gi is called the direct

product. Sometimes
∏
i∈I Gi is called the external direct product to distinguish it
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from the construction in Definition 2.5.3 below. For every k ∈ I there is a canonical
injection map ιk : Gk →

∏
i∈I Gi which maps x ∈ Gk to ιk(x), where

ιk(x)(i) =

{
x if i = k

e otherwise.

The canonical projection map is πk :
∏
i∈I Gi → Gk where πk(f) = f(k). The

reader should verify that ιk is a monomorphism, πk is an epimorphism, and πkιk =
1Gk

.
When I = {1, . . . , n} is a finite set, the direct product is identified with the set of

n-tuples {(x1, . . . , xn) | xi ∈ Gi} and it is writtenG1×· · ·×Gn or
∏n
i=1Gi. Multipli-

cation is defined coordinate-wise, hence (x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn).
The identity element is (e, . . . , e), and (x1, . . . , xn)

−1 is (x−11 , . . . , x−1n ).

Theorem 2.5.2. (Chinese Remainder Theorem) Let m and n be positive inte-
gers and let

ψ : Z→ Z/m× Z/n
be defined by ψ(x) = (ηm(x), ηn(x)), where ηm : Z → Z/m and ηn : Z → Z/n are
the natural maps. Then the following are true:

(1) ker(ψ) = ⟨M⟩, where M = lcm(m,n).
(2) ψ is onto if and only if gcd(m,n) = 1.
(3) Z/m× Z/n is cyclic if and only if gcd(m,n) = 1.

Proof. (1): Since ηm and ηn are homomorphisms, it is routine to verify that ψ
is a homomorphism. By Theorem 2.2.15, the kernel of ηm ismZ and the kernel of ηn
is nZ. We see that ker(ψ) = ker(ηm)∩ker(ηn) is equal to {x ∈ Z | m | x and n | x}.
By Theorem 2.2.15, ker(ψ) is generated by M = lcm(m,n).

(2): Let d = gcd(m,m). By Proposition 1.2.10,Md = mn. By Theorem 2.3.12,
im(ψ) is isomorphic to Z/M , which has order M . We see that ψ is onto if and only
if M = mn, which is true if and only if d = 1.

(3): If d = 1, then the direct product Z/m×Z/n is cyclic by (2). Assume d > 1.
To show the direct product is not cyclic, we show that it contains more than ϕ(d)
elements of order d and apply Theorem 2.3.25 (6). Let A = {x ∈ Z/m | |x| = d}.
Then |A| = ϕ(d). If x ∈ A, then by an application of Lemma 2.2.16 (5) we see that
(x, 0) has order d in the direct product. Likewise, if B = {y ∈ Z/n | |y| = d}, then
|B| = ϕ(d) and (0, y) has order d, for each y ∈ B. Therefore, the direct product
contains at least 2ϕ(d) elements of order d. This proves (3). □

For a generalization of Theorem 2.5.2, see Exercise 4.2.27.

5.2. Internal direct product.

Definition 2.5.3. Let G be a group and N1, N2, . . . , Nm a collection of sub-
groups of G satisfying:

(1) Ni is a normal subgroup of G for each i,
(2) G = N1N2 · · ·Nm, and
(3) if xi ∈ Ni for each i and e = x1x2 · · ·xm, then xi = e for each i.

Then we say G is the internal direct product of N1, . . . , Nm.

Lemma 2.5.4. Suppose G is the internal direct product of N1, N2, . . . , Nm. Then
the following are true.
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(1) If i ̸= j, then Ni ∩Nj = ⟨e⟩.
(2) If i ̸= j, xi ∈ Ni, xj ∈ Nj, then xixj = xjxi.
(3) For each i let xi, yi ∈ Ni. If x = x1x2 · · ·xm, and y = y1y2 · · · ym, then

(a) xy = (x1y1)(x2y2) · · · (xmym), and
(b) x−1 = x−11 x−12 · · ·x−1m .

(4) If x ∈ G, then x has a unique representation as a product x = x1x2 · · ·xm,
where xi ∈ Ni for each i.

(5) G is isomorphic to the (external) direct product N1 ×N2 × · · · ×Nm.

Proof. (1): Let x ∈ Ni ∩ Nj . Assume 1 ≤ i < j ≤ m. In the product
N1 · · ·Ni · · ·Nj · · ·Nm we have

e = e · · ·x · · ·x−1 · · · e

where the i-th factor is x, the j-th factor is x−1, and all other factors are the group
identity e. By the uniqueness property of Definition 2.5.3, x = e.

(2): Because Ni and Nj are normal in G, we have xiyjx
−1
i x−1j is in Ni ∩Nj =

⟨e⟩.
(3): The two identities follow immediately from Part (2).
(4): Assume x = x1x2 · · ·xm, where xi ∈ Ni for each i. Assume x = y1y2 · · · ym,

where yi ∈ Ni for each i is another such representation. Using Part (3), we get

e = xx−1 = (x1y
−1
1 ) · · · (xmy−1m ).

By the uniqueness property of Definition 2.5.3, xi = yi for each i.
(5): Let ψ : N1×N2×· · ·×Nm → G be the function defined by multiplication in

the group G: ψ(x1, x2, . . . , xm) = x1x2 · · ·xm. By Part (3), ψ is a homomorphism.
By Definition 2.5.3, ψ is a one-to-one correspondence. □

Proposition 2.5.5. Let G be a group and N1, . . . , Nm a collection of normal
subgroups. Then the following are equivalent.

(1) G is the internal direct product of N1, . . . , Nm.
(2) The function ϕ : N1×· · ·×Nm → G defined by ϕ(x1, . . . , xm) = x1 · · ·xm

is an isomorphism of groups.
(3) G = N1 · · ·Nm and for each k, the intersection Nk∩(N1 · · ·Nk−1Nk+1 · · ·Nm)

is the trivial subgroup ⟨e⟩.
(4) G = N1 · · ·Nm, and N1 ∩ N2 · · ·Nm = N2 ∩ N3 · · ·Nm = · · · = Nm−1 ∩

Nm = ⟨e⟩.

Proof. (1) implies (2): This is Lemma 2.5.4 (5).
(2) implies (3): Since ϕ is onto we have G = N1 · · ·Nm. Let x be an arbitrary

element of Nk ∩ (N1 · · ·Nk−1Nk+1 · · ·Nm). We can write x in two ways: x =
xk ∈ Nk, and x = x1 · · ·xk−1xk+1 · · ·xm ∈ N1 · · ·Nk−1Nk+1 · · ·Nm. Therefore
x = ϕ(e, . . . , e, xk, e, . . . , e) = ϕ(x1, . . . , xk−1, e, xk+1, . . . , xm). Since ϕ is one-to-
one, x = xk = e.

(3) implies (4): For each k = 1, . . . ,m−1 we have: Nk+1 · · ·Nm ⊆ N1 · · ·Nk−1Nk+1 · · ·Nm.
Therefore, Nk ∩ (Nk+1 · · ·Nm) ⊆ Nk ∩ (N1 · · ·Nk−1Nk+1 · · ·Nm) = ⟨e⟩.

(4) implies (1): Let e = x1x2 · · ·xm be a representation of e in N1N2 · · ·Nm.
Then x−11 = x2 · · ·xm is in N1∩N2 · · ·Nm = ⟨e⟩. Therefore, x1 = e and x2 · · ·xm =
e. Inductively, assume 1 < k < m and xk · · ·xm = e. Then x−1k = xk+1 · · ·xm is in
Nk ∩Nk+1 · · ·Nm = ⟨e⟩. Therefore, xk = e and xk+1 · · ·xm = e. By induction, we
are done. □
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5.3. Free Groups. Let X be a set, which will be called the alphabet. A word
on the alphabet X is a finite string of the form

w = aϵ11 a
ϵ2
2 · · · aϵnn

where n ≥ 0, each ai is an element of X and ϵi ∈ {−1, 1}. The length of the string
is n. The only string of length 0 is called the empty string and is denoted e. A
string is reduced if it contains no substrings of the form xx−1 or x−1x, for x ∈ X.
Every word can be reduced in a unique way by recursively striking out all of the
substrings of the form xx−1 or x−1x.

Lemma 2.5.6. Let v = aϵ11 a
ϵ2
2 · · · aϵnn and w = bϕ1

1 bϕ2

2 · · · b
ϕp
p be reduced words

on the alphabet X. There exist factorizations of v and w into substrings v = v1v2,
w = w1w2 such that v2w1 reduces to the empty word e and the reduction of vw is
equal to v1w2. The factors v1, v2, w1, w2 are unique.

Proof. If v has length n = 0, then take v1 = v2 = w1 = e and w2 = w. In this
case, vw = v1w2 and we are done. Inductively assume n > 0 and that the result

holds for any reduced word of length n − 1. If aϵn ̸= b−ϕ1

1 , then vw is reduced. In
this case, take v = v1,v2 = w1 = e, and w2 = w. Otherwise, delete aϵn from the end

of v and b−ϕ1

1 from the front of w, and apply the induction hypothesis to obtain
factorizations:

aϵ11 a
ϵ2
2 · · · a

ϵn−1

n−1 = v1v3

bϕ2

2 · · · bϕp
p = w3w2

Setting v2 = v3a
ϵ
n and w1 = bϕ1

1 w3, we have v2w1 = v3a
ϵ
nb
ϕ1

1 w3 reduces to v3w3

which reduces to the empty word e. Also, the reduction of vw is equal to the
reduction of v1v3w3w2 which is equal to v1w2. This proves the existence of the
factorization. The uniqueness of v3 and w3 implies the uniqueness of v2 and w1. □

Lemma 2.5.7. Let F (X) be the set of all reduced words on X. Then F (X) is a
group, where the product of two words is the word defined by juxtaposition followed
by reduction. The identity element for the group F (X) is the empty string e. The
inverse of the string aϵ11 a

ϵ2
2 · · · aϵnn is the string a−ϵnn · · · a−ϵ22 a−ϵ11 . We call F (X) the

free group on the set X. There is a natural injection ι : X → F (X) defined by
ι(x) = x.

Proof. By Lemma 2.5.6, if v and w are reduced words in F (X), then the
reduction of the word vw is uniquely defined. Since this binary operation does
not depend on grouping by parentheses, it is associative. The rest is left to the
reader. □

Theorem 2.5.8. (Universal Mapping Property) Let X be a set and ι : X →
F (X) the natural injection map. For any group G and any function j : X → G,
there is a unique homomorphism f : F (X)→ G such that the diagram

X
ι //

j
""

F (X)

f

��
G

commutes.
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Proof. Let v = aϵ11 a
ϵ2
2 · · · aϵnn be a reduced word in F (X). Then we define f(v)

to be j(a1)
ϵ1j(a2)

ϵ2 · · · j(an)ϵn . Then f is a well defined function and fι = j. To

see that f is a homomorphism of groups, let w = bϕ1

1 bϕ2

2 · · · b
ϕp
p be another reduced

word on the alphabet X. As in Lemma 2.5.6, factor v = v1v2, w = w1w2 such
that the reduction of vw is equal to v1w2. Since f(v) = f(v1v2) = f(v1)f(v2),
f(w) = f(w1w2) = f(w1)f(w2), and f(v2)f(w1) = e, it follows that

f(vw) = f(v1w2) = f(v1)f(w2) = f(v1)f(v2)f(w1)f(w2) = f(v)f(w).

To prove the uniqueness claim, assume g : F (X) → G is another homomorphism
and gι = j. Then f(x) = g(x) for every x ∈ X. Since X is a generating set for the
group F (X), f is equal to g. □

Corollary 2.5.9. Every group G is the homomorphic image of a free group.

Proof. In Theorem 2.5.8, take X = G and j : G→ G the identity map. Since
j is onto, f is onto. □

Definition 2.5.10. Let X be a set and Y a subset of F (X). As in Exer-
cise 2.3.45, let N be the normal subgroup of F (X) generated by Y . Consider the
quotient group G = F (X)/N . We say G is defined by the generators X subject to
the relations Y . We denote the group G = F (X)/N by ⟨X | Y ⟩.

Example 2.5.11. In the notation of Theorem 2.3.25, let A = ⟨a⟩ be a cyclic
group. If A is infinite, then a presentation of A in terms of generators and relations
is A = ⟨a | ∅⟩. If A has order n > 0, then a presentation of A in terms of generators
and relations is A = ⟨a | an⟩. It is common for the relations to be written as
equations. Then A = ⟨a | an = e⟩.

Example 2.5.12. Let n > 2 and Dn the dihedral group of order 2n of Exam-
ple 2.1.16. Then Dn is generated by two elements, R and H. The order of R is
n and the order of H is 2. The so-called commutator identity is HRH = R−1.
Therefore,

Dn = ⟨R,H | H2 = e, Rn = e, HRH = R−1⟩

is a presentation of Dn in terms of generators and relations.

Example 2.5.13. Let V be the Klein 4-group of Example 2.1.21. Then V is
an abelian group of order 4, generated by two elements of order two. Hence,

V = ⟨a, b | a2 = b2 = e, ab = ba⟩

is a presentation in terms of generators and relations.

Example 2.5.14. Let Q8 = {1,−1, i,−i, j,−j, k,−k} be the quaternion eight
group of Example 2.1.16. The multiplication rules are: (−1)2 = 1, i2 = j2 = k2 =
−1, ij = −ji = k. So we see that Q8 is generated by i and j. Both i and j have
order 4 and −1 = i2 = j2. The commutator relation for i and j is ij = −ji = j3i.
If we write a and b instead of i and j, then a presentation in terms of generators
and relations is

Q8 = ⟨a, b | a4 = e, b4 = e, a2 = b2, ab = b3a⟩.
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5.4. Exercises.

Exercise 2.5.15. The general linear group of 2-by-2 matrices over the field

Z/3, denoted GL2(Z/3), is the multiplicative group of invertible matrices

(
a b
c d

)
with entries in the field Z/3 (see Example 2.1.20). Let A =

(
1 1
1 0

)
, B =

(
0 1
1 1

)
,

C =

(
1 2
1 1

)
, P =

(
0 1
2 0

)
, and Q =

(
1 1
1 2

)
be matrices with entries in Z/3. For

the following computations, access to a computer algebra system such as [61] is not
required, but will be beneficial, especially for parts (6) and (7).

(1) Show that A, B, C, P , and Q are in GL2(Z/3).
(2) Compute the cyclic subgroups ⟨A⟩, ⟨B⟩, ⟨C⟩, ⟨P ⟩, ⟨Q⟩.
(3) Show that P is in the normalizer of ⟨A⟩. Show that P and A generate a

subgroup of order 16.
(4) Show that P is in the normalizer of ⟨B⟩. Show that P and B generate a

subgroup of order 16.
(5) Show that Q is in the normalizer of ⟨C⟩. Show that Q and C generate a

subgroup of order 16.
(6) If G = GL2(Z/3), show that G has order 48. Show that G has 3 subgroups

of order 16. Show that G has 4 subgroups of order 3.
(7) The special linear group of 2-by-2 matrices over Z/3, denoted SL2(Z/3), is

the subgroup of GL2(Z/3) consisting of those matrices with determinate
equal to 1. Let S = SL2(Z/3). Show that S has order 24. Show that
S has 3 subgroups of order 8. Show that every subgroup of order 8 is
isomorphic to the quaternion 8-group, Q8 = {±1,±i,±j,±k}. Show that
S has 4 subgroups of order 3.

Exercise 2.5.16. Give an example of a group G and subgroups N1, N2, . . . , Nm
of G satisfying:

(1) Ni is a normal subgroup of G for each i,
(2) G = N1N2 · · ·Nm, and
(3) if i ̸= j, then Ni ∩Nj = ⟨e⟩,

such that G is not the internal direct product of N1, N2, . . . , Nm.

Exercise 2.5.17. Let G be a finite abelian group. Assume G is the internal
direct product of cyclic subgroups A = ⟨a⟩ and B = ⟨b⟩ where a and b both have
order 6.

(1) Show that |G| = 36.
(2) Show that C = ⟨ab2⟩ has order 6.
(3) Compute |AC|.
(4) Show that |AC| is the internal direct product of A and ⟨b2⟩.

Exercise 2.5.18. Let A and B be normal subgroups of G such that G = AB.
Prove that G/(A ∩B) is isomorphic to G/A×G/B.

Exercise 2.5.19. Let G be a group containing subgroups A and B such that

(1) G = AB,
(2) xy = yx for every x ∈ A and y ∈ B, and
(3) A ∩B = ⟨e⟩.
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Show that G is the internal direct product of A and B.

Exercise 2.5.20. Let A and B be groups. Let A0 be a normal subgroup of A
and B0 a normal subgroup of B. Show that there is an isomorphism of groups

A×B
A0 ×B0

∼=
A

A0
× B

B0
.

Exercise 2.5.21. This is a continuation of Exercise 2.3.48. Let F be a field
and

U =

{(
a b
0 d

)
∈M2(F ) | ad ̸= 0

}
the set of all upper triangular matrices in GL2(F ). Let T be the kernel of the

homomorphism U → F ∗ defined by

(
a b
0 d

)
7→ d. As in Example 2.3.34, let

δ : F ∗ → GL2(F ) be the diagonal map. Let Z = im δ. Show that U is the internal
direct product of T and Z.

6. Permutation Groups

The group of all permutations of Nn = {1, 2, 3, . . . , n} is called the symmetric
group on n letters and is denoted Sn (see Example 2.1.14).

6.1. The cycle decomposition of a permutation. Let α = (a1, . . . , as) be
an s-cycle and β = (b1, . . . , bt) a t-cycle. We say α and β are disjoint if {a1, . . . , as}∩
{b1, . . . , bt} = ∅. If this is the case, then β(ai) = ai for each i, and α(bj) = bj for
each j. Therefore, αβ = βα. This proves Lemma 2.6.1.

Lemma 2.6.1. If α and β are disjoint cycles in Sn, then α and β commute.
That is, αβ = βα.

Example 2.6.2. Here is an example with n = 6. In S6, let

α =

[
1 2 3 4 5 6
3 4 1 2 6 5

]
, β =

[
1 2 3 4 5 6
6 5 4 3 1 2

]
.

Then A = ⟨α⟩ acts on {1, 2, 3, 4, 5, 6}. Given x ∈ {1, 2, 3, 4, 5, 6}, the orbit of x is
A ∗ x. We compute the orbit decomposition under this action. The reader should
verify that A ∗ 1 = {1, 3}, A ∗ 2 = {2, 4}, A ∗ 5 = {5, 6}. In Theorem 2.6.3 we
find that from the orbit decomposition we can construct the factorization of α into
cycles. For instance, α = (1, 3)(2, 4)(5, 6). Likewise, for B = ⟨β⟩, we find the
disjoint orbits are B ∗ 1 = {1, 6, 2, 5}, B ∗ 3 = {3, 4} and the factorization of β into
cycles is β = (1, 6, 2, 5)(3, 4).

Theorem 2.6.3. If σ ∈ Sn is a permutation on n letters, then σ can be written
as the product of disjoint cycles. This representation is unique in the sense that if
σ ̸= e and σ = α1α2 · · ·αk is a product of disjoint cycles all of length two or more
and σ = β1β2 · · ·βℓ is another such representation, then k = ℓ and β1, β2, . . . , βk
can be relabeled such that αi = βi for each i.

Proof. Let σ ∈ Sn and let S = ⟨σ⟩. Then S acts on Nn = {1, 2, . . . , n}.
Let a be an arbitrary element of Nn. We associate to the orbit of a under S a
cyclic permutation αa. Let Sa be the subgroup of S fixing a. Then Sa is a cyclic
subgroup of S. If [S : Sa] = w, then by Theorem 2.3.25, Sa is the unique subgroup
of S with index w and Sa = ⟨σw⟩. By Theorem 2.4.10, the length of the orbit
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of a is equal to w and the orbit of a is {a, σ(a), σ2(a), . . . , σw−1(a)}. On this set
σ is equal to the cyclic permutation αa = (a, σ(a), σ2(a), . . . , σw−1(a)). We see
that for every orbit under the S-action there is an associated cyclic permutation.
If {a1, a2, . . . , ak} is a full set of representatives for the orbits, then σ is equal
to the product of cycles αa1αa1 · · ·αak . The orbits are disjoint, hence so are the
cycles in this factorization. The uniqueness claim follows from the fact that the
cycle decomposition is determined by the orbit decomposition which is uniquely
determined by σ. □

Corollary 2.6.4. If α1, α2, . . . , αm are pairwise disjoint cycles in Sn, then
the order of the product α1α2 . . . αm is equal to lcm(|α1|, |α2|, . . . , |αm|).

Proof. Let |αi| = ki and let k = lcm(k1, k2, . . . , km). By Lemma 2.6.1, the
pairwise disjoint cycles commute. Therefore, (α1α2 . . . αm)k = αk1α

k
2 . . . α

k
m = e.

Suppose ℓ > 0 and e = (α1α2 . . . αm)ℓ = αℓ1α
ℓ
2 . . . α

ℓ
m. The permutation αℓ2 . . . α

ℓ
m

fixes point-wise every element of the orbit of α1. Therefore, αℓ1 = e, hence ℓ ≥ k1.
By symmetry, ℓ ≥ ki for each i. □

Corollary 2.6.5. Every π ∈ Sn is a product of transpositions.

Proof. Let k ≥ 2. By Theorem 2.6.3, it suffices to show that any k-cycle can
be written as a product of transpositions. Notice that a 2-cycle (a1a2) is already
a transposition, a 3-cycle (a1a2a3) = (a1a3)(a1a2) can be factored as a product
of 2 transpositions, and a 4-cycle (a1a2a3a4) = (a1a4)(a1a3)(a1a2) factors into 3
transpositions. In general, a k-cycle (a1a2 · · · ak) = (a1ak) · · · (a1a3)(a1a2) can be
written as a product of k − 1 transpositions. □

6.2. The sign of a permutation. Let n ≥ 2 and Sn the symmetric group
on n letters. Let x1, . . . , xn be indeterminates and Z[x1, . . . , xn] the ring of poly-
nomials with coefficients in Z. Given σ ∈ Sn, we define an automorphism σ :
Z[x1, . . . , xn] → Z[x1, . . . , xn] by the rule σ(p(x1, . . . , xn)) = p(xσ(1), . . . , xσ(n)).
Since σ(τ(xi)) = σ(xτ(i)) = xστ(i) = στ(xi), it follows that Sn acts as a group
of permutations of Z[x1, . . . , xn]. Because x1, . . . , xn are indeterminates, it follows
that σ defines an automorphism of the polynomial ring, hence we have a homomor-
phism of groups Sn → Aut(Z[x1, . . . , xn]). Now look at the polynomial

Φ(x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj).

Then Φ has degree
(
n
2

)
. Fix a transposition θ = (k, ℓ) in Sn where 1 ≤ k < ℓ ≤ n.

We compute θ(Φ). If {i, j} ∩ {k, ℓ} = ∅, then θ(xi − xj) = xi − xj . It is enough to
consider terms with xk or xℓ. All such terms except (xk − xℓ) can be grouped into
pairs. There are four cases:

θ((xi − xk)(xi − xℓ)) = (xi − xk)(xi − xℓ) if i < k

θ((xk − xℓ)) = −(xk − xℓ) if i = k (or i = ℓ)

θ((xk − xi)(xi − xℓ)) = (xℓ − xi)(xi − xk) = (xk − xi)(xi − xℓ) if k < i < ℓ

θ((xk − xi)(xℓ − xi)) = (xℓ − xi)(xk − xi) if ℓ < i

from which it follows that θ(Φ) = −Φ. Therefore, if σ is written as a product of k
transpositions, then σ(Φ) = (−1)kΦ. The rule

sign(σ) =
σ(Φ)

Φ
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defines a function sign : Sn → {1,−1} which is an epimorphism of multiplicative
groups. The kernel of the homomorphism sign : Sn → {1,−1} is called the alter-
nating group on n letters and is denoted denoted An. We return to the study of
the alternating group in Section 2.6.4.

6.3. Conjugacy classes of the symmetric group. Let n ≥ 2 and Sn the
symmetric group on n letters. We view SN as the group Perm(Nn). The purpose
of this section is to describe the conjugacy classes of Sn in terms of the partitions
of the number n. If σ ∈ Sn, then we can write σ as a product of disjoint cycles
σ = σ1σ2 · · ·σk where we assume |σi| = si and s1 ≥ s2 ≥ · · · ≥ sk. Furthermore,
by adjoining 1-cycles if necessary, we assume n = s1+s2+ · · ·+sk. In other words,
the sequence s1 ≥ s2 ≥ · · · ≥ sk is a partition of n. The next lemma shows that
the conjugacy classes of Sn correspond to the partitions of n.

Let σ and θ be arbitrary permutations in Sn. Suppose σ(i) = j, θ(i) = k, and
θ(j) = ℓ. Then θσθ−1(k) = θσ(i) = θ(j) = ℓ. This provides us with an algorithm
to compute the cycle decomposition of the conjugation of σ by θ−1 given the cycle
decomposition of σ: replace each letter by its image under θ. For instance, write
σ = σ1σ2 · · ·σk as a product of disjoint cycles where |σi| = si, s1 ≥ s2 ≥ · · · ≥ sk,
and n = s1 + s2 + · · · + sk. Write σi = (σi1, σi2, . . . , σ1s1). Then θσiθ

−1 is the
cycle (θ(σi1), θ(σi2), . . . , θ(σ1s1)). This shows that under conjugation the form of
the cycle decomposition is preserved.

We illustrate this procedure by an example with n = 10. Let

σ =

[
1 2 3 4 5 6 7 8 9 10
3 8 4 5 1 10 9 7 6 2

]
θ =

[
1 2 3 4 5 6 7 8 9 10
5 4 10 1 7 3 9 8 6 2

]
Then

θσθ−1 =

[
1 2 3 4 5 6 7 8 9 10
7 4 2 8 10 3 5 9 6 1

]
As a product of disjoint cycles, we have σ = (2, 8, 7, 9, 6, 10)(1, 3, 4, 5). Now compute
the disjoint cycle form of the conjugate θσθ−1. Because σ1 starts with 2, and σ2
starts with 1, we start the 6-cycle of θσθ−1 with θ(2) = 4, and the 4-cycle with
θ(1) = 5:

θσθ−1 = (4, 8, 9, 6, 3, 2)(5, 10, 1, 7)

=
(
θ(2), θ(8), θ(7), θ(9), θ(6), θ(10)

)(
θ(1), θ(3), θ(4), θ(5)

)
.

The last equation shows that the cycle decomposition can be obtained by applying
θ to each letter in σ.

Now we show that every conjugacy class contains a canonical permutation. We
continue to employ the notation established above. Consider the permutation

L =

[
1 2 . . . s1 s1 + 1 s1 + 2 . . . s1 + s2 . . . n
σ11 σ12 . . . σ1s1 σ21 σ22 . . . σ2s2 . . . σksk

]
where the second row is obtained by removing all of the parentheses from the prod-
uct of disjoint cycles σ1σ2 · · ·σk. Hence L is a permutation in Sn. Set τ = L−1σL.
Then the disjoint cycle decomposition of τ is obtained by inserting parentheses into
1, 2, . . . , n and splitting it into cycles with the lengths s1, . . . , sk.
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We illustrate this algorithm on the example from above. Start with the per-
mutation σ = (2, 8, 7, 9, 6, 10)(1, 3, 4, 5) in S10. Then

L =

[
1 2 3 4 5 6 7 8 9 10
2 8 7 9 6 10 1 3 4 5

]
is the permutation whose second row is obtained by removing the parentheses from
σ. Compute:

L−1σL =

[
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 1 8 9 10 7

]
.

We see that L−1σL = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10) in disjoint cycle form.
The two algorithms specified above combine to prove Lemma 2.6.6.

Lemma 2.6.6. Let n ≥ 2 and Sn the symmetric group on n letters. Two
permutations σ, τ in Sn are in the same conjugacy class if and only if they give rise
to the same partition of n. The number of distinct conjugacy classes of Sn is equal
to the number of distinct partitions of n.

6.4. The Alternating Group. Let n ≥ 3. The alternating group on n letters
is denoted An and is defined to be the kernel of the homomorphism sign : Sn →
{1,−1}. That is, An is the subgroup of all even permutations. We have [Sn :
An] = 2 and |An| = n!/2. Theorem 2.6.9, the main result of this section, is a proof
that if n ̸= 4, then An is simple. The proof we give is completely elementary. In
Exercise 2.6.12 the reader is asked to prove that A4 contains a normal subgroup of
order 4, hence A4 is not simple.

Lemma 2.6.7. If n ≥ 3, then An is generated by 3-cycles.

Proof. By Corollary 2.6.5, a 3-cycle is even, so An contains every 3-cycle.
Every permutation in An is a product of an even number of transpositions. It
suffices to show that a typical product (ab)(cd) factors into 3-cycles. If (ab) and
(cd) are disjoint, then we see that

(ab)(cd) = (ab)(ac)(ac)(cd)

= (acb)(acd)

is a product of 3-cycles. If a = c, then we have (ab)(ad) = (adb). These are the
only cases, so An is generated by 3-cycles. □

Lemma 2.6.8. Let n ≥ 3. If N is a normal subgroup of An and N contains a
3-cycle, then N = An.

Proof. Without loss of generality assume (123) ∈ N . Then (123)(123) =
(132) ∈ N . We assume n > 3, otherwise we are done. By Corollary 2.6.5, a 3-cycle
is even, so An contains every 3-cycle. Let 3 < a ≤ n be arbitrary. We use the fact
that σ−1Nσ ⊆ N for all σ ∈ An. Then (1a3)(123)(13a) = (1a2) is in N . Also,
(1a2)2 = (12a) ∈ N . Similarly, we see that (13a), (1a3), (23a), (2a3) are in N .

Now let a ̸= b, a > 2, and b > 2. Then (1b2)(12a)(12b) = (1ab) is in N .
Similarly, we see that (2ab), (3ab), (a1b), (a2b), etc. are in N .

Now let a ̸= b ̸= c, a > 1, b > 1, and c > 1. Then (ac1)(a1b)(a1c) = (abc) is in
N . So N contains every 3 cycle. By Lemma 2.6.7, N = An. □

Theorem 2.6.9. The alternating group An is simple if n ̸= 4.
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Proof. If n = 2, then A2 = ⟨e⟩. If n = 3, then A3 = ⟨(123)⟩ is a cyclic group
of order 3, hence is simple. From now on assume n > 4, N is a normal subgroup
of An and N ̸= ⟨e⟩. We prove that N = An. The proof consists of a case-by-case
analysis.

Case 1: If N contains a 3-cycle, then N = An, by Lemma 2.6.8.
Case 2: Assume N contains a permutation σ such that the cycle decomposition

of σ has cycle of length r ≥ 4. Write σ = (a1a2 · · · ar)τ , where τ fixes each a1, . . . , ar
element-wise. Let δ = (a1a2a3). Then δ ∈ An and δσδ−1 ∈ N since N is normal.
The following computation

σ−1δσδ−1 = τ−1(a1ar · · · a2)(a1a2a3)(a1a2 · · · ar)τ(a1a3a2)
= (a1a3ar)

shows that Case 2 reduces to Case 1.
Case 3: Assume N has a permutation σ such that the cycle decomposition of σ

has at least two disjoint 3-cycles. Write σ = (a1a2a3)(a4a5a6)τ , where τ fixes each
a1, a2, a3, a4, a5, a6 element-wise. Let δ = (a1a2a4). Then δ ∈ An and δ−1σδ ∈ N
since N is normal. The following computation

δ−1σδσ−1 = (a1a4a2)(a1a2a3)(a4a5a6)τ(a1a2a4)τ
−1(a1a3a2)(a4a6a5)

= (a1a4a2a3a5)

shows that Case 3 reduces to Case 2.
Case 4: Assume N has a permutation σ such that the cycle decomposition of

σ consists of one 3-cycles and one or more 2-cycles. Write σ = (a1a2a3)τ , where τ
is the product of the 2-cycles. Then σ2 = (a1a3a2) ∈ N , hence Case 4 reduces to
Case 1.

Case 5: Assume every σ ∈ N has a cycle decomposition that is a product of
disjoint 2-cycles. Let σ = (a1a2)(a3a4)τ where τ is a product of 2-cycles and is
disjoint from (a1a2)(a3a4). Let δ = (a1a2a3). Then δ ∈ An and δ−1σδ ∈ N since
N is normal. The following computation

δ−1σδσ−1 = (a1a3a2)(a1a2)(a3a4)τ(a1a2a3)(a1a2)(a3a4)τ

= (a1a4)(a2a3)

shows that β = (a1a4)(a2a3) is in N . Since n > 4 (notice that this is the first time
we have used this hypothesis), there exists a5 ̸∈ {a1, a2, a3, a4}. Let α = (a1a4a5).
The following computation

α−1βαβ = (a1a5a4)(a1a4)(a2a3)(a1a4a5)(a1a4)(a2a3)

= (a1a4a5)

shows that N contains a 3-cycle, hence Case 5 reduces to Case 1. □

Corollary 2.6.10. If n > 4, the normal subgroups of Sn are ⟨e⟩, An, and Sn.

Proof. Let N be a normal subgroup of Sn. Then N∩An is a normal subgroup
of An. By Theorem 2.6.9, N ∩ An is equal to either ⟨e⟩, or An. If N ∩ An = An,
then [Sn : An] = 2 implies N = An, or N = Sn. Suppose N ∩ An = ⟨e⟩ and for
contradiction’s sake, suppose N ̸= ⟨e⟩. Then N consists of e and odd permutations.
If σ ∈ N is an odd permutation, then σ2 is even, hence σ2 ∈ N ∩ An = ⟨e⟩.
Therefore, every element ofN has order 2 or 1. Let σ ∈ N and assume σ has order 2.
Then the cycle decomposition of σ is a product of disjoint transpositions. If σ = (ab)



6. PERMUTATION GROUPS 75

is a transposition, then (ab)(acb)(ab)(abc) = (acb) is in N , a contradiction. Assume
σ = (ab)(cd)τ , where τ is a product of disjoint transpositions that do not involve
a, b, c, d. Let α = (acb)σ(abc) = (ac)(bd)τ . Then α is in N , and σα = (ad)(bc) is in
N . But (ad)(bc) is even, which is a contradiction. □

Corollary 2.6.11. Let n > 4. If H is a subgroup of Sn and [Sn : H] < n,
then H = An or H = Sn.

Proof. Let H be a subgroup of Sn, m = [Sn : H], and assume m < n. Then
Sn acts on G/H by left multiplication. If we identify Perm(G/H) with Sm, then
there is a homomorphism of groups ϕ : Sn → Sm. By the Pigeonhole Principle
(Exercise 1.1.11), kerϕ is a nontrivial normal subgroup of G contained in H. By
Corollary 2.6.10, kerϕ is either An or Sn. Therefore, H is either An or Sn. □

6.5. Exercises.

Exercise 2.6.12. Let G = A4 be the alternating group on 4 letters. The order
of G is twelve.

(1) Viewing G as a group of permutations of {1, 2, 3, 4}, list the twelve ele-
ments of G using disjoint cycle notation. For each x ∈ G, compute the
cyclic subgroup ⟨x⟩. Show that G has eight elements of order three and
three elements of order two.

(2) Show that the subgroup of order 4 is the group of symmetries of a non-
square rectangle (see Example 2.1.17).

(3) Show that G has four subgroups of order three. Show that the subgroup of
order four is normal. Show that the center of G has order one. Construct
the lattice of subgroups of G. Show that G has only one proper normal
subgroup, namely the subgroup of order four.

(4) In Exercise 2.6.14 you are asked to compute the partition of G into con-
jugacy classes.

Exercise 2.6.13. As in Exercise 2.6.12, the alternating group on four letters
is denoted A4. Let N be the normal subgroup of A4 of order four. Show that G
is isomorphic to the semidirect product of N and a cyclic subgroup of order three
that acts on N by conjugation.

Exercise 2.6.14. Let A4 be the alternating group on 4 letters (see Exer-
cise 2.6.12). Compute the partition of A4 into conjugacy classes.

Exercise 2.6.15. Show that the set of transpositions {(12), (23), . . . , (n−1, n)}
generates Sn.

Exercise 2.6.16. Show that Sn is generated by a transposition (1, 2) and an
n-cycle (123 · · ·n).

Exercise 2.6.17. Compute the number of distinct k-cycles in Sn.

Exercise 2.6.18. Let 1 ≤ k < n. Show that for each k-subset A = {a1, . . . , ak}
of Nn there is a subgroup of Sn isomorphic to Sk × Sn−k. Show that any two such
subgroups are conjugates of each other. (Hint: Suppose a ∈ A, b ̸∈ A, and σ fixes
Nn −A. Loot at (ab)σ(ab).)

Exercise 2.6.19. Let V = {e, (12)(34), (13)(24), (14)(23)} be the subgroup of
order 4 in A4. Show that V is a normal subgroup of S4. Prove that S4/V is a
nonabelian group of order 6.



76 2. GROUPS

7. The Sylow Theorems

7.1. p-Groups. Let p be a prime number. A finite group G is called a p-group
if |G| = pr for some r ≥ 1. We begin this section with the following fundamental
theorem on p-groups.

Theorem 2.7.1. (Fundamental Theorem on p-groups) Let p be a prime and G
a finite group of order pn, where n ≥ 1. Then the following are true.

(1) Z(G) ̸= ⟨e⟩.
(2) If G has order p2, then G is abelian.
(3) If n > 1, then G has a proper normal subgroup N such that ⟨e⟩ ≠ N ̸= G.
(4) (A finite p-group is solvable) There is a sequence of subgroups G0 ⊆ G1 ⊆
· · · ⊆ Gn−1 ⊆ Gn such that
(a) G0 = ⟨e⟩, Gn = G,
(b) for 0 ≤ i ≤ n, |Gi| = pi,
(c) for 0 ≤ i ≤ n− 1, Gi is a normal subgroup of Gi+1 and the quotient

Gi+1/Gi is a cyclic group of order p.
We call G0, G1, . . . , Gn a solvable series for G.

(5) Let X be a finite set and assume G acts on X as a group of permutations.
Let X0 = {x ∈ X | g ∗ x = x for all g ∈ G}. Then |X| ≡ |X0| (mod p).

Proof. (5): If x ∈ X, then x ∈ X0 if and only if G∗x = {x}. If X0 = X, there
is nothing to prove. Let x1, . . . , xm be a full set of representatives of the orbits with
length two or more. The orbit decomposition of X is X0 ∪ (∪mi=1G ∗ xi). Taking
cardinalities and applying Theorem 2.4.10,

|X| = |X0|+
m∑
i=1

|G ∗ xi|

= |X0|+
m∑
i=1

[G : Gxi ].

Then [G : Gxi
] ̸= 1 for each i and by Corollary 2.2.12, [G : Gxi

] divides pn.
Reducing both sides of the equation modulo p, we get |X| ≡ |X0| (mod p).

(1): Let G act on itself by conjugation. Then Z(G) is the set of all elements
fixed by the group action. By Part (5), 0 ≡ |Z(G)| (mod p).

(2): By Part (1), Z(G) has order p or p2. Then G/Z(G) has order 1 or p, hence
is cyclic. By Exercise 2.3.38, G is abelian.

(3): By Part (1), if Z(G) ̸= G, then N = Z(G) works. If Z(G) = G, then G
is abelian. Every subgroup of G is abelian, so it suffices to find a proper subgroup
of G. Let z ∈ G − ⟨e⟩ and set N = ⟨z⟩. If G ̸= N , then we are done. Otherwise,
N = G and z has order pn. By Lemma 2.2.16, |zp| = pn−1. In this case, N = ⟨zp⟩
works.

(4): The proof is by induction on n. If n = 1, then G0 = ⟨e⟩, G1 = G is a
solvable series. If n = 2, then by Part (3) G0 = ⟨e⟩, G1 = N , G2 = G is a solvable
series.

Inductively, assume n ≥ 2 and that a solvable series exists for any p-group
of order less than pn. By Part (3) there exists a proper normal subgroup N .
Then |N | = pt, where 1 ≤ t < n − 1. By our induction hypothesis, let G0 =
⟨e⟩, G1, . . . , Gt = N be a solvable series for N . Let H = G/N . By Corollary 2.2.12,
|H| = pn−t. By our induction hypothesis, let H0 = ⟨e⟩, H1, . . . ,Hn−t−1, Hn−t = H
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be a solvable series for H = G/N . By Theorem 2.3.13, we lift each Hi to a
subgroup Gi+t of G and get a sequence Gt = N ⊆ Gt+1 ⊆ · · · ⊆ Gn−1 ⊆ Gn = G.
By Theorem 2.3.12, Gi+1+t/Gi+t ∼= Hi+1/Hi for each 0 ≤ i ≤ t. Combining the
two sequences, G0 ⊆ · · · ⊆ Gt ⊆ · · · ⊆ Gn−1 ⊆ Gn = G is a solvable series for
G. □

Lemma 2.7.2. Let G be a finite group and p a prime number that divides |G|.
If H is a subgroup of G and H is a p-group, then the following are true:

(1) [NG(H) : H] ≡ [G : H] (mod p).
(2) If p divides [G : H], then [NG(H) : H] > 1 and NG(H) ̸= H.

Proof. (1): As in Example 2.4.5, H acts on G/H by left multiplications:
h ∗ xH = (hx)H. Let X = G/H and X0 = {xH ∈ X | h ∗ x = x for all h ∈ H}.
Then xH ∈ X0 if and only if x−1hx ∈ H for all h ∈ H, which is true if and only
if x ∈ NG(H). But x ∈ NG(H) if and only if xH ⊆ NG(H), hence X0 consists
of those cosets xH such that xH ⊆ NG(H). Then |X0| = [NG(H) : H]. By
Theorem 2.7.1 (5), |X| ≡ |X0| (mod p), or [G : H] ≡ [NG(H) : H] (mod p).

(2): By Part (1), 0 ≡ [G : H] ≡ [NG(H) : H] (mod p). Thus, [NG(H) : H] is a
multiple of p. □

7.2. Cauchy’s Theorem. The proof given below of Cauchy’s Theorem is due
to J. McKay [41]. This has been the proof of choice used in [15], [29], and other
introductory texts on this subject.

Theorem 2.7.3. (Cauchy’s Theorem) Let G be a finite group of order n and p
a prime divisor of n. Then G contains an element of order p.

Proof. Let X = Gp =
∏p
i=1G be the product of p copies of G. Elements

of Gp are p-tuples (x1, . . . , xp) where each xi is in G and |X| = np. Let ξ be the
p-cycle (12 · · · p) ∈ Sp. Then the cyclic subgroup C = ⟨ξ⟩ acts on X by

ξi ∗ (x1, . . . , xp) =


(xp, x1, . . . , xp−1) if i = 1

(xp−i+1, . . . , xp, x1, . . . , xp−i) if 0 < i < p

(x1, . . . , xp) if i = 0 or i = p.

Now define Z = {(x1, . . . , xp) ∈ X | x1x2 · · ·xp = e}. Then Z is a subset of
X. Given x ∈ Z, notice that xp = (x1 · · ·xp−1)−1, so |Z| = np−1. Since xp =
(x1 · · ·xp−1)−1 implies xpx1x2 · · ·xp−1 = e, it follows that ξ ∗Z = Z. Hence C acts
on Z and there is a partition of Z into orbits. Let Z0 be the set of all z in Z fixed
by ξ. A p-tuple z = (x1, . . . , xp) is fixed by ξ if and only if x1 = x2 = · · · = xp.
Since (e, e, . . . , e) ∈ Z0, we know Z0 ̸= ∅. By Theorem 2.7.1 (5), |Z0| ≡ 0 (mod p).
Then |Z0| ≥ p, and there are at least p elements g ∈ G such that gp = e. One
solution to gp = e is g = e, any other solution is an element g of order p. □

7.3. The Sylow Theorems.

Theorem 2.7.4. (Sylow’s First Theorem) Let G a finite group and p a prime
number. If pα divides |G|, then G contains a subgroup of order pα.

We give two proofs for Theorem 2.7.4. The first proof is due to H. Wielandt
[63]. It has been the proof of choice used by [15], [27] and other introductory books
on this subject.
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First Proof of Theorem 2.7.4. Write |G| = pγr where pγ is the highest
power of p that divides |G|. Then 0 ≤ α ≤ γ, and we write |G| = pαq. If we let
β = γ −α, then pβ is the highest power of p that divides q. Let X be the set of all
subsets of G of cardinality pν . Then

|X| =
(
pαq

pα

)
=
pαq

pα
· p

αq − 1

pα − 1
· · · p

αq − i
pα − i

· · · p
αq − pα + 2

pα − pα + 2
· p

αq − pα + 1

pα − pα + 1

where the factorization on the right hand side results from expanding the binomial
coefficient using Lemma 1.1.4, Let 0 < i < pα and write i = ptk where 0 ≤ t < α
and gcd(p, k) = 1. Then pαq−i = pt(pα−tq−k) and pα−tq−k ≡ −k (mod p). This
implies the highest power of p that divides pαq − i is pt. Therefore, canceling all
powers of p from the numerator and denominator we see that the highest power of p
that divides |X| is the same as the highest power of p that divides q, which is pβ . As
in Example 2.4.3, G acts on itself by left multiplication. If a ∈ G, and S ∈ X, then
aS has cardinality pα. Therefore, a∗S = aS defines an action byG onX. Under this
action, X is partitioned into orbits. Since pβ+1 does not divide |X|, we know there
is an orbit, say G∗S, such that pβ+1 does not divide |G∗S|, the length of the orbit.
Let H = GS be the stabilizer of S. Then H = {h ∈ G | hS = S}. So hs ∈ S for
each h ∈ H and s ∈ S. For a fixed s ∈ S, this implies the right coset Hs is a subset
of S. Hence |H| ≤ |S| = pα. By Corollary 2.2.12, |G ∗ S| = |G|/|H| = (pαq)/|H|.
Thus pαq = |H||G∗S|. Since pα+β divides the left hand side, we have pα+β divides
|H||G ∗ S|. Since pβ+1 does not divide |G ∗ S|, this implies pα divides |H|. This
proves H is a subgroup of G order pα. □

Second Proof of Theorem 2.7.4. Write |G| = pγr where pγ is the highest
power of p that divides |G|. We prove more than is required. In fact, we show
that G has a sequence of subgroups P0 ⊴ P1 ⊴ · · ·⊴ Pγ such that |Pi| = pi. Thus,
this gives us a new proof of Theorem 2.7.1 (4). Set P0 = ⟨e⟩, which has order 1. If
γ ≥ 1, then by Theorem 2.7.3, there exists a ∈ G such that P1 = ⟨a⟩ has order p.
The method of proof is to iteratively apply Cauchy’s Theorem γ − 1 times.

Inductively assume 1 ≤ i < γ, and that we have already constructed the
sequence of subgroups P0 ⊴ P1 ⊴ · · · ⊴ Pi in G, where |Pi| = pi. To finish the
proof it suffices to show that G has a subgroup Pi+1 of order pi+1 containing Pi
as a normal subgroup. By Corollary 2.2.12, [G : Pi] = pγ−ir is a multiple of p.
By Lemma 2.7.2, Pi ̸= NG(Pi) and p divides [NG(Pi) : Pi]. Since Pi is normal in
NG(Pi), by Theorem 2.7.3, the group NG(Pi)/Pi. has a subgroup P ′i+1 of order
p. By Theorem 2.3.13, P ′i+1 = Pi+1/Pi for a subgroup Pi+1 of NG(Pi) such that

Pi ⊆ Pi+1 ⊆ NG(Pi). By Corollary 2.2.12, |Pi+1| = |P ′i+1||Pi| = pi+1. Since Pi is
normal in NG(Pi), Pi is normal in Pi+1. □

By Theorem 2.7.4, if p is a prime, G is a finite group, α ≥ 1, and pα is the
highest power of p that divides |G|, then G has a subgroup of order pα, call it P .
In this case, we say P is a p-Sylow subgroup of G. Therefore, a p-Sylow subgroup
is a maximal member of the set of all subgroups of G that are p-groups.

Theorem 2.7.5. (Sylow’s Second Theorem) Let G be a finite group and p a
prime that divides |G|. Then any two p-Sylow subgroups of G are conjugates of
each other.

Proof. By Theorem 2.7.4, a p-Sylow subgroup exists. Let P and Q be two p-
Sylow subgroups of G. We prove that there exists x ∈ G such that x−1Px = Q. Let
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X = G/Q be the set of left cosets of Q in G. Let P act on X by left multiplication
(Example 2.4.5). By Theorem 2.7.1 (5), [G : Q] = |X| ≡ |X0| (mod p). Since p does
not divide [G : Q], we knowX0 ̸= 0. Let xQ ∈ X0. Then for each a ∈ P , axQ = xQ.
Thus x−1ax ∈ Q for every a ∈ P , hence x−1Px ⊆ Q. Since |P | = |Q| = pα, this
implies x−1Px = Q. □

Corollary 2.7.6. Let G be a finite group and p a prime that divides |G|. Let
P be a p-Sylow subgroup of G. Then the following are true.

(1) For every a ∈ G, a−1Pa is a p-Sylow subgroup of G.
(2) In G, P is the unique p-Sylow subgroup if and only if P is a normal

subgroup.
(3) NG(NG(P )) = NG(P ).

Proof. (1): Conjugation by a is an automorphism, hence |P | = |a−1Pa|.
(2): The subgroup P is normal in G if and only if P = a−1Pa for all a ∈ G,

which by (1) is true if and only if P is the unique p-Sylow subgroup of G.
(3): By Proposition 2.4.12, P is a normal subgroup of NG(P ). By (2), P is the

unique p-Sylow subgroup of NG(P ). Let z ∈ NG(NG(P )). Then conjugation by z
is an automorphism of NG(P ), hence zPz

−1 = P . This implies z ∈ NG(P ). □

Theorem 2.7.7. (Sylow’s Third Theorem) Let G be a finite group and p a prime
that divides |G|. The number of p-Sylow subgroups in G is congruent to 1 modulo
p and divides |G|. More precisely, let |G| = pαr where α ≥ 1 and gcd(p, r) = 1. If
n is the number of p-Sylow subgroups in G, then n divides r and n ≡ 1 (mod p).

Proof. By Theorem 2.7.4, a p-Sylow subgroup exists. Let P be a p-Sylow
subgroup. As in Example 2.4.11, let G act by conjugation on 2G, the power set
of all subsets of G. By Theorem 2.7.5, the orbit of P is the set of all p-Sylow
subgroups of G. The length of the orbit is [G : NG(P )], which divides |G|. But
r = [G : P ] = [G : NG(P )][NG(P ) : P ] shows the number of conjugates of P divides
r.

Let X be the set of all p-Sylow subgroups of G. The number of p-Sylow sub-
groups in G is equal to |X|. Let P act on X by conjugation. By Theorem 2.7.1 (5),
|X| ≡ |X0| (mod p). First note that P ∈ X0. Suppose Q is another element of X0.
Then a−1Qa = Q for all a ∈ P . Therefore, P ⊆ NG(Q). In this case, both P and
Q are p-Sylow subgroups of NG(Q). By Theorem 2.7.5, for some x ∈ NG(Q) we
have P = x−1Qx. But Q is normal in NG(Q), so Q = x−1Qx = P . This proves
X0 = {P}. We have shown that |X| ≡ 1 (mod p). □

Proposition 2.7.8. Let G be a finite group of order n where the unique fac-
torization of n is pe11 · · · pemm . Assume for each pi that G has a unique pi-Sylow
subgroup Pi. Then G is the internal direct product of P1, . . . , Pm.

Proof. By Corollary 2.7.6, each Pi is a normal subgroup of G. We use induc-
tion on m to show that P1, . . . , Pm satisfy the criteria of Proposition 2.5.5 (4). If
m = 1, there is nothing to prove. Assume m > 1. Then Pm−1Pm is a subgroup
of G because Pm−1 is normal. Also, Pm−1 ∩ Pm = ⟨e⟩ by Lagrange’s Theorem
(Corollary 2.2.12), because pm−1 ̸= pm. Inductively assume 1 < r < m and that

(1) Pr+1 · · ·Pm is a subgroup of G, and
(2) for i ∈ {r, . . . ,m− 1}, Pi ∩ (Pi+1 · · ·Pm) = ⟨e⟩.
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Because Pr−1 is normal in G, by Exercise 2.3.18, Pr−1Pr · · ·Pm is a subgroup of
G. The order of Pr · · ·Pm is perr · · · pemm , by Lemma 2.5.4 (5). Because pr−1 is
relatively prime to |Pr · · ·Pm|, by Lagrange’s Theorem (Corollary 2.2.12), we know
that Pr−1 ∩ (Pr · · ·Pm) = ⟨e⟩. By Mathematical Induction, this proves P1 · · ·Pm is
the internal direct product of P1, . . . , Pm. Since |P1 · · ·Pm| = |G|, this proves the
proposition. □

Example 2.7.9. Let p and q be distinct primes, and assume p < q. By The-
orems 2.7.8 and 2.5.2, an abelian group of order pq is cyclic. If q ≡ 1 (mod p),
then there is a subgroup of order p in Aut(Z/q) ∼= Uq. Hence there exists a mono-
morphism θ : Z/p → Aut(Z/q). Using θ, the semidirect product Z/q ⋊ Z/p is a
nonabelian group of order pq. If q is not congruent to 1 modulo p, then by Theo-
rem 2.7.7, we see that in a group of order pq every Sylow subgroup is normal, and
a group of order pq is abelian.

Although we have not proved it yet, the group Uq is cyclic (see Theorem 5.5.3).
Therefore, if q ≡ 1 (mod p), then there is a unique subgroup of order p in Aut(Q).
Therefore, the monomorphism θ is unique up to the choice of a generator for Z/p.
Hence there is at most one nonabelian group of order pq up to isomorphism.

7.4. Exercises.

Exercise 2.7.10. Let G be a finite group and N a normal subgroup of G.
Show that if p is a prime and |N | = pr for some r ≥ 1, then N is contained in every
p-Sylow subgroup of G.

Exercise 2.7.11. Let n ≥ 1, A a nonempty set, and X = An the product of
n copies of A. An element x of X is an n-tuple (x1, . . . , xn) where each xi ∈ AS.
Alternatively, an n-tuple x = (x1, . . . , xn) can be viewed as a function x : Nn → A
(see Section 1.1.3) where x(i) = xi. Show that the symmetric group Sn acts on X
by the rule σ ∗ x = xσ−1 where xσ−1 refers to the composition of functions:

Nn
σ−1

−−→ Nn
x−→ A.

Exercise 2.7.12. Let G be a group containing subgroups A and B such that
A ⊆ B ⊆ G.

(1) Give an example such that B is normal in G, A is normal in B, and A is
not normal in G. We say that normal over normal is not normal.

(2) Suppose G is finite and p is a prime number. Assume B is normal in G
and A is normal in B and that A is a p-Sylow subgroup of B. Prove that
A is normal in G.

Exercise 2.7.13. Let G be a group of order 2r · 7, where r ≥ 5. Apply
Exercises 2.4.25 and 2.7.10 to show G contains a normal subgroup N satisfying:
2r−4 ≤ |N | ≤ 2r and N is contained in every 2-Sylow subgroup of G.

Exercise 2.7.14. Let G be a finite group of order n.

(1) Show that for each n in the list: 30, 36, 40, 42, 44, 48, 50, 52, 54, 55, 56, 75, 32·
52, 9 · 37, G is not a simple group.

(2) Show that for each n in the list: 45, 51, 5 · 17, 52 · 17, 52 · 37, G is abelian.

Exercise 2.7.15. Let G be a group of order p2q, where p and q are distinct
primes. Show that G is not simple.
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Exercise 2.7.16. Let G be a group of order (p−1)p2, where p is an odd prime.
Prove the following.

(1) G has a unique p-Sylow subgroup.
(2) There are at least four groups of order (p− 1)p2 which are pairwise non-

isomorphic.

Exercise 2.7.17. Show that a group of order 105 is a semidirect product of
two cyclic groups. Show how to construct an example of a nonabelian group of
order 105.

8. Finite Abelian Groups

The purpose of this section is to prove that a finite abelian group can be
decomposed into an internal direct product of cyclic subgroups in an essentially
unique way. This is called the Basis Theorem for finite abelian groups.

8.1. The n-th power map. Let A be an abelian group written multiplica-
tively and n ∈ Z. The n-th power map πn : A → A is defined by the rule
πn(x) = xn. By Exercise 2.3.16 (where the abelian group was written additively) we
see that πn is an endomorphism of A with kernel {x ∈ A | |x| divides n} and image
{xn | x ∈ A}. In the following, the kernel of πn will be denoted A(n) and the image
will be denoted An. Then A(n) and An are subgroups of A. By the Isomorphism
Theorem, Theorem 2.3.12 (a), ϕ induces an isomorphism A/A(n) ∼= An.

Lemma 2.8.1. Let ϕ : A → B be an isomorphism of abelian groups. Then for
any n ∈ Z, the following are true.

(1) ϕ : A(n)→ B(n) is an isomorphism.
(2) ϕ : An → Bn is an isomorphism.
(3) ϕ : A/A(n)→ B/B(n) is an isomorphism.
(4) ϕ : A/An → B/Bn is an isomorphism.

Proof. (1): Let x ∈ A(n). Then (ϕ(x))n = ϕ(xn) = ϕ(e) = e implies
ϕ(A(n)) ⊆ B(n). Given y ∈ B(n), y = ϕ(x) for some x ∈ A. Then e = yn =
(ϕ(x))n = ϕ(xn). So x ∈ ker(ϕ) = ⟨e⟩. This proves ϕ : A(n) → B(n) is an
isomorphism.

(2): Let x ∈ A. Then ϕ(xn) = (ϕ(x))n, so ϕ(An) ⊆ Bn. Let yn ∈ Bn. Then
y = ϕ(x) for some x ∈ A, so yn = (ϕ(x))n = ϕ(xn), which proves ϕ : An → Bn is
an isomorphism.

(3): Consider the commutative diagram

A
ϕ //

��

B

η

��
A/ ker(ηϕ)

∼= // B/B(n)

where all of the maps are onto. By Part (1), the kernel of ηϕ is ϕ−1(B(n)) =
A(n). By Theorem 2.3.12 (a), ηϕ factors through A/A(n) giving the isomorphism:
A/A(n) ∼= B/B(n).
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(4): Consider the commutative diagram

A
ϕ //

��

B

η

��
A/ ker(ηϕ)

∼= // B/Bn

where all of the maps are onto. By Part (2), the kernel of ηϕ is ϕ−1(Bn) = An.
By Theorem 2.3.12 (a), ηϕ factors through A/An giving the isomorphism: A/An ∼=
B/Bn. □

Lemma 2.8.2. Let A = ⟨a⟩ be an infinite cyclic group and n ∈ N. Then
A(n) = ⟨e⟩ and A/An is cyclic of order n.

Proof. We have the isomorphism ϕ : Z → A which is defined on generators
by the rule ϕ(1) = a (Theorem 2.3.25 (5)). The group Z is written additively as
in Exercise 2.3.16, and instead of the n-th power map πn, we will use the “left
multiplication by n” map λn : Z → Z. The kernel of λn is ⟨0⟩ and the image of
λn is ⟨n⟩ = nZ. Applying Lemma 2.8.1 we have A(n) = ⟨e⟩ and A/An ∼= Z/nZ is
cyclic of order n. □

Lemma 2.8.3. Let A = ⟨a⟩ be a finite cyclic group of order m and n ∈ N. If
d = gcd(m,n), then the following are true.

(1) A(n) = ⟨am/d⟩ is cyclic of order d.
(2) A/A(n) ∼= An is cyclic of order m/d.
(3) A/An is cyclic of order d.

Proof. We have A = {e, a, . . . , am−1}.
(1): Suppose 0 ≤ i < m and (ai)n = e. Then m divides ni and by Propo-

sition 1.2.10, lcm(m,n) = mn/d divides ni. This implies m/d divides i. Hence
A(n) ⊆ ⟨am/d⟩. But am/d has order d by Lemma 2.2.16. Since d divides n,
A(n) ⊇ ⟨am/d⟩, proving (1).

(2) and (3): By Theorem 2.3.12 (a), A/A(n) ∼= An. From Part (1) and La-
grange’s Theorem (Corollary 2.2.12), we get (2). From Part (2) and Lagrange’s
Theorem, we get (3). □

Lemma 2.8.4. Let A and B be abelian groups and n ∈ Z. Then the following
are true.

(1) (A×B)(n) = A(n)×B(n).
(2) (A×B)n = An ×Bn.

Proof. Let (a, b) be a typical element in A×B. Part (2) follows immediately
from the identity (a, b)n = (an, bn). Part (1) follows from (A × B)(n) = {(a, b) |
(a, b)n = (e, e)} = {(a, b) | an = e and bn = e} = A(n)×B(n). □

Lemma 2.8.5. Let A be a finite abelian group, p a prime, r ∈ N, and assume
pr is the highest power of p that divides |A|. Then A(pr) is equal to the p-Sylow
subgroup of A.

Proof. Since A is abelian, every subgroup is normal and by Corollary 2.7.6, A
has a unique p-Sylow subgroup. Call it P . Then |P | = pr. If x ∈ P , then |x| divides
pr by Corollary 2.2.17. As a set, A(pr) consists of those elements x ∈ A whose order



8. FINITE ABELIAN GROUPS 83

divides pr. Therefore, P ⊆ A(pr). If x ∈ A(pr), then by Exercise 2.7.10, x is in P .
Therefore, A(pr) ⊆ P . □

8.2. The Basis Theorem.

Theorem 2.8.6. Every finite abelian group G is isomorphic to an internal
direct product of cyclic groups.

Proof. Since G is abelian, every subgroup of G is normal. It follows from
Proposition 2.7.8 that G is isomorphic to the internal direct product of its Sylow
subgroups. Therefore, it suffices to prove the theorem for a finite p-group. From
now on, assume p is a prime and [G : e] = pn, for some n ∈ N.

The proof is by Mathematical Induction on n. If n = 1, then G ∼= Z/p is cyclic.
Assume inductively that n > 1 and that the theorem is true for all abelian groups
of order pi where 0 < i < n.

Let a ∈ G be an element of maximal order. If |a| = pn, then G = ⟨a⟩ is cyclic
and we are done. Assume |a| = pα, where 1 ≤ α < n. Set A = ⟨a⟩. Look at the
quotient G/A. We have |G/A| = [G : A] = pn−α. By our induction hypothesis, G/A
is an internal direct product of cyclic groups. That is, there exist b1, . . . , bm ∈ G
such that

(8.1) G/A = ⟨[b1]⟩ × · · · × ⟨[bm]⟩
where we write [bi] for the left coset biA. Assume the order of [bi] in G/A is pβi . By
Exercise 2.3.40, pβi divides the order of bi in G . Since |a| is maximal, α ≥ βi for

each i. Because (biA)
pβi

= A, bp
βi

i ∈ A. Therefore bp
βi

i = aki for some ki. Because
the order of every element of G divides pα, we have(

aki
)pα−βi

=
(
bp

βi

i

)pα−βi

= bp
α

i = e.

It follows that pα divides kip
α−βi . Hence pβi divides ki. Write ki = ℓip

βi . Set
ai = bia

−ℓi . Then

ap
βi

i =
(
bia
−ℓi
)pβi

= bp
βi

i a−ℓip
βi

= akia−ki = e

which implies |ai| ≤ pβi . Set Ai = ⟨ai⟩. To finish the proof, we show that G is the
internal direct product of A,A1, . . . , Am. Let x ∈ G be an arbitrary element of G.
In G/A we can write the coset xA as a product be11 A · · · bemm A. Since biA = aiA, we
see that x = ae11 · · · aemm ae0 , for some e0 ∈ Z. This proves that G = AA1 · · ·Am.

Suppose e = ae0ae11 · · · aemm . InG/A we have [e] = [a1]
e1 · · · [am]em = [b1]

e1 · · · [bm]em .
As in Eq. (8.1), G/A is a direct product so [bi]

ei = [e] for each i. So pβi divides
ei for each i. Therefore, aeii = e for each i. It follows that e = ae0 , hence e has a
unique representation. □

Theorem 2.8.7. (Basis Theorem for Finite Abelian Groups) Let G be an
abelian group of finite order. Then the following are true.

(1) G is the internal direct product of its Sylow subgroups.
(2) If p is a prime factor of |G| and P is the unique p-Sylow subgroup of G,

then there exist a1, . . . , am in P such that P is the internal direct product
of the cyclic subgroups ⟨a1⟩, . . . , ⟨am⟩, the order of ai is equal to pei , and
e1 ≥ e2 ≥ · · · ≥ em.

(3) G is uniquely determined by the prime factors p of |G| and the integers ei
that occur in (2).
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The prime powers pei that occur in (3) are called the invariants of G. Notice that
if |P | = pn, then n = e1 + · · ·+ em is a partition of the integer n.

Proof. Part (1) follows from Proposition 2.7.8. Part (2) follows from Theo-
rem 2.8.6.

(3): Let A and B be finite abelian groups. First we prove that if ϕ : A → B
is an isomorphism, then A and B have the same invariants. Because ϕ is a one-
to-one correspondence, |A| = |B|. Let p be a prime that divides |A| (and |B|).
By Lemmas 2.8.5 and 2.8.1, the p-Sylow subgroups of A and B are isomorphic.
Using Theorem 2.8.6 we can suppose the p-Sylow subgroup of A is the internal
direct product of A1, . . . , Am where Ai = ⟨ai⟩, |ai| = pei , and e1 ≥ e2 ≥ · · · ≥
em ≥ 1. Likewise, assume the p-Sylow subgroup of B is the internal direct product
of B1, . . . , Bn where Bi = ⟨bi⟩, |bi| = pfi , and f1 ≥ f2 ≥ · · · ≥ fn ≥ 1. We have
A1×· · ·×Am ∼= B1×· · ·×Bn. Multiply by p and apply Lemmas 2.8.1, 2.8.3 and 2.8.4
to get (A1×· · ·×Am)(p) ∼= A1(p)×· · ·×Am(p) is a direct product of cyclic groups of
order p, has order pm, and is isomorphic to (B1×· · ·×Bn)(p) ∼= B1(p)×· · ·×Bn(p)
which has order pn. Therefore m = n. Inductively, assume the uniqueness claim
is true for any finite p-group of order less than pe1+···+em . By Lemma 2.8.3, the
invariants of (A1 × · · · ×Am)p = Ap1 × · · · ×Apm are e1 − 1 ≥ · · · ≥ em − 1 and the
invariants of (B1 × · · · × Bm)p = Bp1 × · · · × Bpm are f1 − 1 ≥ · · · ≥ fm − 1. By
induction, ei = fi for each i.

For the converse, suppose we are given the cyclic groupsA1, . . . , Am, B1, . . . , Bn,
where |Ai| = pei for each i, and |Bj | = pfi for each j. If m = n and ei = fi for each
i, then clearly Ai ∼= Bi for each i and we have A1 × · · · ×Am ∼= B1 × · · · ×Bm. □

8.3. Exercises.

Exercise 2.8.8. Let G,+ be an abelian group. Using Exercise 2.3.16, show
that an n-tuple A ∈ (a1, . . . , an) ∈ Zn defines a homomorphism A : Gn → G by
the rule A(x1, . . . , xn) =

∑n
i=1 aixi.

Exercise 2.8.9. Let m,n ∈ N. Show that the direct product Z/m × Z/n is
cyclic if and only if gcd(m,n) = 1.

Exercise 2.8.10. Let G be a finite abelian group. Prove that the following are
equivalent.

(1) G is cyclic.
(2) For every prime factor p of |G|, the p-Sylow subgroup of G is cyclic.
(3) For every prime factor p of |G|, G(p) (see Exercise 2.3.16 for this notation)

is cyclic.
(4) For every n ∈ N, the order of G(n) is at most n.
(5) For every n ∈ N, the equation xn = e has at most n solutions in G.

Exercise 2.8.11. Let A and B be abelian groups written additively. The set
of all homomorphisms from A to B is denoted Hom(A,B).

(1) If f, g ∈ Hom(A,B), then f + g is the function defined by the rule: (f +
g)(x) = f(x) + g(x). Show that this additive binary operation makes
Hom(A,B) into an abelian group.

(2) Now consider the case where A = B. Show that composition of functions
defines a binary operation on Hom(A,A) satisfying the following.
(a) f(gh) = (fg)h for all f, g, h in Hom(A,A). In other words, composi-

tion of functions is associative.
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(b) f(g+h) = fg+fh and (f+g)h = fh+gh for all f, g, h in Hom(A,A).
In other words, composition distributes over addition.

Together with the two binary operations of addition and composition of
endomorphisms, we call Hom(A,A) the ring of endomorphism of A.

Exercise 2.8.12. Let m,n ∈ N be positive integers. Show that the abelian
group Hom(Z/m,Z/n) is a cyclic group of order gcd(m,n). (Hints: Exercises 2.8.11
and 2.4.20.)

Exercise 2.8.13. If p is a prime, and n ≥ 1, compute the following:

(1) Let G =
∏n
i=1 Z/2 = Z/2× · · · ×Z/2 be the direct product of n copies of

Z/2. How many subgroups of order 2 are there in G?
(2) Let G =

∏n
i=1 Z/p = Z/p× · · · ×Z/p be the direct product of n copies of

Z/p. How many elements of order p are there in G? How many subgroups
of order p are there in G?

(3) Let G =
∏n
i=1 Z/pei = Z/pe1 × · · · × Z/pen where ei ≥ 1 for each i. How

many elements of order p are there in G? How many subgroups of order
p are there in G?

Exercise 2.8.14. Show that if G is a finite group of order at least three, then
Aut(G) has order at least two.

9. Classification of Finite Groups

This section consists of computations and applications of the theorems from the
previous sections. The examples presented here are not only intended to classify
all groups of a given order, but to illustrate the various theorems of Group Theory.

9.1. Groups of order 12. We show in this example that up to isomorphism
there are exactly five groups of order 12. Let G be a finite group of order 12 = 22 ·3.
Let P be a 2-Sylow subgroup. Then P is either ⟨a | a4 = e⟩, a cyclic group of order
4, or P is ⟨a, b | a2 = b2 = e, ab = ba⟩, an isomorphic copy of the Klein four group.
In both cases P is abelian. By Theorem 2.7.7, the number of conjugates of P is odd
and divides 3, hence P has either 1 or 3 conjugates. Let Q be a 3-Sylow subgroup.
By Theorem 2.7.7, the number of conjugates of Q divides 4, hence Q has either 1
or 4 conjugates. We know that Q = ⟨c | c3 = e⟩ is cyclic, hence abelian. Since
P ∩ Q = ⟨e⟩, by Theorem 2.2.14 we see that PQ = G. We consider the following
four cases.

Case 1: Assume P and Q are both normal in G. By Theorem 2.7.8, G is the
internal direct product of P and Q, hence G is abelian. By Theorem 2.8.7, G is
isomorphic to either

Z/3× Z/4
or

Z/3× Z/2× Z/2.
Case 2: Assume P is normal and Q has 4 conjugates. Then Q acts by conju-

gation on P and there is a homomorphism θ : Q → Aut(P ), where θ(c) = αc−1 is
conjugation by c−1. By Exercise 2.4.18, G is isomorphic to P ⋊Q, the semidirect
product of P and Q.

There are two subcases to consider. If P = ⟨a⟩ is cyclic, then Aut(P ) ∼= U4 is a
group of order two, by Theorem 2.3.27. Since Q has order three, in this case im θ =
⟨e⟩. Then cac−1 = a, hence G must be abelian. In this case, G is the first group of
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Case 1. If P is ⟨a, b | a2 = b2 = e, ab = ba⟩, then Aut(P ) is isomorphic to GL2(Z/2).
This will be proved in Proposition 4.4.13. By Example 2.1.20, GL2(Z/2) ∼= S3.
There are two elements of order 3 in S3. One element of order three in Aut(P ) is
the cyclic permutation π defined by a 7→ b 7→ ab 7→ a. The other element of order
three is π−1. Therefore, if θ(c) = π, then θ(c−1) = π−1. Since Q is generated by
either c, or c−1, without loss of generality we assume θ(c) = π. Then cac−1 = b and
cbc−1 = ab. The semidirect product P ⋊Q has presentation in terms of generators
and relations

⟨a, b, c | a2 = b2 = c3 = e, ab = ba, cac−1 = b, cbc−1 = ab⟩.

This group is isomorphic to A4 by the map defined by a 7→ (12)(34), b 7→ (14)(23),
c 7→ (123). The reader should verify that (123)(12)(34)(132) = (14)(23), (123)(14)(23)(132) =
(13)(24), and (123)(13)(24)(132) = (12)(34).

Case 3: Assume P has 3 conjugates and Q is normal. Then P acts on Q
by conjugation and there is a homomorphism θ : P → Aut(Q). Then G is the
semidirect product Q ⋊ P . By Theorem 2.3.27, Aut(Q) ∼= U3 is a group of order
2. The automorphism of order two is defined by c 7→ c−1. There are two subcases
to consider. If P = ⟨a⟩ is cyclic, then there is one nontrivial possibility for θ. In
this case, aca−1 = c−1. The presentation of the semidirect product in terms of
generators and relations is

⟨a, c | a4 = c3 = e, aca−1 = c−1⟩.

If P is ⟨a, b | a2 = b2 = e, ab = ba⟩, then there are three subgroups of order two,
hence three possible homomorphisms from P onto Aut(Q). Therefore, one of a, b, ab
commutes with c. Since P is generated by any two of the three, without loss of
generality we assume aca = c−1 and bcb = c. The semidirect product is described
by

⟨a, b, c | a2 = b2 = c3 = e, ab = ba, aca = c−1, bc = cb⟩.
This group is isomorphic to D6 the element bc has order 6, and a(bc)a = (bc)−1.
Another way to view this group is as the internal direct product ⟨b⟩ × ⟨a, c⟩ which
is isomorphic to Z/2×D3.

Case 4: Assume P has 3 conjugates and Q has 4 conjugates. Counting elements
we find that each subgroup of order 3 has 2 elements of order 3. Therefore, G has
8 elements of order 3. The subgroup P has 4 elements. Since P is not normal, the
group G has more than 12 elements, which is a contradiction. Case 4 cannot occur.

9.2. Groups of order 30. In this example we show that up to isomorphism
there are exactly 4 groups of order 30. Let G be a group of order 30 = 2 · 3 · 5.
Using Theorems 2.7.8 and 2.5.2 we see that if G is abelian, then G is cyclic. Let P
be a 2-Sylow subgroup of G, Q a 3-Sylow subgroup, and R a 5-Sylow subgroup. By
Theorem 2.7.7, Q is either normal or has 10 conjugates. The number of conjugates
of R is either 1 or 6. By counting elements, we see that if G has 6 subgroups of
order 5 then there are 24 elements of order 5. If G has 10 subgroups of order 3, then
this includes 20 elements of order 3. Since |G| = 30, this implies either Q is normal
or R is normal. By Exercise 2.3.18, QR is a subgroup of G. Since Q ∩ R = ⟨e⟩,
by Theorem 2.2.14, |QR| = 15. Since [G : QR] = 2, Exercise 2.3.17, implies QR
is normal in G. By Theorem 2.5.2, QR is cyclic. Write QR = ⟨b⟩. Then P acts
by conjugation on QR and there is a homomorphism θ : P → Aut(QR) ∼= U15.
The image of θ has order 1 or 2. The group U15 has order ϕ(15) = 8. The reader
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should verify that there are 4 elements in U15 that satisfy x2 ≡ 1 (mod 15), they
are 1, 4,−1,−4. Therefore, if P = ⟨a⟩, then aba = bs, where s ∈ {1, 4,−1,−4}.
Thus G is the semidirect product QR⋊P . The presentation in terms of generators
and relations is

(9.1) G = ⟨a, b | a2 = b15 = e, aba = bs⟩
where s ∈ {1, 4,−1,−4}. If s = 1, then a commutes with b, and G is abelian. If
s = −1, then G is isomorphic to D15. By Example 2.3.32, the center of D15 is ⟨e⟩.

If s = 4, then because ab5a = b20 = b5 we see that the center of G contains b5,
an element of order 3. Then G/⟨b5⟩ has presentation ⟨a, b | a2 = b5 = e, aba = b4⟩
which is isomorphic to D5. Since the center of D5 is trivial, this proves the center
of G is Z = ⟨b5⟩. Since ab3a = b12 = b−3 we see that the subgroup D = ⟨a, b3⟩ has
order 10 and is isomorphic to D5. generated by a and b3. Using Exercise 2.5.19, we
see that G is the internal direct product D×Z, hence G is isomorphic to D5×Z/3.

If s = −4, then because ab3a = b−12 = b3 we see that the center of G contains
b3, an element of order 5. Then G/⟨b3⟩ has presentation ⟨a, b | a2 = b3 = e, aba =
b−1⟩ which is isomorphic to D3. Since the center of D3 is trivial, this proves the
center of G is Z = ⟨b3⟩. Since ab5a = b−20 = b−5 we see that the subgroup
D = ⟨a, b5⟩ has order 6 and is isomorphic to D3. Using Exercise 2.5.19, we see that
G is the internal direct product D × Z, hence G is isomorphic to D3 × Z/5.

This proves that in (9.1) the four values of s give rise to four groups that are
pairwise nonisomorphic.

9.3. Groups of order 63. We show in this example that up to isomorphism
there are exactly four groups of order 63. Let G be a finite group of order 63 = 7·32.
If G is abelian, then by Theorem 2.8.7, G is isomorphic to either Z/7 × Z/9, or
Z/7× Z/3× Z/3. Assume from now on that G is nonabelian. Let P be a 7-Sylow
subgroup. The number of conjugates of P divides 9 and is of the form 1 + 7k.
Therefore, we conclude that k = 0 and P is normal. Let Q be a 3-Sylow subgroup.
We know that Q is abelian. Since P ∩ Q = ⟨e⟩, by Theorem 2.2.14 we see that
PQ = G. By Exercise 2.4.18, G = P ⋊Q and the action by Q on P is conjugation.
By Example 2.4.8, the homomorphism

θ : Q→ Aut(P ) ∼= U7

is defined by θ(x) = αx−1 , where αx−1 is the inner automorphism of P corresponding
to conjugation by x−1. If the image of θ is ⟨1⟩, then every element of Q commutes
with every element of P and G is abelian. By our assumption, we can assume θ is
not the trivial map. By Theorem 2.3.27, Aut(P ) ∼= U7 which is an abelian group of
order ϕ(7) = 6, hence is cyclic. Since Q has order 9, this implies ker(θ) has order
3, and im(θ) has order 3. Let P = ⟨a⟩. There are two cases.

Case 1: Q = ⟨b⟩ is cyclic. Then θ maps b to αb−1 , the inner automorphism
defined by b−1, which is an element of order 3 in U7. There are two elements of
order 3 in U7, namely [2] and [4]. Therefore, bab−1 = ai where i = 2 or 4. Notice
that |b2| = 9 so Q = ⟨b2⟩. Since b2ab−2 = a2i, without loss of generality we can
replace b with b2 if necessary and assume i = 2. Then in this case,

G = ⟨a, b | a7 = b9 = e, bab−1 = a2⟩
is the presentation of G in terms of generators and relations.

Case 2: Q is a direct sum of two cyclic groups of order 3. Suppose ker(θ) = ⟨c⟩
and b ∈ Q − ⟨c⟩. Then Q = ⟨b, c⟩. As in Case 1, bab−1 = ai where i = 2 or 4.
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Again, we can replace b with b−1 if necessary and assume bab−1 = a2. Then in this
case,

G = ⟨a, b, c | a7 = b3 = c3 = e, bc = cb, bab−1 = a2, cac−1 = a⟩

is the presentation of G.
For a continuation of this example, see Exercise 2.9.1.

9.4. Groups of order 171. We show in this example that up to isomorphism
there are exactly five groups of order 171. Let G be a finite group of order 171 =
19 ·32. If G is abelian, then by Theorem 2.8.7, G is isomorphic to either Z/19×Z/9,
or Z/19 × Z/3 × Z/3. Assume from now on that G is nonabelian. Let P be a 19-
Sylow subgroup. Then P = ⟨a⟩ is cyclic. The number of conjugates of P divides
9 and is of the form 1 + 19k. Therefore, we conclude that k = 0 and P is normal.
Let Q be a 3-Sylow subgroup. We know that Q is abelian. Since P ∩ Q = ⟨e⟩,
by Theorem 2.2.14 we see that PQ = G. By Exercise 2.4.18, G = P ⋊ Q and the
action by Q on P is conjugation. By Example 2.4.8, the homomorphism

θ : Q→ Aut(P ) ∼= U19

is defined by θ(x) = αx−1 , where αx−1 is the inner automorphism of P corresponding
to conjugation by x−1. If the image of θ is ⟨1⟩, then every element of Q commutes
with every element of P and G is abelian. By our assumption, we can assume θ is
not the trivial map. By Theorem 2.3.27, Aut(P ) ∼= U19 which is an abelian group
of order ϕ(19) = 18. Since Q has order 9, this implies ker(θ) has order 1 or 3, and
im(θ) has order 3 or 9. A direct computation shows that U19 is cyclic and has 6
elements of order 9, namely [4], [5], [6], [9], [16], and [17]. The 2 elements of order
3 are [7] and [11]. There are three cases.

Case 1: Assume Q = ⟨b⟩ is cyclic and im θ has order 9. Then θ maps Q
isomorphically onto the subgroup of order 9 in Aut(P ). If necessary, we replace
b with the generator of Q that maps to [4] ∈ U19. We have bab−1 = a4. The
presentation of G in terms of generators and relations is

G = ⟨a, b | a19 = b9 = e, bab−1 = a4⟩.

Case 2: Assume Q = ⟨b⟩ is cyclic and im θ has order 3. Then the kernel of θ
is the cyclic subgroup of order 3. Under θ, an element of order 9 is mapped onto
one of the elements of order 3. If necessary, we replace b with a generator of Q
that maps to [7] ∈ U19. We have bab−1 = a7. The presentation of G in terms of
generators and relations is

G = ⟨a, b | a19 = b9 = e, bab−1 = a7⟩.

Case 3: Assume Q is a direct sum of two cyclic groups of order 3. Since U19

has a unique subgroup of order 3, the kernel of θ is a group of order 3. Suppose
ker(θ) = ⟨c⟩. Because the image of θ contains both [7] and [11], we pick b ∈ Q−⟨c⟩
such that θ(b) = [7]. Then Q = ⟨b, c⟩, cac−1 = a, and bab−1 = a7. Then in this
case,

G = ⟨a, b, c | a19 = b3 = c3 = e, bc = cb, bab−1 = a7, cac−1 = a⟩

is the presentation of G.
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9.5. Groups of order 225. In this example we show that there are at least six
nonisomorphic groups of order 225. We show how to construct two nonisomorphic
nonabelian groups of order 225 = 3252. Let G denote a group of order 225. Let
P be a 5-Sylow subgroup of G. By Theorem 2.7.7, the number of conjugates of
P divides 9 and is congruent to 1 modulo 5. We conclude that P is normal in
G. Let Q be a 3-Sylow subgroup of G. The number of conjugates of Q divides 25
and is congruent to 1 modulo 3. Therefore, either Q is normal in G, or Q has 25
conjugates. By Theorem 2.7.1 (2), both P and Q are abelian.

Case 1: Assume P and Q are both normal in G. By Theorem 2.7.8, G is the
internal direct product of P and Q, hence G is abelian. By Theorem 2.8.7, G is
isomorphic to either

Z/9× Z/25
or

Z/9× Z/5× Z/5
or

Z/3× Z/3× Z/25
or

Z/3× Z/3× Z/5× Z/5.
Case 2: Assume P is normal and Q has 25 conjugates. Then Q acts by conju-

gation on P and there is a homomorphism of groups θ : Q → Aut(P ). There are
two subcases to consider.

Subcase 2.1: Assume P is cyclic. By Theorem 2.3.27, Aut(P ) ∼= U25 is an
abelian group of order ϕ(25) = 20. Since Aut(P ) has no subgroup of order 3, θ
is the trivial homomorphism. Therefore, every element of Q commutes with every
element of P . By Exercise 2.5.19, G is the internal direct product of P and Q,
hence this case reduces to Case 1.

Subcase 2.2: Assume P ∼= Z/5×Z/5. Then Aut(P ) is isomorphic to GL2(Z/5)
(we have not proved this yet, it will be proved using properties of Hom and free
modules). As seen in Exercise 2.9.5, there are subgroups of order 3 in Aut(P ).
Without being more specific, we end this example by showing how to construct two
nonisomorphic nonabelian groups of order 225. Let α ∈ Aut(P ) be an automor-
phism of P of order 3. There are two cases for Q.

Subcase 2.2.1: Assume Q = ⟨a | a9 = e⟩ is cyclic of order 9. Then a 7→ α
induces θ : Q → Aut(P ). The kernel of θ has order 3, the image of θ has order 3.
Then the semidirect product P ⋊Q is a nonabelian group of order 225.

Subcase 2.2.2: Assume Q = ⟨a, b | a3 = b3 = e⟩ is a noncyclic group of order 9.
Then a 7→ α, b 7→ e induces θ : Q→ Aut(P ). The kernel of θ is ⟨b⟩, which has order
3, the image of θ is ⟨α⟩, which has order 3. Then the semidirect product P ⋊Q is
a nonabelian group of order 225.

9.6. Groups of order p3. Let p be an odd prime. In this example we show
how to construct a nonabelian group of order p3. Let F be the field Z/p. Let
V = F 2 = {(x1, x2) | xi ∈ F} where the binary operation on V is written additively.

Then V is isomorphic to Z/p× Z/p. Let θ ∈ GL2(F ) be the matrix

[
1 0
1 1

]
. Then

θ2 =

[
1 0
2 1

]
, θ3 =

[
1 0
3 1

]
, . . . , θp−1 =

[
1 0

p− 1 1

]
, θp =

[
1 0
0 1

]
. This shows that

C = ⟨θ⟩ is a cyclic subgroup of GL2(F ) of order p. Although we have not proved
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it yet, using matrices and properties of Hom we will prove that Aut(V ) ∼= GL2(F ).
Therefore, the semidirect product V ⋊C is a nonabelian group of order p3 containing
a normal subgroup isomorphic to V . Before ending this example, we show that every
element of the semidirect product has order 1 or p. Let i ∈ Z. Then

I2 + θi + θ2i + · · ·+ θ(p−1)i =

[
p 0

0 + i+ 2i+ · · ·+ (p− 1)i p

]
=

[
0 0

ip(p− 1)/2 0

]
=

[
0 0
0 0

]
.

Let z = (x, θi) be a typical element of the semidirect product V ⋊ C. Then

z2 = (x, θi)(x, θi) = (x+ θi(x), θ2i) =
(
(I2 + θi)(x), θ2i

)
z3 =

(
(I2 + θi)(x), θ2i

)
(x, θi) =

(
(I2 + θi + θ2i)(x), θ3i

)
...

zp =
(
(I2 + θi + θ2i + · · ·+ θ(p−1)i)(x), θpi

)
= (0, I2).

This shows z has order 1 or p.

9.7. Exercises.

Exercise 2.9.1. This exercise is a continuation of Example 9.3. Let G be a
nonabelian group of order 63. Show that G contains a cyclic subgroup N of order
21 and N is normal in G. Show that the center of G is a cyclic group of order 3.

Exercise 2.9.2. Classify up to isomorphism all groups of order 99.

Exercise 2.9.3. Show that up to isomorphism there are 5 groups of order 8,
namely Z/8, Z/4×Z/2, Z/2×Z/2×Z/2, the dihedral group D4, and the quaternion
8-group Q8.

Exercise 2.9.4. (The square roots of unity in GL2(Z/5)) The general linear
group of 2-by-2 matrices over the field Z/5, denoted GL2(Z/5), is the multiplica-

tive group of invertible matrices

(
a b
c d

)
with entries in the field Z/5 (see Exam-

ple 2.1.20). In this exercise the reader is asked to find all matrices M in GL2(Z/5),
such that M2 = I2, where I2 denotes the identity matrix. The following is a
suggested outline to show that there are 31 elements of order two in GL2(Z/5).

(1) Let M =

[
a b
c d

]
and assume M2 = I2. Show that a, b, c, d satisfy the

equations: a2 − d2 = 0, bc = 1− a2.

(2) If a = 0, then M is of the form

[
0 b
b−1 0

]
, where b = 1, 2, 3, 4, so there are

4 such matrices.

(3) If a = ±1, thenM has one of the forms ±
[
1 0
0 1

]
, ±
[
1 b
0 −1

]
, ±
[
1 0
c −1

]
,

where b = 0, 1, 2, 3, 4, c = 1, 2, 3, 4. There are 20 such matrices, one of
them has order 1, the rest order 2.



10. CHAIN CONDITIONS 91

(4) If a = ±2, then M has one of the forms ±
[
2 b
c −2

]
, where bc = 2. There

are 8 such matrices.

Exercise 2.9.5. (The cube roots of unity in GL2(Z/5)) The general linear
group of 2-by-2 matrices over the field Z/5, denoted GL2(Z/5), is the multiplica-

tive group of invertible matrices

(
a b
c d

)
with entries in the field Z/5 (see Exam-

ple 2.1.20). In this exercise the reader is asked to find all matrices M in GL2(Z/5),
such that M3 = I2, where I2 denotes the identity matrix. The following is a
three-step outline to show that there are 20 elements of order three in GL2(Z/5).

(1) Let M =

[
a b
c d

]
. Show that if M2 +M + I2 = 0, then M3 = I2.

(2) Show that a, b, c, d satisfy the equations: bc = −(a2 + a+ 1), d = 4− a.
(3) Show that there are 5 choices for a and for each a there are 4 choices for

the ordered triple (b, c, d).
(4) This part assumes the reader has basic familiarity with field extensions.

Show that every element of order three in the ring of 2-by-2 matrices over
the field Z/5 is a root of the polynomial equation x2 + x + 1 = 0. Prove
that every element of order 3 in GL2(Z/5) is in the list of Part (3).

10. Chain Conditions

10.1. Nilpotent Groups and Solvable Groups.

Definition 2.10.1. Let G be a group. Set Z0 = ⟨e⟩ and Z1 = Z(G), the center
of G. Then Z1 = {x ∈ G | xyx−1y−1 ∈ Z0 for all y ∈ G}. By Exercise 2.3.38, Z1

is an abelian normal subgroup of G. Inductively assume that n ≥ 1 and we have
the chain of normal subgroups Z0 ⊆ Z1 ⊆ · · · ⊆ Zn in G. Let ηn : G → G/Zn be
the natural map. Then Zn+1 is defined by the rules

Zn+1 = η−1n (Z(G/Zn))

= {x ∈ G | xyx−1y−1 ∈ Zn for all y ∈ G}.

By Theorem 2.3.13, Zn+1 is a normal subgroup of G, Zn ⊆ Zn+1, and the quotient
group Zn+1/Zn is isomorphic to Z(G/Zn), hence is abelian. The ascending chain
of subgroups Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ Zn ⊆ Zn+1 ⊆ · · · is called the ascending
central series of G.

Definition 2.10.2. Let G be a group. We say G is nilpotent , if the ascending
central series of G converges to G. That is, if Zn = G for some n ≥ 1.

Lemma 2.10.3. Let p be a prime and G a finite p-group. Then G is nilpotent.

Proof. By Theorem 2.7.1, G has a nontrivial center. If G is abelian, then
Z1 = G. Otherwise, Z1 ⊊ G, and the quotient G/Z1 is a p-group of order less than
|G|. Since G is finite, Zn = G for some n ≥ 1. □

Lemma 2.10.4. If A and B are groups, then Zn(A×B) = Zn(A)× Zn(B).

Proof. The proof is by induction on n. By Exercise 2.3.38, Z(A × B) =
Z(A) × Z(B), so the result is true for n = 1. Assume inductively that j ≥ 1 and
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Zj(A×B) = Zj(A)× Zj(B). By Exercise 2.5.20,

A×B
Zj(A×B)

=
A×B

Zj(A)× Zj(B)
=

A

Zj(A)
× B

Zj(B)
.

By Exercises 2.3.38 and 2.5.20,

Z

(
A×B

Zj(A×B)

)
= Z

(
A

Zj(A)
× B

Zj(B)

)
= Z

(
A

Zj(A)

)
× Z

(
B

Zj(B)

)
=
Zj+1(A)

Zj(A)
× Zj+1(B)

Zj(B)

=
Zj+1(A)× Zj+1(B)

Zj(A)× Zj(B)

=
Zj+1(A)× Zj+1(B)

Zj(A×B)
.

This proves Zj+1(A×B)/Zj(A×B) =
(
Zj+1(A)× Zj+1(B)

)
/Zj(A×B). It fol-

lows from Theorem 2.3.13 that Zj+1(A×B) = Zj+1(A)× Zj+1(B). This completes
the proof. □

Proposition 2.10.5. The direct product of a finite number of nilpotent groups
is nilpotent.

Proof. Let A and B be nilpotent groups. We show that A × B is nilpotent.
A finite induction argument proves the result for a general finite product. By
hypothesis, there exists n ≥ 1 such that A = Zm(A) and B = Zm(B). By Lemma
Zm(A×B) = Zm(A)× Zm(B) = A×B. □

Lemma 2.10.6. Let G be a nilpotent group and H a proper subgroup of G. Then
H is a proper subgroup of HG(H), the normalizer of H in G.

Proof. For some n ≥ 1, we are given that Zn = G. Let k be the largest
integer such that Zk ⊆ H. Let a ∈ Zk+1 −H. Then aha−1 ≡ h (mod Zk) implies
there exists z ∈ Zk such that aha−1 = zh. But zh ∈ H, hence a ∈ HG(H)−H. □

Theorem 2.10.7. Let G be a finite group. Then G is nilpotent if and only if
G is the internal direct product of its Sylow subgroups.

Proof. Assume G is a finite nilpotent group. Let p be a prime divisor of |G|
and P a Sylow p-subgroup of G. First we show that P is a normal subgroup of G.
By Corollary 2.7.6(3), NG(NG(P )) = NG(P ). By Lemma 2.10.6, NG(P ) = G. By
Proposition 2.4.12, P is a normal subgroup of NG(P ) = G. By Proposition 2.7.8,
G is the internal direct product of its Sylow subgroups. The converse follows from
Lemma 2.10.3 and Proposition 2.10.5. □

Definition 2.10.8. Let G be a group. By Exercise 2.3.42, the commutator
subgroup of G, denoted G′, is the subgroup of G generated by the set {xyx−1y−1 |
x, y ∈ G}. Moreover, G′ is a normal subgroup of G and the quotient group G/G′

is abelian. Set G(0) = G and G(1) = G′. Recursively, for n ≥ 1, define Gn+1 to
be the commutator subgroup of G(n). Then Gn+1 is a normal subgroup of G(n)

and the quotient group G(n)/G(n+1) is an abelian group. The descending chain of
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subgroups G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · ⊇ G(n) ⊇ G(n+1) ⊇ · · · ⊇ ⟨e⟩ is called the
derived series of G.

Definition 2.10.9. A group G is said to be solvable if there is a descending
chain of subgroups G = G0 ⊇ G1 ⊇ · · · ⊇ Gm = ⟨e⟩ starting with G and ending
with ⟨e⟩ such that for 0 < i ≤ m, Gi is a normal subgroup of Gi−1 and the quotient
Gi/Gi−1 is an abelian group. In this case, we say G0, G1, . . . , Gm is a solvable series
for G.

Example 2.10.10. It is proved in Theorem 2.7.1 that a finite p-group is solv-
able.

Example 2.10.11. If G is a finite abelian group, then ⟨e⟩ ⊆ G is a solvable
series for G.

Lemma 2.10.12. Let G be a group. If the ascending central series for G con-
verges to G, that is, if there exists k ≥ 1 such that Zk = G, then G is solvable.

Proof. Assume the ascending central series ⟨e⟩ = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆
Zk−1 ⊆ Zk = G begins at ⟨e⟩ and ends at G. Since each quotient Zn+1/Zn is
abelian, this is a solvable series. □

Lemma 2.10.13. Let G be a group. Then G has a solvable series if and only if
for some k ≥ 1, the kth derived subgroup G(k) is equal to ⟨e⟩. In other words, G is
solvable if and only if the derived series converges to ⟨e⟩.

Proof. If G(k) = ⟨e⟩, then the derived series is a solvable series. Conversely,
assume G = G0 ⊇ G1 ⊇ · · · ⊇ Gm = ⟨e⟩. Since G1 is a normal subgroup of G and
G/G1 is abelian, by Exercise 2.3.42 (3), G′ ⊆ G1. Then {aba−1b−1 | a, b ∈ G′}
is a subset of {aba−1b−1 | a, b ∈ G1}. So G(2) = G′′ ⊆ G′1. But G2 is a normal
subgroup of G1 and G1/G2 is abelian, so G′1 ⊆ G2. Taken together, we have
G(2) ⊆ G2. Iterating this argument shows that G(m) ⊆ Gm = ⟨e⟩. □

Corollary 2.10.14. The symmetric group Sn is solvable if and only if n ≤ 4.

Proof. A solvable series for S3 is ⟨e⟩ ⊆ A3 = ⟨e, (123), (132)⟩ ⊆ S3. A solvable
series for S4 is ⟨e⟩ ⊆ ⟨e, (12)(34), (13)(24), (14)(23)⟩ ⊆ A4 ⊆ S4. Let n ≥ 5 and let
G = Sn. Since Sn/An is cyclic of order two, by Exercise 2.3.42 (3), G′ ⊆ An. Since
An is nonabelian and simple, G′ = G(2) = An. Therefore, the derived series for G
converges to An. By Lemma 2.10.13, G is not solvable. □

10.2. Composition Series.

Definition 2.10.15. Let G be a group and suppose there is a strictly descend-
ing finite chain of subgroups

G = G0 ⊋ G1 ⊋ G2 ⊋ · · · ⊋ Gn = ⟨e⟩

starting with G = G0 and ending with Gn = ⟨e⟩. The length of the chain is n.
A composition series for G is a chain such that for i = 1, . . . , n, Gi is a normal
subgroup of Gi−1 and Gi−1/Gi is simple. If G has no composition series, define
ℓ(G) = ∞. Otherwise, let ℓ(G) be the minimum of the lengths of all composition
series of G.

Lemma 2.10.16. Let G be a finite group. Then G has a composition series.
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Proof. Let G be a finite group of order n. If n = 1, there is nothing to prove.
If n is a prime number, then G = G0 ⊋ G1 = ⟨e⟩ is a composition series since G
is simple. Inductively, assume n > 1 is not prime and that a composition series
exists for any group of order k, if 1 < k < n and k | n. If G is simple, then
G = G0 ⊋ G1 = ⟨e⟩ is a composition series. Otherwise G has a proper normal
subgroup N . By our induction hypothesis, G/N has a composition series. By
Theorems 2.3.12 and 2.3.13, there is a series G = G0 ⊋ G1 ⊋ · · · ⊋ Gr−1 ⊋ Gr = N
such that for i = 1, . . . , r, Gi is a normal subgroup of Gi−1 and Gi−1/Gi is simple.
Again by our induction hypothesis, N has a composition series. There is a series
N = N0 ⊋ N1 ⊋ N2 ⊋ · · · ⊋ Ns = ⟨e⟩ such that for i = 1, . . . , s, Ni is a normal
subgroup of Ni−1 and Ni−1/Ni is simple. Concatenating the two series,

G = G0 ⊋ G1 ⊋ · · · ⊋ Gr−1 ⊋ Gr = N = N0 ⊋ N1 ⊋ N2 ⊋ · · · ⊋ Ns = ⟨e⟩
is a composition series for G. □

10.3. Infinite Chains. This short section has only one goal, which is to
prove Proposition 2.10.17. It is an application of the Well Ordering Principle
(Axiom 1.3.1) and uses transfinite induction. To simplify the statement of the
proposition and its proof we use some terminology from the theory of Ordinal
Numbers which we define here. For more on this subject the reader is referred to a
book on Set Theory, for example [60]. Let I be a well ordered set and β ∈ I. As in
Section 1.3, denote by (−∞, β) = {ξ ∈ I | ξ < β} the segment of I determined by
β. We say β has an immediate predecessor if the set (−∞, β) contains a maximal
element, say α. In this case we write β = α+1. This is equivalent to the statement
that β is the minimal element of the set {ξ ∈ I | α < ξ}. The proposition shows
that a group G is the union of a chain of subgroups {Gα}α∈I indexed by a well
ordered set I with the property that for every α ∈ I, the subgroup Gα+1 is equal
to the subgroup of G generated by Gα and a single element xα+1. The set I and
the subgroups making up the chain are not unique. For our purposes the follow-
ing proposition is sufficient. Nevertheless we remark that if one uses properties of
ordinal numbers it is possible to choose I to be minimal among all such ordinals.

Proposition 2.10.17. Let G be a group and H a subgroup of G. Then there
exists a well ordered set I and a family of subgroups {Gξ | ξ ∈ I} satisfying the
following.

(1) If 1 denotes the least element of I, then G1 = H.
(2) If α and β are in I and α ≤ β, then H ⊆ Gα ⊆ Gβ.
(3) For each β ∈ I, if β has an immediate predecessor, say α, then there exists

xβ ∈ G such that Gβ is the subgroup of G generated by Gα and {xβ}. If
β has no immediate predecessor, then Gβ =

⋃
ξ∈(−∞,β)Gξ.

(4) G =
⋃
ξ∈I Gξ.

Proof. If H = G, then take I = {1}, G1 = H, and stop. Otherwise let
X = (G −H) ∪ {e}, where e is the identity element of G. By Axiom 1.3.1, there
exists a well ordered set I and a function I → X. If ξ ∈ I, then the image of ξ
in X will be denoted xξ. Without loss of generality, assume the least element of
I is 1 and x1 = e and if 1 < ξ, then xξ ̸= e. Set G1 = H. The proof is based on
Proposition 1.3.2. Assume inductively that γ ∈ I, 1 < γ, and that we have defined
a family of subgroups {Gξ | ξ ∈ (−∞, γ)} satisfying:

(a) If α ≤ β < γ, then H ⊆ Gα ⊆ Gβ .
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(b) If β < γ and β has an immediate predecessor, say α, then Gβ is the
subgroup ofG generated byGα and xβ . If β has no immediate predecessor,
then Gβ =

⋃
ξ∈(−∞,β)Gξ.

To define Gγ , there are two cases. If γ has an immediate predecessor, say α, then we
define Gγ to be the subgroup of G generated by Gα and xγ . If γ has no immediate
predecessor, then Gγ is defined to be

⋃
ξ∈(−∞,γ)Gξ, which is a subgroup of G since

{Gξ | ξ ∈ (−∞, γ)} is a chain of subgroups. By Proposition 1.3.2 this defines
{Gξ | ξ ∈ I} satisfying properties (1), (2) and (3).

To complete the proof, we show that there exists a chain of subgroups of G
that satisfies properties (1) — (4). Let S be the set of all chains of subgroups
of G of the form C = {Gξ | ξ ∈ I} where I is a well ordered set and properties
(1) — (3) are satisfied. By the construction above, S is nonempty. Given a chain
C = {Gξ | ξ ∈ I} in S, let G(C) =

⋃
{Gξ | ξ ∈ I} be the union of the subgroups

in C. The usual set containment relation on the sets G(C) defines a partial order
on S. That is, if C1 and C2 are in S, then C1 ≤ C2 if G(C1) ⊆ G(C2). By a
Zorn’s Lemma argument, S contains a maximal member, say C = {Gξ | ξ ∈ I}. If
G(C) ̸= G, then we apply the procedure in the first paragraph to get a nontrivial
chain of subgroups of G containing G(C) of the form C1 = {Kη | η ∈ J} where J
is a well ordered set and if 1 is the least element of J , then K1 = G(C). The set
I + J is well ordered in the usual way (see Exercise 1.2.25). Combining the two
chains C and C1 gives a chain of subgroups in S that is strictly larger than C, a
contradiction. Therefore, C satisfies properties (1) — (4). □

10.4. Exercises.

Exercise 2.10.18. Let G be a group. Prove:

(1) For each k ≥ 1, the kth derived subgroup, G(k), is a normal subgroup of
G.

(2) If θ : G→ H is an epimorphism, then θ(G(k)) = H(k).

Exercise 2.10.19. Let G be a solvable group. Prove:

(1) If H is a subgroup of G, then H is solvable.
(2) If θ : G→ H is an epimorphism, then H is solvable.
(3) Let N be a normal subgroup of G. If N and G/N are solvable, then G is

solvable.
(4) If G ̸= ⟨e⟩ and G is solvable, then there exists an abelian normal subgroup

A ⊆ G, A ̸= ⟨e⟩.

Exercise 2.10.20. Let n ≥ 3.

(1) Show that there is a homomorphism θ : D2n → Dn from the dihedral
group D2n onto the dihedral group Dn and the kernel of θ is the center
of D2n. (Hint: Example 2.3.32.)

(2) Let 2m be the highest power of 2 that divides n. Show that the central

ascending series of Dn is Z(0) ⊆ Z(1) ⊆ · · · ⊆ Z(m), where Z(i) = ⟨Rn/2i⟩.
(3) Show that if n is odd, then D2n is the internal direct sum of a cyclic

subgroup of order two (the center) and a subgroup isomorphic to Dn.

Exercise 2.10.21. Let G be a finite solvable group. Prove:

(1) If G is abelian and G = G0 ⊋ G1 ⊋ · · · ⊋ Gm = ⟨e⟩ is a composition
series, then Gi−1/Gi is a cyclic group and [Gi−1, Gi] is a prime number.
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(2) G has a composition series G = G0 ⊋ G1 ⊋ · · · ⊋ Gm = ⟨e⟩ such that
Gi−1/Gi is a cyclic group and [Gi−1, Gi] is a prime number.



CHAPTER 3

Rings

A ring is an algebraic structure which has two binary operations called addi-
tion and multiplication. We have already seen concrete examples of rings. The
prototypical example of a ring is the ring of integers, Z. Its close relative is the ring
of integers modulo n, Z/(n). The fields Q, R, and C are rings. The ring of n-by-n
matricesMn(R) is an example of a ring in which multiplication is not commutative.
The set of polynomials, the set of rational functions, and the set of power series
with coefficients over the field R are rings. The set of all continuous functions,
differentiable functions, and integrable functions from R to R are rings. The set of
all functions from R to R that are continuous at a specific point is a ring. If A is an
abelian group, the set of all endomorphisms from A to itself is a ring. Ring Theory
can be viewed as the axiomatic abstraction of these examples.

1. Definitions and Terminology

Definition 3.1.1. A ring is a nonempty set R with two binary operations, ad-
dition written +, and multiplication written · or by juxtaposition. Under addition
(R,+) is an abelian group with identity element 0. Under multiplication (R, ·) is as-
sociative and contains an identity element, denoted by 1. Multiplication distributes
over addition from both the left and the right. If (R, ·) is commutative, then we
say R is a commutative ring. The trivial ring is {0}, in which 0 = 1. Otherwise
0 ̸= 1. If R is not the trivial ring, the reader is asked to prove in Proposition 3.1.2
that 0 ̸= 1.

Proposition 3.1.2. Let R be a ring. Let a, b ∈ R and n ∈ Z.
(1) 0a = a0 = 0.
(2) (−a)b = a(−b) = −(ab).
(3) (−a)(−b) = ab.
(4) (na)b = a(nb) = n(ab).

(5) If a1, . . . , as, b1, . . . , bt are elements of R, then
(∑s

i=1 ai
)(∑t

j=1 bj
)

=∑s
i=1

∑t
j=1 aibj.

(6) If R contains more than one element, then 0 ̸= 1.

Proof. Is left to the reader. □

Definition 3.1.3. Let R be a ring and a ∈ R. We say a is a left zero divisor
if a ̸= 0 and there exists b ̸= 0 such that ab = 0. We say a is left invertible in
case there is b ∈ R such that ba = 1. The reader should define the terms right zero
divisor and right invertible. If a is both a left zero divisor and right zero divisor,
then we say a is a zero divisor. If a is both left invertible and right invertible, then
we say a is invertible. In this case, the left inverse and right inverse of a are equal
and unique (Exercise 2.1.22 (2)). An invertible element in a ring R is also called

97
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a unit of R. If R ̸= (0) and R has no zero divisors, then we say R is a domain.
A commutative domain is called an integral domain. A domain in which every
nonzero element is invertible is called a division ring. A commutative division ring
is called a field. The set of all invertible elements in a ring R is a group which is
denoted Units(R) or R∗ and is called the group of units in R.

Remark 3.1.4. Notice that in Definition 3.1.3, we have explicitly required a
domain to have at least two elements. The only ring with order one is the trivial
ring (0). In Example 3.2.5 (4) we see that (0) plays the role of a terminal object in
the category of rings. Besides this, there is no significant result that can be proved
about the ring (0). It has no proper ideals, is not a subring of any larger ring, and
there is no nontrivial module or algebra over (0).

Example 3.1.5. Standard examples of rings and fields are listed here.

(1) The ring of integers Z is an integral domain. The ring of integers modulo
n, denoted Z/(n), is a commutative ring containing n elements.

(2) Denote by Q the field of rational numbers, by R the field of real numbers
and by C the field of complex numbers (see Section 1.5).

(3) If k is a field and n ≥ 1, the ring of n-by-n matrices over k is denoted by
Mn(k). If n > 1, then Mn(k) is noncommutative. We assume the reader
is familiar with the basic properties for multiplication of matrices over an
arbitrary field. In particular, multiplication of matrices is associative and
distributes over addition. The proof is tedious but elementary. If R is any
ring, then the ring of n-by-n matrices over R is denoted by Mn(R). We
will prove in Corollary 4.4.12 below that Mn(R) is a ring.

Example 3.1.6. Let R be a commutative ring and G a finite multiplicative
group. Assume the order of G is n and enumerate the elements G = {g1, . . . , gn},
starting with the group identity g1 = e. Let R(G) be the set of all formal sums

R(G) = {r1g1 + · · ·+ rngn | ri ∈ R}.

Define addition and multiplication rules on R(G) by

n∑
i=1

rigi +

n∑
i=1

sigi =

n∑
i=1

(ri + si)gi( n∑
i=1

rigi

)( n∑
i=1

sigi

)
=

n∑
i=1

n∑
j=1

(risj)(gigj)

The additive identity is 0 = 0g1 + 0g2 + · · · + 0gn. The multiplicative identity is
1 = 1g1 + 0g2 + · · ·+ 0gn. Then R(G) is a ring. We call R(G) a group ring.

If R is a commutative ring and G is a group which is not necessarily finite, we
can still define the group ring R(G). In this case, take R(G) to be the set of all
finite formal sums

R(G) =

{∑
g∈G

rgg | rg ∈ R and rg = 0 for all but finitely many g

}
.

If g ∈ G, then in R(G) we have the identity gg−1 = g−1g = 1. Therefore, we can
view G as a subgroup of the group of units in the group ring R(G).
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Example 3.1.7. If A is an abelian group, let Hom(A,A) be the set of all
homomorphisms from A to A. By Exercise 2.8.11, Hom(A,A) is a ring with binary
operations coordinate-wise addition and composition of functions:

(f + g)(x) = f(x) + g(x)

(fg)(x) = f(g(x)).

In Exercises 3.1.17 and 3.1.18 the reader is asked to prove Hom(Z,Z) ∼= Z and
Hom(Z/n,Z/n) ∼= Z/n.

Definition 3.1.8. If R is any ring, the opposite ring of R is denoted Ro. As
an additive abelian group, the opposite ring of R is equal to R. However, the
multiplication of Ro is reversed from that of R. Writing the multiplication of R by
juxtaposition and multiplication of Ro with the asterisk symbol, we have x∗y = yx.

Example 3.1.9. Let R be a ring and Ro the opposite ring.

(1) See Exercise 7.6.26 for an example of a ring R which is not isomorphic to
Ro.

(2) In Exercise 3.2.39 the reader is asked to prove that any group ring is
isomorphic to its opposite ring.

(3) In Exercise 4.4.29 the reader is asked to prove that the ring of matrices
over a commutative ring is isomorphic to its opposite ring.

(4) The set of all so-called Azumaya algebras is an important class of rings
R for which R and Ro are in general not isomorphic. If R is an Azumaya
algebra, then Ro represents the inverse of R in the Brauer group. So
unless the Brauer class of R is annihilated by two, R and Ro are not
isomorphic. The interested reader is referred to [20] for an introduction
to this subject.

Definition 3.1.10. If A is a ring and B ⊆ A, then we say B is a subring of A
if B contains both 0 and 1 and B is a ring under the addition and multiplication
rules of A. Let A be a ring. The center of A is the set

Z(A) = {x ∈ A | xy = yx (∀y ∈ A)}.
The reader should verify that Z(A) is a subring of A and Z(A) is a commutative
ring. If x ∈ Z(R), then we say x is central.

Example 3.1.11. Let R = Z/6 = {0, 1, 2, 3, 4, 5} be the ring of integers modulo
6. Let B = {0, 2, 4} and C = {0, 3}. The reader should verify that B is a ring of
order 3. In fact, B is isomorphic to the field Z/3. Since B does not contain 1, B is
not a subring of R. Likewise, C is a ring, isomorphic to the field Z/2, but C is not
a subring of R. The sets B and C are examples of ideals (see Example 3.2.2).

Example 3.1.12. If n > 1, then the additive group (Z/n,+) is generated by
1. Therefore, the ring Z/n has no proper subring. For the same reason, the ring Z
has no proper subring.

Example 3.1.13. Let R be any ring and Mn(R) the ring of n-by-n matrices
over R, where n ≥ 2. The set

L = {(rij) | rij = 0 if i < j}
of all lower triangular matrices is a noncommutative subring of Mn(R). Likewise,
the set of all upper triangular matrices is a noncommutative subring ofMn(R). See
Example 3.3.11 for a continuation of this example when R is a field and n = 2.
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Example 3.1.14. Let R be a commutative ring and M2(R) the ring of two-by-
two matrices over R. The proof given in Example 2.3.34 can be readily adapted
to show that the center of the ring M2(R) is equal to the set of scalar matrices{(

a 0
0 a

)
| a ∈ R

}
. Let n ≥ 2. Using a different proof, we show that the center

of the ring Mn(R) is equal to the set of scalar matrices over R. Let A = (aij) be
a central matrix. For each ordered pair (i, j), where 1 ≤ i, j ≤ n, let eij be the
elementary matrix with 1 in position (i, j) and 0 elsewhere. In the following, we
use the following notation: Ci(A) denotes column i of A, Rj(A) denotes row j of
A, and Mrs(0) denotes the r-by-s matrix with 0 in every position. Then

eijA =

Mi−1,n(0)
Rj(A)

Mn−i,n(0)

 .

In words, row i of eijA is equal to row j of A and all other entries of eijA are equal
to 0. Also,

Aeij =
(
Mn,j−1(0) Ci(A) Mn,n−j(0)

)
.

In words, column j of Aeij is equal to column i of A and all other entries of eijA are
equal to 0. Since A commutes with eij , we conclude that all elements of A that are
not on the diagonal are equal to 0. If we assume i ̸= j, this also means ajj = aii.
Therefore, A is a scalar matrix. It is routine to check that a scalar matrix is central.

Example 3.1.15. If F is a field the ring of quaternions over F is the four-
dimensional vector space over F with basis {1, i, j, k} with multiplication defined
by extending these relations:

i2 = j2 = k2 = −1
ij = −ji = k

ik = −ki = −j
by associativity and distributivity. We denote the ring of quaternions by H(F ), or
HF . Notice that under multiplication the set {1,−1, i,−i, j,−j, k,−k} is Q8, the
quaternion 8-group of Example 2.1.18. The ring of quaternions HF is a division
ring if F is equal to either Q or R (Exercise 3.1.19). The ring of quaternions HC is
isomorphic to M2(C) (Exercise 3.1.21). The ring of quaternions H(Z/(2)) is com-
mutative (Exercise 3.1.20). The product formula for multiplying two quaternions
x = a+ bi+ cj + dk and y = e+ fi+ gj + hk is

xy = (a+ bi+ cj + dk)(e+ fi+ gj + hk)

= (ae− bf − cg − dh) + (af + be+ ch− dg)i
+ (ag − bh+ ce+ df)j + (ah+ bg − cf + de)k

and is derived from the relations above. We identify F with F · 1. Thus, F is a
subring of HF . If x ∈ F , then xy = yx. That is, F is a subring of the center of
HF . For a quaternion x = a + bi + cj + dk define χ(x) = a − bi − cj − dk. Using
the product formula above, we find

χ(y)χ(x) = (e− fi− gj − hk)(a− bi− cj − dk)
= (ae− bf − cg − dh)− (af + be+ ch− dg)i
− (ag − bh+ ce+ df)j − (ah+ bg − cf + de)k

= χ(xy).
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Define the norm of x by

N(x) = xχ(x) = (a+ bi+ cj + dk)(a− bi− cj − dk)
= (a2 + b2 + c2 + d2) + (−ab+ ab+ cd− cd)i
+ (ac+ bd− ac− bd)j + (−ad− bc+ bc+ ad)k

= a2 + b2 + c2 + d2

which is an element of F . Using the formulas from above, we see that

N(xy) = xyχ(xy) = xyχ(y)χ(x) = xN(y)χ(x) = xχ(x)N(y) = N(x)N(y)

hence N : HF → F is multiplicative. The function χ is an example of an involution
(see Section 12.6.6.1).

Definition 3.1.16. Let R and S be rings. A function θ : R → S is called an
isomorphism of rings, if θ is a one-to-one correspondence, θ(1) = 1, θ(x + y) =
θ(x)+ θ(y), and θ(xy) = θ(x)θ(y) for all x, y ∈ R. In this case, we say R and S are
isomorphic and write R ∼= S. From an abstract algebraic point of view, isomorphic
rings are indistinguishable.

1.1. Exercises.

Exercise 3.1.17. The point to this exercise is to compute the ring Hom(Z,Z)
of all endomorphisms of the infinite cyclic group Z,+ (see Exercise 2.8.11). In the
following, f and g always denote endomorphisms of Z.

(1) Define ϕ : Hom(Z,Z)→ Z by ϕ(f) = f(1). Show that ϕ is an isomorphism
of rings. (Hint: Theorem 2.3.27.)

(2) Show that Aut(Z) has order two.
Exercise 3.1.18. Let n ∈ N. The object of this exercise is to compute the ring

of all endomorphisms of the finite cyclic group (Z/n,+). As in Exercise 2.8.11, this
ring is denoted Hom((Z/n,+), (Z/n,+)). In the following, f and g always denote
endomorphisms of Z/n.

(1) Define ϕ : Hom((Z/n,+), (Z/n,+))→ Z/n by ϕ(f) = f(1). Prove that ϕ
is an isomorphism of rings. (Hint: Theorem 2.3.27.)

(2) Show that Aut((Z/n,+)) ∼= Un, where Un is the group of units modulo n.

For a generalization of this example, see Exercise 4.4.32.

Exercise 3.1.19. Prove that the ring of quaternions (see Example 3.1.15) over
Q (or R) is a division ring.

Exercise 3.1.20. Let G = ⟨a, b | a2 = b2 = e, ab = ba⟩ be an elementary
2-group of order 4. Let R = Z/(2) be the field with 2 elements. For the definition
of the ring of quaternions, see Example 3.1.15. For the definition of a group ring,
see Example 3.1.6.

(1) Prove that the ring of quaternions over R is isomorphic to the group ring
R(G).

(2) Determine the group of units in R(G).
(3) Determine the set of zero divisors in R(G).
(4) Determine all elements in R(G) that satisfy the equation e2 = e. These

elements are the so-called idempotents.

Exercise 3.1.21. Prove that the ring of quaternions over C is isomorphic to
M2(C). (Hint: Find matrices that play the roles of i and j.)
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Exercise 3.1.22. Let R be the ring M2(Z/(2)) of two-by-two matrices over
Z/(2).

(1) Determine the group of units in R.
(2) Determine the set of zero divisors in R.
(3) Determine all elements in R that satisfy the equation e2 = e. These

elements are the so-called idempotents in R.
(4) Show that R contains exactly two subrings that are fields. One is the

image of the canonical homomorphism χ : Z→ R which has order 2, and
the other is a field of order 4.

Exercise 3.1.23. Let R be any ring. Let x and y be elements of R such that
xy = yx. Prove the Binomial Theorem:

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i

for any n ≥ 0.

Exercise 3.1.24. Let i ∈ C be the square root of −1.
(1) Show that Q[i] = {a+ bi | a, b ∈ Q} is a subfield of C.
(2) Show that Z[i] = {a + bi | a, b ∈ Z} is a subring of Q[i]. The ring Z[i] is

called the ring of gaussian integers.

Exercise 3.1.25. Consider the set

Z/4[i] = {a+ bi | a, b ∈ Z/4}
where i2 = −1 ≡ 3 (mod 4). Addition and multiplication are defined as in the
gaussian integers, where a and b are added and multiplied in the ring Z/4. Show
that Z/4[i] is a commutative ring of order 16. Show that the group of units in
Z/4[i] is isomorphic to U16, the group of units modulo 16. Show that the rings
Z/4[i] and Z/16 are not isomorphic.

2. Homomorphisms and Ideals

Definition 3.2.1. A left ideal of A is a nonempty subset I ⊆ A such that
(I,+) is a subgroup of (A,+) and ax ∈ I for all a ∈ A and all x ∈ I. The reader
should define the term right ideal. If I is both a left ideal and right ideal, we say I
is an ideal.

Example 3.2.2. Some important examples of ideals are listed here.

(1) If R is a commutative ring, then a left ideal is a two-sided ideal.
(2) In a ring R the trivial ideals are {0} and R.
(3) If F is a field, the only ideals are {0} and F . This is Exercise 3.2.21.
(4) Let R be a commutative ring and Mn(R) the ring of n-by-n matrices over

R, where n ≥ 2. The set

L = {(rij) | rij = 0 if i < j}
of all lower triangular matrices is a subring of Mn(R) (Example 3.1.13).
It is not an ideal, because the identity matrix I is in L.

(5) Let F be a field and M2(F ) the ring of 2-by-2 matrices over F . Then

I =

{(
a 0
b 0

)
| a, b ∈ F

}
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is a left ideal in M2(F ), but not a right ideal.
(6) The subgroups of Z,+ are the cyclic subgroups Zm, where m ∈ Z. Any

such subgroup is an ideal. So the ideals of Z are of the form Zm.

Definition 3.2.3. If R and S are rings, a homomorphism from R to S is a
function f : R→ S satisfying

(1) f(x+ y) = f(x) + f(y) for all x, y ∈ R,
(2) f(xy) = f(x)f(y) for all x, y ∈ R, and
(3) f(1) = 1.

Notice that (1) implies f : (R,+)→ (S,+) is a homomorphism of additive groups.
The kernel of f is ker (f) = {x ∈ R | f(x) = 0} which is equal to the kernel of the
homomorphism on additive groups. In Proposition 3.2.4 below, the reader is asked
to verify that the kernel of f is an ideal in R. By Lemma 2.3.7, f is one-to-one if
and only if ker f = (0). The image of the homomorphism f is im (f) = {f(x) ∈
S | x ∈ R}. The reader should verify that the image of f is a subring of S. As
we defined in Definition 3.1.16, an isomorphism is a homomorphism f : R → S
that is one-to-one and onto. In this case, we say R and S are isomorphic. An
automorphism of R is a homomorphism f : R→ R that is one-to-one and onto.

Proposition 3.2.4. Let R be a ring and I a left ideal in R. The following are
equivalent.

(1) I is an ideal of R. That is, I is both a left and right ideal.
(2) The set R/I = {a+ I | a ∈ R} of all left cosets of I in R is a ring where

addition and multiplication of cosets is defined by the rules

(a+ I) + (b+ I) = (a+ b) + I

(a+ I)(b+ I) = ab+ I.

The additive identity is the coset 0+ I, the multiplicative identity is 1+ I.
If η : R → R/I is the natural map defined by x 7→ x + I, then η is a
homomorphism, im η = R/I, and ker η = I. The ring R/I is called the
residue class ring, or factor ring, or quotient ring of R modulo I.

(3) There exists a ring S, a homomorphism of rings θ : R→ S and I is equal
to the kernel of θ.

Proof. (1) implies (2): We show that the multiplication rule on left cosets
is well defined. The rest follows from Lemma 2.3.4 and the fact that R is a ring.
Assume a, b, c, d are elements of R and a − b ∈ I and c − d ∈ I. Then ac − bd =
ac− bc+ bc− bd = (a− b)c+ b(c− d) is in I since I is a left and right ideal. This
shows ac+ I = bd+ I, hence the multiplication of left cosets is well defined.

(2) implies (3): Take S to be R/I and θ the natural map η.
(3) implies (1): This is left to the reader. □

Example 3.2.5. Standard examples of homomorphisms are listed here.

(1) The natural projection Z→ Z/(n) maps an integer to its congruence class
modulo n. It is a homomorphism of rings which is onto. The kernel is the
subgroup generated by n.

(2) If u is an invertible element of R, the inner automorphism of R defined
by u is σu : R → R where σu(x) = uxu−1. The reader should verify that
σu is a homomorphism of rings and is a one-to-one correspondence.
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(3) Suppose R is a commutative ring, H and G are groups and θ : H → G is
a homomorphism of groups. The action rh 7→ rθ(h) induces a homomor-
phism of group rings R(H)→ R(G) (see Example 3.1.6).
(a) The homomorphism ⟨e⟩ → G induces a homomorphism θ : R →

R(G). Notice that θ is one-to-one and the image of θ is contained in
the center of R(G).

(b) The homomorphism G → ⟨e⟩ induces ϵ : R(G) → R. Notice that ϵ
is onto, and the kernel of ϵ contains the set of elements D = {1− g |
g ∈ G}. The reader should verify that the kernel of ϵ is the ideal
generated by D in R(G) (see Definition 3.2.6). Sometimes ϵ is called
the augmentation map.

(4) If R is a ring, then the zero mapping R→ (0) is a homomorphism of rings.
(In the category of rings, (0) is a terminal object.)

(5) If R is a ring, there is a unique homomorphism χ : Z → R. In fact, by
definition χ(1) = 1 so χ(n) = nχ(1) = n1 for an arbitrary integer n.
(In the category of rings, Z is an initial object.) The image of χ is the
smallest subring of R. If R is a domain, the image of χ is called the prime
ring of R. The kernel of χ is a subgroup of Z, hence is equal to (n) for
some nonnegative integer n. We call n the characteristic of R and write
n = char(R).

Definition 3.2.6. Let R be any ring and X ⊆ R. The left ideal generated by
X is {

n∑
i=1

rixi | n ≥ 1, ri ∈ R, xi ∈ X

}
.

The reader should verify that the left ideal generated by X is equal to the intersec-
tion of the left ideals containing X. The ideal generated by X is{

n∑
i=1

rixisi | n ≥ 1, ri, si ∈ R, xi ∈ X

}
.

The reader should verify that the ideal generated by X is equal to the intersection
of the ideals containing X. If A and B are left ideals of R, then A + B is the set
{a + b | a ∈ A, b ∈ B}. The reader should verify that if A and B are ideals, then
A + B is an ideal. The left ideal generated by the set {ab | a ∈ A, b ∈ B} is
denoted AB. The reader should verify that if A and B are ideals, then AB is an
ideal. A left ideal (or ideal) is principal if it is generated by a single element. If I
is generated by X, we write I = (X). A commutative ring R is called a principal
ideal ring if every ideal is a principal ideal. A principal ideal domain (PID) is an
integral domain in which every ideal is principal.

Example 3.2.7. Standard examples of ideals are listed here.

(1) In any ring, the set (0) is an ideal.
(2) In any ring R, if u is invertible, then for any r ∈ R we see that r = (ru−1)u

is in the left ideal generated by u. That is, (u) = R. We call R the unit
ideal of R. In R, the trivial ideals are (0) and R. If R is a division ring,
the only left ideals in R are the trivial ideals.

(3) The ideals in Z are precisely the subgroups of (Z,+). That is, I is an
ideal of Z if and only if I = (n) for some n. The ring Z is a principal ideal
domain.
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Example 3.2.8. Let k be a field and R = k[w, x, y, z] the polynomial ring in
four variables over k. Let A = (w, x) and B = (y, z). Then wy + xz ∈ AB, but
wy + xz cannot be factored as uv, where u ∈ A and v ∈ B. This shows that in
general the set {uv | u ∈ A, v ∈ B} is not an ideal.

Proposition 3.2.9. Let θ : R → S be a homomorphism of rings. Let I be an
ideal of R contained in ker θ. There exists a homomorphism φ : R/I → S satisfying
the following.

(1) φ(a+ I) = θ(a), or in other words θ = φη.
(2) φ is the unique homomorphism from R/I → S such that θ = φη.
(3) im θ = imφ.
(4) kerφ = η(ker θ) = ker(θ)/I.
(5) φ is one-to-one if and only if I = ker θ.
(6) φ is onto if and only if θ is onto.
(7) There is a unique homomorphism ϕ : R/I → R/ ker θ such that the dia-

gram

R
θ //

##
η

��

S

R/ ker θ

;;

R/I

ϕ

OO φ

EE

commutes.

Proof. On the additive groups, this follows straight from Theorem 2.3.11.
The map φ is multiplicative since θ is a homomorphism of rings. □

Proposition 3.2.10. Let R be a ring and I ⊆ J ⊆ R a chain of ideals in R.
Then J/I is an ideal in R/I and

R/J ∼=
R/I

J/I
.

Proof. This follows from Proposition 3.2.9 and Theorem 2.3.12 (c). □

Definition 3.2.11. Let R be a commutative ring. An ideal I in R is prime in
case R/I is an integral domain. An ideal I in R is maximal in case R/I is a field. A
field is an integral domain, so a maximal ideal is a prime ideal. By Definition 3.1.3,
an integral domain has at least two elements, so the unit ideal is never prime.

Proposition 3.2.12. Let R be a ring and I an ideal in R. There is a one-to-
one order-preserving correspondence between the ideals J such that I ⊆ J ⊆ R and
the ideals of R/I given by J 7→ J/I. If R is commutative, then there is a one-to-one
correspondence between prime ideals of R/I and prime ideals of R that contain I.

Proof. The first part follows from Proposition 3.2.9 and Theorem 2.3.13. The
preimage of a prime ideal is a prime ideal, by Exercise 3.2.36. Proposition 3.2.10
shows that the image of a prime ideal that contains I is a prime ideal in R/I. □

Example 3.2.13. In an integral domain, the zero ideal (0) is a prime ideal. In
a commutative ring R, the zero ideal (0) is a maximal ideal if and only if R is a
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field (Exercise 3.2.21). Let P be a nonzero prime ideal in Z. Then Z/P is a finite
integral domain which is a field, by Exercise 3.2.25. The maximal ideals in Z are
the nonzero prime ideals.

Proposition 3.2.14. Let R be a commutative ring and P an ideal of R. As-
sume P ̸= R. The following are equivalent.

(1) P is a prime ideal. That is, R/P is an integral domain.
(2) For all x, y ∈ R, if xy ∈ P , then x ∈ P or y ∈ P .
(3) For any ideals I, J in R, if IJ ⊆ P , then I ⊆ P or J ⊆ P .

Proof. Is left to the reader. □

Proposition 3.2.15. Let R be a commutative ring.

(1) An ideal M is a maximal ideal in R if and only if M is not contained in
a larger proper ideal of R.

(2) R contains a maximal ideal.
(3) If I is a proper ideal of R, then R contains a maximal ideal M such that

I ⊆M .

Proof. (1): By Exercise 3.2.21 and Proposition 3.2.12 R/M is a field if and
only if there is no proper ideal J such that M ⊊ J .

(2): Let S be the set of all ideals I in R such that I ̸= R. Then (0) ∈ S.
Order S by set inclusion. Let {Aα} be a chain in S. The union J =

⋃
Aα is

an ideal in R, by Exercise 3.2.23. Since 1 is not in any element of S, it is clear
that 1 ̸∈ J . Therefore, J ∈ S is an upper bound for the chain {Aα}. By Zorn’s
Lemma, Proposition 1.3.3, S contains a maximal member. By Part (1), this ideal
is a maximal ideal.

(3): Is left to the reader. □

2.1. Exercises.

Exercise 3.2.16. Let θ : R→ S be a homomorphism of rings. Prove:

(1) The image of θ is a subring of S.
(2) If B is a subring of S and A = {y ∈ R | θ(y) ∈ B}, then A is a subring of

R.
(3) If A and B are as in (2), then θ : A→ B is a homomorphism of rings.

Exercise 3.2.17. Let θ : R→ S be a homomorphism of rings. Prove:

(1) θ is one-to-one if and only if ker θ = (0).
(2) If R is a division ring, then θ is one-to-one.

Exercise 3.2.18. Let R be any ring. As in Example 3.2.5 (5), the characteristic
of R is denoted charR.

(1) If n = charR, then nx = 0 for any x ∈ R.
(2) If R is a domain, then the characteristic of R is either 0 or a prime number.

Exercise 3.2.19. Let R be any ring and suppose p = charR is a prime number
(see Example 3.2.5 (5)). Let x and y be elements of R such that xy = yx. Prove:

(1) (x+ y)p = xp + yp.
(2) (x− y)p = xp − yp.
(3) (x− y)p−1 =

∑p−1
i=0 x

iyp−1−i.

(4) If n ≥ 0, then (x+ y)p
n

= xp
n

+ yp
n

.



2. HOMOMORPHISMS AND IDEALS 107

(Hint: Exercise 1.2.21.) See Exercise 3.6.35 for an application of this exercise.

Exercise 3.2.20. Let R be a commutative ring and assume charR = p is a
prime number (see Example 3.2.5 (5)). Define θ : R → R by x 7→ xp. Show that θ
is a homomorphism of rings. We usually call θ the Frobenius homomorphism. For
any a ≥ 1, show that θa(x) = xp

a

.

Exercise 3.2.21. Prove:

(1) If R is a ring with no proper left ideal, then every nonzero element has a
left inverse. (Hint: Exercise 2.1.22.)

(2) If R is a ring with no proper left ideal, then R is a division ring. (Hint:
R− (0) is a monoid.)

(3) A commutative ring R is a field if and only if R has no proper ideal.

Exercise 3.2.22. Let R be a ring and Mn(R) the ring of n-by-n matrices over
R where addition and multiplication are defined in the usual way.

(1) Let eij be the elementary matrix which has 0 in every position except
in position (i, j) where there is 1. Determine the left ideal in Mn(R)
generated by eij .

(2) If n ≥ 2, show that Mn(R) has proper left ideals.
(3) If I is an ideal in Mn(R), show that I = Mn(J) for some ideal J in R.

(Hint: Use multiplication by the various Eij .)
(4) If D is a division ring, show thatMn(D) has no proper ideal. We say that

Mn(D) is a simple ring.

Exercise 3.2.23. Let R be a ring, I an index set, and {Ai | i ∈ I} a family of
left ideals in R.

(1) Show that
⋂
i∈I Ai is a left ideal in R.

(2) Suppose {Ai | i ∈ I} is an ascending chain of left ideals in R. That is, I is
a partially ordered set that is a chain, and if α ≤ β in I, then Aα ⊆ Aβ .
Show that

⋃
i∈I Ai is a left ideal in R.

Exercise 3.2.24. Let U and V be ideals in the commutative ring R. Let UV
be the ideal generated by the set {uv | u ∈ U, v ∈ V }. Prove the following.

(1) UV ⊆ U ∩ V .
(2) If U + V = R, then UV = U ∩ V .
(3) Show by counterexample that UV = U ∩ V is false in general.

Exercise 3.2.25. Prove that a finite domain is a division ring, hence a finite
integral domain is a field. By a theorem of Wedderburn ([20, Theorem 7.5.4]), a
finite division ring is always commutative.

Exercise 3.2.26. Let n > 1.

(1) Show that every prime ideal in Z/(n) is a maximal ideal.
(2) Let n = πe11 · · ·π

ek
k be the unique factorization of n (Proposition 1.2.7).

Determine the maximal ideals in Z/(n).

Exercise 3.2.27. An element x of a ring is said to be nilpotent if xn = 0 for
some n > 0. If R is a commutative ring, let RadR(0) denote the set of all nilpotent
elements of R. We call RadR(0) the nil radical of R.

(1) Show that RadR(0) is an ideal.
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(2) Let I be an ideal of R contained in RadR(0). Show that the nil radical of
R/I is RadR(0)/I, hence the nil radical of R/RadR(0) is the trivial ideal
(0 + RadR(0)).

Exercise 3.2.28. Let θ : R → S be a homomorphism of rings. Prove that θ
induces a homomorphism θ : Units(R)→ Units(S) on the groups of units.

Exercise 3.2.29. Let R be a commutative ring, RadR(0) the nil radical of R,
and η : R→ R/RadR(0) the natural map. Prove:

(1) If x is a nilpotent element of R, then 1 + x is a unit in R.
(2) If η(r) is a unit in R/RadR(0), then r is a unit in R.
(3) If I is an ideal ofR contained in RadR(0), then the natural map η : Units(R)→

Units(R/I) is onto and the kernel of η is equal to the coset 1 + I.

Exercise 3.2.30. Let I and J be ideals in the commutative ring R. The ideal
quotient is I : J = {x ∈ R | xJ ⊆ I}. Prove that I : J is an ideal in R.

Exercise 3.2.31. For the following, let I, J andK be ideals in the commutative
ring R. Prove that the ideal quotient satisfies the following properties.

(1) I ⊆ I : J
(2) (I : J)J ⊆ I
(3) (I : J) : K = I : JK = (I : K) : J
(4) If {Iα | α ∈ S} is a collection of ideals in R, then(⋂

α∈S
Iα

)
: J =

⋂
α∈S

(Iα : J)

(5) If {Jα | α ∈ S} is a collection of ideals in R, then

I :
∑
α∈S

Jα =
⋂
α∈S

(I : Jα)

(6) If J = (a) is principal and I ⊆ J , then I = (I : J)J .

Exercise 3.2.32. A local ring is a commutative ring R such that R has exactly
one maximal ideal. If R is a local ring with maximal ideal m, then R/m is called
the residue field of R. If (R,m) and (S, n) are local rings and f : R → S is a
homomorphism of rings, then we say f is a local homomorphism of local rings in
case f(m) ⊆ n. Prove:

(1) A field is a local ring.
(2) If (R,m) is a local ring, then the group of units of R is equal to the set

R−m.
(3) If f : R → S is a local homomorphism of local rings, then f induces a

homomorphism of residue fields R/m→ S/n.

Exercise 3.2.33. Let R be a ring. If A and B are left ideals in R, then
the product ideal AB is defined in Definition 3.2.6. The powers of A are defined
recursively by the rule:

An =


R if n = 0,

A if n = 1,

AAn−1 if n > 1.

The left ideal A is nilpotent if for some n > 0, An = 0. Let A and B be nilpotent
left ideals of R. Prove:



3. DIRECT PRODUCTS AND DIRECT SUMS OF RINGS 109

(1) Assume An = 0. If x1, . . . , xn are elements of A, then x1 · · ·xn = 0.
(2) Every element x of A is nilpotent.
(3) A + B is a nilpotent left ideal. (Hint: For all p sufficiently large, if

x1, . . . , xp are elements of A ∪B, show that x1 · · ·xp = 0.)

Exercise 3.2.34. Let R be a commutative ring and {x1, . . . , xn} a finite set of
nilpotent elements of R. Show that Rx1 + · · ·+Rxn is a nilpotent ideal.

Exercise 3.2.35. Let R be a ring. We say that a left ideal M of R is maximal
if M is not equal to R and if I is a left ideal such that M ⊆ I ⊊ R, then M = I.
Let I be a left ideal of R which is not the unit ideal. Apply Zorn’s Lemma,
Proposition 1.3.3, to show that there exists a maximal left ideal M such that
I ⊆M ⊊ R.

Exercise 3.2.36. Show that the homomorphic preimage of a prime ideal is a
prime ideal. That is, if f : R→ S is a homomorphism of commutative rings and P
is a prime ideal in S, then f−1(P ) is a prime ideal in R.

Exercise 3.2.37. If R is a commutative ring, let Aut(R) denote the group of
all ring automorphisms of R. Prove the following.

(1) Aut(Z) = (1).
(2) Aut(Z/(n)) = (1) for any n.
(3) Aut(Q) = (1).
(4) Aut(R) = (1). For this exercise you can assume that Q is dense in R

under the metric space topology. In other words, if a, b ∈ R and a < b,
then there exists a rational number r such that a < r < b.

Exercise 3.2.38. Let f : R → S be an onto homomorphism of rings. Let M
be a maximal left ideal of S (see Exercise 3.2.35). Show that f−1(M) is a maximal
left ideal in R.

Exercise 3.2.39. Let R be a commutative ring and G a group. Show that the
group ring R(G) is isomorphic to the opposite ring R(G)o. (Hints: Exercise 2.1.24
and Example 3.2.5 (3).)

Exercise 3.2.40. Let R be a ring. For every r ∈ R, let λr : R → R be “left
multiplication by r”. That is, λr(x) = rx. Similarly, let ρr : R → R be “right
multiplication by r”, where ρr(x) = xr. By Example 3.1.7, if I is an ideal (left,
right or two-sided), then Hom(I, I) is a ring.

(1) Let I be a left ideal of R. Show that λ : R → Hom(I, I) is a homomor-
phism of rings, where λ(r) = λr.

(2) Let I be a right ideal of R. As in Definition 3.1.8, Ro denotes the opposite
ring of R. Show that ρ : Ro → Hom(I, I) is a homomorphism of rings,
where ρ(r) = ρr.

Exercise 3.2.41. Let R be a ring and I a proper left ideal in R. Assume the
group I,+ is cyclic, isomorphic to Z/n, where n = 0 is allowed. Prove that R
contains a two-sided ideal A such that the ring R/A is isomorphic to the ring Z/n.
(Hints: Exercises 3.2.40, 3.1.17, 3.1.18, Example 3.1.12, and Proposition 3.2.9.)

3. Direct Products and Direct Sums of Rings

Definition 3.3.1. Let {Ri | i ∈ I} be a family of rings. For each i ∈ I,
the same symbol 0 is used to denote the additive identity of each Ri. Likewise, 1
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denotes the multiplicative identity of each Ri. The direct product is∏
i∈I

Ri =

{
f : I →

⋃
i∈I

Ri | f(i) ∈ Ri

}
.

Notice that as a set, it is the product of the underlying sets as defined in Def-
inition 1.3.4. The direct product of a family of rings is a ring if addition and
multiplication are defined coordinate-wise:

(f + g)(i) = f(i) + g(i)

(fg)(i) = f(i)g(i).

Since each Ri contains 0, the additive identity in the product is the function f(i) =
0. Since each Ri contains 1, the multiplicative identity in the product is the function
f(i) = 1. The other ring axioms hold in the product because they hold coordinate-
wise. By Exercise 1.4.10, for each k ∈ I the canonical projection map

πk :
∏
i∈I

Ri → Rk

is defined by the rule πk(f) = f(k). The reader should verify that πk is an onto
homomorphism of rings. There is a canonical injection map

ιk : Rk →
∏
i∈I

Ri

which maps x ∈ Rk to ιk(x) which is equal to x in coordinate k, and 0 elsewhere.
The reader should verify that ιk is a one-to-one homomorphism of additive groups.
Moreover, ιk is multiplicative and we have πkιk = 1Rk

. The function ιk is not a
homomorphism of rings, since ιk(1) ̸= 1.

Definition 3.3.2. The direct sum of a family of rings, denoted
⊕

i∈I Ri, is the
smallest subring of the direct product that contains the set{

f : I →
⋃
i∈I

Ri | f(i) ∈ Ri and f(i) = 0 for all but finitely many i ∈ I

}
.

The canonical projection map

πk :
⊕
i∈I

Ri → Rk

is an onto homomorphism of rings. The canonical injection map

ιk : Rk →
⊕
i∈I

Ri

is a one-to-one homomorphism of additive groups. Moreover, ιk is multiplicative
and we have πkιk = 1Rk

. These facts are verified as in Definition 3.3.1. The reader
should verify that the direct product and the direct sum are equal if the index set
is finite. If I = {1, 2, . . . , n}, then

n⊕
i=1

Ri = R1 ⊕R2 ⊕ · · · ⊕Rn = {(x1, . . . , xn) | xi ∈ Ri}

which as a set is the usual product.
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Definition 3.3.3. Let {I1, . . . , In} be a set of ideals in a ring R. In Defini-
tion 3.2.6 the sum A+B of two ideals in R is defined. For n ≥ 2, I1 + I2 + · · ·+ In
is defined recursively to be (I1 + · · · + In−1) + In and is called the sum of the
ideals. The reader should verify that the sum of the ideals is equal to the ideal of
R generated by the set I1 ∪ I2 ∪ · · · ∪ In. We say that R is the internal direct sum
of the ideals in case

(1) R = I1 + I2 + · · ·+ In, and
(2) for each x ∈ R, x has a unique representation as a sum x = x1+x2+· · ·+xn

where xi ∈ Ii.
We denote the internal direct sum by R = I1 ⊕ I2 ⊕ · · · ⊕ In. Notice that in
this case the additive group R,+ is the internal direct product of the subgroups
{(Ii,+) | 1 ≤ i ≤ n} as defined in Definition 2.5.3).

Definition 3.3.4. Let R be a ring. An element e of R satisfying e2 = e is said
to be idempotent. A set {ei | i ∈ I} of idempotents in R is said to be orthogonal if
eiej = 0 for all i ̸= j.

Theorem 3.3.5. If A1, . . . , An are ideals in the ring R and R = A1⊕· · ·⊕An,
then the following are true.

(1) For each k, Ak ∩
(∑

j ̸=k Aj

)
= (0).

(2) If x ∈ Ai, y ∈ Aj and i ̸= j, then xy = yx = 0.
(3) For each i, Ai is a ring. If the identity element of Ai is denoted ei, then
{e1, . . . , en} is a set of orthogonal idempotents in R. Moreover, each ei is
in the center of R and Ai = Rei is a principal ideal in R.

(4) R is isomorphic to the (external) direct sum A1 ⊕ · · · ⊕An.
(5) Suppose for each k that Ik is a left ideal in the ring Ak. Then I =

I1 + I2 + · · ·+ In is a left ideal in R, where the sum is a direct sum.
(6) If I is a left ideal of R, then I = I1 ⊕ I2 ⊕ · · · ⊕ In where each Ik is a left

ideal in the ring Ak.

Proof. (1): Assume x ∈ Ak ∩
(∑

j ̸=k Aj

)
. Let xk = −x. Since x ∈

∑
j ̸=k Aj ,

write x =
∑
j ̸=k xj where each xj ∈ Aj . Subtracting, 0 = x− x = x1 + · · ·+ xk +

· · ·+ xn. By the uniqueness of the representation of 0 in the internal direct sum, it
follows that x = 0.

(2): Notice that xy and yx are both in Ai ∩Aj since the ideals are two-sided.
(3): Because Ai is an ideal, it is enough to show that Ai has a multiplicative

identity. Write 1 = e1 + e2 + · · · + en. If x ∈ Ai, then multiply by x from the
left and use Part (2) to get x = x1 =

∑n
j=1 xej = xei. Now multiply by x from

the right and use Part (2) to get x = 1x =
∑n
j=1 ejx = eix. This shows ei is the

multiplicative identity for Ai. Orthogonality of {e1, . . . , en} is by Part (2). The
rest is left to the reader.

(4): Define a function f : A1⊕A2⊕· · ·⊕An → R from the external ring direct
sum to R by the rule (x1, x2, . . . , xn) 7→ x1 + x2 + · · · + xn. Then f is one-to-one
and onto since R is the internal direct sum of the ideals Ai. Clearly f is additive.
The reader should verify using Part (2) that f is multiplicative.

(5): Since each element r in R = A1+A2+ · · ·+An has a unique representation
in the form r = r1 + r2 + · · ·+ rn, so does any element x in I = I1 + I2 + · · ·+ In.
So the sum is a direct sum and we can write x = x1 + x2 + · · · + xn where each
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xk ∈ Ik is unique. Then rx = r1x1 + r2x2 + · · ·+ rnxn is in I, which shows I is a
left ideal in R.

(6): By Part (3), for each k there is a central idempotent ek ∈ R such that
Ak = Rek. Let Ik = ekI. Since ek is central, Ik = Iek is a left ideal in R.
Since I ⊆ R we have Ik = Iek ⊆ Rek = Ak, so Ik is a left ideal in Ak. Since
1 = e1 + · · · + en, we see that I = I1 + I2 + · · · + In. The sum is a direct sum by
Part (5). □

Proposition 3.3.6. Suppose A1, . . . , An are ideals in the ring R satisfying

(1) R = A1 +A2 + · · ·+An and
(2) for k = 1, . . . , n− 1, we have Ak ∩ (Ak+1 + · · ·+An) = (0).

Then R = A1 ⊕A2 ⊕ · · · ⊕An.

Proof. This follows from Part (4) implies Part (1) of Proposition 2.5.5. □

Definition 3.3.7. If R is a ring and I and J are ideals in R, then we say I
and J are comaximal if I + J = R.

Theorem 3.3.8. (The Chinese Remainder Theorem). Let R be any ring. If
I1, . . . , In are ideals in R and

ϕ : R→ R/I1 ⊕R/I2 ⊕ · · · ⊕R/In
is the natural map given by x 7→ (x+ I1, . . . , x+ In), then the following are true.

(1) ϕ is a homomorphism of rings.
(2) The kernel of ϕ is equal to I1 ∩ I2 ∩ · · · ∩ In.
(3) ϕ is onto if and only if n = 1 or the ideals are pair-wise comaximal, (that

is, Ii + Ij = R if i ̸= j).

Proof. (1): The proof is left to the reader.
(2): Clearly the kernel of ϕ is the set of all x in R such that x is in Ik for all k.
(3): Assume ϕ is onto and n > 1. For each 1 ≤ i ≤ n, consider the idempotent

in R/I1 ⊕ · · · ⊕ R/In which is 1 in coordinate i and 0 in every other coordinate.
Since ϕ is onto, there exists an element ai ∈ R such that bi = 1−ai ∈ Ii and ai ∈ Ij
whenever j ̸= i. Therefore, 1 = ai + bi is in Ij + Ii.

Now we prove the converse of (3). If n = 1, we can apply Proposition 3.2.9.
Therefore, assume n > 1 and the ideals are pairwise comaximal. Let a1, . . . , an be
arbitrary elements of R. We show that there exists a ∈ R such that a satisfies the
set of linear congruences a ≡ ai (mod Ii).

For each k = 2, . . . , n we have I1 + Ik = R. Write 1 = xk + yk, where xk ∈ I1
and yk ∈ Ik. Multiplying and simplifying, we get

1 = (x2 + y2)(x3 + y3) · · · (xn + yn)

= (all the terms with at least one xk) + y2y3 · · · yn.

Since y2y3 · · · yn ∈
⋂n
k=2 Ik, we see that 1 ∈ I1 +

⋂n
k=2 Ik. Therefore R = I1 +⋂n

k=2 Ik. Similarly, for each k ≥ 2, R = Ik +
⋂
j ̸=k Ij . There exist uk ∈ Ik,

vk ∈
⋂
j ̸=k Ij such that ak = uk + vk. Then ak ≡ uk + vk ≡ vk (mod Ik). If j ̸= k,

then vj ≡ 0 (mod Ik). If we take a = v1 + v2 + · · ·+ vn, then we are done. □

Proposition 3.3.9. Let R be a commutative ring. If I and J are comaximal
ideals, then IJ = I ∩ J .
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Proof. If x ∈ I and y ∈ J , then xy ∈ I and xy ∈ J . Since IJ is generated
by elements of the form xy, we have IJ ⊆ I ∩ J . Let z be an arbitrary element of
I ∩ J . We show z ∈ IJ . Since R = I + J , there exist u ∈ I and v ∈ J such that
1 = u + v. Now zu ∈ IJ since z ∈ J and u ∈ I. Also zv ∈ IJ since z ∈ I and
v ∈ J . Then z = zu+ zv ∈ IJ . □

Corollary 3.3.10. Let R be a commutative ring. If I and J are comaximal
ideals, then R/IJ ∼= R/I ×R/J .

Example 3.3.11. Let F be a field and

R =

{(
a b
0 d

)
| a, b, d ∈ F

}
the set of all upper triangular matrices in M2(F ). As in Example 3.1.13, R is a
noncommutative subring ofM2(F ). The proof given in Example 3.1.14 can be used
to show that the center of R is the set of scalar matrices, which is isomorphic to F

by the homomorphism δ : F → R defined by δ(a) =

(
a 0
0 a

)
. Define λ : R→ F by

λ

(
a b
0 d

)
= a. The reader should verify that λ is a homomorphism and λδ(a) = a

for all a ∈ F . We say F is a subfield of R and λ is a section to δ. The homomorphism

ρ : R→ F defined by ρ

(
a b
0 d

)
= d also satisfies ρδ(a) = a, hence a section to δ is

not unique. The kernels of λ and ρ are

kerλ =

{(
0 b
0 d

)
| b, d ∈ F

}
, ker ρ =

{(
a b
0 0

)
| a, b ∈ F

}
,

which are proper ideals in R. We say R is not a simple ring. Since F has no
proper ideals, by Proposition 3.2.12, there is no proper ideal of R that contains
kerλ or ker ρ. The ideals kerλ and ker ρ are maximal proper ideals in R. Let

D =

{(
a 0
0 d

)
| a, d ∈ F

}
. The reader should verify that D is a subring of R.

Define τ : R → D by τ

(
a b
0 d

)
=

(
a 0
0 d

)
. The reader should verify that τ is a

homomorphism and for any matrix A ∈ D, τ(A) = A. In other words, τ is a section
to the inclusion map D → R. The kernel of τ is the ideal

ker τ =

{(
0 b
0 0

)
| b ∈ F

}
.

If

(
a b
0 d

)
is an idempotent matrix, then a and d are idempotents in F . After

looking at the possible cases, the reader should verify that the set of all idempotents
in R is {(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
0 0

)
,

(
0 1
0 1

)}
.

Only the two trivial idempotents, namely 0 and 1, are central. Therefore, R is not
an internal direct sum of proper ideals. Let R∗ be the group of units of R. By
Exercise 3.2.28, there are homomorphisms of groups δ∗ : F ∗ → R∗ and ρ∗ : R∗ →
F ∗. Let

T = ker ρ∗ =

{(
a b
0 1

)
| a ∈ F ∗, b ∈ F

}
,



114 3. RINGS

and

Z = δ(F ∗) =

{(
a 0
0 a

)
| a ∈ F ∗

}
.

By Exercise 2.5.21, the group of units of R is the internal direct product R∗ = T×Z
of the two proper normal subgroups T and Z. The ring R is an example of an
extension of a ring by a module. Specifically, R is the extension of D by the
module ker τ . The interested reader is referred to Exercise 14.1.13 for the general
construction.

3.1. Exercises.

Exercise 3.3.12. Suppose the ring R is the internal direct sum R = A1⊕· · ·⊕
An where each Ak is an ideal of R. Prove that for each k there exists a central
idempotent ek ∈ R such that Ak is equal to the ideal generated by ek.

Exercise 3.3.13. Suppose R is a ring and e ∈ R is a central idempotent.
Assume e ̸= 0 and e ̸= 1. Let I be the ideal generated by e. Prove that R is equal
to the internal direct sum I ⊕ J for some ideal J .

Exercise 3.3.14. Let k be a field of characteristic different from 2 (see Exam-
ple 3.2.5 (5)). Let f = x2 − 1. Show that k[x]/(f) is isomorphic to a direct sum of
fields.

Exercise 3.3.15. Consider the ring R = Z/(n).
(1) Suppose n = 1105.

(a) Prove that R is isomorphic to a direct sum of fields.
(b) Determine all maximal ideals in R.
(c) Determine all idempotents in R.

(2) Suppose n = 1800.
(a) Determine all maximal ideals in R.
(b) Determine all idempotents in R.

Exercise 3.3.16. If n > 1, then we say n is square free if n is not divisible by
the square of a prime number. Prove that the nil radical of Z/n is (0) if and only
if n is square free.

Exercise 3.3.17. Let I1, I2, . . . , In be pairwise comaximal ideals in the com-
mutative ring R. Prove that I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In.

Exercise 3.3.18. Prove that if I and J are comaximal ideals in the commuta-
tive ring R, then for every m ≥ 1 and n ≥ 1, Im and Jn are comaximal. Prove that
in this case ImJn = Im∩Jn. (Hint: Apply the Binomial Theorem, Exercise 3.1.23.)

Exercise 3.3.19. Assume the ring R is the direct sum R = R1 ⊕ · · · ⊕ Rn.
Let e1, . . . , en be the central idempotents corresponding to the direct summands
(guaranteed by Theorem 3.3.5 (3)). LetD be a ring which has only two idempotents,
namely 0 and 1. Let θ : R → D be a homomorphism of rings. Prove that there
exists ej such that

θ(ei) =

{
1 if i = j

0 if i ̸= j.

Exercise 3.3.20. Let R be any ring. Let I and J be ideals in R and ϕ : R→
R/I ⊕R/J the natural homomorphism of Theorem 3.3.8. Show that the image of
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ϕ is the subring of R/I ⊕ R/J defined by {(x + I, y + J) | x − y ∈ I + J}. See
Exercise 4.2.27 for an interpretation of this result in terms of modules.

Exercise 3.3.21. Let n > 1 and R a finite ring of order n. Suppose n is square
free and the factorization of n into primes is n = p1 · · · pm. Prove the following:

(1) R ∼= Z/n.
(2) R is commutative.
(3) R is a field, or a direct sum of fields.
(4) In terms of the prime factors of n, describe the maximal ideals of R.

Exercise 3.3.22. Let R1, . . . , Rn be commutative rings and R = R1×· · ·×Rn
the direct product. Show that R is a principal ideal ring if and only if Ri is a
principal ideal ring for each i.

4. Factorization in Commutative Rings

Definition 3.4.1. Let R be a commutative ring. Suppose a and b are elements
of R. We say a divides b, and write a | b, in case there exists c ∈ R such that b = ac.
We also say that a is a factor of b, or b is a multiple of a.

Definition 3.4.2. Let R be a commutative ring and suppose a and b are
elements of R. If a | b and b | a, then we say a and b are associates. In this case
we write a ∼ b. The reader should verify that the relation “a is an associate of b”
is an equivalence relation on R.

Lemma 3.4.3. Let R be a commutative ring. Let a, b, r ∈ R.
(1) The following are equivalent:

(a) a | b.
(b) b ∈ Ra = (a).
(c) (a) ⊇ (b).

(2) a and b are associates if and only if (a) = (b).
(3) The following are equivalent.

(a) u is a unit in R.
(b) (u) = R.
(c) u | r for all r in R.

(4) If a = bu and u is a unit, then a and b are associates.
(5) If R is an integral domain and a and b are associates, then a = bu for

some unit u.
(6) Let R be an integral domain. If a ̸= 0 and a | b, then there exists a unique

c such that b = ac. We write c = ba−1, or c = b/a.

Proof. (1): This follows straight from Definitions 3.2.6 and 3.4.1.
(6): Suppose b = ac = ac′. Subtract and distribute to get a(c− c′) = 0. Since

a ̸= 0 and R is an integral domain, this means c− c′ = 0, hence c = c′.
The rest of the proof is left to the reader. □

Definition 3.4.4. Let R be a commutative ring and a an element of R which
is not a unit and not a zero divisor. Then a is irreducible in case whenever a = bc,
then either b is a unit or c is a unit. We say that a is prime in case whenever a | bc,
then either a | b or a | c.

Lemma 3.4.5. Let R be an integral domain.
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(1) p ∈ R is prime if and only if (p) is a prime ideal.
(2) a ∈ R is irreducible if and only if (a) is maximal among nonunit principal

ideals.
(3) If p is prime, then p is irreducible.
(4) If p is irreducible and q is an associate of p, then q is irreducible.
(5) If p is prime and q is an associate of p, then q is prime.
(6) If p is irreducible, then the only divisors of p are units and associates of

p.

Proof. (3): Suppose a, b ∈ R and p = ab. So p | ab and p is prime. We can
assume p | a. Therefore a and p are associates. By Lemma 3.4.3 (5), b is a unit in
R.

The rest is left to the reader. □

4.1. Greatest Common Divisors.

Definition 3.4.6. Let R be a commutative ring and X a nonempty subset of
R. An element d ∈ R is said to be the greatest common divisor (GCD)) of X, if
the following are satisfied.

(1) d | x for all x ∈ X.
(2) If c | x for all x ∈ X, then c | d.

If d is the GCD of X, we write d = gcd(X). When X = {x1, . . . , xn} is finite, we
write d = gcd(x1, . . . , xn) for gcd(X). Notice that if d is a greatest common divisor,
so is any associate of d. If gcd(X) exists, it is not unique. If d = gcd(X) exists and
d = 1, then we say the elements of X are relatively prime.

Lemma 3.4.7. Let X be a nonempty subset of an integral domain R. If d =
gcd(X) exists, then d is unique up to associates. That is, if d and d′ are two greatest
common divisors of X, then there exists a unit u ∈ R∗ such that d′ = du, hence d
and d′ are associates.

Proof. By Definition 3.4.6, we have d | d′ and d′ | d. Thus d and d′ are
associates. By Lemma 3.4.3 (5), d′ = du for some u ∈ R∗. □

Proposition 3.4.8. Let R be a commutative ring and X a nonempty subset of
R.

(1) If the ideal generated by X is principal and d is a generator for (X), then
d = gcd(X).

(2) If d = gcd(X) exists and d is in the ideal (X), then (d) = (X).

Proof. (1): If (d) = (X), then d | x, for all x ∈ X. Also, d = a1x1+ · · ·+anxn
for some a1, . . . , an ∈ R and x1, . . . , xn ∈ X. Suppose c | x for each x ∈ X. Then
c | a1x1 + · · ·+ anxn = d.

(2): This follows from Definition 3.4.6 and Exercise 3.4.24. □

Corollary 3.4.9. (A PID is a Bézout domain) If R is a PID, and X is
a nonempty subset of R, then d = gcd(X), the greatest common divisor of X,
exists and is unique up to associates. Any generator d of the ideal (X) is a greatest
common divisor of a and b. In this case, d = a1x1+· · ·+anxn for some a1, . . . , an ∈
R and x1, . . . , xn ∈ X.
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Proof. Since (X) is principal, there exists d ∈ R such that (d) = (X).
Proposition 3.4.8 (1) implies d = gcd(X) exists and can be written in the form
d = a1x1+· · ·+anxn for some a1, . . . , an ∈ R and x1, . . . , xn ∈ X. By Lemma 3.4.7,
d is unique up to associates. □

Corollary 3.4.10. Let R be a PID and p ∈ R an irreducible element. Then
the following are true.

(1) p is prime. That is, if p | ab, then p | a or p | b.
(2) If x1, x2, . . . , xn in R and p | x1x2 · · ·xn, then p | xi for some i.

Proof. (1): Assume p | ab and p does not divide b. We prove p | a. The ideal
(p, b) is principal, hence is equal to (d), for some d ∈ R. Then d | p and d | b. Since
p is irreducible, d is a unit, or d is an associate of p (Lemma 3.4.5 (6)). We are
assuming p does not divide b, hence d is not an associate of p, hence d is a unit.
Therefore (d) = (1). By Corollary 3.4.9, we can write 1 = px + by. Multiply by a
to get a = pax+ aby. Since p | ab, this shows p | a.

(2) If n = 1, then take i = 1 and stop. Assume inductively that n > 1 and the
result holds for a product of n − 1 factors. Then p | (x1 · · ·xn−1)xn. By Part (1),
p | xn, or p | (x1 · · ·xn−1). By the induction hypothesis, p | xi for some i. □

Definition 3.4.11. Let R be an integral domain. Then R is a unique fac-
torization domain (UFD) if for every nonzero nonunit x in R, the following are
satisfied:

(1) x has a representation as a product of irreducibles. That is, there exist
irreducible elements x1, x2, . . . , xn in R such that x = x1x2 · · ·xn.

(2) In any factorization of x as in (1), the number of factors is unique.
(3) In any factorization of x as in (1), the irreducible factors are unique up

to order and associates.

Example 3.4.12. The ring Z is a UFD, by the Fundamental Theorem of Arith-
metic. We will prove in Theorem 3.4.16 that any PID is a UFD.

Corollary 3.4.13. Let R be a UFD. If X = {r1, . . . , rn} is a finite nonempty
subset of R, then d = gcd(X) exists and is unique up to associates.

Proof. If n = 1, then by Proposition 3.4.8 (1), r1 = gcd(X) exists. By Math-
ematical Induction and Exercise 3.4.25, it suffices to prove the n = 2 case. Assume
X = {a, b}. If a = 0, then (a, b) = (b) and by Proposition 3.4.8 (1), b = gcd(a, b)
exists. If (a, b) = (1), then by Proposition 3.4.8 (1), 1 = gcd(a, b) exists. Assume a
and b are both nonzero and nonunits. Then by Exercise 3.4.26, gcd(a, b) exists and
we are done. □

Corollary 3.4.14. Let R be a unique factorization domain and p ∈ R − (0).
Then the following are equivalent.

(1) p is irreducible.
(2) p is prime.
(3) The principal ideal (p) is a prime ideal.

Proof. By Lemma 3.4.5 (1), (2) is equivalent to (3). By Lemma 3.4.5 (3), (2)
implies (1). We prove that (1) implies (2). Suppose p is irreducible and p | ab. Write
ab = pc for some c. Factor a, b, c into irreducibles. By uniqueness of factorization,
p is an associate of one of the irreducible factors of a or b. □
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Example 3.4.15. Let R be a unique factorization domain. If x is a nonzero
nonunit in R, then the number of factors in a factorization of x into primes is unique
(Definition 3.4.11 (2)). Let ν(x) be the number of factors in a prime factorization
of x. Extend ν to a function from R to the well ordered set N ∪ {0} ∪ {∞} by
setting ν(0) =∞ and ν(x) = 0 if x is a unit. The function ν satisfies:

(1) ν(xy) = ν(x) + ν(y).
(2) ν(x) = 0 if and only if x is a unit.
(3) ν(x) = 1 if and only if x is irreducible.

4.2. Principal Ideal Domains. The fundamental properties of a principal
ideal domain are derived in Theorem 3.4.16. In particular, every principal ideal
domain is a unique factorization domain, by Part (6). In Part (2) we prove that
a PID satisfies the ascending chain condition on ideals. See Section 7.6 for more
examples of rings that satisfy the ascending chain condition or descending chain
condition on left ideals.

Theorem 3.4.16. Let R be a principal ideal domain (a PID, for short).

(1) If p is an irreducible element, then p is a prime element.
(2) R satisfies the ascending chain condition on ideals. That is, given a chain

of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ · · · , there exists N ≥ 1 such that
IN = IN+1 = · · · .

(3) If a ∈ R is a nonunit, nonzero element of R, then the set

S = {p ∈ R | p is irreducible and p | a}

contains only a finite number of associate classes. In other words, up to
associates, a has only a finite number of irreducible factors.

(4) (a) If I is an ideal in R which is not the unit ideal, then
⋂
n≥1 I

n = (0).

(b) Suppose a is a nonzero element in R, p is irreducible and p is a factor
of a. Then for some n ≥ 1 we have a ∈ (pn) and a ̸∈ (pn+1).

(5) If a ∈ R is a nonunit and a nonzero element, then there exists an irre-
ducible element p such that p | a.

(6) R is a unique factorization domain.

Proof. (1): This is Corollary 3.4.10.
(2): Let I =

⋃∞
k=1 Ik. By Exercise 3.2.23, I is an ideal in R. Since R is a PID,

there exists a ∈ R such that I = (a). Given a ∈ I, we know a ∈ IN for some N .
Then I = (a) ⊆ IN ⊆ IN+1 ⊆ · · · and we are done.

(3): The proof is by contradiction. Assume {p1, p2, . . . } is a sequence in S
such that for each n > 1, pn does not divide p1p2 · · · pn−1. Write a = p1a1. Then
p2 | p1a1. By assumption, p2 does not divide p1. By Part (1), p2 | a1 and we write
a1 = p2a2. Iteratively we arrive at the factorizations

a = p1a1 = p1p2a2 = · · · = p1p2 · · · pnan.

Applying one more step, we know pn+1 | a. Since pn+1 does not divide p1p2 · · · pn,
and pn+1 is prime, it follows that pn+1 | an. Write an = pn+1an+1. Therefore
(an) ⊆ (an+1) with equality if and only if an and an+1 are associates. But pn+1 is
not a unit, so by Lemma 3.4.3 (5), the chain of ideals

(a1) ⊆ (a2) ⊆ · · · ⊆ (an) ⊆ (an+1) ⊆ · · ·

is strictly increasing. This contradicts Part (2).
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(4): Because R is a PID, I = (b) for some b ∈ R. If I = 0, then Part (a)
is trivial, so we assume b ̸= 0. Let M =

⋂∞
n=1 I

n. Then M is an ideal in R, so
M = (r) for some r ∈ R. Since M is an ideal, bM ⊆ M . To show that bM = M ,
assume x ∈ M . Then x ∈ M ⊆ I implies x = by for some y ∈ R. Let n ≥ 1.
Then x ∈ M ⊆ In+1 = (bn+1) implies x = bn+1z for some z ∈ R. Since R is an
integral domain and b ̸= 0, x = by = bn+1z implies y = bnz ∈ In = (bn). This
proves y ∈

⋂
n≥1 I

n = M . Therefore x ∈ bM , and bM = M . Since bM = (br),
Lemma 3.4.3 says br and r are associates. But b is not a unit, so r = 0, which
proves (a). For (b), take I = (p). By assumption, a ∈ (p) and a ̸= 0. For some
n ≥ 1 we have a ̸∈ (pn+1) and a ∈ (pn).

(5): The proof is by contradiction. Suppose a ∈ R is not a unit, and not
divisible by an irreducible. Then a is not irreducible. There are nonunits a1, b1
in R such that a = a1b1. By our assumption, a1 and b1 are not irreducible. By
Lemma 3.4.3, (a) ⊊ (a1). Since a1 is not irreducible, there are nonunits a2, b2 in
R such that a1 = a2b2. Since a2 and b2 are divisors of a, they are both irreducible.
By Lemma 3.4.3, (a) ⊊ (a1) ⊊ (a2). Recursively construct a strictly increasing
sequence of ideals (ai) ⊊ (ai+1), contradicting Part (2).

(6): This proof is left to the reader. □

Theorem 3.4.17. If R is an integral domain that is not a field, then the fol-
lowing are equivalent.

(1) R is a principal ideal domain.
(2) R is a unique factorization domain with the property that every nonzero

prime ideal is a maximal ideal.

Proof. (1) implies (2): Assume R is a PID. By Theorem 3.4.16 (6), R is
a UFD. Let P be a nonzero prime ideal. Then P = (π) is principal and π is
irreducible. Let x ∈ R − P . The ideal Q = (x) + P is principal. Then Q = (y) for
some y ∈ R. Since π ∈ (y), there is some π1 such that π = yπ1. For contradiction’s
sake assume y is not a unit. Then y is irreducible, since π is irreducible. In this
case, π and y are associates, so y ∈ P , a contradiction. This proves Q = R, hence
P is maximal.

(2) implies (1): Assume R is a UFD and every nonzero prime ideal is maximal.
As in Example 3.4.15, let ν : R → Z ∪ {∞} be the function defined by: ν(x) is
the number of factors in a representation of x as a product of irreducibles. Given
a nonzero ideal I, define ν(I) to be the minimum of {ν(x) | x ∈ I}. Then ν(I) = 0
if and only if I = R. If I is a prime ideal in R, then by Exercise 3.4.30 there is
a prime element π ∈ I. By Lemma 3.4.5, (π) is a prime ideal and by hypothesis
(π) is a maximal ideal in R. Hence (π) ⊆ I implies I = (π) is principal. This and
Corollary 3.4.14 imply that ν(I) = 1 if and only if I is a prime ideal.

Let I be a nonzero ideal in R. The proof is by induction on ν(I). As seen
already, if ν(I) ≤ 1, then I is principal. Inductively, assume n > 1 and that if J is
an ideal of R with ν(J) < n, then J is principal. Let I be an ideal with ν(I) = n. We
prove that I is principal. Let x ∈ I be such that ν(x) = n. Let p be an irreducible
factor of x and write x = px1. Then ν(x1) = n−1. Let y ∈ I−(0). Assume for sake
of contradiction that y is not in (p). Then (y) + (p) = (1) since (p) is a maximal
ideal. For some a, b ∈ R we have 1 = ay + bp. Then x1 = ayx1 + bpx1 = ax1y + bx
is in I. This is a contradiction, since ν(x1) = n − 1 and ν(I) = n. We conclude
that y ∈ (p), which proves that I ⊆ (p). By Exercise 3.2.31 (6), I = (I : (p))(p),
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where (I : (p)) is the quotient ideal. In particular, x = px1 and x1 ∈ (I : (p)). This
proves ν(I : (p)) ≤ n − 1. By our induction hypothesis, I : (p) = (z) is principal.
Then I = (I : (p))(p) = (z)(p) = (zp) is principal, which completes the proof. □

4.3. Euclidean Domains.

Definition 3.4.18. A euclidean domain is an integral domain R together with
a function ϕ : R− (0)→ N, satisfying the following two properties.

(1) If a, b ∈ R− (0), then ϕ(a) ≤ ϕ(ab).
(2) If a, b ∈ R and b ̸= 0, then there exist q, r ∈ R such that a = bq + r and

either r = 0, or ϕ(r) < ϕ(b).

Example 3.4.19. Here are two standard examples of euclidean domains.

(1) The ring of integers Z is a euclidean domain, where ϕ is the absolute value
function. Property (2) is the Division Algorithm (Proposition 1.2.3).

(2) The ring of gaussian integers, denoted Z[i], is the subring of C consisting of
all complex numbers of the form a+bi where a, b ∈ Z (see Exercise 3.1.24).
Define ϕ : Z[i] → N by ϕ(a + bi) = a2 + b2 = (a + bi)(a − bi). If y ̸= 0,
then ϕ(y) ≥ 1. Since ϕ(xy) = ϕ(x)ϕ(y) ≥ ϕ(x), Property (1) is satisfied.
Assume x = a + bi and N = a2 + b2 ̸= 0. Let y = c + di. Then
x−1 = (a− bi)/N , so yx−1 = ((c+ di)(a− bi))/N = (e+ fi)/N . Divide in
Z to get yx−1 = (q1+ r1/N)+ (q2+ r2/N)i. If we assume 0 ≤ |ri| ≤ N/2,
then r21 + r22 ≤ N2/4 < N2. Let q = q1 + q2i. Then

yx−1 = q + (r1 + r2)/N

y(a− bi) = qN + (r1 + r2)

y(a− bi) = qx(a− bi) + (r1 + r2)

(y − qx)(a− bi) = (r1 + r2)

ϕ(y − qx)(a2 + b2) = r21 + r22 < (a2 + b2)2

ϕ(y − qx) < a2 + b2 = ϕ(x)

Set r = y− qx. Then ϕ(r) < ϕ(x), hence Property (2) is satisfied. There-
fore, Z[i] is a euclidean domain.

Theorem 3.4.20. If R is a euclidean domain, then

(1) R is a principal ideal domain.
(2) R is a unique factorization domain.

Proof. (1): Let I be a nonzero ideal in R. Let M be the least element of the
set {ϕ(x) | x ∈ I − (0)}. Let a ∈ I − (0) such that ϕ(a) =M . Let u ∈ I. Dividing,
u = qa+ r and either r = 0, or ϕ(r) < ϕ(a). Since r = u− qa ∈ I we conclude that
r = 0.

(2): This follows from (1) and Theorem 3.4.16 (6). □

Proposition 3.4.21. (The Euclidean Algorithm) Let R be a euclidean domain
with associated function ϕ : R−(0)→ N. Let a and b be elements of R. The greatest
common divisor of a and b exists and satisfies the following recursive formula:

• (Basis) If b = 0, then gcd(a, b) = a.
• (Recurrence) If b ̸= 0, then gcd(a, b) = gcd(b, r), where a = bq + r and
either r = 0 or ϕ(r) < ϕ(b).



4. FACTORIZATION IN COMMUTATIVE RINGS 121

Proof. If b = 0, then the ideals (a, b) and (a) are equal in R, and Corol-
lary 3.4.9 implies gcd(a, b) = a. If b ̸= 0, then by Definition 3.4.18, a = bq + r,
for elements q and r in R such that either r = 0 or ϕ(r) < ϕ(b). Then the
ideals (a, b) and (b, r) are equal in R. By Corollary 3.4.9, gcd(a, b) = gcd(b, r).
To see that the recursive algorithm converges, set r0 = b and successively apply
Definition 3.4.18 to find a sequence of quotients q1, q2, . . . , qn+1 and a sequence of
remainders r0, r1, r2, . . . , rn satisfying:

a = r0q1 + r1, 0 < ϕ(r1) < ϕ(r0)

r0 = r1q2 + r2, 0 < ϕ(r2) < ϕ(r1)

r1 = r2q3 + r3, 0 < ϕ(r3) < ϕ(r2)

...

rn−3 = rn−2qn−1 + rn−1, 0 < ϕ(rn−1) < ϕ(rn−2)

rn−2 = rn−1qn + rn, 0 < ϕ(rn) < ϕ(rn−1)

rn−1 = rnqn+1 + 0

where rn is the last nonzero remainder. The algorithm converges for some n such
that 0 ≤ n ≤ ϕ(b) because ϕ(r0) > ϕ(r1) > ϕ(r2) > · · · > ϕ(rn) > 0. As mentioned
above,

rn = gcd(rn, rn−1) = gcd(rn, rn−1) = gcd(rn−1, rn−2)

= · · · = gcd(r3, r2) = gcd(r2, r1) = gcd(r1, r0) = gcd(a, b).

□

Corollary 3.4.22. (Bézout’s Identity) Let R be a euclidean domain with as-
sociated function ϕ : R − (0) → N. Let a and b be elements of R. There exist x, y
in R such that gcd(a, b) = ax+ by.

Proof. If a = 0, then b = gcd(a, b). Take x = 0 and y = 1. If b = 0,
then a = gcd(a, b). Take x = 1 and y = 0. If b ̸= 0, then by Definition 3.4.18,
a = bq + r, for elements q and r in R such that either r = 0 or ϕ(r) < ϕ(b). Then
gcd(a, b) = gcd(b, r) and by induction on ϕ(b) we can write gcd(b, r) = bu+ rv for
some u, v in R. Then

gcd(a, b) = bu+ rv

= bu+ (a− bq)v
= av + b(u− qv).

Take x = v and y = u− qv. □

4.4. Exercises.

Exercise 3.4.23. Let a and b be elements of a commutative ring R. If (a, b) =
(1) and a | bc, then a | c.

Exercise 3.4.24. Let X be a nonempty subset of a commutative ring R. If
d ∈ (X) and d | x for all x ∈ X, then (d) = (X).

Exercise 3.4.25. Let X = {x1, . . . , xn} be a nonempty finite subset of a com-
mutative ring R, with n ≥ 2. If e = gcd(x1, . . . , xn−1) and d = gcd(e, xn), then
d = gcd(x1, . . . , xn).
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Exercise 3.4.26. (Exponential Notation in a UFD) Let a and b be elements of
a unique factorization domain R. Assume a and b are both nonzero and nonunits.

(1) Show that there exist irreducible elements p1, . . . , pm in R such that pi and
pj are associates of each other if and only if i = j and nonnegative integers

e1, . . . , em, f1, . . . , fm such that a = pe11 · · · pemm and b = pf11 · · · pfmm .
(2) Show that in the notation from (1) that a | b if and only if ei ≤ fi for

each i.
(3) In the notation from (1), for j = 1, . . . ,m, let ℓj be the least element in

the set {ej , fj}. Prove that d = xℓ11 x
ℓ2
2 · · ·xℓmm = gcd(a, b).

Exercise 3.4.27. Let R be an integral domain and X a nonempty subset
of R. Assume d = gcd(X) exists and d ̸= 0. Let Y = {xd−1 | x ∈ X} (see
Lemma 3.4.3 (6) for this notation). Prove that 1 = gcd(Y ).

Exercise 3.4.28. Let R be a euclidean domain with norm function ϕ : R −
(0)→ N. Prove:

(1) ϕ(1) is the least element of the set {ϕ(x) | x ∈ R− (0)}.
(2) The group of units of R is R∗ = {x ∈ R− (0) | ϕ(x) = ϕ(1)}.

Exercise 3.4.29. Let R be an integral domain that satisfies the two properties:

(A) In R an irreducible element is a prime element.
(B) R satisfies the ascending chain condition on principal ideals. That is, given a

chain of principal ideals ⟨a1⟩ ⊆ ⟨a2⟩ ⊆ ⟨a3⟩ ⊆ · · · ⊆ ⟨an⟩ ⊆ · · · , there exists
N ≥ 1 such that ⟨aN ⟩ = ⟨aN+1⟩ = · · · .

Follow the outline below to show that R is a unique factorization domain.

(1) Prove that if a ∈ R is a nonunit, nonzero element of R, then the set

S = {p ∈ R | p is irreducible and p | a}
contains only a finite number of associate classes. In other words, up to
associates, a has only a finite number of irreducible factors.

(2) Suppose a is a nonzero element in R, p is irreducible and p is a factor of
a. Prove that for some n ≥ 1 we have a ∈ (pn) and a ̸∈ (pn+1).

(3) Prove that if a ∈ R is a nonunit and a nonzero element, then there exists
an irreducible element p such that p | a.

(4) R is a unique factorization domain.

(Hints: For (1) and (2), use the proof of Theorem 3.4.16 (3). For (3) and (4), use
the proofs of Parts (5) and (6) of Theorem 3.4.16.)

Exercise 3.4.30. Let R be a UFD and P a nonzero prime ideal of R. Prove
that P contains a prime element π of R. (Hint: Let x ∈ P − (0). Show that P
contains at least one prime divisor of x.)

5. Ring of Quotients

Definition 3.5.1. Let R be a commutative ring and W a subset of R that
satisfies

(1) 1 ∈W , and
(2) if x and y are in W , then xy ∈W .

In this case, we say that W is a multiplicative subset of R.

Example 3.5.2. Here are some typical examples of multiplicative sets.
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(1) If P is a prime ideal in R, then Proposition 3.2.14 says that R − P is a
multiplicative set.

(2) If R is an integral domain, then W = R− (0) is a multiplicative set.
(3) If f ∈ R, then {1, f, f2, f3, . . . } is a multiplicative set.
(4) The set of all x ∈ R such that x is not a zero divisor is a multiplicative

set.

Suppose W is a multiplicative subset of R. Define a relation on R × W by
(r, v) ∼ (s, w) if and only if there exists q ∈W such that q(rw− sv) = 0. Clearly ∼
is reflexive and symmetric. Let us show that it is transitive. Suppose (r, u) ∼ (s, v)
and (s, v) ∼ (t, w). There exist e, f ∈W such that e(rv−su) = 0 and f(sw−tv) = 0.
Multiply the first by fw and the second by eu to get fwe(rv − su) = 0 and
euf(sw − tv) = 0. Subtracting, we have rfwev − sfweu + seufw − teufv =
evf(rw − tu) = 0. Since evf ∈ W , this shows (r, u) ∼ (t, w). Therefore ∼ is an
equivalence relation on R ×W . The set of equivalence classes is denoted W−1R
and the equivalence class containing (r, w) is denoted by the fraction r/w.

Lemma 3.5.3. Let R be a commutative ring and W a multiplicative subset of
R.

(1) W−1R is a commutative ring under the addition and multiplication oper-
ations

r

v
+
s

w
=
rw + sv

vw
,

r

v

s

w
=

rs

vw
.

The additive identity is 0/1, the multiplicative identity is 1/1.
(2) The map θ : R→W−1R defined by r 7→ r/1 is a homomorphism of rings.

The image of W under θ is a subset of the group of units of W−1R.
(3) If R is an integral domain and W ⊆ R− (0), then the following are true.

(a) The map θ of Part (2) is one-to-one.
(b) If R is a field, then the map θ of Part (2) is an isomorphism.
(c) r/v = s/w if and only if rw = sv.
(d) W−1R is an integral domain.
(e) If W = R − (0), then W−1R is a field, which we call the quotient

field of R.

Proof. (1): Assume r
v = r1

v1
and s

w = s1
w1

. Then there exist α and β in W
such that

α(rv1 − r1v) = 0(5.1)

β(sw1 − s1w) = 0.(5.2)

Multiply (5.1) by βww1 and (5.2) by αvv1 to get the identities

αβrv1ww1 − αβr1vww1 = 0

αβsw1vv1 − αβs1wvv1 = 0.

Adding the left-hand sides we derive

αβ ((rw + sv)v1w1 − (r1w1 + s1v1)vw) = 0.

This is the center equation in:

r

v
+
s

w
=
rw + sv

vw
=
r1w1 + s1v1

v1w1
=
r1
v1

+
s1
w1
.
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Hence, addition of fractions is well defined. Multiply (5.1) by βsw1 and (5.2) by
αr1v to get the identities

αβ (rsv1w1 − r1vsw1) = 0

αβ (sw1r1v − s1wr1v) = 0.

Adding the left-hand sides we derive

αβ (rsv1w1 − r1s1vw) = 0.

This is the center equation in:

r

v

s

w
=

rs

vw
=

r1s1
v1w1

=
r1
v1

s1
w1
.

Hence, multiplication of fractions is well defined. It is routine to check that the
associative and distributive laws hold and that W−1R is a commutative ring.

The rest of the proof is left to the reader. □

Definition 3.5.4. As in Lemma 3.5.3, let R be a commutative ring and W a
multiplicative subset of R. The ring W−1R is called the localization of R at W . It
comes with the natural map θ : R → W−1R. If W is the set of all elements of R
that are not zero divisors, then W−1R is called the total ring of quotients of R. If
R is an integral domain and W = R− (0), then W−1R is called the quotient field,
or field of fractions of R.

Theorem 3.5.5. (Universal Mapping Property) Let R be a commutative ring,
W a multiplicative subset of R, and W−1R the localization. If S is a commutative
ring and f : R→ S a homomorphism such that f(W ) ⊆ Units(S), then there exists
a unique homomorphism f̄ :W−1R→ S

R
f //

θ ##

S

W−1R
∃f̄

<<

such that f = f̄ θ.

Proof. First we show the existence of f̄ . Assume x1/y1 = x2/y2. Then there
exists y ∈W such that y(x1y2 − x2y1) = 0. Applying f , we get f(y)(f(x1)f(y2)−
f(x2)f(y1)) = 0. Since f(W ) ⊆ Units(S) we get f(x1)f(y1)

−1 = f(x2)f(y2)
−1.

The reader should verify that f̄(x/y) = f(x)f(y)−1 defines a homomorphism of
rings.

Now we prove the uniqueness of f̄ . Suppose g : W−1R → S is another such
homomorphism. Then for each y ∈ W , f(y) = gθ(y) = g(y/1) is a unit in S.
Then g(1/y) = g(y/1)−1 for each y ∈ W . Now g(x/y) = g(θ(x))g(θ(y))−1 =
f(x)f(y)−1 = f̄(x/y). □

Corollary 3.5.6. Let R be an integral domain with quotient field K and
natural map θ : R → K. If F is a field and f : R → F is a monomorphism,
then there exists a unique f̄ : K → F such that f = f̄ θ.
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5.1. Exercises.

Exercise 3.5.7. Let R be a commutative ring and f ∈ R. As remarked in
Example 3.5.2 (3), W = {1, f, f2, . . . } is a multiplicative set. Localization of R at
W is denoted R[f−1] and is sometimes called the R-algebra formed by “inverting
f”. Let α and β be two elements of R. Prove the following.

(1) If β/1 denotes the image of β in R[α−1], then the rings R[(αβ)−1] and
R[α−1][(β/1)−1] are isomorphic.

(2) If i > 0, then R[α−1] and R[α−i] are isomorphic as rings.

Exercise 3.5.8. Let R be a commutative ring andW ⊆ R a multiplicative set.
Let V ⊆W−1R be a multiplicative set. Show that there exists a multiplicative set
U ⊆ R such that the rings U−1R and V −1(W−1R) are isomorphic.

Exercise 3.5.9. Let R be a commutative ring, W ⊆ R a multiplicative set,
and θ : R→W−1R the natural map.

(1) The kernel of θ is equal to {x ∈ R | xw = 0 for some w ∈W}.
(2) θ is an isomorphism if and only if W ⊆ Units(R).

Exercise 3.5.10. Let R be a local PID with maximal ideal m. Let π be a
generator for m. Let K be the quotient field of R. Prove:

(1) If π1 is another irreducible element of R, then π and π1 are associates.
That is, up to associates, π is the unique irreducible element in R.

(2) As in Exercise 3.5.7, let R[π−1] be the R-algebra formed by inverting π.
Then R[π−1] is equal to K, the quotient field of R.

(3) If x is a nonzero element of K, then x has a representation in the form
x = uπn, for a unit u ∈ R∗ and an integer n in Z. The unit u and integer
n are uniquely determined by x.

Exercise 3.5.11. Let D be an integer that is not a square. Let
√
D be the

complex number given by Proposition 1.5.3 (5).

(1) Show that Q[
√
D] = {r + s

√
D | r, s ∈ Q} is a subfield of C. The field

Q[
√
D] is an example of an algebraic number field.

(2) Show that Z[
√
D] = {a+ b

√
D | a, b ∈ Z} is a subring of Q[

√
D].

(3) Show that Q[
√
D] is equal to the quotient field of Z[

√
D].

6. Polynomial Rings

Let R be any ring. The polynomial ring in one variable x with coefficients in
R,

R[x] =

{
n∑
i=0

aix
i | n ≥ 0, ai ∈ R

}
is constructed in the usual way. It is assumed that the indeterminate x commutes
with elements of R. The ring R[x] is commutative if and only if R is commutative.
If a ∈ R − (0), the degree of the monomial axn is n. For convenience, the degree
of 0 is taken to be −∞. The degree of a polynomial f =

∑n
i=0 aix

i in R[x] is the
maximum of the degrees of the terms a0x

0, . . . , anx
n. If f is nonzero of degree n,

the leading coefficient of f is an. We say that f is monic if the leading coefficient
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of f is 1. If f =
∑m
i=0 aix

i has degree m and g =
∑n
i=0 bix

i has degree n, then

fg =

(
m∑
i=0

aix
i

)(
n∑
i=0

bix
i

)

= a0b0 + (a0b1 + a1b0)x+ · · ·+

 k∑
j=0

ajbk−j

xk + · · ·+ ambnx
m+n.

It follows that deg(fg) = deg(f) + deg(g) in case one of the leading coefficients am
or bn is not a zero divisor in R.

Lemma 3.6.1. If R is a domain, then R[x] is a domain.

Proof. The proof is left to the reader. □

Example 3.6.2. The natural mapping R → R[x] which maps a ∈ R − (0) to
the polynomial of degree zero is a monomorphism.

Theorem 3.6.3. Let σ : R→ S be a homomorphism of rings.

(1) The definition σ̄(
∑
rix

i) =
∑
σ(ri)x

i extends σ to a homomorphism on
the polynomial rings σ̄ : R[x] → S[x]. If K = ker(σ), then the kernel of
σ̄ is the set K[x] consisting of those polynomials f ∈ R[x] such that every
coefficient of f is in K.

(2) (Universal Mapping Property) Let s be an element of S such that sσ(r) =
σ(r)s for every r ∈ R. Then there is a unique homomorphism σ̄ such that
σ̄(x) = s and the diagram

R
σ //

!!

S

R[x]

σ̄

==

commutes. We say σ̄ is the evaluation homomorphism defined by x 7→ s.

Proof. The proof is left to the reader. □

Theorem 3.6.4. (The Division Algorithm) Let R be any ring. Let f, g ∈
R[x] and assume the leading coefficient of g is a unit of R. There exist unique
polynomials q, r ∈ R[x] such that f = qg + r and deg r < deg g.

Proof. (Existence.) If deg f < deg g, then set q = 0 and r = f . Otherwise
assume f =

∑m
i=0 aix

i where am ̸= 0 and g =
∑n
i=0 bix

i where bn ̸= 0 and bn is a

unit in R. If m = 0, then n = 0 so q = a0b
−1
0 and r = 0. Proceed by induction on

m. The leading coefficient of
(
amb

−1
n xm−n

)
g is am. Set h = f −

(
amb

−1
n xm−n

)
g.

Then deg h < deg f . By induction, h = q1g + r where deg r < deg g. Now

f =
(
amb

−1
n xm−n

)
g + q1g + r

=
(
amb

−1
n xm−n + q1

)
g + r

so take q = amb
−1
n xm−n + q1.

(Uniqueness.) Assume f = qg+ r = q1g+ r1 where deg r < deg g and deg r1 <
deg g. Subtracting, we have (q − q1)g = r1 − r. The degree of the right hand side
is deg (r1 − r) ≤ max(deg r1,deg r) < deg g. The degree of the left hand side is
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deg g + deg (q − q1). If q − q1 ̸= 0, this is impossible. So q1 = q and r = r1. Hence
the quotient and remainder are unique. □

Corollary 3.6.5. (Synthetic Division) If R is any ring, f =
∑m
i=0 rix

i ∈ R[x]
and a ∈ R, then there exists a unique polynomial q ∈ R[x] such that f = q(x− a)+
f(a) where f(a) =

∑m
i=0 ria

i ∈ R.

Proof. If a is in the center of R, then upon dividing x− a into f , this follows
straight from Theorem 3.6.4. If deg f ≤ 0, then take q = 0. Otherwise assume
m = deg f ≥ 1. Notice that

xk+1 − ak+1 =
(
xk + axk−1 + · · ·+ ak−1x+ ak

)
(x− a).

Multiply by rk+1 to get

rk+1

(
xk+1 − ak+1

)
= rk+1

(
xk + axk−1 + · · ·+ ak−1x+ ak

)
(x− a),

which can be written

rk+1x
k+1 − rk+1a

k+1 = qk+1(x− a).
Add over all k in the range 0, 1, . . . , n− 1:

n∑
i=1

rix
i −

n∑
i=1

ria
i =

(
n∑
i=1

qi

)
(x− a) = q(x− a).

To get f − f(a) = q(x− a), simply add r0 − r0 to the left-hand side. The quotient
q and remainder f(a) are unique by Theorem 3.6.4. □

Corollary 3.6.6. If k is a field, then k[x] is a euclidean domain with the
degree function deg : k[x]− (0)→ N. It follows that k[x] is a PID and a UFD.

If k is a field, and R = k[x], then the quotient field of k[x], denoted k(x), is
called the field of rational functions over k. If S is a ring and R a subring, then by
Theorem 3.6.3 we can view R[x] as a subring of S[x].

Example 3.6.7. Let R be a commutative ring and g ∈ R[x] a monic polynomial
of degree n. Consider the residue class ring R[x]/(g). Given any f ∈ R[x], by
the Division Algorithm, Theorem 3.6.4, there is a unique polynomial r ∈ R[x]
such that f + (g) = r + (g) and deg r < n. Therefore, the set of polynomials
{r ∈ R[x] | deg r < n} is a complete set of coset representatives for R[x]/(g).

Definition 3.6.8. Let R be any ring, u ∈ R, and f =
∑m
i=0 rix

i ∈ R[x]. We
say that u is a root of f in case f(u) =

∑m
i=0 riu

i = 0.

Lemma 3.6.9. Let R be a commutative ring, u ∈ R, and f ∈ R[x]. The
following are equivalent.

(1) u is a root of f .
(2) f is in the kernel of the evaluation homomorphism R[x] → R defined by

x 7→ u.
(3) There exists q ∈ R[x] such that f = (x− u)q.

Proof. The proof is left to the reader. □

Corollary 3.6.10. If R is an integral domain, and f ∈ R[x] has degree d ≥ 0,
then

(1) If u is a root of f in R, then there exists m ≥ 1 such that f = (x− u)mq
and q(u) ̸= 0.
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(2) f has at most d roots in R.
(3) (Lagrange Interpolation) Let n ≥ 1. Given n + 1 distinct elements of R:

α0, . . . , αn, and n + 1 arbitrary elements of R: β0, . . . , βn, there exists a
unique polynomial f ∈ R[x] such that deg f ≤ n and f(αi) = βi for each
i.

Proof. (1): Apply Lemma 3.6.9 and induction on the degree.
(2): If d = 0, then f has no root. Inductively assume d ≥ 1 and that the result

holds for any polynomial of degree in the range 0, . . . , d− 1. If f has no root, then
we are done. Suppose u is a root of f . By Part (1) we can write f = (x − u)mq,
where deg q = d−m. If v ̸= u is another root of f , then 0 = f(u) = (v − u)mq(u).
Since R is an integral domain, this means u is a root of q. By induction, there are
at most d−m choices for v.

(3): (Existence.) The Lagrange basis polynomials with respect to the set
{α0, . . . , αn} are

L0(x) =
(x− α1) · · · (x− αn)

(α0 − α1) · · · (α0 − αn)
...

Lj(x) =
(x− α0) · · · (x− αj−1)(x− αj+1) · · · (x− αn)

(αj − α0) · · · (αj − αj−1)(αj − αj+1) · · · (αj − αn)
...

Ln(x) =
(x− α0) · · · (x− αn−1)

(αn − α0) · · · (αn − αn−1)
.

Notice that Lj(x) has degree n and

Lj(αk) =

{
0 if k ̸= j

1 if k = j.

Set

f(x) =

n∑
j=0

βjLj(x).

Then f(αk) = βk for each k = 0, . . . , n and deg f ≤ n.
(Uniqueness.) Suppose f and g are two polynomials in R[x] such that deg f ≤

n, deg g ≤ n and f(αk) = βk = g(αk) for each k = 0, . . . , n. Then deg (f − g) ≤ n
and f − g has n+ 1 roots, namely α0, . . . , αn. By Part (2), f − g = 0. □

Corollary 3.6.11. Let R be an integral domain. Let n > 1 be an integer. The
group of nth roots of unity in R, µn = {u ∈ R | un = 1}, is a cyclic group of order
at most n.

Proof. The set µn is clearly a subgroup of R∗. The order of µn is at most n,
by Corollary 3.6.10 (2). For every divisor d of n, the equation xd = 1 has at most
d solutions in R∗. By Exercise 2.8.10, µn is a cyclic group. □

Corollary 3.6.12. Let F be a finite field of order q. Then F ∗ is a cyclic
abelian group of order q − 1.
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Proof. In a field the nonzero elements make up an abelian group. The group
F ∗ has order q − 1. By Corollary 2.2.17, every u ∈ F ∗ satisfies the equation
uq−1 = 1. By Corollary 3.6.11, F ∗ is a cyclic group of order q − 1. □

Example 3.6.13. If F is a field, the ring F [x, y] is not a PID. The ideal
(x, y) = {ux+ vy | u, v ∈ F [x, y]} is not a principal ideal.

Example 3.6.14. We show by example that in Corollaries 3.6.10 (2) and 3.6.11
it is necessary to assume R is commutative. The example we give is the ring of
quaterions H over the field R. Since H is a division ring, it is a domain. Let α ∈ R
and assume α > 0. Then f(x) = x2 + α is an irreducible quadratic in R[x]. We
show:

(1) f(x) = x2 + α has infinitely many roots in H and
(2) the set {u ∈ H | u4 = 1} is infinite.

Start with real numbers b, c, d such that b2 + c2 + d2 = α. Since x21 + x22 + x23 = α
is the equation of a sphere in R3 with positive radius, there are infinitely many
choices for (b, c, d). Consider the quaternion ξ = bi + cj + dk. Using the norm
function from Example 3.1.15 we have N(ξ) = −ξ2 = b2 + c2 + d2 = α. Therefore,
ξ is a root of f(x) = x2+α. This proves (1). Now we prove (2). By (1) with α = 1,
there are infinitely many ξ ∈ H such that ξ2 = −1. For each such ξ we have ξ4 = 1.

Definition 3.6.15. If R is an integral domain, f ∈ R[x], and u is a root of
f , then the multiplicity of u as a root of f is the positive number m given by
Corollary 3.6.10 (1). We say that u is a simple root if m = 1. If m > 1, then u is
called a multiple root.

Definition 3.6.16. If R is any ring and f =
∑n
i=0 aix

i ∈ R[x], then the formal
derivative of f is defined to be

f ′ =

n∑
i=1

iaix
i−1

which is also in R[x]. The reader should verify the usual identities satisfied by the
derivative operator. In particular, (af + bg)′ = af ′ + bg′ and (fg)′ = f ′g + fg′. If
R is commutative, then (fn)′ = nfn−1f ′.

Proposition 3.6.17. Suppose S is an integral domain and R is a subring of
S. Let f be a nonconstant polynomial in R[x] and u ∈ S. Then u is a multiple root
of f if and only if f ′(u) = f(u) = 0.

Proof. Suppose u is a multiple root of f . Write f = (x − u)2q for some
q ∈ S[x] and compute f ′ = 2(x− u)q + (x− u)2q′. It is immediate that f ′(u) = 0.
Conversely, assume f(u) = f ′(u) = 0. Write f = (x − u)q for some q ∈ S[x] and
compute f ′ = q + (x − u)q′. It is immediate that q(u) = 0, so f = (x − u)2q2 for
some q2 ∈ S[x]. □

Theorem 3.6.18. Let k be a subfield of the integral domain S and f a noncon-
stant polynomial in k[x].

(1) Assume
(a) gcd(f, f ′) = 1, or
(b) f is irreducible in k[x] and f ′ ̸= 0 in k[x], or
(c) f is irreducible in k[x] and k has characteristic zero (see Exam-

ple 3.2.5 (5)).
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Then f has no multiple root in S.
(2) Suppose p denotes the characteristic of k. Assume u is a root of f in S.

(a) If f is irreducible in k[x] and u is a multiple root of f , then p > 0
and f ∈ k[xp].

(b) If p > 0 and f ∈ k[xp], then u is a multiple root of f .

Proof. (1): Assuming gcd(f, f ′) = 1, by Proposition 3.4.8 there exist s, t ∈
k[x] such that 1 = fs+f ′t. It is clear that f and f ′ do not have a common root in S.
By Proposition 3.6.17, f has no multiple root in S. Case (b) reduces immediately
to case (a). Case (c) reduces immediately to case (b).

(2) (a): If u ∈ S is a multiple root of f , then because f is irreducible in k[x],
Part (1) implies p > 0 and f ′ = 0. The reader should verify that under these
conditions f ∈ k[xp].

(2) (b): If k has characteristic p > 0 and f ∈ k[xp], then clearly f ′ = 0. If
u ∈ S is a root of f , then by Proposition 3.6.17, u is a multiple root of f . □

6.1. Polynomials in Several Variables. The polynomial ring over R in
several variables is defined by iterating the one-variable construction. If m > 1
and x1, . . . , xm are indeterminates, then R[x1, . . . , xm] = R[x1, . . . , xm−1][xm]. A
monomial in S = R[x1, . . . , xm] is a polynomial of the form M = rxe11 · · ·xemm ,
where r ∈ R is the coefficient and each exponent ei is a nonnegative integer. The
degree of a monomial is −∞ if r = 0, otherwise it is the sum of the exponents. If
M ̸= 0, then degM = e1 + · · ·+ em. If M1 and M2 are monomials with coefficients
r1, r2, then M1M2 is a monomial with coefficient r1r2. So M1M2 = 0 if and only if
r1r2 = 0. If M1M2 ̸= 0, then degM1M2 = degM1 + degM2. A polynomial f in S

is a sum f =
∑d
j=1Mj where eachMj is a monomial. A polynomial f ∈ S is said to

be homogeneous if f can be written as a sum of monomials all of the same degree.
Let S0 = R be the set of all polynomials in S of degree less than or equal to 0.
For all n ≥ 1, let Sn be the R-submodule generated by the set of all homogeneous
polynomials in S of degree n. If f is homogeneous of degree d and g is homogeneous
of degree e, then we see fg is homogeneous of degree d + e. A polynomial f ∈ S
can be written f = f0 + f1 + · · · + fd where each fi is homogeneous of degree i.
We call fi the homogeneous component of f of degree i. This representation of f
as a sum of homogeneous polynomials is unique. The degree of a polynomial is
the maximum of the degrees of the homogeneous components. If k is a field, then
k[x1, . . . , xm] is an integral domain. The quotient field of k[x1, . . . , xm], denoted
k(x1, . . . , xm), is called the field of rational functions over k in m variables.

In Exercise 1.2.23 the lexicographical order ≤ is defined on the set of all m-
tuples of nonnegative integers

∏m
i=1 Z≥0 = {(e1, . . . , em) | xi ∈ Z≥0}. Under this

partial ordering
∏m
i=1 Z≥0 is a chain. This notion induces the lexicographical or-

der on the set of nonzero monomials in R[x1, . . . , xm]. If M1 = r1x
a1
1 · · ·xamm ,

and M2 = r2x
b1
1 · · ·xbmm are two nonzero monomials, then M1 < M2 if and only if

(a1, . . . , am) < (b1, . . . , bm). We see thatM1 andM2 are comparable if (a1, . . . , am) ̸=
(b1, . . . , bm).

Lemma 3.6.19. Let R be a ring and S = R[x1, . . . , xm].

(1) A nonzero polynomial f in S can be written as a sum f =
∑d
j=1Mj where

each Mj is a nonzero monomial such that M1 < M2 < · · · < Md. This
representation as a sum of strictly increasing monomials is unique. The
monomial Md is called the leading term of f .
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(2) Let f and g be nonzero polynomials in S. Let L(f) be the leading term of
f and L(g) the leading term of g. Then the leading term of fg is equal to
L(f)L(g).

(3) If U is a nonempty set of nonzero monomials in S, then there exists an
element α ∈ U with the property that if β ∈ U and β is comparable to
α, then α < β. If U has the property that any two distinct elements are
comparable, then there exists α ∈ U such that if β ∈ U −{α}, then α < β.

Proof. (1): Given a nonzero polynomial f , write f =
∑d
j=1Mj where eachMj

is a nonzero monomial. By adding coefficients, all monomials that are incomparable
can be combined. Hence we can assume the monomials appearing in the sum are
comparable. After rearranging if necessary, we can assume M1 < M2 < · · · < Md.
Conversely, if M1 < M2 < · · · < Md is a strictly increasing sequence of monomials,

then the sum f =
∑d
j=1Mj is nonzero. The uniqueness claim follows from this

fact.
(2): The proof of this part is left to the reader.
(3): This follows from Exercise 1.2.23 (3). □

6.2. Exercises.

Exercise 3.6.20. Let f = x3 + 1. Prove that there is an isomorphism θ :
Q[x]/(f) → F1 ⊕ F2 where F1 and F2 are fields. Carefully describe the fields F1

and F2, and the map θ.

Exercise 3.6.21. Let k be a field. Let R = k[x2, x3] be the subring of k[x]
consisting of all polynomials such that the coefficient of x is zero. Prove:

(1) R is an integral domain.
(2) Show that the quotient field of R is k(x). We say that R is birational to

k[x].
(3) R is not a UFD. (Hint: x2 and x3 are both irreducible.)
(4) R is not a PID. (Hint: Neither x2 nor x3 is prime.)
(5) The converse of Lemma 3.4.5 (3) is false.

For a continuation of this exercise, see Exercise 7.7.16.

Exercise 3.6.22. Let F be a field of positive characteristic p. Let θ : F [y] →
F [y] be the evaluation mapping given by y 7→ yp. Let F [yp] denote the image of θ.
Prove that θ extends to a homomorphism χ : F (y) → F (y) and let F (yp) be the
image of χ. Prove that F (yp) is the quotient field of F [yp] and that the diagram

F [y] // F (y)

F [yp]

OO

// F (yp)

OO

commutes where each of the four maps is the set inclusion homomorphism.

Exercise 3.6.23. Let K = F (yp) be the subfield of L = F (y) defined as
in Exercise 3.6.22. We say that L/K is an extension of fields. Show that the
polynomial f = xp − yp is irreducible in K[x], but that f = (x− y)p in L[x].

Exercise 3.6.24. Prove that if R is an integral domain, then the homomor-
phism R → R[x] induces an isomorphism on the groups of units Units(R) →
Units(R[x]).
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Exercise 3.6.25. Let R be a commutative ring. Prove:

(1) The nil radical of R[x] is equal to RadR(0)[x]. That is, a polynomial is
nilpotent if and only if every coefficient is nilpotent.

(2) The kernel of R[x]→ (R/RadR(0))[x] is equal to the nil radical of R[x].
(3) The group of units of R[x] consists of those polynomials of the form f =

a0 + a1x+ · · ·+ anx
n, where a0 is a unit in R and f − a0 ∈ RadR(0)[x].

(4) If RadR(0) = (0), then the homomorphism R → R[x] induces an isomor-
phism on the groups of units Units(R)→ Units(R[x]).

Exercise 3.6.26. (GCD is invariant under a change of base field) Let k ⊆ F
be a tower of fields such that k is a subfield of F . In this case we view k[x] as a
subring of F [x]. Let f, g ∈ k[x]. Prove that if d is the greatest common divisor of
f and g in k[x], then d is the greatest common divisor of f and g in F [x].

Exercise 3.6.27. Let R be an integral domain and a ∈ R. Prove that the
linear polynomial x− a is a prime element in R[x].

Exercise 3.6.28. Let R be a commutative ring and a ∈ R. Show that there
is an automorphism θ : R[x] → R[x] such that θ(x) = x + a and for all r ∈ R,
θ(r) = r.

Exercise 3.6.29. Let R be an integral domain and a an irreducible element of
R. Prove that a is an irreducible element in R[x].

Exercise 3.6.30. Let k be a field and A = k[x]. Prove:

(1) If I = (x) is the ideal in A generated by x, then In = (xn).
(2) Let n ≥ 1. The nil radical of k[x]/(xn) consists of those cosets represented

by polynomials of the form α1x+ · · ·+ αn−1x
n−1.

(3) The group of units of k[x]/(xn) consists of those cosets represented by
polynomials of the form α0 +α1x+ · · ·+αn−1x

n−1, where α0 is a unit in
k.

Exercise 3.6.31. Let R be an integral domain.

(1) A polynomial f in R[x] defines a function f : R → R. If R is infinite,
show that f is the zero function (that is, f(a) = 0 for all a ∈ R) if and
only if f is the zero polynomial.

(2) A polynomial f in R[x1, . . . , xr] defines a function f : Rr → R. If R is
infinite, use induction on r to show f is the zero function if and only if f
is the zero polynomial.

Exercise 3.6.32. Let R be a commutative ring and S = R[x] the polynomial
ring in one variable over R. If W = {1, x, x2, . . . }, then the localization W−1S is
called the Laurent polynomial ring over R. Usually, the ring of Laurent polynomials
over R is denoted R[x, x−1].

(1) Let G = (a) be the infinite cyclic group generated by a and R(G) the
group ring over R. Prove that R[x, x−1] ∼= R(G).

(2) Prove that R[x, x−1] ∼= R[x, y]/(xy − 1).
(3) Show that every element of R[x, x−1] has a unique representation in the

form f(x)/xn where f(x) ∈ R[x] and n ≥ 0.
(4) Prove that the group of units in the Laurent polynomial ring R[x, x−1] is

equal to the set {uxe | u ∈ R∗ and e ∈ Z}.
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(5) Prove that the group of units in R[x, x−1] is the internal direct product
R∗ × ⟨x⟩.

Exercise 3.6.33. Let R be a commutative ring, A an R-algebra, and a ∈ A.
Let σ : R[x] → A be the evaluation map defined by x 7→ a. Let R[a] denote the
image of σ. Show that R[a] is the smallest subring of A containing R · 1 and a.
Show that R[a] is commutative.

Exercise 3.6.34. Let n ≥ 2 be an integer and ζ a primitive nth root of unity
in C (see Exercise 2.3.21). Let R be a commutative Z[ζ]-algebra. Let a ∈ R and
set S = R[x]/(xn − a). Show that there is an R-algebra automorphism σ : S → S
induced by the assignment x 7→ ζx.

Exercise 3.6.35. Let p be a prime number and R a ring of characteristic p.
Let R[x, y] be the ring of polynomials in two variables with coefficients in R. Prove:

(1) If n ≥ 0, then (x+ y)p
n

= xp
n

+ yp
n

in R[x, y]. (Hint: Exercise 3.2.19.)

(2) If n > 0 and 0 < k < pn, then
(
pn

k

)
is divisible by p.

Exercise 3.6.36. Let R be a commutative ring and a ∈ R. Prove that
R[x]/(x− a) ∼= R.

Exercise 3.6.37. Let k be an infinite field and assume there exists a monic
irreducible polynomial of degree d in k[x]. Show that there are infinitely many
monic irreducible polynomials of degree d in k[x].

Exercise 3.6.38. Let k be a field and f, g two nonzero polynomials in k[x].
Show that if d = gcd(f, g), then there exist polynomials u, v in k[x] such that
d = fu+ gv, deg u < deg g, and deg v < deg f .

7. Polynomials over a Unique Factorization Domain

Proposition 3.7.1. (The Rational Root Theorem) Suppose R is a UFD with
quotient field K and u = b/c is an element of K such that gcd(b, c) = 1. If
f = a0 + a1x+ · · ·+ adx

d ∈ R[x] and u is a root of f , then b | a0 and c | ad.

Proof. If f(b/c) = 0, then

a0 +
a1b

c
+
a2b

2

c2
+ · · ·+ adb

d

cd
= 0.

Multiply by cd

a0c
d + a1bc

d−1 + a2b
2cd−2 + · · ·+ adb

d = 0.

Since b divides the last d terms, it follows that b | a0cd. Since c divides the first d
terms, it follows that c | adbd. Since gcd(b, c) = 1 and R is a UFD, it follows that
b | a0 and c | ad. □

Let R be a unique factorization domain, or UFD for short. Suppose f is a
nonzero polynomial in R[x]. If we write f = a0+a1x+ · · ·+anxn, then the content
of f , written C(f), is defined to be gcd(a0, a1, . . . , an). By Proposition 3.4.8 (4),
C(f) is unique up to associates, which means C(f) is unique up to multiplication
by a unit of R. If C(f) = 1, then we say f is primitive. By Exercise 3.4.27, if we
factor out the content, then f = C(f)f1 where f1 is primitive.

Lemma 3.7.2. Let R be a UFD with quotient field K. Let f, g ∈ R[x].
(1) If f and g are primitive, then fg is primitive.
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(2) C(fg) = C(f)C(g).
(3) Suppose f and g are primitive. Then f and g are associates in R[x] if

and only if they are associates in K[x].

Proof. (1): Assume p is an irreducible element of R and p divides C(fg).
Under the natural map η : R[x] → R/(p)[x], we have η(fg) = η(f)η(g) = 0. By
Corollary 3.4.14, p is prime, so R/(p) is an integral domain. Thus R/(p)[x] is an
integral domain, which implies one of η(f) or η(g) is zero. That is, p divides the
content of f or the content of g.

(2): Factor f = C(f)f1, g = C(g)g1, where f1 and g1 are primitive. Then
fg = C(f)C(g)f1g1. By Part (1), f1g1 is primitive.

(3): By Exercise 3.6.24, a unit in K[x] is a nonzero constant polynomial. Sup-
pose f = ug where u = r/s is a unit in K and gcd(r, s) = 1. Then sf = rg
implies sC(f) = rC(g), which implies r and s are associates. Therefore u = 1. The
converse is trivial, since R ⊆ K. □

Theorem 3.7.3. (Gauss’ Lemma) Let R be a UFD with quotient field K. Sup-
pose f ∈ R[x] is primitive. Then f is irreducible in R[x] if and only if f is irre-
ducible in K[x].

Proof. If f has a nontrivial factorization in R[x], then this factorization still
holds in K[x]. Assume f = pq is a factorization in K[x], where we assume m =
deg p ≥ 1, and n = deg q ≥ 1. Write

p =

m∑
i=0

ai
bi
xi, q =

n∑
i=0

ci
di
xi

and set b = b0b1 · · · bm, d = d0d1 . . . dm. Then b(ai/bi) = αi ∈ R and d(ci/di) =
γi ∈ R for each i, so we get

bp =

m∑
i=0

αix
i, dq =

n∑
i=0

γix
i

are both in R[x]. Let α = C(bp) and factor bp = αp1, where p1 is primitive. Set
γ = C(dq) and factor dq = γq1 where q1 is primitive. Combining all of this, we
have (bd)f = (αγ)(p1q1). By Lemma 3.7.2, it follows that bd and αγ are associates
in R. Up to a unit in R, f = p1q1. □

Theorem 3.7.4. Let R be a UFD. Then R[x1, . . . , xn] is a UFD.

Proof. By finite induction, it is enough to show R[x] is a UFD.
(Existence.) Let f ∈ R[x] be a nonunit nonzero. If f has degree zero, then

we can view f as an element of R and factor f into irreducibles in R. This is a
factorization into irreducibles in R[x].

Assume deg f ≥ 1 and factor f = C(f)f1 where f1 is primitive and C(f) ∈ R.
Since C(f) can be factored into irreducibles, we can reduce to the case where f
is primitive. Let K be the quotient field of R. We know that K[x] is a UFD, by
Corollary 3.6.6. Let f = p1 · · · pn be the unique factorization of f into a product of
irreducibles in K[x]. By Theorem 3.7.3, for each i we can write

pi =
ai
bi
qi



7. POLYNOMIALS OVER A UNIQUE FACTORIZATION DOMAIN 135

where ai, bi ∈ R, and qi ∈ R[x] is primitive and irreducible. Set α = a1 · · · an and
β = b1 · · · bn. Multiplying,

f =
α

β
q1q2 · · · qn.

By Lemma 3.7.2 (3) we conclude that α and β are associates in R. Up to associates,
we have factored f = q1q2 · · · qn into irreducibles in R[x].

(Uniqueness.) Let f be a nonzero nonunit element of R[x]. Then f can be
factored into a product of irreducibles f = (c1 · · · cm)(p1p2 · · · pn) where each pi is
a primitive irreducible polynomial in R[x] and each ci is an irreducible element of
R. Up to associates, C(f) = c1c2 · · · cm is uniquely determined by f . Since R is
a UFD, the factorization C(f) = c1c2 · · · cm is unique in R. In K[x] the factoriza-
tion p1p2 · · · pn is uniquely determined up to associates. By Lemma 3.7.2 (3), the
factorization is unique in R[x]. □

Theorem 3.7.5. Let R be a commutative ring and f = a0 + a1x + · · · +
an−1x

n−1 + anx
n a polynomial of degree n ≥ 1 in R[x]. Let P be a prime ideal

in R such that an ̸∈ P and ai ∈ P for i = 0, 1, . . . , n− 1. Suppose f = gh is a
factorization in R[x] where deg g = s ≥ 1, deg h = t ≥ 1, and s + t = n. Then
a0 ∈ P 2.

Proof. Assume an ̸∈ P , (a0, . . . , an−1) ⊆ P and there is a factorization f =
gh, where deg g = s ≥ 1, deg h = t ≥ 1, and s + t = n. By Theorem 3.6.3 (1) the
natural map η : R→ R/P induces η̄ : R[x]→ R/P [x]. Under this homomorphism,
η̄(f) = η̄(g)η̄(h). By hypothesis, η̄(f) = η(an)x

n has degree n. If we write g =
b0 + b1x+ · · ·+ bsx

s and h = c0 + c1x+ · · ·+ ctx
t, then

(7.1) η(an)x
n = (η(b0) + η(b1)x+ · · ·+ η(bs)x

s)(η(c0) + η(c1)x+ · · ·+ η(ct)x
t)

holds in R/P [x]. Since P is prime, R/P is an integral domain. Let K denote
the quotient field of R/P . The factorization of η̄(f) in (7.1) holds in K[x]. By
Corollary 3.6.6, K[x] is a UFD. We conclude that (b0, b1, . . . , bs−1) ⊆ P and
(c0, c1, . . . , ct−1) ⊆ P . The constant term of f is equal to a0 = b0c0 ∈ P 2. □

Corollary 3.7.6. Let R be an integral domain and f = a0 + a1x + · · · +
an−1x

n−1+xn a monic polynomial of degree n ≥ 1 in R[x]. Let P be a prime ideal
in R such that ai ∈ P for i = 0, 1, . . . , n− 1, and a0 ̸∈ P 2. Then f is irreducible
in R[x].

Corollary 3.7.7. (Eisenstein’s Irreducibility Criterion) Let R be UFD and
f = a0 + a1x+ · · ·+ anx

n a primitive polynomial of degree n ≥ 1 in R[x]. Let p be
a prime in R such that p ∤ an, p | ai for i = 0, 1, . . . , an−1, and p

2 ∤ a0. Then f is
irreducible.

Example 3.7.8. Let Φ(x) = xp − 1 ∈ Z[x]. Consider ϕ(x) = Φ(x)/(x − 1) =
xp−1+xp−2+· · ·+x+1. By Exercise 3.6.28, the change of variable x = y+1 induces
an isomorphism Z[x] ∼= Z[y]. Applying the Binomial Theorem (Exercise 3.1.23) we
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see that

ϕ(y + 1) =
Φ(y + 1)

y

=
(y + 1)p − 1

y

= yp−1 +

(
p

1

)
yp−2 + · · ·+

(
p

p− 2

)
y +

(
p

p− 1

)
.

By Exercise 1.2.21, p divides
(
p
i

)
if 1 ≤ i ≤ p − 1. By Corollary 3.7.7, ϕ(y + 1)

is irreducible in Z[y]. Therefore, ϕ(x) is irreducible in Z[x] and by Gauss’ Lemma
(Theorem 3.7.3), ϕ(x) is irreducible in Q[x].

Example 3.7.9. Let k be a field and f(x) ∈ k[x]. Assume deg f ≥ 2 and f
is square free. In other words, f is not divisible by the square of an irreducible
polynomial. By Corollary 3.7.7, y2 − f(x) is irreducible in k[x, y]. The set of zeros
of y2 − f(x) in k2 is called an affine hyperelliptic curve.

Example 3.7.10. In this example we apply Gauss’ Lemma, Theorem 3.7.3, to
construct a large class of rings of the form Z[

√
D] which are not unique factorization

domains. Let D be a square free integer such that D ≡ 1 (mod 4). Let u =
√
D

be the complex number given by Proposition 1.5.3 (5). If f(x) = x2 −D, then by
Corollary 3.7.7, f(x) is irreducible in Z[x] and Q[x], hence u is not in Q. If S = Z[u]
and L = Q[u], then by Exercise 3.5.11, S is an integral domain and L is equal to
the quotient field of S. In L, let α = (1+u)/2 and β = (1−u)/2. Since u is not in
Q, we see that α and β are not in S. Since D ≡ 1 (mod 4), there exists an integer
k such that 1 = D + 4k. Then αβ = (1 − u2)/4 = (1 −D)/4 = k and α + β = 1.
Consider the polynomial g(y) = (y − α)(y − β) = y2 − y + k in L[y]. We conclude
that g(y) is irreducible in S, but factors in L[y]. By Theorem 3.7.3, this implies S
is not a unique factorization domain.

7.1. Exercises.

Exercise 3.7.11. Let k be a field and K = k(x) the field of rational functions
over k in the variable x. Let y be an indeterminate. Show that for any d ≥ 1, the
polynomial yd − x is irreducible in K[y].

Exercise 3.7.12. Let f = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anx
n be a

polynomial of degree n ≥ 1 in Z[x]. Let p be a prime and [f ] = [a0] + [a1]x +
[a2]x

2 + · · · + [an−1]x
n−1 + [an]x

n be the polynomial over the prime field Z/(p)
achieved by reducing the coefficients of f modulo p.

(1) If [f ] has degree n and is irreducible over Z/(p), then f is irreducible over
Q. Proof:

(2) Show by counterexample that (a) is false if the degree of [f ] is less than
n.

(3) Show by counterexample that the converse of (a) is false.

Exercise 3.7.13. The following Eisenstein irreducibility criterion for polyno-
mials in K[y] first appeared in [46]. Let k be a field and x, y indeterminates.
Let K = k(x) be the field of rational functions over k in the variable x. Let
f(y) = f0 + f1y + f2y

2 + · · · + fny
n be a polynomial in K[y] where n ≥ 1 and

fn ̸= 0. Prove that if
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(1) each fi is a polynomial in k[x],
(2) x divides each of f0, f1, . . . , fn−1 and x does not divide fn, and
(3) x2 does not divide f0,

then f is irreducible in K[y].

Exercise 3.7.14. Let k be a field and K = k(x) the field of rational functions
over k in the variable x. Let σ : K → K be the function which maps a typical
rational function f(x) ∈ K to the rational function f(x−1). Show that σ is an
automorphism of the field K.

Exercise 3.7.15. Let k be a field. If f(x) = a0+ a1x+ · · ·+ anxn and an ̸= 0,
then the reverse of f is the polynomial fr(x) = a0x

n + a1x
n−1 + · · ·+ an−1x+ an.

(1) Show that fr(x) = xnf(x−1).
(2) If a0 ̸= 0, show that f is irreducible over k if and only if fr is irreducible

over k.

Exercise 3.7.16. Let n ∈ Z and consider the polynomial f(x) = x3 + nx− 2.
Show that f(x) is reducible over Q if and only if n is in the set {1,−3,−5}.

Exercise 3.7.17. Let f(x) = 20x5 + 35x4 − 42x3 + 21x2 + 70 and g(x) =
80x5 + 18x3 − 24x− 15. Let F = Q[x]/(f) and G = Q[x]/(g). Show that F and G
are fields.

Exercise 3.7.18. Modify the method of Example 3.7.8 to show that the fol-
lowing polynomials are irreducible over Q.

(1) x4 + 1
(2) x4 + a2, where a ∈ Z is odd.
(3) x8 + 1
(4) x9 + 2
(5) x2

n

+ a2, where a ∈ Z is odd and n ≥ 1.
(6) xp

n

+ p− 1, where p is prime and n ≥ 1.

(Hint: For (5) and (6), apply Exercise 3.6.35.)

Exercise 3.7.19. Let R be a UFD with quotient field K. Let a be an element
of R which is not a square in R and let f = x2−a ∈ R[x]. Show that S = R[x]/(f)
is an integral domain and L = K[x]/(f) is a field.

Exercise 3.7.20. Let R be a UFD with quotient field K. Let f be a monic
irreducible polynomial in R[x].

(1) Show that S = R[x]/(f) is an integral domain and L = K[x]/(f) is a field.
(2) Show that there is a commutative square

S // L

R

OO

// K

OO

where each arrow is the natural map and each arrow is one-to-one. (Hint:
Example 3.6.7.)

(3) Show that L is the quotient field of S.





CHAPTER 4

Linear Algebra

1. Modules and Algebras

1.1. Definitions and First Properties. In this section we introduce the
notion of a module over an arbitrary ring R. An abelian group M is an R-module
if multiplication by elements of R turns R into a ring of endomorphisms of M .

Definition 4.1.1. If R is a ring, an R-module is a nonempty set M with an
addition operation making M an abelian group together with a left multiplication
action by R such that for all r, s ∈ R and x, y ∈M the rules

(1) r(x+ y) = rx+ ry
(2) r(sx) = (rs)x
(3) (r + s)x = rx+ sx
(4) 1x = x

are satisfied. If R is a division ring, then M is called a vector space.

By default, an R-module is assumed to be a left R-module. This is in agreement
with our convention that functions act from the left (Section 1.1.2). There will be
times when for sake of convenience we will utilize right R-modules. The statement
of the counterpart of Definition 4.1.1 for a right R-module is left to the reader.
In Lemma 2.4.1 we saw that a group G acts on a set X if and only if there is a
homomorphism of G into Perm(X). Lemma 4.1.2 is the counterpart of this notion
in the context of modules. By Exercise 2.8.11, if M is an abelian group, then the
set of all endomorphisms of M , Hom(M,M), is a ring. Endomorphisms are added
point-wise and multiplication is composition of functions.

Lemma 4.1.2. Let R be a ring an M an additive abelian group. The following
are equivalent.

(1) M is an R-module.
(2) There is a homomorphism of rings θ : R→ Hom(M,M).

Proof. (2) implies (1): Instead of θ(r)(x) we will write r ∗ x. This defines a
left multiplication action by R on M . Then

r ∗ (x+ y) = θ(r)(x+ y) = θ(r)(x) + θ(r)(y)) = r ∗ x+ r ∗ y
is Part (1) of Definition 4.1.1,

r ∗ (s ∗ x) = θ(r)(θ(s)(x) = (θ(r)θ(s))(x) = θ(rs)(x)) = (rs) ∗ x
is Part (2),

(r + s) ∗ x = θ(r + s)(x) = (θ(r) + θ(s))(x) = θ(r)(x) + θ(s)(x) = r ∗ x+ s ∗ x
is Part (3), and lastly,

1 ∗ x = θ(1)(x) = 1M (x) = x

139
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is Part (4).
(1) implies (2): For each r ∈ R, define λr : M → M to be the “left mul-

tiplication by r” function defined by λr(x) = rx. By the first distributive law,
λr(x + y) = r(x + y) = rx + ry = λr(x) + λr(y), so λr ∈ Hom(M,M). Define
θ : R → Hom(M,M) by θ(r) = λr. The associative law implies λrs(x) = (rs)x =
r(sx), so θ(rs) = θ(r)θ(s) and θ is multiplicative. By the second distributive law,
λr+s(x) = (r + s)x = rx + sx = λr(x) + λs(x), so θ(r + s) = θ(r) + θ(s) and θ is
additive. Lastly, λ1 = 1M , so θ(1) = 1, hence θ is a homomorphism of rings. □

Definition 4.1.3. Let R be a ring, M an R-module, and θ : R→ Hom(M,M)
the homomorphism of Lemma 4.1.2. The kernel of θ is denoted annihR(M) and
is called the annihilator of M in R. Then annihR(M) is equal to {r ∈ R |
rx = 0 for all x ∈M}. Since θ is a homomorphism of rings, annihR(M) is a two-
sided ideal in R. If θ is one-to-one, then we say M is a faithful R-module.

Example 4.1.4. Standard examples of modules are listed here.

(1) Let M be any additive abelian group. Then Z acts on M . If x ∈ M and
n ∈ Z, then

nx =


0 if n = 0∑n
i=1 x = x+ x+ · · ·+ x if n > 0

−
∑|n|
i=1 x = −(x+ x+ · · ·+ x) if n < 0

Using Exercise 2.3.16 the reader should verify that this action makes M
into a Z-module.

(2) If R is any ring, and I is a left ideal in R, then R acts on I from the left.
If x ∈ I and r ∈ R, then rx ∈ I. The associative and distributive laws in
R apply. Thus I is an R-module. As a special case, taking I = R implies
R is a left R-module.

(3) Let ϕ : R → S be a homomorphism of rings. Then R acts on S by the
multiplication rule rx = ϕ(r)x, for r ∈ R and x ∈ S. By this action, S is
an R-module.

(4) Let ϕ : R → S be a homomorphism of rings. If M is an S-module, then
R acts on M by the multiplication rule rx = ϕ(r)x, for r ∈ R and x ∈M .
By this action, M is an R-module.

(5) Let A be an abelian group written additively. Let m > 1 be an integer
and assume mx = 0 for all x ∈ A. If follows from Exercise 4.1.20 that A
is a Z/m-module by the action [n]x = nx. In particular, if p is a prime
and px = 0 for all x ∈ A, then A is a vector space over the field Z/p.

Lemma 4.1.5. Let M be an R-module, x ∈M , and r ∈ R. Then the following
are true:

(1) r0 = 0.
(2) 0x = 0.
(3) −1x = −x.

Proof. (1): r0 = r(0 + 0) = r0 + r0. Since M,+ is a group, we cancel r0 to
get r0 = 0.

(2): 0x = (0 + 0)x = 0x + 0x. Since M,+ is a group, we cancel 0x to get
0x = 0.
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(3): 0 = (1 − 1)x = 1x + (−1)x = x + (−1)x. Since M,+ is a group, we get
−x = (−1)x. □

Definition 4.1.6. Let R be a commutative ring. An R-algebra is a ring A
together with a homomorphism of rings θ : R → Z(A) mapping R into the center
of A. Then A is an R-module with action ra = θ(r)a. For all r ∈ R, a, b ∈ A, it
follows that θ(r)(ab) = (θ(r)a)b = (aθ(r))b = a(θ(r)b). Therefore

(1.1) r(ab) = (ra)b = a(rb).

We call θ the structure homomorphism of A. Conversely, if A is a ring and R is
a commutative ring and A is an R-module satisfying (1.1), then θ : R → Z(A)
given by θ(r) = r1 is a homomorphism of rings, so A is an R-algebra. We write
R · 1 for the image of θ. If B is a subring of A containing R · 1, then we say B
is an R-subalgebra of A. We say A is a finitely generated R-algebra in case there
exists a finite subset X = {x1, . . . , xn} of A and A is the smallest subalgebra of A
containing X and R · 1. In the milieu of R-algebras, the definitions for the terms
center, left ideal, ideal are the same as for rings.

Definition 4.1.7. A homomorphism from the R-algebra A to the R-algebra
B is a homomorphism of rings θ : A → B such that for each r ∈ R and x ∈ A,
θ(rx) = rθ(x). An R-algebra automorphism of A is a homomorphism from A to
A that is one-to-one and onto. The set of all R-algebra automorphisms is a group
and is denoted AutR(A).

Example 4.1.8. Let R be any ring and χ : Z→ R the unique homomorphism
of Example 3.2.5 (5). The reader should verify that the image of χ is in the center
of R, hence R is a Z-algebra.

1.2. Submodules.

Definition 4.1.9. Let R be a ring and M an R-module. A submodule of M
is a nonempty subset N ⊆M such that N is an R-module under the operation by
R on M . If X ⊆M , the submodule of M generated by X is{

n∑
i=1

rixi | n ≥ 1, ri ∈ R, xi ∈ X

}
.

The reader should verify that the submodule generated by X is equal to the inter-
section of the submodules ofM containing X. A submodule is principal, or cyclic, if
it is generated by a single element. The submodule generated by X is denoted (X).
If X = {x1, x2, . . . , xn} is finite, we sometimes write (X) = Rx1+Rx2+ · · ·+Rxn.

Definition 4.1.10. If I is a left ideal of R and M is an R-module, then IM
denotes the R-submodule of M generated by the set {rx | r ∈ I, x ∈ M}. Notice
that a typical element of IM is not a product rx, but a finite sum of the form
r1x1 + · · ·+ rnxn.

Definition 4.1.11. Let R be a ring and M an R-module. If A and B are
R-submodules of M , then A + B denotes the R-submodule generated by the set
A ∪B. For a general sum, see Definition 4.2.4.

Definition 4.1.12. Let R be a ring and M an R-module. We say that M
is finitely generated if there exists a finite subset {x1, . . . , xn} ⊆ M such that
M = Rx1 + · · ·+Rxn.
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1.3. Homomorphisms.

Definition 4.1.13. If M and N are R-modules, a homomorphism from M to
N is a function f :M → N satisfying

(1) f(x+ y) = f(x) + f(y) and
(2) f(rx) = rf(x)

for all x, y ∈ M and r ∈ R. The kernel of the homomorphism f is ker (f) =
{x ∈ M | f(x) = 0}. The image of the homomorphism f is im (f) = {f(x) ∈
N | x ∈ M}. The set of all R-module homomorphisms from M to N is denoted
HomR(M,N). An epimorphism is a homomorphism that is onto. A monomorphism
is a homomorphism that is one-to-one. An isomorphism is a homomorphism f :
M → N that is one-to-one and onto. In this case we say M and N are isomorphic.
An endomorphism of M is a homomorphism from M to M . The set HomR(M,M)
is a ring (see Exercise 4.1.21) which is called the ring of endomorphisms of M .

Proposition 4.1.14. If f : M → N is an R-module homomorphism, then the
following are true:

(1) The kernel of f is a submodule of M .
(2) f is one-to-one if and only if ker (f) = (0).
(3) If A is a submodule of M , then f(A), the image of A under f , is a

submodule of N .
(4) If B is a submodule of N , then f−1(B), the preimage of B under f , is a

submodule of M .

Proof. Let A be a submodule of M and B a submodule of N . Since f
is a homomorphism of additive groups, ker (f) is a subgroup of M,+, f(A) is a
subgroup of N,+, and f−1(B) is a subgroup of M,+, by Exercise 2.3.15. Part (2)
follows from the corresponding result for group homomorphisms, Lemma 2.3.7. Let
x ∈ ker(f) and r ∈ R. Then f(rx) = rf(x) = r0 = 0 by Lemma 4.1.5. This
completes Part (1). If x is an arbitrary element of A, then f(x) represents a typical
element of f(A). Then rf(x) = f(rx) ∈ f(A), which completes Part (3). Let
x ∈ M such that f(x) ∈ B. Then x represents a typical element of f−1(B). Then
f(rx) = rf(x) ∈ B, which completes Part (4). □

Definition 4.1.15. Let R be a ring, M an R-module and S a submodule. The
factor module ofM modulo S is the setM/S = {a+S | a ∈M} of all left cosets of
S in M . We sometimes call M/S the quotient module of M modulo S. We define
addition and scalar multiplication of cosets by the rules

(a+ S) + (b+ S) = (a+ b) + S

r(a+ S) = ra+ S.

The reader should verify that M/S is an R-module. Let η : M → M/S be the
natural map defined by x 7→ x+ S. Then η is a homomorphism, im η =M/S, and
ker η = S.

Definition 4.1.16. The cokernel of a homomorphism f : M → N is defined
to be

coker(f) = N/ im (f)

which is a homomorphic image of N under the natural map.
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Theorems 4.1.17, 4.1.18, and 4.1.19 are the counterparts for modules of Theo-
rems 2.3.11, 2.3.12, and 2.3.13.

Theorem 4.1.17. (Fundamental Theorem on Homomorphisms of Modules) Let
θ :M → N be a homomorphism of R-modules. Let S be a submodule ofM contained
in ker θ. There exists a homomorphism φ :M/S → N satisfying the following.

(a) φ(a+ S) = θ(a), or in other words θ = φη.
(b) φ is the unique homomorphism from M/S → N such that θ = φη.
(c) im θ = imφ.
(d) kerφ = η(ker θ) = ker(θ)/S.
(e) φ is one-to-one if and only if S = ker θ.
(f) φ is onto if and only if θ is onto.
(g) There is a unique homomorphism ϕ :M/S →M/ ker θ such that the diagram

M
θ //

$$
η

��

N

M/ ker θ

;;

M/S

ϕ

OO φ

DD

commutes.

Proof. On the additive groups, this follows straight from the Fundamental
Theorem Group Homomorphisms, Theorem 2.3.11. The rest is left to the reader.

□

Theorem 4.1.18. (The Isomorphism Theorems) Let M be an R-module with
submodules A and B.

(a) The natural map

A

A ∩B
→ A+B

B
sending the coset x+A ∩B to the coset x+B is an isomorphism.

(b) If A ⊆ B, then B/A is a submodule of M/A and the natural map

M/A

B/A
→M/B

sending the coset containing x+A to the coset x+B is an isomorphism.

Proof. This follows from Theorem 4.1.17 and Theorem 2.3.12, its counterpart
for groups. □

Theorem 4.1.19. (The Correspondence Theorem) Let M be an R-module and
A a submodule of M . There is a one-to-one order-preserving correspondence be-
tween the submodules B such that A ⊆ B ⊆ M and the submodules of M/A given
by B 7→ B/A.

Proof. This follows from Proposition 4.1.14 and The Correspondence Theo-
rem for Groups, Theorem 2.3.13. □
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1.4. Exercises.

Exercise 4.1.20. Let R be a ring, I a two-sided ideal of R, and M a left
R-module. Prove:

(1) If I is contained in annihR(M), then M is an R/I-module under the
multiplication rule (r + I)x = rx.

(2) M/IM is an R/I-module under the action (r + I)(x+ IM) = rx+ IM .
(3) An R-submodule of M/IM is an R/I-submodule, and conversely.

Exercise 4.1.21. Let M and N be R-modules, where R is any ring. Extend
Exercise 2.8.11 by proving the following.

(1) With point-wise addition of functions, HomR(M,N) is an abelian group.
(2) HomR(M,M) is a ring where the multiplication operation is composi-

tion of functions. As in Definition 4.1.13, this ring is called the ring of
endomorphisms of M .

Exercise 4.1.22. This exercise is based on Exercise 4.1.21. Let M be an R-
module, where R is any ring. Let S = HomR(M,M) be the ring of R-module
endomorphisms ofM . Show thatM is a left S-module under the action ϕx = ϕ(x),
for all ϕ ∈ S and x ∈M .

Exercise 4.1.23. (Module version of Finitely Generated over Finitely Gener-
ated is Finitely Generated) Let R → S be a homomorphism of rings such that S
is finitely generated as an R-module. If M is a finitely generated S-module, prove
that M is finitely generated as an R-module.

Exercise 4.1.24. Let R be a commutative ring and S a commutative R-
algebra. Prove:

(1) The polynomial ring R[x1, . . . , xn] in n indeterminates over R is a finitely
generated R-algebra.

(2) S is a finitely generated R-algebra if and only if S is the homomorphic
image of R[x1, . . . , xn] for some n.

(3) (Algebra version of Finitely Generated over Finitely Generated is Finitely
Generated) If T is a finitely generated S-algebra and S is a finitely gen-
erated R-algebra, then T is a finitely generated R-algebra.

Exercise 4.1.25. Let A be a commutative ring and R a subring of A. The
conductor from A to R is

R : A = {α ∈ A | αA ⊆ R}.
Prove that R : A is an A-submodule of R, hence it is an ideal of both R and A.

Exercise 4.1.26. Let R be a ring and M a left R-module. Prove that if I and
J are submodules of M , then annihR(I + J) = annihR(I) ∩ annihR(J).

Exercise 4.1.27. Let R be a ring and M a left R-module. If I and J are
submodules of M , then the module quotient is I : J = {r ∈ R | rJ ⊆ I}. Prove:

(1) I : J is a two-sided ideal in R.
(2) I : J = annihR ((I + J)/I) = annihR (J/(I ∩ J)).

Exercise 4.1.28. Let R be any ring and I a left ideal of R. Prove:

(1) annihR(R/I) is a two-sided ideal of R.
(2) annihR(R/I) ⊆ I.
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(3) I is a two-sided ideal of R if and only if annihR(R/I) = I.

Exercise 4.1.29. Let R be a commutative ring, f ∈ R − (0), and R[f−1] the
R-algebra formed by inverting f (Exercise 3.5.7). Show that R[f−1] is a finitely
generated R-algebra.

2. Free Modules and Vector Spaces

2.1. Products and Sums of Modules.

Definition 4.2.1. Let R be a ring and {Mi | i ∈ I} a family of R-modules.
The direct product is ∏

i∈I
Mi =

{
f : I →

⋃
Mi | f(i) ∈Mi

}
.

The product ofR-modules is anR-module, if addition and multiplication are defined
coordinate-wise

(f + g)(i) = f(i) + g(i)

(rf)(i) = rf(i).

For each k ∈ I there is the canonical injection map

ιk :Mk →
∏
i∈I

Mi

which maps x ∈Mk to ιk(x) which is equal to x in coordinate k, and 0 elsewhere.
The reader should verify that ιk is a one-to-one homomorphism of R-modules. The
canonical projection map

πk :
∏
i∈I

Mi →Mk

is defined by the rule πk(f) = f(k) as in Exercise 1.4.10. The reader should verify
that πk is an onto homomorphism of R-modules. We have πkιk = 1Mk

.

Definition 4.2.2. Let R be a ring and {Mi | i ∈ I} a family of R-modules.
The direct sum is⊕
i∈I

Mi =
{
f : I →

⋃
i∈I

Mi | f(i) ∈Mi and f(i) = 0 for all but finitely many i ∈ I
}

which is a submodule of the product. For each k ∈ I the canonical injection map
ιk of Definition 4.2.1 defines a one-to-one homomorphism of R-modules ιk :Mk →⊕

i∈IMi. The reader should verify that all of the maps

Mk
ιk−→
⊕
i∈I

Mi
⊆−→
∏
i∈I

Mi
πk−→Mk

are R-module homomorphisms. The restriction of πk to the direct sum is an onto
homomorphism of R-modules πk :

⊕
i∈IMi → Mk. We have πkιk = 1Mk

. The
direct sum

⊕
i∈IMi is sometimes called the external direct sum to distinguish it

from the internal direct sum of submodules defined in Definition 4.2.4 below.

Definition 4.2.3. If the index set is finite, the product and the direct sum
are equal. If I = {1, 2, . . . , n} then

⊕n
i=1Mi is the usual (external) direct sum

M1 ⊕M2 ⊕ · · · ⊕Mn = {(x1, . . . , xn) | xi ∈Mi}.



146 4. LINEAR ALGEBRA

Definition 4.2.4. Let I be an index set and {Si | i ∈ I} a set of submodules
of the R-module M . The submodule of M generated by the set

⋃
i∈I Si is called

the sum of the submodules and is denoted
∑
i∈I Si. This is a generalization of

Definition 4.1.11. Let
⊕

i∈I Si be the external direct sum of the R-modules {Si |
i ∈ I}. Define ϕ :

⊕
i∈I Si → M by ϕ(f) =

∑
i∈I f(i). This is a well defined

R-module homomorphism since f(i) is nonzero on a finite subset of I. The reader
should verify that the image of ϕ is equal to the sum

∑
i∈I Si. We say that M is

the internal direct sum of the submodules {Si | i ∈ I} in case ϕ is an isomorphism.
In this case we write M =

⊕
i∈I Si.

Lemma 4.2.5. LetM be an R-module and {Si | i ∈ I} a family of R-submodules
of M . The following are equivalent.

(1) M is the internal direct sum of the submodules {Si | i ∈ I}.
(2) For each x ∈ M there is a unique representation of x in the form x =∑

i∈I xi where each xi comes from Si and for all but finitely many i ∈ I
we have xi = 0.

Proof. The proof is left to the reader. □

Proposition 4.2.6. SupposeM is an R-module and S1, . . . , Sn are submodules.
The following are equivalent.

(1) M = S1 ⊕ · · · ⊕ Sn is the internal direct sum of S1, . . . , Sn.

(2) M = S1 + S2 + · · ·+ Sn and for each k, Sk ∩
(∑

j ̸=k Sj

)
= (0).

Proof. This follows from Proposition 2.5.5. □

2.2. Free Modules.

Definition 4.2.7. Let R be any ring. As defined in Definition 4.1.12, an R-
module M is finitely generated if there is a finite subset {x1, . . . , xn} of M such
that M = Rx1 + · · ·+Rxn. Thus, M is finitely generated if and only if M is equal
to the sum of a finite number of cyclic submodules. If M has a finite generating
set, then by the Well Ordering Principle, there exists a generating set with minimal
cardinality. We call such a generating set a minimal generating set . The rank of M ,
written Rank(M), is defined to be the number of elements in a minimal generating
set.

Example 4.2.8. If k is a field and V is a finite dimensional k-vector space, then
we will see in Theorem 4.2.35 below that the rank of V as defined in Definition 4.2.7
is equal to dimk(V ), the dimension of V over k.

Definition 4.2.9. Let R be a ring and I any index set. For i ∈ I, let Ri = R
as R-modules. By Example 4.1.4, R is a left R-module. Denote by RI the R-
module direct sum

⊕
i∈I Ri. If I = {1, 2, . . . , n}, then write R(n) for RI . Let

M be an R-module. We say M is free if M is isomorphic to RI for some index
set I. If X = {x1, . . . , xn} is a finite subset of M , define ϕX : R(n) → M by
ϕX(r1, . . . , rn) = r1x1+ . . . rnxn. The reader should verify that ϕX is an R-module
homomorphism. We say X is a linearly independent set in case ϕX is one-to-one.
An arbitrary subset Y ⊆M is a linearly independent set if every finite subset of Y
is linearly independent. The function δ : I × I → {0, 1} defined by

(2.1) δij =

{
1 if i = j

0 otherwise
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is called the Kronecker delta function. The standard basis for RI is {ei ∈ RI | i ∈ I}
where ei(j) = δij . The reader should verify that the standard basis is a linearly
independent generating set for RI .

Lemma 4.2.10. An R-module M is free if and only if there exists a subset
X = {bi | i ∈ I} ⊆ M which is a linearly independent generating set for M . A
linearly independent generating set is called a basis for M .

Proof. Given a basis {bi | i ∈ I} define ϕ : RI → M by ϕ(f) =
∑
i∈I f(i)bi.

This is well defined since f(i) is nonzero on a finite subset of I. Clearly ϕ is a
homomorphism. Because X generates M and is linearly independent, the map ϕ is
one-to-one and onto. The converse is left to the reader. □

Example 4.2.11. We have already seen examples of free modules.

(1) If R is any ring, then the ring of polynomials R[x] is a free R-module and
the set {1, x, x2, . . . , xi, . . . } is a basis.

(2) If R is a commutative ring, G a group, and R(G) the group ring (see
Example 3.1.6), then R(G) is a free R module with basis {g | g ∈ G}.

Lemma 4.2.12. Let R be a ring and M an R-module.

(1) (Universal Mapping Property) Let F be a free R-module and {bi | i ∈ I} a
basis for F . For any function y : I →M , there exists a unique R-module
homomorphism θ : F → M such that θ(bi) = yi for each i ∈ I and the
diagram

I
y //

b ��

M

F

∃θ

>>

commutes.
(2) There exists a free R-module F and a surjective homomorphism F →M .
(3) M is finitely generated if and only if M is the homomorphic image of a

free R-module R(n) for some n.

Proof. Part (1) is left to the reader.
(2) and (3): Let X be a generating set for M and F the free R-module on X.

Map the basis elements of RX to the generators for M . If M is finitely generated,
X can be taken to be finite. □

Definition 4.2.13. Let R be a ring and {Mi | i = 1, 2, . . . } a sequence of
R-modules. Suppose we have a sequence of R-module homomorphisms

(2.2) M1
ϕ1−→M2

ϕ2−→M3
ϕ3−→ · · · .

Then (2.2) is a complex if for all i ≥ 1, ϕi+1ϕi = 0, or equivalently, if imϕi ⊆
kerϕi+1. We say (2.2) is an exact sequence if for all i ≥ 1, imϕi = kerϕi+1. A
short exact sequence is an exact sequence with exactly five modules and four maps

(2.3) 0→M2
ϕ2−→M3

ϕ3−→M4 → 0

where M1 = 0 =M5 and ϕ1 = 0 = ϕ4. The short exact sequence (2.3) is split-exact
if there exists an R-module homomorphism ψ3 : M4 → M3 such that ϕ3ψ3 = 1.
By Exercise 4.2.20, (2.3) is split-exact if and only if there exists an R-module
homomorphism ψ2 :M3 →M2 such that ψ2ϕ2 = 1.
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Example 4.2.14. Let R be a ring and f : M → N a homomorphism of R-
modules. There is an exact sequence

0→ ker(f)→M
f−→ N → coker(f)→ 0

of R-modules.

Definition 4.2.15. IfM is an R-module and N is an R-submodule ofM , then
N is a direct summand of M if there is a submodule L of M such that M = N ⊕L.

Lemma 4.2.16. Let R be a ring, M an R-module, and N an R-submodule of
M . The following are equivalent.

(1) N is a direct summand of M . That is, M = N ⊕ L for some submodule
L of M .

(2) There exists π ∈ HomR(M,M) such that
(a) π2 = π (that is, π is idempotent),
(b) for each m ∈M , π(m) ∈ N , and
(c) for each x ∈ N , π(x) = x.

(3) The short exact sequence

0→ N →M →M/N → 0

is split exact.
(4) There exists ϕ ∈ HomR(M,N) such that for each x ∈ N , ϕ(x) = x.

Proof. (1) implies (2): There is an R-submodule L such that M = N ⊕ L.
We view elements of M as ordered pairs (x, y) where x ∈ N and y ∈ L. Define
π :M →M by π(x, y) = (x, 0). Then π has the desired properties.

(2) implies (4): Since the image of π is a subset of N , the map π factors through
the set inclusion map N →M . That is, the diagram

M
π //

ϕ   

M

N

⊆

>>

commutes where ϕ(x) = π(x).
(3) is equivalent to (4): This follows from Exercise 4.2.20 and Definition 4.2.13.
(4) implies (1): Let L = kerϕ. Given m ∈ M , set x = ϕ(m). Then x ∈ N .

Also set y = m − x. Then ϕ(y) = ϕ(m) − ϕ(x) = x − x = 0 shows that y ∈ L.
Since m = x + y, this proves M = N + L. Suppose m ∈ N ∩ L. Then m ∈ L
implies ϕ(m) = 0 and m ∈ N implies ϕ(m) = m. Therefore, N ∩ L = (0). By
Proposition 4.2.6, this proves M = N ⊕ L. □

Definition 4.2.17. Let R be a ring and M an R-module. We say that M is
of finite presentation if there exists an exact sequence

R(m) → R(n) →M → 0

for some m and n.
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2.3. Exercises.

Exercise 4.2.18. Suppose S is a ring and R is a subring of S. Let I be an
index set and view the free R-module RI as a subset of the free S-module SI .

(1) Prove that if X ⊆ RI is a generating set for RI , then X ⊆ SI is a
generating set for the S-module SI .

(2) Assume S is commutative, I is finite, and X is a basis for the free R-
module RI . Prove that X is a basis for the free S-module SI .

Exercise 4.2.19. Let R be a ring and

0→ L→M → N → 0

an exact sequence of R-modules. Prove:

(1) If M is finitely generated, then N is finitely generated.
(2) If L and N are both finitely generated, then M is finitely generated.

Exercise 4.2.20. Let R be a ring and

0→ L
f−→M

g−→ N → 0

a short exact sequence of R-modules. Prove that the following are equivalent.

(1) f has a left inverse which is an R-module homomorphism. That is, there
exists ϕ :M → L such that ϕf = 1L.

(2) g has a right inverse which is an R-module homomorphism. That is, there
exists ψ : N →M such that gψ = 1N .

Exercise 4.2.21. Let R be a ring and

0→ L→M → N → 0

a split-exact sequence of R-modules. Prove that M is isomorphic to L ⊕ N as
R-modules.

Exercise 4.2.22. Let m and n be positive integers. Let η : Z/mnZ → Z/mZ
be the natural map. If ι is the set inclusion map, show that the sequence

0→ mZ/mnZ ι−→ Z/mnZ η−→ Z/mZ→ 0

is an exact sequence of Z-modules. Show that it is split-exact if and only if
gcd(m,n) = 1.

Exercise 4.2.23. Let R be a ring and B an R-module. Suppose B = B1 ⊕B2

and let π : B → B2 be the projection. Suppose σ : A → B is one-to-one and
consider the composition homomorphism πσ : A → B2. If A1 = ker(πσ) and
A2 = im(πσ), show that there is a commutative diagram

0 // A1
α //

σ1

��

A
β //

σ

��

A2

σ2

��

// 0

0 // B1
ι // B

π // B2
// 0

satisfying the following.

(1) α, ι, and σ2 are the set inclusion maps.
(2) σ1 is the restriction of σ to A1.
(3) The two horizontal rows are split-exact sequences.
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Exercise 4.2.24. Let R be a ring. Show that the direct sum of short exact
sequences is a short exact sequence. That is, assume J is an index set and that for
each j ∈ J there is an exact sequence

0→ Aj → Bj → Cj → 0

of R-modules. Show that the sequence

0→
⊕
j∈J

Aj →
⊕
j∈J

Bj →
⊕
j∈J

Cj → 0

is exact.

Exercise 4.2.25. Let R be a commutative ring and F a free R-module with
basis {bi}i∈I . Prove that if J is a proper ideal of R and π : F → F/JF is the
natural homomorphism, then F/JF is a free R/J-module with basis {π(bi)}i∈I .

Exercise 4.2.26. Let R be a commutative ring and f ∈ R[x] a monic polyno-
mial of degree n. Show that S = R[x]/(f) is a free R-module of rank n and the set
{1, x, x2, . . . , xn−1} is a free basis.

Exercise 4.2.27. Let R be a ring, and M an R-module with submodules S
and T . If ϕ is the subtraction mapping (x, y) 7→ (x − y) + (S + T ), and ψ is the
diagonal z 7→ (z + S, z + T ), then

0→ S ∩ T →M
ψ−→M/S ⊕M/T

ϕ−→M/(S + T )→ 0

is an exact sequence of R-modules.

Exercise 4.2.28. Let R1 and R2 be rings and R = R1 ⊕R2.

(1) IfM1 andM2 are left R1 and R2-modules respectively, show how to make
M1 ⊕M2 into a left R-module.

(2) If M is a left R-module, show that there are R-submodules M1 and M2

of M such that M =M1 ⊕M2 and for each i, Mi is a left Ri-module.

Exercise 4.2.29. Let R be a ring and M a free R-module. Prove that M is
faithful.

Exercise 4.2.30. Let R be a ring. Let x be an element of R that is not a right
zero divisor in R. Prove that Rx, the left ideal generated by x, is a free R-module.

Exercise 4.2.31. Let R be a ring and

M
α−→ F → 0

an exact sequence of R-modules. If F is a free R-module, show that there exists
an R-module homomorphism ψ : F →M such that αψ = 1F .

Exercise 4.2.32. Let G be a group and H a subgroup. For any commutative
ring R, let θ : R(H) → R(G) be the homomorphism of group rings induced by
the set inclusion man H → G (see Example 3.2.5 (3)). Show that R(G) is a free
R(H)-module.

Exercise 4.2.33. (Universal Mapping Property) Let R be a commutative ring,
G a group, and R(G) the group ring (see Example 3.1.6). Let A be an R-algebra and
h : G→ A∗ a homomorphism from G to the group of units of A. Show that there
is a unique homomorphism of R-algebras ϕ : R(G) → A such that ϕ(rg) = rh(g)
for all r ∈ R and g ∈ G.
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2.4. Vector Spaces. A vector space is a module over a division ring. A
submodule of a vector space is called a subspace. Elements of a vector space are
called a vectors. If D is a division ring and V , W are D-vector spaces, then a
homomorphism ϕ ∈ HomD(V,W ) is called a linear transformation. A generating
set for V as a D-module is called a spanning set.

Theorem 4.2.34. Let D be a division ring and V a nonzero vector space over
D.

(1) Every linearly independent subset of V is contained in a basis for V .
(2) If S ⊆ V is a generating set for V , then S contains a basis for V .
(3) V is a free D-module.

Proof. (3) follows from either (1) or (2).
(1): Let X be a linearly independent subset of V . Let S be the set of all Y ⊆ V

such that Y is linearly independent and X ⊆ Y . The union of any chain in S is
also in S. By Zorn’s Lemma, Proposition 1.3.3, S contains a maximal member, say
B. Assume v ∈ V and v is not in the span of B. Assume there is a dependence
relation ∑

i

βibi + αv = 0

where α, βi ∈ D and bi ∈ B. If α = 0, then each βi = 0. Otherwise, we can solve

v = −α−1
∑
i

βibi.

This contradicts the choice of v, hence B ∪ {v} is a linearly independent set which
contradicts the choice of B as a maximal element of S. This proves that the span
of B is equal to V .

(2): Let X be a generating set for V over D. Let S be the set of all Y ⊆ X
such that Y is linearly independent. The union of any chain in S is also in S. By
Zorn’s Lemma, Proposition 1.3.3, S contains a maximal member, say B. By the
previous argument, we show that every v ∈ X is in the span of B. Therefore B is
a basis for V . □

Theorem 4.2.35. Let V be a finitely generated vector space over the division
ring D and B = {b1, . . . , bn} a basis for V .

(1) If Y = {y1, . . . , ym} is a linearly independent set in V , then m ≤ n. We
can re-order the elements of B such that {y1, . . . , ym, bm+1, . . . , bn} is a
basis for V .

(2) Every basis for V has n elements.

Proof. Step 1: Write y1 = α1b1 + · · ·+ αnbn where each αi ∈ D. For some i,
αi ̸= 0. Re-order the basis elements and assume α1 ̸= 0. Solve for b1 to get b1 =
α−11 y1−

∑n
i=2 α

−1
1 αibi. Therefore B ⊆ Dy1+Db2+· · ·+Dbn, hence {y1, b2, . . . , bn}

is a spanning set for V . Suppose 0 = β1y1 + β2b2 + · · ·+ βnbn. Then

0 = β1 (α1b1 + · · ·+ αnbn) + β2b2 + · · ·+ βnbn

= β1α1b1 + (β1α2 + β2)b2 + · · ·+ (β1αn + βn)bn,

from which it follows that β1α1 = 0, hence β1 = 0. Now 0 = β2b2 + · · · + βnbn
implies 0 = β2 = · · · = βn. We have shown that {y1, b2, . . . , bn} is a basis for V .

Step j: Inductively, assume j ≥ 2 and that {y1, y2, . . . , yj−1, bj , . . . , bn} is a
basis for V . Write yj = α1y1 + · · · + αj−1yj−1 + αjbj + · · · + αnbn where each
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αi ∈ D. Since the set {y1, . . . , yj} is linearly independent, for some i ≥ j, αi ̸= 0.
Re-order the basis elements and assume αj ̸= 0. Solve for bj and by a procedure
similar to that used in Step 1, we see that {y1, . . . , yj , bj+1, . . . , bn} is a basis for V .

By finite induction, Part (1) is proved. For Part (2), assume {c1, . . . , cm} is
another basis for V . By applying Part (1) from both directions, it follows that
m ≤ n and n ≤ m. □

Definition 4.2.36. Suppose D is a division ring and V is a vector space over
D. If V is finitely generated and nonzero, then we define the dimension of V ,
written dimD(V ), to be the number of elements in a basis for V . If V = (0), set
dimD(V ) = 0 and if V is not finitely generated, set dimD(V ) =∞.

Definition 4.2.37. Let R be a commutative ring andM a free R-module with
a finite basis {b1, . . . , bn}. By Exercise 4.2.42, any other basis of M has n elements.
We call n the rank of M and write RankRM = n.

Definition 4.2.38. Let M be an R-module. A dual basis for M is a set
of ordered pairs {(mi, fi) | i ∈ I} over an index set I consisting of mi ∈ M ,
fi ∈ HomR(M,R) and satisfying

(1) For each m ∈M , fi(m) = 0 for all but finitely many i ∈ I, and
(2) for all m ∈M , m =

∑
i∈I fi(m)mi.

Proposition 4.2.39. (Free over Free is Free) Let θ : R → S be a homomor-
phism of rings such that S is free as an R-module. Let M be a free S-module.

(1) Then M is a free R module.
(2) If M has a finite basis over S , and S has a finite basis over R, then M

has a finite basis over R. In this case, if R and S are both commutative,
then RankR(M) = RankS(M)RankR(S).

(3) If R and S are fields, then dimR(S) and dimS(M) are both finite if and
only if dimR(M) is finite.

Proof. Start with a free basis {mi | i ∈ I} for M over S where mi ∈ M .
If we let fi ∈ HomS(M,S) be the coordinate projection onto the submodule Smi

(in Definition 4.2.2 this projection map was called πi), then we have a dual basis
{(mi, fi) | i ∈ I} for M over S. Likewise, there exists a dual basis {(sj , gj) | j ∈ J}
for S over R where {sj | j ∈ J} is a free basis and gj : S → R is the projection
homomorphism onto coordinate j. Consider the set {(sjmi, gjfi) | (i, j) ∈ I × J}.
For each (i, j) ∈ I × J the composition of functions gjfi is in HomR(M,R) and
the product sjmi is in M . For each x ∈ M , gjfi(x) = 0 for all but finitely many
choices of (i, j). For each x ∈M we have∑

(i,j)∈I×J

gj(fi(x))sjmi =
∑
i∈I

(∑
j∈J

gj(fi(x))sj

)
mi

=
∑
i∈I

fi(x)mi

= x.

This shows {(sjmi, gjfi)} is a dual basis for M over R. To show that {sjmi} is a
free basis, assume there is a finite dependence relation

0 =
∑

(i,j)∈I×J

αi,jsjmi =
∑
i∈I

∑
j∈J

αi,jsj

mi.
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Because {mi | i ∈ I} is a free basis, for each i we have
∑
j αi,jsj = 0. Because

{sj | j ∈ J} is a free basis, each αi,j is zero. The rest of the proof is left to the
reader. □

2.5. Exercises.

Exercise 4.2.40. Let V be a vector space over a division ring D and v a
nonzero vector in V . Show that {v} is a linearly independent set. Equivalently,
show that if α ∈ D and αv = 0, then α = 0.

Exercise 4.2.41. Let D be a division ring, V a nonzero vector space over D,
and B ⊆ V . Prove that the following are equivalent.

(1) B is a basis for V . That is, B is a linearly independent spanning set for
V .

(2) B is a spanning set for V and no proper subset of B is a spanning set for
V .

Exercise 4.2.42. Let R be a commutative ring and F a finitely generated free
R-module. Show that any two bases for F have the same number of elements.
(Hint: Let m be a maximal ideal and consider F/mF as a vector space over R/m.)

Exercise 4.2.43. Suppose D is a division ring, V is a finite dimensional vector
space over D, and W is a subspace of V . Prove:

(1) W is finite dimensional and dimD(W ) ≤ dimD(V ).
(2) There is a subspace U of V such that V = U ⊕W is an internal direct

sum and dimD(V ) = dimD(U) + dimD(W ).
(3) dimD(V/W ) = dimD(V )− dimD(W ).

Exercise 4.2.44. Suppose ϕ ∈ HomD(V,W ), where V andW are vector spaces
over the division ring D. Prove:

(1) If V is finite dimensional, then the kernel of ϕ is finite dimensional and
the image of ϕ is finite dimensional.

(2) If the kernel of ϕ is finite dimensional and the image of ϕ is finite dimen-
sional, then V is finite dimensional.

Exercise 4.2.45. (The Rank-Nullity Theorem) Suppose ϕ ∈ HomD(V,W ),
where V and W are vector spaces over the division ring D. The rank of ϕ, written
Rank (ϕ), is defined to be the dimension of the image of ϕ. The nullity of ϕ, written
Nullity (ϕ), is defined to be the dimension of the kernel of ϕ. Prove that if V is
finite dimensional, then dimD(V ) = Rank(ϕ) + Nullity(ϕ).

Exercise 4.2.46. Suppose ϕ ∈ HomD(V, V ), where V is a finite dimensional
vector space over the division ring D. Prove that the following are equivalent.

(1) ϕ is invertible.
(2) Nullity(ϕ) = 0.
(3) Rank(ϕ) = dimD(V ).

Exercise 4.2.47. Let V be a finite dimensional vector space over a division
ring D. Let ϕ, ψ be elements of HomD(V,W ). Prove:

(1) Rank(ϕψ) ≤ Rank(ϕ).
(2) Rank(ϕψ) ≤ Rank(ψ).
(3) Rank(ϕψ) ≤ min(Rank(ϕ),Rank(ψ)).
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(4) If ϕ is invertible, Rank(ϕψ) = Rank(ψϕ) = Rank(ψ).

Exercise 4.2.48. Let D be a division ring and V and W finitely generated
vector spaces over D. Suppose U is a subspace of V and ϕ : U →W an element of
HomD(U,W ). Show that there exists an element ϕ̄ of HomD(V,W ) such that the
diagram

U

⊆ ��

ϕ // W

V
ϕ̄

>>

commutes. That is, ϕ̄ is an extension of ϕ.

Exercise 4.2.49. Let D be a division ring and V a vector space over D. Let
A and B be finite dimensional subspaces of V . Prove:

(1) A+B is finite dimensional.
(2) dimD(A + B) = dimD(A) + dimD(B) − dimD(A ∩ B). (Hint: Apply

Exercise 4.2.43 and Theorem 4.1.18 (1).)

3. Finitely Generated Modules over a Principal Ideal Domain

Throughout this section, R is a principal ideal domain, or PID for short. A
commutative ring R is called a semilocal ring if R has only a finite number of
maximal ideals. A local ring has only one maximal ideal, hence is a semilocal ring.

Proposition 4.3.1. Let R be a PID.

(1) Every nonzero ideal of R is a free R-module of rank 1.
(2) Let π be an irreducible element of R, e > 0 and A = R/(πe). The following

are true.
(a) A is a principal ideal ring which is a field if and only if e = 1.
(b) A is a local ring, the unique maximal ideal is generated by π.
(c) A has exactly e+ 1 ideals, namely

(0) ⊆ (πe−1) ⊆ · · · ⊆ (π2) ⊆ (π) ⊆ A
(3) Let π1, . . . , πn be irreducible elements of R that are pairwise nonassociates.

Let e1, . . . , en be positive integers. If x = πe11 π
e2
2 · · ·πenn , then the following

are true.
(a) A = R/(x) is a semilocal ring with exactly n maximal ideals.
(b) A = R/(x) is isomorphic to the direct sum of the local rings

⊕
iR/(π

ei
i ).

Proof. Is left to the reader. □

Let F be a free module over R with a finite basis. By Exercise 4.2.42, every
basis of F over R has the same number of elements, namely RankR(F ).

Theorem 4.3.2. Let R be a PID and let F be a free R-module with a finite basis.
If M is a submodule of F , then M is a free R-module and RankR(M) ≤ RankR(F ).

Proof. Let {x1, . . . , xn} be a basis for F over R. Let Rx1 be the submodule
of F spanned by x1. The assignment 1 7→ x1 defines an isomorphism of R-modules
θ : R→ Rx1. If M1 =M ∩Rx1, then M1 is an R-submodule of the free R-module
Rx1. Then M1 is equal to the image under θ of an ideal I = Ra for some a ∈ R.
In other words, M1 = Rax1. If a = 0, then M1 = 0. Otherwise, there is an
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isomorphism R ∼= M1 given by the assignment 1 7→ ax1. For each j in the range
1 ≤ j ≤ n define Mj = M ∩ (Rx1 + · · ·+Rxj). The proof is by induction on n.
If n = 1, we are done. Assume j ≥ 1 and that Mj is a free R-module on j or
fewer generators. We now prove that Mj+1 = M ∩ (Rx1 + · · ·+Rxj+1) is free of
rank j + 1 or less. Let ψ : Rx1 + · · ·+Rxj+1 → Rxj+1 be the projection onto the
last summand. The image of Mj+1 under ψ is a submodule of the free R-module
Rxj+1. Therefore, ψ (Mj+1) = Raxj+1 for some a ∈ R. If a ̸= 0, then Raxj+1 is
free of rank 1. The exact sequence

Mj+1
ψ−→ Raxj+1 → 0

splits and the kernel is Mj+1 ∩ (Rx1 + · · ·+Rxj) =Mj . □

Corollary 4.3.3. Let R be a PID and M a finitely generated R-module. Then

(1) M is of finite presentation, and
(2) every submodule of M is finitely generated.

Proof. By Lemma 4.2.12, there is is a surjection ψ : R(n) → M . By Theo-
rem 4.3.2, the kernel of ψ is free of rank m ≤ n, so there is an exact sequence

0→ R(m) → R(n) ψ−→M → 0

which shows M is of finite presentation. If N is a submodule of M , then ψ−1(N)
is a submodule of R(n), which is free of rank n or less. This shows N is the
homomorphic image of a finitely generated R-module. □

Definition 4.3.4. Let R be an integral domain andM an R-module. If x ∈M ,
then we say x is a torsion element ofM in case the annihilator of x in R is nonzero.
So x is torsion if there exists a nonzero r ∈ R such that rx = 0. If every element
of M is torsion, then we say M is torsion. Since R is an integral domain, the set
of all torsion elements in M is a submodule of M , denoted Mt. If Mt = 0, then we
say M is torsion free.

Proposition 4.3.5. Let R be a PID and M a finitely generated R-module. The
following are equivalent.

(1) M is torsion free.
(2) M is free.

Proof. (2) implies (1): Is left to the reader.
(1) implies (2): Assume M = Ry1 + · · ·+ Ryn. Let {v1, . . . , vm} be a linearly

independent subset of {y1, . . . , yn} such thatm is maximal. If N = Rv1+· · ·+Rvm,
then N is a free R-module. By the choice of {v1, . . . , vm}, for each j = 1, . . . , n,
there is a nontrivial dependence relation

cjyj =

m∑
i=1

aijvi

such that cj , a1j , . . . , amj are in R and cj ̸= 0. Since R is a domain, if c = c1c2 · · · cn,
then c ̸= 0. For each j, c factors into c = cjdj . Consider the submodule cM =
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{cx | x ∈M} of M . A typical element of cM = c(Ry1 + · · ·+Ryn) looks like

cx = c

n∑
j=1

rjyj

=

n∑
j=1

rjcyj

=

n∑
j=1

rjdjcjyj

=

n∑
j=1

(
rjdj

m∑
i=1

aijyj

)
which is in N . Since N is free of rank m, Theorem 4.3.2 says that cM is free of
rank no more than m. Because c is nonzero and M is torsion free, the assignment
x 7→ cx defines an isomorphism M → cM . □

In Example 6.2.6 we prove that a finitely generated projective module over a
principal ideal domain is free.

Corollary 4.3.6. Let R be a PID and M a finitely generated R-module. Let
Mt denote the submodule consisting of all torsion elements of M . Then there
is a finitely generated free submodule F such that M is the internal direct sum
M = F ⊕Mt. The rank of F is uniquely determined by M .

Proof. The reader should verify that M/Mt is torsion free. By Proposi-
tion 4.3.5, M/Mt is free. By Exercise 4.2.31, the sequence

0→Mt →M →M/Mt → 0

is split-exact. Let ψ : M/Mt → F be a splitting map to the natural map M →
M/Mt. Set F = imψ. By Exercise 4.2.21,M is the internal direct sumM = F⊕Mt.
The rank of F is equal to the rank ofM/Mt, which is uniquely determined byM . □

Let M be an R-module and x ∈ M . The cyclic submodule generated by x is
Rx. Denote by Ix the annihilator of Rx in R. That is,

Ix = annihR(x) = {r ∈ R | rx = 0}
which is an ideal in R, hence is principal. So Ix = Ra and up to associates in R, a
is uniquely determined by x. We call a the order of x. The sequence of R-modules

0→ Ix → R→ Rx→ 0

is exact, so Rx ∼= R/(Ix) ∼= R/Ra.
The left regular representation of R in HomR(M,M) maps r ∈ R to ℓr :M →

M , where ℓr is “left multiplication by r” (see Example 4.4.2). Let π be a prime
element in R and n a positive integer. The kernel of ℓπn is contained in the kernel
of ℓπn+1 . Therefore the union

M(π) =
⋃
n>0

ker (ℓπn)

= {x ∈M | ∃n > 0 : πnx = 0}
is a submodule of M .
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Lemma 4.3.7. Assume R is a PID, π is a prime in R, and M is an R-module.

(1) If (π, q) = 1, then ℓq :M(π)→M(π) is one-to-one.
(2) If M ∼= R/(πeR) is a cyclic R-module of order πe, where e ≥ 1, then

(a) πM is cyclic of order πe−1, and
(b) M/πM is a vector space of dimension one over the field R/πR.

Proof. (1): Suppose x ∈ ker(ℓq) and πnx = 0. Then (πn, q) = 1, so there
exist a, b ∈ R such that 1 = qa+ πnb. Therefore, x = aqx+ bπnx = 0.

(2): Is left to the reader. □

Theorem 4.3.8. Let R be a PID and M a torsion R-module. Then M is the
internal direct sum of the submodules M(π)

M =
⊕
π

M(π)

where the sum is over all primes π in R. If M is finitely generated, then there
exists a finite set π1, . . . , πn of primes in R such that M =M(π1)⊕ · · · ⊕M(πn).

Proof. Let x ∈ M and let a be the order of x. Since M is torsion, a ̸= 0.
Since R is a UFD, we factor a into primes, a = πe11 · · ·πenn where each ei > 0. For
each πi, let qi = a/πeii . Then Rq1 + · · · + Rqn = 1. There exist s1, . . . sn ∈ R
such that 1 = s1q1 + · · · + snqn. This means x = s1q1x + · · · + snqnx. Note that
πeii qix = ax = 0 so qix ∈ M(πi). This proves x ∈ M(π1) + · · · +M(πn) and that
M is spanned by the submodules M(πi). If M is finitely generated, then clearly
only a finite number of primes are necessary in the sum.

To show that the sum is direct, assume π is a prime in R and

x ∈M(π)
⋂(∑

q ̸=π

M(q)
)

where the second summation is over all primes different from π. In the sum, only
finitely many summands are nonzero. Assume q1, . . . , qn are primes different from
π and that x is inM(π)∩ (M(q1) + · · ·+M(qn)). Because x is in the sumM(q1)+
· · ·+M(qn), for some large integerm, if s = (q1 · · · qn)m, then sx = 0. But (s, π) = 1
and Lemma 4.3.7 says ℓs :M(π)→M(π) is one-to-one. This implies x = 0. □

Lemma 4.3.9. Let R be a PID and M a torsion R-module such that the an-
nihilator of M in R is Rπn, where π is a prime and n > 0. Then there exists an
element a ∈M of order πn such that the cyclic submodule Ra is a direct summand
of M .

Proof. There exists a ∈ M such that πna = 0 and πn−1a ̸= 0. If Ra = M ,
then we are done. Otherwise continue.

Step 1: There exists b ∈ M such that πb = 0, b ̸= 0 and Ra ∩ Rb = 0. Start
with any element c inM−Ra. Pick the least positive integer j such that πjc ∈ Ra.
Then 1 ≤ j ≤ n. Let πjc = r1a. Since R is factorial, write r1 = rπk and assume
(r, π) = 1. Now 0 = πnc = πn−jπjc = rπn−jπka. By Lemma 4.3.7, πn−j+ka = 0.
Since the order of a is πn, this implies 0 ≤ −j + k, so we have 1 ≤ j ≤ k. Set
b = πj−1c − rπk−1a. Since πj−1c ̸∈ Ra but rπk−1a ∈ Ra we know b ̸= 0. Also,
πb = πjc − rπka = 0. Now check that Ra ∩ Rb = 0. Assume otherwise. Then
for some s ∈ R we have sb ∈ Ra and sb ̸= 0. Since the order of b is π, this
implies (s, πn) = 1. For some x, y ∈ R we can write xs + yπn = 1. In this case
b = xsb+ yπnb = xsb ∈ Ra which is a contradiction.
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Step 2: Ra is a direct summand of M . Let S be the set of all submodules S
of M such that S ∩ Ra = 0. By Step 1, S is nonempty. Order S by set inclusion.
Zorn’s Lemma, Proposition 1.3.3, says there is a maximal member, C. To complete
the proof, it suffices to show C + Ra = M , which is equivalent to showing M/C
is generated by a + C. For contradiction’s sake, assume M ̸= C + Ra. Since
C ∩Ra = 0, the order of a+C in M/C is πn. By Step 1, there exists b+C ∈M/C
such that b + C ̸= C, πb + C = C, and (Ra + C) ∩ (Rb + C) = C. It suffices to
show that Rb+C is in S. Suppose x ∈ (Rb+C)∩Ra. We can write x in two ways,
x = rb + c ∈ Rb + C, and x = sa ∈ Ra. Hence rb ≡ sa (mod C). The choice of b
implies π | r. Then x = (r/π)πb+ c is an element of C. So x ∈ C ∩Ra = 0, which
says x = 0. This says Rb+ C is in S, which contradicts the choice of C. □

3.1. Exercises.

Exercise 4.3.10. Let R be a PID, π a prime in R, and e ≥ 1 an integer. This
exercise describes the group of units in the principal ideal ring R/(πe) in terms
of the additive and multiplicative groups of the field R/(π). To simplify notation,
write (·)∗ for the group of units in a ring. Let I = (π)/(πe) be the maximal ideal
of R/(πe). Starting with the descending chain of ideals

R/(πe) = I0 ⊇ I1 ⊇ · · · ⊇ Ie−1 ⊇ Ie = (0),

for i = 1, . . . , e, define Ui to be the coset 1 + Ii. Write U0 for the group of units
(R/(πe))

∗
. Prove

(R/(πe))
∗
= U0 ⊇ U1 ⊇ · · · ⊇ Ue−1 ⊇ Ue = (1)

is a series of subgroups satisfying these properties: U0/U1 is isomorphic to the
multiplicative group (R/(π))

∗
, and for i = 1, . . . , e − 1, Ui/Ui+1 is isomorphic to

the additive group R/(π). To prove this, follow this outline.

(1) To show the Ui form a series of subgroups and U0/U1 is isomorphic to
(R/(π))

∗
, use Exercise 3.2.29 to prove that

1→ Ui → (R/(πe))
∗ →

(
R/(πi)

)∗ → 1

is an exact sequence, for i = 1, . . . , e.
(2) Assume e ≥ 2. Show that R/(π) ∼= Ue−1 by the assignment which sends

x to the coset represented by 1 + xπe−1. This can be proved directly. By
induction on e, conclude that R/(π) ∼= 1 + (πi−1)/(πi), for all i ≥ 2.

(3) Prove that Ui−1/Ui ∼= 1 + (πi−1)/(πi), for all i ≥ 2. This can be proved
directly, or by applying the Snake Lemma (Theorem 6.6.2) to the com-
mutative diagram:

1 // Ui //

��

(R/(πe))
∗ //

��

(
R/(πi)

)∗ //

��

1

1 // Ui−1 // (R/(πe))∗ //
(
R/(πi−1)

)∗ // 1

Exercise 4.3.11. Let k be a field and n ≥ 1. Show that there is a series of
subgroups

Units(k[x]/(xn)) = U0 ⊇ U1 ⊇ · · · ⊇ Un−1 ⊇ Un = (1),

where U0/U1 = Units(k), and for each i = 1, . . . , n− 1, the factor group Ui/Ui+1 is
isomorphic to the additive group of k.
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Exercise 4.3.12. (The abelian group Q/Z) This exercise is a continuation of
Exercise 2.3.21. Under addition, Z is a subgroup of Q. By the Division Algorithm
(Proposition 1.2.3), every nonzero coset in the quotient group Q/Z has a unique
representative of the form n/d where gcd(n, d) = 1, 0 < n < d. For any integer
r ≥ 1, let ℓr : Q/Z→ Q/Z be the left multiplication by r map. Prove the following.

(1) Show that ℓr is onto. We say Q/Z is a divisible abelian group (see Defi-
nition 6.7.5).

(2) Q/Z is a torsion Z-module.
(3) The kernel of ℓr is a cyclic group of order r.
(4) If H is a finite subgroup of Q/Z, then H is cyclic. (Hint: Exercise 2.8.10.)
(5) If H is a finite subgroup of Q/Z, then (Q/Z)/H is isomorphic to Q/Z.

Exercise 4.3.13. (The p-torsion subgroup of Q/Z) Let p be a prime number.
As in Section 4.3, let

Q/Z(p) =
⋃
n>0

ker(ℓpn)

be the subgroup of Q/Z consisting of all elements annihilated by some power of p.
Some authors denote the group Q/Z(p) by Z(p∞). Prove the following.

(1) Every proper subgroup of Q/Z(p) is a finite cyclic group.
(2) Q/Z(p) is a divisible group (see Exercise 4.3.12 (1)).
(3) Q/Z is equal to the internal direct sum

⊕
p∈P Q/Z(p), where P is the set

of all prime numbers.
(4) If H is a proper subgroup of Q/Z(p), then the quotient Q/Z(p)/H is

isomorphic to Q/Z(p).

3.2. The Basis Theorems.

Theorem 4.3.14. (Basis Theorem – Elementary Divisor Form) Let R be a
PID and M a finitely generated R-module. In the notation established above, the
following are true.

(1) M = F ⊕Mt, where F is a free submodule of finite rank. The rank of F
is uniquely determined by M .

(2) Mt =
⊕

πM(π) where π runs through a finite set of primes in R.
(3) For each prime π such that M(π) ̸= 0, there exists a basis {a1, . . . , am}

such that M(π) = Ra1 ⊕ Ra2 ⊕ · · · ⊕ Ram where the order of ai is equal
to πei and e1 ≥ e2 ≥ · · · ≥ em.

(4) Mt is uniquely determined by the primes π that occur in (2) and the
integers ei that occur in (3).

The prime powers πei that occur are called the elementary divisors of M .

Proof. (1): is Corollary 4.3.6.
(2): is Theorem 4.3.8.
(3): Since M(π) is a direct summand of M , it follows from Corollary 4.3.3

that M(π) is finitely generated. Let x1, . . . , xn be a generating set. Let k be the
maximum integer in the set {ki | xi has order πki}. Then πkM(π) = 0. There
exists e1 > 0 such that πe1M(π) = 0 and πe1−1M(π) ̸= 0. By Lemma 4.3.9, there
exists a1 ∈ M(π) such that a1 has order πe1 and M = Ra1 ⊕ C1. If C1 ̸= 0, then
we can apply Lemma 4.3.9 and find a2 ∈ C1 such that a2 has order πe2 , where
e1 ≥ e2 ≥ 1 and C1 = Ra2 ⊕ C2. Notice that R/πR is a field, and

M(π)/πM(π) = (Ra1)/(πRa1)⊕ (Ra2)/(πRa2)⊕ C2/πC2.
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is a finite dimensional vector space. Since (Rai)/(πRai) is a vector space of di-
mension one, the number of times we can apply Lemma 4.3.9 is bounded by the
dimension of the vector space M/πM . After a finite number of iterations we arrive
at (3).

(4): Fix a prime π in R such that M(π) is nonzero. In the proof of Step (3) we
saw that the integer m is uniquely determined since it is equal to the dimension of
the vector spaceM/πM over the field R/πR. Suppose there are two decompositions
of M(π) into direct sums of cyclic submodules

M(π) = Ra1 ⊕Ra2 ⊕ · · · ⊕Ram = Rb1 ⊕Rb2 ⊕ · · · ⊕Rbm,

where the order of ai is equal to π
ei where e1 ≥ e2 ≥ · · · ≥ em, and the order of bi

is equal to πfi , where f1 ≥ f2 ≥ · · · ≥ fm. We must show that ei = fi for each i.
Consider the submodule

πM(π) = πRa1 ⊕ πRa2 ⊕ · · · ⊕ πRam = πRb1 ⊕ πRb2 ⊕ · · · ⊕ πRbm.

By Lemma 4.3.7, the order of the cyclic module πRai is π
ei−1. If e1 = 1, then

πM(π) = 0 which implies f1 = 1. The proof follows by induction on e1. □

Theorem 4.3.15. (Basis Theorem – Invariant Factor Form) Let R be a PID
and M a finitely generated R-module. The following are true.

(1) M = F ⊕Mt, where F is a free submodule of finite rank. The rank of F
is uniquely determined by M .

(2) There exist r1, . . . , rℓ ∈ R such that r1 | r2 | r3 | · · · | rℓ and

Mt
∼= R/(r1R)⊕ · · · ⊕R/(rℓR).

The integer ℓ is uniquely determined by M . Up to associates in R, the
elements ri are uniquely determined by M .

The elements r1, . . . , rℓ are called the invariant factors of M .

Proof. By Theorem 4.3.14, there is a finite set of primes {πi | 1 ≤ i ≤ k} and
a finite set of nonnegative integers {eij | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} such that

Mt
∼=

k⊕
i=1

ℓ⊕
j=1

R/(π
eij
i R).

For each i we assume ei1 ≥ ei2 ≥ · · · ≥ eiℓ ≥ 0. Also assume for at least one of the
primes πi that eiℓ ≥ 1. For each j such that 1 ≤ j ≤ ℓ, set r′j =

∏k
i=1 π

eij
i . Then

r′ℓ | · · · | r′2 | r′1. Reverse the order by setting r1 = r′ℓ, r2 = r′ℓ−1, . . . , rℓ = r′1. By
Proposition 4.3.1 (3),

R/(r′j)
∼=

k⊕
i=1

R/(π
eij
i R)

from which it follows thatMt
∼= R/(r1R)⊕· · ·⊕R/(rℓR). This proves the existence

claim of Part (2).
For the uniqueness claim, suppose we are given the elements r1, . . . , rℓ in R.

By unique factorization in R, rℓ = πe1ℓ1 · · ·π
ekℓ

k . Likewise, factor each of the other
ri. By stepping through the existence proof backwards, we get

Mt
∼=

k⊕
i=1

ℓ⊕
j=1

R/(π
eij
i R).
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The uniqueness of the primes and the exponents follows from Theorem 4.3.14. This
gives the uniqueness of the ri. □

4. Matrix Theory

4.1. The Endomorphism Ring of a Module.

Example 4.4.1. LetR be any ring. LetM andN beR-modules. By HomR(M,N)
we denote the set of all R-module homomorphisms from M to N . We recall two
results from Exercise 4.1.21. First, point-wise addition of functions

(ϕ+ ψ)(x) = ϕ(x) + ψ(x)

is a binary operation that turns HomR(M,N) into an additive abelian group. Sec-
ondly, if M = N , then composition of functions

(ϕψ)(x) = ϕ(ψ(x))

is a multiplication operation that turns HomR(M,M) into a ring, which is called the
ring of endomorphisms ofM . If R is commutative, then HomR(M,N) can be turned
into a left R-module by defining (rf)(x) = rf(x). If R is noncommutative, then
HomR(M,N) cannot be turned into an R-module per se. Four such possibilities
are given in Lemma 6.5.1.

Example 4.4.2. Let R be a commutative ring and M an R-module. If r ∈ R,
then “left multiplication by r” is ℓr :M →M , where ℓr(x) = rx. By Lemma 4.1.2,
the mapping r 7→ ℓr defines a homomorphism of rings λ : R → HomR(M,M),
which we call the left regular representation of R in HomR(M,M). The kernel of
λ is the annihilator of M in R, denoted annihR(M) (Definition 4.1.3). We say R
acts as a ring of endomorphisms of M . The homomorphism λ turns HomR(M,M)
into an R-algebra. The proofs are left to the reader.

Example 4.4.3. Let R be a commutative ring and A an R-algebra. Then A
acts on itself as a ring of R-module homomorphisms. That is, if a ∈ A, then “left
multiplication by a” is ℓa : A→ A, where ℓa(x) = ax. The mapping a 7→ ℓa defines
an R-algebra homomorphism θ : A → HomR(A,A) which is called the left regular
representation of A in HomR(A,A). Because ℓα(1) = α, the map θ is one-to-one.
The proofs are left to the reader.

Example 4.4.4. Let R be a commutative ring and A an R-algebra. Let M be
a left A-module. By virtue of the structure homomorphism θ : R → A, we view
M as a left R-module. Then A acts as a ring of R-module homomorphisms of M .
That is, if a ∈ A, then “left multiplication by a” is ℓa :M →M , where ℓa(x) = ax.
The mapping a 7→ ℓa defines an R-algebra homomorphism φ : A → HomR(M,M)
which is called the left regular representation of A in HomR(M,M). The kernel
of φ is annihA(M), the annihilator of M in A, which is a two-sided ideal of A
(Definition 4.1.3). Every ring is a Z-algebra (Example 4.1.8). By Exercise 4.4.33,
the natural map Z → A induces a monomorphism of rings σ : HomR(M,M) →
HomZ(M,M) such that the diagram

R //

%%

A
φ //

��

HomR(M,M)

σ
vv

HomZ(M,M)
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commutes. By Lemma 4.1.2, the homomorphism σ makes M into a module over
the ring HomR(M,M). The proofs are left to the reader.

Example 4.4.5. Let R be a commutative ring and A an R-algebra. Let M
be a left A-module. By virtue of the structure homomorphism θ : R → A, we
view M as a left R-module. By Exercise 4.4.33, θ induces a monomorphism of
rings HomA(M,M) → HomR(M,M). In particular, any ring A is a Z-algebra
in a unique way (Example 4.1.8), hence HomA(M,M) embeds as a subring of
HomZ(M,M) (see Example 3.1.7).

4.2. The Matrix of a Linear Transformation.

Definition 4.4.6. LetR be any ring andm,n positive integers. ByMnm(R) we
denote the set of all n-by-mmatrices over R. Ifm = n, then we simply writeMn(R)
instead of Mnn(R). Addition of matrices is coordinate-wise (αij) + (βij) = (αij +
βij). We can multiply by elements of R from the left r(αij) = (rαij), or from the
right (αij)r = (αijr). Therefore, in the terminology of Definition 6.4.8,Mnm(R) is a
left R right R bimodule. If (αij) ∈Mnm(R) and (βjk) ∈Mmp(R), then the matrix
product is defined by (αij)(βjk) = (γik) ∈ Mnp(R), where γik =

∑m
j=1 αijβjk.

When the products are defined, multiplication of matrices is associative. The reader
should verify that the general case can be proved from the following special case.
Assume α = (αi) ∈M1m(R), β = (βij) ∈Mmn(R), and γ = (γj) ∈Mn1(R). Then

(αβ)γ =

n∑
j=1

(
m∑
i=1

αiβij

)
γj

is equal to

α(βγ) =

m∑
i=1

αi n∑
j=1

βijγj

 .

The reader should verify that multiplication of matrices distributes over addition
from both the left and right.

Definition 4.4.7. Let eij be the matrix with 1 in position (i, j) and 0 else-
where. The matrix eij is called an elementary matrix.

Lemma 4.4.8. For any ring R, the set Mnm(R) of n-by-m matrices over R is
a free R-module. The set {eij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} of elementary matrices is a
free basis with nm elements.

Proof. The proof is left to the reader. □

Definition 4.4.9. Let R be any ring, M a free left R-module of rank m and
N a free left R-module of rank n. Let X = {x1, . . . , xm} be a basis for M and
Y = {y1, . . . , yn} a basis for N . Given ϕ ∈ HomR(M,N), ϕ maps xj ∈ X to a
linear combination of Y . That is,

ϕ(xj) =

n∑
i=1

ϕijyi

where the elements ϕij are in R. The matrix of ϕ with respect to the bases X and
Y is defined to be M(ϕ,X, Y ) = (ϕij), which is a matrix in Mnm(R).
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Proposition 4.4.10. Let R be any ring. If M is a free R-module of rank
m, and N is a free R-module of rank n, then there is a Z-module isomorphism
HomR(M,N) ∼= Mnm(R). If R is a commutative ring, then this is an R-module
isomorphism and HomR(M,N) is a free R-module of rank mn.

Proof. Let X = {x1, . . . , xm} be a basis for M and Y = {y1, . . . , yn} a basis
for N . The assignment ϕ 7→M(ϕ,X, Y ) defines a Z-module homomorphism

M(·, X, Y ) : HomR(M,N)→Mnm(R).

Conversely, assume (αij) ∈ Mnm(R). Applying Lemma 4.2.12 (1), we define α in
HomR(M,N) by

α(xj) =

n∑
i=1

αijyi.

The rest is left to the reader. □

Proposition 4.4.11. Let R be any ring. Let M , N , and P denote free R-
modules, each of finite rank. Let X, Y and Z be bases forM , N , and P respectively.
Let ϕ ∈ HomR(M,N) and ψ ∈ HomR(N,P ). If the matrices M(ψ, Y, Z) and
M(ϕ,X, Y ) are treated as having entries from the ring Ro, the opposite ring of R,
then

M(ψϕ,X,Z) =M(ψ, Y, Z)M(ϕ,X, Y ).

Proof. The opposite ring Ro is defined as in Definition 3.1.8. Let X =
{x1, . . . , xm}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zp}. Let M(ϕ,X, Y ) = (ϕij),
M(ψ, Y, Z) = (ψij). It follows from

ψϕ(xj) = ψ

(
n∑
i=1

ϕijyi

)
=

n∑
i=1

ϕij

p∑
k=1

ψkizk =

p∑
k=1

(
n∑
i=1

ϕijψki

)
zk

that M(ψϕ,X,Z) = (γkj), where γkj =
∑n
i=1 ϕijψki. Computing the product of

the two matrices over Ro, we get M(ψ, Y, Z)M(ϕ,X, Y ) = (τkj), where

τkj =

n∑
i=1

ψki ∗ ϕij =
n∑
i=1

ϕijψki.

□

Corollary 4.4.12. Let R be any ring. With the binary operations defined in
Definition 4.4.6, Mn(R) is a ring with identity element In = e11 + · · ·+ enn. The
set R · In of all scalar matrices in Mn(R) is a subring which is isomorphic to R.
The center of the ring Mn(R) is equal to the center of the subring R · In. If R is
commutative, Mn(R) is an R-algebra and the center of Mn(R) is equal to R · In.

Proof. Use Proposition 4.4.11 to show that matrix multiplication is associa-
tive. The rest is left to the reader. □

Proposition 4.4.13. Let R be any ring. IfM is a free R-module of rank n, then
there is an isomorphism of rings HomR(M,M) ∼= Mn(R

o). If R is commutative,
this is an isomorphism of R-algebras.

Proof. Pick a basis for M . The map of Proposition 4.4.10 defines an isomor-
phism of abelian groups. It is multiplicative by Proposition 4.4.11. □
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Definition 4.4.14. Let R be a commutative ring and n ≥ 1. If A,B are
matrices in Mn(R) and P is an invertible matrix in Mn(R) such that A = P−1BP ,
then we say A and B are similar. The reader should verify that this defines an
equivalence relation on Mn(R).

Proposition 4.4.15. Let R be a commutative ring and M a free R-module
of rank n. Let X and Y be two bases for M . If ϕ ∈ HomR(M,M), then the
matrix M(ϕ,X,X) of ϕ with respect to X and the matrix M(ϕ, Y, Y ) of ϕ with
respect to Y are similar. In fact, if 1 ∈ HomR(M,M) is the identity map, then
M(1, X, Y )−1 =M(1, Y,X) and M(ϕ,X,X) =M(1, Y,X)M(ϕ, Y, Y )M(1, X, Y ).

Proof. Let I ∈ Mn(R) be the identity matrix. It follows from Proposi-
tion 4.4.11 that I = M(1, X,X) = M(1, Y, Y ), M(1, X, Y )M(1, Y,X) = I, and
M(1, Y,X)M(1, X, Y ) = I. Additionally, M(ϕ,X, Y ) = M(1, X, Y )M(ϕ,X,X) =
M(ϕ, Y, Y )M(1, X, Y ). □

Example 4.4.16. Let R be a commutative ring and A ∈ Mnm(R). Ele-
ments of Rm can be viewed as m-by-1 column matrices in Mm1. As in Proposi-
tion 4.4.10, multiplication by A from the left defines an R-module homomorphism
ℓA in HomR(R

m, Rn). In particular, if k is a field and A ∈Mnm(k), then left mul-
tiplication by A defines a linear transformation ℓA : km → kn. We define the rank
of A and the nullity of A as in Exercise 4.2.45. Define the kernel of A to be the
kernel of ℓA. The column space of A is defined to be the subspace of kn spanned by
the columns of A. The rank of A is seen to be the dimension of the column space
of A.

4.3. The Dual of a Module.

Definition 4.4.17. Let R be any ring. LetM be a left R-module. The dual of
M is defined to be M∗ = HomR(M,R). We turn M∗ into a right R-module by the
action (fr)(x) = (f(x))r, for r ∈ R, f ∈M∗, x ∈M . The reader should verify that
this multiplication by elements of R is a well defined right R-module structure on
M∗. If N is another left R-module, and ψ ∈ HomR(M,N), define ψ∗ : N∗ → M∗

by the rule ψ∗(f) = f ◦ ψ, for any f ∈ N∗.

Lemma 4.4.18. Let R be any ring. LetM and N be left R-modules. If ψ :M →
N is a homomorphism of left R-modules, then ψ∗ : N∗ →M∗ is a homomorphism
of right R-modules. If L is another R-module, and ϕ ∈ HomR(L,M), then (ψϕ)∗ =
ϕ∗ψ∗.

Proof. Let f, g ∈ N∗ and a ∈ R. The reader should verify that ψ∗(f + g) =
ψ∗(f) + ψ∗(g). If x ∈M , then

(ψ∗(fa))(x) = (fa)(ψ(x)) = (f(ψ(x)))a = (ψ∗(f)(x))a = (ψ∗(f)a)(x).

Lastly, ϕ∗ψ∗(f) = (ψϕ)∗(f). □

Definition 4.4.19. Let M be a left R-module which is free of finite rank. If
B = {v1, . . . , vn} is a basis for M , then define v∗1 , . . . , v

∗
n in M∗ by the rules

v∗i (vj) =

{
1 if i = j,

0 otherwise.

Proposition 4.4.20. If M is a free left R-module with basis B = {v1, . . . , vn},
then M∗ is a free right R-module with basis B∗ = {v∗1 , . . . , v∗n}.
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Proof. By Proposition 4.4.10, M∗ is isomorphic to M1n(R) as Z-modules.
Under this isomorphism, v∗i is mapped to the row matrix e1i which has 1 in position
i and zeros elsewhere. This is therefore a homomorphism of right R-modules. □

Theorem 4.4.21. Let R be any ring. Let M and N be free R-modules, each of
finite rank. Let X be a basis for M , and Y a basis for N . Let X∗ and Y ∗ be the
corresponding bases for M∗ and N∗. Given ϕ ∈ HomR(M,N),

M(ϕ∗, Y ∗, X∗) =M(ϕ,X, Y )T .

That is, the matrix of ϕ∗ with respect to Y ∗ and X∗ is the transpose of the matrix
of ϕ with respect to X and Y .

Proof. Let X = {u1, . . . , um} and Y = {v1, . . . , vn}. Let M(ϕ,X, Y ) =
(ϕij). Consider ϕ∗(v∗l )(uj) = v∗l (ϕ(uj)) = v∗l (

∑n
i=1 ϕijvi) = ϕlj . Now consider

(
∑m
i=1 ϕliu

∗
i )(uj) = ϕlj . Therefore, ϕ∗(v∗l ) =

∑m
i=1 ϕliu

∗
i as elements of M∗ =

HomR(M,R) because they agree on a basis of M . This also shows that column l
of the matrix M(ϕ∗, Y ∗, X∗) is the transpose of (ϕl1, ϕl2, . . . , ϕlm), which is row l
of M(ϕ,X, Y ) □

Definition 4.4.22. If k is a field, the space V ∗∗ = Homk(V
∗, k) is called the

double dual of V . Given v ∈ V , let φv : V ∗ → k be the “evaluation at v” map.
That is, if f ∈ V ∗, then φv(f) = f(v). The reader should verify that φv is an
element of V ∗∗, and that the assignment v 7→ φv is a homomorphism of k-vector
spaces V → V ∗∗.

Theorem 4.4.23. Let V be a vector space over a field k. The map V → V ∗∗

which sends a vector v ∈ V to φv is one-to-one. If V is finite dimensional, this is
a vector space isomorphism.

Proof. Let v be a nonzero vector in V . By Theorem 4.2.34 we can extend
{v} to a basis for V , say B = {v, v2, . . . , vn}. Define f ∈ V ∗ to be the projection
mapping onto the v-coordinate. Then f(v) = 1, and f(vi) = 0 for 2 ≤ i ≤ n. Then
φv(f) = f(v) = 1. This proves V → V ∗∗ is one-to-one. If V is finite dimensional,
then V → V ∗∗ is onto since dimk(V ) = dimk(V

∗∗). □

Exercise 6.5.21 extends Theorem 4.4.23 to finitely generated projective modules
over any ring.

Theorem 4.4.24. Let D be a division ring and V and W finitely generated
D-vector spaces. Let ϕ ∈ HomD(V,W ). Let ϕ∗ : W ∗ → V ∗ be the associated
homomorphism of right D-vector spaces.

(1) If ϕ is one-to-one, then ϕ∗ is onto.
(2) If ϕ is onto, then ϕ∗ is one-to-one.
(3) The rank of ϕ is equal to the rank of ϕ∗.

Proof. (1): Assume ϕ is one-to-one. Let f : V → D be in V ∗. By Exer-
cise 4.2.48 there is f̄ :W → D in W ∗ such that f = f̄ϕ = ϕ∗(f̄).

(2): Assume ϕ is onto. A typical element of W is of the form w = ϕ(v), for
some v ∈ V . Assume g ∈W ∗ and gϕ = 0. Then g(w) = g(ϕ(v)) = 0.

(3): Let n = dimD(V ). By Proposition 4.4.10, dimD(V
∗) = n. Let U = kerϕ.

Let ψ : U → V be the inclusion map. By (1), ψ∗ is onto. Then Rank(ψ∗) =
dim(U∗) = dim(U) = Nullity(ϕ) = n− Rankϕ. By Lemma 4.4.18, imϕ∗ ⊆ kerψ∗.
We prove the reverse inclusion. Suppose f ∈ V ∗ and ψ∗(f) = fψ = 0. Then
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f factors through V/ kerϕ = imϕ. There is f̄ : imϕ → D such that f = f̄ϕ.
By Exercise 4.2.48, f̄ extends to W , so f is in the image of ϕ∗. This proves
Rankϕ∗ = Nullityψ∗ = n− Rankψ∗ = Rankϕ. □

Corollary 4.4.25. Let D be a division ring and A ∈Mnm(D). The row rank
of A is equal to the column rank of A.

Proof. As in Proposition 4.4.10, define α in HomD(D
m, Dn) to be “left mul-

tiplication by A”. Let α∗ be the associated map on dual spaces. By Theorem 4.4.21
the matrix of α∗ is AT . The column rank of A is equal to Rankα which is equal
to Rankα∗, by Theorem 4.4.24. But Rankα∗ is equal to the column rank of AT ,
which is the row rank of A. □

4.4. Exercises.

Exercise 4.4.26. Let k be a field and V a finite dimensional vector space over
k. Show that Homk(V, V ) is a commutative ring if and only if dimk(V ) ≤ 1.

Exercise 4.4.27. Suppose ϕ ∈ HomD(V, V ), where V is a finite dimensional
vector space over the division ring D. Prove:

(1) There is a chain of subspaces ker(ϕ) ⊆ ker(ϕ2) ⊆ ker(ϕ3) ⊆ · · · .
(2) There is a chain of subspaces ϕ(V ) ⊇ ϕ2(V ) ⊇ ϕ3(V ) ⊇ · · · .
(3) The kernel of ϕ : ϕ(V )→ ϕ2(V ) is equal to ker(ϕ)∩ϕ(V ). More generally,

ifm ≥ 1, the kernel of ϕm : ϕm(V )→ ϕ2m(V ) is equal to ker(ϕm)∩ϕm(V ).
(4) If m ≥ 1 and ϕm(V ) = ϕm+1(V ), then ϕm(V ) = ϕm+i(V ) for all i ≥ 1.
(5) If n = dimD(V ), then there exists m such that 1 ≤ m ≤ n and ϕm(V ) =

ϕm+1(V ).
(6) If n = dimD(V ), then there exists m such that 1 ≤ m ≤ n and ker(ϕm) ∩

ϕm(V ) = (0).

Exercise 4.4.28. Let R be a commutative ring. Let A ∈Mnm(R) and B,C ∈
Mml(R). Prove:

(1) (AT )T = A.
(2) (B + C)T = BT + CT .
(3) (AB)T = BTAT .

Exercise 4.4.29. If R is a commutative ring, show that the mappingMn(R)→
Mn(R)

o defined by A 7→ AT is an isomorphism of R-algebras.

Exercise 4.4.30. If R is any ring, show that the mapping Mn(R)→Mn(R
o)o

defined by A 7→ AT is an isomorphism of rings. Using the Morita Theorems, a very
general version of this is proved in Corollary 6.9.3 (4).

Exercise 4.4.31. Let R be any ring, M and N finitely generated R-modules,
and ϕ ∈ HomR(M,N). Show that there exist positive integers m and n, epimor-
phisms f : Rm →M , g : Rn → N , and θ ∈ HomR(R

m, Rn) such that the diagram

Rm
θ //

f

��

Rn

g

��
M

ϕ // N

commutes. Therefore, given generators for M and N , ϕ can be represented as a
matrix.
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Exercise 4.4.32. Let R be a commutative ring and I an ideal in R. The
natural ring homomorphism η : R → R/I turns R/I into an R-module. Show
that there is an isomorphism R/I ∼= HomR(R/I,R/I) of rings induced by the left
regular representation λ : R → HomR(R/I,R/I) of R (see Example 4.4.2). For a
noncommutative example, see Exercise 8.3.19. (Hint: Exercise 4.1.28.)

Exercise 4.4.33. Let θ : R → S be a homomorphism of rings. Let M
and N be S-modules. Via θ, M and N can be viewed as R-modules (see Ex-
ample 4.1.4 (4)). Show that θ induces a well defined Z-module monomorphism
HomS(M,N) → HomR(M,N). (Note: The dual result, how the tensor group
behaves when the ring in the middle is changed, is studied in Exercise 6.4.41.

Exercise 4.4.34. Let R be a ring. Show that there exists an isomorphism of
rings HomR(R,R) ∼= Ro, where R is viewed as a left R-module and Ro denotes the
opposite ring.

Exercise 4.4.35. Let Z = Max(Z) denote the set of maximal ideals in Z. Then
each m ∈ Z is a principal ideal pZ for some positive prime p ∈ Z. In other words,
Z is parametrized by the set of prime numbers. For each m ∈ Z, the residue ring
Z/m is a finite field whose order is a prime number. Let P =

∏
m∈Z Z/m be the

direct product of the finite prime fields. Then P is a ring and there is a natural
homomorphism θ : Z → P . As in Example 4.4.3, the left regular representation
λ : P → HomZ(P, P ) is defined by α 7→ ℓα. The following steps outline a proof that
λ is an isomorphism of rings.

(1) Let W ⊆ Z and assume W is infinite. Show that θ : Z →
∏

m∈W Z/m is
one-to-one. Hence the ring

∏
m∈W Z/m (and in particular P ) is a faithful

Z-algebra and has characteristic zero.
(2) Let p be a prime number, πp : P → Z/p the projection map, and ιp :

Z/p→ P the injection map. Show that

0→ Z/p
ιp−→ P

ℓp−→ P
πp−→ Z/p→ 0

is an exact sequence of Z-modules.
(3) Let h : P → P be a Z-module homomorphism. Show that h restricts to

Z-module homomorphisms h : kerπp → kerπp and h : im ιp → im ιp.
(4) Let h be as in (3). Show that there exists α ∈ P such that h is equal to

ℓα.
(5) Conclude that λ : P → HomZ(P, P ) is an isomorphism of rings.

Exercise 4.4.36. In this exercise we continue to use the notation introduced
in Exercise 4.4.35. Let S =

⊕
m∈Z Z/m be the direct sum of the finite prime fields.

The following steps outline a proof that the endomorphism rings HomZ(S, S) and
HomZ(P, P ) are equal.

(1) Show that S is an ideal in the ring P .
(2) Show that if h : P → P is a Z-module homomorphism, then h restricts to

a Z-module homomorphism h : S → S.
(3) Show that every h ∈ HomZ(S, S) is equal to ℓα for some α ∈ P .
(4) Show that HomZ(P, P ) ∼= HomZ(S, S) by the restriction map of (2).

For a continuation of this example, see Example 6.7.7.
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Exercise 4.4.37. Let k be a field, A a k-algebra, andM a left A-module. Prove
that if dimk(M) = 1, then A contains a two-sided idealm such that A/m ∼= k. (Hint:
Consider the left regular representation λ : A→ Homk(M,M).)

5. Minimal Polynomial

Definition 4.5.1. Let k be a field, A a k-algebra, and α and element of A. If
there is a nonzero polynomial f ∈ k[x] and f(α) = 0, then we say α is algebraic
over k. Otherwise we say α is transcendental over k. We say A is algebraic over k
if every α ∈ A is algebraic over k.

Theorem 4.5.2. Let k be a field, A a k-algebra, and α ∈ A− {0}. There is a
k-algebra homomorphism τ : k[x]→ A satisfying the following.

(1) τ(x) = α.
(2) The kernel of τ is I(α) = {p ∈ k[x] | p(α) = 0}. There is a polynomial

f ∈ k[x] such that I(α) is equal to the principal ideal (f) generated by f .
(3) The image of τ is k[α], the subalgebra of A generated by k and α.
(4) α is transcendental over k if and only if I(α) = (0).
(5) α is algebraic over k if and only if I(α) ̸= (0). In this case, deg f > 0,

dimk k[α] = deg f , f can be taken to be monic, and if p ∈ I(α), then f | p.
(6) k[α] ∼= k[x]/(f).
(7) k[α] is a commutative principal ideal ring.

The polynomial f is called the minimal polynomial of α and is denoted min.polyk(α).
If α is algebraic and f is taken to be monic, then f is uniquely determined by α.

Proof. Given α ∈ A, the evaluation homomorphism (Theorem 3.6.3) is a k-
algebra homomorphism τ : k[x]→ A determined by x 7→ α. Since k[x] is a principal
ideal domain (Corollary 3.6.6), there exists a polynomial f ∈ k[x] which generates
the kernel of τ . The image of τ is denoted k[α]. By Exercise 3.6.33, k[α] is a
commutative principal ideal ring and is the smallest subring of A containing k and
α. By Proposition 3.2.9, k[α] ∼= k[x]/(f). By Definition 4.5.1, α is transcendental if
and only if I(α) = (0). In this case, τ is one-to-one and k[α] ∼= k[x]. If I(α) ̸= (0),
then deg f ≥ 1 and f is unique up to associates in k[x]. Hence if f is taken to be
monic, then f is unique. Let f = xn + an−1x

n−1 + · · ·+ a1x+ a0 be the minimal
polynomial of α, where n ≥ 1. Exercise 4.2.26 says k[α] is a k-vector space of
dimension n spanned by 1, α, . . . , αn−1. □

Corollary 4.5.3. If k is a field, A is a finite dimensional k-algebra, and α is
an element of A, then the following are true.

(1) α is is algebraic over k.
(2) The degree of min.polyk(α) is less than or equal to dimk(A).
(3) α is an invertible element of A if and only if min.polyk(u) has a nonzero

constant term.
(4) α is not a zero divisor if and only if α is invertible.

Proof. (1) and (2): Let dimk A = n and consider the subset {1, α, α2, . . . , αn}
of A. There is a nontrivial dependence relation anα

n+· · ·+a1α+a0. Let τ : k[x]→
A be the evaluation homomorphism determined by x 7→ α. Since anx

n+ · · ·+a1x+
a0 is in the kernel of τ , min.polyk(α) has degree less than or equal to n.

(3) and (4): Let f(x) = min.polyk(α) = xd + · · · + a1x + a0. If α ∈ k, then
d = 1, f(x) = x − α, and in this case the result holds. Assume d ≥ 2 and solve
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for a0 in f(α) = 0 to get a0 = −α(αd−1 + ad−1α
d−2 + · · · + a1). By definition of

minimal polynomial, αd−1 + ad−1α
d−2 + · · ·+ a1 is nonzero in A. If a0 = 0, then α

is a zero divisor. If a0 ̸= 0, then 1 = α(−a−10 )(αd−1 + ad−1α
d−2 + · · ·+ a1) shows

α is invertible. □

Example 4.5.4. Since Mn(k) is finite dimensional over k, every matrix A ∈
Mn(k) has a minimal polynomial min.polyk(A). The evaluation homomorphism
x 7→ A maps k[x] onto the commutative subring k[A] of Mn(R).

Example 4.5.5. Let k be a field, n ≥ 2, and A = Mn(k) the ring of n-by-n
matrices over k. Let est be the elementary matrix with 1 in position (s, t) and 0
elsewhere (see Definition 4.4.7). Notice that

esteuv =

{
esv if t = u,

0 otherwise.

Therefore, estest = 0 if s ̸= t and essess = ess. From this it follows that

min.polyk(est) =

{
x2 − x if s = t,

x2 if s ̸= t.

In both cases we see that the minimal polynomial of est is not irreducible and k[est]
is not a field.

Example 4.5.6. Let k be a field, a ∈ k, A =M3(k) the ring of 3-by-3 matrices

over k, and α =

0 0 a
1 0 0
0 1 0

. Notice that α2 =

0 a 0
0 0 a
1 0 0

 and α3 =

a 0 0
0 a 0
0 0 a

 =

aI3. Therefore, α3 is in k. Let p(x) = x3 − a. Then p(α) = 0. Let f(x) =
min.polyk(α). Then f(x) divides p(x). To show that f(x) is equal to p(x), it
suffices to show f(x) has degree greater than 2. First, since α is not a diagonal
matrix we know f(x) has degree greater than 1. For contradiction’s sake, suppose
f(x) = x2 + bx+ c for some b, c ∈ k. Then α2 + bα ∈ k. But

α2 + bα =

0 a 0
0 0 a
1 0 0

+

0 0 ab
b 0 0
0 b 0

 =

0 a ab
b 0 a
1 b 0


is not a diagonal matrix. This contradiction implies f(x) has degree greater than
2, hence min.polyk(α) = x3 − a. This example is a special case of Exercise 4.7.21.
The matrix α is called the companion matrix of the polynomial x3 − a. Notice
that k[α] ∼= k[x]/(x3 − a) is a field if and only if x3 − a is irreducible in k[x]. For
instance, if k = Q, and a = 8, then x3− 8 = (x− 2)(x2 +2x+4) is not irreducible,
hence Q[α] is not a field. On the other hand, if k = Q and a = 10, then Q[α] is an
extension field of k inside of A. In this case there is a lattice of subrings

A =M3(Q)

Q[α]

dim=3

ee

Q

dim=9

OO

dim=3

99
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where an arrow denotes set containment. Using the fact that Q[α] is a subring of
A we can view A as a vector space over Q[α]. We have 9 = (A : Q) = (Q[α] :
Q)(Q[α] : Q) = 3 · 3. Notice that Q[α] is not contained in the center of A, hence A
is not an algebra over Q[α].

If V is a finite dimensional vector space over k, then Homk(V, V ) is finite dimen-
sional by Proposition 4.4.10, so every ϕ in Homk(V, V ) has a minimal polynomial
p = min.polyk(ϕ). By Proposition 4.4.13, Mn(k) and Homk(V, V ) are isomorphic
as k-algebras. If X is a basis for V , and A = M(ϕ,X,X), then min.polyk(ϕ) =
min.polyk(A). The evaluation homomorphism σ : k[x] → Homk(V, V ) defined by
x 7→ ϕ maps k[x] onto the commutative subring k[ϕ]. There is a k-algebra iso-
morphism k[x]/(p) ∼= k[ϕ] and k[ϕ] is a principal ideal ring which is a semilocal
ring. The ideals in k[ϕ] correspond up to associates to the divisors of p in k[x] (see
Proposition 4.3.1).

Using the k-algebra homomorphism σ, k[x] acts as a ring of k-vector space
homomorphisms on V . Given a polynomial f ∈ k[x], and a vector u ∈ V the action
is given by fu = σ(f)u = f(ϕ)u. This makes V into a k[x]-module, which is denoted
by Vϕ. Since V is finitely generated as a vector space over k, it is immediate that
Vϕ is finitely generated as a module over k[x]. The structure theory of Section 4.3
applies to the k[ϕ]-module Vϕ. If p = xn+an−1x

n−1+ · · ·+a1x+a0 is the minimal
polynomial of ϕ, then a k-basis for k[ϕ] is {ϕn−1, . . . , ϕ, 1}. If u ∈ V , the cyclic
k[x]-submodule of V generated by u is therefore equal to

k[ϕ]u = {f(ϕ)u | f ∈ k[x]} = kϕn−1u+ · · ·+ kϕu+ ku.

Since ϕ maps this subspace to itself, we say k[ϕ]u is ϕ-invariant. If u is nonzero,
the k[x]-module homomorphism k[x] → k[ϕ]u is onto and the kernel is a principal
ideal Iu = (q),

k[ϕ]u ∼= k[x]/(q).

The polynomial q is the order of u. Since u is nonzero and k[ϕ]u is finite dimensional
over k, we can assume q is a monic polynomial of positive degree. In fact, q is the
polynomial of minimal degree such that q(ϕ)u = 0. By Exercise 4.6.12, q is a
divisor of the minimal polynomial p of ϕ. Because the dimension of the k-vector
space k[ϕ]u is equal to the degree of q, we see that q is the minimal polynomial of
the restriction of ϕ to the ϕ-invariant subspace k[ϕ]u.

For reference, Proposition 4.5.7 lists the fundamental results on cyclic k[ϕ]-
modules derived in the previous paragraphs.

Proposition 4.5.7. Let k be a field, V a k-vector space of dimension n, and
ϕ ∈ Homk(V, V ). Let Vϕ be the k[x]-module structure on V induced by the ring
homomorphism k[x] → Homk(V, V ) which maps x to ϕ. If Vϕ is a cyclic k[x]-
module with generator u, then the following are true.

(1) The set B = {u, ϕu, ϕ2u, . . . , ϕn−1u} is a k-basis for V .
(2) As k[x]-modules, Vϕ ∼= k[x]/(f).
(3) If min.polyk(ϕ) = f , then deg f = n and f is the monic polynomial of

minimal degree such that f(ϕ)u = 0.

Proof. See the paragraphs immediately preceding the proposition. □

Lemma 4.5.8. Let V be a finite dimensional vector space over the field k. Let
ϕ and ψ be linear transformations in Homk(V, V ). The k[x]-modules Vϕ and Vψ
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are isomorphic if and only if there exists an invertible linear transformation ρ in
Homk(V, V ) such that ϕ = ρ−1ψρ.

Proof. Let f : Vϕ → Vψ be an isomorphism of k[x]-modules. Then f is an
isomorphism of k-vector spaces. That is, f = ρ for some invertible element ρ in
Homk(V, V ). For each u ∈ V we have f(ϕu) = ψf(u). Therefore, ϕ = ρ−1ψρ.
Conversely, if ϕ = ρ−1ψρ, define f : Vϕ → Vψ by f(u) = ρu. For i ≥ 1, we have
ρϕi = ψiρ. Then f(ϕiu) = ρϕiu = ψiρu = ψif(u). The rest follows from the fact
that ρ is k-linear. □

5.1. Exercises.

Exercise 4.5.9. Let k be a field and A a finite dimensional k-algebra. Let
α ∈ A and f = min.polyk(α). Prove:

(1) α is invertible in A if and only if f(0) ̸= 0.
(2) α is left invertible if and only if α is right invertible.

Exercise 4.5.10. Let R be a commutative ring and A an R-algebra. Suppose
α ∈ A is a root of the polynomial p ∈ R[x]. Prove:

(1) If ϕ : A→ A is an R-algebra homomorphism, then ϕ(α) is a root of p.
(2) If u is a unit in A, then u−1αu is a root of p.

Exercise 4.5.11. Let k be a field and A a finite dimensional k-algebra. Let
α ∈ A. The assignment x 7→ α defines the evaluation homomorphism k[x] → A
whose image is the commutative subalgebra k[α] of A (Exercise 3.6.33). Show that
k[α] is a field if and only if min.polyk(α) is irreducible.

Exercise 4.5.12. Let k be a field, a, b, c some elements of k and assume a ̸= b.
Let f = (x− a)(x− b) and g = (x− c)2. Prove:

(1) The k-algebra k[x]/(x− a) is isomorphic to k.
(2) There is a k-algebra isomorphism k[x]/(f) ∼= k ⊕ k.
(3) There is a k-algebra isomorphism k[x]/(g) ∼= k[x]/(x2).
(4) If h is a monic irreducible quadratic polynomial in k[x], then the k-algebras

k[x]/(f), k[x]/(g), and k[x]/(h) are pairwise nonisomorphic.

Exercise 4.5.13. Let k be a field and A a finite dimensional k-algebra. Prove
that if dimk(A) = 2, then A is commutative.

Exercise 4.5.14. Classify up to isomorphism all finite rings of order four.
For a generalization of this result to rings of order p2, p a prime number, see
Exercise 5.5.8. The reader interested in rings that do not necessarily contain a unit
element is referred to the classification obtained in [57].

Exercise 4.5.15. Let k be a field and A a finite-dimensional k-algebra. Prove
that the following are equivalent.

(1) A is a division ring.
(2) A has no zero divisors.

6. Canonical Forms

We apply the basis theorems for finitely generated modules over a principal ideal
domain (Theorems 4.3.14 and 4.3.15) to derive two canonical forms for matrices
over a field. The first two canonical forms are unique up to similarity. In other
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words, a matrix is similar to a unique matrix in rational canonical form. The Jordan
canonical form of a matrix exists over the algebraic closure of the ground field and is
also unique up to similarity. Let V be a finite dimensional vector space over a field
k, and ϕ an endomorphism of V . In Corollary 4.6.2 we show that there is a basis
for V such that the matrix of ϕ is in rational canonical form. If k is algebraically
closed, then in Corollary 4.6.4 there is a basis for V such that the matrix of ϕ is in
Jordan canonical form.

In Proposition 4.6.30 we show that any matrix over a field has a unique reduced
row echelon form.

In Theorem 4.6.25 we show that a matrix over a principal ideal domain has
a Smith normal form. This and the Invariant Factor Form of the basis theorem
(Theorem 4.3.15) are applied to derive the Simultaneous Bases Theorem (Corol-
lary 4.6.26) for a submodule of a finitely generated free module.

6.1. Rational Canonical Form.

Theorem 4.6.1. If V is a finite dimensional vector space over the field k, and
ϕ ∈ Homk(V, V ), then there is a basis {u1, u2, . . . , ur} for the k[ϕ]-module V such
that the following are true.

(1) The k[ϕ]-module V is equal to the internal direct sum U1 ⊕ U2 ⊕ · · · ⊕ Ur
where Ui = k[ϕ]ui is the cyclic submodule of V spanned by ui.

(2) Ui ∼= k[x]/(qi) where qi is the order of ui and q1 | q2 | · · · | qr.
(3) Ui is a ϕ-invariant subspace of V and the minimal polynomial of ϕ|Ui

is
qi.

(4) The minimal polynomial of ϕ is qr.
(5) The sequence of polynomials (q1, q2, . . . , qr) is uniquely determined by ϕ.

The polynomials q1, . . . , qr are called the invariant factors of ϕ.

Proof. Apply Theorem 4.3.15 to the finitely generated k[x]-module V . □

If V and ϕ are as in Theorem 4.6.1, then V = U1 ⊕ · · · ⊕ Ur where each
ϕ(Ui) ⊆ Ui. Then each Ui is a k-subspace of V . We can pick a k-basis Bi for each
subspace Ui and concatenate to get a basis B = B1+ · · ·+Br for V . It is clear that
the matrix of ϕ with respect to B is the block diagonal matrix (see Exercise 4.7.23)

M(ϕ,B) = diag(M(ϕ|U1
, B1), . . . ,M(ϕ|Ur

, Br))

where there are r blocks and block i is the matrix with respect toBi of the restriction
of ϕ to Ui.

Now we determine a canonical form for the matrix of ϕ. In other words, we try
to find a basis B of V for which the matrix M(ϕ,B) is simplified. Based on the
previous paragraph, we consider the case where V = k[ϕ]u is a cyclic module over
the ring k[ϕ]. We are in the context of Proposition 4.5.7. Suppose the minimal
polynomial of ϕ is min.polyk(ϕ) = p = xn + an−1x

n−1 + · · ·+ a1x+ a0. The k[x]-
module homomorphism k[x]→ k[ϕ]u defined by 1 7→ u is surjective and the kernel
is the principal ideal Iu = (p) generated by p. Therefore, as a k[x]-module, V is iso-
morphic to k[x]/(p). Applying the division algorithm, we see that 1, x, x2, . . . , xn−1

is a k-basis for k[x]/(p). Therefore, a k-basis for V is B = {u, ϕu, ϕ2u, . . . , ϕn−1u}.
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Introduce the notation xi = ϕi−1u. The action of ϕ on B = {x1, x2, . . . , xn} deter-
mines the matrix M(ϕ,B). Computing, we get

ϕx1 = ϕu = x2

ϕx2 = ϕϕu = x3

...

ϕxn−1 = ϕn−1u = xn

ϕxn = ϕnu = −an−1ϕn−1u− · · · − a1ϕ1u− a0u = −a0x1 − a1x2 − · · · − an−1xn
so the matrix is

(6.1) M(ϕ,B) =



0 0 0 . . . 0 0 −a0
1 0 0 . . . 0 0 −a1
0 1 0 . . . 0 0 −a2
...

...
...

...
...

0 0 0 . . . 0 0 −an−3
0 0 0 . . . 1 0 −an−2
0 0 0 . . . 0 1 −an−1


.

We call (6.1) the companion matrix of the polynomial p = xn + an−1x
n−1 + · · ·+

a1x+ a0. If p ∈ k[x] is a polynomial of degree n ≥ 1, denote the companion matrix
of p in Mn(k) by C(p). Conversely, by Exercise 4.6.13, the minimal polynomial of
(6.1) is again p = xn + an−1x

n−1 + · · ·+ a1x+ a0.

Corollary 4.6.2. If V is a finite dimensional vector space over the field k,
ϕ ∈ Homk(V, V ), and q1, q2, . . . , qr are the invariant factors of ϕ, then there is a
basis B for V such that the matrix of ϕ with respect to B is the block diagonal
matrix

M(ϕ,B) = diag (C(q1), C(q2), . . . , C(qr))

where block i is the companion matrix of qi. The matrix M(ϕ,B) is called the
rational canonical form for ϕ.

6.2. Jordan Canonical Form.

Theorem 4.6.3. If V is a finite dimensional vector space over the field k,
and ϕ ∈ Homk(V, V ), then there exist positive integers s, ν1, . . . , νs and a basis
{uij | 1 ≤ i ≤ s; 1 ≤ j ≤ νi} for the k[ϕ]-module V such that the following are true.

(1) The k[ϕ]-module V is equal to the internal direct sum

V =

s⊕
i=1

νi⊕
j=1

Uij

where Ui = k[ϕ]uij is the cyclic submodule of V spanned by uij.
(2) Uij ∼= k[x]/(π

eij
i ) where

(a) π1, . . . , πs are distinct monic irreducible polynomials,
(b) the order of uij is π

eij
i , and

(c) ei1 ≥ ei2 ≥ · · · ≥ eiνi ≥ 1.
(3) Uij is a ϕ-invariant subspace of V and the minimal polynomial of ϕ|Uij is

π
eij
i .
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(4) The minimal polynomial of ϕ is

min.polyk(ϕ) =

s∏
i=1

πei1i

(5) The sequence of irreducible polynomials (π1, π2, . . . , πs) and the positive
integers {eij} are uniquely determined by ϕ.

The polynomials π
eij
i are called the elementary divisors of ϕ.

Proof. Apply Theorem 4.3.14 to the finitely generated k[x]-module V . □

Using the basis for V given by Theorem 4.6.3, we determine a canonical form
for the matrix of ϕ. The minimal polynomial for ϕ restricted to Uij is a power of the
irreducible polynomial πi. We assume each πi is a linear polynomial, because the
canonical form of ϕ in this case is particularly simplified. This case will occur if and
only if the minimal polynomial of ϕ factors into a product of linear polynomials in
k[x]. The k-bases for the individual ϕ-invariant subspaces Uij can be concatenated
for a basis of V . We now determine a canonical form for the matrix of ϕ under the
following assumptions

(1) V is a cyclic k[ϕ]-module spanned by u.
(2) min.polyk(ϕ) = (x− b)n is a power of a linear polynomial.

Notice that V is a cyclic k[ϕ]-module, spanned by u. Since k[ϕ] = k[ϕ−b], it follows
that V is a cyclic k[ϕ−b]-module, spanned by u. If θ : k[x]→ Homk(V, V ) is defined
by x 7→ ϕ, then ker θ is the principal ideal generated by (x − b)n. If τ : k[x] →
Homk(V, V ) is defined by x 7→ ϕ− b, then the minimal polynomial of ψ = ϕ− b is
the monic generator of ker τ , which is xn. Therefore B = {u, ψu, ψ2u, . . . , ψn−1u}
is a k-basis for V . The matrix of ψ = ϕ− b with respect to the basis B is

M(ϕ− b, B) =



0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

0 0 0 . . . 0 0 0
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0


which is the companion matrix of the polynomial xn. The matrix of ϕ with respect
to the basis B is equal to M(ϕ,B) =M(ϕ− b, B) +M(b, B). Therefore,

(6.2) M(ϕ,B) =



b 0 0 . . . 0 0 0
1 b 0 . . . 0 0 0
0 1 b . . . 0 0 0
...

...
...

0 0 0 . . . b 0 0
0 0 0 . . . 1 b 0
0 0 0 . . . 0 1 b


.

We denote the n-by-n matrix (6.2) by Jn(b) and refer to it as the basic Jordan block
for the polynomial (x− b)n.

Corollary 4.6.4. Assume V is a finite dimensional vector space over the field
k, ϕ ∈ Homk(V, V ), and that the minimal polynomial min.polyk(ϕ) factors into a
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product of linear factors in k[x]. If b1, . . . , bs are the distinct roots of min.polyk(ϕ)
and {eij} is the set of exponents of the elementary divisors of ϕ, then there is a
basis B for V such that the matrix of ϕ with respect to B is the block diagonal
matrix

M(ϕ,B) = diag
(
Je11(b1), Je12(b1), . . . , Jeij (bi), . . .

)
where the block corresponding to the ordered pair (i, j) is the Jordan matrix of
(x − bi)eij . The matrix M(ϕ,B) is called the Jordan canonical form for ϕ and B
is called a Jordan basis.

Let k be a field, and A a matrix inMn(k). With respect to the standard basis on
k(n), left multiplication by A defines a linear transformation ℓA in Homk(k

(n), k(n)).
The invariant factors, elementary divisors, rational canonical form, and the Jordan
canonical form of A are defined to be the corresponding invariants of ℓA.

Corollary 4.6.5. Let k be a field, and A and B two matrices in Mn(k). The
following are equivalent.

(1) A and B are similar.
(2) A and B have the same invariant factors.
(3) A and B have the same rational canonical form.

Proof. If A and B have the same invariant factors, say q1, q2, . . . , qr, then they
are both similar to the block diagonal matrix C = diag (C(q1), C(q2), . . . , C(qr)).
The matrix C is in rational canonical form. The reader should verify that the invari-
ant factors of C are q1, . . . , qr. If A and B are similar, then by Proposition 4.4.13
and Lemma 4.5.8, the k[x]-modules that they induce on kn are isomorphic. So they
have the same invariant factors. □

Example 4.6.6. Consider the matrix A =

 1 1 1
−1 −1 −1
1 1 0

 over the field Q.

Let S = {e1, e2, e3} be the standard basis for V = Q(3). By Proposition 4.4.10,
A =M(ϕ, S, S), where ϕ is the linear transformation in HomQ(V, V ) defined by mul-

tiplication by A from the left. Notice that A2 =

 1 1 0
−1 −1 0
0 0 0

, and A3 = 0. Thus,

A is nilpotent and the index of nilpotency is 3. This proves that min.poly(A) = x3.
Since the minimal polynomial of A has only one root and is split, the rational canon-

ical form of A is equal to the Jordan canonical form, which is J3(0) =

0 0 0
1 0 0
0 1 0

.
Let u1 = (1, 0, 0)t, u2 = Au1 = (1,−1, 1)t, and u3 = Au2 = (1,−1, 0)t. Then

B = {u1, u2, u3} is a Jordan basis for ϕ. If P =

1 1 1
0 −1 −1
0 1 0

 is the matrix

with columns u1, u2, u3, the reader should verify that P−1 =

1 1 0
0 0 1
0 −1 −1

 and

P−1AP = J3(0).
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6.3. Exercises.

Exercise 4.6.7. Let k be a field and A ∈ Mn(k). Let F be a field which
contains k as a subfield. Prove:

(1) A is invertible in Mn(k) if and only if A is invertible in Mn(F ).
(2) The rank of A over k is equal to the rank of A over F .
(3) The invariant factors of A in k[x] are the same as the invariant factors of

A in F [x].
(4) If A,B ∈Mn(k), then A and B are similar in Mn(k) if and only if A and

B are similar in Mn(F ).

Exercise 4.6.8. Let k be a field and A,B,C ∈Mn(k). Prove:

(1) If C is invertible, then Rank(AC) = Rank(CA) = Rank(A).
(2) If A and B are similar, then Rank(A) = Rank(B).

Exercise 4.6.9. Let R be any ring and b ∈ R. Let B ∈Mn(R) be the Jordan
block corresponding to (x− b)n. That is, B is the matrix which has main diagonal
entries all equal to b, first lower subdiagonal entries all equal to 1 and 0 elsewhere.
Prove that the transpose of B is similar to B. For a continuation of this exercise,
see Exercise 5.9.2.

Exercise 4.6.10. Assume A is an n-by-n matrix over the field Q such that the
minimal polynomial of A in Q[x] is equal to (x2 + 1)(x + 2). If n = 7, exhibit all
possible rational canonical forms for A.

Exercise 4.6.11. Let R be any ring, andM an R-module. Prove that the ring
of endomorphisms HomR(M,M) is the trivial ring (0) if and only ifM is the trivial
R-module (0).

Exercise 4.6.12. Let k be a field, V a finite dimensional k-vector space, u a
nonzero vector in V , and ϕ ∈ Homk(V, V ). Let f ∈ k[x] be the monic polynomial
of minimal degree such that f(ϕ)u = 0. Prove that f divides min.polyk(ϕ).

Exercise 4.6.13. Let k be a field, V a k-vector space of dimension n, and ϕ ∈
Homk(V, V ). Suppose B = {x1, . . . , xn} is a k-basis for V and {a0, . . . , an−1} ⊆ k
such that ϕx1 = x2, ϕx2 = x3, . . . , ϕxn−1 = xn, and ϕxn = −a0x1 − a1x2 − · · · −
an−1xn. Prove:

(1) Vϕ = k[ϕ]x1. In other words, Vϕ is a cyclic k[ϕ]-module and is generated
by x1.

(2) min.polyk(ϕ) = xn + an−1xn−1 + · · ·+ a1x+ a0.

Exercise 4.6.14. Let k be a field. Let q and ℓ be monic polynomials in k[x],
where q is an irreducible quadratic and ℓ is linear. If A is a 7-by-7 matrix over k
such that the minimum polynomial of A in k[x] is qℓ, exhibit all possible rational
canonical forms for A.

Exercise 4.6.15. Let k be a field. Let q and ℓ be monic polynomials in k[x],
where q is an irreducible quadratic and ℓ is linear. Let A be a 6-by-6 matrix over
k. Exhibit all possible rational canonical forms for A, if the minimum polynomial
of A in k[x] is q2ℓ. Do the same if the minimum polynomial of A in k[x] is ℓ2q.

Exercise 4.6.16. Let k be a field. Let q and t be irreducible monic polynomials
in k[x], where deg q = 2 and deg t = 3. Let A be a 15-by-15 matrix over k. Exhibit
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all possible rational canonical forms for A, if the minimum polynomial of A in k[x]
is q2t2. Do the same if the minimum polynomial of A in k[x] is q3t.

Exercise 4.6.17. Let k be a field. Let q1, q2 and ℓ be distinct irreducible
monic polynomials in k[x], where q1 and q2 are quadratics and ℓ is linear. Let A
be a 10-by-10 matrix over k. Exhibit all possible rational canonical forms for A, if
the minimum polynomial of A in k[x] is ℓq21q2.

Exercise 4.6.18. Let k be a field. Let ℓ1, ℓ2 be distinct monic polynomials
in k[x], where deg ℓ1 = deg ℓ2 = 1. Let A be an 8-by-8 matrix over k. Exhibit all
possible rational canonical forms for A, if the minimum polynomial of A in k[x] is
ℓ21ℓ

3
2.

6.4. Smith Normal Form.

Definition 4.6.19. Let R be any ring and let M and N be left R-modules.
Given two homomorphisms f, g in HomR(M,N), we say f and g are equivalent , if
there exist automorphisms ϕ ∈ HomR(N,N) and ψ ∈ HomR(M,M) such that the
diagram

M
f //

ψ

��

N

ϕ

��
M

g // N
commutes. It is routine to check that equivalence of matrices defines an equivalence
relation on HomR(M,N).

Lemma 4.6.20 is a very special case of the Five Lemma (Theorem 6.6.1).

Lemma 4.6.20. Let R be a ring and let M and N be left R-modules. If f and
g are equivalent homomorphisms in HomR(M,N), then ker f ∼= ker g, im f ∼= im g,
and coker f ∼= coker g.

Proof. There exist automorphisms ϕ ∈ HomR(N,N) and ψ ∈ HomR(M,M)
such that ϕf = gψ. Therefore, ψ maps ker f isomorphically onto ker g, and ϕ maps
im f isomorphically onto im g. The composition

N
ϕ−→ N

η−→ coker g

is onto and the kernel is equal to im f . By Theorem 4.1.17, ηϕ factors through
coker f giving the isomorphism coker f ∼= coker g. □

Definition 4.6.21. Let R be a commutative ring. Two matrices A,B in
Mnm(R) are said to be equivalent if there exist invertible matrices Ql ∈Mn(R) and
Qr ∈Mm(R) such that B = QlAQr. It is routine to check that equivalence of matri-
ces defines an equivalence relation on Mnm(R). As in Proposition 4.4.10, multipli-
cation from the left by A and B define homomorphisms ϕA, ϕB in HomR(R

m, Rn).
Hence A and B are equivalent matrices if and only if ϕA and ϕB are equivalent
homomorphisms in the sense of Definition 4.6.19.

Definition 4.6.22. Let R be a commutative ring and A a nonzero n-by-m ma-
trix in Mnm(R). As in Definition 4.4.7, let eij be the elementary matrix in Mn(R)
with 1 in position (i, j) and 0 elsewhere. If (a1, . . . , an) ∈ Rn, then diag(a1, . . . , an)
denotes the diagonal matrix a1e11 + · · · + anenn. In particular, I = diag(1, . . . , 1)
is the identity matrix in Mn(R). The three types of elementary row operations on
A are defined below where matrices multiplied from the left are in Mn(R).
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(1) Multiplication of a row by a unit. Let u ∈ R∗ be a unit in R and denote by
Li(u) the diagonal matrix diag(1, . . . , u, . . . , 1) with u in row i and 1 on the
rest of the diagonal. Clearly, Li(u) is invertible with inverse Li(u

−1) and the
product Li(u)A is the matrix obtained by multiplying row i of A by u.

(2) Adding a scalar multiple of row j to row i. If i ̸= j, let ∆ij(v) = I+ueij , where
v ∈ R. Then ∆ij(v)∆ij(−v) = (I + ueij)(I − ueij) = I (see Example 4.5.5).
Therefore, ∆ij(v) is invertible with inverse ∆ij(−v). The product ∆ij(v)A is
the matrix obtained by adding v times row j of A to row i.

(3) Switch rows i and j. If i ̸= j, let Tij denote the matrix obtained by switching
rows i and j of I. Clearly T 2

ij = I and the product TijA is the matrix obtained
by switching rows i and j of A.

An elementary row operation on A corresponds to multiplication by an invertible
matrix, hence results in a matrix that is equivalent to A.

Definition 4.6.23. In the notation of Definition 4.6.22, the three types of
elementary column operations on A are defined below where matrices multiplied
from the right are in Mm(R):

(1) Multiplication of a column by a unit. The product ALj(u) is the matrix ob-
tained by multiplying column j of A by u.

(2) Adding a scalar multiple of column i to column j. The product A∆ij(v) is the
matrix obtained by adding v times column i of A to column j.

(3) Switch columns i and j. The product ATij is the matrix obtained by switching
columns i and j of A.

An elementary column operation onA corresponds to multiplication by an invertible
matrix, hence results in a matrix that is equivalent to A.

Lemma 4.6.24. Let R be a principal ideal domain and A = (aij) a nonzero
matrix in Mnm(R). Then A is equivalent to a matrix B = (bij) such that b11
divides every other entry of B.

Proof. As in Example 3.4.15, let ν(x) be the number of factors in a prime fac-
torization of x. Now let V = {ν(x) | x is an entry in a matrix that is equivalent to A}.
Let ν(α) be the minimum in V and B = (bij) a matrix that is equivalent to A such
that α is an entry in B. By multiplying B from the left and right by appropriate
matrices T1i and T1j , we can assume α = b11. We prove that α divides every entry
in B. For sake of contradiction, assume not. So α is not a unit and there is some bij
in B such that α does not divide bij . There are three cases. Because the statement
of the theorem depends only on the equivalence class of B, throughout the proof we
will repetitively replace B with a matrix that is obtained from B by an elementary
row or column operation.

Case 1: j = 1. After multiplying by T2i we assume α does not divide b21.
By Corollary 3.4.9, let d = gcd(α, b21) and write d = αx + b21y. If u = α/d and
v = b21/d, then 1 = ux+ vy. Notice[

x y
−v u

] [
u −y
v x

]
=

[
1 0
0 1

]
shows that the matrix

[
x y
−v u

]
is invertible. If we set

C =

([
x y
−v u

]
⊕ I
)
B = (cij)
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then c11 = d. But d is a proper factor of α, C is a matrix that is equivalent to B
and B is equivalent to A. Therefore, this is a contradiction to the choice of α.

Case 2: Suppose α divides column one of B, but there is some b1j that is not
a multiple of α. Transposing all of the row and column arguments of Case 1 shows
B is equivalent to a matrix C = (cij) and ν(c11) < ν(α), a contradiction.

Case 3: Suppose α divides every entry in column one and row one of B. Fac-
toring α from each entry in column one, we write ai1 = αbi for 2 ≤ i ≤ n. Likewise,
factoring row one, we have a1j = αcj for 2 ≤ j ≤ m. Eliminate all nonzero entries
below the diagonal in column one and to the right of the diagonal in row one by
the matrix product:

C = ∆21(−b2) · · ·∆n1(−bn)B∆12(−c2) · · ·∆1m(−cm).

Then C is the matrix direct sum (α)⊕C1 where C1 is an (n−1)-by-(m−1) matrix
over R. Moreover, since α does not divide B we know α does not divide C1. There
is some cij in C such that 1 < i ≤ n, 1 < j ≤ m and α does not divide cij . Then
C∆j1(1) is equivalent to C and has an entry in column one that is not a multiple
of α. By Case 1 applied to C∆j1(1), we get a contradiction. □

Theorem 4.6.25. (Smith Normal Form) Let R be a principal ideal domain
and A = (aij) a nonzero matrix in Mnm(R). Then A is equivalent to a matrix of
the form diag(d1, d2, . . . , dr) ⊕ 0 where d1, . . . , dr are nonzero elements of R and
d1 | d2 | · · · | dr. The matrix diag(d1, d2, . . . , dr) ⊕ 0 is called the Smith normal
form of A.

Proof. Inductively assume m ≥ 1, n ≥ 1, and that the result holds for any
matrix over R of size (n − 1)-by-(m − 1). Because the statement of the theorem
depends only on the equivalence class of A, throughout the proof we will repetitively
replace A with a matrix that is equivalent to A. For instance, by Lemma 4.6.24, we
can assume entry a11 in A divides all other entries in A. Use the method of Case 3
in the proof of Lemma 4.6.24 to eliminate all nonzero entries below the diagonal
in column one and to the right of the diagonal in row one. Call the new matrix
B. Then B is the matrix direct sum (a11)⊕B1 where B1 is an (n− 1)-by-(m− 1)
matrix over R. If m = 1 or n = 1 or B1 is a zero matrix, then we are done and
B is the Smith normal form of A. This proves the basis step for an induction
proof. Otherwise, B1 is a nonzero matrix and a11 divides every entry in B1. By
the induction hypothesis applied to B1, there exist invertible matrices Ql of rank
n − 1 and Qr of rank m − 1 such that QlB1Qr = diag (d2, . . . , dr) ⊕ 0 is in Smith
normal form. Moreover, a11 divides the diagonal entries d2, . . . , dr since a11 divides
all entries of B1. Set Pl = (1) ⊕ Ql and Pr = (1) ⊕ Qr. Then PlBPr is in Smith
normal form with d1 = a11 in the upper left position. □

Corollary 4.6.26. Let R be a principal ideal domain, F a free R-module of
rank n, and S a submodule of F . Then there exist a basis {y1, . . . , yn} of F and
nonzero elements d1, . . . , dr in R satisfying the following.

(1) (Simultaneous Bases Theorem) {d1y1, d2y2, . . . , dryr} is a free basis for S.
(2) d1 | d2 | · · · | dr.
(3) The elements in the list d1, . . . , dr that are not units are precisely the

invariant factors of the quotient module F/S.
(4) The elements d1, . . . , dr are uniquely determined up to associates by S and

F .
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Proof. (1) and (2): By Theorem 4.3.2, S is finitely generated free R-module.
Let {s1, . . . , sm} be a generating set for S and {u1, . . . , un} a basis for F . For
1 ≤ j ≤ m write sj =

∑n
i=1 aijui and set A = (aij) the associated matrix in

Mnm(R). Let ϕA : Rm → F be the homomorphism defined by left multiplication by
A. The image of ϕA is the column space of A, which is equal to the submodule S. By
Theorem 4.6.25, there exist bases X = {x1, . . . , xm} for Rm and Y = {y1, . . . , yn}
for F such that the matrixM(ϕA, X, Y ) is in Smith normal form diag(d1, . . . , dr)⊕0.
This means {d1y1, . . . , dryr} is a basis for S.

(3) and (4): By (1),

F/S ∼=
Ry1
Rd1y1

⊕ Ry2
Rd2y2

⊕ · · · ⊕ Ryr
Rdryr

⊕Ryr+1 ⊕ · · · ⊕Ryn.

The R-module Ryi
Rdiyi

is nonzero if and only if di is not a unit. If dq, . . . , dr are the

nonunits, then the torsion submodule of F/S is isomorphic to R/Rdq⊕· · ·⊕RRdr.
By Theorem 4.3.15, the elements dq, . . . , dr are the invariant factors of F/S. The
numbers q and r are uniquely determined by F/S. Up to associates the elements
d1, . . . , dr are uniquely determined by F/S. □

Corollary 4.6.27. Let R be a principal ideal domain and A a nonzero matrix
in Mnm(R). If D = diag(d1, . . . , dr) ⊕ 0 and E = diag(e1, . . . , es) ⊕ 0 are two
matrices in Smith normal form such that A is equivalent to both D and E, then
r = s and for each i the elements di and ei are associates.

Proof. This follows from Corollary 4.6.26 and Lemma 4.6.20. □

6.5. Reduced Row Echelon Form. In this section we show that any matrix
over a field has a unique reduced row echelon form. This canonical form exists
whether the matrix is square or not. Using gaussian elimination and elementary
row operations, an algorithm which is not included in this book, the reduced row
echelon form can be efficiently computed.

Definition 4.6.28. Let k be a field and R ∈ Mmn(k) an m-by-n matrix. We
say R is in reduced row echelon form, if the following conditions are satisfied:

(1) Any row that consists only of zeros is below any nonzero row.
(2) The left-most nonzero entry of a row is equal to 1. We call this 1 a leading

1.
(3) The leading ones form a staggered, or echelon pattern from left to right

and top to bottom. That is, if i < j and rows i and j are nonzero, then
the leading 1 in row i is to the left of the leading 1 in row j.

(4) Above and below any leading 1 are zeros.

Lemma 4.6.29. Let k be a field and R ∈Mmn(k) an m-by-n matrix in reduced
row echelon form.

(1) The rank of R is equal to the number of nonzero rows.
(2) The rank of R is equal to the number of leading ones.
(3) The nullity of R is equal to the number of columns that do not contain a

leading 1.
(4) Let R1, . . . , Rn be the columns of R. If Rj does not contain a lead-

ing 1, then Rj is a unique linear combination of the columns in the set
{R1, . . . , Rj−1} that contain a leading one. In other words, there is a
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unique vector in the kernel of R of the form (x1, . . . , xj−1, 1, 0, . . . , 0) such
that for 1 ≤ i < j, xi = 0 if Ri does not contain a leading 1.

Proof. The proof is left to the reader. □

Proposition 4.6.30. Let k be a field and A ∈Mmn(k).

(1) There is an invertible matrix Q in Mm(k) such that QA is in reduced row
echelon form.

(2) The reduced row echelon form of A is unique in the sense that if Q1 is
another invertible matrix in Mm(k) and Q1A is in reduced row echelon
form, then QA = Q1A.

Proof. (1): Let X = {A1, A2, . . . , An} be the columns of A. The column
space of A is equal to the span of X in k(m). By Theorem 4.2.34 (2) there exists
a subset of X that is a basis for the column space of A. Let U ⊆ X be a basis
for the column space of A such that U is minimal with respect to the ordering on
2X defined in Exercise 1.2.24. Then U ⊆ X has the property that if Aj ∈ X − U ,
then Aj is a linear combination of {Ai ∈ U | i < j}. By Theorem 4.2.34 (1), we can

extend U to a basis for k(m). Call the resulting basis B. Let Q be the change of basis
matrix. Then Q is an invertible matrix in Mm(k). Let QA = R. We show that R
is a matrix in reduced row echelon form. Let Rank(A) = r and MU = (u1, . . . , ur)
the m-by-r matrix with columns the r vectors in U . Then QMU is the m-by-r
matrix equal to the first r columns of the identity matrix Im in Mm(k). Therefore,
the columns of A in U correspond to the standard basis vectors e1, . . . , er in R.
The column space of R is spanned by e1, . . . , er, hence rows r + 1, . . . ,m of R are
zeros. As mentioned above, if Aj ∈ X−U , then Aj is a linear combination of those
columns of A that are in U and to the left of Aj . This says that every nonzero row
of R has a leading one.

(2): Since Q is invertible, the kernel of ℓQA is equal to the kernel of ℓA. Suppose
Q1A = R1 and Q2A = R2 are two reduced row echelon forms for A. For sake of
contradiction, suppose there is a difference in the columns containing leading ones.
Say there is a leading 1 in column i of R1 but not in column i of R2. Then this
contradicts Lemma 4.6.29 (4) because a column containing a leading 1 is not linearly
dependent on the columns to its left. The uniqueness of those columns that do not
contain leading ones follows from Lemma 4.6.29 (4) and the fact that the kernels of
ℓR1

and ℓR2
are equal. □

Proposition 4.6.31. Let k be a field, A a matrix in Mmn(k), and Q an in-
vertible matrix in Mm(k) such that QA is in reduced row echelon form.

(1) The columns of QA containing leading ones correspond to a set of columns
of A that make up a basis for the column space of A.

(2) If A has rank r, then the n−r vectors described in Lemma 4.6.29 (4) make
up a basis for the kernel of A.

Proof. The proof is left to the reader. □
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Example 4.6.32. Consider the matrix A =

1 2 −1 0
2 1 1 3
1 −1 2 3

 over a field k,

where we assume char k ̸= 3. Notice that Q =

−1/3 2/3 0
2/3 −1/3 0
1 −1 1

 is invertible

and the inverse is Q−1 =

1 2 0
2 1 0
1 −1 1

. Multiplying, QA =

1 0 1 2
0 1 −1 −1
0 0 0 0

 is in

reduced row echelon form. The rank of A is 2, the nullity of A is 2. The first two
columns of A make up a basis for the column space of A. From Lemma 4.6.29 (4),
we obtain a basis for the kernel of A by writing columns 3 and 4 of QA as linear
combinations of columns 1 and 2: 1

−1
0

 =

10
0

−
01
0

 ,
 2
−1
0

 = 2

10
0

−
01
0


A basis for the kernel of A is (−1, 1, 1, 0)t, (−2, 1, 0, 1)t.

6.5.1. A System of Linear Equations. Let k be a field. Consider a system of m
linear equations in n variables over k:

(6.3)

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Then the matrix of coefficients A = (aij) is in Mmn(k) and the vector b =

(b1, . . . , bm)t on the right-hand side is in k(m). If x = (x1, . . . , xn)
t, then (6.3)

can be expressed in matrix form: Ax = b. With respect to the standard bases on
k(n) and k(m), left multiplication by A defines a linear transformation T = ℓA in
Homk(k

(n), k(m)). The image of T is the column space of A. The rank of A is the
dimension of the column space of T . The nullity of A is the dimension of the kernel
of T .

Proposition 4.6.33. In the above context,

(1) If b is in the image of T , then the system of linear equations (6.3) has a
solution. Let c = (c1, . . . , cn)

t be a particular solution. Then the general
solution to (6.3) is x = c+ z, where z = (z1, . . . , zn)

t represents a typical
element in the kernel of T . The nullity of T is equal to the number of
degrees of freedom in the solution. The solution x is unique if and only
if the nullity of T is zero. If the nullity of T is positive, then we say the
system of equations is underdetermined.

(2) If b is not in the image of T , then there is no solution to (6.3). In this
case, we say the system of equations is overdetermined.

Proof. The proof is left to the reader. □
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Example 4.6.34. This is a continuation of Example 4.6.32. Consider the sys-
tem of 3 linear equations in 4 variables:

x1 + 2x2 − x3 = 2
2x1 + x2 + x3 + 3x4 = 7
x1 − x2 + 2x3 + 3x4 = 5

Then the matrix of coefficients is A =

1 2 −1 0
2 1 1 3
1 −1 2 3

 and the right-hand side

vector is b = (2, 7, 5)t. From Example 4.6.32, the reduced row echelon form of A

is obtained by multiplying by Q =

−1/3 2/3 0
2/3 −1/3 0
1 −1 1

. Let x = (x1, x2, x3, x4)
t.

A basis for the kernel of A is (−1, 1, 1, 0)t, (−2, 1, 0, 1)t. Multiply both sides of the
matrix equation Ax = b by Q:

QAx =

1 0 1 2
0 1 −1 −1
0 0 0 0



x1
x2
x3
x4

 =

 4
−1
0


Then the general solution is:

x1
x2
x3
x4

 =


4
−1
0
0

+ a


−1
1
1
0

+ b


−2
1
0
1


where a and b represent arbitrary elements of k.

7. The Determinant

7.1. Alternating Multilinear Forms. Throughout this section, R is a com-
mutative ring. Let J = {1, . . . , n} and Jn = J × · · · × J (n times). We view the

symmetric group Sn as the subset of Jn consisting of n-tuples j⃗ = (j1, . . . , jn) that
are permutations of J . The sign of a permutation σ ∈ Sn is denoted sign(σ).

Definition 4.7.1. Let R be a commutative ring, n ≥ 1, and (Rn)n =
⊕n

i=1R
n.

Consider a function f : (Rn)n → R. We say that f is a multilinear form if for each
i,

f(x1, . . . , xi−1, αu+ βv, xi+1, . . . , xn) =

αf(x1, . . . , xi−1, u, xi+1, . . . , xn) + βf(x1, . . . , xi−1, v, xi+1, . . . , xn).

We say that f is an alternating form if f(x1, , . . . , xn) = 0 whenever xi = xj for
some pair i ̸= j.

Lemma 4.7.2. If f : (Rn)n → R is an alternating multilinear form and σ ∈ Sn
is a permutation on the set {1, . . . , n}, then

f(xσ1, . . . , xσn) = sign(σ)f(x1, , . . . , xn).

We say that f is skew symmetric.
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Proof. Because σ factors into a product of transpositions, it is enough to
show that acting on the variables by a transposition changes the sign of f . For
simplicity’s sake, assume σ = (i, j) = (1, 2). Look at

0 = f(x1 + x2, x1 + x2, x3, . . . , xn)

= f(x1, x1, x3, . . . , xn) + f(x1, x2, x3, . . . , xn)+

f(x2, x1, x3, . . . , xn) + f(x2, x2, x3, . . . , xn)

= f(x1, x2, x3, . . . , xn) + f(x2, x1, x3, . . . , xn).

This shows f(x1, x2, x3, . . . , xn) = −f(x2, x1, x3, . . . , xn). □

Lemma 4.7.3. If R is a commutative ring and r ∈ R, there is a unique alternat-
ing multilinear form f : (Rn)n → R such that f(e1, . . . , en) = r, where (e1, . . . , en)
is the standard basis for Rn.

Proof. (Uniqueness) Given (x1, . . . , xn) ∈ (Rn)n, for each i we can write
xi = a1ie1 + · · ·+ anien. Since f is multilinear,

f(x1, . . . , xn) = f

(∑
j∈J

aj1ej , . . . ,
∑
j∈J

ajnej

)

=
∑
j1∈J

aj11f(ej1 ,∑
j∈J

aj2ej , . . . ,
∑
j∈J

ajnej

)
=
∑
j1∈J

∑
j2∈J

aj11aj22f(ej1 , ej2 , . . . ,∑
j∈J

ajnej

)
...

=
∑

(j1,...,jn)∈Jn

aj11 · · · ajnnf
(
ej1 , . . . , ejn

)
.

Since f is alternating, if j⃗ = (j1, . . . , jn) ∈ Jn is not a permutation, then f(ej1 , . . . , ejn) =

0. We can restrict the latest summation to j⃗ ∈ Sn. In this case, since f is skew
symmetric, f(ej1 , . . . , ejn) = sign(j)f(e1, . . . , en) = sign(j)r. This proves that

(7.1) f(x1, . . . , xn) = r
∑
j⃗∈Sn

sign(⃗j)aj11 · · · ajnn

is completely determined by r and (x1, . . . , xn).
(Existence) The formula in (7.1) defines a function f : (Rn)n → R. Notice that

f(e1, . . . , en) = r

since only for j⃗ = (1, 2, . . . , n) is the product formula in the summation (7.1)
nonzero. We need to prove f is an alternating multilinear form. Let α, β ∈ R,
u, v ∈ Rn. Write u =

∑
uiei and v =

∑
viei. Set aik = αui + βvi, so that
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xk =
∑
aikei =

∑
(αui + βvi)ei = αu+ βv. Then

f(x1, . . . , αu+ βv, . . . , xn) = r
∑
j⃗∈Sn

sign(j)aj11 · · · ajkk · · · ajnn

= r
∑
j⃗∈Sn

sign(j)aj11 · · · (αujk + βvjk) · · · ajnn

= rα
∑
j⃗∈Sn

sign(j)aj11 · · ·ujk · · · ajnn+

rβ
∑
j⃗∈Sn

sign(j)aj11 · · · vjk · · · ajnn

= αf(x1, . . . , u, . . . , xn) + βf(x1, . . . , v, . . . , xn)

shows f is multilinear.
Now we show f is alternating. Suppose i < j and let τ be the transposition

that switches i and j. The alternating group An has index 2 in Sn, so every
odd permutation is of the form στ for some σ ∈ An. Assume xi = xj and show
f(x1, . . . , xn) = 0. For all k we have aki = akj . Also, if σ ∈ An then στ(i) = σ(j)
and στ(j) = σ(i).

f(x1, . . . , xn) = r
∑
σ∈Sn

sign(σ)aσ(1)1 · · · aσ(n)n

= r
∑
σ∈An

(
aσ(1)1 · · · aσ(n)n − aστ(1)1 · · · aστ(n)n

)
= r

∑
σ∈An

(
aσ(1)1 · · · aσ(n)n − aστ(1)1 · · · aστ(i)i · · · aστ(j)j · · · aστ(n)n

)
= r

∑
σ∈An

(
aσ(1)1 · · · aσ(n)n − aσ(1)1 · · · aσ(j)i · · · aσ(i)j · · · aσ(n)n

)
= r

∑
σ∈An

(
aσ(1)1 · · · aσ(n)n − aσ(1)1 · · · aσ(j)j · · · aσ(i)i · · · aσ(n)n

)
= 0.

□

Definition 4.7.4. By viewing the columns of a matrix in Mn(R) as vectors
in Rn, we identify Mn(R) with (Rn)n. The determinant is the unique alternating
multilinear form det :Mn(R)→ R such that det(In) = 1. By Lemma 4.7.3,

det(aij) =
∑
j⃗∈Sn

sign(j)aj1,1 · · · ajn,n.

Lemma 4.7.5. Let A,B ∈Mn(R).

(1) det(AB) = det(A) det(B).
(2) A is invertible if and only if det(A) is a unit in R.
(3) If A and B are similar, then det(A) = det(B).
(4) det(A) = det(AT ).
(5) The determinant is an alternating multilinear form on the rows of matrices

in Mn(R).
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Proof. (1): Fix A. Taking r = det(A) in (7.1) defines an alternating multi-
linear form g :Mn(R)→ R, where g(C) = det(A) det(C). Define another function
f : Mn(R) → R by f(C) = det(AC). Since f(In) = det(A), by Lemma 4.7.3, it
is enough to prove that f is alternating and multilinear. Assume u, v ∈ Rn and
C = (x1, . . . , xn) ∈Mn(R). Then

f(c1, . . . , αu+ βv, . . . , cn) = det (A(c1, . . . , αu+ βv, . . . , cn))

= det (Ac1, . . . , αAu+ βAv, . . . , Acn)

= α det (Ac1, . . . , Au, . . . , Acn) + β det (Ac1, . . . , Av, . . . , Acn)

= αf(c1, . . . , u, . . . , cn) + βf(c1, . . . , v, . . . , cn)

If two columns of C are equal, then two columns of AC are equal, so f is alternating.
(2): IfAB = In, then det(A) det(B) = 1. The converse follows from Lemma 4.7.9

because in this case A−1 = det(A)−1Aa.
(3): If A = X−1BX, then

det(A) = det(X−1) det(B) det(X)

= det(B) det(X−1) det(X)

= det(B) det(X−1X)

= det(B).

(4): Since R is commutative, for every σ ∈ Sn we have

aσ(1),1 · · · aσ(n),n = a1,σ−1(1) · · · an,σ−1(n).

This together with the fact that sign(σ) = sign(σ−1) lead to

det(A) =
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n

=
∑
σ∈Sn

sign(σ)a1,σ−1(1) · · · an,σ−1(n)

=
∑
σ∈Sn

sign(σ)a1,σ(1) · · · an,σ(n)

= det(AT ).

(5): Follows from (4). □

Definition 4.7.6. For A ∈Mn(R), let Aij be the matrix inMn−1(R) obtained
by deleting row i and column j from A. Then det(Aij) is called the minor of A in
position (i, j) and (−1)i+j det(Aij) is called the cofactor of A in position (i, j).

Lemma 4.7.7. If A is a matrix in Mn(R), then the following are true.

(1) For each row i, det(A) =
∑n
j=1 aij(−1)i+j det(Aij), and

(2) For each column j, det(A) =
∑n
i=1 aij(−1)i+j det(Aij).

Proof. We prove that the determinant can be computed by cofactor expansion
of row i. The statement about column expansion follows from Lemma 4.7.5 (4).
Define a function f :Mn(R)→ R by the formula f(A) =

∑n
j=1 aij(−1)i+j det(Aij).

The reader should verify that f(In) = 1. By Lemma 4.7.3 it is enough to show that
f is alternating and multilinear.
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Assume the columns of A are (A1, . . . , An) and assume Ak = Aℓ and k < ℓ.
Therefore aik = aiℓ. If j ̸= k and j ̸= ℓ, then Aij has two columns that are equal,
so det(Aij) = 0. The formula for f reduces to

f(A) = aik(−1)i+k det(Aik) + aiℓ(−1)i+ℓ det(Aiℓ)

= aik(−1)i+k det(Aik) + aik(−1)i+ℓ det(Aiℓ)

= aik
(
(−1)i+k det(Aik) + (−1)i+ℓ det(Aiℓ)

)
.

But Aik is obtained from Aiℓ by permuting the columns. In fact, ℓ − k − 1 trans-
positions are sufficient. Since the determinant form is skew symmetric, det(Aik) =
(−1)ℓ−k−1 det(Aiℓ). The reader should verify that (−1)i+k+(−1)i+ℓ(−1)ℓ−k−1 = 0,
hence

f(A) = aik
(
(−1)i+k det(Aik) + (−1)i+ℓ det(Aiℓ)

)
= aik

(
(−1)i+k det(Aik) + (−1)i+ℓ(−1)ℓ−k−1 det(Aik)

)
= aik det(Aik)

(
(−1)i+k + (−1)i+ℓ(−1)ℓ−k−1

)
= 0

which proves f is alternating.
Assume the columns of A are (A1, . . . , An) where Ak = αu + βv for some

u, v ∈ Rn. Let B = (bij) be the matrix obtained by replacing column k of A with
the vector u. Let C = (cij) be the matrix obtained by replacing column k of A with
the vector v. We show that f(A) = αf(B) + βf(C). Because they differ only in
column k, we have Aik = Bik = Cik. If j ̸= k, then the determinant is multilinear,
so det(Aij) = α det(Bij) + β det(Cij). Therefore

f(A) =

n∑
j=1

aij(−1)i+j det(Aij)

=
∑
j ̸=k

aij(−1)i+j (α det(Bij) + β det(Cij)) + (αbik + βcik)(−1)i+k det(Aik)

= α

n∑
j=1

bij(−1)i+j det(Bij) + β

n∑
j=1

cij(−1)i+j det(Cij)

= αf(B) + βf(C)

□

Definition 4.7.8. Let A ∈ Mn(R). The adjoint of A, denoted Aa, is the
transpose of the matrix of cofactors of A. Therefore, Aa =

(
(−1)i+j det(Aji)

)
.

Lemma 4.7.9. AaA = AAa = det(A)In.

Proof. Assume i ̸= j. Let B be the matrix which is equal to A with column i
replaced with a copy of column j. Compute det(B) = 0 by column expansion down
column i. Use the facts that Bki = Aki and bki = bkj = akj for each k.

0 =

n∑
k=1

bki(−1)i+k det(Bki)

=

n∑
k=1

akj(−1)i+k det(Aki)
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Let AaA = (cij). Then

cij =

n∑
k=1

(−1)i+k det(Aki)akj =

{
det(A) if i = j

0 if i ̸= j.

□

The determinant is constant on similarity classes, by Lemma 4.7.5. If M is a
finitely generated free R-module and ϕ ∈ HomR(M,M), then the determinant of
ϕ is defined to be the determinant of the matrix of ϕ with respect to any basis
of M . If A is an R-algebra which is free of finite rank and α ∈ A, then we have
the left regular representation θ : A → HomR(A,A) of A as a ring of R-module
homomorphisms of A (see Example 4.4.3). Under θ, the element α ∈ A is mapped
to ℓα, which is “left multiplication by α”. The determinant of α is defined to be
the determinant of ℓα.

7.2. The Characteristic Polynomial.

Example 4.7.10. Let R be a commutative ring. If n ≥ 1 and Mn(R) is the
ring of n-by-n matrices over R, then we can identify the ring of polynomials over
Mn(R) with the ring of matrices over R[x]. That is,

Mn(R)[x] =Mn(R[x]).

In fact, given a polynomial f =
∑m
i=0Aix

i in the left-hand side, we can view
xi = xiIn as a matrix, and f =

∑m
i=0Ai(x

iIn) is an element of the right-hand
side. Conversely, if M = (fij) is in the right-hand side, then we can write each
polynomial fij in the form fij =

∑
k≥0 aijkx

k where it is understood that only a
finite number of the coefficients are nonzero. For a fixed k ≥ 0, letMk be the matrix
(aijk). Then M is equal to the polynomial M =

∑
k≥0Mkx

k in the left-hand side.

Definition 4.7.11. Let R be a commutative ring and M ∈Mn(R). If x is an
indeterminate, then we can view M as a matrix in Mn(R[x]). The characteristic
polynomial of M is char.polyR(M) = det(xIn−M), which is a polynomial in R[x].
Computing the determinant using row expansion (Lemma 4.7.7) along row one, it
is easy to see that char.polyR(M) is monic and has degree n. The characteristic
polynomial is constant on similarity classes, by Exercise 4.7.22. If P is a finitely
generated free R-module and ϕ ∈ HomR(P, P ), then the characteristic polynomial
of ϕ is defined to be the characteristic polynomial of the matrix of ϕ with respect
to any basis of P . If A is an R-algebra which is free of finite rank and α ∈ A,
then we have the left regular representation θ : A→ HomR(A,A) of A as a ring of
R-module homomorphisms of A (see Example 4.4.3). Under θ, the element α ∈ A
is mapped to ℓα, which is “left multiplication by α”. The characteristic polynomial
of α is defined to be the characteristic polynomial of ℓα.

Theorem 4.7.12. (Cayley-Hamilton Theorem) Let R be a commutative ring,M
an n-by-n matrix over R, and p(x) = char.polyR(M) the characteristic polynomial
of M . Then p(M) = 0.

Proof. In the polynomial ring Mn(R)[x], apply Corollary 3.6.5 to p(x) and
M . There is a unique q(x) ∈ Mn(R)[x] such that p(x) = q(x)(x −M) + p(M).
Lemma 4.7.9 implies that p(x)In = det(xIn − M)In = (xIn − M)a(xIn − M)
is a factorization of p(x) in Mn(R[x]). As in Example 4.7.10, we identify the



7. THE DETERMINANT 189

R[x]-algebras Mn(R)[x] and Mn(R[x]). By the uniqueness part of The Division
Algorithm 3.6.4, we conclude that p(M) = 0 and q(x) = (xIn −M)a. □

Theorem 4.7.13. Let k be a field and V a finite dimensional vector space over
k. Let ϕ ∈ Homk(V, V ). As in Theorem 4.6.1, let q1, q2, . . . , qr be the invariant
factors of ϕ.

(1) char.polyk(ϕ) = q1q2 · · · qr.
(2) (Cayley-Hamilton) If p(x) = char.polyk(ϕ), then p(ϕ) = 0. In other

words, min.polyk(ϕ) | char.polyk(ϕ).
(3) If f ∈ k[x] is irreducible, then f | char.polyk(ϕ) if and only if f |

min.polyk(ϕ). The roots of min.polyk(ϕ) are precisely the roots of char.polyk(ϕ).

Proof. (1): By Corollary 4.6.2 there is a basis for V such that the matrix of ϕ
is the block diagonal matrix (C(q1), C(q2), . . . , C(qr)), where C(qi) is the companion
matrix for qi. By Exercise 4.7.21, the characteristic polynomial of C(qi) is qi. Apply
Exercise 4.7.23 iteratively to show that char.polyk(ϕ) = q1q2 · · · qr.

(2): By Theorem 4.6.1, min.polyk(ϕ) = qr.
(3): By Theorem 4.6.1, q1 | q2 | · · · | qr. The irreducible factors of char.polyk(ϕ)

are equal to the irreducible factors of min.polyk(ϕ). □

Definition 4.7.14. Let k be a field, V a finite dimensional vector space over
k and ϕ ∈ Homk(V, V ). We call λ ∈ k an eigenvalue of ϕ if there exists a nonzero
v ∈ V satisfying ϕ(v) = λv. In this case we say v is an eigenvector corresponding
to λ. The set U(λ) = {x ∈ V | ϕ(x) = λx} is called the eigenspace of λ. The reader
should verify that U(λ) is a ϕ-invariant subspace of V .

Theorem 4.7.15. Let k be a field, V a finite dimensional vector space over k
and ϕ ∈ Homk(V, V ).

(1) The eigenvalues of ϕ are precisely the roots of the minimal polynomial of
ϕ.

(2) The following are equivalent.
(a) There is a basis B for V such that M(ϕ,B) is diagonal.
(b) There is a basis of V consisting of eigenvectors of ϕ.
(c) The minimal polynomial min.polyk(ϕ) factors into a product of linear

factors in k[x] and has no multiple roots.

Proof. (1): Let λ ∈ k. Then λ is an eigenvalue of ϕ if and only if there exists
a nonzero v ∈ V such that (ϕ − λI)(v) = 0, which is true if and only if ϕ − λI is
not invertible, which is true if and only if det(ϕ−λI) = 0, which is true if and only
if λ is a root of char.polyk(ϕ).

(2): (a) is clearly equivalent to (b).
(a) is equivalent to (c): This follows from Corollary 4.6.4. The Jordan blocks

are one-by-one if and only if the exponents eij are equal to 1, if and only if the
matrix is diagonal. □

Example 4.7.16. Consider the matrix B =

 1 1 1
−1 −1 −1
0 1 1

 over the field Q.

Then B2 =

 0 1 1
0 −1 −1
−1 0 0

, and B3 =

−1 0 0
1 0 0
−1 −1 −1

. By Definition 4.7.11, the
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characteristic polynomial of B is

char.poly(B) = det(x−B)

=

∣∣∣∣∣∣
x− 1 −1 −1
1 x+ 1 1
0 −1 x− 1

∣∣∣∣∣∣
= (x− 1)(x+ 1)(x− 1) + 1 + (x− 1) + (x− 1)

= x(x2 − x+ 1).

The roots of the characteristic polynomial are 0, α = (1 −
√
3i)/2 and β = (1 +√

3i)/2. By Theorem 4.7.15, 0, α, β are also roots of the minimal polynomial of
B. This proves that min.poly(B) = x(x2 − x + 1). The rational canonical form
of B over Q is therefore equal to the companion matrix of x(x2 − x + 1), which

is C(x3 − x2 + x) =

0 0 0
1 0 −1
0 1 1

. Let V = Q(3) and ψ ∈ HomQ(V, V ) the linear

transformation corresponding to left multiplication by B. Since min.poly(ψ) has
degree 3, we know V is a cyclic Q[ψ]-module. Let u1 = (1, 0, 0)t, u2 = Bu1 =
(1,−1, 0)t, and u3 = Bu2 = (0, 0,−1)t. Then U = {u1, u2, u3} is a basis for V such

that M(ψ,U, U) = C(x3 − x2 + x). Set P =

1 1 0
0 −1 0
0 0 −1

. Then we see that

P = P−1 and PBP = C(x3 − x2 + x).
The Jordan canonical form of ψ exists over F = Q(α), the splitting field of x2−

x+1. Since B has 3 distinct eigenvalues, the Jordan form of ψ is the diagonal matrix0 0 0
0 α 0
0 0 β

. By Theorem 4.7.15, a Jordan basis for B is a basis of eigenvectors.

Using elementary row operations and gaussian elimination, the reduced row echelon

form of B is

1 0 0
0 1 1
0 0 0

. Therefore, v1 = (0, 1,−1)t is an eigenvector for 0. Using

the identity α2 − α + 1 = 0, we find the reduced row echelon form of B − α is1 0 α− 1
0 1 1− α
0 0 0

. Therefore, v2 = (1−α, α−1, 1)t is an eigenvector for α. Likewise,

v3 = (1−β, β−1, 1)t is an eigenvector for β. Then V = {v1, v2, v3} is a Jordan basis
for ψ. Let P be the matrix with columns v1, v2, v3. Using a symbolic calculator
such as [61], for instance, one can show that P−1BP is equal to the matrix with
diagonal (0, α, β).



7. THE DETERMINANT 191

Example 4.7.17. Consider the matrix A =

 2 3 1
−1 2 1
4 −1 −1

 over the field Q.

Using determinants we compute the characteristic polynomial of A:

char.poly(A) = det(x−A)

=

∣∣∣∣∣∣
x− 2 −3 −1
1 x− 2 −1
−4 1 x+ 1

∣∣∣∣∣∣
= (x− 2)2(x+ 1)− 12− 1 + (x− 2) + 3(x+ 1)− 4(x− 2)

= x2(x− 3).

The roots of the characteristic polynomial are 0 and 3. Since the rank of the

matrix A(A − 3) =

−1 2 1
3 −6 −3
−7 14 7

 is equal to 1, it follows from Theorem 4.7.13

that the minimal polynomial of A is equal to the characteristic polynomial. That
is, min.poly(A) = x2(x− 3). The rational canonical form of A over Q is therefore

equal to the companion matrix of x3 − 3x2, which is C(x3 − 3x2) =

0 0 0
1 0 0
0 1 3

.
Let V = Q(3) and ϕ ∈ HomQ(V, V ) the linear transformation corresponding to left
multiplication by A. Since min.poly(ϕ) has degree 3, we know V is a cyclic Q[ϕ]-
module. Let u1 = (1, 0, 0)t, u2 = Au1 = (2,−1, 4)t, and u3 = Au2 = (5, 0, 5)t.
Then U = {u1, u2, u3} is a basis for V such that M(ϕ,U, U) = C(x3 − 3x2).

Set Q =

1 2 5
0 −1 0
0 4 5

. Then we see that AQ = QC(x3 − 3x2). The Jordan

canonical form of ψ exists over Q. By Theorem 4.6.3, the elementary divisors of ϕ

are x2, x − 3. The Jordan canonical form for ϕ is J(ϕ) =

0 0 0
1 0 0
0 0 3

. The cyclic

submodule of V corresponding to the eigenvalue 0 has dimension 2. The matrix

A− 3 =

−1 3 1
−1 −1 1
4 −1 −4

 has rank 2 and A2(A− 3) = 0. Set w1 = (1, 1,−4)t and

w2 = Aw1 = (1,−3, 7)t. Then A2w1 = 0 and Aw2 = 0. Set w3 = (1, 0, 1)t. Then
(A − 3)w3 = 0, so w3 is an eigenvector for 3. Let P be the matrix with columns
w1, w2, w3. The reader should verify that P is invertible and AP = PJ(ϕ). So
w1, w2, w3 is a Jordan basis for ϕ.

Example 4.7.18. Let k be a field and A =

[
1 1
1 1

]
. The characteristic poly-

nomial of A is (x − 1)2 − 1 = x2 − 2x = x(x − 2). If char k ̸= 2, then A has two

distinct eigenvalues, hence the Jordan form of A is diagonal: J(A) =

[
0 0
0 2

]
. A

Jordan basis for A is a basis of eigenvectors, (1,−1)t, (1, 1)t. If char k = 2, then 0

is the only eigenvalue of A. The Jordan form of A is therefore J(A) =

[
0 0
1 0

]
and

a Jordan basis for A is (1, 0)t, (1, 1)t.
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7.3. Block Matrices. The main result of this section is Theorem 4.7.19 which
is a determinant formula for a matrix A in Mmn(R), where A is viewed as a matrix
in Mm(Mn(R)). Such a matrix is called a block matrix. The theorem and its proof
are from [56]. We begin by fixing some notation and establishing the context of
the theorem. Let R be a commutative ring and S a commutative R-subalgebra of
Mn(R). We view Mmn(R) as the ring of m-by-m matrices over Mn(R). Thus, a
matrix M in Mm(S) can be viewed as a matrix in Mmn(R). We have the lattice of
R-algebras

Mm(S) // Mmn(R)

S

OO

// Mn(R)

OO

R

OO 99
(7.2)

where an arrow denotes subring. When M is viewed as a matrix in Mm(S), the
determinant is denoted detS(M). By detR(M) we denote the determinant when
M is viewed as a matrix with entries in R. In the context of (7.2), there are three
such determinant maps

Mm(S)
⊆ //

detS

��

Mmn(R)

detR

��
S

⊆ // Mn(R)
detR // R

(7.3)

and the purpose of Theorem 4.7.19 below is to show that (7.3) is a commutative
diagram.

Theorem 4.7.19. In the above context, the following are true for any matrix
A in Mm(S).

(1) detR(A) = detR(detS(A)). In other words, diagram (7.3) commutes.
(2) char.polyR(A) = detR[x] (char.polyS(A)).

Proof. Part (2) follows from (1). The proof of (1) is by induction on m. If
m = 1, then detS is the identity map and there is nothing to prove. Assume m ≥ 1
and that the determinant formula of the theorem holds for every matrix in Mm(S).
Let A = (aij) be a matrix in Mm+1(S). Partition A into four blocks

A =


a11 . . . a1m a1,m+1

...
...

...
am1 . . . amm am,m+1

am+1,1 . . . am+1,m am+1,m+1

 =

[
A0 B
C D

]

where A0 is the m-by-m matrix obtained by deleting row m+1 and column m+1
from M , B is the m-by-1 column matrix (a1,m+1, . . . , am,m+1)

t, C is the 1-by-m
row matrix (am+1,1, . . . , am+1,m), and D = (d) is the 1-by-1 matrix (am+1,m+1).

To prove the determinant formula for the matrix A, we use what can be viewed
as a “homotopy trick”. Let x be an indeterminate. As in Example 4.7.10, we view
the ring Mmn(R) as the subring of Mmn(R[x]) corresponding to the polynomials
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in x of degree 0. Likewise Mm(S) is a subring of Mm(S[x]). Let θ : R[x] → R be
the evaluation homomorphism defined by x 7→ 0. By Exercise 4.7.33 the diagram

Mn(R[x])
θ //

detR[x]

��

Mn(R)

detR

��
R[x]

θ // R

(7.4)

commutes. The counterpart of (7.4) with S instead of R also commutes. The
strategy is to replace A with a matrix Ax in the ringMm+1(S[x]) such that θ(Ax) =
A and show that the equation

(7.5) detR[x] (Ax) = detR[x]

(
detS[x](Ax)

)
holds in the ring R[x]. The equation

(7.6) detR (A) = detR (detS(A))

then follows from (7.4) and (7.5).

Let Ax be the matrix

[
A0 B
C (d+ x)

]
obtained by adding x to the entry in

position m + 1,m + 1 of A. Then Ax is in the ring Mm+1(S[x]) and θ(Ax) = A.
The equation

(7.7)

[
A0 B
C (d+ x)

] [
(d+ x)Im 0
−C (1)

]
=

[
(d+ x)A0 −BC B

0 (d+ x)

]
holds in the ring Mm+1(S[x]). Taking determinants in (7.7), we use Lemma 4.7.5
and Lemma 4.7.7 to get the equation

(7.8) detS[x](Ax)(d+ x)m = detS[x] ((d+ x)A0 −BC) (d+ x)

in the ring S[x]. The equation (7.8) holds in the ring Mn(R[x]), and taking deter-
minants we get the equation

(7.9) detR[x]

(
detS[x](Ax)

)
detR[x](d+ x)m =

detR[x]

(
detS[x] ((d+ x)A0 −BC)

)
detR[x](d+ x)

in the ring R[x]. The equation (7.7) holds in the ring Mmn(R[x]), and taking
determinants we get the equation

(7.10) detR[x] (Ax) detR[x](d+ x)m = detR[x] ((d+ x)A0 −BC) detR[x](d+ x)

in the ring R[x]. By induction on m, we have

detR[x] ((d+ x)A0 −BC) = detR[x]

(
detS[x] ((d+ x)A0 −BC)

)
which implies the right hand side of (7.10) is equal to the right hand side of (7.9).
Equating the left hand sides of (7.10) and (7.9), we get the equation

(7.11) detR[x] (Ax) detR[x](d+ x)m = detR[x]

(
detS[x](Ax)

)
detR[x](d+ x)m

in R[x]. But detR[x](d+ x) is a monic polynomial of degree n, hence is not a zero
divisor. Canceling in (7.11) yields the equation (7.5) in R[x]. From (7.5) we get
(7.6), and this completes the induction proof. □

Proposition 4.7.20. Let R be a commutative ring and assume A, B, C, D

are matrices in Mn(R). Let M =

[
A B
C D

]
. Then M is a block matrix in M2n(R).
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(1) If AC = CA, then det(M) = det(AD − CB).
(2) If CD = DC, then det(M) = det(AD −BC).
(3) If BD = DB, then det(M) = det(DA−BC).
(4) If AB = BA, then det(M) = det(DA− CB).

Proof. (1): The proof is based on the commutative diagram (7.4). We replace

M with the matrix Mx =

[
A+ xIn B

C D

]
which is in the ring M2n(R[x]). Notice

that θ(Mx) =M . Since AC = CA, the equation

(7.12)

[
In 0
−C A+ xIn

] [
A+ xIn B

C D

]
=

[
A+ xIn B

0 AD − CB + xD

]
holds in the ring M2n(R[x]). Take determinants in (7.12). Using Lemma 4.7.5 and
Exercise 4.7.40, the equation

(7.13) det(A+ xIn) det(Mx) = det(A+ xIn) det(AD − CB + xD)

holds in the ring R[x]. Now det(A+ xIn) is a monic polynomial of degree n, hence
is not a zero divisor in R[x]. Therefore, (7.13) yields the polynomial identity

(7.14) det(Mx) = det(AD − CB + xD)

in which both sides are polynomials of degree n. By the commutative diagram
(7.4), evaluating (7.14) at x = 0 yields the formula det(M) = det(AD − CB).

The proofs of (2), (3), and (4) are similar and left to the reader. □

7.4. Exercises.

Exercise 4.7.21. Suppose k is a field and

M =



0 0 0 . . . 0 0 −a0
1 0 0 . . . 0 0 −a1
0 1 0 . . . 0 0 −a2
...

...
...

...
...

0 0 0 . . . 0 0 −an−3
0 0 0 . . . 1 0 −an−2
0 0 0 . . . 0 1 −an−1


is a matrix in Mn(k).

(1) Prove that min.polyk(M) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

(2) Prove that char.polyk(M) = min.polyk(M).
(3) Prove that the rank of M is equal to the rank of the transpose of M .

Exercise 4.7.22. Let R be a commutative ring and A and B similar matrices
in Mn(R). Prove that char.polyR(A) = char.polyR(B).

Exercise 4.7.23. Let R be a commutative ring, A ∈ Mm(R), B ∈ Mn(R).
Define the direct sum of A and B by

A⊕B =

[
A 0
0 B

]
which is a matrix in Mm+n(R). The direct sum A⊕B is sometimes called a block
diagonal matrix and is denoted diag(A,B). Prove:

(1) det(A⊕B) = det(A) det(B).
(2) char.polyR(A⊕B) = char.polyR(A) char.polyR(B).
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(3) Rank(A⊕B) = Rank(A) + Rank(B).

Exercise 4.7.24. Let R be a commutative ring and n ≥ 1. Define the trace of
a matrix α = (αij) ∈Mn(R) by trace(α) =

∑n
i=1 αii.

(1) Prove that the trace mapping is an R-module homomorphism fromMn(R)
to R.

(2) Prove that trace(αβ) = trace(βα). (Hint: First show trace(αeij) =
trace(eijα) if eij is an elementary matrix and α is arbitrary.)

(3) Prove that if α and β are similar, then trace(α) = trace(β).

Exercise 4.7.25. Let R be a commutative ring, M a finitely generated free
R-module, and X a basis for M over R. Define the trace of ϕ ∈ HomR(M,M)
to be trace(ϕ) = trace(M(ϕ,X)). Show that this definition is independent of the
choice for X. Show that the trace mapping is an R-module homomorphism from
HomR(M,M) to R.

Exercise 4.7.26. Let R be a commutative ring and suppose A is an R-algebra
which is finitely generated and free of rank n as an R-module. By Example 4.4.3
we have θ : A → HomR(A,A), the left regular representation of A in HomR(A,A)
which is defined by α 7→ ℓα. Define TAR : A→ R by the assignment α 7→ trace(ℓα).
We call TAR the trace from A to R. Define NA

R : A → R by the assignment α 7→
det(ℓα). We call NA

R the norm from A to R.

(1) Show that TAR (rα+ sβ) = rTAR (α) + sTAR (β), if r, s ∈ R and α, β ∈ A.
(2) Show that NA

R (αβ) = NA
R (α)NA

R (β) and NA
R (rα) = rnNA

R (α), if r ∈ R
and α, β ∈ A.

Exercise 4.7.27. Let k be a field, n ≥ 1, f = xn + an−1x
n−1 + · · ·+ a0 ∈ k[x]

and M = C(f) the companion matrix of f . Prove the following.

(1) det(M) = (−1)na0.
(2) trace(M) = −an−1.

Exercise 4.7.28. Let R be a commutative ring and M a finitely generated
free R-module of rank n. Let ϕ ∈ HomR(M,M). Show that if char.polyR(ϕ) =
xn + an−1x

n−1 + · · ·+ a0, then trace(ϕ) = −an−1 and det(ϕ) = (−1)na0.

Exercise 4.7.29. Let k be a field, V a finitely generated vector space over k,
and ϕ ∈ Homk(V, V ). Suppose q = min.polyk(ϕ) = xm + am−1x

m−1 + · · · + a0 is
irreducible in k[x]. Prove the following.

(1) char.polyk(ϕ) = qr for some integer r.
(2) det(ϕ) = (−1)mrar0.
(3) trace(ϕ) = −ram−1.

Exercise 4.7.30. Let k be a field andA a matrix inMn(k) such that Rank(A) =
r < n. Prove:

(1) det(A) = 0.
(2) If B is an r + 1-by-r + 1 submatrix of A, then det(B) = 0.
(3) A contains an r-by-r submatrix of rank r.

Exercise 4.7.31. (Cramer’s Rule) Let R be a commutative ring. Suppose
A ∈ Mn(R), x, b ∈ Rn such that Ax = b. Prove that xi det(A) = det(Bi), where
Bi = (a1, . . . , b, . . . , an) is the matrix obtained by replacing column i of A with
the column vector b. (Hint: If A = (a1, . . . , an) is written in columnar form,
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then b = x1a1 + · · · + xnan. Use the multilinear and alternating properties when
computing det(Bi).)

Exercise 4.7.32. Let k be a field and f an irreducible polynomial with coeffi-
cients in k. Show that if M is an n-by-n matrix over k such that f(M) = 0, then
deg(f) ≤ n.

Exercise 4.7.33. Let θ : R→ S be a homomorphism of commutative rings.

(1) Show that θ induces a homomorphism of rings θ :Mn(R)→Mn(S).
(2) Show that θ(det(M)) = det(θ(M)), for every M in Mn(R). In other

words, show that the diagram

Mn(R)
θ //

det

��

Mn(S)

det

��
R

θ // S

commutes.
(3) We know from Theorem 3.6.3 that θ induces a homomorphism of rings

R[x]→ S[x]. Show that θ(char.polyR(M)) = char.polyS(θ(M)).

Exercise 4.7.34. Let R be a commutative ring and n ≥ 1. If A ∈ Mn(R),
show that the trace of A (see Exercise 4.7.24) satisfies:

n∑
i=1

n∑
j=1

eijAeji = trace(A)In

where eij denotes the elementary matrix (Definition 4.4.7) and In = e11+ · · ·+ enn
the identity matrix.

Exercise 4.7.35. Let R be a commutative ring and A = Mn(R) the ring of
n-by-n matrices over R. The so-called trace pairing τ : A × A → R is defined by
τ(α, β) = trace(αβ), where the trace map is defined in Exercise 4.7.24. Show that
τ satisfies these properties:

(1) τ(α, β) = τ(β, α).
(2) τ(a1α1 + a2α2, β) = a1τ(α1, β) + a2τ(α2, β) for a1, a2 ∈ R.
(3) τ(α, b1β1 + b2β2) = b1τ(α, β1) + b2τ(α, β2) for b1, b2 ∈ R.
(4) If α ̸= 0 is fixed, then τ(α, ) : A → R is nonzero. That is, there exists β

such that τ(α, β) ̸= 0.

We say that τ is a symmetric nondegenerate bilinear form.

Exercise 4.7.36. Let R be a commutative ring and M a finitely generated
R-module. Let ϕ ∈ HomR(M,M). Show that there exists a monic polynomial
p(x) ∈ R[x] such that p(ϕ) = 0. (Hint: Exercise 4.4.31 and Theorem 4.7.12.)

Exercise 4.7.37. Let A =

 0 1 1
−4 −4 −1
0 0 −2

 in the ring of 3-by-3 matrices over

the field Q.

(1) Find char.poly(A), the characteristic polynomial.
(2) Find min.poly(A), the minimal polynomial.
(3) Find the invariant factors of A in Q[x].
(4) Find the elementary divisors of A in Q[x].
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(5) Find the rational canonical form of A.
(6) Find the Jordan canonical form of A.
(7) Find an invertible matrix P such that P−1AP is equal to the Jordan

canonical form of A. In other words, find a Jordan basis for the linear
transformation on Q(3) defined by A.

Exercise 4.7.38. Let R be a commutative ring and A ∈ Mnm(R). For each
i, let Ai denote column i. Assume 1 ≤ i < j ≤ m and α ∈ R. If B is the matrix
obtained by replacing Aj with αAi +Aj , show that det(B) = det(A).

Exercise 4.7.39. This exercise is a generalization of Example 4.7.18 Let k be
a field and A = (aij) the n-by-n matrix in Mn(k) with aij = 1 for every pair (i, j).

(1) Assume the characteristic of k does not divide n. Prove the following:
(a) min.polyk(A) = x(x− n).
(b) char.polyk(A) = ±xn−1(n− x).
(c) The set

v1 =



−1
1
0
0
...
0


, v2 =



−1
0
1
0
...
0


, . . . , vn−1 =



−1
0
0
...
0
1


, vn =



1
1
1
...
1
1


is a Jordan basis for A.

(2) Assume the characteristic of k divides n. Prove the following:
(a) min.polyk(A) = x2.
(b) char.polyk(A) = ±xn.
(c) The set v1, v2, . . . , vn−2, vn−1 = (0, 0, . . . , 0, 1)t, vn is a Jordan basis

for A, where v1, . . . , vn−2 and vn are the vectors from Part (1) (c).

Exercise 4.7.40. Let R be a commutative ring, m ≥ 1, and n ≥ 1. Let
A ∈ Mm(R) and D ∈ Mn(R). Let M be a block triangular matrix of the form[
A B
0 D

]
or

[
A 0
C D

]
. Show that det(M) = det(A) det(D). (Hint: Use induction

on m and Lemma 4.7.7.)

Exercise 4.7.41. Let S be a commutative R-algebra that is a finitely generated
free R-module of rank n. Let A be an S-algebra that is a finitely generated free
S-module of rank m. Then for any a ∈ A,

(1) TAR (a) = TSR
(
TAS (a)

)
, and

(2) NA
R (a) = NS

R

(
NA
S (a)

)
.

See Exercise 4.7.26 for the definition of the trace and norm functions. (Hint: After
choosing free bases for A and S, reduce this to statements about block matrices
over R. Prove (1) directly and for (2) apply Theorem 4.7.19.)

8. Polynomial Functions

8.1. The Ring of Polynomial Functions on a Module. Let R be a com-
mutative ring, M an R-module, and M∗ = HomR(M,R) the dual of M . By
Map(M,R) we denote the set of all functions f :M → R. Then Map(M,R) can be
turned into an R-algebra. The addition and multiplication operations are defined
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point-wise: (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x). An element a in R
defines the constant function a : M → R, where a(x) = a. We can view M∗ as
an R-submodule of Map(M,R). The R-subalgebra of Map(M,R) generated by the
set M∗ is denoted R[M∗] and is called the ring of polynomial functions on M . If
d ≥ 0, then a polynomial function f ∈ R[M∗] is said to be homogeneous of degree d,
if f(rx) = rdf(x), for all x ∈ M and r ∈ R. Proposition 4.8.1 shows that the ring
R[M∗] is in fact a coordinate-free way to generalize the usual ring of polynomial
functions on a vector space.

Proposition 4.8.1. Let k be an infinite field, and V a finite dimensional k-
vector space. If dimk(V ) = n, then k[V ∗] ∼= k[x1, . . . , xn] as k-algebras.

Proof. Let {(vi, fi) | 1 ≤ i ≤ n} be a dual basis for V . As a k-vector space,
f1, . . . , fn is a basis for V ∗. Define θ : k[x1, . . . , xn] → k[V ∗] by xi 7→ fi. The
reader should verify that θ is onto, and by Exercise 3.6.31 is one-to-one. □

Lemma 4.8.2. Let R be a commutative ring and P a finitely generated free R-
module with RankR(P ) = n. Let ϕ ∈ HomR(P, P ). If the characteristic polynomial
of ϕ is p(x) = xn + a1x

n−1 + · · · + an−1x + an, then for each i = 1, . . . , n, the
assignment ϕ 7→ (−1)iai defines a polynomial function Ni : HomR(P, P ) → R
which is homogeneous of degree i.

Proof. Fix a basis B for P . Let ϕ ∈ HomR(P, P ), and (ϕij) = M(ϕ,B) the
matrix of ϕ. By Proposition 4.8.1, a polynomial function on HomR(P, P ) corre-
sponds to a polynomial in the n2 indeterminates Φ = {ϕij | 1 ≤ i ≤ n, 1 ≤ j ≤ n}.
The characteristic polynomial of ϕ is given by the combinatorial formula for the
determinant (Definition 4.7.4)

(8.1) det(xIn − (ϕij)) =
∑
ℓ⃗∈Sn

sign(ℓ)bℓ1,1 · · · bℓn,n

where bii = x − ϕii and bij = −ϕij if i ̸= j. A typical summand in (8.1) can be
written in the form

sign(ℓ)bℓ1,1 · · · bℓn,n = (x− ϕi1i1) · · · (x− ϕidid)m

where m is a monomial in R[Φ] of degree n − d. Therefore, bℓ1,1 · · · bℓn,n is a
polynomial in x of degree d and for 0 ≤ k < n, the coefficient of xk is a homogeneous
polynomial of degree n− k in R[Φ]. □

Example 4.8.3. Let k be a field and A a k-algebra. Assume dimk(A) = n is
finite. Using the left regular representation (see Example 4.4.3), we can embed A
as a k-subalgebra of Homk(A,A). As in Lemma 4.8.2, let Ni : Homk(A,A)→ k be
the homogeneous polynomial function of degree i defined by the coefficient of xn−i

in the characteristic polynomial of ϕ. For each i, upon restriction to A, Ni : A→ k
defines a homogeneous polynomial function on A of degree i. In particular Nn is the
norm NA

k : A→ k defined in Exercise 4.7.26, and N1 the trace TAk : A→ k. Fix a
k-basis α1, . . . , αn for A. Then this basis can be extended to a basis for Homk(A,A)
and Ni can be identified with a homogeneous polynomial in k[x1, . . . , xn] of degree
i.
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8.2. Resultant of Two Polynomials. Assumem ≥ 0, n ≥ 0, andm+n ≥ 1.
Let f =

∑m
i=0 fix

i and g =
∑n
i=0 gix

i be two polynomials in k[x], where k is a field.
So the degree of f is at most m, and the degree of g is at most n. In the general
case, m and n are both positive, and the Sylvester matrix of f and g is the (m+n)-
by-(m+ n) matrix

Syl(f, g) =



fm fm−1 fm−2 . . . f0 . . .
fm fm−1 . . . f1 f0 . . .

fm . . . f2 f1 f0 . . .
...

. . . fm fm−1 fm−2 . . . f0

. . . fm fm−1 . . . f1 f0

. . . fm . . . f2 f1 f0
gn gn−1 gn−2 . . . g0 . . .

gn gn−1 . . . g1 g0 . . .
gn . . . g2 g1 g0 . . .

...
. . . gn gn−1 fm−2 . . . g0
. . . gn gn−1 . . . g1 g0
. . . gn . . . g2 g1 g0


where blank spaces consist of zeros. The top n rows are constructed from the
coefficients of f , shifted and padded with zeros. The bottomm rows are constructed
from shifting the coefficients of g, and padding with zeros. In the degenerate case
when m = 0, Syl(f, g) is defined to be the n-by-n diagonal matrix f0(E11 + · · · +
Enn). In the degenerate case when n = 0, Syl(f, g) is defined to be the m-by-m
diagonal matrix g0(E11 + · · ·+Emm). The resultant of f and g, written Res(f, g),
is the determinant of Syl(f, g).

Lemma 4.8.4. In the above context, we view f0, . . . , fm, g0, . . . , gn as variables.
Then in the terminology of Section 4.8.1, Res(f, g) satisfies the following:

(1) Res(f, g) is a polynomial in Z[f0, . . . , fm, g0, . . . , gn] which is homogeneous
of degree n+m.

(2) For any constant c ∈ Z,

Res(cf, g) = cnRes(f, g)

Res(f, cg) = cmRes(f, g)

Thus, Res(f, g) is homogeneous of degree n in f0, . . . , fm and homogeneous
of degree m in g0, . . . , gn.

Proof. Is left to the reader. □

Lemma 4.8.5. In the above context, the following are true.

(1) If deg(f) < m and deg(g) < n, then Res(f, g) = 0.
(2) If m = 0, then Res(f, g) = fn0 .
(3) If n = 0, then Res(f, g) = gm0 .
(4) Res(f, g) = (−1)mnRes(g, f).
(5) If deg(f) = m and d = deg(g) < n, then Res(f, g) = fn−dm Res(f, h),

where h = gdx
d + · · ·+ g1x+ g0.
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Proof. (1) – (4): Are left to the reader.
(5): The Sylvester matrix has the form

Syl(f, g) =

[
T ∗
0 Syl(f, h)

]
where T is an upper triangular matrix of size (n − d)-by-(n − d) with diagonal
(fm, . . . , fm). □

Lemma 4.8.6. In the context of Lemma 4.8.5, assume m ≤ n and deg(f) = m.
Let q and r be the unique polynomials in k[x] guaranteed by The Division Algorithm

(Theorem 3.6.4) which satisfy: q =
∑n−m
i=0 qix

i, r =
∑m−1
i=0 rix

i, and g = qf + r.
Then Res(f, g) = fn−m+1

m Res(f, r).

Proof. Write c = −qn−m = −gn/fm, and set h = g + cxn−mf =
∑n−1
i=0 hix

i.
Let Im = E11 + · · · + Emm ∈ Mm(k), In = E11 + · · · + Enn ∈ Mn(k), and Imn =
E11 + · · ·+ Emm ∈Mmn(k). The product[

In 0
cImn Im

]
Syl(f, g) =

[
fm ∗

Syl(f, h)

]
corresponds to elementary row operations. The determinant formulas in Lemma 4.7.5
and Lemma 4.7.7 imply that Res(f, g) = fmRes(f, h). By induction on n−m, we
are done. □

Theorem 4.8.7. In the context of Lemma 4.8.5, assume F/k is an extension
of fields such that in the unique factorization domain F [x] both polynomials f and
g have no irreducible factor of degree greater than one.

(1) If m = deg(f) ≥ 1 and f = fm(x − α1) · · · (x − αm) is a factorization of
f into a product of linear polynomials, then

Res(f, g) = fnm

m∏
i=1

g(αi).

(2) If deg(g) = n ≥ 1 and g = gn(x − β1) · · · (x − βn) is a factorization of g
into a product of linear polynomials, then

Res(f, g) = (−1)mngmn
n∏
j=1

f(βj).

(3) Suppose deg(f) = m ≥ 1 and deg(g) = n ≥ 1. If f = fm(x− α1) · · · (x−
αm) and g = gn(x − β1) · · · (x − βn) are factorizations of f and g into
products of linear polynomials, then

Res(f, g) = fnmg
m
n

m∏
i=1

n∏
j=1

(αi − βj).

Proof. We prove (1) and (2) simultaneously. The reader should verify that
Part (3) follows from Parts (1) and (2).

The proof is by induction on m+n. The basis for the induction, which follows
from Lemma 4.8.5, is when n = 0 or m = 0. Assume from now on that 1 ≤ m and
1 ≤ n.

Case 1: deg(f) = m ≥ 1, and deg(g) = d < n. If we set h =
∑d
i=0 gix

i,
then by Lemma 4.8.5 (5), Res(f, g) = fn−dm Res(f, g). By the induction hypothesis,
Res(f, g) = fn−dm Res(f, g) = fn−dm fdm

∏m
i=1 g(αi). Which proves (1) in this case.
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Case 2: deg(g) = n ≥ 1, and deg(f) = d < m. In this case, Part (2) follows by
Case 1 and Lemma 4.8.5 (4).

Case 3: Assume deg(f) = m ≥ 1 and deg(g) = n ≥ 1, and m ≤ n. As in

Lemma 4.8.6, write g = fq + r, where r =
∑m−1
i=0 rix

i. By Lemma 4.8.6 and the
induction hypothesis,

Res(f, g) = fn−m+1
m Res(f, r)

= fn−m+1
m fm−1m

m∏
i=1

r(αi)

= fnm

m∏
i=1

g(αi)

where the last equation follows since r(αi) = g(αi) − f(αi)q(αi). In this case, we
have proved Part (1). By

Res(f, g) = fnm

m∏
i=1

g(αi)

= fnm

m∏
i=1

gn(αi − β1) · · · (αi − βn)

= gmn

n∏
j=1

fm(α1 − βj) · · · (αm − βj)

= (−1)mngmn
n∏
j=1

f(βj)

we see that Part (2) holds in Case 3.
Case 4: Assume deg(f) = m ≥ 1 and deg(g) = n ≥ 1, and n ≤ m. By

Lemma 4.8.5 (4), this reduces to Case 3. □

Corollary 4.8.8. In the above context, Res(f, g) = 0 if and only if one of the
following is satisfied:

(1) deg(f) < m and deg(g) < n.
(2) (f, g) ̸= k[x], or equivalently, f and g have a common irreducible factor,

or equivalently, f and g have a common root in some extension field F/k.

Proof. If (1) is true, then the first column of Syl(f, g) is made up of zeros,
so Res(f, g) = 0. Otherwise, by Lemma 4.8.5, we can reduce to the case where
deg(f) = m. By Theorem 4.8.7 (1), Res(f, g) = 0 if and only if f and g have a
common root in some extension field F/k. By Exercise 3.6.26, this is equivalent to
(2). □





CHAPTER 5

Fields

If k is a field, there is a unique homomorphism η : Z→ k and the kernel of η is
either (0), or (p) for some prime p. If η is one-to-one, then the characteristic of k
is zero and k contains the quotient field of im η, which is isomorphic to the field of
rational numbers Q. Otherwise, the characteristic of k is positive and the image of
η is a finite field isomorphic to Z/p, where p = char k. The image of η is contained
in every subring of k. The prime subfield of k is the smallest subfield P of k, it
contains the image of η. If char k = 0, then P is isomorphic to Q. Otherwise,
char k = p is positive and P is isomorphic to Z/p.

1. Algebraic Extensions and Transcendental Extensions

Let k and F be fields. If k is a subring of F , then we say F is an extension of
k, k is a subfield of F , or that F/k is an extension of fields.

Let F/k be an extension of fields. Then F is a k-algebra, and in particular F
is a vector space over k. If X ⊆ F , then by k[X] we denote the k-subalgebra of F
generated by k and X. By k(X) we denote the subfield of F generated by k and
X. If F = k(u1, . . . , un), then we say F is finitely generated over k. If F = k(u),
then we say F is a simple extension of k.

Lemma 5.1.1. Let F/k be an extension of fields and X ⊆ F .
(1) k[X] = {g(u1, . . . , un) | n ≥ 1, ui ∈ X, g ∈ k[x1, . . . , xn]}
(2) k(X) =

{
g(u1,...,un)
h(v1,...,vn)

| n ≥ 1, ui, vj ∈ X, g, h ∈ k[x1, . . . , xn], h(v1, . . . , vn) ̸= 0
}

As k-algebras, the quotient field of k[X] is isomorphic to k(X).

Proof. Is left to the reader. □

Let F/k be an extension of fields. Let L andM be intermediate fields. That is,
k ⊆ L ⊆ F and k ⊆M ⊆ F . The composite of L andM , denoted LM , is k(L∪M).

Let F/k be an extension of fields and u ∈ F . By Definition 4.5.1, u is algebraic
over k if there is a nonzero polynomial f ∈ k[x] and f(u) = 0. Otherwise, u is
transcendental over k. We say F/k is an algebraic extension if each element of F
is algebraic over k.

Proposition 5.1.2. Let F/k be an extension of fields and u ∈ F a transcen-
dental element. Let x be an indeterminate. Then k(x) ∼= k(u) by a k-algebra
isomorphism which maps x to u.

Proof. Let ϕ : k[x] → k(u). Since u is transcendental, if h(x) ∈ k[x] is
nonzero, then h(u) ̸= 0 in k(u). By Theorem 3.5.5, ϕ factors through k(x). □

Theorem 5.1.3. Let F/k be an extension of fields. Let u be an element of F
which is algebraic over k. Let x be an indeterminate.

203
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(1) k[u] = k(u)
(2) k[u] ∼= k[x]/(f) where f ∈ k[x] satisfies

(a) f is monic, irreducible,
(b) f(u) = 0, and
(c) if g(u) = 0 for some g ∈ k[x], then f divides g.
The polynomial f is uniquely determined by u. We call f the irreducible
polynomial for u over k and write f = Irr.polyk(u). Sometimes f is
called the minimal polynomial for u over k, in which case we write f =
min.polyk(u).

(3) If f is the irreducible polynomial of u and deg f = n, then {1, u, . . . , un−1}
is a basis for k[u] as a k-vector space.

(4) dimk(k[u]) is equal to the degree of the irreducible polynomial of u.

Proof. (2): Let ϕ : k[x]→ F be the k-algebra homomorphism determined by
x 7→ u. Since k[x] is a principal ideal domain, the kernel of ϕ is a principal ideal,
say ker(ϕ) = (f). Then ϕ factors to give the isomorphism k[x]/(f) ∼= k[u]. Since
F is a field, the kernel of ϕ is a prime ideal. Since k[x] is a principal ideal domain,
the prime ideal (f) is maximal, f is irreducible, and we can assume f is monic. It
follows that the image of ϕ is a field, so k[u] = k(u). Notice that g ∈ ker(ϕ) if and
only if g(u) = 0 if and only if f divides g.

(2) implies (1): By (2), k[u] is a field.
(2) implies (3): By Exercise 4.2.26.
(3) implies (4): Immediate. □

Theorem 5.1.4. Assume F/k is an extension of fields and u ∈ F . Assume
L/K is another extension of fields and v ∈ L. Let σ : k → K be an isomorphism
of fields and assume either

(1) u is transcendental over k and v is transcendental over K, or
(2) u is a root of the irreducible polynomial f ∈ k[x] and v is a root of the

irreducible polynomial σ̄(f) ∈ K[x].

Then there is an isomorphism τ : k(u)→ K(v) such that τ |k = σ and τ(u) = v.

Proof. (1): Follows straight from Proposition 5.1.2.
(2): Note that σ induces an isomorphism σ̄ : k[x] → K[x] and the image of

the irreducible polynomial f is the irreducible polynomial σ̄(f). Consequently, the
kernel of

k[x]→ K[x]

(σ̄(f))

is the principal ideal (f). The rest follows from Theorem 5.1.3. □

Corollary 5.1.5. Let F/k be an extension of fields and assume u, v ∈ F .
Assume either

(1) u and v are transcendental over k, or
(2) u and v are algebraic and satisfy the same irreducible polynomial.

Then there is a k-algebra isomorphism τ : k(u)→ k(v) such that τ(u) = v.

Corollary 5.1.6. Let F/k be an extension of fields. Assume u, v ∈ F are
algebraic over k and that there is a k-algebra isomorphism τ : k(u) → k(v) such
that τ(u) = v. Then u and v satisfy the same irreducible polynomial.
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Proof. Let ϕ : k[x] → k[u] where ϕ(x) = u. Let ψ : k[x] → k[v] where
ψ(x) = v. The diagram of k-algebra homomorphisms

k[x]
ϕ //

=

��

k[u]

τ

��
k[x]

ψ // k[v]

commutes. Let ker(ϕ) = (f), where f is the monic irreducible polynomial for u.
The diagram commutes, so f ∈ ker(ψ). It follows that f(v) = 0. Since ker(ψ) is a
principal ideal and maximal, it follows that ker(ψ) is generated by f . □

Example 5.1.7. In R[x], the polynomial f = x2 + 1 is irreducible. The two
roots of f in C are i,−i. By Corollary 5.1.5, there is an R-algebra automorphism
χ : C → C such that χ(i) = −i. The automorphism χ is usually called complex
conjugation (see Section 1.5). Let σ ∈ AutR C. By Corollary 5.1.6, σ(i) is equal to
i or −i. This proves AutR C = ⟨χ⟩ is a group of order two. For a generalization of
this example, see Exercise 5.1.26.

Theorem 5.1.8. (Kronecker’s Theorem) Let k be a field and f a polynomial
of positive degree in k[x]. There exists an extension field F of k and an element
u ∈ F satisfying

(1) u is a root of f ,
(2) dimk(k[u]) ≤ deg(f), and
(3) if f is irreducible, then dimk(k[u]) = deg(f) and k[u] is unique up to a

k-algebra isomorphism.

Proof. Let g be an irreducible factor of f , set F = k[x]/(g) and take u to be
the coset of x in F . The rest follows from Theorem 5.1.3 and Corollary 5.1.5. □

Example 5.1.9. Let p be a prime and k a field of characteristic p. Let α ∈ k
and f = xp−α. In this example we show that f is either irreducible, or factors into
a product of linear polynomials. The Frobenius homomorphism θ : k → k is defined
by a 7→ ap (Exercise 3.2.20). If α = ap for some a ∈ k, then f = xp− ap = (x− a)p
by (Exercise 3.2.19). This shows that f is a product of linear polynomials over k,
if f has a root in k. Now assume that α is not in the image of the Frobenius map.
Thus f does not have a root in k. For sake of contradiction assume f is reducible
over k. Let f = gg1 where g is irreducible and deg g = m where 1 ≤ m < p. Let
F = k[x]/(g). By Theorem 5.1.8, F is an extension field of k containing a root u of
g. Every root of g is a root of f . By the first part, f = (x−u)p in F [x]. By unique
factorization (Theorem 3.7.4), this implies g = (x− u)m in F [x]. But g ∈ k[x]. By
the Binomial Theorem (Exercise 3.1.23), g = xm −muxm−1 + · · ·+ (−u)m, which
implies mu ∈ k. But gcd(m, p) = 1 implies u ∈ k. This contradicts our original
assumption that f does not have a root in k. We have shown that f = xp − α is
either irreducible, or factors into a product of linear polynomials. For a continuation
of this example, see Exercise 5.1.27.

Proposition 5.1.10. Let F/k be an extension of fields.

(1) If F is finite dimensional over k, then F is finitely generated and algebraic
over k.
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(2) (Finitely Generated and Algebraic is Finite Dimensional) If X = {u1, . . . , un} ⊆
F and each ui is algebraic over k, then dimk k(X) <∞.

(3) If F = k(X) and every element of X is algebraic over k, then F is alge-
braic over k.

(4) (Algebraic over Algebraic is Algebraic) Let E be an intermediate field of
F/k. If F/E is algebraic and E/k is algebraic, then F/k is algebraic.

(5) (Algebraic Closure of k in F ) If E = {u ∈ F | u is algebraic over k},
then E is an intermediate field of F/k.

Proof. (1): Clearly F is finitely generated. Suppose u ∈ F , and dimk(F ) =
n. The set {un, un−1, . . . , u, 1} is linearly dependent. A dependence relation 0 =
anu

n + an−1u
n−1 + · · ·+ a1u+ a0 over k shows that u is algebraic over k.

(2): By Theorem 5.1.3, dimk k(u1) < ∞. Now use induction and Proposi-
tion 4.2.39.

(3): Let u ∈ k(X). Then there exist u1, . . . , um, v1, . . . , vn in X and polynomi-
als f, g over k such that

u =
f(u1, . . . , um)

g(v1, . . . , vn)
.

This shows u ∈ k(u1, . . . , um, v1, . . . , vn). By Parts (2) and (1) this shows u is
algebraic over k.

(4): Let u ∈ F . There is a polynomial f =
∑n
i=0 aix

i in E[x] such that
f(u) = 0. Let K = k(a0, . . . , an). Then u is algebraic over K and dimK K(u) <∞.
Since each ai is algebraic over k, by Part (2), dimkK <∞. By Proposition 4.2.39,
dimkK(u) <∞. By Part (1), u is algebraic over k.

(5): Let u, v be algebraic over k. By Part (3), k(u, v) is an algebraic extension
of k. So k(u, v) ⊆ E. Therefore, u+ v, u− v, uv, u/v are all in E. It follows that
E is a field. □

Theorem 5.1.11. Let K/k be an extension of fields. Let E and F be interme-
diate fields.

EF

E F

E ∩ F

k

Assume dimk F = n is finite and that {v1, . . . , vn} is a basis for F as a k-vector
space. The following are true.

(1) As a vector space over E, EF is spanned by {v1, . . . , vn}.
(2) dimE (EF ) ≤ dimk F .
(3) If dimk E = m is finite and {u1, . . . , um} is a basis for E as a k-vector

space, then dimk EF ≤ dimk E dimk F and as a vector space over k, EF
is spanned by {uivj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

(4) If m = dimk E and n = dimk F are finite and gcd(m,n) = 1, then
dimk EF = dimk F dimk E.
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(5) If dimk EF = dimk F dimk E, then k = E ∩ F .

Proof. (1): We have F = k(v1, . . . , vn). Then EF = k(E ∪ F ) = k(E)(F ) =
E(F ) = E(k(v1, . . . , vn)) = E(v1, . . . , vn). By Lemma 5.1.1, a typical element u in
EF is a linear combination u = e1M1 + · · ·+ erMr where each ei is in E and each
Mi is a monomial of the form Mi = v

ϵi,1
1 · · · vϵi,nn , where ϵi,j ≥ 0 for each i, j. In the

field F , each monomial Mi can be written as a k-linear combination in the form
Mi = ai,1v1 + · · ·+ ai,nvn, where ai,j ∈ k for each i, j. Therefore,

u = e1M1 + · · ·+ erMr

=

r∑
i=1

ei n∑
j=1

ai,jvj



This proves (1).
(2): This part follows from (1) and Proposition 4.2.34.
(3) This part follows from (2), Proposition 4.2.39, and its proof.
(4): We have dimk (E) = m and dimk (F ) = n both divide dimk (EF ). Since

m and n are relatively prime, it follows that mn is the least common multiple of m
and n. Thus mn ≤ dimk (EF ). This and (3) proves (4).

(5): We have dimk (EF ) = dimk (F ) dimk (E) = dimE (EF ) dimk (E), which
implies dimE (EF ) = dimk (F ). By this and (2), dimE (EF ) = dimk (F ) ≤
dimE∩F (F ). Proposition 4.2.39 implies k = E ∩ F . □

Proposition 5.1.12. Let F/k be an extension of fields and assume dimk F = n
is finite. Using the left regular representation λ : F → Homk(F, F ), we view
Homk(F, F ) as a left F -vector space. Then the following are true.

(1) dimF (Homk(F, F )) = n.
(2) If {v1, . . . , vn} is a k-basis for F and {ϕ1, . . . , ϕn} is an F -basis for Homk(F, F ),

then the matrix (ϕi(vj)) is invertible in Mn(F ).

Proof. By Example 4.4.3, the left regular representation λ : F → Homk(F, F )
is a k-algebra homomorphism and by Lemma 4.1.2 this makes Homk(F, F ) into a
left F -vector space. By Proposition 4.4.10, dimk (Homk(F, F )) = n2. By Proposi-
tion 4.2.39,

dimk (Homk(F, F )) = dimF (Homk(F, F )) dimk(F ).

It follows that dimF (Homk(F, F )) = n, which is (1). To prove (2), by Exer-
cise 4.2.46 and Proposition 4.4.13, it suffices to show that the kernel of the homo-
morphism Fn → Fn defined by left multiplication by (ϕi(vj)) is (0). Assume
(u1, . . . , un) ∈ Fn and

∑n
i=1 uiϕi(vj) = 0 for each j. Let x be an arbitrary element
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of F . Then we can write x =
∑n
j=1 ajvj for some a1, . . . , an in k. Consider

n∑
i=1

uiϕi(x) =

n∑
i=1

uiϕi

 n∑
j=1

ajvj


=

n∑
i=1

ui

n∑
j=1

ajϕi(vj)

=

n∑
i=1

n∑
j=1

ajuiϕi(vj)

=

n∑
j=1

aj

n∑
i=1

uiϕi(vj)

= 0.

Since x ∈ F was arbitrary and {ϕ1, . . . , ϕn} is an F -basis for Homk(F, F ), this
implies ui = 0 for each i. This proves (2). □

1.1. Classical Straightedge and Compass Constructions. A real num-
ber a in R is constructible if by use of straightedge and compass we can construct a
line segment of length |a|. We are given that 1 is constructible. Ruler and compass
constructions involve

(1) Drawing lines through two points.
(2) Intersecting two lines.
(3) Drawing a circle with a given center and radius.
(4) Intersecting a line and a circle.
(5) Intersecting two circles.

Lemma 5.1.13. The set of all constructible numbers is a subfield of R containing
Q.

Proof. Using the straightedge we can construct the x-axis. Given the unit
length 1 and compass we can construct any n ∈ Z. In fact, for any construcible
numbers a and b, the compass can be used to construct a±b. Using the straightedge
and compass we can construct the y-axis, by erecting a perpendicular to the x-axis
at the number 0. The line L through the points (0, 0) and (1, b) in R2 is the set
of solutions to y = bx. The point (a, ab) is the intersection of L with the vertical
line through (a, 0). If b ̸= 0, the point (a/b, b) is the intersection of L with the
horizontal line through (0, b). Therefore, ab and a/b are constructible. □

Let F be any subfield of R. Let F 2 = {(x, y) | x, y ∈ F} be the plane over F ,
which we view as a subset of the euclidean plan R2. A linear equation over F in
two variables is an equation of the form ax+by+c = 0, where a and b are in F and
are not both equal to 0. A line in F 2 is the set of solutions (x, y) ∈ F 2 to a linear
equation over F . A circle in F 2 is the set of solutions (x, y) ∈ F 2 to a quadratic
equation of the form x2 + y2 + ax+ by + c = 0, where a, b, c ∈ F .

Lemma 5.1.14. The following are true.

(1) Given A0 = (x0, y0) and A1 = (x1, y1) in F 2, if A0 ̸= A1, there is a line
L in F 2 passing through A0 and A1.
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(2) Given a point A0 = (x0, y0) in F 2 and a positive r ∈ F , there is a circle
in F 2 with center A0 and radius r.

(3) If L1 and L2 are non-parallel lines in F 2, then L1 ∩ L2 is a point in F 2.
(4) If L is a line and C a circle, both in F 2, and L ∩ C is non-empty in R2,

then L∩C is non-empty in the plane over F (
√
γ), for some γ ∈ F , γ ≥ 0.

(5) If C0 and C1 are circles in F 2, and C0 ∩ C1 is non-empty in R2, then
C0 ∩ C1 is non-empty in the plane over F (

√
γ), for some γ ∈ F , γ ≥ 0.

Proof. (1), (2) and (3): Proofs are left to the reader.
(4): Suppose the equation for C is x2 + y2 + ax+ by+ c = 0, and the equation

for L is dx+ey+f = 0, where a, b, c, d, e, f ∈ F . Without loss of generality, assume
e ̸= 0. Solve for y on the line L to get y = −(f + dx)/e. Substituting into C,

x2 + (f + dx)2/e2 + ax− b(f + dx)/e+ c = 0.

This is a quadratic equation over F of the form Ax2 + Bx + C = 0, where A =
(e2 + d2)/e2 > 0. In the field of complex numbers C the solutions are

x =
−B ±

√
B2 − 4AC

2A
.

Let γ = B2 − 4AC. Then γ ∈ F . If γ = 0, then L ∩ C consists of one point in F 2.
If γ < 0, then in R2, L ∩ C = ∅. If γ > 0, then there are two points in L ∩ C, and
both belong to the plane over F (

√
γ).

(5): Suppose the equation for C0 is x
2+y2+a0x+b0y+c0 = 0, and the equation

for C1 is x2 + y2 + a1x+ b1y + c1 = 0. If C0 = C1, then take γ to be 1. Otherwise
subtract to get (a0− a1)x+ (b0− b1)y+ (c0− c1) = 0. If a0 = a1 and b0 = b1, then
C0 ∩C1 = ∅. Otherwise the linear equation (a0 − a1)x+ (b0 − b1)y + (c0 − c1) = 0
defines a line, which we call L. Then C0 ∩ L = C1 ∩ L = C0 ∩ C1, and we reduce
to part (4). □

Proposition 5.1.15. If u ∈ R is constructible, then for some r ≥ 0, dimQ(Q(u))
is equal to 2r.

Proof. To construct u, a finite sequence of straightedge and compass con-
structions are performed. By Lemma 5.1.14, u belongs to a field extension of Q
obtained by a finite number of quadratic extensions, each of which is inside R.
There exist positive real numbers γ1, . . . , γn such that u belongs to Q(γ1) · · · (γn),
a subfield of R. Moreover, γ21 ∈ Q and for 1 < i ≤ n, γ2i ∈ Q(γ1, . . . , γi−1). By
Proposition 4.2.39, degrees of consecutive extensions multiply. The degree of each
consecutive extension is either 1 or 2. This means dimQ(Q(γ1, . . . , γn)) is 2s for
some s ≥ 0. Since dimQ(Q(u)) divides 2s, we are done. □

Corollary 5.1.16. Suppose u ∈ R is algebraic over Q and the degree of
Irr.polyQ(u) has degree d. If d is not of the form 2r, then u is not constructible.

Theorem 5.1.17. It is impossible by straightedge and compass alone to

(1) trisect the angle 60◦ (that is, cos 20◦ is not constuctible),

(2) double the cube (that is, 3
√
2 is not constuctible), or

(3) square the circle (that is,
√
π is not constuctible).

Proof. (1): Take θ to be 60◦. Then cos θ = 1
2 . By trigonometry, cos θ =

4 cos3
(
θ
3

)
− 3 cos

(
θ
3

)
. Let u = 2 cos 20◦. Then u satisfies u3 − 3u − 1 = 0. The



210 5. FIELDS

irreducible polynomial for u over Q is x3 − 3x − 1, which has degree 3. Then u is
not constructible, cos 20◦ is not constructible, and it is impossible to trisect 60◦.

(2): The irreducible polynomial for 3
√
2 over Q is x3 − 2, which has degree 3.

(3): We have not proved it here, but π is transcendental. Hence
√
π is not

constuctible. □

1.2. Exercises.

Exercise 5.1.18. Let p be an odd prime and k = Z/p the field of order p.
Show that there are (p−1)/2 elements α ∈ Up such that ϕα = x2−α is irreducible.
Show that in this case k[x]/(ϕα) is a field of order p2.

Exercise 5.1.19. Let k = Z/3 be the field of order 3. Show that f = x2 + 1
is irreducible over k. Let F = k[x]/(f). Let u ∈ F be the coset represented by x.
Show that u + 1, u − 1,−u + 1,−u − 1 have order 8 in F ∗. Show that u and −u
have order 4.

Exercise 5.1.20. Let p(x) = x3 − 3x − 1 ∈ Q[x]. Show that p is irreducible
and let F = Q[x]/(p) be the quotient. Let u denote the element of F corresponding
to the coset containing x.

(1) Exhibit a basis for F as a Q-vector space.
(2) Write the following in terms of the basis given in (1): u−1, u4 + 2u3 + 3,

u−2.

Exercise 5.1.21. Let F/k be an extension of fields. Prove that F/k is an
algebraic extension if and only if for every k-subalgebra R of F , R is a field.

Exercise 5.1.22. Let k be a field and F an extension field of k. Suppose α and
β are elements of F that are algebraic over k. Using resultants (Section 4.8.2), show
that α+β and αβ are algebraic over k. Show how to find the minimal polynomials
for α+ β and αβ.

Exercise 5.1.23. Let F/k be an extension of fields and assume dimk F = p is
prime. Let u be any element of F that is not in k. Prove that F = k(u).

Exercise 5.1.24. Let F/k be an extension of fields and assume dimk F = 2.
Let u be an element of F that is not in k and f = Irr.polyk u. Show that over F ,
f factors into a product of linear polynomials.

Exercise 5.1.25. Suppose K/k is an extension of fields. For i = 1, 2 let Fi be
an intermediate field, k ⊆ Fi ⊆ K, such that [Fi : k] = 2. Prove that F1 and F2

are isomorphic as k-algebras if and only if they are equal as sets.

Exercise 5.1.26. Let k be a field, f ∈ k[x] an irreducible polynomial of degree
two and K = k[x]/(f). Show that if f has two distinct roots in K, then AutkK is
a cyclic group of order two.

Exercise 5.1.27. As in Example 5.1.9, let p be a prime, k a field of characteris-
tic p, α ∈ k, and f = xp−α ∈ k[x]. Show that if f is irreducible and K = k[x]/(f),
then AutkK = ⟨1⟩ is the trivial group of order one.

Exercise 5.1.28. Let k be a field, x an indeterminate, and K = k(x) the field
of rational functions. Let α denote the rational function x4/(4x3 − 1) in K. Then
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F = k(α) is a field extension of k and K is a field extension of F . There is a lattice
of subfields

K = k(x)

F = k(α)

ff

k

OO

88

where an arrow denotes set containment. Show that K is algebraic over F . De-
termine the minimal polynomial of x over F and the dimension dimF (K). (Hint:
Apply Exercise 3.7.13 to show that y4 − α(4y3 − 1) is an irreducible polynomial in
K[y].)

Exercise 5.1.29. Let k be a field, x an indeterminate, and n > 1 an integer.
For the extension of fields F = k(xn) ⊆ K = k(x), prove the following.

(1) yn − x is an irreducible polynomial in K[y].
(2) yn − xn is an irreducible polynomial in F [y].
(3) dimF (K) = n.
(4) Irr.polyF (x

n+1) has degree n.
(5) yn − xn+1 is an irreducible polynomial in K[y].

Exercise 5.1.30. Let k be a field, x an indeterminate, and n > 1 an integer.
Let T = k[x], S = k[xn, xn+1], andR = k[xn]. For the tower of subringsR ⊆ S ⊆ T ,
prove:

(1) T is free over R of rank n.
(2) S is free over R of rank n.
(3) T is not free over S.

(Hint: Exercise 5.1.29.) For a continuation of this example, see Exercise 10.1.22.

Exercise 5.1.31. Let R be a unique factorization domain with quotient field
K. Assume char(R) ̸= 2. Let F/K be a quadratic extension of fields. In other
words, assume dimK F = 2. Show that there exists a square free element a ∈ R
such that F = K[x]/(x2 − a) = K(

√
a).

2. The Fundamental Theorem of Galois Theory

In this section we present a proof of the Fundamental Theorem of Galois Theory
which is due to DeMeyer [17].

Let F/k be an extension of fields. As in Definition 4.1.7, by Autk(F ) we denote
the group of all k-algebra automorphisms of F . If G is a group and H is a subgroup,
the index of H in G is denoted [G : H]. The order of G is [G : 1].

Definition 5.2.1. Let F/k be an extension of fields and G a finite subgroup
of Autk(F ). If k = FG, then we say F/k is a Galois extension with Galois group
G.

Proposition 5.2.2. Let F/k be an extension of fields.

(1) Let f ∈ k[x], σ ∈ Autk(F ), and u ∈ F . If f(u) = 0, then f(σ(u)) = 0.
(2) Assume u ∈ F is algebraic over k and E = k[u]. If σ ∈ Autk(E), then σ

is completely determined by σ(u).
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(3) If H is a subset of G = Autk(F ), then

FH = {v ∈ F | σ(v) = v, (∀σ ∈ H)}

is an intermediate field of F/k which is called the fixed field of H.
(4) If G = Autk(F ) and E is an intermediate field of F/k, then

GE = {σ ∈ G | σ(v) = v, (∀v ∈ E)}

is a subgroup of G which is called the subgroup of G fixing E. Note that
GE = AutE(F ).

Proof. (1): If f =
∑n
i=0 aix

i, then f(σ(u)) =
∑
ai(σ(u))

i =
∑
σ(aiu

i) =
σ(
∑
aiu

i) = σ(0) = 0.
(2): By Theorem 5.1.3, there is a k-basis for E of the form 1, u, u2, . . . , un−1

where n = dimk(E).
(3) and (4): Proofs are left to the reader. See Section 2.4.1, especially Defini-

tion 2.4.9. □

Example 5.2.3. Let F2 = {0, 1} be the field of order 2, which is isomorphic to
the ring Z/2. Let p(x) = x2 + x + 1 ∈ F2[x]. Since p(0) = p(1) = 1, p(x) has no
root in F2 and is irreducible in F2[x]. Let F be the splitting field of p(x). Then F
has order 4. Let α be a root of p(x) in F . Then α2 = α+1 and by Theorem 5.1.3,
F = {0, 1, α, α + 1}. Let ϕ ∈ Aut(F ). Then ϕ(0) = 0, ϕ(1) = 1 and ϕ(α) is equal
to α or α + 1. If ϕ(α) = α, then ϕ is equal to 1 ∈ Aut(F ), the identity function.
By Proposition 5.2.2, ϕ is determined by the value of ϕ(α). Therefore, Aut(F ) has
order at most 2. We prove that there is an automorphism of order two in Aut(F ).
By Exercise 3.2.20, the Frobenius homomorphism σ : F → F defined by σ(a) = a2

is a homomorphism. Since F is a finite field, σ is necessarily one-to-one and onto
(Exercises 3.2.17 and 1.1.11). Since σ(α) = α2 = α+1, we have shown that Aut(F )
has order two.

Lemma 5.2.4. Let F be a field with automorphism group Aut(F ). Let G be a
finite subset of Aut(F ), and set k = FG. Let E be an intermediate field of F/k
and GE = G ∩AutE(F ). Then there exist elements a1, . . . , an in E and y1, . . . , yn
in F such that for each σ ∈ G

(2.1) a1σ(y1) + · · ·+ anσ(yn) =

{
1 if σ ∈ GE
0 if σ ̸∈ GE.

Proof. If G = GE , then simply take n = 1, a1 = y1 = 1. If G ̸= GE , pick σ in
G−GE and let S = GE∪{σ}. There is an element a ∈ E such that σ(a) ̸= a. Since
F is a field and σ is an automorphism, there is b ∈ F such that b(σ−1(a)− a) = 1.
Set a1 = a, a2 = 1, y1 = −b, y2 = bσ−1(a). For any τ ∈ GE we have

a1τ(y1) + a2τ(y2) = τ(a1y1 + a2y2) = τ(−ab+ bσ−1(a)) = τ(1) = 1

and for σ ∈ S −GE ,

a1σ(y1) + a2σ(y2) = −aσ(b) + σ(bσ−1(a)) = 0.

Now suppose S is a subset of G containing GE such that there exist a1, . . . , am in
E and y1, . . . , ym in F satisfying (2.1) for all σ ∈ S. Also suppose S′ is another
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subset of G containing GE such that there exist a′1, . . . , a
′
n in E and y′1, . . . , y

′
n in

F satisfying (2.1) for all σ′ ∈ S′. For any τ ∈ S ∪ S′ we get

m∑
i=1

n∑
j=1

aia
′
jτ(yiy

′
j) =

(
m∑
i=1

aiτ(yi)

) n∑
j=1

a′jτ(y
′
j)


=

{
1 if τ ∈ GE
0 if τ ̸∈ GE .

The sets of elements {aia′j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} in E and {yiy′j | 1 ≤ i ≤ m, 1 ≤
j ≤ n} in F satisfy (2.1) for all τ in S ∪ S′. The proof is complete, by a finite
induction argument, since G has a finite covering by the sets GE ∪ {σ}. □

Lemma 5.2.5. Let F be a field and G a subgroup of Aut(F ). Let k = FG

and let E be an intermediate field of F/k. Let σ1, . . . , σm be a set of left coset
representatives for GE in G. If u1, . . . , um are in F such that

m∑
i=1

uiσi(x) = 0

for all x ∈ E, then each ui is equal to zero.

Proof. Fix an integer p such that 1 ≤ p ≤ m. By Lemma 5.2.4 applied
to the set {σ−11 σp, . . . , σ

−1
m σp}, there exist elements a1, . . . , an in E and elements

y1, . . . , yn in F such that for each 1 ≤ j ≤ m,

a1σ
−1
j σp(y1) + · · ·+ anσ

−1
j σp(yn) =

{
1 if p = j

0 if p ̸= j.

If u1σ1(x) + · · ·+ umσm(x) = 0 for all x ∈ E, then

0 =

n∑
i=1

 m∑
j=1

ujσj(ai)

σp(yi)

=

m∑
j=1

uj

(
n∑
i=1

σj(ai)σp(yi)

)

=
m∑
j=1

ujσj

(
n∑
i=1

aiσ
−1
j σp(yi)

)
= up.

□

Lemma 5.2.6. If F is a field and G is a finite subgroup of Aut(F ), then there
exists c ∈ F such that

∑
σ∈G σ(c) = 1.

Proof. By Lemma 5.2.5 with E = F , there exists an element b ∈ F such that
x =

∑
σ∈G σ(b) ̸= 0. Since x is in FG = k and k is a field, x−1 ∈ k. Take c = x−1b.

Then ∑
σ∈G

σ(c) =
∑
σ∈G

σ(x−1b) = x−1
∑
σ∈G

σ(b) = 1.

□
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Lemma 5.2.7. Let F/k be a Galois extension with finite group G. Let E be an
intermediate field of F/k and let σ1, . . . , σm be a full set of left coset representatives
for GE in G. If T ∈ Homk(E,F ), then there exist unique elements u1, . . . , um in
F such that

T (x) =

m∑
j=1

ujσj(x)

for all x ∈ E.

Proof. By Lemma 5.2.4 there exist a1, . . . , an in E and y1, . . . , yn in F satis-
fying

a1σ(y1) + · · ·+ anσ(yn) =

{
1 if σ ∈ GE
0 if σ ̸∈ GE .

By Lemma 5.2.6 there exists c ∈ F such that
∑
σ∈GE

σ(c) = 1. If x ∈ E and

σ ∈ GE , then σ(x) = x. It follows that

x =
∑
σ∈GE

σ(c)σ(x)

=
∑
σ∈GE

(
σ(c)σ(x)

n∑
i=1

aiσ(yi)

)

=
∑
σ∈G

(
σ(cx)

n∑
i=1

aiσ(yi)

)

=

n∑
i=1

∑
σ∈G

aiσ(yicx).

For any y ∈ F ,
∑
σ∈G σ(y) ∈ k. Applying T ,

T (x) =

n∑
i=1

T

(
ai
∑
σ∈G

σ(yicx)

)

=

n∑
i=1

T (ai)

(∑
σ∈G

σ(yicx)

)

=
∑
σ∈G

(
n∑
i=1

T (ai)σ(yic)

)
σ(x).

The outer sum can be split over the cosets of GE in G. Therefore, setting

uj =
∑

σ∈σjGE

n∑
i=1

T (ai)σ(yic),

we have

T (x) =

m∑
j=1

ujσj(x).

To prove that the coefficients are unique, assume
m∑
j=1

ujσj(x) =

m∑
j=1

vjσj(x)
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for all x ∈ E. Then
m∑
j=1

(uj − vj)σj(x) = 0

and by Lemma 5.2.5, uj − vj = 0 for all j. □

Theorem 5.2.8. Let F/k be a finite Galois extension with group G. Let E be
an intermediate field of F/k. If τ : E → F is a k-algebra homomorphism, then τ
is the restriction of some σ ∈ G. In particular, Autk(F ) = G.

Proof. Let σ1, . . . , σm be a full set of left coset representatives for GE in G.
By Lemma 5.2.7 there exist u1, . . . , um such that τ(x) = u1σ1(x) + · · ·+ umσm(x)
for all x ∈ E. For any a, b ∈ E we have

τ(ab) =

m∑
j=1

ujσj(a)σj(b)

as well as

τ(ab) = τ(a)τ(b) = τ(a)

m∑
j=1

ujσj(b) =

m∑
j=1

ujτ(a)σj(b).

Subtracting yields

0 =

m∑
j=1

uj (σj(a)− τ(a))σj(b).

The uniqueness part of Lemma 5.2.7 says uj(σj(a) − τ(a)) = 0 for all a ∈ E and
for all j. There is at least one j such that uj ̸= 0. For that j we have τ(a) = σj(a)
for all a ∈ E. □

Theorem 5.2.9. Let F be a field, G a subgroup of Aut(F ) and k = FG. Then
G is finite if and only if dimk(F ) is finite and in this case the order of G is equal
to dimk(F ).

Proof. If G is finite, then apply Lemma 5.2.4 to E = F . There are elements
a1, . . . , an, y1, . . . , yn in F such that

(2.2)

n∑
i=1

aiyi = 1

and

(2.3)

n∑
i=1

aiσ(yi) = 0

for all σ ̸= 1. Let x be an element of F . Multiply (2.2) by x, multiply (2.3) by
σ(x), and sum over all σ to get

x =

n∑
i=1

aiyix+
∑
σ ̸=1

n∑
i=1

aiσ(yix)

=
∑
σ∈G

(
n∑
i=1

aiσ(yix)

)

=

n∑
i=1

ai

(∑
σ∈G

σ(yix)

)
.
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Since
∑
σ∈G σ(yix) ∈ k, it follows that a1, . . . , an is a spanning set for F as a

k-vector space.
Conversely, assume n = dimk(F ) is finite. By Proposition 5.1.12, Homk(F, F )

is an F -vector space of dimension n. By Lemma 5.2.5, with E = F , every finite
subset of G is a linearly independent subset of the F -vector space Homk(F, F ).
This proves [G : 1] ≤ n. By Lemma 5.2.7, the set G is a basis for Homk(F, F ) as
an F -vector space. This proves [G : 1] = n. □

Theorem 5.2.10. (The Fundamental Theorem of Galois Theory) Let F/k be a
Galois extension of fields with finite group G. There is a one-to-one order inverting
correspondence between the subgroups H of G and the intermediate fields E of F/k.
A subgroup H corresponds to the fixed field FH . An intermediate field E corresponds
to the subgroup GE. If E is an intermediate field of F/k, then

(1) dimE(F ) = [GE : 1], dimk(E) = [G : GE ], GE = AutE(F ),
(2) F/E is a Galois extension with group GE, and
(3) E/k is a Galois extension if and only if GE is a normal subgroup of G

and in this case, G/GE ∼= Autk(E).

Proof. The reader should verify that the correspondences given are well de-
fined and order inverting. Suppose H and K are two subgroups of G such that
FH = FK . Apply Theorem 5.2.8 with k = FH = FK and E = F . Then we get
H ⊆ K and K ⊆ H. Let E be an intermediate field of F/k. Then E ⊆ FGE . We
show the reverse inclusion. Let x ∈ FGE . If σ ∈ GE , then σ(x) = x. By the first
part of the proof of Lemma 5.2.7, there exist a1, . . . , an in E, y1, . . . , yn in F , and
c ∈ F such that

x =

n∑
i=1

(
ai
∑
σ∈G

σ(yicx)

)
,

which is in E. The correspondence between subgroups and intermediate fields is
one-to-one. If E is an intermediate field, then F is a Galois extension of E = FGE

and (2) follows. By Theorem 5.2.9, dimE(F ) = [GE : 1]. Also [G : 1] = [G :
GE ][GE : 1] and dimk(F ) = dimk(E) dimE(F ) says dimk(E) = [G : GE ]. By
Theorem 5.2.8 with k = E and E = F , it follows that GE = AutE(F ) and (1) is
done.

(3): Assume GE is a normal subgroup of G. Given σ ∈ G, we show that
σ|E ∈ Homk(E,E). If not, there is some x ∈ E such that σ(x) ̸∈ E. Since
FGE = E, there is τ ∈ GE such that τσ(x) ̸= σ(x), which implies σ−1τσ(x) ̸= x.
This contradicts the assumption that σ−1τσ ∈ GE . Consequently, the restriction
map defines a homomorphism of groups G → Autk(E) with kernel GE . So G/GE
is isomorphic to a subgroup of Autk(E). Since FG = k, it follows that k = EG =
EG/GE , so E/k is a Galois extension with group G/GE . For the converse, assume
E is an intermediate field of F/k which is a Galois extension of k with group
Autk(E). By Theorem 5.2.8, every τ ∈ Autk(E) is the restriction of some element
σ ∈ G. So there is a subgroup G′ of G such that the restriction map σ 7→ σ|E
defines a surjective homomorphism θ : G′ → Autk(E). The kernel of θ contains
GE . Since [Autk(E) : 1] = [E : k] = [G : GE ], a finite counting argument shows
that G′ = G and GE is equal to the kernel of θ. Hence GE is normal in G and
G/GE ∼= Autk(E). □
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Corollary 5.2.11. Let F/k be a Galois extension of fields with finite group
G, then n = dimk(F ) = [G : 1] and if {v1, . . . , vn} is a k-basis for F and G =
{σ1, . . . , σn}, then the matrix (σi(vj)) in Mn(F ) is invertible.

Proof. This follows from Theorem 5.2.9 and Proposition 5.1.12. □

2.1. Exercise.

Exercise 5.2.12. Let F/k be a finite dimensional extension of fields with
dimk(F ) = n. Prove:

(1) The order of the group of automorphisms Autk(F ) is less than or equal
to n.

(2) If {σ1, . . . , σn} is a set of n distinct automorphisms in Autk(F ), then F/k
is a Galois extension and Autk(F ) = {σ1, . . . , σn}.

3. Splitting Fields

Definition 5.3.1. Let k be a field and p a polynomial in k[x] of positive degree.
If F/k is an extension of fields, then we say that p splits in F if each irreducible
factor of p in F [x] is linear. Equivalently, p factors in F [x] into a product of linear
polynomials.

Lemma 5.3.2. Let F be a field. The following are equivalent.

(1) Every nonconstant polynomial p ∈ F [x] has a root in F .
(2) Every nonconstant polynomial p ∈ F [x] splits in F .
(3) Every irreducible polynomial p ∈ F [x] has degree 1.
(4) If K/F is an algebraic extension of fields, then F = K.
(5) F contains a subfield k such that F/k is algebraic and every polynomial

in k[x] splits in F .

Proof. (1), (2), and (3) are clearly equivalent.
To show (3) and (4) are equivalent, use Theorem 5.1.3.
(2) implies (5): Is trivial.
(5) implies (4): If K/F is algebraic, then by Proposition 5.1.10 (4), K/k is

algebraic. If u ∈ K, then the irreducible polynomial of u over k splits in F .
Therefore u ∈ F . □

Definition 5.3.3. If F is a field that satisfies any of the equivalent statements
of Lemma 5.3.2, then we say F is algebraically closed. If F/k is an extension of
fields, we say F is an algebraic closure of k in case F is algebraic over k, and F is
algebraically closed.

Definition 5.3.4. Let F/k be an extension of fields and p a nonconstant poly-
nomial in k[x]. We say that F is a splitting field of p if

(1) p splits in F , and
(2) F = k(u1, . . . , un) where p(ui) = 0 for each i.

If S is a set of polynomials in k[x], then we say F is a splitting field of S if

(1) every polynomial p in S splits in F , and
(2) if X is the set of all u ∈ F such that p(u) = 0 for some p ∈ S, then

F = k(X).

The reader should verify that if S = {p1, . . . , pn} is a finite subset of k[x], then F
is a splitting field for S if and only if F is a splitting field for p1 · · · pn.
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Example 5.3.5. Let F/k be an extension of fields and assume dimk F = 2.
Let u be an element of F that is not in k and f = Irr.polyk u. By Exercises 5.1.23
and 5.1.24, F is a splitting field for f over k.

Example 5.3.6. Let n ≥ 2. In C, let ζ = e2πi/n (see Exercise 2.3.21). Then ζ
is a primitive nth root of unity. That is, {ζk | 0 ≤ k ≤ n − 1} are the n distinct
roots of xn − 1 in C. Therefore, in C[x] we have

xn − 1 = (x− 1)(x− ζ)(x− ζ2) · · · (x− ζn−1)
is the unique factorization of xn − 1. For each k, ζk ∈ Q(ζ). This shows that Q(ζ)
is a splitting field for xn − 1 over Q. The cyclotomic polynomial of degree n− 1 is

ϕn(x) = 1 + x+ · · ·+ xn−1 =
xn − 1

x− 1
.

The distinct roots of ϕn in C are ζ, ζ2, . . . , ζn−1. By the same reasoning as above,
Q(ζ) is a splitting field for ϕn over Q. If p is a prime, then by Example 3.7.8, ϕp is
irreducible over Q. By Theorem 5.1.3, ϕp = Irr.polyQ(ζ), Q(ζ) = Q[x]/(ϕp), and

{1, ζ, ζ2, . . . , ζp−2} is a basis for Q(ζ) as a Q-vector space.

Proposition 5.3.7. Let k be a field.

(1) Let f be a polynomial in k[x] of positive degree n. There exists a splitting
field F/k for f such that dimk(F ) ≤ n!.

(2) Let S be a set of polynomials in k[x]. There exists a splitting field F/k
for S.

(3) There exists an algebraic closure Ω/k for k.

Proof. (1): Factor f = p1 . . . pm in k[x] where each pi is irreducible. If
deg pi = 1 for each i, then take F = k and stop. Otherwise, assume deg p1 > 1 and
by Kronecker’s Theorem (Theorem 5.1.8), there is an extension field F1/k such that
F1 = k(α) and p1(α) = 0. Note that f(α) = 0 and dimk(F1) = deg p1 ≤ n. Factor
f = (x−α)g in F1[x]. By induction on n, there exists a splitting field F/F1 for g and
dimF1

(F ) ≤ (n−1)!. So f splits in F and there exist roots u1, . . . , um of f such that
F = F1(u1, . . . , um) = k(α, u1, . . . , um). Lastly, dimk(F ) = dimk(F1) dimF1

(F ) ≤
n!.

(2): Assume every element of S has degree greater than one. If not, simply
take F = k and stop. The proof is by transfinite induction, Proposition 1.3.2. By
the Well Ordering Principle, Axiom 1.2.1, assume S is indexed by a well ordered
index set I. For any γ ∈ I, let pγ be the corresponding element of S and let
S(γ) = {pα ∈ S | α ≤ γ}. Let p1 be the first element of S and use Part (1) to
construct a splitting field F1/k for p1. Let γ ∈ I and assume 1 < γ. Inductively,
assume that we have constructed for each α < γ an extension field Fα/k that is a
splitting field for S(α). Assume moreover that the set {Fα | α < γ} is an ascending
chain. That is, if α < β < γ, then Fα ⊆ Fβ . It follows that E =

⋃
α<γ Fα is

an extension field of k and E is a splitting field for
⋃
α<γ S(α). Use Part (1) to

construct a splitting field Fγ for pγ over E. Then Fγ/k is a splitting field for S(γ).
By induction, the field F =

⋃
γ∈S Fγ is an extension field of k and F is a splitting

field for S.
(3) Apply Part (2) to the set of all nonconstant polynomials in k[x]. □

Lemma 5.3.8. Let σ : k → K be an isomorphism of fields. Let S be a set of
polynomials in k[x] and σ(S) its image in K[x]. Let F/k be a splitting field for S.
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Let L/K be an extension field such that every polynomial in σ(S) splits in L. Then
σ extends to a homomorphism of k-algebras σ̄ : F → L. If L is a splitting field for
σ(S), then σ̄ is an isomorphism.

Proof. Step 1: Assume S = {f} contains only one polynomial and F is a
splitting field for f . If F = k, then take σ̄ = σ and stop. Otherwise, dimk(F ) > 1
and there is an irreducible factor g of f such that deg g > 1. Let α be a root of g
in F and β a root of σ(g) in L. By Theorem 5.1.4 there is a k-algebra isomorphism
τ : k(α) → K(β) such that τ(α) = β. Also, F is a splitting field for f over k(α),
and dimk(α)(F ) < dimk(F ). By induction on dimk(F ), τ can be extended to a
k-algebra homomorphism σ̄ : F → L. A root of f is mapped under σ̄ to a root of
σ(f). Since f splits in F , σ(f) splits in σ̄(F ). By Corollary 3.6.10, σ(f) has at
most deg(f) roots in L, and they all belong to σ̄(F ). If λ ∈ L is a root of σ(f),
then λ ∈ σ̄(F ). If L/K is generated by roots of σ(f), then L ⊆ σ̄(F ) and σ̄ is an
isomorphism.

Induction step: Consider the set S of all k-algebra isomorphisms τ : E → M
where E is an intermediate field of F/k and M is an intermediate field of L/K.
Define a partial order on S. If τ : E → M and τ1 : E1 → M1 are two members of
S, then say τ < τ1 in case E ⊆ E1 and τ is equal to the restriction of τ1. Since
σ : k → K is in S, the set is nonempty. Any chain in S is bounded above by
the union. By Zorn’s Lemma, Proposition 1.3.3, there is a maximal member, say
τ : E → M . We need to show that E = F . If not, then Step 1 shows how to
extend τ , which leads to a contradiction. Also τ(F ) contains every root of every
polynomial in σ(S), so τ is onto if L is a splitting field of σ(S). □

Corollary 5.3.9. Let k be a field.

(1) If S is a set of polynomials in k[x], the splitting field of S is unique up to
k-algebra isomorphism.

(2) If Ω is an algebraic closure of k and F/k is an algebraic extension field,
then there is a k-algebra homomorphism F → Ω.

(3) The algebraic closure of k is unique up to k-algebra isomorphism.

Proof. (1): Follows straight from Lemma 5.3.8.
(2): Let X be a set of algebraic elements of F such that F = k(X). For

each α ∈ X, let Irr.polyk(α) denote the irreducible polynomial of α over k. Let
S = {Irr.polyk(α) | α ∈ X}. By Proposition 5.3.7, let E/F be a splitting field for
S over F . The set of all roots of elements of S contains X as well as a generating
set for E over F . Therefore E/k is a splitting field for S over k. By Lemma 5.3.8,
there is a k-algebra homomorphism τ : E → Ω. The restriction, τ |F : F → Ω is the
desired k-algebra homomorphism.

(3): Let Ω′ be another algebraic closure. Applying Part (2), there exists a
homomorphism θ : Ω′ → Ω. By Lemma 5.3.8, θ is an isomorphism. □

Definition 5.3.10. Let F/k be an algebraic extension of fields. We say F/k
is a normal extension if every irreducible polynomial over k that has a root in F
actually splits over F .

Theorem 5.3.11. If F/k is an algebraic extension of fields, then the following
are equivalent.

(1) F/k is a normal extension.
(2) F is the splitting field over k of a set of polynomials in k[x].
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(3) If Ω is an algebraic closure of k containing F , then any k-algebra homo-
morphism θ : F → Ω, maps F to F , hence θ restricts to a k-automorphism
of F .

Proof. (1) implies (2): If B is a basis for F/k, then F is the splitting field of
the set of polynomials {Irr.polyk(β) | β ∈ B} over k.

(2) implies (3): Suppose S is a set of polynomials in k[x] and F is the splitting
field for S over k. Let Ω be an algebraic closure for k containing F and θ : F → Ω
a k-algebra homomorphism. Suppose f ∈ S and that α is a root of f in Ω. Then
θ(α) = β is another root of f in Ω. But F contains every root of f . Moreover, F
is generated by roots of polynomials in S. Therefore, θ maps F onto F .

(3) implies (1): Suppose f is an irreducible polynomial in k[x]. Let α ∈ F
be a root of f . In Ω, let β be any other root of f . We show that β is in F . By
Corollary 5.1.5 there is a k-algebra isomorphism θ : k(α)→ k(β). By Lemma 5.3.8,
θ extends to an isomorphism θ̄ : Ω → Ω. By assumption, the restriction of θ̄ to F
maps F to F . This proves that β ∈ F . □

Definition 5.3.12. Suppose F/k is an algebraic extension of fields. Let B be
a basis for F/k, and K the splitting field of {Irr.polyk(β) | β ∈ B} over F . The
reader should verify that K/k is a normal extension of k containing F . We call K
the normal closure of F over k.

Example 5.3.13. This is an example of a Galois extension of Q with abelian
Galois group of order 8. Let a be a positive odd integer and f = x8 + a4. By
Exercise 3.7.18, f is irreducible over Q. Let ζ be the complex number e2πi/16.
Then ζ8 = −1. Let α be the positive real number such that α2 = a. For any
integer k, f(ζ2k+1α) = ζ8ζ16kα8 + a4 = 0. Therefore the eight roots of f in C are
S = {ζ2k+1α | 0 ≤ k ≤ 7}. By Theorem 5.1.3, the set {1, ζα, ζ2α2, . . . , ζ7α7} is
a basis for Q(ζα) as a Q-vector space. Since (ζα)2k+1 = ζ2k+1akα, we see that
S ⊆ Q(ζα). Hence Q(ζα) is a splitting field for f . By Corollary 5.1.5 applied to
ζα and ζ3α, there is an automorphism τ ∈ AutQ(Q(ζα)) such that τ(ζα) = ζ3α.
Since ζ2α2 = ζ2a, it follows that ζ2 ∈ Q(ζα). We have τ(ζ2) = τ((ζα)2a−1) =
τ(ζα)2a−1 = (ζ3α)2a−1 = (ζ6a)a−1 = ζ6. Using this it is now possible to compute
the action of τ on S: τ(ζα) = ζ3α, τ(ζ3α) = −ζα, τ(−ζα) = −ζ3α, τ(−ζ3α) = ζα,
τ(ζ5α) = −ζ7α, τ(−ζ7α) = −ζ5α, τ(−ζ5α) = ζ7α, τ(ζ7α) = ζ5α. So τ has two
disjoint orbits, each of length four. Fix this ordering of the 8 elements of S:

(3.1) S = {ζα, ζ3α,−ζα,−ζ3α, ζ7α, ζ5α,−ζ7α,−ζ5α}.
Then τ has the cycle representation τ = (1234)(5678) (see Example 2.1.14). Let
χ : C → C be complex conjugation (see Example 5.1.7). Then χ restricts to a
permutation of S, hence defines an automorphism of Q(ζα). Based on the ordering
of S in (3.1), χ = (17)(28)(35)(46) is the disjoint cycle representation of χ. By
direct computation, we see that τχ = (1836)(2547) = χτ . By Exercise 2.5.19,
τ and χ generate an abelian group, call it G, isomorphic to Z/4 ⊕ Z/2. Since
dimQ(Q(ζα)) = 8 = [G : 1], by Exercise 5.2.12, Q(ζα) is Galois over Q and the
Galois group is G = ⟨τ, χ⟩. This also shows G = AutQ(Q(ζα)).

Example 5.3.14. This is a generalization of Example 5.3.13. In this example
we construct a Galois extension over Q such that the Galois group is isomorphic to
the group of units in Z/(2n+1). As in Example 2.1.3, the set of invertible elements
in the ring Z/(2n+1) is denoted U2n+1 and the order of this group is 2n. Let a be
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a positive odd integer and n ≥ 2. Let f = x2
n

+ a2
n−1

. When n = 3, this example
agrees with Example 5.3.13. By Exercise 3.7.18, f is irreducible over Q. Let ζ be

the complex number e2πi/2
n+1

, a primitive 2n+1th root of unity. Then ζ2
n+1

= 1
and ζ2

n

= −1. Let α be the positive real number such that α2 = a. For any integer
k,

f(ζ2k−1α) = (ζ2k−1α)2
n

+a2
n−1

= ζ−2
n

(ζ2
n+1

)kα2n +a2
n−1

= −a2
n−1

+a2
n−1

= 0.

Therefore the 2n roots of f in C are

S = {ζ2k−1α | 1 ≤ k ≤ 2n} = {ζα, ζ3α, . . . , ζ2
n+1−1α}.

By Theorem 5.1.3, the set

{(ζα)j | 0 ≤ j < 2n} = {1, ζα, (ζα)2, . . . , (ζα)2
n−1}

is a basis for Q(ζα) as a Q-vector space. Since (ζα)2k+1 = ζ2k+1akα, we see
that S ⊆ Q(ζα). Hence Q(ζα) is a splitting field for f . Let t be an arbitrary
odd integer. By Corollary 5.1.5 applied to ζα and ζtα, there is an automorphism
τt ∈ AutQ(Q(ζα)) such that τt(ζα) = ζtα. Let s be another odd integer. Since ζ
is a primitive 2n+1th root of unity, Proposition 5.2.2(2) implies that τt = τs if and
only if s ≡ t (mod 2n+1). Since ζ2α2 = ζ2a, it follows that ζ2 ∈ Q(ζα). We have

τt(ζ
2) = τt((ζα)

2a−1) = τt(ζα)
2a−1 = (ζtα)2a−1 = (ζ2ta)a−1 = ζ2t.

Using this, we see that

τt(ζ
2k+1α) = τt((ζ

2)kζα) = (ζ2t)k(ζtα) = (ζ2k+1)tα

and
τsτt(ζα) = τs(ζ

tα) = ζtsα = τts(ζα).

Let σ denote an arbitrary automorphism in AutQ(Q(ζα)). Then Proposition 5.2.2(1)
implies σ(ζα) = ζtα for a unique t ∈ {1, 3, . . . , 2n+1−1}. By Proposition 5.2.2(2), σ
is equal to τt. The computations above show that the assignment θ(t) = τt defines
an isomorphism of groups θ : U2n+1 → AutQ(Q(ζα)). Since dimQ(Q(ζα)) = 2n,
Exercise 5.2.12 implies Q(ζα) is Galois over Q and the Galois group is isomorphic
to U2n+1 . See Theorem 5.8.5 for a related result concerning cyclotomic extensions.

3.1. Exercises.

Exercise 5.3.15. Show that over Q the polynomials x2+1, x4+4, x2+2x+2,
and x2 − 2x+ 2 all have the same splitting field.

Exercise 5.3.16. Consider the polynomial f = x4 + a2 in Q[x], where a is an
odd number. Determine the following.

(1) The splitting field of f over Q. Call this field K.
(2) The Galois group AutQ(K).
(3) The lattice of intermediate fields of K/Q. Determine which intermediate

fields are normal over Q.

Exercise 5.3.17. Let α = 3
√
2 be the cube root of 2 in R and ζ = e2πi/3 a

primitive cube root of 1 in C.
(1) Show that the splitting field for f = x3 − 2 over Q is Q(ζ, α).
(2) Show that dimQ Q(ζ, α) = 6.
(3) Show that AutQ(Q(ζ, α)) is a nonabelian group of order 6 and that Q(ζ, α)

is a Galois extension of Q.
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(4) Show that Q(ζ, α) is equal to the composite field EF where E and F are
any two fields from this list: Q(ζ), Q(α), Q(ζα), Q(ζ2α).

(5) Show that Irr.polyQ(ζ) (α) has degree 3. Show that Irr.polyQ(ζ) (ζα) has

degree 3. Show that Irr.polyQ(ζ) (ζ
2α) has degree 3.

(6) Show that Irr.polyQ(ζα) (α) has degree 2. Show that Irr.polyQ(ζ2α) (α)
has degree 2.

Exercise 5.3.18. Let D be a division ring with center k = Z(D). Prove the
following.

(1) k is a field.
(2) If k is algebraically closed and dimk(D) is finite, then k = D.

4. Separable Extensions

Definition 5.4.1. Let k be a field and Ω the algebraic closure of k. Let
f ∈ k[x]. We say f is separable in case for every irreducible factor p of f , every
root of p in Ω is a simple root. If F/k is a extension of fields, then we say F/k is
separable if every u ∈ F is the root of a separable polynomial in k[x]. If u ∈ F is
the root of a separable polynomial in k[x], then we say u is separable. A separable
extension is an algebraic extension. If char k = 0, then by Theorem 3.6.18, every
polynomial f ∈ k[x] is separable.

Theorem 5.4.2. Let F/k be a finite dimensional extension of fields. The fol-
lowing are equivalent.

(1) F/k is a Galois extension.
(2) F/k is separable and F is the splitting field over k of a set of polynomials

in k[x].
(3) F is the splitting field over k of a set of separable polynomials in k[x].
(4) F/k is normal and separable.

Proof. (2) is equivalent to (4): follows from Theorem 5.3.11.
(2) implies (3): Suppose F/k is the splitting field of the set S ⊆ k[x]. Let T

be the set of irreducible factors of all polynomials in S. Given f ∈ T , let u ∈ F
be a root of f . Then f = Irr.polyk(u). Since F/k is separable, u is the root of a
separable polynomial g ∈ k[x]. In this case f divides g, so f is also separable.

(1) implies (4): If f is a monic irreducible polynomial in k[x] and α ∈ F is a
root of f , then by Theorem 5.1.3, f = Irr.polyk(α). Let u ∈ F − k. It is enough
to prove that Irr.polyk(u) is separable and splits over F . Let G = Autk(F ) and
Gu = {σ ∈ G | σ(u) = u} the subgroup fixing u. If U = {σ(u) | σ ∈ G} is the orbit
of u under the action of G, then U has length m = [G : Gu] and G acts as a group of
permutations on U [18, Proposition 4.1.2]. Let σ1, . . . , σm be a full set of left coset
representatives for Gu in G. Then the orbit of u is equal to U = {σ1(u), . . . , σm(u)}.
Consider the polynomial

ϕ =

m∏
i=1

(x− σi(u))

in F [x]. By Theorem 3.6.3, we can view G as a group of automorphisms of F [x]
such that the stabilizer is F [x]G = FG[x] = k[x]. Since ϕ is fixed by each σ ∈ G, it
follows that ϕ is in k[x]. Since ϕ(u) = 0, Theorem 5.1.3 says Irr.polyk(u) divides
ϕ. Since ϕ splits over F , so does Irr.polyk(u). By construction, ϕ is a separable
polynomial in k[x], hence so is Irr.polyk(u).
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(3) implies (1): Suppose F is the splitting field for a set S of separable poly-
nomials over k. Proceed by induction on n = dimk(F ). If n = 1, there is nothing
to prove. Otherwise, let g be a monic irreducible factor of one of the polynomi-
als in S and assume deg g = d > 1. Since g is separable and splits in F , there
are d distinct roots α1, . . . , αd in F and g = (x − α1) · · · (x − αd). Now k(α1) is
an intermediate field of F/k and F is a splitting field of a set of separable poly-
nomials over k(α1). By induction, we can assume F/k(α1) is a Galois extension
with group H and [H : 1] = dimk(α1)(F ). By Corollary 5.1.5, for each i, there
is a k-algebra isomorphism σi : k(α1) → k(αi). By Lemma 5.3.8 each σi ex-
tends to an automorphism σ̄i ∈ Autk(F ). Since H is a subgroup of Autk(F ),
consider the cosets σ̄iH. By construction, σ̄iH ∩ σ̄jH = ∅ if i ̸= j. Therefore,
the set σ̄1H ∪ · · · ∪ σ̄d has exactly d[H : 1] elements. Notice that this is equal to
dimk(k(α1)) dimk(α1)(F ) = dimk(F ). Let G be the subgroup of Autk(F ) gener-
ated by σ̄1H ∪ · · · ∪ σ̄dH. We have shown [G : 1] ≥ dimk(F ). By Theorem 5.2.9,
dimFG(F ) = [G : 1]. This shows k = FG. □

Corollary 5.4.3. (Embedding Theorem for Fields) Let F/k be a finite dimen-
sional extension of fields. If F/k is separable, then there exists a finite dimensional
Galois extension K/k which contains F as an intermediate field.

Proof. Pick a finite set of separable elements u1, . . . , un that generate F/k.
If fi = Irr.polyk(ui), then fi is separable over k. Let K be the splitting field for
f1 · · · fn over k. So K contains a generating set for F , hence F is an intermediate
field of K/k. By Theorem 5.4.2, K/k is a Galois extension. □

Corollary 5.4.4. Let k be a field, f an irreducible separable polynomial in
k[x], and F a splitting field for f over k. If n = deg(f), then the following are true:

(1) F/k is a Galois extension with group G = Autk(F ).
(2) G acts as a group of permutations of the roots α1, . . . , αn of f .
(3) G is isomorphic to a subgroup of Sn, the symmetric group on n letters.

Proof. By Theorem 5.4.2, F/k is Galois. By Exercise 5.4.10, G acts on the
roots of f . There is a homomorphism θ : G→ Sn. Since F = k(α1, . . . , αn), if two
automorphisms define the same permutation of α1, . . . , αn, they define the same
automorphism of F . This proves θ is one-to-one. □

Example 5.4.5. This is an example of a Galois extension of Q with Galois
group the full symmetric group Sp. Let p be a prime number and f ∈ Q[x] an
irrreducible polynomial of degree p such that f has exactly two nonreal roots. In
this example we show that the Galois group of f is isomorphic to Sp, the symmetric
group on p letters. Let F be the splitting field for f in C. By Theorem 5.4.2, F is
Galois over Q. Let a and b be the nonreal roots of f . If p = 2, then F = Q(a) has
degree two over Q and AutQ(F ) has order two hence is isomorphic to S2. Assume
p > 2 and let c be a real root of f . Then dimQ Q(c) = p and by Theorem 5.2.10, p
divides the order of AutQ(F ). By Cauchy’s Theorem (Corollary 2.4.14), AutQ(F )
contains an element σ of order p. By Proposition 5.2.2 we know that AutQ(F ) is
a group of permutations of the roots of f . By Corollary 2.6.4 we know that σ is a
p-cycle and can be written in the form σ = (s1s2 · · · sp). For some i and j we have
a = si and b = sj . Then σj−i(si) = sj . Therefore, we can write σj−i in the cycle
form (abt3 · · · tp). Let χ be the automorphism of C defined by complex conjugation
(Example 5.1.7). Then χ maps F to F . Also, χ(a) = b and χ fixes every real root
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of f . So χ corresponds to the transposition χ = (ab). By Exercise 2.6.16, the group
Sp is generated by the transposition (12) and the p-cycle (123 · · · p). Therefore,
AutQ(F ) is generated by χ and σj−i, hence is isomorphic to Sp.

Proposition 5.4.6. Let R be an integral domain. Let n > 1 be an integer.
The group of nth roots of unity in R, µn = {u ∈ R | un = 1}, is a cyclic group of
order at most n.

Proof. The set µn is clearly a subgroup of R∗. The order of µn is at most
n, by Corollary 3.6.10. Using the Invariant Factor form of the Basis Theorem for
finite abelian groups, Theorem 4.3.15, the finite abelian group µn decomposes into
cyclic subgroups µn = Z/m1⊕· · ·⊕Z/mν , where 1 < m1, m1 | m2, . . . , mν−1 | mν .
Let q be a prime divisor of m1. The subgroup of µn annihilated by q is isomorphic
to Z/q⊕· · ·⊕Z/q, and has order qν . The polynomial xq−1 has at most q solutions
in R, by Corollary 3.6.10. This means ν = 1. □

Theorem 5.4.7. (The Primitive Element Theorem) Let F/k be a finite dimen-
sional extension of fields. If

(1) k is infinite and F/k is separable, or
(2) k is finite,

then there is a separable element u ∈ F such that F = k(u).

Proof. (1): By Corollary 5.4.3, let L/k be a finite Galois extension con-
taining F as an intermediate field. By Theorem 5.2.10, there are only finitely
many intermediate fields of L/k. That means there are only finitely many in-
termediate fields of F/k. Choose u ∈ F such that dimk(k(u)) is maximal. For
contradiction’s sake, assume k(u) ̸= F . Let v ∈ F − k(u). Consider the set of
intermediate fields S = {k(u + av) | a ∈ k}. Since k is infinite and the set S
is finite, there exist a, b ∈ k such that a ̸= b and k(u + av) = k(u + bv). Then
(u+av)− (u+bv) = (a−b)v ∈ k(u+av), and since (a−b)−1 ∈ k, v ∈ k(u+av). In
this case, u ∈ k(u+av) so k(u, v) ⊆ k(u+av). Since k(u, v) is a proper extension of
k(u), this shows that the simple extension k(u+ av) is a proper extension of k(u).
This contradicts the choice of u.

(2): If F has order q, and F ∗ denotes the group of units of F , then F ∗ has order
q − 1. Every element u of F ∗ satisfies uq−1 = 1. By Proposition 5.4.6 the group
F ∗ is cyclic. There exists u ∈ F ∗ such that F ∗ = {1, u, . . . , uq−2}. The polynomial
xq−1 − 1 splits in F [x] and has q − 1 roots in F . □

Theorem 5.4.8. Let K/k be a finite dimensional extension of fields. Let F1

and F2 be intermediate fields. Set F = F1F2 and F0 = F1 ∩ F2.

F = F1F2

F1 F2

F0 = F1 ∩ F2

k
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If F1 is a Galois extension of k, then F is a Galois extension of F2 and there is an
isomorphism of groups AutF2(F )

∼= AutF0(F1) defined by the assignment ϕ 7→ ϕ|F1 .

Proof. By Theorem 5.4.7, F1 = k(u) is a simple extension. Let f = Irr.polyk(u).
By Theorem 5.1.11, F = F2(u). Let g = Irr.polyF2

(u). Theorem 5.1.3 implies g
divides f . Then every root of g is in F , hence F is a splitting field for g. By
Theorem 5.4.2, F/F2 is a Galois extension. If ϕ ∈ AutF2

F , then ϕ is completely
determined by the value of ϕ(u). But ϕ(u) is a root of f . Since F1 is a splitting field
for f , ϕ(F1) ⊆ F1. Since ϕ fixes F2 point-wise, ϕ fixes k point-wise. Therefore, θ :
AutF2

(F )→ Autk(F1) is a homomorphism of groups. If ϕ fixes F1 point-wise, then
ϕ(u) = u and ϕ is the identity function on F . This proves θ is one-to-one. Using θ,

we identify AutF2
(F ) with a subgroup of Autk F1. Let E = F

AutF2
(F )

1 . By Theo-
rem 5.2.10, F1/E is a Galois extension and dimE(F1) = |AutF2

(F )| = dimF2
(F ).

Since F1 ⊆ F , we have E ⊆ FAutF2
(F ) = F2. Since dimF2

(F ) = dimE(F1), Propo-
sition 4.2.39 implies that dimE(F ) = dimE(F1) dimE(F2). By Theorem 5.1.11 (5),
we have E = F1 ∩ F2, which completes the proof. □

As an application, we show that for a Galois extension F/k, if f is an irreducible
separable polynomial in k[x], then the irreducible factors of f in F [x] all have the
same degree.

Corollary 5.4.9. Let F/k be a Galois extension of fields and f an irre-
ducible separable polynomial in k[x]. If the unique factorization of f in F [x] is
f = f1 · · · fm, then deg f1 = deg f2 = · · · = deg fm.

Proof. We prove this in two steps.
Step 1: Suppose K/k is a Galois extension of fields with group G. Assume

f splits in K[x]. Let N be a normal subgroup of G and assume F = KN . We
prove that the irreducible factors of f in F [x] all have the same degree. Let X =
{α1, . . . , αn} be the roots of f in K. If L = k(X) is the splitting field for f in K,
then L/k is Galois by Theorem 5.4.2. By Exercise 5.4.10, Autk(L) acts transitively
on X. By Theorem 5.2.10, Autk(L) is a homomorphic image of G, hence G acts
transitively on X. Let a, b be two arbitrary elements of X. Let τ ∈ G such that
τ(a) = b. Since N is normal, τN = Nτ . Therefore τNa = Nτa = Nb. This shows
the orbit containing a is in one-to-one correspondence with the orbit containing b.
Let O1, . . . , Om be the orbits of N acting on X. Then |O1| = · · · = |Om|. For each
1 ≤ i ≤ m, set fi =

∏
a∈Oi

(x− a). We have

f =
∏
a∈X

(x− a)

=

m∏
i=1

∏
a∈Oi

(x− a)

= f1 · · · fm.
Since deg fi = |Oi|, all of the fi have the same degree. Now we prove that each fi
is in F [x]. If τ ∈ N , then τOi = Oi, hence

τ(fi) =
∏
a∈Oi

(x− τ(a)) =
∏
a∈Oi

(x− a) = fi

so the coefficients of fi are fixed by N . Hence fi ∈ F [x]. Now we prove that each fi
is irreducible in F [x]. Fix one element of Oi, say ai. If pi = Irr.polyF (ai), then by
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Theorem 5.1.3 we have pi | fi. For each τ ∈ N , pi(τai) = τ(pi(ai)) = 0 shows that
every element of Oi is a root of pi. Therefore, deg pi ≥ deg fi. This proves fi = pi
and in particular, fi is irreducible over F . We have proved that f = f1 · · · fm is the
factorization of f into irreducibles in the ring F [x] and all of the factors fi have
the same degree.

Step 2. In the context of the proposition, assume F/k is a Galois extension.
Let U/F be a splitting field for f over F . Let X = {α1, . . . , αn} be the roots of f
in U . Let L = k(X) be the splitting field for f over k in U . Then L/k is Galois by
Theorem 5.4.2.

U

K = FL

F L

k

By Exercise 5.4.11, K = FL is a Galois extension of k containing F and L. By
Theorem 5.2.10, Step 2 reduces to Step 1. □

4.1. Exercises.

Exercise 5.4.10. Let f ∈ k[x] be an irreducible separable polynomial of degree
n over the field k. Let F/k be the splitting field for f over k and let G = Autk(F )
be the Galois group. We call G the Galois group of f . Prove the following.

(1) G acts transitively on the roots of f . That is, given two roots α, β of
f , there is σ ∈ G such that σ(α) = β. (Hint: apply Theorem 5.1.4 and
Lemma 5.3.8.)

(2) n divides [G : 1].

Exercise 5.4.11. In the context of Theorem 5.4.8, let K/k be a finite dimen-
sional extension of fields with intermediate fields F1 and F2. If F1 and F2 are both
Galois extensions of k, prove the following:

(1) F is a Galois extension of k.
(2) If F1 ∩ F2 = k, then Autk(F ) ∼= AutF1

(F )×AutF2
(F ).

Exercise 5.4.12. Let F/k be an extension of fields where char k = p > 0. Let
α ∈ F . Prove that α is separable over k if and only if k(α) = k(αp).

5. Finite Fields

A finite field has positive characteristic and is finite dimensional over its prime
subfield.

Lemma 5.5.1. Let F be a field and assume charF = p is positive. For any
r > 0, the mapping φ : F → F defined by x 7→ xp

r

is a homomorphism of fields.
If F is finite, then φ is an automorphism of F . If r = 1, then φ is called the
Frobenius homomorphism.
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Proof. The reader should verify that φ is additive and multiplicative. Since
F is a field, φ is one-to-one. □

Lemma 5.5.2. For each prime number p and for every n ≥ 1, there exists a
field F of order pn.

Proof. Let k denote the field Z/p. Let f = xp
n − x ∈ k[x]. Let F be the

splitting field of f over k. Since f ′ = −1, by Theorem 3.6.18, f has no multiple
roots in F . Therefore, f is separable and there are pn distinct roots of f in F . Let
φ : F → F be the automorphism of F defined by x 7→ xp

n

. If u ∈ F is a root of
f , then φ(u) = u. By Exercise 3.2.37, the prime field k is fixed by φ. Since F is
generated over k by roots of f , F is fixed point-wise by φ. Every u in F is a root
of f , and F has order pn. □

Theorem 5.5.3. Let F be a finite field with charF = p. Let k be the prime
subfield of F and n = dimk(F ).

(1) The group of units of F is a cyclic group.
(2) F = k(u) is a simple extension, for some u ∈ F .
(3) The order of F is pn.
(4) F is the splitting field for the separable polynomial xp

n − x over k.
(5) Any two finite fields of order pn are isomorphic as fields.
(6) F/k is a Galois extension.
(7) The Galois group Autk(F ) is cyclic of order n and is generated by the

Frobenius homomorphism φ : F → F defined by φ(x) = xp.

(8) If d is a positive divisor of n, then E = {u ∈ F | upd = u} is an interme-
diate field of F/k which satisfies the following.
(a) dimE(F ) = n/d, and dimk(E) = d.
(b) If φ is the generator for Autk(F ), then AutE(F ) is the cyclic sub-

group generated by φd.
(c) E/k is Galois and Autk(E) is the cyclic group of order d generated

by the restriction φ|E.
(9) If E is an intermediate field of F/k, and d = dimk(E), then d divides n

and E is the field described in Part (8).

Proof. (1): This was proved in Theorem 5.4.7 (2).
(2): Take u to be a generator for U(F ).
(3): As a k-vector space, F is isomorphic to kn.
(4), (5) and (6): By Theorem 5.4.7, the group of units of F is cyclic of order

pn − 1. The polynomial xp
n − x = x(xp

n−1 − 1) has pn roots in F and they are all
simple. Therefore F is the splitting field for the separable polynomial xp

n − x over
k. The rest follows from Corollary 5.3.9 and Theorem 5.4.2.

(7): Let φ : F → F be the Frobenius homomorphism, φ(x) = xp. For all i ≥ 1,

φi(x) = xp
i

. Let Gi denote the subgroup generated by φi and let Fi = FGi be the

fixed field of φi. Then FGi = {u ∈ F | xpi − x = 0} is equal to the set of roots in

F of the polynomial xp
i − x. For 1 ≤ i ≤ n the order of the subfield FGi is less

than or equal to pi. The field F is equal to FGn and the order of φ is n.
(8) and (9): The proof follows straight from Theorem 5.2.10 and Part (7). □

5.1. Irreducible Polynomials. Throughout this section, p will be a fixed
prime number and Fp = Z/p is the prime field of order p.
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Theorem 5.5.4. The factorization of the polynomial xp
n − x in Fp[x] into

irreducible factors is equal to the product of all the monic irreducible polynomials
of degree d where d runs through all divisors of n.

Proof. Is left to the reader. □

Theorem 5.5.5. Let ψ(n) denote the number of distinct monic irreducible poly-
nomials of degree n in Fp.

(1) If µ is the Möbius function, then ψ(n) =
1

n

∑
d|n

µ(d)pn/d =
1

n

∑
d|n

µ
(n
d

)
pd.

(2) ψ(n) >
pn

2n
.

Proof. (1): By Theorem 5.5.4, pn =
∑
d|n

dψ(d). Now apply the Möbius Inver-

sion Formula (Theorem 1.2.16).
(2): The reader should verify the identities:

nψ(n) = pn +
∑

d|n,d<n

µ
(n
d

)
pd

≥ pn −
∑

d|n,d<n

pd

≥ pn −
∑

1≤d≤n/2

pd

≥ pn − p⌊n/2⌋+1

where ⌊n/2⌋ is the greatest integer less than n/2. If n > 2, then ⌊n/2⌋+1 ≤ n− 1,
so

ψ(n) >
1

n

(
pn − pn−1

)
=
pn

n

(
1− 1

p

)
≥ pn

2n
.

If n = 2, the formula can be derived from ψ(2) = (1/2)(p2 − p). □

5.2. Exercises.

Exercise 5.5.6. Let K be a finite field of order pd. As in Theorem 5.5.5, let
ψ(n) be the number of irreducible monic polynomials of degree n in Fp[x]. If d | n,
show that there are at least ψ(n) irreducible monic polynomials of degree n/d in
K[x].

Exercise 5.5.7. Let k be a finite field andK/k a finite dimensional extension of
fields, with dimkK = d. Let n be an arbitrary positive integer and A = K⊕· · ·⊕K
the direct sum of n copies of K.

(1) Show that if there exists a surjective k-algebra homomorphism f : k[x]→
A, then there exist at least n distinct irreducible monic polynomials in
k[x] of degree d.

(2) Find an example of k and A such that the k-algebra A is not the homo-
morphic image of k[x].

(3) Show that for some integer m ≥ 1, there exist n distinct irreducible monic
polynomials h1, . . . , hn in k[x] such that each hi has degree md.
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(4) Show that for some integer m ≥ 1, if F/k is a finite extension field with
dimk F = md, then the direct sum F ⊕ · · · ⊕ F of n copies of F is the
homomorphic image of k[x]. Show that m can be chosen to be relatively
prime to d.

(5) Show that there is a separable polynomial g ∈ k[x] such that A is isomor-
phic to a subalgebra of k[x]/(g).

Exercise 5.5.8. Let p be a prime number and A a finite ring of order p2.

(1) Prove that either A is isomorphic to Z/(p2), or the characteristic of A is
p and A is isomorphic as Z/p-algebras to (Z/p)[x]/(ϕ), for some monic
quadratic polynomial ϕ with coefficients in the field Z/p.

(2) Prove that A is commutative.
(3) Prove that A is isomorphic to exactly one of the following four rings:

(a) Z/(p2) (if char(A) = p2).
(b) Z/p⊕ Z/p (if char(A) = p and ϕ factors and is separable).
(c) (Z/p)[x]/(x2) (if char(A) = p and ϕ is a square).
(d) a finite field of order p2 (if char(A) = p and ϕ is irreducible).

6. Separable Closure

Let k be a field of positive characteristic p. Let F/k be an extension of fields and
u and element of F which is algebraic over k. We say that u is purely inseparable
over k in case the irreducible polynomial Irr.polyk(u) splits in F [x] and has only
one root, namely u. Equivalently, u is purely inseparable over k if and only if
there exists m ≥ 1 such that Irr.polyk(u) = (x − u)m in F [x]. If u ∈ k, then
Irr.polyk(u) = x− u, hence u is both purely inseparable over k and separable over
k.

Lemma 5.6.1. Let F/k be an extension of fields and assume char k = p > 0.
Let u ∈ F and assume u is algebraic over k.

(1) If u is separable over k and purely inseparable over k, then u ∈ k.
(2) There exists n ≥ 0 such that up

n

is separable over k.

Proof. (1): If u is purely inseparable over k, then Irr.polyk(u) = (x − u)m.
If u is separable over k, then m = 1.

(2): If u is separable over k, then take n = 0. Let f = Irr.polyk(u) and use
induction on the degree of f . Assume f is not separable and d = deg f > 1. By
Theorem 3.6.18, f ∈ k[xp]. Therefore, up is algebraic over k and the degree of
Irr.polyk(u

p) is equal to d/p. By induction on d, there is some n ≥ 0 such that
(up)p

n

is separable over k. □

Theorem 5.6.2. Let F/k be an algebraic extension of fields. If

S = {u ∈ F | k(u) is separable over k},
then

(1) S is an intermediate field of F/k,
(2) S/k is separable, and
(3) F/S is purely inseparable.

Proof. (1) and (2): It is enough to show S is a field. Let α and β be elements
of S − k. If f = Irr.polyk(α), then f is separable and irreducible over k. Likewise,
g = Irr.polyk(β) is separable and irreducible over k. By Theorem 5.4.2, if E is the
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splitting field over k of fg, then E/k is a separable extension of fields. Since k(α, β)
is an intermediate field of E/k, it is itself a separable extension of k. Therefore, S
contains α+ β, α− β, αβ, α/β.

(3): Let u ∈ F − S. We can assume char k = p > 0. By Lemma 5.6.1, there
exists n > 0 such that up

n

is separable over k. Then up
n

is in S. Let α = up
n

.
Consider the polynomial f = xp

n−α in S[x]. Then f factors in F [x] as f = (x−u)pn .
Since f(u) = 0, this proves that u is purely inseparable over S. □

Definition 5.6.3. If F/k is an extension of fields, the separable closure of k in
F is the field S defined in Theorem 5.6.2. If Ω is an algebraic closure of k, and S
is the separable closure of k in Ω, then we call S a separable closure of k. We say
k is separably closed , if k is equal to its separable closure in Ω.

Theorem 5.6.4. Let k be a field. The following are equivalent.

(1) Every irreducible polynomial in k[x] is separable.
(2) The splitting field over k of any polynomial in k[x] is a Galois extension

of k.
(3) Every algebraic extension of k is separable over k.
(4) k has characteristic zero or k has positive characteristic p and the Frobe-

nius homomorphism x 7→ xp is an automorphism of k.

Proof. Using Theorem 5.4.2, the reader should verify that (1), (2) and (3)
are equivalent.

(3) implies (4): Assume k has positive characteristic p and every algebraic
extension of k is separable. Let φ : k → k be the Frobenius homomorphism. Let
α ∈ k. We show α = φ(u) for some u ∈ k. Consider the polynomial xp − α in
k[x]. Let F be an extension of k containing a root u of xp−α. In F [x] we have the
factorization xp − α = (x − u)p. By assumption, F/k is separable, which implies
this factorization occurs in k[x]. That is, u ∈ k and α = φ(u).

(4) implies (3): Let F/k be an algebraic extension. Let α ∈ F − k. Let
f ∈ k[x] be the irreducible polynomial of α over k. We show that k(α) is a separable
extension of k. If char k = 0, it follows from Theorem 3.6.18 that f is separable and
we are done. Assume char k = p > 0 and the Frobenius homomorphism φ : k → k is
an automorphism of k. By Theorem 3.6.3, φ(f) = g is an irreducible polynomial in
k[x] such that deg g = deg f . Since g(αp) = (f(α))p = 0, we see that k(αp) is a field
extension of k which is an intermediate field of k(α)/k such that dimk(k(α

p)) =
dimk(k(α)). It follows that k(α

p) = k(α), hence the Frobenius homomorphism is an
automorphism φ : k(α)→ k(α). For any m > 0, φm(x) = xp

m

. Since k[α] = k(α),
a typical element in k(α) can be represented in the form u =

∑
i aiα

i where ai ∈ k.
Therefore φm(u) =

∑
i a
pm

i (αp
m

)i is in k(αp
m

). This shows k(αp
m

) = k(α) for all

m > 0. Let S be the separable closure of k in k(α). For some n ≥ 0, αp
n ∈ S.

Therefore k(α) = k(αp
n

) ⊆ S so k(α) is a separable extension of k. □

Example 5.6.5. A field k is called perfect if it satisfies one of the statements
(1) – (4) in Theorem 5.6.4. The following is a list of fields that are perfect fields.

(1) A field of characteristic zero satisfies Theorem 5.6.4 (4).
(2) An algebraically closed field satisfies Theorem 5.6.4 (1).
(3) By Lemma 5.5.1, a finite field satisfies Theorem 5.6.4 (4).
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Theorem 5.6.6. (Separable over Separable is Separable) Let k ⊆ F ⊆ K be a
tower of algebraic field extensions. If F is separable over k and K is separable over
F , then K is separable over k.

Proof. If char k = 0, then we are done. Assume char k = p > 0. Let S be
the separable closure of k in K. Then F ⊆ S ⊆ K. It is enough to show S = K.
Let u ∈ K. For some n ≥ 0 we have α = up

n ∈ S. Then u satisfies the polynomial
xp

n − α ∈ S[x] and in K[x] we have the factorization xp
n − α = (x − u)p

n

. If
f = Irr.polyS(u), then f divides (x− u)pn in K[x]. If g = Irr.polyF (u), then g is
separable and since f divides g in S[x], we know that f has no multiple roots in
K. So f = x− u and u ∈ S. □

6.1. The Fundamental Theorem of Algebra. As in Section 1.5, the field
of real numbers is denoted R and the field of complex numbers is denoted C.
The proof of the Fundamental Theorem of Algebra utilizes results from Calculus.
By Theorem 1.5.2, an irreducible polynomial of odd degree in R[x] is linear. By
Proposition 1.5.3 (5), the ring C[x] contains no irreducible quadratic polynomial.

Theorem 5.6.7. The field of complex numbers is algebraically closed. In par-
ticular, an irreducible polynomial over C is linear.

Proof. Let F be a finite dimensional extension field of C. By Theorem 5.1.8,
it suffices to show that F = C. Since F is a finite dimensional separable extension
field of R, by Corollary 5.4.3, there is a finite dimensional Galois extension K/R
which contains F as an intermediate field. Let G be the Galois group of K over
R. Let S be a Sylow-2 subgroup of G. Then KS is an extension field of R and
dimRK

S is odd. If α ∈ KS , then dimR R(α) divides dimRK
S , hence is odd. By

Theorem 5.1.3, the degree of Irr.polyR(α) is odd. By Theorem 1.5.2, an irreducible
polynomial of odd degree in R[x] is linear. Therefore, KS = R. This proves S = G
is a 2-group. For sake of contradiction, assume AutC(K) is a nontrivial 2-group.
By Theorem 2.7.1, there exists a normal subgroup H of AutC(K) of index 2. Then
KH is a field extension of C of degree 2. This is a contradiction, because by
Proposition 1.5.3 (5), the ring C[x] contains no irreducible quadratic polynomial.

K

F KH KS

C

R
□

Theorem 5.6.8. An irreducible polynomial in R[x] has degree 1 or 2. If f is a
monic polynomial of positive degree in R[x], then the unique factorization of f into
irreducible polynomials has the general form

f = (x− u1)m1 · · · (x− ur1)mr1 qn1
1 · · · q

nr2
r2
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where u1, . . . , ur1 are the distinct real roots of f , r1 ≥ 0, each mi ≥ 1, q1, . . . , qr2
are the distinct irreducible monic quadratic factors of f in R[x], r2 ≥ 0, and each
nj ≥ 1.

Proof. In C[x], f factors into linear factors. Let z = a + bi be a nonreal
complex number. Then the irreducible polynomial of z over R is Irr.polyR(z) =
(x − z)(x − z̄) = x2 − 2ax − (a2 + b2). The nonreal roots of f come in conjugate
pairs. The rest of the proof is left to the reader. □

7. The Trace Map and Norm Map

Let F/k be a finite dimensional separable extension of fields. In this section
we show that there is a trace map TFk : F → k which is a k-linear homomorphism,
and a norm map NF

k : F ∗ → k∗ which is a homomorphism of multiplicative abelian
groups. To define the trace and norm maps we first embed F into a Galois extension
K/k with Galois group G. Then F corresponds to a subgroup H = GF . We show
that the trace and norm maps are defined by a complete set of coset representatives
for G/H. The resulting trace map and norm map agree with the usual trace and
norm maps defined in Exercise 4.7.26. In the present context, we show that TFk
is nonzero, hence is a free generator for the F -vector space Homk(F, k). We will
see in Corollary 9.6.9 below that a finite dimensional extension of fields F/k is
separable if, and only if, the trace map TFk is a free generator for the F -vector
space Homk(F, k). For a generalization of the trace and norm maps defined below,
see the corestriction homomorphism of Definition 12.5.17 (3).

Lemma 5.7.1. Let K/k be a Galois extension with finite group G. Let H be a
subgroup of G with [G : H] = m. Let {τ1, . . . , τm} be a complete set of left coset
representatives for H in G. Let F = KH . The following are true.

(1) The assignment x 7→ y =
∑m
i=1 τi(x) defines a k-linear transformation

TFk : F → k which does not depend on the choice of left coset representa-
tives for H in G.

(2) The assignment x 7→ z =
∏m
i=1 τi(x) defines a homomorphism of multi-

plicative groups NF
k : F ∗ → k∗ which does not depend on the choice of left

coset representatives for H in G.
(3) For any α ∈ F , TFk (α) is the trace and NF

k (α) is the determinant of
ℓα : F → F .

(4) The functions TFk : F → k and NF
k : F → k depend on F and k, not K.

Proof. We prove (1), the proof of (2) is similar. Let {ρ1, . . . , ρm} be another
complete set of left coset representatives for H in G and x ∈ F = KH . After a
permutation, we can assume τiH = ρiH for each i. So there exist hi ∈ H such
that τihi = ρi. For every x ∈ F , y =

∑m
i=1 τi(x) =

∑m
i=1 τihi(x) =

∑m
i=1 ρi(x).

By Example 2.4.5, G acts as a group of permutations on G/H. If σ ∈ G, then
στiH = στjH if and only if τiH = τjH. That is, {στi | 1 ≤ i ≤ m} is a complete
set of coset representatives, and σ(y) =

∑m
i=1 στi(x) = y. So y ∈ KG = k. Since

each σ ∈ G is k-linear, so is the function TFk .
(3): Let α ∈ F = KH and consider the polynomial

g =
∏
σ∈G

(x− σ(α)) =
m∏
i=1

∏
ρ∈H

(x− τiρ(α)) =

(
m∏
i=1

(x− τi(α))

)[H:1]

.
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As in Exercise 5.7.9, the polynomial g is the characteristic polynomial of ℓα : K →
K, and f =

∏m
i=1(x − τi(α)) is the characteristic polynomial of ℓα : F → F . The

only irreducible factor of f in k[x] is Irr.polyk(α). By Exercise 4.7.28, TFk (α) is the
trace and NF

k (α) is the determinant of ℓα : F → F .
(4): Follows from (3). □

Definition 5.7.2. Let F/k be a finite dimensional separable extension. Let
K/k be a Galois extension with finite group G which contains F as an intermediate
field. Then there is a subgroup H of G such that F = KH . As in Lemma 5.7.1, if
{τ1, . . . , τm} is a complete set of left coset representatives for H, then for x ∈ F =
KH , TFk (x) =

∑m
i=1 τi(x) and NF

k (x) =
∏m
i=1 τi(x). Note that both TFk and NF

k

are functions from F to k. The function TFk , which is called the trace from F to k,
is k-linear and represents an element of Homk(F, k). The function NF

k , called the
norm from F to k, induces a homomorphism of multiplicative groups F ∗ → k∗.

Lemma 5.7.3. In the context of Lemma 5.7.1 and Definition 5.7.2,

(1) There exists c ∈ F such that TFk (c) = 1.
(2) Homk(F, k) is an F -vector space of dimension 1 and {TFk } is a basis.
(3) If {λ1, . . . , λm} is a k-basis for F , then there exist elements {µ1, . . . , µm}

in F such that
(a) TFk (µjλi) = δij (Kronecker delta), and

(b) for each σ ∈ G: λ1σ(µ1) + · · ·+ λmσ(µm) =

{
1 if σ ∈ H
0 if σ ̸∈ H

.

Proof. (1): By Lemma 5.2.5, there is b ∈ F such that x =
∑m
i=1 τi(b) =

TFk (b) ̸= 0. Let c = x−1b. Since x ∈ k, we have TFk (c) = x−1x = 1.
(2): As we have seen already (Example 4.4.3), the field F is a k-algebra, hence

it acts as a ring of k-homomorphisms on itself. Let θ : F → Homk(F, F ) be the
left regular representation of F in Homk(F, F ). Using θ we can turn Homk(F, k)
into a right F -vector space. For every f ∈ Homk(F, k) and α ∈ F , define fα to be
f ◦ ℓα. By counting dimensions, it is easy to see that Homk(F, k) is an F -vector
space of dimension one. As an F -vector space, any nonzero element f ∈ Homk(F, k)
is a generator. By (1), TFk is a generator for Homk(F, k). This implies for every
f ∈ Homk(F, k) there is a unique α ∈ F such that f(x) = TFk (αx) for all x ∈ F .
The mapping F → Homk(F, k) given by α 7→ TFk ◦ ℓα is an isomorphism of k-vector
spaces.

(3): Let {λ1, . . . , λm} be a k-basis for F . For each j = 1, 2, . . . ,m, let fj : F → k
be the projection onto coordinate j. That is, fj(λi) = δij (Kronecker delta) and
{(λj , fj) | j = 1, . . . ,m} is a dual basis for F . For each x ∈ F , x =

∑m
j=1 fj(x)λj .

Since TFk is a generator for Homk(F, k) over F , there exist unique µ1, . . . , µm in F
such that for each x ∈ F , fj(x) = TFk (µjx) =

∑m
i=1 τi(µjx). We have TFk (µjλi) =
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fj(λi) = δij , which is (a). For (b), consider

x =

m∑
j=1

fj(x)λj

=

m∑
j=1

m∑
i=1

τi(µjx)λj

=

m∑
i=1

τi(x) m∑
j=1

τi(µj)λj

 .

Since GF = H, for exactly one i0 ∈ {1, . . . ,m}, we have τi0 ∈ H. In other words,
τi(x) = x for all x ∈ F if and only if i = i0 if and only if τi ∈ H. By Lemma 5.2.7,
{τ1, . . . , τm} are linearly independent over F . If σ ∈ G, then σ ≡ τi (mod H) for a
unique i. Then σ(x) = τi(x) for all x ∈ F . Hence

m∑
j=1

σ(µj)λj =

{
1 if σ ∈ H
0 if σ ̸∈ H.

We have shown that the elements λ1, . . . , λm and µ1, . . . , µm satisfy the conclusion
of Lemma 5.2.4. This is (b). □

Lemma 5.7.4. Suppose K/k is a Galois extension of fields with finite group G.
If H is a subgroup of G and F = KH , then TKk = TFk ◦ TKF and NK

k = NF
k ◦NK

F .

Proof. Let {τ1, . . . , τm} be a complete set of left coset representatives for H
in G and let x ∈ K. Then

TFk
(
TKF (x)

)
= TFk

∑
ρ∈H

ρ(x)


=

m∑
i=1

τi

∑
ρ∈H

ρ(x)


=

m∑
i=1

∑
ρ∈H

τiρ(x)

=
∑
σ∈G

σ(x)

= TKk (x).

The proof of the second identity is left to the reader. □

For generalizations of Theorem 5.7.5, see Theorem 12.5.25.

Theorem 5.7.5. (Hilbert’s Theorem 90) Let F/k be a Galois extension of fields
with finite group G. Assume G = ⟨σ⟩ is cyclic and u ∈ F . Then

(1) TFk (u) = 0 if and only if u = v − σ(v) for some v ∈ F .
(2) NF

k (u) = 1 if and only if u = v/σ(v) for some v ∈ F ∗.

Proof. Throughout the proof, assume G = {1, σ, σ2, . . . , σn−1} and σn = 1.
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(1): If v ∈ F , then T (σ(v)) =
∑
τ∈G τσ(v) =

∑
ρ∈G ρ(v) = T (v). It follows

that T (v − σ(v)) = 0. Conversely, assume T (u) = 0. By Lemma 5.2.6, there exists
w ∈ F with T (w) = 1. Starting with

v = uw + (u+ σ(u))σ(w) + (u+ σ(u) + σ2(u))σ2(w) + . . .

+ (u+ σ(u) + σ2(u) + · · ·+ σn−2(u))σn−2(w),

apply σ to get

σ(v) = σ(u)σ(w) + (σ(u) + σ2(u))σ2(w) + . . .

+ (σ(u) + σ2(u) + · · ·+ σn−1(u))σn−1(w).

Subtract σ(v) from v. Use the identities T (u) = u+ σ(u) + · · ·+ σn−1(u) = 0 and
T (w) = 1 to simplify

v − σ(v) = uw + uσ(w) + uσ2(w) + · · ·+ uσn−2(w)

−
(
σ(u) + σ2(u) + · · ·+ σn−1(u)

)
σn−1(w)

= u
(
(w + σ(w) + σ2(w) + · · ·+ σn−2(w)

)
− (−u)σn−1(w)

= u
(
(w + σ(w) + σ2(w) + · · ·+ σn−2(w) + σn−1(w)

)
= uT (w) = u.

(2): If v ∈ F ∗, then N(σ(v)) =
∏
τ∈G τσ(v) = N(v). This shows N (v/σ(v)) =

1. Conversely, assume N(u) = 1. By Lemma 5.2.5, we know that

v = ux+ uσ(u)σ(x) + uσ(u)σ2(u)σ2(x) + · · ·+ uσ(u)σ2(u) · · ·σn−1(u)σn−1(x)
is nonzero for some x ∈ F . In this case, we have

u−1v = x+ σ(u)σ(x) + σ(u)σ2(u)σ2(x) + · · ·+ σ(u)σ2(u) · · ·σn−1(u)σn−1(x)
and

σ(v) = σ(u)σ(x) + σ(u)σ2(u)σ2(x) + · · ·+ σ(u)σ2(u) · · ·σn(u)σn(x)
= σ(u)σ(x) + σ(u)σ2(u)σ2(x) + · · ·+N(u)x

= σ(u)σ(x) + σ(u)σ2(u)σ2(x) + · · ·+ x.

This shows σ(v) = u−1v, hence u = v/σ(v). □

7.1. Exercises.

Exercise 5.7.6. Let k be a field. Show that for any n ≥ 1 there exists a
polynomial f ∈ F [x] of degree n such that f has no repeated roots.

Exercise 5.7.7. Let F/k be a Galois extension of fields with finite group G.
Assume G = ⟨σ⟩ is cyclic.

(1) Show that the function D : F ∗ → F ∗ defined by D(u) = u/σ(u) is a
homomorphism of abelian groups.

(2) Show that the kernel of D is k∗, and the image of D is the kernel of
NF
k : F ∗ → F ∗.

(3) If F is a finite field, show that the image of NF
k : F ∗ → F ∗ is equal to k∗.

Exercise 5.7.8. Let F/k be a Galois extension of fields with finite group G.
Let {a1, . . . , an} be a k-basis for F . For each j, let fj be the map in Homk(F, k)
which projects onto coordinate j.
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(1) If α ∈ F , use the dual basis {(ai, fi) | i = 1, . . . , n} to show that the
matrix of ℓα with respect to the basis {a1, . . . , an} is (fj(αai)).

(2) Use the results derived in Lemma 5.7.3 to show that the trace map TFk
defined in Exercise 4.7.26 is equal to the trace map defined in Defini-
tion 5.7.2.

Exercise 5.7.9. Let F/k be a Galois extension of fields with finite group G.
Let α be an arbitrary element of F , and set

g =
∏
σ∈G

(x− σ(α)).

(1) Show that g = char.polyk(α). (Hint: Show that g ∈ k[x]. The only
irreducible factor of g is Irr.polyk(α). Use Exercise 4.7.29.)

(2) Show that the trace map TFk defined in Exercise 4.7.26 is equal to the
trace map defined in Definition 5.7.2.

(3) Show that the norm map NF
k defined in Exercise 4.7.26 is equal to the

norm map defined in Definition 5.7.2.

8. Cyclic Galois Extensions

We say a finite Galois extension of fields F/k is cyclic of degree n if the group
Autk(F ) is a cyclic group of order n.

Theorem 5.8.1. (The Normal Basis Theorem) Let F/k be a cyclic Galois
extension of degree n with group Autk(F ) = ⟨σ⟩. Then there exists α ∈ F such that
the set {α, σ(α), σ2(α), . . . , σn−1(α)} is a basis for F as a k-vector space. We call
the basis {α, σ(α), σ2(α), . . . , σn−1(α)} a normal basis for F/k.

Proof. We have dimk(F ) = n. View 1, σ, σ2, . . . , σn−1 as elements of Homk(F, F ).
Then char.polyk(σ) has degree n (see Definition 4.7.11). Since Autk(F ) = ⟨σ⟩ has
order n, the minimal polynomial of σ divides xn − 1. By Lemma 5.2.5, the au-
tomorphisms 1, σ, σ2, . . . , σn−1 are linearly independent over k, so the degree of
min.polyk(σ) is at least n. Therefore, min.polyk(σ) = xn − 1. Since the minimal
polynomial and the characteristic polynomial of σ both have degree n, this implies
they are equal. By Theorem 4.7.13, F is a cyclic k[σ]-module. By Theorem 4.6.1,
there exists α ∈ F such that the set {α, σ(α), σ2(α), . . . , σn−1(α)} is a k-basis for
F . □

8.1. Artin-Schreier Theorem.

Example 5.8.2. Let k be a field of positive characteristic p. For any a ∈ k,
the polynomial f = xp − x− a ∈ k[x] is separable over k. To see this, assume u is
a root of f in any extension field F/k. Let i ∈ Z/p be any element of the prime
field of k. Then f(u+ i) = (u+ i)p − (u+ i)− a = up + i− u− i− a = f(u) = 0.
Therefore, f has p distinct roots in F , namely u, u+ 1, . . . , u+ p− 1.

Theorem 5.8.3. (Artin-Schreier) Suppose k is a field of positive characteristic
p.

(1) If F/k is a cyclic Galois extension of degree p, then there exists a ∈ k
such that f = xp−x−a is an irreducible separable polynomial over k and
F is the splitting field for f over k. In this case F = k(u), where u is any
root of f .

(2) If a ∈ k and f = xp − x− a, then
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(a) f is separable, and
(b) either f is irreducible over k, or splits in k[x].

(3) If a ∈ k and f = xp − x− a is irreducible over k, then
(a) F = k[x]/(f) is a splitting field for f ,
(b) F/k is a cyclic Galois extension of k of degree p.

Proof. (1): Let G = Autk(F ) = ⟨σ⟩. Since G is simple and abelian, there
are no proper intermediate fields for F/k. Since char(k) = dimk(F ) = p, TFk (1) =
p = 0. By Theorem 5.7.5, there is v ∈ F such that v − σ(v) = 1. If u = −v, then
σ(u) = 1 + u. This shows u ̸∈ k, hence F = k(u). Note that σ(up) = (σ(u))

p
=

(1 + u)
p
= 1 + up, and σ(up − u) = σ(up)− σ(u) = (1 + up)− (u+ 1) = up − u. If

a = up − u, then a ∈ k and u satisfies the polynomial f = xp − x − a. Since the
dimension of k(u) over k is p, this implies f is equal to the irreducible polynomial
of u. By Example 5.8.2, f is separable and splits in F .

(2): Let f = xp − x− a in k[x]. Let F be a splitting field for f . As was shown
in Example 5.8.2, f is separable and if u ∈ F is a root of f , then the p distinct
roots of f are u, u + 1, . . . , u + p − 1, hence F = k(u). By Theorem 5.4.2, F/k
is a Galois extension. For any τ in Autk(F ), by Proposition 5.2.2 (1), τ(u) is a
root of f . Thus, τ(u) − u is an element of the prime field Z/p. Define a function
θ : Autk(F ) → Z/p by θ(τ) = τ(u) − u. If σ is another element of Autk(F ), then
σ(τ(u)− u) = τ(u)− u. Hence στ(u)− σ(u) = τ(u)− u. From this we see that

(8.1) στ(u)− u = σ(u) + τ(u)− u− u.
The left hand side of (8.1) is θ(στ), the right hand side is θ(σ)+θ(τ). This shows θ
is a homomorphism from the group Autk(F ) to the additive cyclic group Z/p. By
Proposition 5.2.2 (1), θ is one-to-one. Since Z/p is a simple group, either Autk(F )
has order 1 or p. By Theorem 5.2.10, if Autk(F ) has order 1, then F = k and
f splits in k[x]. If Autk(F ) has order p, then dimk(F ) = p. Since F = k(u),
by Theorem 5.1.3, Irr.polyk(u) has degree p. Therefore, f = Irr.polyk(u), which
shows f is irreducible.

(3): This follows from Part (2). □

8.2. Kummer Theory. If ζ ∈ k∗ and ζ generates a subgroup of order n in
k∗, then we say ζ is a primitive nth root of 1 in k and write ζ = n

√
1. There are at

most n solutions to xn − 1 in k, so the subgroup ⟨ζ⟩ has φ(n) generators. That is,
if k contains a primitive nth root of 1, then k contains φ(n) primitive nth roots of

1. A cyclic extension F/k of degree n is called a Kummer extension if n
√
1 ∈ k.

Theorem 5.8.4. Let n > 0 and assume k is a field containing a primitive nth
root of 1. The following are equivalent.

(1) F/k is a cyclic Galois extension of degree d, for some positive divisor d
of n.

(2) F is a splitting field over k of xn − a for some a ∈ k∗.
(3) F is a splitting field over k of xd − a for some a ∈ k∗ and some positive

divisor d of n.

Proof. Throughout the proof, let ζ = n
√
1 be a primitive nth root of 1 in k.

(2) implies (1): Let α be a root of xn − a in F . For each i ≥ 0 we have(
ζiα
)n

= (ζn)
i
αn = a, so the roots of xn − a in F are {ζiα | 0 ≤ i < n}. This

shows xn − a is separable. Also, since ζ ∈ k, this implies F = k(α) is a simple
extension. If σ ∈ G = Autk(F ), then σ(α) = ζiα for some i such that 0 ≤ i < n.
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As σ runs through the nonidentity elements of G, consider the positive numbers i
such that σ(α) = ζiα and pick the smallest. Fix σ ∈ G, such that σ(α) = ζiα and
i is minimal. We prove that G is generated by σ. Let τ be any element of G. Then
τ(α) = ζjα and we can assume 0 < i ≤ j < n. Dividing, j = iq+r, where 0 ≤ r < i.
Now σq(α) = ζqiα. Therefore, σ−qτ(α) = σ−q(ζjα) = ζjσ−q(α) = ζjζ−qiα = ζrα.
By the choice of i we conclude that r = 0, so τ = σq. The order of G is equal to
the order of ζi, which is a divisor of n.

(3) implies (2): Assume F is the splitting field of xd− a where d is a divisor of

n, and a ∈ k. Let ρ = ζn/d. Then ρ = d
√
1. Let α ∈ F satisfy αd = a. Then xd − a

factors in F [x] as (x− α)(x− ρα) · · · (x− ρd−1α). This implies F = k(α), because
ρ ∈ k. Consider the polynomial xn − an/d. For any i such that 0 ≤ i < n we see

that
(
ζiα
)n

= αn =
(
αd
)n/d

= an/d. So xn − an/d splits in F .
(1) implies (3): Assume F/k is cyclic of degree d and that σ is a generator for

G = Autk(F ). Since ρ = ζn/d = d
√
1 is in k, the norm of ρ is N(ρ) = ρd = 1. By

Theorem 5.7.5, there is u ∈ F ∗ such that ρ = u/σ(u). Setting v = u−1, we have
ρ = v−1σ(v), or σ(v) = ρv. Then σ(vd) = (ρv)d = vd. This says vd ∈ k and v
satisfies the polynomial xd − vd. The roots of xd − vd are {v, ρv, . . . , ρd−1v}. Note
that σi(v) = ρiv, for all i such that 0 ≤ i < d. If f is the irreducible polynomial
for v, then f has d roots in F . Therefore deg(f) = d and f = xd − vd. We have
shown that F is the splitting field of f and F = k(v). □

8.3. Cyclotomic Extensions. Let k be a field. We say F is a cyclotomic
extension of k of order n if F is the splitting field over k of xn−1. If char k = p > 0,
then we can factor n = pem where (m, p) = 1. Then xn − 1 = (xm)p

e − 1p
e

=
(xm − 1)p

e

, so the splitting field of xn − 1 is equal to the splitting field of xm − 1.
For this reason, we assume n is relatively prime to char k and xn − 1 is separable.
In Theorem 5.8.5, φ(n) denotes the Euler φ function.

Theorem 5.8.5. Let F be a cyclotomic extension of k of order n. If char k =
p > 1, assume (n, p) = 1. Then

(1) F = k(ζ) where ζ is a primitive nth root of 1 over k.
(2) F is a Galois extension of k and Autk(F ) is a subgroup of the group of

units in Z/n. The dimension dimk(F ) is a divisor of φ(n).

Proof. (1): By assumption, xn−1 is separable, and the group µn of nth roots
of unity in F is a cyclic group of order n, by Proposition 5.4.6. Let ζ be a primitive
nth root of unity in F . Therefore F = k(ζ) is a simple extension.

(2): Since F is the splitting field of a separable polynomial, F/k is Galois.
The Galois group G = Autk(F ) acts on the cyclic group of order n generated by
ζ. This defines a homomorphism G → Aut(⟨ζ⟩). Since F = k(ζ), this mapping is
one-to-one. The order of Aut(⟨ζ⟩) is φ(n). □

8.4. Radical Extensions.

Definition 5.8.6. Let k be a field and Ω the algebraic closure of k. If F is an
intermediate field of Ω/k, we say F is a radical extension of k in case there exist
elements u1, . . . , un in Ω and positive integers e1, . . . , en such that

(1) F = k(u1, . . . , un),
(2) ue11 ∈ k, and
(3) for 1 < i ≤ n, ueii ∈ k(u1, . . . , ui−1).
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If f ∈ k[x], we say f is solvable by radicals in case the splitting field of f is contained
in a radical extension of k.

Lemma 5.8.7. Let F/k be a radical extension of fields. As in Definition 5.3.12,
let K be the normal closure of F/k. Then K/k is a radical extension.

Proof. First we show that K = F1F2 · · ·Fm where each Fi is an intermediate
field of K/k and Fi ∼= F . We are given F = k(u1, . . . , un) as in Definition 5.8.6.
For each i, and for each root α of Irr.polyk(ui), there is a k-algebra isomorphism
θ : k(ui) → k(α) which extends by Lemma 5.3.8 to a k-algebra isomorphism θ̄ :
K → K. Then θ̄(F ) is an intermediate field of K/k which is k-isomorphic to F and
contains α. Since K/k is generated by the roots α of the irreducible polynomials
of the elements ui, there is a finite number of fields of the form θ̄(F ) that generate
K.

Let F1 = k(u1, . . . , un) as in Definition 5.8.6. By the first step, there are
isomorphic copies Fi of F1 such that K = F1F2 · · ·Fm. Then F2 = k(v1, . . . , vn)
where the vi are as in Definition 5.8.6. Clearly F1F2 = k(u1, . . . , un, v1, . . . , vn) is
a radical extension of k. An iterative argument shows that K = F1F2 . . . Fm is a
radical extension of k. □

Theorem 5.8.8. If F/k is a radical extension of fields, and E is an intermediate
field, then Autk(E) is solvable.

Proof. Step 1: Reduce to the case where F = E and F/k is a Galois extension.
Let L be the fixed field EAutk(E). Then E/L is a Galois extension with group
Autk(E) = AutL(E). By Theorem 5.4.2, E/L is normal and separable. Let K be
the normal closure of F/L. Then K/L is a radical extension by Lemma 5.8.7 and
F/L is a radical extension because F/k is. By Theorem 5.3.11, any σ ∈ AutL(K)
maps E to E. There is a homomorphism of groups AutL(K) → AutL(E) defined
by σ 7→ σ|E which is onto since K is a splitting field over L of a set of polynomials.
Since the homomorphic image of a solvable group is solvable, it suffices to show that
AutL(K) is solvable. Let L1 be the fixed field KAutK(K). Then K/L1 is a Galois
extension with group AutL1(K) = AutL(K). Since K/k is a radical extension, so
is K/L1. It is enough to prove the result for the radical Galois extension K/L1.

Step 2: Assume F = k(u1, . . . , un) is a radical extension of k and that F/k is
Galois with group G. We prove that G is solvable. For each i, there is ni such
that uni

i ∈ k(u1, . . . , ui−1). If p = char k is positive, then we factor ni = ptmi

such that (p,mi) = 1. In this case, (umi
i )

pt ∈ k(u1, . . . , ui−1) and since F is
separable over k(u1, . . . , ui−1), we see that umi

i ∈ k(u1, . . . , ui−1). From now on
we assume (p, ni) = 1. Set m = n1n2 · · ·nn. Since (m, p) = 1, the polynomial
xm − 1 is separable over k and if ζ is a primitive mth root of unity over k, then
F (ζ)/k is a Galois extension with intermediate field F . Since F/k is Galois, by
Theorem 5.2.10, G is the homomorphic image of Autk(F (ζ)). It suffices to show
Autk(F (ζ)) is solvable. By Theorem 5.8.5, k(ζ)/k is a Galois extension with an
abelian Galois group. Therefore Autk(ζ)(F (ζ)) is a normal subgroup of Autk(F (ζ))
and since

Autk(F (ζ))/Autk(ζ)(F (ζ)) ∼= Autk(k(ζ))

it suffices to show Autk(ζ)(F (ζ)) is a solvable group. Set E0 = k(ζ) and for each
i = 1, 2, . . . , n set Ei = k(ζ, u1, . . . , ui). Therefore En = F (ζ) is a Galois extension
of each Ei. Let Hi = AutEi

(En) be the corresponding subgroup of AutE0
(En). By
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construction, Ei/Ei−1 is a Kummer extension, hence is a cyclic Galois extension,
by Theorem 5.8.4. Therefore, Hi−1 = AutEi−1(En) is a normal subgroup of Hi =
AutEi(En) and the factor group Hi/Hi−1 ∼= AutEi−1(Ei) is a cyclic group. This
shows 1 = Hn ⊆ Hn−1 ⊆ · · · ⊆ H1 ⊆ H0 = Autk(ζ)(F (ζ)) is a solvable series. □

Theorem 5.8.9 is a partial converse to Theorem 5.8.8. At least in characteristic
zero, if f is a polynomial with solvable Galois group, then f is solvable by radicals.

Theorem 5.8.9. Let k be a field, Ω the algebraic closure of k. Let f ∈ k[x]
be a separable polynomial and E the splitting field for f in Ω. Assume Autk(E)
is solvable. Moreover, assume if char k = p > 0, then p does not divide dimk(E).
Then f is solvable by radicals. That is, E is contained in a radical extension of k
in Ω.

Proof. Let n = dimk(E), ζ a primitive nth root of unity in Ω, and set F =
E(ζ).

F = E(ζ)

E k(ζ)

k

By Theorem 5.4.2, E/k is a Galois extension and by hypothesis Autk(E) is a
solvable group. By Theorem 5.4.8, F = E(ζ) is a Galois extension of k(ζ) and
G = Autk(ζ)(F ) embeds as a subgroup of Autk(E). By Exercise 2.10.19, G is a
solvable group. By our hypothesis, if char k = p is positive, then p does not divide
|G|. By Exercise 2.10.21, G has a composition series G = G0 ⊇ G1 ⊇ G2 ⊇
· · · ⊇ Gm = ⟨e⟩ where the factor group Gi/Gi+1 is cyclic of order [Gi : Gi+1],
a prime divisor of |G|. By Theorem 5.2.10, there is a tower of field extensions
F = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fm = k(ζ) and Fi/Fi+1 is a cyclic extension, hence a
Kummer extension. By Theorem 5.8.4, Fi = Fi+1(vi) is a radical extension. Since
k(ζ) is a radical extension, this proves F/k is a radical extension. □

9. Exercises

Exercise 5.9.1. Let F/k be a purely inseparable finite dimensional extension
of fields. Show that dimk(F ) = pn for some n ≥ 0.

Exercise 5.9.2. This exercise is a continuation of Exercise 4.6.9. Let k be a
field and A a matrix in Mn(k). Prove that A is similar to the transpose of A.

Exercise 5.9.3. Prove the following for f = x3 + x− 1.

(1) f is irreducible in Q[x].
(2) If F = Q[x]/(f) and σ is an automorphism of F , then σ is the identity

function.
(3) In R[x], f factors into a product of a linear polynomial and an irreducible

quadratic.
(4) If F is the splitting field of f over Q, then the Galois group AutQ(F ) is a

nonabelian group of order six.
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Exercise 5.9.4. Let F be the splitting field of f = x3 − 5 over Q.

(1) Show that the Galois group AutQ(F ) is a nonabelian group of order six.
(2) Find all intermediate fields K between Q and F .
(3) Prove or give a counterexample: Each intermediate field K is a Galois

extension of Q.

Exercise 5.9.5. Let F be the splitting field of f = (x2 − 2)(x2 − 3) over Q.

(1) Show that the Galois group AutQ(F ) is a noncyclic abelian group of order
four.

(2) Find all intermediate fields K between Q and F .
(3) Prove or give a counterexample: Each intermediate field K is a Galois

extension of Q.

Exercise 5.9.6. Let k be a field, n ≥ 1 and a ∈ k. Let f = xn − a and F/k a
splitting field for f . Show that the following are equivalent.

(1) Every root of f in F is a simple root.
(2) F [x]/(f) is a direct sum of fields.
(3) n = 1 or na ̸= 0.

Exercise 5.9.7. This exercise is a continuation of Exercise 3.7.19. Let R be
a UFD with quotient field K. Assume the characteristic of R is not equal to 2.
Let a ∈ R be an element which is not a square in R and f = x2 − a ∈ R[x]. Let
S = R[x]/(f), L = K[x]/(f). Prove:

(1) AutK L = ⟨σ⟩ is a cyclic group of order two and L/K is a Galois extension.
(2) If σ : L → L is the automorphism of order two, then σ restricts to an

R-automorphism of S.
(3) The norm map NL

K : L→ K restricts to a norm map NS
R : S → R.

(4) An element c ∈ S is invertible if and only if NS
R(c) is invertible in R.

Exercise 5.9.8. Let p be a prime number, and F/k an extension of fields which
is cyclic of degree pn. If E is an intermediate field such that F = E(a), and E/k is
cyclic of degree pn−1, then F = k(a).

Exercise 5.9.9. Let k be a field of positive characteristic p.

(1) The map a 7→ ap−a defines a homomorphism of additive groups φ : k → k.
Prove that a cyclic extension field E/k of degree p exists if and only if the
map φ is not onto.

(2) In this exercise, we outline a proof that a cyclic extension field E/k of
degree pn−1 can be embedded in a cyclic extension field F/k of degree pn.
For the complete classification of cyclic extensions F/k of degree pn, the
interested reader is referred to [1]. Assume n > 1, E/k is cyclic of degree
pn−1, and Autk(E) = ⟨σ⟩.
(a) Show that there exists a, b ∈ E satisfying: TEk (a) = 1 and σ(b)− b =

ap − a.
(b) Show that xp − x− a is irreducible in E[x].
(c) Let F = E[x]/(xp − x− a). Show that F/E is cyclic of degree p and

F/k is cyclic of degree pn.

Exercise 5.9.10. Consider the polynomial f = x4 − 2 in Q[x]. Let α be the
positive root of f in R. Let i be a primitive fourth root of unity in C.

(1) Show that Q(α, i) is the splitting field for f in C.
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(2) Show that the Galois group of f over Q is isomorphic to the dihedral
group D4.

(3) (Galois over Galois is not Galois) Prove the following:
(a) Q(α) is Galois over Q(α2).
(b) Q(α2) is Galois over Q.
(c) Q(α) is not Galois over Q.

Exercise 5.9.11. Let F/k be a separable extension of fields such that dimk(F ) =
2. Show that F/k is a Galois extension.

Exercise 5.9.12. Let f(x) = x3 + 3x + 3. Show that f is irreducible in Q[x]
and f has exactly one real root and two nonreal roots. Let α ∈ R be the real root
and β1, β2 be the nonreal roots of f(x). Show that Q[α, β1] is the splitting field
for f over Q and dimQ Q[α, β1] = 6. Show that AutQ(Q[α]) = ⟨1⟩. Show that
AutQ(Q[α, β1]) is isomorphic to S3, the group of permutations of {α, β1, β2}.

Exercise 5.9.13. Determine the Galois group of the polynomial x4 + x2 − 6
over Q.

Exercise 5.9.14. Determine the smallest Galois extension K/Q containing
21/2 + 21/3. Determine AutQ(K).

Exercise 5.9.15. Determine the Galois group of the polynomial x6 − 8 over
each of these fields: Q, Q

(√
2
)
, and Q (ζ), where ζ = e2πi/3 is a primitive third

root of 1 in C.
Exercise 5.9.16. Determine the Galois group of the polynomial

(
x2 − 2

) (
x3 + 2

)
over each of these fields: R, Q, Q

(√
2
)
, Q
(

3
√
2
)
, and Q (ζ), where ζ = e2πi/6 is a

primitive third root of −1 in C.
Exercise 5.9.17. Let k be a field. Assume the characteristic of k is not 2 or 3

and that k contains a primitive sixth root of unity denoted ζ6.

(1) Show that k(x) is a cyclic Galois extension of k(x6) of degree 6 (in other
words, a Kummer extension). Let G = ⟨σ⟩ be the Galois group. Deter-
mine the lattice of subfields and lattice of subgroups guaranteed by the
Fundamental Theorem of Galois Theory.

(2) Show that G acts on k[x] and the fixed subring is k[x6]. Determine the
lattice of fixed subrings of k[x] corresponding to the subgroups of G.

(3) As in Exercise 3.6.21, let R = k[x2, x3]. Determine the subgroup of G
that fixes R pointwise (that is, the stabilizer of R in G).

Exercise 5.9.18. LetR be an integral domain with charR = p a prime number.
Let K be the quotient field of R and Ω an algebraic closure of K. Let r ≥ 1, q = pr,
and θ : Ω → Ω the r-th power of the Frobenius homomorphism on Ω defined by
θ(x) = xq. If L = {y ∈ Ω | yq ∈ K} and S = {y ∈ Ω | yq ∈ R}, prove:

(1) L is a subfield of Ω containing K.
(2) S is a subring of L containing R.
(3) θ : L→ K is an isomorphism of fields.
(4) θ : S → R is an isomorphism of rings.
(5) L is equal to the quotient field of S.

Exercise 5.9.19. Determine the Galois group of the polynomial f(x) = x4 −
x2 − 1 over each of these fields: Q(i), Q(

√
5), Q(i

√
5), Q, where i is a primitive

fourth root of 1 in C.
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10. Transcendental Field Extensions

Definition 5.10.1. Let F/k be an extension of fields and Ξ ⊆ F . We say Ξ is
algebraically dependent over k if there exist n distinct elements ξ1, . . . , ξn in Ξ and
a nonzero polynomial f ∈ k[x1, . . . , xn] such that f(ξ1, . . . , ξn) = 0. Otherwise we
say Ξ is algebraically independent. A transcendence base for F/k is a subset Ξ ⊆ F
which satisfies

(1) Ξ is algebraically independent over k and
(2) if Ξ ⊆ Z and Z is algebraically independent over k, then Ξ = Z.

Lemma 5.10.2. Let F/k be an extension of fields and Ξ a subset of F which is
algebraically independent over k. For u ∈ F − k(Ξ), the following are equivalent.

(1) Ξ ∪ {u} is algebraically independent over k.
(2) u is transcendental over k(Ξ).

Proof. (2) implies (1): Suppose there exist a polynomial f in k[x1, . . . , xn]
and elements ξ1, . . . , ξn−1 in Ξ such that f(ξ1, . . . , ξn−1, u) = 0. Expand f as a
polynomial in xn with coefficients in k[x1, . . . , xn−1], say f =

∑
j hjx

j
n. Then

0 = f(ξ1, . . . , ξn−1, u) =
∑
j hj(ξ1, . . . , ξn−1)u

j . But u is transcendental over k(Ξ),

so hj(ξ1, . . . , ξn−1) = 0 for each j. But Ξ is algebraically independent, so each
polynomial hj = 0. Thus f = 0.

(1) implies (2): Prove the contrapositive. Assume u is algebraic over k(Ξ) and
f = min.polyk(Ξ)(u) = xm + hm−1x

m−1 + · · · + h1x + h0. Each hj is in k(Ξ), so
there is a finite subset ξ1, . . . , ξn of Ξ and polynomials α0, . . . , αm, β0, . . . , βm in
k[x1, . . . , xn] such that hj = αj(ξ1, . . . , ξn)/βj(ξ1, . . . , ξn). Multiply across by the
least common multiple, β, of the denominators to get

f(x)β(ξ1, . . . , ξn) =
∑
j

γj(ξ1, . . . , ξn)x
j

where β(ξ1, . . . , ξn) ̸= 0 and each γj is in k[x1, . . . , xn]. Since (fβ)(ξ1, . . . , ξn, u) =
0, we are done. □

Lemma 5.10.3. Let F/k be an extension of fields and Ξ a subset of F which is
algebraically independent over k. The following are equivalent.

(1) F is algebraic over k(Ξ).
(2) Ξ is a transcendence base for F over k.

Proof. (1) implies (2): Suppose Z is linearly independent, Z ⊇ Ξ, and z ∈ Z.
Then z is algebraic over k(Ξ), so by Lemma 5.10.2, Ξ ∪ {z} is linearly dependent.
Therefore, z ∈ Ξ, which implies Z = Ξ.

(2) implies (1): We prove the contrapositive. Suppose u ∈ F − k(Ξ) and u is
transcendental over k(Ξ). Then Ξ ∪ {u} is algebraically independent, so Ξ is not a
transcendence base. □

Lemma 5.10.4. Let F/k be an extension of fields.

(1) If Ξ is a subset of F such that F is algebraic over k(Ξ), then Ξ contains
a subset which is a transcendence base for F over k.

(2) If F is a finitely generated field extension of k, then there is a finite
transcendence base for F/k.
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Proof. (1): The reader should verify that by Zorn’s Lemma, Proposition 1.3.3,
the set

{Z ⊆ Ξ | Z is algebraically independent over k}

contains a maximal member, call it X. Given u ∈ Ξ, by Lemma 5.10.2, u is
algebraic over k(X). Then k(Ξ) is algebraic over k(X). By Proposition 5.1.10 (4),
F is algebraic over k(X). By Lemma 5.10.3, X is a transcendence base.

(2): Is left to the reader. □

Theorem 5.10.5. Let F/k be an extension of fields and assume Ξ = {ξ1, . . . , ξn}
is a transcendence base for F over k. If Z is another transcendence base for F over
k, then Z also has cardinality n.

Proof. Step 0: If n = 0, then by Exercise 5.10.14, F/k is an algebraic exten-
sion. Since Z is algebraically independent over k, we conclude that Z = ∅. Assume
from now on that n > 0.

Step 1: There exists ζ1 ∈ Z such that ζ1, ξ2, . . . , ξn is a transcendence base
for F/k. First we show that there exists ζ ∈ Z such that ζ is transcenden-
tal over K = k(ξ2, . . . , ξn). Assume the contrary. Then F is algebraic over
K(Z) and K(Z) is algebraic over K, hence F is algebraic over K. Then ξ1
is algebraic over K, which contradicts Lemma 5.10.2. Suppose ζ1 ∈ Z and ζ1
is transcendental over K. By Lemma 5.10.2, {ζ1, ξ2, . . . , ξn} is algebraically in-
dependent over k. The set {ζ1, ξ2, . . . , ξn} ∪ {ξ1} is algebraically dependent, so
Lemma 5.10.2 says ξ1 is algebraic over k(ζ1, ξ2, . . . , ξn). In this case, the field
k(Ξ)(ζ1) = k(ζ1, ξ2, . . . , ξn)(ξ1) is algebraic over k(ζ1, ξ2, . . . , ξn) and F is algebraic
over k(Ξ)(ζ1) = k(ζ1, ξ2, . . . , ξn)(ξ1), hence F is algebraic over k(ζ1, ξ2, . . . , ξn). By
Lemma 5.10.3, the set ζ1, ξ2, . . . , ξn is a transcendence base for F/k.

Step 2: Iterate Step 1 n − 1 more times to get a subset {ζ1, . . . , ζn} of Z
which is a transcendence base for F/k. By Definition 5.10.1, this implies Z =
{ζ1, . . . , ζn}. □

Definition 5.10.6. Let F/k be an extension of fields such that a finite tran-
scendence base exists. The transcendence degree of F/k, denoted tr.degk(F ), is the
number of elements in any transcendence base of F over k.

Theorem 5.10.7. Suppose k ⊆ F ⊆ K is a tower of field extensions. As-
sume Ξ = {ξ1, . . . , ξn} is a transcendence base for F/k and Z = {ζ1, . . . , ζm} is a
transcendence base for K/F . Then

(1) Ξ ∪ Z is a transcendence base for K/k, and
(2) tr.degk(K) = tr.degk(F ) + tr.degF (K).

Proof. (2): Follows straight from (1).
(1): The reader should verify that K is algebraic over k(Z ∪ Ξ)(F ) and k(Z ∪

Ξ)(F ) is algebraic over k(Z∪Ξ). Therefore, K is algebraic over k(Z∪Ξ). Let f be a
polynomial in k[x1, . . . , xn][z1, . . . , zm] such that f(ξ1, . . . , ξn, ζ1, . . . , ζm) = 0. Since
Z is algebraically independent over F , this implies f(ξ1, . . . , ξn, z1, . . . , zm) is the
zero polynomial in the ring k(ξ1, . . . , ξn)[z1, . . . , zm]. Therefore, each coefficient of
f(ξ1, . . . , ξn, z1, . . . , zm) is an algebraic relation over k involving ξ1, . . . , ξn. Because
ξ1, . . . , ξn are algebraically independent over k, we conclude that f = 0. This proves
Z ∪ Ξ is algebraically independent over k. By Lemma 5.10.3 we are done. □
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10.1. Symmetric Rational Functions and Symmetric Polynomials.
Let k be a field and A = k[x1, . . . , xn] the ring of polynomials over k in the variables
x1, . . . , xn (see Section 3.6.1). The field of rational functions in x1, . . . , xn over k is
denoted K = k(x1, . . . , xn). Let Sn be the symmetric group on {1, 2, . . . , n}. The
group Sn acts on A as a group of k-algebra automorphisms in the following way.
Given any permutation σ ∈ Sn and any polynomial f(x1, . . . , xn) ∈ A, define σ(f)
to be the polynomial f(xσ(1), . . . , xσ(n)). Using Theorem 3.6.3 we see that σ defines
an automorphism of A that fixes each element of k. The permutation σ induces
an automorphism of K and Sn can be viewed as a group of automorphisms of K.
Then K is a Galois extension of KSn with group Sn. The degree of the extension
K/KSn is equal to the order of the group Sn, which is n!, by Example 2.1.14. The
fixed field KSn is called the field of symmetric rational functions in n variables over
k. The subring of A fixed by Sn is denoted ASn . We call ASn the ring of symmetric
polynomials in n variables over k. Let λ be another indeterminate. Consider the
polynomial

Λ = (λ− x1)(λ− x2) · · · (λ− xn)

in A[λ]. Notice that Λ is symmetric in x1, . . . , xn. In other words, if we extend the
action by Sn on A to an action on the ring A[λ], then Λ is fixed by Sn. Therefore,
the coefficients of Λ are symmetric polynomials and belong to the ring ASn . The
elementary symmetric polynomial of degree i in the variables x1, . . . , xn, denoted
σi,n, is the coefficient of λn−i in the expansion of Λ:

Λ = λn − σ1,nλn−1 + σ2,nλ
n−2 − · · ·+ (−1)iσi,nλn−i + · · ·+ (−1)nσn,n.

We see that

σ1,n = x1 + x2 + · · ·+ xn

σ2,n =
∑
i1<i2

xi1xi2

σ3,n =
∑

i1<i2<i3

xi1xi2xi3

...

σn,n = x1x2 . . . xn

By Exercise 5.10.18, if 1 < i < m ≤ n, then the polynomials σi,m satisfy the
recurrance relation: σi,m = σi,m−1 + xmσi−1,m−1. Therefore, we have the tower of
fields: k(σ1,n, . . . , σn,n) ⊆ k(x1, . . . , xn)Sn ⊆ k(x1, . . . , xn).

Theorem 5.10.8. (The Theorem on Symmetric Rational Functions) Let k be
a field and k(x1, . . . , xn) the field of rational functions in the variables x1, . . . , xn
over k. Let Sn be the symmetric group on {1, . . . , n} and k(x1, . . . , xn)Sn the field of
symmetric rational functions in the variables x1, . . . , xn over k. Then the following
are true.

(1) k(x1, . . . , xn) is a Galois extension of k(x1, . . . , xn)
Sn with Galois group

Sn.
(2) The degree of the extension k(x1, . . . , xn)/k(x1, . . . , xn)

Sn is n!.
(3) If σ1,n, . . . , σn,n are the elementary symmetric polynomials in x1, . . . , xn,

then k(x1, . . . , xn)
Sn = k(σ1,n, . . . , σn,n).
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(4) k(x1, . . . , xn) is the splitting field of the polynomial

Λ = λn − σ1,nλn−1 + σ2,nλ
n−2 − · · ·+ (−1)iσi,nλn−i + · · ·+ (−1)nσn,n

over the field k(x1, . . . , xn)
Sn = k(σ1,n, . . . , σn,n).

Proof. Parts (1) and (2) were proved in the paragraph preceding this the-
orem. By definition, Λ = (λ − x1)(λ − x2) · · · (λ − xn) splits over k(x1, . . . , xn)
and k(x1, . . . , xn) is generated by the roots of Λ. This proves k(x1, . . . , xn) is the
splitting field for Λ over k(σ1,n, . . . , σn,n). By Proposition 5.3.7 and Corollary 5.3.9,
the dimension of k(x1, . . . , xn) as a vector space over k(σ1,n, . . . , σn,n) is at most
n!. Part (2) and Proposition 4.2.39 imply k(x1, . . . , xn)

Sn = k(σ1,n, . . . , σn,n). □

Corollary 5.10.9. Let k be a field and k[x1, . . . , xn] the ring of polynomials
in the variables x1, . . . , xn over k. If σ1,n, . . . , σn,n are the elementary symmet-
ric polynomials in x1, . . . , xn, then the k-algebra homomorphism k[t1, . . . , tn] →
k[σ1,n, . . . , σn,n] defined by ti 7→ σi,n is an isomorphism.

Proof. By Exercise 5.10.16, K = k(x1, . . . , xn) has transcendence degree n
over k. By Theorem 5.10.8, K is algebraic over k(s1,n, . . . , sn,n). By Lemma 5.10.4,
{s1,n, . . . , sn,n} is a transcendence base for K over k. Therefore, the k-algebra
homomorphism k[t1, . . . , tn] → k[s1,n, . . . , sn,n] defined by ti 7→ σi,n is a k-algebra
isomorphism. □

Corollary 5.10.10. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.

Proof. Let [G : e] = n. By Cayley’s Theorem, Theorem 2.4.4, we can identify
G with a subgroup of Sn. By Theorem 5.10.8 and Theorem 5.2.10, k(x1, . . . , xn) is
a Galois extension of k(x1, . . . , xn)

G with Galois group G. □

10.1.1. The General Polynomial of Degree n is not solvable by Radicals. Let k
be a field, t0, t1, . . . , tn−1 indeterminates, and K = k(t0, t1, . . . , tn−1) the field of
rational functions over k. The general polynomial of degree n over the field k is

p(x) = xn − tn−1xn−1 + . . . (−1)n−1t1x+ (−1)nt0
which is an element of the ring K[x].

Corollary 5.10.11. If n ≥ 5, the general polynomial of degree n is not solvable
by radicals.

Proof. Let σ1, . . . , σn be the elementary symmetric polynomials in the n vari-
ables x1, . . . , xn. By Theorem 5.10.8, K = k(x1, . . . , xn) is the splitting field of the
polynomial

Λ = (λ− x1)(λ− x2) · · · (λ− xn)
= λn − σ1λn−1 + · · ·+ (−1)n−1σn−1λ+ (−1)nσn.

By Corollary 5.10.9, the field k(σ1, . . . , σn) is isomorphic to k(t0, t1, . . . , tn−1), the
field of rational functions in n variables over k. Therefore, Λ is a general polynomial
of degree n over k. The Galois group of K over k(σ1, . . . , σn) is Sn, the symmetric
group on n letters. By Corollary 2.10.14, Sn is not solvable. By Theorem 5.8.8, Λ
is not solvable by radicals, □
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10.1.2. Symmetric Polynomials. Theorem 5.10.8(3) says that every symmetric
rational function is a rational function in the elementary symmetric polynomials.
In Theorem 5.10.12, which is due to Gauss, we improve this result by proving
that every symmetric polynomial is a polynomial in the elementary symmetric
polynomials.

Theorem 5.10.12. (The Theorem on Symmetric Polynomials) Let k be a field
and k[x1, . . . , xn] the ring of polynomials in the variables x1, . . . , xn over k. Let
Sn be the symmetric group on {1, . . . , n} and k[x1, . . . , xn]Sn the ring of symmetric
polynomials in the variables x1, . . . , xn over k. If σ1,n, . . . , σn,n are the elementary
symmetric polynomials in x1, . . . , xn, then the following are true.

(1) If f is a nonzero symmetric polynomial, then there exists a polynomial
g ∈ k[t1, . . . , tn] such that f = g(σ1,n, . . . , σn,n).

(2) k[x1, . . . , xn]
Sn = k[σ1,n, . . . , σn,n].

(3) The polynomial g in (1) is unique.

The proof of the theorem will utilize the following lemma.

Lemma 5.10.13. In the context of Theorem 5.10.12, let f be a nonzero sym-
metric polynomial in k[x1, . . . , xn]

Sn . If the leading term of f (see Lemma 3.6.19)
is M = rxe11 · · ·xenn , then e1 ≥ e2 ≥ · · · ≥ en.

Proof. For sake of contradiction assume 1 ≤ i < j ≤ n and ei < ej . Apply
the transposition τ = (i, j) to f . Since τf = f , we know that f has the monomial

τM = rxe11 · · ·x
ei−1

i−1 x
ei
j x

ei+1

i+1 · · · · · ·x
ej−1

j−1 x
ej
i x

ej+1

j+1 · · ·x
en
n = rxe11 · · ·x

ej
i · · ·x

ei
j · · ·x

en
n .

Thus in the monomial τM , the exponents of xi and xj are swapped. But

M = rxe11 · · ·x
ei
i · · ·x

ej
j · · ·x

en
n < rxe11 · · ·x

ej
i · · ·x

ei
j · · ·x

en
n = τM.

This is a contradiction, since M is the leading term of f . □

Proof of Theorem 5.10.12. (1) and (2): Let f ∈ k[x1, . . . , xn]Sn be a nonzero
symmetric polynomial and assume the leading term of f is r1x

e1
1 · · ·xenn . By

Lemma 5.10.13, e1 ≥ e2 ≥ · · · ≥ en. Set d1 = e1 − e2, d2 = e2 − e3, . . . ,
dn−1 = en−1 − en, and dn = en. By Exercise 5.10.20, the leading term of

sd11,ns
d2
2,n · · · sdnn,n is equal to

xd1+d2+···+dn1 xd2+···+dn2 · · ·xenn = xe11 x
e2
2 · · ·xenn .

Let g1 = r1s
d1
1,ns

d2
2,n · · · sdnn,n. Then g1 ∈ k[s1,n, . . . , sn,n] and f1 = f − g1 is a

symmetric polynomial in k[x1, . . . , xn]
Sn . The leading terms of f and g1 are equal,

so if f1 is nonzero, the leading term of f1 is less than the leading term of f in
the lexicographical order (see Section 3.6.1). If f1 is nonzero, then we repeat the
above steps to get g2 ∈ k[s1,n, . . . , sn,n] with the same leading term as f1. Hence
f2 = f1 − g2 is either zero, or has a leading term less than the leading term of f1.
Iterating, we get a sequence of symmetric polynomials f, f1, f2, . . . such that the
leading terms form a strictly decreasing sequence. By Lemma 3.6.19 (3), after a
finite number of iterations we have fm = 0. This shows that f = g1 + g2 + · · ·+ gm
is in k[s1,n, . . . , sn,n], proving (1) and (2).

(3): This follows from Corollary 5.10.9, because the map induced by sending ti
to σi,n is a k-algebra isomorphism k[t1, . . . , tn] ∼= k[s1,n, . . . , sn,n]. □
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10.2. Exercises.

Exercise 5.10.14. If F/k is an extension of fields, show that ∅ is a transcen-
dence base if and only if F/k is an algebraic extension.

Exercise 5.10.15. If F/k is an extension of fields, and Ξ ⊆ F is algebraically
independent over k, show that there exists a transcendence base Z such that Z ⊇ Ξ.

Exercise 5.10.16. Let k is a field, and x1, . . . , xn a set of indeterminates.
Show that tr.degk k(x1, . . . , xn) = n and {x1, . . . , xn} is a transcendence base for
k(x1, . . . , xn) over k.

Exercise 5.10.17. If F is a finitely generated extension field of the field k,
show that tr.degk(F ) is equal to the least integer n such that there exist ξ1, . . . , ξn
in F and F is algebraic over k(ξ1, . . . , ξn).

Exercise 5.10.18. Let x1, . . . , xn be a set of indeterminates. If 1 ≤ i ≤ m ≤
n, let σi,m be the elementary symmetric polynomial of degree i in the variables
x1, . . . , xm. Prove the following recursive formula:

σi,m =


x1 + x2 + · · ·+ xm if i = 1,

x1x2 . . . xm if i = m,

σi,m−1 + xmσi−1,m−1 if 1 < i < m ≤ n.

Exercise 5.10.19. Let Sn be the symmetric group on {1, 2, . . . , n} and Sn−1
the symmetric group on {1, 2, . . . , n−1}. We view Sn−1 as a subgroup of Sn. Let k
be a field. Prove that if f(x1, . . . , xn) ∈ k[x1, . . . , xn]Sn , then f(x1, . . . , xn−1, 0) ∈
k[x1, . . . , xn−1]

Sn−1 . Show that there exists a commutative diagram

An = k[x1, . . . , xn]
α // An−1 = k[x1, . . . , xn−1]

ASn
n

a ⊆

OO

β // ASn−1

n−1

b ⊆

OO

k[σ1,n, . . . , σn,n]
γ //

c ⊆

OO

k[σ1,n−1, . . . , σn−1,n−1]

d =

OO

of commutative rings satisfying the following:

(1) The maps a, b, c, d are homomorphisms defined by set inclusion.
(2) The epimorphism α is defined by xn 7→ 0.
(3) The homomorphism β is the restriction of α to ASn

n .
(4) The epimorphism γ is the restriction of α to k[σ1,n, . . . , σn,n].

Exercise 5.10.20. Let ei ≥ 0 for each i. In the context of Theorem 5.10.12,
show that the leading term of se11,ms

e2
2,m · · · semm,m is equal to xe1+e2+···+em1 xe2+···+em2 · · ·xemm .

Exercise 5.10.21. Follow the steps below to show that the map γ in Exer-
cise 5.10.19 has a section.

(1) Show that there is a k-algebra homomorphism

ϵ : k[σ1,n−1, . . . , σn−1,n−1]→ k[σ1,n, . . . , σn,n]

defined by σi,n−1 7→ σi,n.
(2) Show that γϵ is the identity map on k[σ1,n−1, . . . , σn−1,n−1].



CHAPTER 6

Modules

1. Categories and Functors

A category consists of a collection of objects and a collection of morphisms
between pairs of those objects. The composition of morphisms is defined and is
again a morphism. For our purposes, a category will usually be one of the following:

(1) The category whose objects are modules over a ring R and whose mor-
phisms are homomorphisms of modules. By RM we denote the category
of all left R-modules together with R-module homomorphisms. By MR

we denote the category of all right R-modules together with R-module
homomorphisms. If A and B are R-modules, the set of all R-module
homomorphisms from A to B is denoted HomR(A,B).

(2) The category of whose objects are rings and whose morphisms are homo-
morphisms of rings. A subcategory would be the category whose objects
are commutative rings.

(3) The category whose objects are finitely generated algebras over a fixed
commutative ringR and whose morphisms areR-algebra homomorphisms.

(4) The category whose objects are sets and whose morphisms are functions.
(5) The category of pointed sets. A pointed set is a pair (X,x) where X is a

nonempty set and x is a distinguished element of X called the base point.
A morphism from a pointed set (X,x) to a pointed set (Y, y) is a function
f : X → Y such that f(x) = y.

For any pair of objects A, B in a category C, the collection of all morphisms from A
to B is denoted HomC(A,B). A covariant functor from a category C to a category
D is a correspondence F : C → D which is a function on objects A 7→ F(A) and
for any pair of objects A,B ∈ C, each morphism f in HomC(A,B) is mapped to a
morphism F(f) in HomD(F(A),F(B)) such that the following are satisfied

(1) If 1 : A→ A is the identity map, then F(1) : F(A)→ F(A) is the identity
map.

(2) Given a commutative triangle in C

B
g

��
A

f
??

gf // C

249
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the triangle

F(B)

F(g)

##
F(A)

F(f)
;;

F(gf) // F(C)

commutes in D.

Example 6.1.1. As in Definition 3.1.8, the opposite ring of R is denoted Ro.
Multiplication in Ro is denoted by ∗ and is reversed from multiplication in R: x∗y =
yx. Any M ∈ RM can be made into a right Ro-module by defining m ∗ r = rm.
The reader should verify that this defines a covariant functor RM→MRo .

The definition of a contravariant functor is similar, except the arrows get reversed.
That is, if F : C→ D is a contravariant functor and f is an element of HomC(A,B),
then F(f) is in HomD(F(B),F(A)).

If F : C → D is a covariant functor between categories of modules, then F is
left exact if for every short exact sequence

(1.1) 0→ A
α−→ B

β−→ C → 0

in C, the corresponding sequence

0→ F(A)
F(α)−−−→ F(B)

F(β)−−−→ F(C)

is exact in D. We say F is right exact if for every short exact sequence (1.1) in C,
the sequence

F(A)
F(α)−−−→ F(B)

F(β)−−−→ F(C)→ 0

is exact in D.
If F : C → D is a contravariant functor between categories of modules, then F

is left exact if for every short exact sequence (1.1) in C, the sequence

0→ F(C)
F(β)−−−→ F(B)

F(α)−−−→ F(A)

is exact in D. We say the contravariant functor F is right exact if for every short
exact sequence (1.1) in C, the sequence

F(C)
F(β)−−−→ F(B)

F(α)−−−→ F(A)→ 0

is exact in D.

Definition 6.1.2. Let F : A → C and G : C → A be covariant functors. We
say that (F,G) is an adjoint pair if for every A ∈ A and C ∈ C there exists a
bijection

ψ : HomC(FA,C)→ HomA(A,GC)

such that for any α : A→ A′ in A, the diagram

HomC(FA
′, C)

HFα //

ψ

��

HomC(FA,C)

ψ

��
HomA(A

′, GC)
Hα // HomA(A,GC)
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commutes and given any γ : C → C ′ in SM, the diagram

HomC(FA,C)
Hγ //

ψ

��

HomC(FA,C
′)

ψ

��
HomA(A,GC)

HGγ // HomA(A,GC
′)

commutes. We say that ψ is natural in the variable A and the variable C.

Presently, we give an example of two functors that are adjoint pairs obtained
by tensor products and groups of homomorphisms (see Theorem 6.5.10).

Definition 6.1.3. Let C and D be categories of modules and suppose we have
two functors F and F′ from C to D. We say that F and F′ are naturally equivalent
if for every module M in C there is an isomorphism φM in HomD

(
F(M),F′(M)

)
such that, for every pair of modules M and N in C and any f ∈ HomC(M,N), the
diagram

F(M)
F(f) //

φM

��

F(N)

φN

��
F′(M)

F′(f) // F′(N)

commutes. We denote by IC the identity functor on the category C defined by
IC(M) = M and IC(f) = f , for modules M and maps f . Then we say two
categories C and D are equivalent if there is a functor F : C → D and a functor
G : D → C such that F ◦ G is naturally equivalent to ID and G ◦ F is naturally
equivalent to IC. The functors F and G are then referred to as inverse equivalences.

Example 6.1.4. Let R be a ring. The reader should verify that the category
of left R-modules, RM, is equivalent to the category of right Ro-modules, MRo .

Definition 6.1.5. Let C and D be categories of modules and F : C → D a
covariant functor. We say that F is fully faithful if

HomC(A,B)→ HomD(F(B),F(A))

is a one-to-one correspondence. We say that F is essentially surjective if for every
object D in D, there exists C in C such that D is isomorphic to F(C).

Proposition 6.1.6. Let C and D be categories of modules and F : C → D a
covariant functor. Then F establishes an equivalence of categories if and only if F
is fully faithful and essentially surjective.

Proof. Assume there is a functor G : D → C such that the functors F and
G are inverse equivalences. By the natural equivalence of F ◦ G with the identity
functor, we see that F is essentially surjective. To prove that F is fully faithful, we
show that HomC(A,B)→ HomD (F(A),F(B)) is one-to-one and onto.

Suppose f , g are elements of HomC(A,B) with F(f) = F(g) in HomD

(
F(A),F(B)

)
.

Then G
(
F(f)

)
= G

(
F(g)

)
in HomC

(
G
(
F(A)

)
,G
(
F(B)

))
. By the natural equiva-

lence of G ◦ F with the identity functor, this implies that f = g. By a symmetric
argument we see that

(1.2) HomD

(
F(A),F(B)

)
→ HomC

(
G
(
F(A)

)
,G
(
F(B)

))
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is one-to-one.
Now suppose g is any element of HomD

(
F(A),F(B)

)
. We then obtain the

square

G
(
F(A)

)
φA

��

G(g) // G
(
F(B)

)
φB

��
A

f // B
where φA and φB , arise from the natural equivalence of G◦F with the identity and
where f = φBG(g)φ−1A . On the other hand, we also have the square

G
(
F(A)

)
φA

��

G
(
F(f)

)
// G
(
F(B)

)
φB

��
A

f // B

from which we deduce that G(g) = G
(
F(f)

)
. Since (1.2) is one-to-one, it follows

that g = F(f). This shows F is fully faithful.
For a proof of the converse, the reader is referred to a book on Category Theory.

For example, see [10, Proposition (1.1), p. 4]. □

2. Progenerator Modules

Definition 6.2.1. Let R be a ring and M an R-module. We say M is a
projective R-module if M is isomorphic as an R-module to a direct summand of a
free R-module.

Example 6.2.2. A free module trivially satisfies Definition 6.2.1, hence a free
module is a projective module.

Proposition 6.2.3. Let R be a ring and M an R-module. The following are
equivalent.

(1) M is projective.
(2) Every short exact sequence of R-modules

0→ A→ B
β−→M → 0

is split exact.
(3) For any diagram of R-modules

M
∃ψ

~~
ϕ

��
A

α // B // 0

with the bottom row exact, there exists an R-module homomorphism ψ :
M → A such that αψ = ϕ.

Proof. (3) implies (2): Start with the diagram

M
∃ψ

~~
=

��
0 // A // B

β // M // 0
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where we assume the bottom row is exact. By Part (3) there exists ψ : M → B
such that βψ = 1M . Then ψ is the splitting map.

(2) implies (1): Take I to be the set M . Let B = RI be the free R-module on
I. Take β : B → M to be β(f) =

∑
f(i)i. The reader should verify that this is a

well defined epimorphism. By Part (2) the exact sequence

B
β−→M → 0

splits. By Exercise 4.2.21, M is isomorphic to a direct summand of B.
(1) implies (3): We are given a free module F and F ∼=M⊕M ′. Let π : F →M

be the projection onto the first factor and let ι : M → F be the splitting map to
π. Given the diagram of R-modules in Part (3), consider this augmented diagram

F

∃γ

��

π

��
M∃ψ

xx
ϕ

��

ι

OO

A
α // B // 0.

First we show that there exists γ making the outer triangle commutative, then
we use γ to construct ψ. Pick a basis {ei | i ∈ I} for F . For each i ∈ I set
bi = ϕπ(ei) ∈ B. Since α is onto, lift each bi to get ai ∈ A such that α(ai) = bi
(this uses the Axiom of Choice, Proposition 1.3.5). Define γ : F → A on the
basis elements by γ(ei) = ai and extend by linearity. By construction, αγ = ϕπ.
Applying ι to both sides gives αγι = ϕπι. But πι = 1M , hence αγι = ϕ. Define ψ
to be γι. □

Example 6.2.4. Let D be a division ring and R =M2(D) the ring of two-by-
two matrices over D. By Lemma 4.4.8, dimD(R) = 4. Let

e1 =

[
1 0
0 0

]
, e2 =

[
0 0
0 1

]
.

The reader should verify the following facts.

(1) e1 and e2 are orthogonal idempotents.
(2) Re1 is the set of all matrices with second column consisting of zeros.
(3) Re2 is the set of all matrices with first column consisting of zeros.
(4) dimD(Re1) = dimD(Re2) = 2.
(5) R = Re1 ⊕Re2 as R-modules.

By (5), Re1 and Re2 are projective R-modules. It follows from Proposition 4.2.39
that Re1 and Re2 are not free R-modules.

Example 6.2.5. If R = Mn(D) is the ring of n-by-n matrices over a division
ring D, then we will see in Example 8.3.2 that R is a simple artinian ring. By
Theorem 8.2.3, every R-module is projective. If n ≥ 2, then using the method of
Example 6.2.4 one can show that R contains left ideals that are not free.

Example 6.2.6. Here is a list of rings with the property that every finitely
generated projective module is free.

(1) If R is a division ring (in particular, a field) and M is an R-module, then
M is a vector space. It follows from Theorem 4.2.34 that M is free.
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(2) Let R be a principal ideal domain and M a finitely generated projective
R-module. For some n ≥ 1 there is an exact sequence Rn →M → 0. By
Proposition 6.2.3 this sequence splits, so M is isomorphic to a submodule
of Rn. By Theorem 4.3.2, M is free.

(3) Let R be a commutative local ring. If M is projective, then Kaplan-
sky proved that M is free. If M is finitely generated, we prove this in
Proposition 7.4.2.

(4) We will not give a proof, but if k is a field and R = k[x1, . . . , xn], then
Quillen and Suslin proved that any finitely generated projective R-module
is free [50, Theorem 4.62]. The same conclusion is true if k is a principal
ideal domain [50, Theorem 4.63] or [35, Theorem V.2.9].

Example 6.2.7. Here is another example of a projective module that is not
free. Let R = Z/6 be the ring of integers modulo 6. In R let I = {0, 2, 4} be
the ideal generated by the coset containing 2. Let J = {0, 3}. Then R is the
internal direct sum R = I ⊕ J . Then both I and J are projective R-modules by
Proposition 6.2.3 (1). But I is not free, since it has only 3 elements. Likewise J is
not free.

Corollary 6.2.8. Let R be a ring and M a finitely generated projective R-
module. Then M is of finite presentation over R. There exists a finitely generated
projective R-module N such that M ⊕N is a finitely generated free R-module.

Proof. Is left to the reader. □

Lemma 6.2.9. (Dual Basis Lemma) Let R be a ring and M an R-module. Then
M is projective if and only if M has a dual basis {(mi, fi) | i ∈ I} consisting of
mi ∈M , fi ∈ HomR(M,R) as in Definition 4.2.38. Moreover, the R-module M is
finitely generated if and only if I can be chosen to be a finite set.

Proof. Assume M is projective. Let {mi | i ∈ I} ⊆ M be a generating
set for the R-module M . Let {ei | i ∈ I} be the standard basis for RI . Using
Lemma 4.2.12, define an onto homomorphism π : RI → M by π(ei) = mi. By
Proposition 6.2.3 (3) with M = B and α = π, there is a splitting map ι : M → RI

such that πι = 1. Let πi : R
I → R be the projection onto the ith summand. For

each f ∈ RI , πi(f) = f(i). Then h =
∑
i∈I πi(h)ei for each h ∈ RI . For each i ∈ I,

set fi = πi ◦ ι. By definition of πi, for each m ∈ M , fi(m) = 0 for all but finitely
many i ∈ I. For any m ∈M∑

i∈I
fi(m)mi =

∑
i∈I

πi(ι(m))π(ei)

= π

(∑
i∈I

πi(ι(m))ei

)
= π(ι(m))

= m.

This shows {(mi, fi) | i ∈ I} satisfies both parts of Definition 4.2.38, hence is a
dual basis.

Conversely, assume {(mi, fi) | i ∈ I} is a dual basis. We show thatM is a direct
summand of RI . Define ι : M → RI by ι(m)(j) = fj(m). Define π : RI → M by
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π(h) =
∑
i∈I h(i)mi. The reader should verify that π and ι are R-linear. The proof

follows from

π(ι(m)) =
∑
i∈I

ι(m)(i)mi

=
∑
i∈I

fi(m)mi

= m.

□

Lemma 6.2.10. Let R be a ring and M an R-module. The set

TRM =

{
n∑
i=1

fi(mi) | n ≥ 1, fi ∈ HomR(M,R),mi ∈M

}
is a 2-sided ideal in R. The ideal TRM is called the trace ideal of M in R.

Proof. As in Definition 4.4.17, we make HomR(M,R) into a right R-module
by the action (fr)(m) = f(m)r. The rest is left to the reader. □

Definition 6.2.11. Let R be a ring and M an R-module. We say that M is
a generator over R in case TRM = R. We say that M is a progenerator over R in
case M is finitely generated, projective and a generator over R.

Proposition 6.2.12. Let θ : R → S be a homomorphism of rings and let M
be an S-module. Using θ, we can view S and M as R-modules.

(1) (Finitely Generated over Finitely Generated is Finitely Generated) If S
is a finitely generated R-module and M is a finitely generated S-module,
then M is a finitely generated R-module.

(2) (Projective over Projective is Projective) If S is a projective R-module and
M is a projective S-module, then M is a projective R-module.

(3) (A Generator over a Generator is a Generator) If S is a generator over
R and M is a generator over S, then M is a generator over R.

(4) (A Progenerator over a Progenerator is a Progenerator) If S is a progen-
erator over R and M is a progenerator over S, then M is a progenerator
over R.

Proof. Part (1) is Exercise 4.1.23. Part (4) follows from Parts (1), (2) and
(3).

(2): There exists a dual basis {(mi, fi) | i ∈ I} for M over S where mi ∈ M
and fi ∈ HomS(M,S) and fi(m) = 0 for almost all i ∈ I and

∑
i fi(m)mi = m for

all m ∈ M . There exists a dual basis {(sj , gj) | j ∈ J} for S over R where sj ∈ S
and gj ∈ HomR(S,R) and gj(s) = 0 for almost all j ∈ J and

∑
j gj(s)sj = s for all

s ∈ S. For each (i, j) ∈ I × J the composition of functions gjfi is in HomR(M,R)
and the product sjmi is in M . For each m ∈M we have∑

(i,j)∈I×J

gj(fi(m))sjmi =
∑
i∈I

(∑
j∈J

gj(fi(m))sj

)
mi

=
∑
i∈I

fi(m)mi

= m.
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Under the finite hypotheses, both I and J can be taken to be finite.
(3): For somem > 0 there exist {f1, . . . , fm} ⊆ HomS(M,S) and {x1, . . . , xm} ⊆

M such that 1 =
∑m
i=1 fi(xi). For some n there exist {g1, . . . , gn} ⊆ HomR(S,R)

and {s1, . . . , sn} ⊆ S such that 1 =
∑n
j=1 gj(sj). For each (i, j), gjfi ∈ HomR(M,R)

and sjmi ∈M and
m∑
i=1

n∑
j=1

gjfi(sjmi) =

m∑
i=1

n∑
j=1

gj
(
sjfi(mi)

)
=

n∑
j=1

gj

(
sj

m∑
i=1

fi(mi)
)

=

n∑
j=1

gj(sj)

= 1.

□

Example 6.2.13. Let R be a ring with no zero divisors. Let I be a nonzero
left ideal of R. Then I is an R-module. Since annihR(I) = (0), I is faithful. If
a ∈ R, the principal ideal I = Ra is a free R-module and RankR(I) = 1.

Example 6.2.14. Let k be a field of characteristic different from 2. Let x and
y be indeterminates over k. Let f = y2 − x(x2 − 1). Set S = k[x, y]/(f) and let
M = (x, y) be the maximal ideal of S generated by the images of x and y. By
Exercise 6.3.6, S is an integral domain. By Exercise 6.3.7, M is not free. In this
example, we prove that M is projective. The proof consists of constructing a dual
basis for M . An arbitrary element m ∈M can be written in the form m = ax+ by,
for some a, b ∈ S. From(

x2 − 1

y

)
m =

x2 − 1

y
(ax+ by)

=
ax(x2 − 1) + by(x2 − 1)

y

=
ay2 + by(x2 − 1)

y

= ay + b(x2 − 1)

we see that
(
x2−1
y

)
m ∈ S. For each m ∈M we have

m = mx2 −m(x2 − 1) = mx2 −
(
x2 − 1

y

)
my.

This also shows thatM is generated by x2 and y. Define the dual basis. Setm1 = x2

and m2 = y. Define ϕi : M → S by ϕ1(m) = m and ϕ2(m) = −
(
x2−1
y

)
m. Since

m = ϕ1(m)m1+ϕ2(m)m2 for every m ∈M , {(m1, ϕ1), (m2, ϕ2)} is a dual basis and
M is a projective S-module. To see how this fits into the Dual Basis Lemma 6.2.9,
notice that a splitting of

S2 π−→M

(a, b) 7→ ax2 + by
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is ϕ :M → S2 which is given by

ϕ(m) = (ϕ1(m), ϕ2(m))

=

(
m,−

(
x2 − 1

y

)
m

)
.

Notice that ϕ(x) = (x,−y) and ϕ(y) = (y,−(x2 − 1)).

Example 6.2.15. Let R be the field of real numbers. Let x and y be indeter-
minates over R. Let f = x2+ y2− 1. Set S = R[x, y]/(f) and let M = (x, y− 1) be
the maximal ideal of S generated by the images of x and y−1. By Exercise 6.3.8, S
is an integral domain. By Exercise 6.3.9, M is not free. In this example, we prove
that M is projective. The proof consists of constructing a dual basis for M . An
arbitrary element m ∈ M can be written in the form m = ax+ b(y − 1), for some
a, b ∈ S. From (

y + 1

x

)
m =

y + 1

x
(ax+ b(y − 1))

=
ax(y + 1) + b(y2 − 1)

x

=
ax(y + 1)− bx2

x
= a(y + 1)− bx

we see that
(
y+1
x

)
m ∈ S. For each m ∈M we have

m =
y + 1

2
m− y − 1

2
m

=

(
y + 1

2x

)
mx− m

2
(y − 1).

Define the dual basis. Set m1 = x and m2 = y − 1. Define ϕi : M → S by
ϕ1(m) =

(
y+1
2x

)
m and ϕ2(m) = −m

2 . Since m = ϕ1(m)m1 + ϕ2(m)m2 for every
m ∈ M , {(m1, ϕ1), (m2, ϕ2)} is a dual basis and M is a projective S-module. To
see how this fits into the Dual Basis Lemma 6.2.9, notice that the splitting of

S2 π−→M

(a, b) 7→ ax+ b(y − 1)

is ι :M → S2 which is given by

ι(m) = (ϕ1(m), ϕ2(m))

=

(
y + 1

2x
m,
−m
2

)
.

Notice that ι(x) = (y+1
2 , −x2 ) and ι(y − 1) = (−x2 ,

−y−1
2 ).

3. Nakayama’s Lemma

Let R be a ring, A ⊆ R a left ideal of R, and M an R-module. As in Defini-
tion 4.1.10, we denote by AM the R-submodule of M generated by all elements of
the form am, where a ∈ A and m ∈M .
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Lemma 6.3.1. (Nakayama’s Lemma) Let R be a commutative ring and M a
finitely generated R-module. An ideal A of R has the property that AM = M if
and only if A+ annihR(M) = R.

Proof. Assume A + annihR(M) = R. Write 1 = α + β for some α ∈ A and
β ∈ annihR(M). Givenm inM , m = 1m = (α+β)m = αm+βm = αm. Therefore
AM =M .

Conversely, say AM = M . Choose a generating set {m1, . . . ,mn} for M over
R. Define

M =M1 = Rm1 + · · ·+Rmn

M2 = Rm2 + · · ·+Rmn

...

Mn = Rmn

Mn+1 = 0.

We prove that for every i = 1, 2, . . . , n+1, there exists αi in A such that (1−αi)M ⊆
Mi. Since (1 − 0)M = M ⊆ M1, take α1 = 0. Proceed inductively. Let i ≥ 1 and
assume αi ∈ A and (1− αi)M ⊆Mi. Then

(1− αi)M = (1− αi)AM
= A(1− αi)M
⊆ AMi.

In particular, (1 − αi)mi ∈ AMi = Ami + Ami+1 + · · · + Amn. So there exist
αii, . . . , αim ∈ A such that

(1− αi)mi =

n∑
j=i

αijmj .

Subtracting

(1− αi − αii)mi =

n∑
j=i+1

αijmj

is in Mi+1. Look at

(1− αi)(1− αi − αii)M = (1− αi − αii)
(
(1− αi)M

)
⊆ (1− αi − αii)Mi

⊆Mi+1.

Set αi+1 = −(−αi − αii − αi + α2
i + αiαii). Then αi+1 ∈ A and (1 − αi+1)M ⊆

Mi+1. By finite induction, (1 − αn+1)M = 0. Hence 1 − αn+1 ∈ annihR(M) and
1 ∈ A+ annihR(M). □

Corollary 6.3.2. Let R be a commutative ring and M a finitely generated
R-module. If mM =M for every maximal ideal m of R, then M = 0.

Proof. If M ̸= 0, then 1 ̸∈ annihR(M). Some maximal ideal m contains
annihR(M). So m + annihR(M) = m ̸= R. By Nakayama’s Lemma 6.3.1, mM ̸=
M . □

Proposition 6.3.3. Let R be a commutative ring and M a finitely generated
and projective R-module. Then TR(M)⊕ annihR(M) = R.
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Proof. There exists a dual basis {(mi, fi) | 1 ≤ i ≤ n} for M . For each m ∈
M , we see that m = f1(m)m1 + · · ·+ fn(m)mn is in TR(M)M . Then TR(M)M =
M . By Nakayama’s Lemma 6.3.1, TR(M) + annihR(M) = R. Now check that
TR(M) annihR(M) = 0. A typical generator for TR(M) is f(m) for some m ∈ M
and f ∈ HomR(M,R). Given α ∈ annihR(M), we see that αf(m) = f(αm) =
f(0) = 0. By Exercise 3.2.24, TR(M) ∩ annihR(M) = 0. □

Corollary 6.3.4. Let R be a commutative ring and M an R-module. Then
the following are true.

(1) M is an R-progenerator if and only if M is finitely generated projective
and faithful.

(2) Assume R has no idempotents except 0 and 1. ThenM is an R-progenerator
if and only if M is finitely generated, projective, and M ̸= (0).

Proof. (1): By Proposition 6.3.3, TR(M) = R if and only if annihR(M) = (0)
which is true if and only if M is faithful.

(2): If 0 and 1 are the only idempotents, then annihR(M) = (0). □

Here is another variation of Nakayama’s Lemma.

Corollary 6.3.5. Let R be a commutative ring. Suppose I is an ideal in R, M
is an R-module, and there exist submodules A and B of M such that M = A+ IB.
If

(1) I is nilpotent (that is, In = 0 for some n > 0), or
(2) I is contained in every maximal ideal of R and M is finitely generated,

then M = A.

Proof. Notice that

M/A =
A+ IB

A

⊆ A+ IM

A
⊆ I(M/A)

⊆M/A.

Assuming (1) we get M/A = I(M/A) = · · · = In(M/A) = 0. Assume (2) and
let m be an arbitrary maximal ideal of R. Then M/A = I(M/A) ⊆ m(M/A). By
Corollary 6.3.2, M/A = 0. □

3.1. Exercises.

Exercise 6.3.6. For the following, let k be a field of characteristic different
from 2. Let R = k[x] and f be the polynomial f = y2 − x(x2 − 1) in R[y]. Let S
be the factor ring

S =
k[x, y]

(y2 − x(x2 − 1))
.

Elements of S are cosets represented by polynomials in k[x, y]. For example, in S
the polynomial x represents a coset. When it is clear that we are referring to a
coset in S, we choose not to adorn the polynomial with an extra “bar”, “tilde” or
“mod” symbol. So, for the sake of notational simplicity in what follows, we refer
to a coset by one of its representatives. The following is an outline of a proof that
S is not a UFD. In particular, S is not a PID.
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(1) Use Exercise 5.9.7 to show that S = R[y]/(f) = k[x][y]/(f) is an extension
ring of R and there is an R-algebra automorphism σ : S → S defined by
y 7→ −y. The norm map NS

R : S → R is defined by u 7→ uσ(u).
(2) Use the norm map to prove that the group of invertible elements of S is

equal to the nonzero elements in k.
(3) Show that x and y are irreducible in S. (Hint: First show that x is not a

norm. That is, x is not in the image of NS
R . Likewise x− 1 and x+ 1 are

not norms.)
(4) Prove that S is not a UFD. In particular, S is not a PID.

Exercise 6.3.7. In what follows, let S be the ring defined in Exercise 6.3.6.
Any ideal in S is an S-module. Let M = (x, y) denote the ideal in S generated by
x and y. To show that M is not a free S-module, prove the following:

(1) If J is a nonzero ideal of S, then as an S-module J is faithful.
(2) The principal ideal (x) is not a maximal ideal in S.
(3) The ideal M = (x, y) is a maximal ideal in S. The factor ring S/M is a

field.
(4) The ideal M is not a principal ideal. (Hint: Lemma: 3.4.5 (2))
(5) The ideal M2 is a principal ideal in S. (Hint: x ∈M2.)
(6) Over the field S/M , the vector space M/M2 has dimension one. (Hint:

y ∈M , but y ̸∈M2.)
(7) M is not a free S module. (Hint: Exercise 4.1.20. IfM were free, it would

have rank one.)

Exercise 6.3.8. Let R = R[x] and f be the polynomial f = y2 + x2 − 1 in
R[y]. Let S be the factor ring

S =
R[x, y]

(y2 + x2 − 1)
.

The following is an outline of a proof that S is not a UFD. In particular, S is not
a PID.

(1) Use Exercise 5.9.7 to show that S = R[y]/(f) = R[x][y]/(f) is an extension
ring of R and there is an R-algebra automorphism σ : S → S defined by
y 7→ −y. The norm map NS

R : S → R is defined by u 7→ uσ(u).
(2) Use the norm map to prove that the group of invertible elements of S is

equal to the nonzero elements in R.
(3) Show that x and y − 1 are irreducible in S. (Hint: First show that x is

not a norm from S.)
(4) Prove that S is not a UFD. In particular, S is not a PID.

Exercise 6.3.9. In what follows, let S be the ring defined in Exercise 6.3.8.
Any ideal in S is an S-module. Let M = (x, y− 1) denote the ideal in S generated
by x and y − 1. To show that M is not a free S-module, prove the following:

(1) The principal ideal (x) is not a maximal ideal in S.
(2) The ideal M = (x, y− 1) is a maximal ideal in S. The factor ring S/M is

a field.
(3) The ideal M is not a principal ideal. (Hint: Lemma: 3.4.5 (2))
(4) The ideal M2 is a principal ideal in S. (Hint: y − 1 ∈M2.)
(5) Over the field S/M , the vector space M/M2 has dimension one. (Hint:

x ∈M , but x ̸∈M2.)
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(6) M is not a free S module. (Hint: Exercise 4.1.20. IfM were free, it would
have rank one.)

Exercise 6.3.10. Let R be any ring and M an R-module. Suppose there is an
infinite exact sequence

(3.1) · · · → An+1 → An → · · · → A2 → A1 → A0 →M → 0

of R-modules. If each Ai is a free R-module, then we say (3.1) is a free resolution
of M . Use Lemma 4.2.12 and induction to show that a free resolution exists for
any R and any M . Since a free module is also projective, this also shows that M
has a projective resolution.

Exercise 6.3.11. Let R be a ring, I an index set and {Mi | i ∈ I} a family
of R-modules. In this exercise it is shown that the direct sum is the solution to
a universal mapping problem. For each j ∈ I, let ιj : Mj →

⊕
i∈IMi denote the

injection homomorphism into coordinate j.

(1) Suppose X is an R-module and that for each j ∈ I there is an R-module
homomorphism fj :Mj → X. Show that there exists a unique R-module
homomorphism f such that for each j ∈ I the diagram

Mj

fj $$

ιj //⊕
i∈IMi

∃!f
��
X

commutes.
(2) Suppose S is an R-module, λj : Mj → S is an R-module homomorphism

for each j ∈ I, and S satisfies the universal mapping property of Part (1).
That is, if X is an R-module and fj :Mj → X is an R-module homomor-
phism for each j ∈ I, then there exists a unique R-module homomorphism
φ such that for each j ∈ I the diagram

Mj

fj   

λj // S

∃!φ
��
X

commutes. Prove that S ∼=
⊕

i∈IMi.

Exercise 6.3.12. Let R be a ring, I an index set and {Mi | i ∈ I} a family
of R-modules. Show that the direct product is the solution to a universal mapping
problem. For each j ∈ I, let πj :

∏
i∈IMi → Mj denote the projection homomor-

phism onto coordinate j.

(1) Suppose X is an R-module and fj : X → Mj is an R-module homo-
morphism for each j ∈ I. Show that there exists a unique R-module
homomorphism f such that for each j ∈ I the diagram

X
fj

$$
∃!f
��∏

i∈IMi πj

// Mj
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commutes.
(2) Suppose P is an R-module, pj : P →Mj is an R-module homomorphism

for each j ∈ I, and P satisfies the universal mapping property of Part (1).
That is, if X is an R-module and fj : X →Mj is an R-module homomor-
phism for each j ∈ I, then there exists a unique R-module homomorphism
φ such that for each j ∈ I the diagram

X
fj

  
∃!φ
��
P

pj
// Mj

commutes. Prove that P ∼=
∏
i∈IMi.

Exercise 6.3.13. Let R be a ring and {Mi | i ∈ I} a family of R-modules.
Show that the direct sum

⊕
i∈IMi is projective over R if and only if each Mi is

projective over R.

Exercise 6.3.14. Let R be a unique factorization domain. Let α be a nonzero
element of R which is not invertible.

(1) Show that HomR(R[α
−1], R) = (0).

(2) Show that R[α−1] is not a projective R-module.

Exercise 6.3.15. This is a slight generalization of Exercise 6.3.14. Let R be an
integral domain. Let α be a nonzero element of R such that the ideals In = (αn)
satisfy the identity

⋂
n>0(α

n) = (0). Show that R[α−1] is not a projective R-
module.

Exercise 6.3.16. Let R be a ring and M a left R-module. Prove that the
following are equivalent.

(1) M is an R-generator.
(2) The R-module R is the homomorphic image of a direct sum M (n) of

finitely many copies of M .
(3) The R-module R is the homomorphic image of a direct sum M I of copies

of M over some index set I.
(4) Every left R-module A is the homomorphic image of a direct sum M I of

copies of M over some index set I.

Exercise 6.3.17. Let ϕ : R → S be a local homomorphism of commutative
local rings. Assume S is a finitely generated R-module, and m is the maximal ideal
of R. Show that if the map R/m→ S/mS induced by ϕ is an isomorphism, then ϕ
is onto. (Hint: S is generated by ϕ(R) and mS.)

Exercise 6.3.18. Let R be a commutative ring and J an ideal in R. Prove:

(1) If J is a direct summand of R (see Definition 3.3.3), then J2 = J .
(2) If J is a finitely generated ideal, and J2 = J , then J is a direct summand

of R.

Exercise 6.3.19. State and prove a version of Exercise 6.3.12 for rings. That
is, show that the product

∏
i∈I Ri of a family {Ri | i ∈ I} of rings is the solution

to a universal mapping problem.



4. TENSOR PRODUCT 263

Exercise 6.3.20. This exercise is based on Example 6.2.14. Let k be a field
of characteristic different from 2, S = k[x, y]/(y2 − x(x2 − 1)), and M = (x, y) the
maximal ideal of S generate by x and y. Prove that the assignment

(m1,m2) 7→
(
−
(
x2 − 1

y

)
m1 +m2, xm1 −

(
x2 − 1

y

)
m2

)
defines an isomorphism of S-modules: M ⊕M ∼= S ⊕ S.

Exercise 6.3.21. Let R be a local ring with maximal ideal m and S a commu-
tative R-algebra. Assume S is a finitely generated R-module and S/mS is a field.
Show that S is a local ring with maximal ideal mS.

4. Tensor Product

4.1. Tensor Product of Modules and Homomorphisms.

Definition 6.4.1. Let R be a ring, M ∈ MR and N ∈ RM. Let C be a
Z-module. Let f : M ×N → C be a function. Then f is an R-balanced map if it
satisfies

(1) f(m1 +m2, n) = f(m1, n) + f(m2, n),
(2) f(m,n1 + n2) = f(m,n1) + f(m,n2), and
(3) f(mr, n) = f(m, rn).

for all possible mi ∈ N , ni ∈ N , r ∈ R.

Definition 6.4.2. Let R be a ring, M ∈ MR and N ∈ RM. The tensor
product of M and N over R consists of an abelian group, denoted M ⊗RN , and an
R-balanced map τ :M ×N →M ⊗R N satisfying the following universal mapping
property. If C is an abelian group and f : M ×N → C is R-balanced, then there
exists a unique homomorphism ϕ : M ⊗R N → C such that ϕτ = f . Hence the
diagram

M ×N

f
&&

τ // M ⊗R N

∃ϕ
��
C

commutes. The element τ(x, y) is denoted x⊗ y.

Theorem 6.4.3. Let R be a ring, M ∈MR and N ∈ RM.

(1) The tensor product M ⊗R N exists and is unique up to isomorphism of
abelian groups.

(2) The image of τ generates M ⊗R N . That is, every element of M ⊗R N
can be written as a finite sum of the form

∑n
i=1 τ(mi, ni).

Proof. Part (2) follows from the proof of Part (1).
(1): Existence of M ⊗R N . Let F = ZM×N be the free Z-module on the set

M ×N . Write (x, y) as the basis element of F corresponding to (x, y). Let K be
the subgroup of F generated by all elements of the form

(1) (m1 +m2, n)− (m1, n)− (m2, n),
(2) (m,n1 + n2)− (m,n1)− (m,n2), and
(3) (mr, n)− (m, rn).
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We show that F/K satisfies Definition 6.4.2. Define τ :M×N → F/K by τ(x, y) =
(x, y) +K. Clearly τ is R-balanced. Since F has a basis consisting of the elements
of the form (x, y), the image of τ contains a generating set for the abelian group
F/K.

Now we show that F/K satisfies the universal mapping property. Assume that
we have a balanced map f : M × N → C. By Lemma 4.2.12 (1) we define a Z-
module homomorphism h : F → C. On a typical basis element (x, y), h is defined
to be h(x, y) = f(x, y). This diagram

M ×N τ //

f
$$

F/K

∃ϕ
��

F

h}}

ηoo

C

commutes. The reader should verify that K is contained in the kernel of h, since
f is balanced. So h factors through F/K, showing that ϕ exists. Since F/K is
generated by elements of the form (x, y) + K and ϕ ((x, y) +K) = f(x, y), it is
clear that ϕ is unique.

Uniqueness of M ⊗R N . Suppose there exist an abelian group T and an R-
balanced map t :M ×N → T such that Definition 6.4.2 is satisfied. We show that
T is isomorphic to M ⊗R N . There exist f and ϕ such that τ = ft and t = ϕτ .
That is, the diagrams

M ×N t //

τ
&&

T

f

��
M ⊗R N

M ×N t //

τ
&&

T

M ⊗R N

ϕ

OO

commute. Notice that both ψ = 1 and ψ = fϕ make the diagram

M ×N τ //

τ
&&

M ⊗R N

∃ψ
��

M ⊗R N

commute. By the uniqueness of ψ, it follows that fϕ = 1. Likewise, ϕf = 1. □

Example 6.4.4. Let R, M , N be as in Theorem 6.4.3.

(1) It follows from the proof of Theorem 6.4.3 (1) that the identities

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n
m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2

mr ⊗ n = m⊗ rn

hold in M ⊗R N .
(2) In M ⊗R N the zero element is 0⊗ 0. Usually the representation of zero

is not unique. For instance,

x⊗ 0 = x⊗ 0(0) = (x)0⊗ 0 = 0⊗ 0,

and

0⊗ y = (0)0⊗ y = 0⊗ 0(y) = 0⊗ 0.
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Example 6.4.5. Let Q denote the additive group of rational numbers. Let
n > 1. Let Z/n denote the cyclic group of integers modulo n. A typical generator
of Q⊗Z Z/n looks like (a/b)⊗ c, for a, b, c ∈ Z. Therefore

a

b
⊗ c = na

nb
⊗ c = a

nb
⊗ n(c) = a

b
⊗ 0 = 0⊗ 0

which proves Q⊗Z Z/n = 0.

Lemma 6.4.6. Let f :M →M ′ in MR and g : N → N ′ in RM. Then there is
a homomorphism of abelian groups

f ⊗ g :M ⊗R N →M ′ ⊗R N ′

which satisfies (f ⊗ g)(x⊗ y) = f(x)⊗ g(y).

Proof. Define ρ : M ×N → M ′ ⊗R N ′ by ρ(x, y) = f(x)⊗ g(y). The reader
should check that ρ is balanced. □

Lemma 6.4.7. Given

M1
f1−→M2

f2−→M3

in MR and

N1
g1−→ N2

g2−→ N3

in RM, the triangle

M2 ⊗R N2

f2⊗g2

''
M1 ⊗R N1

f2f1⊗g2g1 //

f1⊗g1
77

M3 ⊗R N3

in the category of Z-modules commutes so that (f2 ⊗ g2)(f1 ⊗ g1) = (f2f1 ⊗ g2g1).

Proof. Left to the reader. □

Definition 6.4.8. If S and R are rings and M ∈MR and M ∈ SM, then M
is a left S right R bimodule if s(mr) = (sm)r for all possible s ∈ S, m ∈ M and
r ∈ R. Denote by SMR the category of all left S right R bimodules. We say that
M is a left R left S bimodule if M is both a left R-module and a left S-module and
r(sm) = s(rm) for all possible r ∈ R, m ∈ M and s ∈ S. Denote by R−SM the
category of all left R left S bimodules.

Example 6.4.9. Let R and S be two rings.

(1) If I is an ideal in R, the associative law for multiplication in R shows that
I is a left R right R bimodule.

(2) If R is a commutative ring, any left R-module M can be made into a left
R right R bimodule by defining mr to be rm.

(3) If R is a subring of S, the associative law for multiplication in S shows
that S is a left R right R bimodule.

(4) If ϕ : R→ S is a homomorphism of rings, then as in Example 4.1.4, R acts
on S from both the left and right by the rules rx = ϕ(r)x and xr = xϕ(r).
The associative law for multiplication in S shows that S is a left R right
R bimodule.
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If R is a noncommutative ring, the tensor product M ⊗R N cannot be turned
into an R-module per se. If S is another ring and M or N is a bimodule over R
and S, then we can turn M ⊗R N into an S-module. Lemma 6.4.10 lists four such
possibilities.

Lemma 6.4.10. Let R and S be rings.

(1) If M and M ′ are in SMR, and N and N ′ are in RM, then the following
are true.
(a) M ⊗RN is in SM, with the action of S given by s(m⊗n) = sm⊗n.
(b) If f : M → M ′ and g : N → N ′ are homomorphisms in SMR and

RM respectively, then f ⊗ g : M ⊗R N → M ′ ⊗R N ′ is a homomor-
phism in SM.

(2) If M and M ′ are in MR, and N and N ′ are in R−SM, then the following
are true.
(a) M ⊗RN is in SM, with the action of S given by s(m⊗n) = m⊗ sn.
(b) If f : M → M ′ and g : N → N ′ are homomorphisms in MR and

R−SM respectively, then f ⊗ g : M ⊗R N → M ′ ⊗R N ′ is a homo-
morphism in SM.

(3) If M and M ′ are in MR−S, and N and N ′ are in RM, then the following
are true.
(a) M ⊗RN is in MS, with the action of S given by (m⊗n)s = ms⊗n.
(b) If f : M → M ′ and g : N → N ′ are homomorphisms in MR−S and

RM respectively, then f ⊗ g : M ⊗R N → M ′ ⊗R N ′ is a homomor-
phism in MS.

(4) If M and M ′ are in MR, and N and N ′ are in RMS, then the following
are true.
(a) M ⊗RN is in MS, with the action of S given by (m⊗n)s = m⊗ns.
(b) If f : M → M ′ and g : N → N ′ are homomorphisms in MR and

RMS respectively, then f ⊗ g :M ⊗RN →M ′⊗RN ′ is a homomor-
phism in MS.

Proof. (1): Given s ∈ S define ℓs :M×N →M⊗RN by ℓs(x, y) = s(x⊗y) =
sx⊗y. Check that ℓs is balanced, hence the action by S onM⊗RN is well defined.
The rest of (a) is left to the reader. For (b) the reader should verify that f ⊗ g is
S-linear.

The proofs of (2) – (4) are similar and left to the reader. □

Corollary 6.4.11. Let R be a commutative ring. If M and N are R-modules,
then the following are true.

(1) M ⊗R N is a left R-module by the rule: r(m⊗ n) = rm⊗ n = m⊗ rn.
(2) If f : M → M ′ and g : N → N ′ are homomorphisms of R-modules, then

f ⊗ g :M ⊗R N →M ′ ⊗R N ′ is a homomorphism of R-modules.

Proof. Apply Lemma 6.4.10. □

Corollary 6.4.12. Let θ : R→ S be a homomorphism of rings. If M and M ′

are R-modules, then the following are true.

(1) S ⊗RM is a left S-module under the action s1(s2 ⊗m) = s1s2 ⊗m.
(2) If f : M → M ′ is an R-module homomorphism, then 1 ⊗ f : S ⊗RM →

S ⊗RM ′ is an S-module homomorphism.
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Proof. This follows from Lemma 6.4.10 since by Example 6.4.9 parts (3) and
(4), S is a left S right R bimodule. □

Lemma 6.4.13. If R is a ring, then R⊗RM ∼=M as left R-modules under the
map x⊗ y 7→ xy.

Proof. Since R ∈ RMR, given M ∈ RM we view R⊗RM as a left R-module.
Define f : R ×M → M by f(x, y) = xy. Since M is an R-module, f is balanced.
There exists ϕ : R⊗RM →M such that the diagram

R×M

f
&&

τ // R⊗RM

ϕ

��
M

commutes. Define ψ : M → R⊗M by x 7→ 1 ⊗ x. The reader should verify
that ψ is R-linear. Notice that ϕψ(x) = ϕ(1 ⊗ x) = x. On a typical generator
ψϕ(x⊗ y) = 1⊗ xy = x⊗ y. It follows that ϕ and ψ are inverses. □

Lemma 6.4.14. (Tensor Product Is Associative) Let R and S be rings and
assume L ∈ MR, M ∈ RMS and N ∈ SM. Then (L ⊗R M) ⊗S N is isomorphic
as an abelian group to L⊗R (M ⊗S N) under the map which sends (x⊗ y)⊗ z to
x⊗ (y ⊗ z).

Proof. Fix z ∈ N and define

L×M ρz−→ L⊗R (M ⊗S N)

(x, y) 7→ x⊗ (y ⊗ z).

The reader should verify that ρz is R-balanced. Therefore,

L⊗RM
fz−→ L⊗R (M ⊗S N)

x⊗ y 7→ x⊗ (y ⊗ z).

is a well defined homomorphism of groups. The function

(L⊗RM)×N f−→ L⊗R (M ⊗S N)(∑
i

xi ⊗ yi, z
)
7→ fz(

∑
i

xi ⊗ yi) =
∑
i

xi ⊗ (yi ⊗ z).

is well defined. The following equations show that f is balanced.

f
(∑
i

xi ⊗ yi, z1 + z2
)
=
∑
i

xi ⊗
(
yi ⊗ (z1 + z2)

)
=
∑
i

xi ⊗ (yi ⊗ z1 + yi ⊗ z2)

=
∑
i

xi ⊗ (yi ⊗ z1) +
∑
i

xi ⊗ (yi ⊗ z2)

= f
(∑
i

xi ⊗ yi, z1
)
+ f

(∑
i

xi ⊗ yi, z2
)
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f
( k∑
i=1

xi ⊗ yi +
ℓ∑

i=k+1

xi ⊗ yi, z
)
=

ℓ∑
i=1

xi ⊗ (yi ⊗ z)

=

k∑
i=1

xi ⊗ (yi ⊗ z) +
ℓ∑

i=k+1

xi ⊗ (yi ⊗ z)

= f
( k∑
i=1

xi ⊗ yi, z
)
+ f

( ℓ∑
i=k+1

xi ⊗ yi, z
)

f
(∑
i

xi ⊗ yis, z
)
=
∑
i

xi ⊗ (yis⊗ z)

=
∑
i

xi ⊗ (yi ⊗ sz)

= f
(∑
i

xi ⊗ yi, sz
)

In the diagram

(L⊗RM)×S N

f ))

τ // (L⊗RM)⊗S N

ϕ

��
L⊗R (M ⊗S N)

the homomorphism ϕ is well defined. The inverse of ϕ is defined in a similar way. □

Lemma 6.4.15 shows that tensoring distributes across a direct sum. The anal-
ogous result for a direct product is false if the index set is infinite. For a counterex-
ample, see Example 7.5.10.

Lemma 6.4.15. (Tensor Product Distributes over a Direct Sum) Let M and
{Mi}i∈I be right R-modules. Let N and {Nj}j∈J be left R-modules. There are
isomorphisms of abelian groups

M ⊗R

⊕
j∈J

Nj

 ∼=⊕
j∈J

(M ⊗R Nj)

and (⊕
i∈I

Mi

)
⊗R N ∼=

⊕
i∈I

(Mi ⊗R N) .

Proof. Define ρ :
(⊕

Mi

)
× N →

⊕(
Mi ⊗ N

)
by ρ(f, n) = g where g(i) =

f(i)⊗n. We prove that ρ is balanced. First, say f1, f2 ∈
⊕
Mi and ρ(f1+f2, n) = g,

ρ(f1, n) = g1 and ρ(f2, n) = g2. Then

g(i) =
(
f1(i) + f2(i)

)
⊗ n

= f1(i)⊗ n+ f2(i)⊗ n
= g1(i) + g2(i)
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which shows g = g1 + g2. Next say ρ(fr, n) = g and ρ(f, rn) = h. Then

g(i) =
(
fr(i)⊗ n

= f(i)r ⊗ n
= f(i)⊗ rn
= h(i)

which shows g = h. Clearly ρ(f, n1 + n2) = ρ(f, n1) + ρ(f, n2). Therefore the
homomorphism ϕ exists and the diagram(⊕

Mi

)
×N τ //

ρ
''

(⊕
Mi

)
⊗N

ϕ

��⊕(
Mi ⊗N

)
commutes. Let ιj : Mj →

⊕
Mi be the injection of the jth summand into the

direct sum. Let ψj = ιj ⊗ 1. Then ψj :Mj ⊗N →
(⊕

Mi

)
⊗N . Define ψ =

⊕
ψi

to be the direct sum map of Exercise 6.3.11. Then ψ :
⊕(

Mi⊗N
)
→
(⊕

Mi

)
⊗N .

The reader should verify that ϕ and ψ are inverses of each other. □

Lemma 6.4.16. Let R be a ring, M a right R-module and N a left R-module.
Then M ⊗R N ∼= N ⊗Ro M under the map x⊗ y 7→ y ⊗ x.

Proof. Define ρ :M ×N → N ⊗Ro M by ρ(x, y) = y ⊗ x. Then
ρ(x1 + x2, y) = y ⊗ (x1 + x2)

= y ⊗ x1 + y ⊗ x2
= ρ(x1, y) + ρ(x2, y).

Likewise ρ(x, y1 + y2) = ρ(x, y1) + ρ(x, y2). Also

ρ(xr, y) = y ⊗ xr
= y ⊗ r ∗ x
= y ∗ r ⊗ x
= ry ⊗ x
= ρ(x, ry)

which shows ρ is balanced. There exists a homomorphism ϕ and the diagram

M ×N

ρ
&&

τ // M ⊗R N

ϕ

��
N ⊗Ro M

commutes. Since R = (Ro)o, it is clear that ϕ is an isomorphism. □

4.2. Tensor Functor.

Lemma 6.4.17. Let R be a ring.

(1) If M is a right R-module, then tensoring with M defines a covariant
functor M ⊗R (·) : RM→ ZM from the category of left R-modules to the
category of abelian groups.
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(2) If S is a ring and M is a left S right R bimodule, then M ⊗R (·) defines
a covariant functor from RM to SM.

(3) If R is a commutative ring and M is an R module, then M ⊗R (·) defines
a covariant functor from RM to RM.

(4) If θ : R→ S is a homomorphism of rings, then S⊗R(·) defines a covariant
functor from RM to SM.

If N is a left R-module, then versions of (1) – (3) hold for the functor defined by
(·) ⊗R N provided the roles of left and right are switched. The right hand version
of (4) holds for the functor defined by (·)⊗R B.

Proof. (1): For any object N in the category RM we can construct the Z-
moduleM⊗RN . Given any homomorphism f ∈ HomR(A,B), there is a homomor-
phism 1⊗ f :M ⊗R A→M ⊗R B. By Lemma 6.4.7, the composition of functions
is preserved by tensoring with M .

For Part (2), use Part (1) and Lemma 6.4.10. For Part (3), use Part (1) and
Corollary 6.4.11. For Part (4), use Part (1) and Corollary 6.4.12. □

Lemma 6.4.18. (Tensoring Is Right Exact.) Let R be a ring and M a right
R-module. Given a short exact sequence in RM

0→ A
α−→ B

β−→ C → 0

the sequence

M ⊗R A
1⊗α−−−→M ⊗R B

1⊗β−−−→M ⊗R C → 0

is an exact sequence of Z-modules.

Proof. Step 1: Show that 1⊗ β is onto. Given an element x⊗ c in M ⊗R C,
use the fact that β is onto and find b ∈ B such that β(b) = c. Notice that
(1⊗ β)(x⊗ b) = x⊗ c. The image of 1⊗ β contains a generating set for M ⊗R C.

Step 2: im (1⊗ α) ⊆ ker (1⊗ β). By Lemma 6.4.7, (1⊗β)◦ (1⊗α) = 1⊗βα =
1⊗ 0 = 0.

Step 3: im (1⊗ α) ⊇ ker (1⊗ β). Write E = im (1⊗ α). By Step 2, E ⊆
ker (1⊗ β) so 1⊗ β factors through M ⊗R B/E, giving

β̄ :
M ⊗R B

E
→M ⊗R C.

It is enough to show that β̄ is an isomorphism. To do this, we construct the
inverse map. First, let c ∈ C and consider two elements b1, b2 in β−1(c). Then
β(b1 − b2) = β(b1) − β(b2) = c − c = 0. That is, b1 − b2 ∈ kerβ = imα. For any
x ∈M , it follows that x⊗ b1 − x⊗ b2 = x⊗ (b1 − b2) ∈ im(1⊗ α) = E. Therefore
we can define a function

M × C f−→ M ⊗R B
E

(x, c) 7→ x⊗ b+ E

where b is an arbitrary element in β−1(c). The reader should verify that f is
R-balanced. So there exists a homomorphism γ making the diagram

M × C

f %%

τ // M ⊗R C

γ

��
M⊗RB
E
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commutative. By construction, γ = β̄−1. □

Definition 6.4.19. By Lemma 6.4.18 the functor M ⊗R (·) is right exact. In
case M ⊗R (·) is also left exact, then we say M is a flat R-module.

Example 6.4.20. Take R = Z, M = Z/n. The sequence

0→ Z→ Q→ Q/Z→ 0

is exact. In M ⊗Q, 1⊗ 1 is equal to 1⊗ n/n = n⊗ 1/n = 0⊗ 0. So tensoring the
previous sequence with M ⊗ (·),

0→ Z/n→ 0→ 0→ 0

is not exact. As a Z-module, Z/n is not flat.

4.2.1. Tensor Product of Algebras.

Lemma 6.4.21. If A and B are R-algebras, then A⊗R B is an R-algebra with
multiplication induced by (x1 ⊗ y1)(x2 ⊗ y2) = x1x2 ⊗ y1y2.

Proof. Using Corollary 6.4.11 (1), the tensor product of R-modules is an R-
module. Using Lemma 6.4.16, the “twist” map

τ : A⊗R B → B ⊗R A
x⊗ y 7→ y ⊗ x

is an R-module isomorphism. The reader should verify that multiplication in A
and in B induce R-module homomorphisms

µ : A⊗R A→ A

x⊗ y 7→ xy

and

ν : B ⊗R B → B

x⊗ y 7→ xy

respectively. Consider the R-module homomorphisms

(A⊗R B)⊗R (A⊗R B)
∼=−→ A⊗R (B ⊗R A)⊗R B
1⊗τ⊗1−−−−→ A⊗R (A⊗R B)⊗R B
∼=−→ (A⊗R A)⊗R (B ⊗R B)

µ⊗ν−−−→ A⊗R B.

(4.1)

Since it is defined by the composition of the homomorphisms in (4.1), the multipli-
cation rule in A⊗RB is well defined. The reader should verify that the associative
and distributive laws hold. The multiplicative identity is 1 ⊗ 1. If r ∈ R, then
r ⊗ 1 = 1 ⊗ r in A ⊗R B. The reader should verify that r 7→ r ⊗ 1 defines a
homomorphism from R to the center of A⊗R B. □

Lemma 6.4.22. Let R be a commutative ring and let A and B be R-algebras.
Let M be a left A-module and N a left B-module. Given a ∈ A, b ∈ B, x ∈ M ,
and y ∈ N , if (a⊗ b)(x⊗ y) is defined to be ax⊗ by, then this makes M ⊗RN into
a left A⊗R B-module.
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Proof. The R-algebras A and B come with homomorphisms θ1 : R→ A and
θ2 : R→ B satisfying im(θ1) ⊆ Z(A) and im(θ2) ⊆ Z(B). Therefore, A and B are
both left R right R bimodules and by Example 6.4.9 we can viewM as a left A right
R bimodule and N as a left B left R bimodule. By Lemma 6.4.10, M ⊗RN is a left
A-module and a left B-module. By Example 4.4.4, the left regular representations
of A and B are R-algebra homomorphisms ϕ1 : A → HomR(M ⊗R N,M ⊗R N)
and ϕ2 : B → HomR(M ⊗RN,M ⊗RN). Therefore ϕ1(a)ϕ2(b)(x⊗ y) = ax⊗ by =
ϕ2(b)ϕ1(a)(x⊗y), which shows elements in the image of ϕ1 commute with elements
in the image of ϕ2. By Exercise 6.4.31, there exists an R-algebra homomorphism
γ : A⊗R B → HomR(M ⊗R N,M ⊗R N) such that the diagram

HomR(M ⊗R N,M ⊗R N)

A

ϕ1

66

ρ1
// A⊗R B

γ

OO

B
ρ2

oo

ϕ2

hh

commutes. By Lemma 4.1.2, this makesM⊗RN into a left A⊗RB-module. Finally,
left multiplication of x⊗ y by a⊗ b is equal to ax⊗ by, □

4.2.2. Modules Under a Change of Base Ring.

Theorem 6.4.23. Let ϕ : A → B be a homomorphism of rings. As in Exam-
ple 6.4.9, ϕ makes B into a left A right A bimodule.

(1) The assignment M 7→ M ⊗A B defines a right exact covariant functor
MA →MB which satisfies:
(a) A is mapped to B.
(b) Any direct sum

⊕
i∈IMi is mapped to the direct sum

⊕
i∈I (Mi ⊗A B).

(c) The free module AI is mapped to the free B-module BI .
(2) If M is A-projective, then M ⊗A B is B-projective.
(3) If M is an A-generator, then M ⊗A B is a B-generator.
(4) If M is finitely generated over A, then M ⊗A B is finitely generated over

B.
(5) If M is a flat A-module, then M ⊗A B is a flat B-module.

Left hand versions of (1) – (5) hold for the covariant functor AM→ BM which is
defined by M 7→ B ⊗AM .

Proof. (1): Apply Lemmas 6.4.13, 6.4.15, 6.4.17, and 6.4.18.
(2): By Proposition 6.2.3, M is a direct summand of a free A-module. By (1),

M ⊗A B is a direct summand of a free B-module.
(3): If M (n) → A→ 0 is an exact sequence of right A-modules, then by (1)

(M ⊗A B)(n) → B → 0

is an exact sequence of right B-modules. By Exercise 6.3.16 we are done.
(4): If A(n) →M → 0 is an exact sequence of right A-modules, then by (1)

B(n) →M ⊗A B → 0

is an exact sequence of right B-modules. By Lemma 4.2.12 we are done.
(5): Is left to the reader. □

Proposition 6.4.24. Let R be a commutative ring and let M and N be two
R-modules.



4. TENSOR PRODUCT 273

(1) If M and N are finitely generated over R, then so is M ⊗R N .
(2) If M and N are projective over R, then so is M ⊗R N .
(3) If M and N are generators over R, then so is M ⊗R N .
(4) If M and N are progenerators over R, then so is M ⊗R N .

Proof. (1): We are given exact sequences

(4.2) R(m) α−→M → 0

and

(4.3) R(n) β−→ N → 0.

Tensor (4.2) with (·)⊗R N to get the exact sequence

(4.4) R(m) ⊗R N
α⊗1−−−→M ⊗R N → 0.

Tensor (4.3) with R(m) ⊗R (·) to get the exact sequence

(4.5) R(m) ⊗R R(n) 1⊗β−−−→ R(m) ⊗R N → 0.

The composition map (α⊗ 1) ◦ (1⊗ β) is onto.
(2): Start with dual bases {(fi,mi) | i ∈ I} for M and {(gj , nj) | j ∈ J} for N .

Then fi ⊗ gj ∈ HomR(M ⊗R N,R). For a typical generator x⊗ y of M ⊗R N , the
following equations∑

(i,j)

(fi ⊗ gj)(x⊗ y)(mi ⊗ nj) =
∑
(i,j)

(fi(x)gj(y)(mi ⊗ nj)

=
∑
(i,j)

fi(x)mi ⊗ gj(y)nj)

=
∑
i

(
fi(x)mi ⊗

(∑
j

gj(y)nj
))

=
∑
i

(
fi(x)mi ⊗ y

)
=
(∑
i

fi(x)mi

)
⊗ y

= x⊗ y
show that {(fi ⊗ gj ,mi ⊗ nj) | (i, j) ∈ I × J} is a dual basis for M ⊗R N .

(3): By Exercise 6.5.16 (1) there are exact sequences

(4.6) M (m) α−→ R→ 0

and

(4.7) N (n) β−→ R→ 0.

Tensor (4.6) with (·)⊗R N (n) to get the exact sequence

(4.8) M (m) ⊗R N (n) α⊗1−−−→ R⊗R N (n) → 0.

Then the composition (1⊗ β) ◦ (α⊗ 1) maps (M ⊗R N)(mn) onto R.
(4): Follows from (1), (2) and (3). □

Proposition 6.4.25. Let R be a ring. Let M and N be left R right R-
bimodules. Assume M ⊗R N is a left R-generator module. Then the following
are true.
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(1) M and N are both left R-generator modules.
(2) If M ⊗R N is projective as a left R-module, then M and N are both

projective as left R-modules.
(3) If M ⊗R N is finitely generated as a left R-module, then M and N are

both finitely generated as left R-modules.
(4) If M ⊗R N is a left progenerator over R, then M and N are both left

progenerators over R.

If M ⊗R N is a right R-generator module, then right hand versions of (1) – (4)
hold for M and N .

Proof. (1): By Exercise 6.3.16 there is a free R-module F1 of finite rank and
a homomorphism f1 of left R-modules such that f1 : F1⊗R (M ⊗RN)→ R is onto.
By Lemma 4.2.12 there is a free R-module F2 and a left R-module homomorphism
f2 such that f2 : F2 →M is onto. By Lemma 6.4.18,

F2 ⊗R N
f2⊗1−−−→M ⊗R N → 0

is exact. For the same reason,

F1 ⊗R (F2 ⊗R N)
1⊗f2⊗1−−−−−→ F1 ⊗R (M ⊗R N)→ 0

is exact. Since F1⊗RF2 is a free R-module, Lemma 6.4.14 and Lemma 6.4.15 show
that F1 ⊗R (F2 ⊗R N) is a direct sum of copies of N . Then f1 ◦ (1⊗ f2 ⊗ 1) maps
a direct sum of copies of N onto R. Use Exercise 6.3.16 again to show N is a left
R-module generator. The other case is left to the reader.

(2) and (3): By Part (1) and Exercise 6.3.16 there is a free R-module F of finite

rank and a left R-module homomorphism f such that N ⊗R F
f−→ R is onto. But

f is split since R is projective over R. By Exercise 6.4.31,

M ⊗R N ⊗R F
f⊗1−−−→M → 0

is split exact. If M ⊗R N is projective, then by Lemma 6.4.15 and Exercise 6.3.13,
M is projective. If M ⊗R N is finitely generated, then so is M . The other cases
are left to the reader. □

4.3. Exercises.

Exercise 6.4.26. Assume A is a Z-module andm > 0. Prove that A⊗ZZ/m ∼=
A/mA.

Exercise 6.4.27. If m > 0, n > 0 and d = gcd(m,n), then Z/m⊗ZZ/n ∼= Z/d.

Exercise 6.4.28. Let R be a ring, M a right R-module, N a left R-module. If
M ′ is a submodule of M and N ′ is a submodule of N , then show that M/M ′ ⊗R
N/N ′ ∼= (M ⊗R N) /C where C is the subgroup of M ⊗R N generated by all
elements of the form x′ ⊗ y and x⊗ y′ with x ∈M , x′ ∈M ′, y ∈ N and y′ ∈ N ′.

Exercise 6.4.29. Let B = ⟨b⟩ be the cyclic group of order four, A = ⟨2b⟩ the
subgroup of order two and α : A→ B the homomorphism defined by A ⊆ B. Show
that the groups A⊗ZA and A⊗ZB are both nonzero. Show that 1⊗ α : A⊗ZA→
A⊗Z B is the zero homomorphism.

Exercise 6.4.30. Let R be a ring and let RI and RJ be free R-modules.

(1) Show that RI ⊗R RJ is a free R-module.
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(2) If A is a free R-module of rank m and B is a free R-module of rank n,
then show that A⊗R B is free of rank mn.

Exercise 6.4.31. Let

(4.9) 0→ A
α−→ B

β−→ C → 0

be a short exact sequence of left R-modules. Given a right R-module M , consider
the sequence

(4.10) 0→M ⊗R A
1⊗α−−−→M ⊗R B

1⊗β−−−→M ⊗R C → 0.

Prove:

(1) If (4.9) is split exact, then (4.10) is split exact.
(2) If M is a free right R-module, then (4.10) is exact, hence M is flat.
(3) If M is a projective right R-module, then (4.10) is exact, hence M is flat.

Exercise 6.4.32. If R is any ring and M is an R-module, use Exercise 6.4.31
and Exercise 6.3.10 to show that M has a flat resolution.

Exercise 6.4.33. Let R be a ring and I a right ideal of R. Let B be a left
R-module. Prove that there is an isomorphism of groups

R/I ⊗R B ∼= B/IB

where IB is the subgroup of B generated by {rx | r ∈ I, x ∈ B}.

Exercise 6.4.34. Prove that if R is a commutative ring with ideals I and J ,
then there is an isomorphism of R-modules

R/I ⊗R R/J ∼= R/(I + J).

Exercise 6.4.35. Let R be a commutative ring. Suppose A and B are R-
algebras. Then A and B come with homomorphisms θ1 : R → A and θ2 : R → B
satisfying im(θ1) ⊆ Z(A) and im(θ2) ⊆ Z(B).

(1) Show that there exist R-algebra homomorphisms ρ1 : A → A ⊗R B and
ρ2 : B → A⊗R B such that the diagram

(4.11) A⊗R B

A

ρ1
;;

B

ρ2
cc

R

θ1

cc

θ2

;;

commutes. Show that im(ρ1) commutes with im(ρ2). That is, ρ1(x)ρ2(y) =
ρ2(y)ρ1(x) for all x ∈ A, y ∈ B.

(2) Suppose there exist R-algebra homomorphisms α : A→ C and β : B → C
such that im(α) commutes with im(β). Show that there exists a unique
R-algebra homomorphism γ : A⊗R B → C such that the diagram

(4.12) C

A

α

;;

ρ1
// A⊗R B

∃γ

OO

B
ρ2
oo

β

cc
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commutes.
(3) Show that if there exists an R-algebra homomorphism γ : A ⊗R B → C,

then there exist R-algebra homomorphisms α : A → C and β : B → C
such that the image of α commutes with the image of β and diagram
(4.12) commutes.

Exercise 6.4.36. Let S be a commutative R-algebra. Show that there is a
well defined homomorphism of R-algebras µ : S ⊗R S → S which maps a typical
element

∑
xi ⊗ yi in the tensor algebra to

∑
xiyi in S.

Exercise 6.4.37. Let R be a commutative ring and let A and B be R-algebras.
Prove that A⊗R B ∼= B ⊗R A as R-algebras.

Exercise 6.4.38. Let A be an R-algebra. Show that A ⊗R R[x] ∼= A[x] as
R-algebras.

Exercise 6.4.39. Let S and T be commutative R-algebras. Prove:

(1) If S and T are both finitely generated R-algebras, then S⊗RT is a finitely
generated R-algebra.

(2) If T is a finitely generated R-algebra, then S ⊗R T is a finitely generated
S-algebra.

Exercise 6.4.40. Let R be a commutative ring. Prove that if I is an ideal in
R, then I ⊗R R[x] ∼= I[x] and R[x]/I[x] ∼= (R/I)[x].

Exercise 6.4.41. Let θ : R → S be a homomorphism of rings. Let M ∈ MS

and N ∈ SM. Via θ, M can be viewed as a right R-module and N as a left R-
module. Show that θ induces a well defined Z-module epimorphism M ⊗R N →
M ⊗S N . (Note: The dual result, how a Hom group behaves when the ring in the
middle is changed, is studied in Exercise 4.4.33.)

Exercise 6.4.42. Let θ : R → S be a homomorphism of rings. Let M ∈ MR

and N ∈ RM,M ′ ∈MS and N ′ ∈ SM. Via θ,M ′ and N ′ are viewed as R-modules.
In this context, let f :M →M ′ be a right R-module homomorphism and g : N →
N ′ a left R-module homomorphism. Using Lemma 6.4.6 and Exercise 6.4.41, show
that there is a well defined Z-module homomorphism M ⊗R N →M ′ ⊗S N ′ which
satisfies x⊗ y 7→ f(x)⊗ g(y).

Exercise 6.4.43. Let R be a commutative ring and S a commutative R-
algebra. Let A be an S-algebra. Using Exercise 6.4.41, show that there is a well
defined epimorphism of rings A⊗R A→ A⊗S A.

Exercise 6.4.44. Prove that if A is an R-algebra, then A⊗RMn(R) ∼=Mn(A)
as R-algebras.

Exercise 6.4.45. Let R be an integral domain and K the field of fractions of
R. Show that M ⊗R K = 0, if M is a torsion R-module (Definition 4.3.4).

Exercise 6.4.46. Let k be a field and n > 1 an integer. Let T = k[x, y],
S = k[xn, xy, yn], and R = k[xn, yn]. For the tower of subrings R ⊆ S ⊆ T , prove:

(1) T is free over R of rank n2.
(2) S is free over R of rank n.
(3) T is not free over S. (Hint: Consider the residue class rings S/(xn, xy, yn)

and T/(xn, xy, yn).)

For more properties of the ring k[xn, xy, yn], see Exercise 15.4.19.
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5. Hom Groups

If R is a ring and M and N are R-modules, then HomR(M,N) is the set of
R-module homomorphisms from M to N . Then HomR(M,N) is an additive group
under point-wise addition:

(f + g)(x) = f(x) + g(x).

See Exercise 2.8.11. If R is commutative, then HomR(M,N) can be turned into
a left R-module by defining (rf)(x) = rf(x). If R is noncommutative, then
HomR(M,N) cannot be turned into an R-module per se. If S is another ring
and M or N is a bimodule over R and S, then we can turn HomR(M,N) into an
S-module. Lemma 6.5.1 lists four such possibilities.

Lemma 6.5.1. Let R and S be rings.

(1) IfM is a left R right S bimodule and N is a left R-module, then HomR(M,N)
is a left S-module, with the action of S given by (sf)(m) = f(ms).

(2) IfM is a left R-module and N is a left R right S bimodule, then HomR(M,N)
is a right S-module, with the action of S given by (fs)(m) = (f(m))s.

(3) IfM is a left R left S bimodule and N is a left R-module, then HomR(M,N)
is a right S-module, with the action of S given by (fs)(m) = f(sm).

(4) IfM is a left R-module and N is a left R left S bimodule, then HomR(M,N)
is a left S-module, with the action of S given by (sf)(m) = s(f(m)).

Proof. Is left to the reader. □

Let R be a ring and M a left R-module. Then HomR(M,M) is a ring where
multiplication is composition of functions:

(fg)(x) = f(g(x)).

When M is a Z-module, this is Example 3.1.7. The ring S = HomR(M,M) acts as
a ring of functions on M and this makes M a left S-module. If R is commutative,
then S = HomR(M,M) is an R-algebra. The next two results are corollaries to
Lemma 6.3.1 (Nakayama’s Lemma).

Corollary 6.5.2. Let R be a commutative ring and M a finitely generated
R-module. Let f : M → M be an R-module homomorphism such that f is onto.
Then f is one-to-one.

Proof. Let R[x] be the polynomial ring in one variable over R. We turn M
into an R[x]-module using f . Given m ∈M and p(x) ∈ R[x], define

p(x) ·m = p(f)(m).

Since M is finitely generated over R, M is finitely generated over R[x]. Let I be
the ideal in R[x] generated by x. Then IM =M because f is onto. By Nakayama’s
Lemma 6.3.1, I+annihR[x]M = R[x]. For some p(x)x ∈ I, 1−p(x)x ∈ annihR[x]M .
Then (1− p(x)x)M = 0 which says for each m ∈M , m = (p(f)f)(m). Then p(f)f
is the identity function, so f is one-to-one. □

Corollary 6.5.3. Let R be a commutative ring, M an R-module, N a finitely
generated R-module, and f ∈ HomR(M,N). Then f is onto if and only if for each
maximal ideal m in R, the induced map f̄ :M/mM → N/mN is onto.
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Proof. Let C denote the cokernel of f and let m be an arbitrary maximal
ideal of R. Since N is finitely generated, so is C. Tensor the exact sequence

M
f−→ N → C → 0

with (·)⊗R R/m to get

M/mM
f̄−→ N/mN → C/mC → 0

which is exact since tensoring is right exact. If f is onto, then C = 0 so f̄ is onto.
Conversely if mC = C for every m, then Corollary 6.3.2 (Corollary to Nakayama’s
Lemma) implies C = 0. □

5.1. Hom Functor.

Lemma 6.5.4. For a ring R and a left R-module M , the following are true.

(1) HomR(M, ·) is a covariant functor from RM to ZM which sends a left
R module N to the abelian group HomR(M,N). Given any R-module
homomorphism f : A→ B, there is a homomorphism of groups

HomR(M,A)
Hf−−→ HomR(M,B)

which is defined by the assignment g 7→ fg.
(2) HomR(·,M) is a contravariant functor from RM to ZM which sends a

left R module N to the abelian group HomR(N,M). Given any R-module
homomorphism f : A→ B, there is a homomorphism of groups

HomR(B,M)
Hf−−→ HomR(A,M)

which is defined by the assignment g 7→ gf .

Proof. Is left to the reader. □

Proposition 6.5.5. Let R be a ring and M a left R-module.

(1) HomR(M, ·) is a left exact covariant functor from RM to ZM.
(2) M is projective if and only if HomR(M, ·) is an exact functor.
(3) HomR(·,M) is a left exact contravariant functor from RM to ZM.

Proof. (1): Given an exact sequence

(5.1) 0→ A
α−→ B

β−→ C → 0

in RM, we prove that the corresponding sequence

(5.2) 0→ HomR(M,A)
Hα−−→ HomR(M,B)

Hβ−−→ HomR(M,C)

in ZM is exact.
Step 1: Show that Hα is one-to-one. Assume g ∈ HomR(M,A) and αg = 0.

Since α is one-to-one, then g = 0.
Step 2: Show imHα ⊆ kerHβ . Suppose g ∈ HomR(M,A). Then Hβ Hα(g) =

βαg = 0 since (5.1) is exact.
Step 3: Show imHα ⊇ kerHβ . Suppose h ∈ HomR(M,B) and Hβ(h) = βh = 0.

Then im(h) ⊆ ker(β) = im(α). Since α is one-to-one, there is an isomorphism of
R-modules α−1 : im(α) → A. So the composition g = α−1 ◦ h is an R-module
homomorphism g :M → A and Hα(g) = αg = h.

(2) and (3): Are left to the reader. □
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A partial converse to Proposition 6.5.5 (3) is

Lemma 6.5.6. Let R be a ring. The sequence of R-modules

A
α−→ B

β−→ C

is exact, if for all R-modules M

HomR(C,M)
Hβ−−→ HomR(B,M)

Hα−−→ HomR(A,M)

is an exact sequence of Z-modules.

Proof. Step 1: imα ⊆ kerβ. Suppose there exists a ∈ A such that βαa ̸= 0.
We take M to be the nonzero module C. By assumption,

HomR(C,C)
Hβ−−→ HomR(B,C)

Hα−−→ HomR(A,C)

is an exact sequence of Z-modules. Let 1 denote the identity element in HomR(C,C).
By evaluating at the element a, we see that HαHβ(1) ̸= 0, a contradiction.

Step 2: imα ⊇ kerβ. Suppose there exists b ∈ B such that βb = 0 and b ̸∈ imα.
By Proposition 6.5.5 (3), the exact sequence

A
α−→ B

π−→ B/ imα→ 0

gives rise to the exact sequence

0→ HomR(B/ imα,B/ imα)
Hπ−−→ HomR(B,B/ imα)

Hα−−→ HomR(A,B/ imα).

The identity map 1 ∈ HomR(B/ imα,B/ imα) maps to the nonzero map π =
Hπ(1). Since Hα(π) = πα = 0, we see that π ∈ kerHα. If we take M to be the
nonzero module B/ imα, then by assumption,

HomR(C,B/ imα)
Hβ−−→ HomR(B,B/ imα)

Hα−−→ HomR(A,B/ imα)

is an exact sequence of Z-modules. So π ∈ imHβ . There exists g ∈ HomR(C,B/ imα)
such that gβ = π. On the one hand we have gβ(b) = 0. On the other hand we have
π(b) ̸= 0, a contradiction. □

5.2. Various Identities Involving the Hom Functor.

Lemma 6.5.7. Let R be a ring and M a left R-module. Then the map f 7→ f(1)
defines an R-module isomorphism ϕ : HomR(R,M)→M .

Proof. By Lemma 6.5.1 (1), we make HomR(R,M) into a left R-module by
the action (rf)(x) = f(xr). The equations

ϕ(f1 + f2) = (f1 + f2)(1) = f1(1) + f2(1) = ϕ(f1) + ϕ(f2)

and

ϕ(rf) = (rf)(1) = f(1r) = f(r1) = rf(1) = rϕ(f)

show that ϕ is an R-module homomorphism. Given any x ∈M , define ρx : R→M
to be “right multiplication by x”. That is, ρx(a) = ax for any a ∈ R. Since
M is a left R-module, it follows that ρx ∈ HomR(R,M). This defines a function
ρ :M → HomR(R,M) which is the inverse to ϕ. □

Proposition 6.5.8. Let R be a ring. Let M , N , {Mi | i ∈ I} and {Nj | j ∈ J}
be R-modules. There are isomorphisms
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(1)

HomR

(⊕
i∈I

Mi, N
)
∼=
∏
i∈I

HomR(Mi, N)

(2)

HomR

(
M,
∏
j∈J

Nj

)
∼=
∏
j∈J

HomR(M,Nj)

of Z-modules.

Proof. (1): Let ιj :Mj →
⊕

i∈IMi be the injection into coordinate j. Define

ϕ : HomR

(⊕
i∈I

Mi, N
)
→
∏
i∈I

HomR(Mi, N)

by ϕ(f) = g where g(i) = fιi. Clearly ϕ is a Z-module homomorphism. Given any
g ∈

∏
i∈I HomR(Mi, N), by Exercise 6.3.11 there exists a unique f such that the

diagram

Mj

g(j)
$$

ιj //⊕
i∈IMi

∃!f
��
N

commutes for every j ∈ I. Therefore ϕ(f) = g. This shows that ϕ is a one-to-one
correspondence, completing (1).

(2): Is left to the reader. (Hint: instead of the injection maps, use projections.
Use Exercise 6.3.12.) □

Corollary 6.5.9. (Hom Distributes over a Finite Direct Sum) Let R be a ring
and say {M1, . . . ,Mm} and {N1, . . . , Nn} are R-modules. There is an isomorphism
of Z-modules

HomR

( m⊕
i=1

Mi,

n⊕
j=1

Nj

)
ϕ−→

(m,n)⊕
(i,j)=(1,1)

HomR(Mi, Nj)

given by ϕ(f) = g where g(k, ℓ) ∈ HomR(Mk, Nℓ) is defined by g(k, ℓ) = πℓ ◦ f ◦ ιk.
Here we use the notation ιk : Mk →

⊕
Mi is the injection into the kth summand

and πℓ :
⊕
Nj → Nℓ is the projection onto the ℓth summand.

5.3. Hom Tensor Relations. In this section we prove several identities in-
volving Hom groups and the tensor product. We usually refer to these as “Hom
Tensor Relations”.

Theorem 6.5.10. (Adjoint Isomorphism) Let R and S be rings.

(1) If A ∈ RM, B ∈ SMR and C ∈ SM, then there is an isomorphism of
Z-modules

HomS(B ⊗R A,C)
ψ−→ HomR(A,HomS(B,C))

defined by ψ(f)(a) = f(· ⊗ a).
(2) If A ∈ MR, B ∈ RMS and C ∈ MS, then there is an isomorphism of

Z-modules

HomS(A⊗R B,C)
ϕ−→ HomR(A,HomS(B,C))

defined by ϕ(f)(a) = f(a⊗ ·).
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In both cases, the isomorphism is natural in both variables A and C. The “Tensor-
Hom” pair, (B ⊗R (·),HomS(B, ·)), is an adjoint pair.

Proof. (1): Make B ⊗R A into a left S-module by s(b ⊗ a) = sb ⊗ a. Make
HomS(B,C) into a left R-module by (rf)(b) = f(br). Let f ∈ HomS(B ⊗R A,C).
For any a ∈ A, define f(· ⊗ a) : B → C by b 7→ f(b⊗ a). The reader should verify
that a 7→ f(· ⊗ a) is an R-module homomorphism A → HomS(B,C). This map
is additive in f so ψ is well defined. Conversely, say g ∈ HomR(A,HomS(B,C)).
Define B × A → C by (b, a) 7→ g(a)(b). The reader should verify that this map is
balanced and commutes with the left S-action on B and C. Hence there is induced
ϕ(g) ∈ HomS(B ⊗R A,C) and the reader should verify that ϕ is the inverse to ψ.
The reader should verify that ψ is natural in both variables.

(2): is left to the reader. □

Lemma 6.5.11. Let R and S be rings. Let A ∈ RM be finitely generated and
projective. For any B ∈ RMS and C ∈MS there is a natural isomorphism

HomS(B,C)⊗R A
α−→ HomS(HomR(A,B), C)

of abelian groups. On generators, the map is defined by α(f ⊗ a)(g) = f(g(a)).

Proof. Note that HomS(B,C) is a right R-module by the action (fr)(b) =
f(rb) and HomR(A,B) is a right S-module by the action (gs)(a) = g(a)s. Given any
(f, a) in HomS(B,C)×A, define ϕ(f, a) ∈ HomS(HomR(A,B), C) by ϕ(f, a)(g) =
f(g(a)). The reader should verify that ϕ is a well defined balanced map. Therefore
α is a well defined group homomorphism. Also note that if ψ : A → A′ is an
R-module homomorphism, then the diagram

HomS(B,C)⊗R A
α //

1⊗ψ
��

HomS(HomR(A,B), C)

H(H(ψ))

��
HomS(B,C)⊗R A′

α // HomS(HomR(A
′, B), C)

commutes. If A = R, then by Lemma 6.5.7 we see that α is an isomorphism.
If A = Rn is finitely generated and free, then use Lemma 6.5.9 to show α is an
isomorphism. If A is a direct summand of a free R-module of finite rank, then
combine the above results to complete the proof. □

Theorem 6.5.12. Let R be a commutative ring and let A and B be R-algebras.
Let M be a finitely generated projective A-module and N a finitely generated pro-
jective B-module. Then for any A-module M ′ and any B-module N ′, the mapping

HomA(M,M ′)⊗R HomB(N,N
′)

ψ−→ HomA⊗RB(M ⊗R N,M ′ ⊗R N ′)

induced by ψ(f ⊗ g)(x⊗ y) = f(x)⊗ g(y) is an R-module isomorphism. If M =M ′

and N = N ′, then ψ is also a homomorphism of rings.

Proof. By Lemma 6.4.22, M ⊗R N and M ′ ⊗R N ′ are A ⊗R B-modules.
Define ρ : HomA(M,M ′) × HomB(N,N

′) → HomA⊗RB(M ⊗R N,M ′ ⊗R N ′) by
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ρ(f, g)(x⊗ y) = f(x)⊗ g(y). The equations

ρ(f1 + f2, g)(x⊗ y) = (f1 + f2)(x)⊗ g(y)
= (f1(x) + f2(x))⊗ g(y)
= f1(x)⊗ g(y) + f2(x)⊗ g(y)
= ρ(f1, g)(x⊗ y) + ρ(f2, g)(x⊗ y)
=
(
ρ(f1, g) + ρ(f2, g)

)
(x⊗ y)

and

ρ(fr, g)(x⊗ y) = (fr)(x)⊗ g(y)
= f(x)r ⊗ g(y)
= f(x)⊗ rg(y)
= f(x)⊗ (rg)(y)

= ρ(f, rg)(x⊗ y)
show that ρ is R-balanced. Therefore ψ is well defined. Now we show that ψ is an
isomorphism. The method of proof is to reduce to the case where M and N are
free modules.

Case 1: Show that ψ is an isomorphism ifM = A and N = B. By Lemma 6.5.7,
both sides are naturally isomorphic to M ′ ⊗R N ′.

Case 2: Show that ψ is an isomorphism if M is free of finite rank m over A
and N is free of finite rank n over B. By Lemma 6.5.9, Lemma 6.4.15 and Case 1,
both sides are naturally isomorphic to (M ′ ⊗R N ′)(mn).

Case 3: The general case. By Proposition 6.2.3 (1), we can write M ⊕ L ∼= F
where F is a free A module of finite rank and N ⊕ K ∼= G where G is a free B
module of finite. Using Lemma 6.5.9 and Lemma 6.4.15

(5.3) HomA(F,M
′)⊗R HomB(G,N

′) =
(
HomA(M,M ′)⊗R HomB(N,N

′)
)
⊕H

is an internal direct sum of the left hand side for some submodule H. Likewise,

(5.4) HomA⊗RB(F ⊗R G,M ′ ⊗R N ′) = HomA⊗RB(M ⊗R N,M ′ ⊗R N ′)⊕H ′

is an internal direct sum of the right hand side, for some submodule H ′. By Case 2,
the natural map Ψ is an isomorphism between the left hand sides of (5.3) and (5.4).
The restriction of Ψ gives the desired isomorphism ψ. □

Corollary 6.5.13. Let R be a commutative ring and N a finitely generated
projective R-module. Let A be an R-algebra. Then

A⊗R HomR(N,N
′)

ψ−→ HomA(A⊗R N,A⊗R N ′)
is an R-module isomorphism for any R-module N ′.

Proof. Set B = R, M =M ′ = A. □

Corollary 6.5.14. If R is commutative and M and N are finitely generated
projective R-modules, then

HomR(M,M)⊗R HomR(N,N)
ψ−→ HomR(M ⊗R N,M ⊗R N)

is an R-algebra isomorphism.

Proof. Take A = B = R, M =M ′ and N = N ′. □
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Theorem 6.5.15. Let A and B be rings. Let L be a finitely generated and
projective left A-module. Let M be a left A right B bimodule. Let N be a left
B-module. Then

HomA(L,M)⊗B N
ψ−→ HomA(L,M ⊗B N)

is a Z-module isomorphism, where ψ(f ⊗y)(x) = f(x)⊗y for all y ∈ N and x ∈ L.

Proof. By Lemma 6.5.1, HomA(L,M) is a right B-module by the action
(fb)(x) = f(x)b. The reader should verify that ψ is balanced, hence well defined.

Case 1: Show that ψ is an isomorphism if L = A. By Lemma 6.5.7, both sides
are naturally isomorphic to M ⊗B N .

Case 2: Show that ψ is an isomorphism if L is free of rank n over A. By
Lemma 6.5.9, Lemma 6.4.15 and Case 1, both sides are naturally isomorphic to
(M ⊗R N)(n).

Case 3: The general case. By Proposition 6.2.3 (1), we can write L ⊕K ∼= F
where F is a free A module of rank n. Using Lemma 6.5.9 and Lemma 6.4.15

(5.5) HomA(F,M)⊗B N = HomA(L,M)⊗R N ⊕H

is an internal direct sum of the left hand side for some submodule H. Likewise,

(5.6) HomA(F,M ⊗B N) = HomA(L,M ⊗R N)⊕H ′

is an internal direct sum of the right hand side, for some submodule H ′. By Case 2,
the natural map Ψ is an isomorphism between the left hand sides of (5.5) and (5.6).
The restriction of Ψ gives the desired isomorphism ψ. □

5.4. Exercises.

Exercise 6.5.16. Let R be a ring and M a left R-module. The functor
HomR(M,−) from the category of left R-modules to the category of Z-modules
is said to be faithful in case for every R-module homomorphism β : A → B, if
β ̸= 0, then there exists h ∈ HomR(M,A) such that βh ̸= 0. This exercise outlines
a proof thatM is an R-generator if and only if the functor HomR(M,−) is faithful.
(This idea comes from [10, Proposition 1.1(a), p. 52].)

(1) For any left R-module A, set H = HomR(M,A). Let MH denote the
direct sum of copies of M over the index set H. Show that there is an
R-module homomorphism

α :MH → A

defined by α(f) =
∑
h∈H h(f(h)).

(2) Show that if HomR(M,−) is faithful, then for any left R-module A, the
map α defined in Part (1) is surjective. Conclude that M is an R-
generator. (Hint: Let β : A → B be the cokernel of α. Show that

the composition M
h−→ A

β−→ B is the zero map for all h ∈ H.)
(3) Prove that if M is an R-generator, then HomR(M,−) is faithful. (Hint:

Use Exercise 6.3.16.

Exercise 6.5.17. Let R be any ring and ϕ : A → B a homomorphism of left
R-modules. Prove that the following are equivalent.

(1) ϕ has a left inverse. That is, there exists an R-module homomorphism
ψ : B → A such that ψϕ = 1A.
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(2) For every left R-module M , the sequence

HomR(B,M)
Hϕ−−→ HomR(A,M)→ 0

is exact.
(3) The sequence

HomR(B,A)
Hϕ−−→ HomR(A,A)→ 0

is exact.

See Exercise 6.5.24 for the dual result on the splitting of A→ B → 0.

Exercise 6.5.18. Let R be any ring and ϕ : A → B a homomorphism of left
R-modules. Prove that the following are equivalent.

(1) ϕ is an isomorphism.
(2) For every R-module M , Hϕ : HomR(B,M)→ HomR(A,M) is an isomor-

phism.

Exercise 6.5.19. Let A be an R-algebra that is finitely generated as an R-
module. Suppose x and y are elements of A satisfying xy = 1. Prove that yx = 1.
(Hints: Let ρy : A → A be defined by “right multiplication by y”. That is,
ρy(a) = ay. Show that ρy is onto. Conclude that ρy is one-to-one and use this to
prove yx = 1.)

Exercise 6.5.20. Let R be a ring,M a left R-module, and N a right R-module.
Prove the following:

(1) M∗ = HomR(M,R) is a rightR-module by the formula given in Lemma 6.5.1 (2).
(2) N∗ = HomR(N,R) is a left R-module by the rule (rf)(x) = rf(x).
(3) LetM∗∗ = HomR(M

∗, R) be the double dual ofM (see Definition 4.4.22).
For m ∈ M , let φm : M∗ → R be the “evaluation at m” map. That is,
if f ∈ M∗, then φm(f) = f(m). Prove that φm ∈ M∗∗, and that the
assignment m 7→ φm defines a homomorphism of left R-modules M →
M∗∗.

Exercise 6.5.21. Let R be a ring. We say a left R-module M is reflexive in
case the homomorphism M → M∗∗ of Exercise 6.5.20 is an isomorphism. Prove
the following:

(1) IfM1, . . . ,Mn are left R-modules, then the direct sum
⊕n

i=1Mi is reflexive
if and only if each Mi is reflexive.

(2) A finitely generated free R-module is reflexive.
(3) A finitely generated projective R-module is reflexive.
(4) Let R be a commutative ring. If P is a finitely generated projective R-

module and M is a reflexive R-module, then P ⊗RM is reflexive.

Exercise 6.5.22. Let A be a finite abelian group. Prove that HomZ(A,Z) =
(0). Conclude that A is not a reflexive Z-module.

Exercise 6.5.23. Let R be a PID and A a finitely generated torsion R-module.
Prove that HomR(A,R) = (0). Conclude that A is not a reflexive R-module.

Exercise 6.5.24. Let R be any ring and ϕ : A → B a homomorphism of left
R-modules. Prove that the following are equivalent.

(1) ϕ has a right inverse. That is, there exists an R-module homomorphism
ψ : B → A such that ϕψ = 1B .
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(2) For every left R-module M , the sequence

HomR(M,A)
Hϕ−−→ HomR(M,B)→ 0

is exact.
(3) The sequence

HomR(B,A)
Hϕ−−→ HomR(B,B)→ 0

is exact.

See Exercise 6.5.17 for the dual result on the splitting of 0→ A→ B.

6. Some Homological Algebra

6.1. The Five Lemma.

Theorem 6.6.1. (The Five Lemma) Let R be any ring and

A1
f1 //

α1

��

A2
f2 //

α2

��

A3
f3 //

α3

��

A4
f4 //

α4

��

A5

α5

��
B1

g1 // B2
g2 // B3

g3 // B4
g4 // B5

a commutative diagram of R-modules with exact rows.

(1) If α2 and α4 are onto and α5 is one-to-one, then α3 is onto.
(2) If α2 and α4 are one-to-one and α1 is onto , then α3 is one-to-one.

Proof. (1) Let b3 ∈ B3. Since α4 is onto there is a4 ∈ A4 such that α4(a4) =
g3(b3). The second row is exact and α5 is one-to-one and the diagram commutes, so
f4(a4) = 0. The top row is exact, so there exists a3 ∈ A3 such that f3(a3) = a4. The
diagram commutes, so g3(b3−α3(a3)) = 0. The bottom row is exact, so there exists
b2 ∈ B2 such that g2(b2) = b3−α3(a3). Since α2 is onto, there is a2 ∈ A2 such that
α2(a2) = b2. The diagram commutes, so α3(f2(a2)+a3) = b3−α3(a3)+α3(a3) = b3.

(2) Is left to the reader. □

6.2. The Snake Lemma. We now prove what is perhaps the most funda-
mental tool in homological algebra, the so-called Snake Lemma.

Theorem 6.6.2. (The Snake Lemma) Let R be any ring and

A1
f1 //

α

��

A2
f2 //

β

��

A3
//

γ

��

0

0 // B1
g1 // B2

g2 // B3

a commutative diagram of R-modules with exact rows. Then there is an exact
sequence

kerα
f∗
1−→ kerβ

f∗
2−→ ker γ

∂−→ cokerα
g∗1−→ cokerβ

g∗2−→ coker γ.

If f1 is one-to-one, then f∗1 is one-to-one. If g2 is onto, then g∗2 is onto.
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Proof. The proof is a series of small steps.
Step 1: There is an exact sequence

kerα
f∗
1−→ kerβ

f∗
2−→ ker γ

where the maps are the restriction maps of f1 and f2 to submodules. If f1 is
one-to-one, then f∗1 is one-to-one. These are routine diagram chasing arguments.

Step 2: Construct the exact sequence

cokerα
g∗1−→ cokerβ

g∗2−→ coker γ.

Since g1(α(A1) = β(f1(A1), it follows from Theorem 4.1.17 that g∗1 is well-defined.
Likewise, since g2(β(A2) = γ(f2(A2), it follows that g

∗
2 is well-defined. Since g2g1 =

0 it follows that g∗2g
∗
1 = 0. Suppose x ∈ B2 and g2(x) ∈ im(γ). Then there is y ∈ A3

and γ(y) = g2(x). Since f2 is onto, there is z ∈ A2 such that f2(z) = y. We have
γ(f2(z)) = g2(β(z)) = g2(x). Then x − β(z) ∈ ker(g2) = im(g1). There exists
w ∈ B1 such that g1(w) = x − β(z). Then x ≡ g1(w) (mod imβ) which proves
im g∗1 = ker g∗2 . If g2 is onto, then it is easy to see that g∗2 is onto.

Step 3: Define the connecting homomorphism ∂ : ker γ → cokerα by the
formula

∂(x) = g−11 βf−12 (x) (mod imα).

Step 3.1: Check that ∂ is well defined. First notice that

g2(β(f
−1
2 (x))) = γ(f2(f

−1
2 (x))) = γ(x) = 0

since x ∈ ker γ. Therefore, β(f−12 (x)) ∈ im g1. Now pick y ∈ f−12 (x). Then

f−12 (x) = y + im f1

β(f−12 (x)) = β(y) + β(im f1)

β(f−12 (x)) = β(y) + g1(imα)

g−11 (β(f−12 (x))) = g−11 (β(y)) + imα.

So ∂(x) ≡ g−11 (β(y)) (mod imα), hence ∂ is well defined.
Step 3.2: Construct the complex

kerβ
f∗
2−→ ker γ

∂−→ cokerα
g∗1−→ cokerβ.

The proof follows directly from the definition of ∂.
Step 3.3: Prove exactness at ker γ. Suppose ∂(x) = 0. That is, g−11 (β(f−12 (x))) ∈

imα. Pick y ∈ A2 such that f2(y) = x. Then for some z ∈ A1,

β(y) = g1α(z) = βf1(z).

Hence y − f1(z) ∈ kerβ and f2(y − f1(z)) = f2(y) − f2f1(z) = f2(y) = x. So
x ∈ im f∗2 .

Step 3.4: Prove exactness at cokerα. Suppose x ∈ B1 and g1(x) ∈ imβ. Then
g1(x) = β(y) for some y ∈ A2. Then γ(f2(y)) = g2(β(y)) = g2(g1(x)) = 0. So
f2(y) ∈ ker γ and ∂(f2(y)) ≡ x (mod imα). □
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6.3. The Product Lemma. The following lemma is another fundamental
tool in homological algebra. It is called the Product Lemma in [11], [36], and [13].
Sometimes it is called the Kernel-Cokernel Sequence.

Theorem 6.6.3. If R is any ring and

A
f−→ B

g−→ C

a sequence of R-module homomorphisms, then there exists an exact sequence

0→ ker f
α1−→ ker (gf)

α2−→ ker g
α3−→ coker f

α4−→ coker (gf)
α5−→ coker g → 0

where α3 is the natural map B → coker f restricted to ker g.

Proof. The proof consists of a sequence of five steps. Each homomorphism
αi is defined, and exactness proved at each term in the sequence.

Step 1: Exactness at ker f . The map α1 is defined to be the set inclusion
homomorphism, which is well defined because ker f ⊆ ker (gf). Being the set
inclusion map, α1 is one-to-one.

Step 2: Exactness at ker (gf). The map α2 is f restricted to ker f . If x ∈ ker f ,
then gf(x) = g(f(x)) = g(0) = 0, which imples α2α1 = 0. Let x ∈ ker (gf) and
assume α2(x) = f(x) = 0. Then x ∈ ker f . This proves imα1 = kerα2.

Step 3: Exactness at ker g. The map α3 is the natural map f̄ : B → coker f
restricted to ker g. If x ∈ ker (gf), then α3α2(x) = f̄f(x) = 0. Hence α3α2 = 0.
Let y ∈ ker g and assume f̄(y) = 0. Then y ∈ im f , so there exists x ∈ A such
that y = f(x). Therefore 0 = g(y) = gf(x), which implies x ∈ ker (gf). Hence
y ∈ imα2. This proves imα2 = kerα3.

Step 4: Exactness at coker f . To define the map α4, consider the following
commutative diagram.

A
f //

gf ��

B
f̄ //

g

��

coker f

∃α4

��

// 0

C

gf $$
coker (gf)

$$
0

A typical y ∈ im f = ker f̄ can be written y = f(x) for some x ∈ A. Then
g(y) ∈ im (gf), and it follows that gf(g(y)) = 0. By Theorem 4.1.17, α4 is well
defined. If y ∈ ker g, then α4f̄(y) = gf(g(y)) = 0. Therefore α3α4 = 0. To see that
imα3 = kerα4, let y ∈ B and assume α4f̄(y) = 0. Then 0 = α4f̄(y) = gfg(y).
Thus g(y) ∈ im gf , hence g(y) = gf(x) for some x ∈ A. We have y − f(x) ∈ ker g.
Since f̄(y − f(x)) = f̄(y) we see that f̄(y) ∈ imα3.
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Step 5: Exactness at coker (gf). To define the map α5, consider the following
commutative diagram.

A
gf // C

gf //

ḡ $$

coker (gf)

∃α5

��

// 0

coker g

Let z ∈ ker gf = im (gf). Then z = gf(x) for some x ∈ A, hence z ∈ im g = ker ḡ.
Therefore ḡ(z) = ḡgf(x) = 0. By Theorem 4.1.17, α5 is well defined. Let y ∈ B.
Then α4f̄(y) = gfg(y) and α5α4f̄(y) = α5gfg(y) = ḡg(y) = 0. Therefore α5α4 =
0. Given z ∈ C, if 0 = α5gf(z) = ḡ(z), then z ∈ im g. So z = g(y) for some y ∈ B.
Thus gf(z) = α4f̄(y) is in imα4. This shows imα4 = kerα5. Given z ∈ C we have
ḡ(z) = α5gf(z) is in imα5. This shows α5 is onto. □

6.4. Exercise.

Exercise 6.6.4. In the context of Theorem 6.6.3, let

A
f //

a

��

B
g //

b

��

C

c

��
A1

f1 // B1
g1 // C1

be a commutative diagram of R-modules. Show that there exist homomorphisms
γ1, . . . , γ6 connecting the six term exact sequence for gf and the six term exact
sequence for g1f1 such that the diagram

ker f
α1 //

γ1

��

ker gf
α2 //

γ2

��

ker g
α3 //

γ3

��

coker f
α4 //

γ4

��

coker gf
α5 //

γ5

��

coker g

γ6

��
ker f1

α1 // ker g1f1
α2 // ker g1

α3 // coker f1
α4 // coker g1f1

α5 // coker g1

commutes.

7. Injective Modules

Throughout this section, R will be an arbitrary ring. Unless otherwise specified,
an R-module is a left R-module.

Definition 6.7.1. Let R be a ring and E an R-module. Then E is injective if
for any diagram of R-modules

E

0 // A

ϕ

OO

α // B

∃ψ
``

with the bottom row exact, there exists an R-module homomorphism ψ : B → E
such that ψα = ϕ.

Theorem 6.7.2. An R-module E is injective if and only if the functor HomR(·, E)
is exact.

Proof. Is left to the reader. □
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Proposition 6.7.3. If {Ei | i ∈ I} is a family of R-modules, then the direct
product

∏
i∈I Ei is injective if and only if each Ei is injective.

Proof. Assume each Ei is injective. For each i ∈ I, let πi :
∏
iEi → Ei be

the projection onto coordinate i. In the following diagram , assume that we are
given α and ϕ and that α is one-to-one.∏

iEi
πi // Ei

0 // A

ϕ

OO

α // B

∃ψi

OO

For each i there exists ψi : B → Ei such that ψiα = πiϕ. Define ψ : B →
∏
iEi

to be the product of the ψi. That is, for any x ∈ B, ψ(x)(i) = ψi(x). The reader
should verify that ψα = ϕ. The converse is left to the reader. □

Lemma 6.7.4. An R-module E is injective if and only if for every left ideal I
of R, every homomorphism I → E can be extended to an R-module homomorphism
R→ E.

Proof. Suppose E is injective and α : I → R is the set inclusion map. Then
any R-homomorphism ϕ : I → E can be extended to ψ : R→ E.

Conversely suppose any homomorphism I → E can be extended to R if I is a
left ideal of R. Let

E

0 // A

ϕ

OO

α // B

be a diagram of R-modules with the bottom row exact. We need to find an R-
module homomorphism ψ : B → E such that ψα = ϕ. Consider the set S of all
R-module homomorphisms σ : C → E such that α(A) ⊆ C ⊆ B and σα = ϕ.
Then S is nonempty because ϕ : A → E is in S. Put a partial ordering on S by
saying σ1 : C1 → E is less than or equal to σ2 : C2 → E if C1 ⊆ C2 and σ2 is
an extension of σ1. By Zorn’s Lemma, Proposition 1.3.3, S contains a maximal
member, ψ :M → E. To finish the proof, it is enough to show M = B.

Suppose M ̸= B and let b ∈ B −M . The proof is by contradiction. Let I =
{r ∈ R | rb ∈M}. Then I is a left ideal of R. Define an R-module homomorphism
σ : I → E by σ(r) = ψ(rb). By hypothesis, there exists τ : R → E such that
τ is an extension of σ. To arrive at a contradiction, we show that there exists a
homomorphism ψ1 : M + Rb → E which is an extension of ψ. Define ψ1 in the
following way. If m + rb ∈ M + Rb, define ψ1(m + rb) = ψ(m) + rτ(1). To see
that ψ1 is well defined, assume that in M + Rb there is an element expressed in
two ways: m + rb = m1 + r1b. Subtracting gives m − m1 = (r1 − r)b which is
in M . Therefore r1 − r is in I. From ψ(m − m1) = ψ((r1 − r)b) = σ(r1 − r) =
τ(r1− r) = (r1− r)τ(1), it follows that ψ(m)−ψ(m1) = r1τ(1)− rτ(1). Therefore
ψ(m)+ rτ(1) = ψ(m1)+ r1τ(1) and we have shown that ψ1 is well defined. This is
a contradiction because ψ1 is an extension of ψ and ψ is maximal. □

Definition 6.7.5. An abelian group A is said to be divisible in case for every
nonzero integer n and every a ∈ A there exists x ∈ A such that nx = a.
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Example 6.7.6. Let n be a nonzero integer and a ∈ Q. Set x = a/n ∈ Q.
Then nx = a, which shows the additive group Q is divisible.

Example 6.7.7. Let Z = Max(Z) denote the set of maximal ideals in Z. Then
each m ∈ Z is a principal ideal pZ for some positive prime p ∈ Z. Let

P =
∏
m∈Z

Z/m

S =
⊕
m∈Z

Z/m

be the direct product and the direct sum of the prime fields Z/m. By Exer-
cises 4.4.35 and 4.4.36, S is an ideal in the ring P . In this example we show
that the quotient P/S is a divisible abelian group. Let α ∈ Z be a positive in-
teger. Let V (α) = {m ∈ Z | α ∈ m} and U(α) = {m ∈ Z | α ̸∈ m}. Then
Z = V (α) ∪ U(α) is a disjoint union. By Proposition 1.2.7, V (α) is a finite set.
If we set P0 =

∏
m∈V (α) Z/m and P1 =

∏
m∈U(α) Z/m, then P = P0 ⊕ P1 is the

internal direct sum of the ideals. Let e0 and e1 be the idempotent generators of P0

and P1 respectively. The reader should verify that in the ring P0, αe0 is equal to 0
and in the ring P1, αe1 is invertible. Then αP = P1 and P ⊗Z Z/α = P/αP ∼= P0.
Notice that P0 ⊆ S and S ⊗Z Z/α = S/αS ∼= P0. Consider the exact sequence

0→ S → P → P/S → 0.

By Lemma 6.4.18, (P/S)⊗ZZ/α = 0. This proves P/S is a divisible abelian group.
For a continuation of this example, see Exercise 6.7.20.

Lemma 6.7.8. An abelian group A is divisible if and only if A is an injective
Z-module.

Proof. Assume A is an injective Z-module. Let n ∈ Z − (0) and a ∈ A. Let
ϕ : Zn → A be the map induced by n 7→ a. By Lemma 6.7.4, ϕ can be extended
to a homomorphism ψ : Z → E. In this case, a = ϕ(n) = ψ(n) = nψ(1) so a is
divisible by n.

Conversely, assume A is divisible. A typical ideal of Z is I = Zn. Suppose
σ : I → A is a homomorphism. By Lemma 6.7.4, it is enough to construct an
extension τ : Z → A of σ. If n = 0, then simply take τ = 0. Otherwise solve
nx = σ(n) for x and define τ(1) = x. □

Lemma 6.7.9. If A is an abelian group, then A is isomorphic to a subgroup of
a divisible abelian group.

Proof. The Z-module A is the homomorphic image of a free Z-module, σ :
ZI → A, for some index set I. Then A ∼= ZI/K where K ⊆ ZI is the kernel of
σ. Since Z ⊆ Q, there is a chain of subgroups K ⊆ ZI ⊆ QI . This means ZI/K
is isomorphic to a subgroup of QI/K. By Example 6.7.6, Q is divisible and by
Exercises 6.7.13 and 6.7.14, QI/K is divisible. □

Lemma 6.7.10. Let A be a divisible abelian group and R a ring. Then HomZ(R,A)
is an injective left R-module.

Proof. SinceR ∈ ZMR, we make HomZ(R,A) into a leftR-module by (rf)(x) =
f(xr). If M is any left R-module, then by the Adjoint Isomorphism (Theo-
rem 6.5.10) there is a Z-module isomorphism HomZ(R⊗RM,A)→ HomR(M,HomZ(R,A)).
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To prove the lemma, we show that the contravariant functor HomR(·,HomZ(R,A))
is right exact and apply Theorem 6.7.2. Let 0→M → N be an exact sequence of
R-modules. The diagram

HomZ(N,A) //

∼=
��

HomZ(M,A) //

∼=
��

0

HomR(N,HomZ(R,A)) // HomR(M,HomZ(R,A)) // 0

commutes. The top row is exact because by Lemma 6.7.8 and Theorem 6.7.2, the
contravariant functor HomZ(·, A) is right exact. The vertical maps are the adjoint
isomorphisms, so the bottom row is exact. □

Proposition 6.7.11. Every left R-module M is isomorphic to a submodule of
an injective R-module.

Proof. By Lemma 6.5.7 there is anR-module isomorphismM ∼= HomR(R,M)
given bym 7→ ρm, where ρm is “right multiplication bym”. EveryR-homomorphism
is a Z-homomorphism, so HomR(R,M) ⊆ HomZ(R,M). By Lemma 6.7.9, there
is a one-to-one homomorphism of abelian groups σ : M → D for some divisible
abelian group D. By Proposition 6.5.5, there is an exact sequence

0→ HomZ(R,M)→ HomZ(R,D).

Combining the above, the composite map

M ∼= HomR(R,M) ⊆ HomZ(R,M)→ HomZ(R,D)

is one-to-one and is given by m 7→ σρm. This is an R-module homomorphism
since the left R-module action on HomZ(R,D) is given by (rf)(x) = f(xr). By
Lemma 6.7.10, we are done. □

Proposition 6.7.12. Let R be a ring and E an R-module. The following are
equivalent.

(1) E is injective.
(2) Every short exact sequence of R-modules 0 → E → A → B → 0 is split

exact.
(3) E is a direct summand of any R-module of which it is a submodule.

Proof. (1) implies (2): Let ϕ : E → E be the identity map on E. By
Definition 6.7.1 there exists ψ : A→ E such that ψ is the desired splitting map.

(2) implies (3): Suppose that E is a submodule of M . The sequence 0→ E →
M →M/E → 0 is exact. By (2) there is a splitting map ψ :M → E such that for
any x ∈ E we have ψ(x) = x. If K = kerψ, then M = E ⊕K.

(3) implies (1): By Proposition 6.7.11, there is an injective R-module I such
that E is a submodule of I. By (3), I = E ⊕ K for some submodule K. By
Proposition 6.7.3, E is injective. □

7.1. Exercises.

Exercise 6.7.13. Prove that if A is a divisible abelian group and B ⊆ A is a
subgroup, then A/B is divisible.

Exercise 6.7.14. Prove that for any family of divisible abelian groups {Ai |
i ∈ I}, the direct sum

⊕
i∈IMi is divisible.
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Exercise 6.7.15. Let A be a divisible abelian group. Prove that if B is a
subgroup of A which is a direct summand of A, then B is divisible.

Exercise 6.7.16. Let R be any ring and M an R-module. Suppose there is an
infinite exact sequence

(7.1) 0→M → E0 → E1 → E2 → · · · → En → En+1 → · · ·
of R-modules. If each Ei is an injective R-module, then we say (7.1) is an injective
resolution of M . Use Proposition 6.7.11 and induction to show that an injective
resolution exists for any R and any M . We say that the category RM has enough
injectives.

Exercise 6.7.17. Prove that if D is a division ring, then any nonzero vector
space over D is an injective D-module.

Exercise 6.7.18. Let p be a prime number and A an abelian group. We say
that A is p-divisible, if for every n ≥ 0 and for every x ∈ A, there exists y ∈ A such
that pny = x. Prove that a p-divisible p-group is divisible.

Exercise 6.7.19. Let R be a ring of characteristic 0 such that (R,+) is a
divisible abelian group. Show that the center of R contains a subfield isomorphic
to Q, hence R is a Q-algebra. (Hint: Theorem 3.5.5.)

Exercise 6.7.20. As in Example 6.7.7, let S be the direct sum and P the direct
product of the finite prime fields. Show that the quotient P/S is a Q-algebra. (Hint:
Exercise 6.7.19.)

7.2. Injective Modules and Flat Modules. Throughout this section, R is
an arbitrary ring.

Theorem 6.7.21. Let R and S be arbitrary rings. Let M ∈ SMR and assume
M is a flat right R-module. Let I be a left injective S-module. Then HomS(M, I)
is an injective left R-module.

Proof. Notice that HomS(M, I) is a left R-module by the action (rf)(x) =
f(xr). By the hypothesis onM and I, the functorsM⊗R(·) and HomS(·, I) are both
exact. The composite functor HomS(M⊗R (·), I) is also exact. By Theorem 6.5.10,
this functor is naturally isomorphic to HomR(·,HomS(M, I)), which is also exact.
By Theorem 6.7.2, HomS(M, I) is injective. □

Definition 6.7.22. A module C is a cogenerator for RM if for every module
M and every nonzero x ∈M there exists f ∈ HomR(M,C) such that f(x) ̸= 0.

Lemma 6.7.23. The Z-module Q/Z is a cogenerator for ZM.

Proof. By Example 6.7.6 and Exercise 6.7.13, Q/Z is a divisible abelian
group. By Lemma 6.7.8, Q/Z is an injective Z-module. Let M be a Z-module
and let x be a nonzero element of M . To define a map f : Zm→ Q/Z, it is enough
to specify the image of the generator m. If d is the order of m, then

f(m) =

{
1
2 + Z if d =∞
1
d + Z if d <∞

produces a well defined map f . Also f(m) ̸= 0 and since Q/Z is injective, f can be
extended to HomZ(M,Q/Z). □
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Definition 6.7.24. LetM be a rightR-module. TheR-module HomZ(M,Q/Z)
is called the character module ofM . The character module ofM is a left R-module
by the action rf(x) = f(xr) where r ∈ R, f ∈ HomZ(M,Q/Z) and x ∈M .

Lemma 6.7.25. The sequence of right R-modules

0→ A
α−→ B

β−→ C → 0

is exact if and only if the sequence of character modules

0→ HomZ(C,Q/Z)
Hβ−−→ HomZ(B,Q/Z)

Hα−−→ HomZ(A,Q/Z)→ 0

is exact.

Proof. Assume the original sequence is exact. By Theorem 6.7.2, the second
sequence is exact. Conversely, it is enough to assume

(7.2) HomZ(C,Q/Z)
Hβ−−→ HomZ(B,Q/Z)

Hα−−→ HomZ(A,Q/Z)
is exact and prove that

A
α−→ B

β−→ C

is exact.
Step 1: Show that imα ⊆ kerβ. For contradiction’s sake, assume a ∈ A and

βα(a) ̸= 0. By Lemma 6.7.23, there is f ∈ HomZ(C,Q/Z) such that fβα(a) ̸= 0.
Therefore HαHβ(f) ̸= 0 which is a contradiction.

Step 2: Show that imα ⊇ kerβ. For contradiction’s sake, assume b ∈ B and
β(b) = 0 and b ̸∈ imα(a). Then b + imα is a nonzero element of B/ imα. The
exact sequence

A
α−→ B

π−→ B/ imα

gives rise to the exact sequence

HomZ(B/ imα,Q/Z) Hπ−−→ HomZ(B,Q/Z)
Hα−−→ HomZ(A,Q/Z).

By Lemma 6.7.23, there is g ∈ HomZ(B/ imα,Q/Z) such that g(b + imα) ̸= 0.
Let f = Hπ(g). Then Hα(f) = 0 and exactness of (7.2) implies f = Hβ(h) for
some h ∈ HomZ(C,Q/Z). On the one hand, f(b) = gπ(b) ̸= 0. On the other hand,
f(b) = hβ(b) = h(0) = 0. This is a contradiction. □

Theorem 6.7.26. Let R be any ring and M a right R-module. Then M is flat
if and only if the character module HomZ(M,Q/Z) is an injective left R-module.

Proof. View M as a left Z-right R-bimodule. Since Q/Z is an injective Z-
module, ifM is flat, apply Theorem 6.7.21 to see that HomZ(M,Q/Z) is an injective
left R-module.

Conversely assume HomZ(M,Q/Z) is an injective left R-module. By Theo-
rem 6.7.2, the functor HomR(·,HomZ(M,Q/Z)) is exact. By Theorem 6.5.10, the
isomorphic functor HomZ(M ⊗R (·),Q/Z) is also exact. Suppose 0→ A→ B is an
exact sequence of left R-modules. The sequence

HomZ(M ⊗R B,Q/Z)→ HomZ(M ⊗R A,Q/Z)→ 0

is an exact sequence of Z-modules. By Lemma 6.7.25, 0→M ⊗R A→M ⊗R B is
an exact sequence of Z-modules. This proves M is flat. □

For another proof of Theorem 6.7.27, see Corollary 7.8.7. For a stronger version
when R is a local ring, see Corollary 7.8.5.
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Theorem 6.7.27. The R-module M is finitely generated projective over R if
and only if M is flat and of finite presentation over R.

Proof. If M is finitely generated and projective, then M is flat by Exer-
cise 6.4.31 and of finite presentation by Corollary 6.2.8.

Assume M is flat and of finite presentation over R. Then M is finitely gener-
ated, so by Proposition 6.5.5 it is enough to show that HomR(M, ·) is right exact.
Let A → B → 0 be an exact sequence of R-modules. It is enough to show that
HomR(M,A) → HomR(M,B) → 0 is exact. By Lemma 6.7.25, it is enough to
show that

(7.3) 0→ HomZ(HomR(M,B),Q/Z)→ HomZ(HomR(M,A),Q/Z)

is exact. Since M is of finite presentation, there exist free R-modules F1 and F0 of
finite rank, and an exact sequence

(7.4) F1 → F0 →M → 0.

Suppose B ∈ RMZ. Suppose E ∈MZ is injective. Consider the diagram

HomZ(B,E)⊗R F1
//

α

��

HomZ(B,E)⊗R F0
//

α

��

HomZ(B,E)⊗RM → 0

α

��
HomZ(HomR(F1, B), E) // HomZ(HomR(F0, B), E) // HomZ(HomR(M,B), E)→ 0

The top row is obtained by tensoring (7.4) with HomZ(B,E), hence it is exact.
The bottom row is exact because it comes from (7.4) by first applying the left
exact contravariant functor HomR(·, B), E) followed by the exact contravariant
functor HomZ(·, E). The vertical maps come from the proof of Lemma 6.5.11,
so the diagram commutes. The two left-most vertical maps are isomorphisms, by
Lemma 6.5.11. The Five Lemma (Theorem 6.6.1) says that the third vertical map
is an isomorphism. The isomorphism is natural in B which says we can apply this
result to the exact sequence A→ B → 0 and get a commutative diagram

0 // HomZ(B,Q/Z)⊗RM

α

��

// HomZ(A,Q/Z)⊗RM

α

��
0 // HomZ(HomR(M,B),Q/Z) // HomZ(HomR(M,A),Q/Z)

where the vertical arrows are isomorphisms. The top row is obtained from the
exact sequence A → B → 0 by first applying the exact contravariant functor
HomZ(·,Q/Z) followed by the exact functor (·) ⊗R M . Therefore, the top row is
exact, which implies the bottom row is exact. The bottom row is (7.3), so we are
done. □

8. Direct Limits and Inverse Limits

8.1. The Direct Limit.

Definition 6.8.1. An index set I is called a directed set in case there is a
reflexive, transitive binary relation, denoted ≤, on I such that for any two elements
i, j ∈ I, there is an element k ∈ I with i ≤ k and j ≤ k. Let I be a directed set and
C a category. Usually C will be a category of R-modules for some ring R. At other
times, C will be a category of R-algebras for some commutative ring R. Suppose
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that for each i ∈ I there is an object Ai ∈ C and for each pair i, j ∈ I such that
i ≤ j there is a C-morphism ϕij : Ai → Aj such that the following are satisfied.

(1) For each i ∈ I, ϕii : Ai → Ai is the identity on Ai, and
(2) for all i, j, k ∈ I with i ≤ j ≤ k, the diagram

Ai
ϕi
k //

ϕi
j   

Ak

Aj

ϕj
k

>>

commutes.

Then the collection of objects and morphisms {Ai, ϕij} is called a directed system
in C with index set I.

Definition 6.8.2. Let {Ai, ϕij} be a directed system in C for a directed index
set I. The direct limit of this system, denoted lim−→Ai, is an object in C together
with a set of morphisms αi : Ai → lim−→Ai indexed by I such that the following are
satisfied.

(1) For all i ≤ j, αi = αjϕ
i
j , and

(2) lim−→Ai satisfies the universal mapping property. Namely, if X is an object
in C and fi : Ai → X is a set of morphisms indexed by I such that for
all i ≤ j, fi = fjϕ

i
j , then there exists a unique morphism β : lim−→Ai → X

making the diagram

lim−→Ai
∃!β // X

Ai

αi

bb
fi

??

ϕi
j

��
Aj

αj

VV

fj

II

commute for all i ≤ j in I.

Proposition 6.8.3. Let R be a ring. If {Ai, ϕij} is a directed system of R-
modules for a directed index set I, then the direct limit lim−→Ai exists. The direct
limit is unique up to isomorphism.

Proof. Let U =
⋃
iAi be the disjoint union of the modules. Define a binary

relation ∼ on U in the following way. For any x ∈ Ai and y ∈ Aj , we say x and y
are related and write x ∼ y in case there exists k ∈ I such that i ≤ k and j ≤ k
and ϕik(x) = ϕjk(y). Clearly ∼ is reflexive and symmetric. Assume x ∈ Ai, y ∈ Aj
and z ∈ Ak and there exists m and n such that i ≤ m, j ≤ m, j ≤ n, k ≤ n, and
ϕim(x) = ϕjm(y) and ϕjn(y) = ϕkn(z). Since I is directed, there exists p such that
m ≤ p and n ≤ p. It follows that ϕip(x) = ϕjp(y) = ϕkp(z), so ∼ is transitive. Denote
the equivalence class of x ∈ U by [x] and let L = U/ ∼ be the set of all equivalence
classes. Turn L into an R-module in the following way. If r ∈ R and x ∈ U , define
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r[x] = [rx]. If x ∈ Ai and y ∈ Aj and k is such that i ≤ k and j ≤ k, then define

[x] + [y] = [ϕik(x) + ϕjk(y)]. For each i ∈ I, let αi : Ai → L be the assignment
x 7→ [x]. It is clear that αi is R-linear. If i ≤ j and x ∈ Ai, then x ∼ ϕij(x), which

says αi = αjϕ
i
j .

To see that L satisfies the universal mapping property, let X be an R-module
and fi : Ai → X a set of morphisms indexed by I such that for all i ≤ j, fi = fjϕ

i
j .

Suppose x ∈ Ai and y ∈ Aj are related. Then there exists k ∈ I such that i ≤ k,

j ≤ k and ϕik(x) = ϕjk(y). Then fi(x) = fk(ϕ
i
k(x)) = fk(ϕ

j
k(y)) = fj(y), so the

assignment [x] 7→ fi(x) induces a well defined R-module homomorphism β : L→ X.
The R-module L satisfies Definition 6.8.2, so L = lim−→Ai.

Mimic the uniqueness part of the proof of Theorem 6.4.3 to prove that the
direct limit is unique. □

Corollary 6.8.4. Let R be a commutative ring. If {Ai, ϕij} is a directed
system of R-algebras for a directed index set I, then the direct limit lim−→Ai exists.

Proof. The proof is left to the reader. □

Lemma 6.8.5. Let R be a ring and {Ai, ϕij} a directed system of R-modules for
a directed index set I. Suppose for some i ∈ I and x ∈ Ai that [x] = 0 in the direct
limit lim−→Ai. Then there exists k ≥ i such that ϕik(x) = 0 in Ak.

Proof. This follows straight from the construction in Proposition 6.8.3. Namely,
x ∼ 0 if and only if there exists k ≥ i such that ϕik(x) = 0 in Ak. □

Let R be a ring and I a directed index set. Suppose {Ai, ϕij} and {Bi, ψij} are
two directed systems of R-modules. A morphism from {Ai, ϕij} to {Bi, ψij} is a set
of R-module homomorphisms α = {αi : Ai → Bj}i∈I indexed by I such that the
diagram

Ai
αi //

ϕi
j

��

Bi

ψi
j

��
Aj

αj // Bj

commutes whenever i ≤ j. Define fi : Ai → lim−→Bi by composing αi with the
structure map Bi → lim−→Bi. The universal mapping property guarantees a unique
R-module homomorphism α⃗ : lim−→Ai → lim−→Bi.

Theorem 6.8.6. Let R be a ring, I a directed index set, and

{Ai, ϕij}
α−→ {Bi, ψij}

β−→ {Ci, ρij}

a sequence of morphisms of directed systems of R-modules such that

0→ Ai
αi−→ Bi

βi−→ Ci → 0

is exact for every i ∈ I. Then

0→ lim−→Ai
α⃗−→ lim−→Bi

β⃗−→ lim−→Ci → 0

is an exact sequence of R-modules.
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Proof. The proof is a series of four small steps. We incorporate the notation
of Proposition 6.8.3.

Step 1: β⃗ is onto. Given [x] ∈ lim−→Ci, there exists i ∈ I such that x ∈ Ci. Since
βi : Bi → Ci is onto, there exists b ∈ Bi such that x = βi(b). Then [x] = β⃗[b].

Step 2: im α⃗ ⊆ ker β⃗. Given [x] ∈ lim−→Ai there exists i ∈ I such that x ∈ Ai.
Then β⃗α⃗[x] = [βiαi(x)] = [0].

Step 3: ker β⃗ ⊆ im α⃗. Given [x] ∈ ker β⃗ there exists i ∈ I such that x ∈ Bi.
By Lemma 6.8.5 there exists j > i such that ρijβi(x) = 0. Since β is a morphism,

βjψ
i
j(x) = 0. Therefore ψij(x) ∈ kerβj = imαj , so [x] ∈ imα.
Step 4: α⃗ is one-to-one. Given [x] ∈ ker α⃗, there exists i ∈ I such that x ∈ Ai

and [αi(x)] = 0. By Lemma 6.8.5 there exists j > i such that ψijαi(x) = 0. Since

α is a morphism, αjϕ
i
j(x) = 0. Since αj is one-to-one, it follows that ϕij(x) = 0,

hence [x] = 0. □

Corollary 6.8.7. In the context of Theorem 6.8.6,

lim−→ (Ai ⊕Bi) ∼=
(
lim−→Ai

)
⊕
(
lim−→Bi

)
8.1.1. Tensor Product of Direct Limits. Let {Ri, θij} be a directed system of

rings for a directed index set I. Each Ri can be viewed as a Z-algebra, hence the
direct limit R = lim−→Ri exists, by Corollary 6.8.4. For the same index set I, let

{Mi, ϕ
i
j} and {Ni, ψij} be directed systems of Z-modules such that each Mi is a

right Ri-module and each Ni is a left Ri-module. For each i ≤ j, Mj and Nj are
Ri-modules via θij : Ri → Rj . In this context, we also assume that the transition

homomorphisms ϕij and ψ
i
j are Ri-linear:

ϕij(ax) = θij(a)ϕ
i
j(x)

ψij(ax) = θij(a)ϕ
i
j(x)

for all a ∈ Ri, x ∈ Mi and y ∈ Ni. By Exercise 6.4.42 there are Z-module
homomorphisms

τ ij :Mi ⊗Ri Ni →Mj ⊗Rj Nj

such that {Mi⊗Ri
Ni, τ

i
j} is a directed system for I. Let M = lim−→Mi, N = lim−→Ni.

Proposition 6.8.8. In the above context, lim−→Mi ⊗Ri
Ni =M ⊗R N .

Proof. By Exercise 6.4.42 there are Z-module homomorphisms

αi :Mi ⊗Ri
Ni →M ⊗R N

such that αi = αjτ
i
j . We show thatM⊗RN satisfies the universal mapping property

of Definition 6.8.2. Suppose we are given Z-module homomorphisms

fi :Mi ⊗Ri Ni → X

such that fi = fjτ
i
j . Suppose (x, y) ∈ M × N . Then for some i ∈ I, (x, y) comes

from Mi × Ni. The reader should verify that (x, y) 7→ fi(x ⊗ y) defines an R-
balanced map M ×N → X. This induces β :M ⊗R N → X. By Theorem 6.4.3, β
is unique and satisfies βαi = fi. □
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8.1.2. Direct Limits and Adjoint Pairs.

Theorem 6.8.9. Let F : A → C and G : C → A be covariant functors and
assume (F,G) is an adjoint pair. Let {Ai, ϕij} be a directed system in A for a

directed index set I and assume the direct limit lim−→Ai exists. Then {FAi, Fϕij} is
a directed system in C for the directed index set I and lim−→FAi ∼= F (lim−→Ai).

Proof. Because F is a functor, {FAi, Fϕij} is a directed system in C for I.
The proof reduces to showing F (lim−→Ai) satisfies the universal mapping property of
Definition 6.8.2. Assume we are given a commutative diagram

F (lim−→Ai) X

FAi

Fαi

dd
fi

==

Fϕi
j

��
FAj

Fαj

XX

fj

II

in C, where the left half comes from the definition of lim−→Ai. To finish the proof we

must show that there is a unique β : F (lim−→Ai)→ X which commutes with the rest

of the diagram. Since (F,G) is an adjoint pair, there is a natural bijection

ψ : HomC(FA,X)→ HomA(A,GX)

for any A ∈ A. Applying ψ to the right half of the diagram, we get a commutative
diagram

lim−→Ai
θ // GX

Ai

αi

bb
ψfi

==

ϕi
j

��
Aj

αj

VV

ψfj

HH

in A. By definition of lim−→Ai, the morphism θ exists and is unique. Let β = ψ−1(θ).

Then β : F (lim−→Ai) → X. Because ψ (and ψ−1) is natural in the A variable, β
makes the first diagram commutative. Because ψ is a bijection, β is unique. □

Corollary 6.8.10. Let R be a ring and {Ai, ϕij} a directed system of left
R-modules for a directed index set I. If M is a right R-module, then

M ⊗R lim−→Ai ∼= lim−→ (M ⊗R Ai) .

Proof. This follows from Proposition 6.8.8. We give a second proof based
on Theorem 6.8.9. View M as a left Z right R bimodule. By Theorem 6.5.10,
Tensor-Hom, (M ⊗R (·),HomZ(M, ·)), is an adjoint pair. □
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8.2. The Inverse Limit.

Definition 6.8.11. Let C be a category. Usually C will be a category of
modules or a category of algebras over a commutative ring. At other times, C will
be a category of topological groups. Let I be an index set with a reflexive, transitive
binary relation, denoted ≤. (Do not assume I is a directed set.) Suppose that for
each i ∈ I there is an object Ai ∈ C and for each pair i, j ∈ I such that i ≤ j there
is a C-morphism ϕji : Aj → Ai such that the following are satisfied.

(1) For each i ∈ I, ϕii : Ai → Ai is the identity on Ai, and
(2) for all i, j, k ∈ I with i ≤ j ≤ k, the diagram

Ak
ϕk
i //

ϕk
j   

Ai

Aj

ϕj
i

>>

commutes.

Then the collection of objects and morphisms {Ai, ϕji} is called an inverse system
in C with index set I.

Definition 6.8.12. Let {Ai, ϕji} be an inverse system in C for an index set I.
The inverse limit of this system, denoted lim←−Ai, is an object in C together with a
set of morphisms αi : lim←−Ai → Ai indexed by I such that the following are satisfied.

(1) For all i ≤ j, αi = ϕjiαj , and
(2) lim←−Ai satisfies the universal mapping property. Namely, if X is an object

in C and fi : X → Ai is a set of morphisms indexed by I such that for
all i ≤ j, fi = ϕjifj , then there exists a unique morphism β : X → lim←−Ai
making the diagram

lim←−Ai

αj

��

αi

""

X
βoo

fi

��

fj

		

Ai

Aj

ϕj
i

OO

commute for all i ≤ j in I.

Proposition 6.8.13. Let R be a ring. If {Ai, ϕji} is an inverse system of R-
modules for an index set I, then the inverse limit lim←−Ai exists. The inverse limit
is unique up to isomorphism.

Proof. Let L be the set of all f ∈
∏
Ai such that f(i) = ϕjif(j) whenever i ≤

j. The reader should verify that L is an R-submodule of
∏
Ai. Let πi :

∏
Ai → Ai

be the projection onto the i-th factor. Let αi be the restriction of πi to L. The
reader should verify that αi = ϕjiαj .
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To see that L satisfies the universal mapping property, let X be an R-module
and fi : X → Ai a set of morphisms indexed by I such that for all i ≤ j, fi = ϕjifj .
Define an R-module homomorphism β : X →

∏
Ai by the rule β(x)(i) = fi(x) for

all x ∈ X. If i ≤ j, then β(x)(i) = fi(x) = ϕjifj(x) = ϕjiβ(x)(j), so the image of β
is contained in L. The R-module L satisfies Definition 6.8.12, so L = lim←−Ai.

Mimic the uniqueness part of the proof of Theorem 6.4.3 to prove that the
inverse limit is unique. □

Corollary 6.8.14. Let R be a commutative ring. If {Ai, ϕji} is an inverse
system of R-algebras for an index set I, then the inverse limit lim←−Ai exists.

Proof. The proof is left to the reader. □

Theorem 6.8.15. Let F : A → C and G : C → A be covariant functors and
assume (F,G) is an adjoint pair. Let {Ci, ψji } be an inverse system in C for an

index set I and assume the inverse limit lim←−Ci exists. Then {GCi, Gψji } is an

inverse system in A for the index set I and lim←−GCi
∼= G(lim←−Ci).

Proof. The proof is left to the reader. (Hint: Follow the proof of Theo-
rem 6.8.9. Start with the appropriate diagram in A. Use the adjoint isomorphism
ψ to get the commutative diagram in C which can be completed.) □

Corollary 6.8.16. Let R be a ring and {Ai, ϕji} an inverse system of left
R-modules for an index set I. If M is a left R-module, then

HomR(M, lim←−Ai)
∼= lim←−HomR(M,Ai).

Proof. We view M as a left R right Z bimodule. By Theorem 6.5.10, Tensor-
Hom, (M ⊗Z (·),HomR(M, ·)), is an adjoint pair. □

Example 6.8.17. Let A be a ring. Suppose f1 :M1 →M3 and f2 :M2 →M3

are homomorphisms of left A-modules. Then the pullback (or fiber product) is
defined to be M = {(x1, x2) ∈ M1 ⊕M2 | f1(x1) = f2(x2)}. Notice that M is
the kernel of the A-module homomorphism M1 ⊕M2 →M3 defined by (x1, x2) 7→
f1(x1) − f2(x2), hence M is a left A-module. If h1 and h2 are induced by the
coordinate projections, then

M
h2 //

h1

��

M2

f2

��
M1

f1 // M3

(8.1)

is a commutative diagram of A-modules. An important feature of the pullback is
that it can be interpreted as an inverse limit. For the index set, take I = {1, 2, 3}
with the ordering 1 < 3, 2 < 3. The reader should verify that if f1, f2 are the
transition homomorphisms, then {M1,M2,M3} is an inverse system and the inverse
limit lim←−Mi is isomorphic to the pullback M of (8.1). In particular, the pullback
M satisfies the universal mapping property. That is, if N is an R-module and
there exist h′1 and h′2 such that f1h

′
1 = f2h

′
2, then there exists a unique morphism
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β : N →M such that the diagram

N

∃β $$

h′
2

&&

h′
1

  

M
h2

//

h1

��

M2

f2

��
M1

f1

// M3

commutes. A commutative square of R-modules such as (8.1) is called a cartesian
square (or fiber product diagram, or pullback diagram), if M is isomorphic to the
pullback lim←−Mi. Let A1, A2, A3 be rings. If f1 : A1 → A3 and f2 : A2 → A3

are homomorphisms, then the inverse limit A = lim←−Ai with respect to the index

set I = {1, 2, 3} is a ring. As above, A can be identified with the pullback A =
{(x1, x2) ∈ A1 ⊕A2 | f1(x1) = f2(x2)}.

8.3. Inverse Systems Indexed by Nonnegative Integers. For the index
set Z≥0 = {0, 1, 2, . . . }, the notation simplifies. Let R be any ring and {Ai, ϕji} an
inverse system of R-modules for the index set {0, 1, 2, . . . }. Simply write ϕi+1 for

ϕi+1
i . Then for any j > i we can multiply to get ϕji = ϕi+1ϕi+2 · · ·ϕj . Using this

notation, and Proposition 6.8.13, the inverse limit lim←−Ai can be identified with the

set of all sequences (x0, x1, x2, . . . ) in
∏∞
n=0An such that xn = ϕn+1xn+1 for all

n ≥ 0. Define

d :

∞∏
n=0

An −→
∞∏
n=0

An

by d(x0, x1, x2, . . . ) = (x0−ϕ1x1, x1−ϕ2x2, x2−ϕ3x3, . . . , xn−ϕn+1xn+1, . . . ).

Lemma 6.8.18. Let R be any ring and {Ai, ϕi+1} an inverse system of R-
modules for the index set {0, 1, 2, . . . }. If ϕn+1 : An+1 → An is onto for each
n ≥ 0, then there is an exact sequence

0→ lim←−An →
∞∏
n=0

An
d−→
∞∏
n=0

An → 0

where d is defined in the previous paragraph.

Proof. It follows at once that ker d = lim←−An. Let (y0, y1, y2, . . . ) ∈
∏
An. To

show that d is surjective, it is enough to solve the equations

x0 − ϕ1x1 = y0

x1 − ϕ2x2 = y1

...

xn − ϕn+1xn+1 = yn

for (x0, x1, x2, . . . ). This is possible because each ϕn+1 is surjective. Simply take
x0 = 0, x1 = (ϕ1)

−1(−y0), and recursively, xn+1 = (ϕn+1)
−1(xn − yn). □

Let R be a ring and suppose {Ai, ϕi+1} and {Bi, ψi+1} are two inverse systems
of R-modules indexed by I = {0, 1, 2, 3, . . . }. A morphism from {Ai, ϕi+1} to
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{Bi, ψi+1} is a sequence of R-module homomorphisms α = {αi : Ai → Bj}i≥0 such
that the diagram

Ai+1

αi+1 //

ϕi+1

��

Bi+1

ψi+1

��
Ai

αi // Bi

commutes whenever i ≥ 0. Define fi : lim←−Ai → Bi by composing the structure
map lim←−Ai → Ai with αi. The universal mapping property guarantees a unique

R-module homomorphism ←−α : lim←−Ai → lim←−Bi.

Proposition 6.8.19. Let R be a ring, and

{Ai, ϕi+1}
α−→ {Bi, ψi+1}

β−→ {Ci, ρi+1}

a sequence of morphisms of inverse systems of R-modules indexed by {0, 1, 2, 3, . . . }
such that

(1) 0→ Ai
αi−→ Bi

βi−→ Ci → 0 is exact for every i ≥ 0, and
(2) ϕi+1 : Ai+1 → Ai is onto for every i ≥ 0.

Then

0→ lim←−Ai
←−α−→ lim←−Bi

←−
β−→ lim←−Ci → 0

is an exact sequence of R-modules.

Proof. The diagram

0 // ∏An

d

��

α // ∏Bn

d

��

β // ∏Cn

d

��

// 0

0 // ∏An
α // ∏Bn

β // ∏Cn // 0

commutes and the rows are exact. By Lemma 6.8.18, the leftmost vertical map is
onto. The rest of the proof follows from Theorem 6.6.2 and Lemma 6.8.18. □

8.3.1. The I-adic completion of a module.

Definition 6.8.20. Let R be a commutative ring, I an ideal in R andM an R-
module. Then for all integers n ≥ 1, In denotes the ideal generated by all products
of the form x1x2 · · ·xn where each xi is in I. The chain of ideals R ⊇ I1 ⊇ I2 ⊇
I3 ⊇ . . . gives rise to the chain of submodules M ⊇ I1M ⊇ I2M ⊇ I3M ⊇ . . . .
Then Ii+1M ⊆ IiM so there is a natural projection ϕi+1 : M/Ii+1M → M/IiM .
The set of R-modules and homomorphisms {M/IiM,ϕi+1} is an inverse system

indexed by {1, 2, 3, 4, . . . }. The inverse limit of this system M̂ = lim←−M/IiM is

called the I-adic completion of M . For each i, let ηi : M → M/IiM be the
natural projection. Clearly ηi = ϕi+1ηi+1 so by Definition 6.8.12, there is a unique
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β :M → M̂ such that the diagram

M̂

��

$$

M
βoo

ηizz

ηi+1

��

M/IiM

M/Ii+1M

ϕi+1

OO

commutes.

Proposition 6.8.21. Let I be an ideal in the commutative ring R. Let M be
an R-module and M̂ the I-adic completion of M . The natural map β :M → M̂ is
one-to-one if and only if ∩InM = 0.

Proof. Let x ∈M . Notice that

ker(β) = {x ∈M | x ∈ InM (∀n > 0)} =
⋂
InM.

Therefore β is one-to-one if and only if ∩InM = 0. □

Proposition 6.8.22. Let I be an ideal in the commutative ring R and R̂ the
I-adic completion of R. Let M be an R-module and M̂ the I-adic completion of
M . Then M̂ is an R̂-module.

Proof. By Corollary 6.8.14, R̂ is a commutative ring. For each i, let αi : R̂→
R/Ii and βi : M̂ →M/IiM be the natural maps. Then

αi ⊗ βi : R̂⊗Z M̂ → R/Ii ⊗Z M/IiM

is a well defined R-module homomorphism. Since M/IiM is a module over R/Ii,
let

µi : R/I
i ⊗Z M/IiM →M/IiM

be the multiplication map defined by x⊗ y 7→ xy. So the maps fi = µi ◦ (αi ⊗ βi)
and the universal mapping property give a product map R̂⊗ M̂ → M̂ which turns
M̂ into an R̂-module. □

8.4. Exercises.

Exercise 6.8.23. Let R be an arbitrary ring. Let I be an index set, X =
{xi}i∈I a set of indeterminates indexed by I. Let J be the set of all finite subsets
of I, ordered by set inclusion. For each α ∈ J , let Xα = {xj | j ∈ α}. Show how
to make the set of polynomial rings {R[Xα]}α∈J into a directed system of rings.
Define R[X] = lim−→R[Xα] as the direct limit. Let σ : R → S be a homomorphism

of rings. State a version of Theorem 3.6.3 for R[X].

Exercise 6.8.24. Suppose A0 ⊆ A1 ⊆ A2 ⊆ . . . is a chain of submodules of
the R-module A. Show how to make {Ai} into a directed system and prove that
lim−→Ai =

⋃
iAi.
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Exercise 6.8.25. Let A be an R-module. Let S be the set of all subsets of
A which are finitely generated R-submodules of A. Let S be ordered by ⊆. For
α ∈ S, let Aα denote the R-submodule of A whose underlying set is α. Show how
to make {Aα} into a directed system and prove that A = lim−→Aα.

Exercise 6.8.26. Let R be a commutative ring and A an R-algebra. Show
that A = lim−→Aα where Aα runs over the set of all finitely generated R-subalgebras
of A.

Exercise 6.8.27. Let R be a commutative ring, A an R-algebra and f ∈ A.
Show that A = lim−→Aα where Aα runs over all finitely generated R-subalgebras of

A such that R[f ] ⊆ Aα ⊆ A.

Exercise 6.8.28. Let R be a ring and {Mi | i ∈ I} a family of R-modules
where I is an indexing set. Let S =

⊕
Mi be the direct sum. Let J be the set of all

finite subsets of I, ordered by set inclusion. For each α ∈ J , let Sα =
⊕

i∈αMi be
the direct sum over the finite index set α. Show how to make {Sα} into a directed
system and prove that lim−→Sα ∼= S.

Exercise 6.8.29. Let A be a commutative ring and R = A[x] the polynomial
ring in one variable with coefficients in A. Let I = Rx be the ideal in R generated
by x. Show that the I-adic completion of R is isomorphic to the power series ring
A[[x]] in one variable over A. (Hint: Show that A[[x]] satisfies properties (1) and
(2) of Definition 6.8.12.)

Exercise 6.8.30. Let R be any ring and {Ai, ϕij} a directed system of flat
R-modules for a directed index set I. Show that the direct limit lim−→Ai is a flat
R-module.

Exercise 6.8.31. Let {Ri, θij} be a directed system of rings for a directed index

set I. Let R = lim−→Ri be the direct limit. As in Proposition 6.8.8, let {Mi, ϕ
i
j} be

a directed system of Z-modules for the same index set I such that each Mi is a left
Ri-module and the transition homomorphisms ϕij are Ri-module homomorphisms.
If each Mi is a flat Ri-module, show that M = lim−→Mi is a flat R-module. (Hint:

{R⊗Ri Mi, 1⊗ ϕij} is a directed system of flat R-modules.)

Exercise 6.8.32. Let R be any ring and A an R-module. Show that if every
finitely generated submodule of A is flat, then A is flat.

Exercise 6.8.33. Let R be a ring and {Mi, ϕ
i
j} a directed system of R-modules

for a directed index set I. Let Ξ = {(x, y) ∈ I×I | x ≤ y}. Let ιi :Mi →
⊕

k∈IMk

be the injection map into coordinate i. Given (i, j) ∈ Ξ, define δij :Mi →
⊕

k∈IMk

by δij(x) = ιjϕ
i
j(x) − ιi(x). By Exercise 6.3.11, there exists δ :

⊕
(i,j)∈ΞMi →⊕

k∈IMk. Define L to be the cokernel of δ. There is a natural projection η :⊕
k∈IMk → L. Define αi = ηιi :Mi → L.

(1) Prove that αi = αjϕ
i
j for all i ≤ j.

(2) Prove that L satisfies the universal mapping property of Definition 6.8.2,
hence L ∼= lim−→Mi.

(3) Prove that there is an exact sequence of R-modules⊕
(i,j)∈Ξ

Mi
δ−→
⊕
k∈I

Mk → lim−→Mi → 0
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Exercise 6.8.34. Let R be a ring and {Mi, ϕ
j
i} an inverse system of R-modules

for an index set I. Let Ξ = {(x, y) ∈ I × I | x ≤ y}. Let πi :
∏
k∈IMk → Mi be

the projection map onto coordinate i. Given (i, j) ∈ Ξ, define dij :
∏
k∈IMk →Mi

by dij(x) = ϕjiπj(x) − πi(x). By Exercise 6.3.12, there exists d :
∏
k∈IMk →∏

(i,j)∈ΞMi. Use Proposition 6.8.13 to prove that there is an exact sequence of

R-modules

0→ lim←−Mi →
∏
k∈I

Mk
d−→

∏
(i,j)∈Ξ

Mi

Exercise 6.8.35. Let R be a ring and {Ai, ϕij} a directed system of R-modules
for a directed index set I. Show that if M is any R-module, then there is an
isomorphism

HomR(lim−→Ai,M) ∼= lim←−HomR(Ai,M)

of Z-modules. (Hint: Start with the exact sequence of Exercise 6.8.33 (3). Apply
the functor HomR(·,M). Use Proposition 6.5.8 and Exercise 6.8.34.)

Exercise 6.8.36. Let I be any index set ordered by the relation x ≤ y if and
only if x = y. For any family of R-modules {Mi | i ∈ I} indexed by I, prove the
following.

(1) I is a directed index set and if 1Mi is the identity map on Mi, then
{Mi, 1Mi

} is both a directed system of R-modules, and an inverse system
of R-modules.

(2) The direct limit lim−→Mi exists and is equal to the direct sum
⊕

i∈IMi.

(3) The inverse limit lim←−Mi exists and is equal to the product
∏
i∈IMi.

Exercise 6.8.37. Let C1, C2 be categories of modules and F : C1 → C2 a left
exact functor which commutes with arbitrary products. That is, F

(∏
k∈IMk

)
=∏

k∈I F (Mk), for any family of objects in C1. Prove that F commutes with inverse

limits. That is, F
(
lim←−Mk

)
= lim←−F (Mk) for any inverse system in C1.

Exercise 6.8.38. Let R be a commutative ring and p ∈ SpecR. Show how to
make {R[α−1] | α ∈ R− p} into a directed system and prove that the local ring of
R at p is equal to the direct limit: Rp = lim−→Rα.

Exercise 6.8.39. (Local to Global Property for Idempotents) Let R be a com-
mutative ring and p ∈ SpecR. Let A be an R-algebra and e an idempotent in Ap.
Show that there exists α ∈ R− p and an idempotent e0 in Aα = A⊗R R[α−1] such
that e is equal to the image of e0 under the natural map Aα → Ap.

Exercise 6.8.40. Let R be a ring and {Ai, ϕij} a directed system of R-modules
for a directed index set I. Let P be a finitely generated projective R-module.

(1) Show that HomR(P, lim−→Ai) ∼= lim−→HomR(P,Ai). (Hint: As in Theo-

rem 6.5.12, reduce to the case where P is free.)
(2) Show that HomR(P,

⊕
iAi)

∼=
⊕

iHomR(P,Ai).

Exercise 6.8.41. Let R be a commutative ring and {Ai, ϕij} a directed system
of R-algebras for a directed index set I. Show that an idempotent in lim−→Ai comes

from an idempotent in Ai, for some i ∈ I. In other words, if e ∈ lim−→Ai and e
2 = e,

then for some i ∈ I, there exists ei ∈ Ai such that e2i = ei and if αi : Ai → lim−→Ai
is the natural map, then αi(ei) = e.
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Exercise 6.8.42. Let R be a commutative ring. Let I and J be ideals in
R and assume there exists m > 0 such that Im ⊆ J . Prove that the natural
homomorphisms R/Imi → R/J i induce a homomorphism of rings lim←−R/I

k →
lim←−R/J

k. See Exercise 11.1.17 for an application of this result.

Exercise 6.8.43. In the context of the pullback diagram (8.1), prove the fol-
lowing:

(1) kerh1 ∼= ker f2 and kerh2 ∼= ker f1.
(2) If f2 is onto, then h1 is onto. If f1 is onto, then h2 is onto.

Exercise 6.8.44. Let A be a ring and let I and J be two-sided ideals in A.
Show that

A
I∩J

h2 //

h1

��

A
J

f2

��
A
I

f1 // A
I+J

is a cartesian square of rings, where all of the homomorphisms are the natural maps.

Exercise 6.8.45. Let B be a ring and I a two-sided ideal of B. Assume A ⊆ B
is a subring such that I ⊆ A. Show that

A //

h1

��

B

f2
��

A
I

f1 // B
I

is a cartesian square of rings, where all of the homomorphisms are the natural maps.

9. The Morita Theorems

9.1. The Functors. We begin by establishing some notation that will be in
effect throughout this section. For any ring R and any left R-module M , set

M∗ = HomR(M,R)

and

S = HomR(M,M).

Since R is a left R right R bimodule, by Lemma 6.5.1 (2), M∗ is a right R-module
under the operation (fr)(m) = f(m)r. Since S is a ring of R-module endomor-
phisms of M , M is a left S-module by sm = s(m). This follows from Lemma 4.1.2
(see also Example 4.4.4). Under this operation M is a left R left S bimodule. By
Lemma 6.5.1 (3), we make M∗ a right S-module by (fs)(m) = f

(
s(m)

)
, which is

just composition of functions. The reader should verify that M∗ is in fact a right
R right S bimodule. It follows that we can form M∗ ⊗R M and M∗ ⊗S M . By
Lemma 6.4.10, M∗ ⊗RM is a left S right S bimodule by virtue of M being a left
R left S bimodule and M∗ being a right R right S bimodule. Similarly M∗ ⊗S M
is a left R right R bimodule.

Define

M∗ ⊗RM
θR−−→ S = HomR(M,M)
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by the rule θR(f ⊗m)(x) = f(x)m. The reader should check that θR is both a left
and a right S-module homomorphism. Define

M∗ ⊗S M
θS−→ R

by the rule θS(f ⊗m) = f(m). The reader should verify that θS is a right and left
R-module homomorphism whose image is the trace ideal TR(M).

Lemma 6.9.1. In the above context,

(1) θR is onto if and only if M is finitely generated and projective. If θR is
onto, it is one-to-one.

(2) θS is onto if and only if M is a generator. If θS is onto, it is one-to-one.

Proof. (1): Suppose θR is onto. Then there exist fi ∈M∗ and mi ∈M such
that the identity map 1 :M →M is equal to θR(

∑n
i=1 fi ⊗mi). That is, for every

x ∈ M , x =
∑n
i=1 fi(x)mi. Then {(fi,mi)} is a finite dual basis for M . By the

Dual Basis Lemma 6.2.9, we are done. Conversely, if a finite dual basis exists, then
1 : M → M is in the image of θR. Since θR is an S-module homomorphism, θR is
onto.

Now assume θR is onto. ThenM has a dual basis f1, . . . , fn ∈M∗,m1, . . . ,mn ∈
M . Assume α =

∑
j hj ⊗ nj ∈M∗ ⊗RM and θR(α) = 0. That is,

∑
j hj(x)nj = 0

for every x in M . Then

α =
∑
j

hj ⊗ nj

=
∑
j

[
hj ⊗

(∑
i

fi(nj)mi

)]
=
∑
i,j

hj ⊗ fi(nj)mi

=
∑
i,j

(
hj · fi(nj)

)
⊗mi

=
∑
i

[(∑
j

hj · fi(nj)
)
⊗mi

]
=
∑
i

0⊗mi

= 0,

because for each i and for each x ∈M ,[∑
j

hj · fi(nj)
]
(x) =

∑
j

hj(x)fi(nj)

=
∑
j

fi
(
hj(x)nj

)
= fi

(∑
j

hj(x)nj
)

= fi(0)

= 0.

(2): Because the image of θS equals TR(M), the trace ideal of M , it is clear
that θS is onto if and only if M is an R-generator (Definition 6.2.11).
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Suppose θS is onto. Assume
∑
j hj⊗nj ∈ ker θS . That is,

∑
j hj(nj) = 0. Since

θS is onto, there exist f1, . . . , fn in M∗, m1, . . . ,mn in M with
∑
i fi(mi) = 1 ∈ R.

Notice that for every i and every x ∈M ,∑
j

hj · θR(fi ⊗ nj)(x) =
∑
j

hj
(
fi(x)nj

)
= fi(x)

∑
j

hj(nj)

= 0.

Hence ∑
j

hj ⊗ nj =
∑
j

hj ⊗
(∑
i

fi(mi)
)
nj

=
∑
j

hj ⊗
(∑
i

fi(mi)nj
)

=
∑
j

hj ⊗
(∑
i

θR(fi ⊗ nj)(mi)
)

=
∑
i,j

hj ⊗ θR(fi ⊗ nj)(mi)

=
∑
i

(∑
j

hj · θR(fi ⊗ nj)
)
⊗ (mi)

=
∑
i

0⊗mi

= 0.

Therefore, θS is one-to-one. □

9.2. The Morita Theorems. LetR be any ring andM a leftR-progenerator.
Set S = HomR(M,M) and M∗ = HomR(M,R). As in Section 6.9.1, M is a left R
left S bimodule. A slight variation of Lemma 6.4.17 (2) shows that (·)⊗RM defines
a covariant functor from MR to SM. Likewise, M∗ is a right R right S bimodule,
hence M∗ ⊗S (·) defines a covariant functor from SM to MR. The following is the
crucial theorem.

Theorem 6.9.2. In the above context, the functors

(·)⊗RM : MR → SM

and

M∗ ⊗S (·) : SM→MR

are inverse equivalences. We say that the categories MR and SM are Morita equiv-
alent.
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Proof. Let L be any right R-module. Then, by the basic properties of the
tensor product and Lemma 6.9.1 (2), we have

M∗ ⊗S (L⊗RM) ∼=M∗ ⊗S (M ⊗Ro L)

∼= (M∗ ⊗S M)⊗Ro L
∼= R⊗Ro L
∼= L⊗R R
∼= L

where the composite isomorphism is given by f ⊗ (l⊗m) 7→ l ·θS(f ⊗m) = l ·f(m).
This isomorphism allows one to verify that ( )⊗RM followed byM∗⊗S( ) is naturally
equivalent to the identity functor on MR. Likewise, for any left S-module N , the
isomorphism of Lemma 6.9.1 (1) implies that

(M∗ ⊗S N)⊗RM ∼= (N ⊗So M∗)⊗RM
∼= N ⊗So (M∗ ⊗RM)
∼= N ⊗So S
∼= S ⊗S N
∼= N

under the map (f ⊗ n) ⊗m 7→ θR(f ⊗m) · n. Again this gives us that M∗ ⊗S ( )
followed by ( )⊗RM is naturally equivalent to the identity on SM. □

Corollary 6.9.3. In the setting of Theorem 6.9.2, we have

(1) R ∼= HomS(M,M) (as rings) where r in R maps to “left multiplication by
r”.

(2) M∗ ∼= HomS(M,S) (as right S-modules) where f in M∗ maps to the
homomorphism θR

(
f ⊗ ( )

)
.

(3) M ∼= HomR(M
∗, R) = M∗∗ (as left R-modules) where m in M maps to

the element in M∗∗ which is “evaluation at m”.
(4) So ∼= HomR(M

∗,M∗) (as rings) where s in So maps to “right multiplica-
tion by s”.

(5) M is an S-progenerator.
(6) M∗ is an R-progenerator.
(7) M∗ is an S-progenerator.

Proof. The fully faithful part of Proposition 6.1.6 applied to the functor ( )⊗R
M says that for any two right R-modules A and B, the assignment

(9.1) HomR(A,B)→ HomS(A⊗RM,B ⊗RM)

is a one-to-one correspondence. Under this equivalence, the right R-module R
corresponds to the left S-module R⊗RM ∼=M and the right R-module M∗ corre-
sponds to the left S-module M∗ ⊗R M ∼= S. For (1), use (9.1) with A = B = R.
For (2), use (9.1) with A = R and B =M∗. In each case, the reader should verify
that the composite isomorphisms are the correct maps.

The fully faithful part of Proposition 6.1.6 applied to the functor M∗ ⊗S ( ) :

SM→MR says that for any two left S-modules C and D, the assignment

(9.2) HomS(C,D)→ HomR(M
∗ ⊗S C,M∗ ⊗S D)
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is a one-to-one correspondence. By Lemma 6.5.7, M is isomorphic to HomS(S,M).
By (9.2) with C = S and D = M , we get HomS(S,M) ∼= HomR(M

∗, R) = M∗∗,
which is (3). For (4), use (9.2) with C = D = S. Since M∗ ⊗S S ∼= M∗, we
get the isomorphism of rings HomS(S, S) ∼= HomR(M

∗,M∗). By Exercise 4.4.34,
So ∼= HomS(S, S) as rings. In each case, the reader should verify that the composite
isomorphisms are the correct maps.

(5): Because M is an R-progenerator, we have θS : M∗ ⊗S M ∼= R and θR :
M∗ ⊗RM ∼= S. By (1) and (2) above, this gives rise to isomorphisms

θS : HomS(M,S)⊗S M ∼= HomS(M,M)

and

θR : HomS(M,S)⊗HomS(M,M) M ∼= S.

By Lemma 6.9.1 with R and S interchanged, it follows thatM is an S-progenerator.
(6): Again using M∗⊗SM ∼= R and M∗⊗RM ∼= S and this time substituting

(3) and (4), we obtain

R ∼=M∗ ⊗S M
∼=M∗ ⊗S HomR(M

∗, R)

∼= HomR(M
∗, R)⊗So M∗

∼= HomR(M
∗, R)⊗HomR(M∗,M∗) M

∗

(9.3)

and

HomRo(M∗, Ro)⊗Ro M∗ ∼=M∗ ⊗R HomR(M
∗, R)

∼=M∗ ⊗RM
∼= S

∼= HomR(M
∗,M∗)

∼= HomRo(M∗,M∗)

(9.4)

where the last isomorphism in the second string is set identity andM∗ is considered
as a left Ro-module since it is a right R-module. By Lemma 6.9.1 with M∗ in place
of M , we see that M∗ is an R-generator by (9.3) and a finitely generated and
projective left Ro-module by (9.4). This implies thatM∗ is a right R-progenerator.

(7): By (5), M is an S-progenerator. Apply (6) to the S-module M to get
HomS(M,S) is an S-progenerator. By (2), HomS(M,S) ∼=M∗. □

Corollary 6.9.4. Let R, M and S be as in Theorem 6.9.2. For any two-sided
ideal a of R, M∗ ⊗R (a ⊗RM) is naturally isomorphic to the two-sided ideal of S
consisting of all elements of the form∑

i

θR(fi ⊗ αimi) , fi ∈M∗ , αi ∈ a , mi ∈M.

For any two-sided ideal b of S, M∗ ⊗S (b ⊗S M) is naturally isomorphic to the
two-sided ideal of R consisting of all elements of the form∑

i

θS
(
fi ⊗ βi(ni)

)
=
∑
i

fi
(
βi(ni)

)
,fi ∈M∗ ,βi ∈ b ,ni ∈M.

These correspondences are inverses of each other and establish a one-to-one, order
preserving correspondence between the two-sided ideals of R and the two-sided ideals
of S.
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Proof. Since M and M∗ are both R-projective, they are flat. The exact
sequence 0→ a→ R yields the exact sequence

0→M∗ ⊗R (a⊗RM)→M∗ ⊗R (R⊗RM) ∼=M∗ ⊗RM ∼= S .

We consider M∗ ⊗R (a ⊗R M) as a subset of M∗ ⊗R (R ⊗R M). By θR, M
∗ ⊗R

(R ⊗R M) is isomorphic to S. This maps this submodule M∗ ⊗R (a ⊗R M) onto
the ideal of S made up of elements of the form

∑
i θR(fi ⊗ αimi).

Likewise, M and M∗ are S-projective. The exact sequence 0 → b → S yields
the exact sequence

0→M∗ ⊗S (b⊗S M)→M∗ ⊗S M ∼= R .

We view M∗ ⊗S (b ⊗S M) as the ideal of R made up of elements looking like∑
i fi
(
βi(ni)

)
. The reader should verify that the correspondences are inverses of

each other. □

Corollary 6.9.5. In the setting of Theorem 6.9.2, let L be a right R-module
and L⊗RM its corresponding left S-module.

(1) L is finitely generated over R if and only if L⊗RM is finitely generated
over S.

(2) L is R-projective if and only if L⊗RM is S-projective.
(3) L is an R-generator if and only if L⊗RM is an S-generator.

Proof. Use Lemma 4.2.12 to write L as the homomorphic image of a free
R-module

(9.5) RI → L→ 0

where I is an index set. Tensor (9.5) with (·)⊗RM to get the exact sequence

(9.6) M I → L⊗RM → 0

of S-modules. By Corollary 6.9.3 (5), M is finitely generated and projective as
an S-module. For each biconditional, we prove only one direction. Each converse
follows by categorical equivalence.

(1): If L is finitely generated over R, we may assume I is a finite set. In
(9.6), M I =

⊕
i∈IM is a finite sum of finitely generated modules and is finitely

generated. So L⊗RM is finitely generated.
(2): If L is projective, by Proposition 6.2.3, (9.5) splits. It follows that (9.6)

also splits. Use Exercise 6.3.13 to show that the S-modules M I and L ⊗R M are
projective.

(3): Let L be an R-generator. Let δ : C → D be a nonzero homomorphism of
left S-modules. By Exercise 6.5.16 (3), to show that L ⊗R M is an S-generator it
suffices to show that there exists an S-module homomorphism f : L ⊗R M → C
such that δ ◦ f is nonzero. By Proposition 6.1.6, 1 ⊗ δ : M∗ ⊗S C → M∗ ⊗S D
is a nonzero homomorphism of right R-modules. Since L is an R-generator, by
Exercise 6.5.16 (4), there exists an R-module homomorphism α : L → M∗ ⊗S C
such that (1⊗δ)◦α is nonzero. Again by Proposition 6.1.6, δ◦(α⊗1) is nonzero. □

9.3. Exercises.

Exercise 6.9.6. Let R be any ring and let M be a left R-progenerator. Set
S = HomR(M,M). Show that

( )⊗RM : MR → SM
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and
HomS(M, ) : SM→MR

are inverse equivalences, establishing MR ∼ SM. (Hint: Use Corollary 6.9.3 (2)
and Theorem 6.5.15.)

Exercise 6.9.7. Let R be any ring. A left R-module M is said to be faithfully
flat if M is flat and M has the property that N ⊗R M = 0 implies N = 0. Show
that a left R-progenerator is faithfully flat.



CHAPTER 7

Modules over Commutative Rings

1. Localization of Modules and Rings

Let R be a commutative ring andW a multiplicative subset of R. Recall that in
Section 3.5 we defined the quotient ring W−1R. We extend this notion to modules
and algebras. Let M be an R-module and W a multiplicative set in R. Define a
relation on M ×W by (m1, w1) ∼ (m2, w2) if and only if there exists w ∈ W such
that w(w2m1−w1m2) = 0. The same argument used in Section 3.5 shows that ∼ is
an equivalence relation on R×W . The set of equivalence classes is denoted W−1M
and the equivalence class containing (m,w) is denoted by the fraction m/w. We
call W−1M the localization of M at W .

Lemma 7.1.1. Let R be a commutative ring, W a multiplicative set in R, and
M an R-module.

(1) W−1M is a Z-module under the addition rule

m1

w1
+
m2

w2
=
w2m1 + w1m2

w1w2
.

(2) W−1M is an R-module under the multiplication rule

r
m

w
=
rm

w
.

(3) The assignment m 7→ m/1 defines an R-module homomorphism σ :M →
W−1M . The kernel of σ is equal to the the set of all m ∈ M such that
wm = 0 for some w in W .

(4) If M is an R-algebra, the multiplication rule
m1

w1

m2

w2
=
m1m2

w1w2

makes W−1M into an R-algebra.
(5) W−1M is a W−1R-module under the multiplication rule

r

w1

m

w2
=

rm

w1w2
.

(6) The assignment ϕ(m/w) = 1/w⊗m defines a W−1R-module isomorphism

W−1M
ϕ−→W−1R⊗RM.

Proof. The proof is left to the reader. Notice that in (6) the inverse of ϕ is
given by a⊗ b 7→ ab. □

Example 7.1.2. Given a prime ideal P in R, let W = R − P = {x ∈ R |
x ̸∈ P}. As remarked in Example 3.5.2 (1), R − P is a multiplicative set. The
R-algebra W−1R is usually written RP and if M is an R-module, we write MP for
the localization W−1M . The ideal generated by P in RP is PRP = {x/y ∈ RP |

313
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x ∈ P, y ̸∈ P}. If x/y ̸∈ PRP , then x ̸∈ P so y/x ∈ RP is the multiplicative inverse
of x/y. Since the complement of PRP consists of units, the ideal PRP contains
every nonunit. So PRP is the unique maximal ideal of RP . As in Exercise 3.2.32,
a local ring is a commutative ring that has a unique maximal ideal. Hence RP is
a local ring with maximal ideal PRP , which is sometimes called the local ring of
R at P . The factor ring RP /PRP is a field, which is sometimes called the residue
field of RP . The factor ring R/P is an integral domain and by Exercise 7.1.17,
RP /PRP is isomorphic to the quotient field of R/P .

Remark 7.1.3. Lemma 7.1.4 shows that a localization of a commutative ring
R is a flat R-module. In general, a localization W−1R is not projective (see Exer-
cise 6.3.15).

Lemma 7.1.4. W−1R is a flat R-module.

Proof. Given an R-module monomorphism

0→ A
f−→ B

we need to show that

0→ A⊗RW−1R
f⊗1−−−→ B ⊗RW−1R

is exact. Equivalently, by Lemma 7.1.1, we show

0→W−1A
fW−−→W−1B

is exact, where fW (a/w) = f(a)/w. If f(a)/w = 0 in W−1B, then there exists
y ∈ W such that yf(a) = 0. Then f(ya) = 0. Since f is one-to-one, ya = 0 in A.
Then a/w = 0 in W−1A. □

Example 7.1.5. Let k be a field of characteristic different from 2. Let x be an
indeterminate and f(x) = x2 − 1. Let R = k[x]/(f(x)). The Chinese Remainder
Theorem 3.3.8 says R ∼= k[x]/(x− 1)⊕ k[x]/(x+ 1). In R are the two idempotents
e1 = (1 + x)/2 and e2 = (1 − x)/2. Notice that e1e2 = 0, e1 + e2 = 1, e2i = ei.
Then {1, e1} is a multiplicative set. Consider the localization R[e−11 ] which is an
R-algebra, hence comes with a structure homomorphism θ : R → R[e−11 ]. Note
that ker θ = {a ∈ R | a/1 = 0} = {a ∈ R | ae1 = 0} = Re2. Then the sequence

0→ Re2 → R
θ−→ R[e−11 ]

is exact. Since e21 = e1, multiplying by e1/e1 shows that an arbitrary element of
R[e−11 ] can be represented in the form a/e1. But an element a ∈ R can be written
a = ae1 + ae2 so every element of R[e−11 ] can be written a/e1 = (ae1)/e1 ∈ θ(Re1).
That is, θ is onto and R[e−11 ] ∼= R/Re2.

1.1. Local to Global Lemmas.

Proposition 7.1.6. Let R be a commutative ring and M an R-module. If
Mm = 0 for every maximal ideal m of R, then M = (0).

Proof. Let x ∈M . We show that x = 0. Assume x ̸= 0. Look at annihR(x) =
{y ∈ R | yx = 0}. Since 1 ̸∈ annihR(x), there exists a maximal ideal m ⊇
annihR(x). Since x/1 = 0/1 in Mm, there exists y ̸∈ m such that yx = 0. This is a
contradiction. □
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Lemma 7.1.7. Let R be a commutative ring, M a finitely generated R-module,
and W ⊆ R a multiplicative subset. Then W−1M = 0 if and only if there exists
w ∈W such that wM = 0.

Proof. If wM = 0, then clearlyW−1M = 0. Conversely, assumeW−1M = 0.
Pick a generating set {m1, . . . ,mn} for M over R. Since each mi/1 = 0/1 in MW ,
there exist w1, . . . , wn in W such that wimi = 0 for each i. Set w = w1w2 · · ·wn.
This w works. □

In the following, we write Mα instead of M [α−1] for the localization of an
R-module at the multiplicative set {1, α, α2, . . . }.

Lemma 7.1.8. Let R be a commutative ring and φ :M → N a homomorphism
of R-modules. Let W ⊆ R be a multiplicative subset and φW : M ⊗R W−1R →
N ⊗RW−1R.

(1) If φW is one-to-one and kerφ is a finitely generated R-module, then there
exists α ∈W such that φα :Mα → Nα is one-to-one.

(2) If φW is onto and cokerφ is a finitely generated R-module, then there
exists β ∈W such that φβ :Mβ → Nβ is onto.

(3) If φW is an isomorphism and both kerφ and cokerφ are finitely generated
R-modules, then there exists w ∈ W such that φw : Mw → Nw is an
isomorphism.

Proof. Start with the exact sequence of R-modules

(1.1) 0→ ker (φ)→M
φ−→ N → coker (φ)→ 0.

Tensoring (1.1) with (·)⊗R R[W−1] we get

(1.2) 0→W−1 ker (φ)→W−1M
φW−−→W−1N →W−1 coker (φ)→ 0

which is exact, by Lemma 7.1.4.
(1): If φW is one-to-one, then by Lemma 7.1.7 there is α ∈ W such that

α(ker (φ)) = 0. Therefore, ker (φ)⊗R R[α−1] = 0, and φα is one-to-one.
(2): If φW is onto, then by Lemma 7.1.7 there is β ∈W such that β(coker (φ)) =

0. Therefore, coker (φ)⊗R R[β−1] = 0, and φβ is onto.
(3): Let α be as in (1) and β as in (2). If we set w = αβ, then φw is an

isomorphism of Rw-modules. □

Lemma 7.1.9. Let R be a commutative ring. Let A and B be commutative
R-algebras and φ : A→ B an R-algebra homomorphism. Assume kerφ is a finitely
generated ideal of A, and B is a finitely generated A-algebra. If W ⊆ R is a mul-
tiplicative subset and φ ⊗ 1 : A ⊗R W−1R → B ⊗R W−1R is an isomorphism of
W−1R-algebras, then there exists w ∈ W such that φw : Aw → Bw is an isomor-
phism of Rw-algebras.

Proof. Suppose kerφ = Ax1 + · · · + Axn. By Lemma 7.1.7 there is α ∈ W
such that α(Rx1 + · · · + Rxn) = 0. Therefore, α kerφ = 0. Suppose the A-
algebra B is generated by y1, . . . , ym. By Lemma 7.1.7 there is β ∈ W such that
β(Ry1 + · · · + Rym) ⊆ φ(A). If we set w = αβ, then φw : Aw → Bw is an
isomorphism of Rw-algebras. □

Lemma 7.1.10. Let R be any ring and

0→ A
α−→ B

β−→ C → 0
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an exact sequence of R-modules.

(1) If B is finitely generated, then C is finitely generated.
(2) If A and C are finitely generated, then B is finitely generated.
(3) If B is finitely generated and C is of finite presentation, then A is finitely

generated.

Proof. (1) and (2): These are Exercise 4.2.19.
(3): Consider the commutative diagram

(1.3) R(n) ϕ //

∃ρ
��

R(n) ψ //

∃η
��

C //

=

��

0

0 // A
α // B

β // C // 0

where the top row exists because C is of finite presentation. The homomorphism
η exists by Proposition 6.2.3 (3) because R(n) is projective. Now βηϕ = ψϕ = 0
so im ηϕ ⊆ kerβ = imα. Again, since R(n) is projective there exists ρ making the
diagram commute. Since B is finitely generated, so is coker η by Part (1). The
Snake Lemma 6.6.2 applied to (1.3) says that coker ρ ∼= coker η so coker ρ is finitely
generated. Because im ρ is finitely generated, the exact sequence

0→ im ρ→ A→ coker ρ→ 0

and Part (2) show that A is finitely generated. □

Lemma 7.1.11. Let R be a commutative ring and M an R-module of finite
presentation. Let p ∈ SpecR and assume Mp = M ⊗R Rp is a free Rp-module.
Then there exists α ∈ R− p such that Mα is a free Rα-module.

Proof. Since M is finitely generated, we know that Mp is free of finite rank.
Pick a basis {m1/α1, . . . ,mn/αn} for Mp over Rp. Since {1/α1, . . . , 1/αn} are
units in Rp, it follows that {m1/1, . . . ,mn/1} is a basis for Mp over Rp. Define
φ : Rn → M by (x1, . . . , xn) 7→

∑n
i=1 ximi, and consider the exact sequence of

R-modules

(1.4) 0→ kerφ→ Rn
φ−→M → cokerφ→ 0.

Tensoring (1.4) with (·)⊗R Rp, we get

(1.5) 0→ (kerφ)p → Rnp
φp−−→Mp → (cokerφ)p → 0

which is exact, by Lemma 7.1.4. ButMp is free overRp with basis {m1/1, . . . ,mn/1}
and φp maps the standard basis to this basis. That is, φp is an isomorphism. So
0 = (kerφ)p = (cokerφ)p. Since M is finitely generated over R so is cokerφ. By

Lemma 7.1.7 there exists β ∈ R− p such that β · cokerφ = 0. Then (cokerφ)β = 0.

Tensoring (1.4) with ( )⊗R Rβ we get the sequence

(1.6) 0→ (kerφ)β → Rnβ
φβ−−→Mβ → 0

which is exact. SinceM is a finitely presented R-module, Mβ is a finitely presented
Rβ-module. By Lemma 7.1.10, (kerφ)β is a finitely generated Rβ-module. Since
β ∈ R − p, by Theorem 3.5.5 there exists a homomorphism of rings Rβ → Rp

so we can tensor (1.6) with (·) ⊗Rβ
Rp to get (1.5) again. That is, (kerφ)β ⊗Rβ

Rp
∼= (kerϕ)p = 0. Lemma 7.1.7 says there exists µ/βk ∈ Rβ − pRβ such that

µ/βk (kerϕ)β = 0. But β is a unit in Rβ so this is equivalent to µ (kerϕ)β = 0. It
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is easy to check that Rµβ = R[(µβ)−1] = (Rβ)µ. This means 0 =
(
(kerϕ)β

)
µ
=

(kerϕ)βµ. We also have (cokerϕ)βµ = 0. Tensor (1.4) with Rµβ to get R
(n)
µβ
∼=Mµβ .

Take α = µβ. □

1.2. Exercises.

Exercise 7.1.12. Let R be a commutative ring and W a multiplicative set.
Let M be an R-module with submodules A and B. Prove:

(1) W−1(A+B) =W−1A+W−1B
(2) W−1(A ∩B) =W−1A ∩W−1B

Exercise 7.1.13. Let R be a commutative ring and assume e ∈ R is a nonzero
idempotent. Show that there is a natural homomorphism of rings R[e−1] ∼= Re.
(Hint: The localization map θ : R → R[e−1] is onto and the kernel of θ is the
principal ideal generated by the idempotent 1− e.)

Exercise 7.1.14. Suppose R is a commutative ring, R = R1 ⊕ R2 is a direct
sum, and πi : R→ Ri is the projection. Let p be a prime ideal in R1 and q = π−11 (p).
Prove that π1 induces an isomorphism on local rings Rq

∼= (R1)p.

Exercise 7.1.15. Suppose R is a commutative ring, R = R1 ⊕ · · · ⊕ Rn is a
direct sum, and πi : R→ Ri is the projection. Assume each Ri is a local ring with
maximal ideal ni. Let mi = π−1i (ni). Prove:

(1) m1, . . . ,mn is the complete list of maximal ideals of R.
(2) πi induces an isomorphism on local rings Rmi

∼= Ri.
(3) The natural homomorphism R→ Rm1 ⊕ · · · ⊕Rmn is an isomorphism.

Exercise 7.1.16. Let R be a commutative ring, K a field, and ϕ : R → K a
homomorphism of rings. If P is the kernel of ϕ, show that P is a prime ideal of R
and ϕ induces a homomorphism of fields RP /(PRP )→ K.

Exercise 7.1.17. Let R be a commutative ring and P a prime ideal in R.
Show that RP /(PRP ) is isomorphic to the quotient field of R/P .

Exercise 7.1.18. Let f : R → S be a homomorphism of commutative rings
and W a multiplicative subset of R. Prove:

(1) f(W ) ⊆ S is a multiplicative subset of S.
(2) If Z = f(W ) is the image of W , then Z−1S ∼=W−1S = S ⊗RW−1R.
(3) If I is an ideal inR, thenW−1(R/I) ∼= (R/I)⊗RW−1R ∼= (W−1R)/(I(W−1R)).

Exercise 7.1.19. Let R be a commutative ring. Let V and W be two multi-
plicative subsets of R. Prove:

(1) If VW = {vw | v ∈ V,w ∈W}, then VW is a multiplicative subset of R.
(2) Let U be the image of V in W−1R. Then (VW )−1R ∼= U−1(W−1R) ∼=

V −1(W−1R).

Exercise 7.1.20. Let R = Z be the ring of integers and S = Z[2−1] the
localization of R obtained by inverting 2. Prove:

(1) If P = (p) is a prime ideal of R and p is different from 2 and 0, then
RP ∼= SP = S ⊗R RP .

(2) If P = (2) is the prime ideal of R generated by 2, then S ⊗R RP is
isomorphic to Q. Therefore, RP is not isomorphic to SP .
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Exercise 7.1.21. Let R be a commutative ring and P a prime ideal in R.
Show that if α ∈ R− P , then RP ∼= (Rα)PRα

∼= Rα ⊗R RP .

Exercise 7.1.22. Let f : R → S be a homomorphism of commutative rings.
Let Q be a prime ideal in S and P = f−1(Q). Let QP = Q ⊗R RP and SP =
S ⊗R RP . Prove:

(1) f induces a local homomorphism of local rings g : RP → SQ.
(2) QP is a prime ideal of SP .
(3) SQ is isomorphic to the local ring of SP at QP .
(4) The diagram

RP
g //

f⊗1 !!

SQ

SP

ϕ

>>

commutes where ϕ is the localization map.

Exercise 7.1.23. Let R be an integral domain with quotient field K. Let
MaxR denote the set of all maximal ideals of R (Definition 3.2.11). If m ∈ MaxR,
then m is a prime ideal and by Example 7.1.2 the local ring of R at m is denoted
Rm. By Exercise 3.5.8, Rm can be viewed as a subring of K. Show that

R =
⋂

m∈MaxR

Rm.

Exercise 7.1.24. Let R be an integral domain with field of fractions K. Let
M be a torsion free R-module (Definition 4.3.4) such that K ⊗R M is a finite
dimensional K-vector space and dimK(K⊗RM) = n. Show thatM contains a free
R-submodule F of rank n such that M/F is a torsion R-module and the natural
map K ⊗R F → K ⊗RM is an isomorphism.

2. Module Direct Summands of Rings

Definition 7.2.1. Let R be a ring. An idempotent e ∈ R is said to be primitive
if e cannot be written as a sum of two nonzero orthogonal idempotents.

Definition 7.2.2. Let R be a ring and I ⊆ R a nonzero left ideal. Then I is
a minimal left ideal of R if whenever J is a left ideal of R and J ⊆ I, then either
J = 0, or J = I.

Example 7.2.3. Let F be a field and R = M2(F ) the ring of two-by-two
matrices over F . Let

e1 =

[
1 0
0 0

]
, e2 =

[
0 0
0 1

]
.

The reader should verify the following facts.

(1) e1 and e2 are orthogonal idempotents.
(2) Re1 is the set of all matrices with second column consisting of zeros.
(3) Re2 is the set of all matrices with first column consisting of zeros.
(4) R = Re1 ⊕Re2 as R-modules.
(5) Re1 is a minimal left ideal.
(6) e1 is a primitive idempotent.

Lemma 7.2.4. Let R be a ring and I a left ideal of R.
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(1) I is an R-module direct summand of R if and only if I = Re for some
idempotent e.

(2) Suppose e ∈ R is idempotent. Then e is primitive if and only if Re cannot
be written as an R-module direct sum of proper left ideals of R.

(3) If I is a minimal left ideal, then I is an R-module direct summand of R
if and only if I2 ̸= 0.

(4) Suppose R = I ⊕ J where I and J are two-sided ideals. Then I = Re for
some central idempotent e, I is a ring, and e is the multiplicative identity
for I.

Proof. (1): Assume R = I ⊕ L. Write 1 = e + f where e ∈ I and f ∈ L.
Then e = e2 + ef . Now ef = e − e2 ∈ I ∩ L = 0. Likewise fe = 0. Also
e + f = 1 = 12 = (e + f)2 = e2 + f2. In the direct sum the representation of 1
is unique, so e = e2 and f = f2. Let x ∈ I. Then x = x · 1 = xe + xf . But
xf = x − xe ∈ I ∩ L = 0. So Re = I. Conversely assume e2 = e and prove
that Re is a direct summand of R. Then 0 = e − e2 = e(1 − e) = (1 − e)e. Also
(1− e)2 = 1− e− e+ e2 = 1− e. This shows e, 1− e are orthogonal idempotents.
Since 1 = e + (1 − e) we have R = Re + R(1 − e). Let x ∈ Re ∩ R(1 − e).
Then x = ae = b(1 − e) for some a, b ∈ R. Then xe = ae2 = ae = x and again
xe = b(1− e)e = 0. Therefore R = Re⊕R(1− e).

(2): Use the same ideas as in (1) to show e is a sum of nonzero orthogonal
idempotents if and only if Re decomposes into a direct sum of proper left ideals of
R.

(3): Assume I is a minimal left ideal of R. Suppose R = I ⊕ L for some left
ideal L of R. By (1), I = Re for some idempotent e. Then e = e2 ∈ I2 so I2 ̸= 0.
Conversely assume I2 ̸= 0. There is some x ∈ I such that Ix ̸= 0. But Ix is
a left ideal of R and since I is minimal, we have Ix = I. For some e ∈ I, we
have ex = x. Let L = annihR(x) = {r ∈ R | rx = 0}. Then L is a left ideal of
R. Since (1 − e)x = x − ex = x − x = 0 it follows that 1 − e ∈ L. Therefore
1 = e+(1− e) ∈ I +L so R = I +L. Also, e ∈ I and ex = x ̸= 0 shows that e ̸∈ L.
Now I ∩ L is a left ideal in R and is contained in the minimal left ideal I. Since
I ∩ L ̸= I, it follows that I ∩ L = 0 which proves that R = I ⊕ L as R-modules.

(4): This follows from Theorem 3.3.5 (3). □

Theorem 7.2.5. Let R be a commutative ring and assume R decomposes into
an internal direct sum R = Re1⊕· · ·⊕Ren, where each ei is a primitive idempotent.
Then this decomposition is unique in the sense that, if R = Rf1⊕· · ·⊕Rfp is another
such decomposition of R, then n = p, and after rearranging, e1 = f1, . . . , en = fn.

Proof. Any idempotent of R = Re1 ⊕ · · · ⊕ Ren is of the form x1 + · · ·+ xn
where xi is an idempotent in Rei. By Lemma 7.2.4, the only idempotents of Rei
are 0 and ei. Hence, R has exactly n primitive idempotents, namely e1, . . . , en. □

2.1. Exercises.

Exercise 7.2.6. Let R be a ring and I a left ideal in R. Prove that the
following are equivalent.

(1) R/I is a projective left R-module.
(2) The R-module sequence 0→ I → R→ R/I → 0 is split-exact.
(3) The left ideal I is finitely generated, and the left R-module R/I is flat.
(4) I is an R-module direct summand of R.
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(5) There is an element e ∈ R such that 1− e ∈ I and Ie = (0).
(6) There is an idempotent e ∈ R such that I = R(1− e).

Exercise 7.2.7. Let A be an R-algebra and e an idempotent in A.

(1) Show that eAe is an R-algebra.
(2) Show that there is an R-module direct sum decomposition:

A = eAe⊕ eA(1− e)⊕ (1− e)Ae⊕ (1− e)A(1− e).

3. The Prime Spectrum of a Commutative Ring

Definition 7.3.1. Let R be a commutative ring. The prime ideal spectrum of
R is

SpecR = {P | P is a prime ideal in R}.
The maximal ideal spectrum of R is

MaxR = {m | m is a maximal ideal in R}.

Given a subset L ⊆ R, let

V (L) = {P ∈ SpecR | P ⊇ L}.

Given a nonempty subset Y ⊆ SpecR, let

I(Y ) =
⋂
P∈Y

P.

Being an intersection of ideals, I(Y ) is an ideal. By definition, we take I(∅) to be
the unit ideal R.

Lemma 7.3.2. Let L,L1, L2 denote subsets of R and Y1, Y2 subsets of SpecR.

(1) If L1 ⊆ L2, then V (L1) ⊇ V (L2).
(2) If Y1 ⊆ Y2, then I(Y1) ⊇ I(Y2).
(3) I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).
(4) If I is the ideal of R spanned by L, then V (L) = V (I).

Proof. Is left to the reader. □

Lemma 7.3.3. Given any collection {Li} of subsets of R

(1) V ({1}) = ∅ and V ({0}) = SpecR.
(2)

⋂
i V (Li) = V (

⋃
Li).

(3) V (L1) ∪ V (L2) = V
(
{x1x2 | x1 ∈ L1, x2 ∈ L2}

)
.

Proof. (1) is left to the reader. (2) follows because P ∈ ∩V (Li) if and only if
Li ⊆ P for each i if and only if ∪Li ⊆ P . For (3) suppose P ⊇ L1L2 and L1 ̸⊆ P .
Pick x1 ∈ L1 such that x1 ̸∈ P . Since x1L2 ⊆ P and P is prime, L2 ⊆ P . Therefore
P ∈ V (L2). Conversely, if P ∈ V (L1)∪V (L2) then L1 ⊆ P or L2 ⊆ P . Let L1 ⊆ P .
Multiplying, we get L1L2 ⊆ P . □

Definition 7.3.4. By Lemma 7.3.3, the collection of sets {V (L) | L ⊆ R}
make up the closed sets for a topology on SpecR, called the Zariski topology.

Lemma 7.3.5. Let R be a commutative ring. If W ⊆ R is a multiplicative set
and 0 ̸∈W , then there exists a prime ideal P ∈ SpecR such that P ∩W = ∅.
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Proof. Let S = {I ⊆ R | I is an ideal and I ∩W = ∅}. Then (0) ∈ S. Apply
Zorn’s Lemma, Proposition 1.3.3. Then S has a maximal element, say P . To see
that P is a prime ideal, assume x ̸∈ P and y ̸∈ P . By maximality of P we know
Rx+ P ∩W ̸= ∅ so there exists a ∈ R and u ∈W such that ax− u ∈ P . Likewise
Ry + P ∩W ̸= ∅ so there exists b ∈ R and v ∈ W such that by − v ∈ P . Multiply,
abxy ≡ uv (mod P ). Since uv ∈W and P ∩W = ∅ we have proved xy ̸∈ P . □

Lemma 7.3.6. Let R be a commutative ring. As in Exercise 3.2.27, let RadR(0) =
{x ∈ R | xn = 0 for some n > 0} be the nil radical of R. Then

RadR(0) =
⋂

P∈SpecR
P.

In particular, RadR(0) is an ideal.

Proof. Pick x ∈ RadR(0). Fix P ∈ SpecR. If xn = 0, then either x = 0 or
n ≥ 2. If n ≥ 2 then x · xn−1 ∈ P so x ∈ P or xn−1 ∈ P . Inductively, x ∈ P
so RadR(0) ⊆ P . If x ̸∈ RadR(0), let W = {1, x, x2, . . . }. Lemma 7.3.5 says there
exists P ∈ SpecR such that x ̸∈ P . □

Definition 7.3.7. Let R be a commutative ring and A an ideal in R. The set

Rad(A) = {x ∈ R | xn ∈ A for some n > 0}
is called the nil radical of A. If A = RadA, then we say A is a radical ideal . By
Lemma 7.3.8, Rad(A) is an ideal of R containing A.

Lemma 7.3.8. If R is a commutative ring and A is an ideal in R, then Rad(A)
is an ideal in R which contains A and

Rad(A) = I(V (A)) =
⋂

P∈V (A)

P.

Proof. Under the natural map η : R→ R/A there is a one-to-one correspon-
dence between ideals of R containing A and ideals of R/A (Proposition 3.2.12).
Under this correspondence, prime ideals correspond to prime ideals. To finish,
apply Lemma 7.3.6. □

Lemma 7.3.9. Let A be an ideal in R and Y a subset of SpecR. Then

(1) V (A) = V (Rad(A)), and
(2) V (I(Y )) = Ȳ , the closure of Y in the Zariski topology.

Proof. (1): Since A ⊆ Rad(A), it follows that V (A) ⊇ V (Rad(A)). Con-
versely, if P ∈ SpecR and P ⊇ A, then by Lemma 7.3.8, P ⊇ Rad(A). Then
P ∈ V (Rad(A)).

(2): Since V (I(Y )) is closed we have V (I(Y )) ⊇ Ȳ . Since Ȳ is closed, Ȳ = V (A)
for some ideal A. Since Y ⊆ Ȳ , I(Y ) ⊇ I(Ȳ ) = I(V (A)) = Rad(A) ⊇ A. Thus,
V (I(Y )) ⊆ V (A) = Ȳ . □

Corollary 7.3.10. There is a one-to-one order-reversing correspondence be-
tween closed subsets of SpecR and radical ideals in R given by Y 7→ I(Y ) and
A 7→ V (A). Under this correspondence, irreducible closed subsets correspond to
prime ideals.

Proof. The first part follows from Lemmas 7.3.2, 7.3.8, and 7.3.9. The last
part is proved in Lemma 7.3.11. □
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Lemma 7.3.11. Let R be a commutative ring and Y a subset of SpecR. Then
Y is irreducible if and only if P = I(Y ) is a prime ideal in R. If Z is an irreducible
closed subset of SpecR, then P = I(Z) is the unique minimal element of Z, and is
called the generic point of Z.

Proof. Suppose Y is irreducible. Assume x, y ∈ R and xy ∈ I(Y ). Notice
that Y ⊆ Ȳ = V (I(Y )) ⊆ V (xy) = V (x) ∪ V (y). Since Y is irreducible, Y ⊆ V (x)
or Y ⊆ V (y). Therefore, x ∈ I(Y ), or y ∈ I(Y ). This shows I(Y ) is a prime
ideal. Conversely, assume P = I(Y ) is a prime ideal of R. The singleton set {P} is
irreducible, and by Lemma 1.4.4 the closure of {P} is irreducible. By Lemma 7.3.9,
the closure of {P} is equal to V (P ), which is equal to Ȳ . By Lemma 1.4.4, Y is
irreducible. The rest is left to the reader. □

Let R be a commutative ring. If α ∈ R, the basic open subset of SpecR
associated to α is

U(α) = SpecR− V (α) = {Q ∈ SpecR | α ̸∈ Q}.

Lemma 7.3.12. Let R be a commutative ring.

(1) Let α, β ∈ R. The following are equivalent.
(a) V (α) = V (β).
(b) U(α) = U(β).
(c) There exist a ≥ 1, b ≥ 1 such that αa ∈ Rβ and βb ∈ Rα.

(2) If I is an ideal in R, then

SpecR− V (I) =
⋃
α∈I

U(α)

Every open set can be written as a union of basic open sets. The collection
of all basic open sets {U(α) | α ∈ R} is said to be a basis for the Zariski
topology on SpecR.

Proof. (1): By Lemma 7.3.8, Rad(Rα) = I(V (α)). By Lemma 7.3.9, V (α) =
V (Rad(Rα)). So V (α) = V (β) if and only if Rad(Rα) = Rad(Rβ) which is true if
and only if there exist a ≥ 1, b ≥ 1 such that αa ∈ Rβ and βb ∈ Rα. The rest is
left to the reader. □

3.1. Idempotents and Subsets that are Open and Closed. Let R be
any ring. The set of idempotents of R is denoted

idemp(R) = {x ∈ R | x2 − x = 0}.

The homomorphic image of an idempotent is an idempotent, so given a homomor-
phism of rings R→ S, there is a function idemp(R)→ idemp(S).

Lemma 7.3.13. Let R be a commutative ring and idemp(R) the set of all idem-
potents of R.

(1) If e ∈ idemp(R), then the closed set V (1−e) is equal to the open set U(e).
(2) Let e, f ∈ idemp(R). Then V (e) = V (f) if and only if e = f .
(3) Let e, f ∈ idemp(R). Then Re = Rf if and only if e = f .

Proof. (1): Let P ∈ SpecR. Since e(1 − e) = 0, either e ∈ P , or 1 − e ∈ P .
Since 1 = e+ (1− e), P does not contain both e and 1− e.
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(2): Assume V (e) = V (f). By Lemma 7.3.12, there exist a ≥ 1, b ≥ 1 such
that e = ea ∈ Rf and f = f b ∈ Re. Write e = xf and f = ye for some x, y ∈ R.
Then e = xf = xf2 = (xf)f = ef = eye = ye2 = ye = f .

(3): Re = Rf implies V (e) = V (f), which by Part (2) implies e = f . □

Theorem 7.3.14. Let R be a commutative ring and define

C = {Y ⊆ SpecR | Y is open and closed}
D = {A ⊆ R | A is an ideal in R which is an R-module direct summand of R}.

Then there are one-to-one correspondences:

γ : idemp(R)→ C,
defined by e 7→ V (1− e) = U(e), and

δ : idemp(R)→ D,
defined by e 7→ Re.

Proof. Lemma 7.3.13, Parts (1) and (2) show that γ is well defined and one-
to-one. By Lemma 7.2.4 (1), δ is well defined and onto. By Lemma 7.3.13 (3), δ
is one-to-one. It remains to prove that γ is onto. Assume A1, A2 are ideals in
R, X1 = V (A1), X2 = V (A2), X1 ∪ X2 = SpecR, X1 ∩ X2 = ∅. We prove that
Xi = V (ei) for some ei ∈ idemp(R). Since ∅ = X1 ∩ X2 = V (A1 + A2), we
know A1 and A2 are comaximal and A1A2 = A1 ∩ A2, by Exercise 3.3.17. Since
SpecR = X1 ∪X2 = V (A1A2) = V (A1 ∩A2), Lemma 7.3.8 implies

A1 ∩A2 ⊆
⋂

P∈SpecR
P = RadR(0).

That is, A1 ∩ A2 consists of nilpotent elements. Write 1 = α1 + α2, where αi ∈
Ai. Then R = Rα1 + Rα2 so Rα1 and Rα2 are comaximal. Also Rα1 ∩ Rα2 =
Rα1α2 ⊆ A1 ∩ A2 ⊆ RadR(0). So there exists m > 0 such that (α1α2)

m = 0.
Then Rαm1 and Rαm2 are comaximal (Exercise 3.3.18) and Rαm1 ∩ Rαm2 = (0). By
Proposition 3.3.6, R is isomorphic to the internal direct sum R ∼= Rαm1 ⊕Rαm2 . By
Theorem 3.3.5 there are orthogonal idempotents e1, e2 ∈ R such that 1 = e1 + e2
and Rei = Rαmi . Then SpecR = V (e1) ∪ V (e2) and V (e1) ∩ V (e2) = ∅. Moreover,
V (ei) ⊇ V (Rαmi ) ⊇ V (Ai) = Xi. From this it follows that Xi = V (ei), hence γ is
onto. □

Corollary 7.3.15. Suppose R is a commutative ring and SpecR = X1 ∪ · · · ∪
Xr, where each Xi is a nonempty closed subset and Xi ∩Xj = ∅ whenever i ̸= j.
Then there are idempotents e1, . . . , er in R such that Xi = U(ei) = V (1 − ei) is
homeomorphic to SpecRei, and R = Re1 ⊕ · · · ⊕Rer.

Proof. By Theorem 7.3.14 there are unique idempotents e1, . . . , er in R such
that Xi = U(ei) = V (1 − ei). Since R = Rei ⊕ R(1 − ei), the map πi : R →
Rei defined by x 7→ xei is a homomorphism of rings with kernel R(1 − ei). By
Exercise 7.3.22, πi induces a homeomorphism SpecRei → Xi. If i ̸= j, then
V (1−ei)∩V (1−ej) = Xi∩Xj = ∅. It follows that the ideals R(1−ei) are pairwise
relatively prime. By Theorem 3.3.8, the direct sum map

R
ϕ−→ Re1 ⊕ · · · ⊕Rer

is onto. By Exercise 3.3.17, the kernel of ϕ is the principal ideal generated by the
product (1 − e1) · · · (1 − er). But X = X1 ∪ · · · ∪ Xr = V ((1 − e1) · · · (1 − er)).
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Therefore, (1 − e1) · · · (1 − er) ∈ RadR(0). Since the only nilpotent idempotent is
0, ϕ is an isomorphism. □

Corollary 7.3.16. The topological space SpecR is connected if and only if 0
and 1 are the only idempotents of R.

Corollary 7.3.17. Let e be an idempotent of R. The following are equivalent.

(1) e is a primitive idempotent.
(2) V (1− e) = U(e) is a connected component of SpecR.
(3) 0 and 1 are the only idempotents of the ring Re.

Proof. (1) is equivalent to (3): This follows from Lemma 7.2.4 (2).
(2) is equivalent to (3): Since R = Re⊕R(1−e), it follows from Exercise 7.3.22

that V (1− e) is homeomorphic to SpecRe. This follows from Corollary 7.3.16. □

3.2. Exercises.

Exercise 7.3.18. Let R be a commutative ring and P ∈ SpecR. Prove:

(1) The closure of the singleton set {P} is equal to V (P ).
(2) The set {P} is closed if and only if P is a maximal ideal in R.
(3) Let U ⊆ SpecR be an open set. Then U = SpecR if and only if MaxR ⊆

U .

Exercise 7.3.19. Prove that if R is a local ring, then 0 and 1 are the only
idempotents in R.

Exercise 7.3.20. Let θ : R → S be a homomorphism of commutative rings.
Show that P 7→ θ−1(P ) induces a function θ♯ : SpecS → SpecR which is continuous
for the Zariski topology. If σ : S → T is another homomorphism, show that
(σθ)♯ = θ♯σ♯.

Exercise 7.3.21. For the following, let I and J be ideals in the commutative
ring R. Prove that the nil radical satisfies the following properties.

(1) I ⊆ Rad(I)
(2) Rad(Rad(I)) = Rad(I)
(3) Rad(IJ) = Rad(I ∩ J) = Rad(I) ∩ Rad(J)
(4) Rad(I) = R if and only if I = R
(5) Rad(I + J) = Rad(Rad(I) + Rad(J))
(6) If P ∈ SpecR, then for all n > 0, P = Rad(Pn).
(7) I + J = R if and only if Rad(I) + Rad(J) = R.

Exercise 7.3.22. Let R be a commutative ring and I ⊊ R an ideal. Let
η : R→ R/I be the natural map and η♯ : Spec(R/I)→ SpecR the continuous map
of Exercise 7.3.20. Prove:

(1) η♯ is a one-to-one order-preserving correspondence between the prime
ideals of R/I and V (I).

(2) There is a one-to-one correspondence between radical ideals in R/I and
radical ideals in R containing I.

(3) Under η♯ the image of a closed set is a closed set.
(4) η♯ : Spec(R/I)→ V (I) is a homeomorphism.
(5) If I ⊆ RadR(0), then η

♯ : Spec(R/I)→ Spec(R) is a homeomorphism.
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Exercise 7.3.23. Let R be a commutative ring which is a direct sum of ideals
R = A1⊕· · ·⊕An. As in Theorem 3.3.5, let e1, . . . , en be the orthogonal idempotents
of R such that Ai = Rei. For 1 ≤ i ≤ n, let πi : R → Rei be the projection
homomorphism. Prove:

(1) Let I be an ideal in R. Then I is prime if and only if there exists a unique
k ∈ {1, . . . , n} such that Iek is a prime ideal in Rek and for all i ̸= k,
Iei = Rei.

(2) Let π♯i : SpecRi → SpecR be the continuous map defined in Exer-

cise 7.3.20. Then imπ♯i is equal to V (1 − ei) = U(ei), hence is both
open and closed.

(3) π♯i : SpecRi → V (1− ei) = U(ei) is a homeomorphism.

(4) SpecR = imπ♯1 ∪ · · · ∪ imπ♯n and the union is disjoint.

Exercise 7.3.24. Let R be a commutative ring. Show that under the usual
set inclusion relation, SpecR has at least one maximal element and at least one
minimal element. (Hint: To prove that R contains a minimal prime ideal, reverse
the set inclusion argument of Proposition 3.2.15.)

Exercise 7.3.25. Let R be a commutative ring and I ⊊ R an ideal. Prove that
under the usual set inclusion relation, V (I) contains at least one minimal element
and at least one maximal element. A minimal element of V (I) is called a minimal
prime over-ideal of I.

Exercise 7.3.26. Let R be a commutative ring andW a multiplicative set. Let
θ : R→W−1R be the localization. For any subset S ⊆W−1R, use the intersection
notation S ∩R = θ−1(S) for the preimage. Prove:

(1) If J is an ideal in W−1R, then J =W−1(J ∩R).
(2) The continuous map θ♯ : Spec(W−1R)→ Spec(R) is one-to-one.
(3) If P ∈ SpecR and P ∩W = ∅, then W−1P is a prime ideal in W−1R.
(4) The image of θ♯ : Spec(W−1R) → Spec(R) consists of those prime ideals

in R that are disjoint from W .
(5) If P ∈ SpecR, there is a one-to-one correspondence between prime ideals

in RP and prime ideals of R contained in P .

Exercise 7.3.27. Let R be a commutative ring and α an element of R. Let
Rα denote the localization W−1R with respect to the multiplicative set W = {αi |
0 ≤ i} and θ : R→ Rα the localization map. Prove:

(1) The image of θ♯ : SpecRα → SpecR is the basic open set U(α) = SpecR−
V (α).

(2) θ♯ : SpecRα → U(α) is a homeomorphism.

Exercise 7.3.28. Let R be a commutative ring and W a multiplicative set.
Prove:

(1) RadW−1R(0) =W−1 RadR(0).
(2) If I is a ideal of R, then Rad(W−1I) =W−1 Rad(I).

Exercise 7.3.29. Show that if R is a commutative ring, then SpecR is com-
pact. That is, every open cover of SpecR has a finite subcover.

Exercise 7.3.30. Let f : R → S be a homomorphism of commutative rings.
Let α ∈ R and assume f(α) is a unit in S. Prove that if f ♯ : SpecS → SpecR is
onto, then α is a unit in R.
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4. Locally Free Modules

4.1. Finitely Generated Projective over a Local Ring is Free. The
reader is referred to Exercise 3.2.32 for the definition of local ring.

Lemma 7.4.1. Let R be a commutative ring and I an ideal in R. Let M be an
R-module. If

(1) I is nilpotent, or
(2) I is contained in every maximal ideal of R and M is finitely generated,

then a subset X ⊆ M generates M as an R-module if and only if the image of X
generates M/IM as an R/I-module.

Proof. Let η :M →M/IM . Suppose X ⊆M and let T be the R-submodule
of M spanned by X. Then η(T ) = (T + IM)/IM is spanned by η(X). If T = M ,
then η(T ) = M/IM . Conversely, η(T ) = M/IM implies M = T + IM . By
Corollary 6.3.5, this implies M = T . □

Another proof of Proposition 7.4.2 is presented in Corollary 7.8.5.

Proposition 7.4.2. Let R be a commutative local ring. If P is a finitely
generated projective R-module, then P is free of finite rank. If m is the maximal
ideal of R and {xi + mP | 1 ≤ i ≤ n} is a basis for the vector space P/mP over
the residue field R/m, then {x1, . . . , xn} is a basis for P over R. It follows that
RankR (P ) = dimR/m(P/mP ).

Proof. Define ϕ : R(n) → P by ϕ(α1, . . . , αn) =
∑n
i=1 αixi. The goal is to

show that ϕ is onto and one-to-one, in that order. Denote by T the image of ϕ.
Then T = Rx1+ · · ·+Rxn which is the submodule of P generated by {x1, . . . , xn}.
It follows from Lemma 7.4.1 that ϕ is onto. To show that ϕ is one-to-one we prove
that kerϕ = 0. Since P is R-projective, the sequence

0→ kerϕ→ R(n) ϕ−→ P → 0

is split exact. Therefore, kerϕ is a finitely generated projective R-module. Upon
tensoring with ( ) ⊗R R/m, ϕ becomes the isomorphism (R/m)(n) ∼= P/mP . By
Exercise 6.4.31,

0→ kerϕ⊗R R/m→ (R/m)(n)
ϕ−→ P/mP → 0

is split exact. Therefore, kerϕ⊗RR/m = 0, or in other words m(kerϕ) = kerϕ. By
Nakayama’s Lemma (Corollary 6.3.2), kerϕ = (0). □

Corollary 7.4.3 is a special case of Proposition 14.4.14.

Corollary 7.4.3. Let R be a commutative local ring with residue field k. Let
ψ : M → N be a homomorphism of R-modules, where M is finitely generated and
N is finitely generated and free. Then

0→M
ψ−→ N

is split exact if and only if ψ ⊗ 1 :M ⊗R k → N ⊗R k is one-to-one.

Proof. Assume ψ⊗1 is one-to-one. By Proposition 7.4.2 we can pick a gener-
ating set {x1, . . . , xn} for the R-module M such that {x1⊗ 1, . . . , xn⊗ 1} is a basis
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for the k-vector space M ⊗R k. Define π : R(n) →M by mapping the ith standard
basis vector to xi. Then π ⊗ 1 : k(n) →M ⊗R k is an isomorphism. The diagram

R(n)

��

π // M

��

ψ // N

��
k(n)

π⊗1 // M ⊗R k
ψ⊗1 // N ⊗R k

commutes. The composite map ψπ ⊗ 1 is one-to-one. By Exercise 7.4.13, there is
an R-module homomorphism τ : N → R(n) which is a left inverse for ψπ. Since π
is onto, it follows that πτ is a left inverse for ψ.

Conversely, if ψ has a left inverse, then clearly ψ ⊗ 1 is one-to-one. □

4.2. A Finitely Generated Projective Module is Locally Free.

Definition 7.4.4. Let M be a finitely generated projective module over the
commutative ring R. For any prime ideal P of R, the localization MP is a finitely
generated projective RP -module (Theorem 6.4.23). Therefore, MP is a finitely
generated free RP -module (Proposition 7.4.2) and MP has a well defined rank. If
there is an integer n ≥ 0 such that n = RankRP

(MP ) for all P ∈ SpecR, then we
say M has constant rank and write RankR(M) = n.

Proposition 7.4.5. Let R be a commutative ring and S a commutative R-
algebra. IfM is a finitely generated projective R-module of constant rank RankR(M) =
n, then M ⊗R S is a finitely generated projective S-module of constant rank and
RankS(M ⊗R S) = n.

Proof. By Theorem 6.4.23, M ⊗R S is a finitely generated projective S-
module. Let θ : R → S be the structure map. Let Q ∈ SpecS and P = θ−1(Q) ∈
SpecR. Then by Exercise 7.1.22, θ extends to a local homomorphism of local rings
θ : RP → SQ. The proof follows from

(M ⊗R S)⊗S SQ ∼=M ⊗R (S ⊗S SQ)
∼=M ⊗R SQ
∼=M ⊗R (RP ⊗RP

SQ)

∼= (M ⊗R RP )⊗RP
SQ

∼= (RP )
(n) ⊗RP

SQ

∼= (SQ)
(n)

.

□

In the following, for the localization of R at the multiplicative set {1, α, α2, . . . }
we write Rα instead of R[α−1].

Theorem 7.4.6. Let R be a commutative ring and M a finitely generated pro-
jective R-module.

(1) Given P ∈ SpecR there exists α ∈ R − P such that Mα is a free Rα-
module.

(2) If α is as in (1), then the values RankRQ
(MQ) are constant for all Q ∈

U(α).
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(3) The map

SpecR
ϕ−→ {0, 1, 2, . . . }

P 7→ RankRP
MP

is continuous if {0, 1, 2, . . . } is given the discrete topology (that is, the
topology where every subset is closed, or equivalently, “points are open”).

Proof. (1): By Proposition 7.4.2 we know that MP is a free module over RP .
By Corollary 6.2.8, M is an R-module of finite presentation. An application of
Lemma 7.1.11 completes the proof.

(2): If Q ∈ U(α), then α ∈ R −Q. By Exercise 7.1.21, RQ = (Rα)QRα . Since
Mα is Rα-free of rank n, it follows from Theorem 6.4.23 (1) that MQ is RQ-free of
rank n.

(3): We need to prove that for every n ≥ 0, the preimage ϕ−1(n) is open in
SpecR. Let P ∈ SpecR such that RankRP

MP = n. It is enough to find an open
neighborhood of P in the preimage of n. By Part (1), there exists α ∈ R− P such
that Mα is free of rank n over Rα. Since U(α) is an open neighborhood of P in
SpecR, it is enough to show that RankRQ

MQ = n for all Q ∈ U(α). This shows
that (3) follows from Part (2). □

Corollary 7.4.7. Let R be a commutative ring and M a finitely generated
projective R-module. Then there are idempotents e1, . . . , et in R satisfying the fol-
lowing.

(1) R = Re1 ⊕ · · · ⊕Ret.
(2) M =Me1 ⊕ · · · ⊕Met.
(3) If Ri = Rei and Mi =M ⊗RRi, then Mi is a finitely generated projective

Ri-module of constant rank.
(4) If RankRi

(Mi) = ni, then n1, . . . , nt are distinct.
(5) The integer t and the idempotents e1, . . . , et are uniquely determined by

M .

In [40, Theorem IV.27] the elements e1, . . . , et are called the structure idempotents
of M .

Proof. The rank function ϕ : SpecR → {0, 1, 2, . . . } defined by ϕ(P ) =
RankRP

MP is continuous and locally constant (Theorem 7.4.6). Let Un = ϕ−1({n})
for each n ≥ 0. Then {Un | n ≥ 0} is a collection of subsets of SpecR each of which
is open and closed. Moreover, the sets Un are pairwise disjoint. Since SpecR is com-
pact (Exercise 7.3.29) the image of ϕ is a finite set, say {n1, . . . , nt}. Let e1, . . . , et
be the idempotents in R corresponding to the disjoint union SpecR = Un1∪· · ·∪Unt

(Corollary 7.3.15). The rest is left to the reader. □

Corollary 7.4.8. If R is a commutative ring with no idempotents except 0
and 1, then for any finitely generated projective R-module M , RankRM is defined.
That is, there exists n ≥ 0 such that for every P ∈ SpecR, RankRP

MP = n.

Proof. By Proposition 7.3.16 we know SpecR is connected. The continuous
image of a connected space is connected. The rest follows from Corollary 7.4.7. □

4.3. Exercises. For the following, R always denotes a commutative ring.

Exercise 7.4.9. Let L and M be finitely generated projective R-modules such
that RankR(L) and RankR(M) are both defined. Prove:
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(1) The rank of L ⊕ M is defined and is equal to the sum RankR(L) +
RankR(M).

(2) The rank of L⊗RM is defined and is equal to the product RankR(L)RankR(M).
(3) The rank of HomR(L,M) is defined and is equal to the product RankR(L)RankR(M).

Exercise 7.4.10. Let f : R → S be a homomorphism of commutative rings
and P ∈ SpecR. Let k(P ) = RP /PRP be the residue field and SP = S ⊗R RP .
Let Q ∈ SpecS such that P = f−1(Q). Prove:

(1) S ⊗R k(P ) ∼= SP /PSP .
(2) Q⊗R k(P ) is a prime ideal of S⊗R k(P ) and QSP /PSP is the correspond-

ing prime ideal of SP /PSP .
(3) The localization of SP /PSP at QSP /PSP is SQ/PSQ.
(4) The localization of S⊗Rk(P ) at the prime ideal Q⊗Rk(P ) is SQ⊗Rk(P ).

Exercise 7.4.11. Let f : R → S be a homomorphism of commutative rings
and f ♯ : SpecS → SpecR the continuous map of Exercise 7.3.20.

(1) Let W ⊆ R be a multiplicative set. Denote by W−1S the localization
S ⊗RW−1R. Define all of the maps such that the diagram

Spec (W−1S)
g♯ //

ϵ♯

��

Spec (W−1R)

η♯

��
SpecS

f♯

// SpecR

commutes. Show that ϵ♯ and η♯ are one-to-one.
(2) Let I ⊆ R be an ideal. Define all of the maps such that the diagram

Spec(S/IS)
g♯ //

ϵ♯

��

Spec(R/I)

η♯

��
SpecS

f♯

// SpecR

commutes. Show that ϵ♯ and η♯ are one-to-one.
(3) Let P ∈ SpecR. Let k(P ) = RP /PRP be the residue field. Prove that

there is a commutative diagram

Spec(S ⊗R k(P ))
g♯ //

ϵ♯

��

Spec(k(P ))

η♯

��
SpecS

f♯

// SpecR

where ϵ♯ and η♯ are one-to-one. Show that the image of ϵ♯ is (f ♯)−1(P ).
(Hints: Take W = R − P in (1), then take I = PRP in (2). We call
Spec(S ⊗R k(P )) the fiber over P of the map f ♯.

Exercise 7.4.12. Let R be a commutative ring. Let M and N be finitely
generated projective R-modules, and φ : M → N an R-module homomorphism.
Let p ∈ SpecR and assume φ ⊗ 1 : M ⊗R Rp → N ⊗R Rp is an isomorphism.
Prove that there exists α ∈ R − p such that φ ⊗ 1 : M ⊗R Rα → N ⊗R Rα is an
isomorphism.
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Exercise 7.4.13. Let R be a commutative local ring with residue field k. Let
M and N be finitely generated free R-modules and ψ : M → N a homomorphism
of R-modules. Show that if ψ ⊗ 1 : M ⊗R k → N ⊗R k is one-to-one, then ψ has
a left inverse. That is, there exists an R-module homomorphism σ : N → M such
that σψ = 1 is the identity mapping on M .

Exercise 7.4.14. Let R be a commutative ring and S a commutative R-algebra
that as an R-module is a progenerator. Show that if SpecR is connected, then the
number of connected components of SpecS is bounded by RankR(S), hence is finite.

Exercise 7.4.15. Let R1 and R2 be rings and S = R1 ⊕ R2 the direct sum.
Let M be a left S-module. Using the projection maps πi : S → Ri, show that
the Ri-modules Mi = Ri ⊗S M are S-modules. Show that M is isomorphic as an
S-module to the direct sum M1 ⊕M2.

5. Faithfully Flat Modules and Algebras

5.1. Faithfully Flat Modules. Recall that in Definition 6.4.19 we defined a
left R-module N to be flat if the functor ( ) ⊗R N is both left and right exact. In
Exercise 6.9.7 we defined N to be faithfully flat if N is flat, and N has the property
that for any right R-moduleM ,M⊗RN = 0 impliesM = 0. If R is a commutative
ring, then Lemma 7.5.1 below adds more necessary and sufficient conditions for N
to be faithfully flat.

Lemma 7.5.1. Let R be a commutative ring and N an R-module. The following
are equivalent.

(1) A sequence of R-modules

0→ A→ B → C → 0

is exact if and only if

0→ A⊗R N → B ⊗R N → C ⊗R N → 0

is exact.
(2) A sequence of R-modules

A
f−→ B

g−→ C

is exact if and only if

A⊗R N
f⊗1−−−→ B ⊗R N

g⊗1−−→ C ⊗R N

is exact.
(3) N is faithfully flat. That is, N is flat and for any R-module M , if M ⊗R

N = 0, then M = 0.
(4) N is flat and for every maximal ideal m of R, N ̸= mN .

Proof. (1) implies (2): Start with a sequence of R-modules

A
f−→ B

g−→ C

and assume in the sequence

A⊗R N
f⊗1−−−→ B ⊗R N

g⊗1−−→ C ⊗R N
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that im (f ⊗ 1) = ker (g ⊗ 1). We must prove that im f = ker g. Factor f through
A/ ker f and factor g through im g to get the sequence

(5.1) 0→ A/ ker f
f̄−→ B

ḡ−→ im g → 0

where f̄ is one-to-one and ḡ is onto. It is enough to prove im f̄ = ker ḡ. Tensor
(5.1) with N to get the sequence

(5.2) 0→ A/ ker f ⊗R N
f̄⊗1−−−→ B ⊗R N

ḡ⊗1−−→ im g ⊗R N → 0.

By (1) we know that f̄ ⊗ 1 is one-to-one and ḡ ⊗ 1 is onto. By (1), it is enough to
show (5.2) is exact. To do this, it is enough to show im (f̄ ⊗ 1) = im (f ⊗ 1) and
ker (ḡ ⊗ 1) = ker (g ⊗ 1). Consider the commutative diagram

A

α

��

f // B

=

��
A/ ker f

f̄ // B

in which the natural map α is onto, and f̄ is one-to-one. Tensor with N to get the
commutative diagram

A⊗R N

α⊗1
��

f⊗1 // B ⊗R N

=

��
A/ ker f ⊗R N

f̄⊗1 // B ⊗R N

in which α ⊗ 1 is onto. It follows that im (f̄ ⊗ 1) = im (f ⊗ 1). Consider the
commutative diagram

B

=

��

ḡ // im g

β

��
B

g // C

in which the inclusion map β is one-to-one and ḡ is onto. Tensor with N to get the
commutative diagram

B ⊗R N

=

��

ḡ⊗1 // im g ⊗R N

β⊗1
��

B ⊗R N
g⊗1 // C ⊗R N

in which β ⊗ 1 is one-to-one because N is flat. It follows that ker (ḡ ⊗ 1) =
ker (g ⊗ 1).

(1) implies (3): Clearly N is flat. Assume N⊗RM = 0. Then 0→ N⊗RM → 0
is exact and (1) implies 0→M → 0 is exact.

(3) implies (4): Let m be a maximal ideal of R. Then M = R/m is not zero.
By (3), 0 ̸= N ⊗R R/m = N/mN . Therefore N ̸= mN .

(4) implies (3): Suppose M ̸= 0 and prove N ⊗R M ̸= 0. Let x ∈ M , x ̸= 0.
Then if I = annihR(x), we have I ̸= R. Let m be a maximal ideal of R containing
I. By (4) we get IN ⊆ mN ̸= N . Then N ⊗R R/I = N/IN ̸= 0. Tensor the exact
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sequence 0 → R/I → M with (·)⊗N and by flatness we know 0 → N ⊗R R/I →
N ⊗RM is exact. Therefore N ⊗RM ̸= 0.

(3) implies (2): Start with a sequence of R-modules

A
f−→ B

g−→ C

and assume

A⊗R N
f⊗1−−−→ B ⊗R N

g⊗1−−→ C ⊗R N

is exact.
Step 1: Show that im f ⊆ ker g. Tensor the exact sequence

A
g◦f−−→ im (g ◦ f)→ 0.

with N to get the exact sequence

A⊗R N
g◦f⊗1−−−−→ im (g ◦ f)⊗R N → 0.

By Lemma 6.4.7, im (g ◦ f) ⊗R N = im ((g ⊗ 1) ◦ (f ⊗ 1)) = 0. By (3) we have
im (g ◦ f) = 0, so g ◦ f = 0.

Step 2: Show im f ⊇ ker g. Set H = ker g/ im f . To prove H = 0 it is enough
to show H ⊗R N = 0. Tensor the exact sequence

A
f−→ ker g → H → 0.

with N to get the exact sequence

A⊗R N
f⊗1−−−→ ker g ⊗R N → H ⊗R N → 0.

The reader should verify that ker g ⊗R N = ker(g ⊗ 1) and H ⊗R N = ker(g ⊗
1)/ im(f ⊗ 1) = 0. The proof follows.

(2) implies (1): Is left to the reader. □

Example 7.5.2. If N is projective, then N is flat (Exercise 6.4.31) but not
necessarily faithfully flat. For example, say the ring R = I ⊕ J is an internal direct
sum of two nonzero ideals I and J . Then IJ = 0, I2 = I, J2 = J and I + J = R.
The sequence 0 → I → 0 is not exact. Tensor with (·) ⊗R J and get the exact
sequence 0→ 0→ 0. So J is not faithfully flat.

Proposition 7.5.3. Let R be a commutative ring. The R-module

E =
⊕

m∈MaxR

Rm

is faithfully flat.

Proof. Each Rm is flat by Lemma 7.1.4, so E is flat by Exercise 7.5.19. For
every maximal ideal m of R, mRm ̸= Rm so mE ̸= E. To finish the proof, apply
Lemma 7.5.1. □

5.2. Faithfully Flat Algebras.

Lemma 7.5.4. If θ : R→ S is a homomorphism of commutative rings such that
S is a faithfully flat R-module, then the following are true.
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(1) For any R-module M ,

M →M ⊗R S
x 7→ x⊗ 1

is one-to-one. In particular, θ is one-to-one, so we can view R = θ(R) as
a subring of S.

(2) For any ideal I ⊆ R, IS ∩R = I.
(3) The continuous map θ♯ : SpecS → SpecR of Exercise 7.3.20 is onto.

Proof. (1): Let x ̸= 0, x ∈ M . Then Rx is a nonzero submodule of M . If
follows from Lemma 7.5.1 (2) that Rx ⊗R S ̸= 0. But Rx ⊗R S = S(x ⊗ 1) so
x⊗ 1 ̸= 0.

(2): Apply Part (1) with M = R/I. Then θ̄ : R/I → R/I ⊗R S = S/IS is
one-to-one.

(3): Let P ∈ SpecR. By Exercise 7.5.18, SP = S ⊗R RP is faithfully flat over
RP . By Part (2), PRP = PSP ∩ RP , so PSP is not the unit ideal. Let m be
a maximal ideal of SP containing PSP . Then m ∩ RP ⊇ PRP . Since PRP is a
maximal ideal, m∩RP = PRP . Let Q = m∩S. So Q∩R = (m∩S)∩R = m∩R =
(m ∩RP ) ∩R = PRP ∩R = P . □

Lemma 7.5.5. If θ : R→ S is a homomorphism of commutative rings, then the
following are equivalent.

(1) S is faithfully flat as an R-module.
(2) S is a flat R-module and the continuous map θ♯ : SpecS → SpecR is

onto.
(3) S is a flat R-module and for each maximal ideal m of R, there is a maximal

ideal n of S such that n ∩R = m.

Proof. (1) implies (2): Follows from Lemma 7.5.4 (3).
(2) implies (3): There is a prime P of S and P ∩ R = m. Let n be a maximal

ideal of S containing P . Then n∩R ⊇ P ∩R = m. Since m is maximal, n∩R = m.
(3) implies (1): For each maximal ideal m of R, pick a maximal ideal n of S

lying over m. Then mS ⊆ n ̸= S. By Lemma 7.5.1 (3), S is faithfully flat. □

Proposition 7.5.6. Let R be a commutative ring and ϵ : R→ A a homomor-
phism of rings such that ϵ makes A into a progenerator R-module.

(1) Under ϵ, R is mapped isomorphically onto an R-module direct summand
of A.

(2) If B is a subring of A containing the image of ϵ, then the image of ϵ is
an R-module direct summand of B.

(3) A is faithfully flat as an R-module.

Proof. (1): By Corollary 6.3.4, A is R-faithful. The sequence

0→ R
ϵ−→ A

is exact, where ϵ(r) = r · 1. By Exercise 6.5.17, there is a splitting map for ϵ if and
only if

(5.3) HomR(A,R)
Hϵ−−→ HomR(R,R)→ 0
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is exact. Let m be a maximal ideal in R. By Theorem 6.4.23, A⊗R R/m = A/mA
is a progenerator over the field R/m. In other words, A/mA is a nonzero finite
dimensional vector space over R/m. The diagram

R/m⊗R HomR(A,R)
1⊗Hϵ //

∼=
��

R/m⊗R HomR(R,R)

∼=
��

// 0

HomR/m(A/mA,R/m)
Hϵ // HomR/m(R/m, R/m) // 0

commutes. The bottom row is exact since 0 → R/m → A/mA is split exact over
R/m. The vertical maps are isomorphisms by Corollary 6.5.13. Therefore the top
row is exact. Corollary 6.5.3 says that (5.3) is exact. This proves (1).

(2): Assume R ⊆ B ⊆ A is a tower of subrings. If σ : A → R is a left inverse
for ϵ : R→ A, then σ restricts to a left inverse for R→ B.

(3): This follows from Exercise 6.9.7. □

Let S be a faithfully flat R-algebra. In the terminology of Exercise 6.5.16,
Proposition 7.5.7 shows that the functor S⊗R( ) from the category of left R-modules
to the category of left S-modules is faithful.

Proposition 7.5.7. Let S be a faithfully flat R-algebra. If M and N are
R-modules, then the function

HomR(M,N)
ϕ−→ HomS(S ⊗RM,S ⊗R N)

defined by f 7→ 1⊗ f is a monomorphism of abelian groups.

Proof. By Lemma 6.4.17 (4), S ⊗R ( ) is a functor from the category of left
R-modules to the category of left S-modules. The reader should verify that the as-
signment f 7→ 1⊗f defines a homomorphism of abelian groups ϕ : HomR(M,N)→
HomS(S⊗RM,S⊗RN). Suppose f :M → N is a homomorphism of left R-modules
and 1 ⊗ f : S ⊗R M → S ⊗R N is the zero homomorphism. In the commutative
diagram

M

α
!!

f // N

im f

β

==

α is onto and β is one-to-one. Since S is flat, in the commutative diagram

S ⊗RM

1⊗α &&

1⊗f // S ⊗R N

S ⊗R im f

1⊗β

88

1 ⊗ α is onto and 1 ⊗ β is one-to-one. By assumption, the image of 1 ⊗ f is (0).
Therefore, S ⊗R im f = (0). Since S is faithfully flat, this implies im f = (0). □

5.3. Another Hom Tensor Relation.

Proposition 7.5.8. Let S be a flat commutative R-algebra. Let M and N be
R-modules, and assume M is finitely generated.
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(1) The natural map

S ⊗R HomR(M,N)
α−→ HomS(S ⊗RM,S ⊗R N)

is a monomorphism of S-modules.
(2) If M is a finitely presented R-module, then α is an isomorphism of S-

modules.

Proof. IfM is finitely generated and projective, then this follows from Corol-
lary 6.5.13.

(1): By Exercise 6.3.10, M has a free resolution. So there are index sets I and
J and an exact sequence

(5.4) RJ → RI →M → 0

of R-modules. Since M is finitely generated, we assume I is a finite set. Since S is
flat, the functor S ⊗R (·) is exact. By Lemmas 6.4.15 and 6.4.13,

(5.5) SJ → SI → S ⊗RM → 0

is an exact sequence of S-modules. By Proposition 6.5.5, the contravariant functor
HomR(·, N) is left exact. Applying it to (5.4), we get the exact sequence

(5.6) 0→ HomR(M,N)→ HomR(R
I , N)→ HomR(R

J , N).

By Lemma 6.5.7 and Proposition 6.5.8, (5.6) can be written as

(5.7) 0→ HomR(M,N)→
∏
I

N →
∏
J

N.

Tensoring (5.7) with the flat module S gives the exact sequence

(5.8) 0→ S ⊗R HomR(M,N)→ S ⊗R
∏
I

N → S ⊗R
∏
J

N.

Apply the left exact functor HomS(·, S ⊗R N) to (5.5). By Lemma 6.5.7 and
Proposition 6.5.8,

(5.9) 0→ HomS(S ⊗RM,S ⊗R N)→
∏
I

(S ⊗R N)→
∏
J

(S ⊗R N)

is an exact sequence of S-modules. Since I is a finite set,
∏
I N is equal to

⊕
I N

and S⊗R
⊕

I N
∼=
⊕

I(S ⊗R N) ∼=
∏
I S⊗RN by Lemma 6.4.15. Combining (5.8)

and (5.9) with the natural maps yields a commutative diagram

S ⊗R HomR(M,N)
f1

1-to-1
//

α

��

⊕
I(S ⊗R N)

f2 //

β

��

S ⊗R
∏
J N

γ

��
HomS(S ⊗RM,S ⊗R N)

g1

1-to-1
//⊕

I(S ⊗R N)
g2 // ∏

J(S ⊗R N).

(5.10)

Since f1 and β are one-to-one, α is one-to-one.
(2): Because M is of finite presentation, the index sets I and J can both

be chosen to be finite. Hence we assume the vertical maps β and γ are both
isomorphisms. To see that α is onto, let x be an element of the lower left corner
of (5.10). Set y = β−1(g1(x)). Then γ(f2(y)) = g2(β(y)) = g2(g1(x)) = 0. So
y = f1(z) for some z in the upper left corner. Then x = α(z). Note that this also
follows from a slight variation of the Snake Lemma 6.6.2. □



336 7. MODULES OVER COMMUTATIVE RINGS

Proposition 7.5.9. Let S be a flat commutative R-algebra and A an R-algebra.
Let M be a finitely presented A-module and N any A-module. The natural map

S ⊗R HomA(M,N)
α−→ HomS⊗RA(S ⊗RM,S ⊗R N)

is an isomorphism of S-modules.

Proof. Is left to the reader. □

Example 7.5.10. We show by example that Proposition 7.5.8 is false without
the finitely generated hypothesis onM . Let R = Z and S = Q. LetM =

⊕∞
i=1 Z be

the free abelian group on N and N = Q/Z. By Lemma 7.1.4, S is a flat R-algebra.
By Exercise 6.4.45, S ⊗R N = Q⊗Z Q/Z = (0). Therefore,

∞∏
i=1

(S ⊗R N) =

∞∏
i=1

(Q⊗Z Q/Z) = (0).

Let γ : N → Q/Z be defined by i 7→ 1/2i + Z. For any n > 1, if i is chosen so
that 2i > n, then n/2i + Z ̸= 0 + Z. Therefore, γ is an element of infinite order in∏∞
i=1 Q/Z. By Lemma 2.3.26, there is an exact sequence

0→ Z
ℓγ−→

∞∏
i=1

Q/Z

where ℓγ is defined by 1 7→ γ. Tensoring with S = Q,

0→ Q
1⊗ℓγ−−−→ Q⊗Z

( ∞∏
i=1

Q/Z

)
is exact, so the group Q ⊗Z (

∏∞
i=1 Q/Z) is non-trivial. However, its image under

the natural map

Q⊗Z

( ∞∏
i=1

Q/Z

)
→
∞∏
i=1

(Q⊗Z Q/Z)

is the trivial group (0). In particular, this shows tensoring does not distribute across
an infinite direct product. We also have

S ⊗R HomR(M,N) = Q⊗Z HomZ

( ∞⊕
i=1

Z,Q/Z

)

= Q⊗Z

( ∞∏
i=1

HomZ (Z,Q/Z)

)

= Q⊗Z

( ∞∏
i=1

Q/Z

)
is a non-trivial group. Since

HomS(S ⊗RM,S ⊗R N) = HomQ

(
Q⊗Z

∞⊕
i=1

Z,Q⊗Z Q/Z

)
= (0)

is the trivial group, this shows the natural map α of Proposition 7.5.8 is not one-
to-one.

For another proof of Proposition 7.5.11, see Proposition 7.8.9.
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Proposition 7.5.11. Let S be a commutative flat R-algebra and M a finitely
generated R-module. Then annihS(S ⊗R M) = S annihR(M). In particular, if M
is a faithful R-module, then S ⊗RM is a faithful S-module.

Proof. By Lemma 4.1.2,

(5.11) 0→ annihR(M)→ R
θR−−→ HomR(M,M)

is an exact sequence of R-modules. Likewise,

(5.12) 0→ annihS(S ⊗RM)→ S
θS−→ HomS(S ⊗RM,S ⊗RM)

is an exact sequence of S-modules. Since S is a flat R-module,

(5.13) 0→ S ⊗R annihR(M)
1⊗θR−−−→ S ⊗R HomR(M,M)

is an exact sequence of S-modules. Since θS factors through 1⊗ θR and the nat-
ural monomorphism α of Proposition 7.5.8, the kernel of θS is equal to the ker-
nel of 1 ⊗ θR. This follows from Theorem 6.6.3, or by direct observation. Thus
S annihR(M) = annihS(S ⊗RM). □

5.4. Faithfully Flat Base Change.

Lemma 7.5.12. Let S be a commutative faithfully flat R-algebra and M an
R-module.

(1) M is finitely generated over R if and only if S ⊗RM is finitely generated
over S.

(2) M is of finite presentation over R if and only if S ⊗R M is of finite
presentation over S.

(3) M is finitely generated projective over R if and only if S ⊗RM is finitely
generated projective over S.

(4) M is flat over R if and only if S ⊗RM is flat over S.
(5) M is faithfully flat over R if and only if S ⊗RM is faithfully flat over S.
(6) If M is an R-generator, then S ⊗R M is an S-generator. If M is a

finitely presented R-module and S⊗RM is an S-generator, then M is an
R-generator.

(7) If S ⊗RM is faithful over S, then M is faithful over R.

Proof. (1): IfM is finitely generated, then Theorem 6.4.23 (4) shows S⊗RM
is finitely generated. Conversely, choose generators {t1, . . . , tm} for S ⊗RM . After
breaking up summations and factoring out elements of S, we can assume each ti
looks like 1⊗ xi where xi ∈M . Consider the sequence

(5.14) R(n) →M → 0

which is defined by (r1, . . . , rn) 7→
∑
rixi. Tensoring (5.14) with S gives the se-

quence

S(n) → S ⊗RM → 0

which is exact. Since S is faithfully flat, (5.14) is exact.
(2): Assume M is finitely presented. Suppose R(n) → R(n) →M → 0 is exact.

Tensoring is right exact, so S(n) → S(n) → S⊗RM → 0 is exact. Therefore S⊗RM
is finitely presented. Conversely assume S ⊗RM is finitely presented. By Part (1)
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M is finitely generated over R. Suppose ϕ : R(n) → M is onto. Let N = kerϕ. It
is enough to show that N is finitely generated. Since

0→ N → R(n) ϕ−→M → 0

is exact and S is faithfully flat,

0→ S ⊗R N → S(n) 1⊗ϕ−−−→ S ⊗RM → 0

is exact. By Lemma 7.1.10 (3), S ⊗R N is finitely generated over S. Part (1) says
that N is finitely generated over R.

(3): If M is finitely generated and projective over R, then Theorem 6.4.23 says
the same holds for S⊗RM over S. Conversely, suppose S⊗RM is finitely generated
and projective over S. By Corollary 6.2.8, S ⊗RM is of finite presentation over S.
By Part (2), M is of finite presentation over R. To show that M is R-projective,
by Proposition 6.5.5 (2) it is enough to show HomR(M, ·) is a right exact functor.
Start with an exact sequence

(5.15) A
α−→ B → 0

of R-modules. It is enough to show

(5.16) HomR(M,A)
Hα−−→ HomR(M,B)→ 0

is exact. Since S is faithfully flat over R, it is enough to show

(5.17) S ⊗R HomR(M,A)
1⊗Hα−−−−→ S ⊗R HomR(M,B)→ 0

is exact. Tensoring is right exact, so tensoring (5.15) with S ⊗R (·) gives the exact
sequence

(5.18) S ⊗R A
1⊗α−−−→ S ⊗R B → 0.

Since we are assuming S ⊗R M is S-projective, by Proposition 6.5.5 (2) we can
apply the functor HomS(S ⊗RM, ·) to (5.18) yielding

(5.19) HomS(S ⊗RM,S ⊗R A)
H1⊗α−−−→ HomS(S ⊗RM,S ⊗R B)→ 0

which is exact. Combine (5.17) and (5.19) to get the commutative diagram

S ⊗R HomR(M,A)
1⊗Hα //

∼=
��

S ⊗R HomR(M,B)

∼=
��

HomS(S ⊗RM,S ⊗R A)
H1⊗α // HomS(S ⊗RM,S ⊗R B) // 0

where the vertical maps are the natural maps from Proposition 7.5.8. Since the
bottom row is exact and the vertical maps are isomorphisms, it follows that 1⊗Hα
is onto.

(4): Assume M ⊗R S is a flat S-module. By Exercise 7.5.24, M ⊗R S is flat
over R. Let

0→ A→ B → C → 0

be an exact sequence of R-modules. Then

0→ A⊗RM ⊗R S → B ⊗RM ⊗R S → C ⊗RM ⊗R S → 0

is an exact sequence of R-modules. Since S is faithfully flat over R,

0→ A⊗RM → B ⊗RM → C ⊗RM → 0
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is an exact sequence of R-modules.
(6): AssumeM is a finitely presented R-module and S⊗RM is an S-generator.

To show M is an R-generator, we apply Exercise 6.5.16. Suppose f : A → B is
a nonzero homomorphism of R-modules. We show that there exists an R-module
homomorphism β :M → A such that fβ :M → B is nonzero. Since S is faithfully
flat over R, 1⊗ f : S ⊗R A→ S ⊗R B is nonzero. Since S ⊗RM is an S-generator,
there exists h : S ⊗R M → S ⊗R A such that (1 ⊗ f)h : S ⊗R M → S ⊗R B is
nonzero. By Proposition 7.5.8, α : S ⊗R HomR(M,A)→ HomS(S ⊗RM,S ⊗R A)
is an isomorphism. So there exist s1, . . . , sm in S and h1, . . . , hm in HomR(M,A)
such that h = α(

∑m
i=1 si ⊗ hi). Hence there exists x ∈ A and some 1 ≤ i ≤ m such

that fhi(x) ̸= 0. Therefore β exists.
(7): Let θR : R → HomR(M,M) be the homomorphism of Lemma 4.1.2. We

also have θS : S → HomS(S ⊗RM,S ⊗RM), and the diagram

S

1⊗θR
''

θS // HomS(S ⊗RM,S ⊗RM)

S ⊗R HomR(M,M)

α

44

commutes, where α is the homomorphism of Proposition 7.5.8. By assumption, θS
is one-to-one. Therefore, 1⊗ θR is one-to-one. Since S is faithfully flat over R, θR
is one-to-one.

(5): Is left to the reader. □

5.5. Faithfully Flat Descent of Central Algebras.

Definition 7.5.13. Let R be a commutative ring and A an R-algebra. If the
structure homomorphism R→ Z(A) from R to the center of A is an isomorphism,
then we say A is a central R-algebra.

Proposition 7.5.14. Let R be a commutative ring. Let A be an R-algebra and
S a commutative faithfully flat R-algebra. If A⊗R S is a central S-algebra, then A
is a central R-algebra.

Proof. Assume A⊗RS is a central S-algebra. Since S is flat over R, Z(A)⊗R
S → A⊗R S is one-to-one. By hypothesis, the composite map

R⊗R S → Z(A)⊗R S → Z(A⊗R S)

is an isomorphism. Since S is faithfully flat over R, R→ Z(A) is an isomorphism.
□

Proposition 7.5.15. Let R be a commutative ring and A an R-algebra. If
Am = A⊗R Rm is a central Rm-algebra for every maximal ideal m of R, then A is
a central R-algebra.

Proof. Let m be a maximal ideal of R. Since Rm is a flat R-module, Z(A)⊗R
Rm → Am is one-to-one. Clearly, Z(A) ⊗R Rm ⊆ Z(Am). We are given that the
composite map

Rm → Z(A)⊗R Rm ⊆ Z(Am)

is an isomorphism. Therefore, Rm → Z(A) ⊗R Rm is an isomorphism. By Exer-
cise 7.5.16, R→ Z(A) is an isomorphism. □
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5.6. Exercises.

Exercise 7.5.16. Let R be a commutative ring, let M and N be R-modules,
and f ∈ HomR(M,N). For any prime ideal P ∈ SpecR there is the RP -module
homomorphism fP :MP → NP obtained by “localizing at P”.

(1) Prove that the following are equivalent.
(a) f is one-to-one.
(b) fP is one-to-one for all P ∈ SpecR.
(c) fm is one-to-one for all m ∈ MaxR.

(2) Prove that the following are equivalent.
(a) f is onto.
(b) fP is onto for all P ∈ SpecR.
(c) fm is onto for all m ∈ MaxR.

Exercise 7.5.17. Let R be a commutative ring. Let M and N be finitely
generated and projective R-modules of constant rank and assume RankR(M) =
RankR(N). Let f ∈ HomR(M,N). Show that if f is onto, then f is one-to-one.

Exercise 7.5.18. (Faithfully Flat Is Preserved under a Change of Base) If A is
a commutative R-algebra and M is a faithfully flat R-module, show that A⊗RM
is a faithfully flat A-module.

Exercise 7.5.19. Let R be a ring and {Mi | i ∈ I} a set of right R-modules.
Prove that the direct sum

⊕
i∈IMi is a flat R-module if and only if each Mi is a

flat R-module.

Exercise 7.5.20. Let R be a ring. LetM and N be right R-modules. IfM is a
flat R-module and N is a faithfully flat R-module, show that M ⊕N is a faithfully
flat R-module.

Exercise 7.5.21. State and prove a version of Lemma 7.5.1 for a ring R which
is not necessarily commutative.

Exercise 7.5.22. Let R be a ring. Show that R is a faithfully flat R-module.
Show that a free R-module is faithfully flat.

Exercise 7.5.23. Let R be a ring and S = R[x] the polynomial ring which can
be viewed as a left R-module. Prove:

(1) S is a free R-module.
(2) S is a faithfully flat R-module.
(3) The exact sequence 0→ R→ S of R-modules is split. That is, R · 1 is an

R-module direct summand of S.

Exercise 7.5.24. (Flat over Flat Is Flat) Let θ : R→ A be a homomorphism
of rings and M a left A-module. Using θ, view A as a left R-right A-bimodule and
M as a left R-module. Show that if A is a flat R-module, andM is a flat A-module,
then M is a flat R-module.

Exercise 7.5.25. (Faithfully Flat over Faithfully Flat Is Faithfully Flat) If A
is a commutative faithfully flat R-algebra and M a faithfully flat A-module, show
that M is a faithfully flat R-module.

Exercise 7.5.26. Let R be a ring, M ∈ RMR and N ∈ RM. Prove:

(1) If M and N are flat left R-modules, then M ⊗RN is a flat left R-module.



5. FAITHFULLY FLAT MODULES AND ALGEBRAS 341

(2) Assume R is commutative. If M and N are faithfully flat R-modules,
then M ⊗R N is a faithfully flat R-module.

Exercise 7.5.27. Let θ : R → S be a local homomorphism of local rings (see
Exercise 3.2.32). If S is a flat R-algebra, show that S is faithfully flat.

Exercise 7.5.28. LetR be a commutative ring. Assume f1, . . . , fn are elements
of R − (0). Let S = Rf1 ⊕ · · · ⊕ Rfn be the direct sum. Let θ : R → S be defined
by θ(x) = (x/1, . . . , x/1). Prove that the following are equivalent.

(1) f1, . . . , fn generate the unit ideal of R. That is, R = Rf1 + · · ·+Rfn.
(2) S is a faithfully flat R-algebra.

Exercise 7.5.29. Let R be a commutative ring and {αi | i ∈ I} a subset
of R − (0). Let S =

∏
i∈I R[α

−1
i ]. Then S is an R-algebra, where the structure

homomorphism is the unique map R→ S of Exercise 6.3.12 which commutes with
each natural map R→ R[α−1i ]. Prove that the following are equivalent.

(1) S is a faithfully flat R-algebra.
(2) There exists a finite subset {i1, . . . , in} ⊆ I such thatR[α−1i1 ]

⊕
· · ·
⊕
R[α−1in ]

is faithfully flat over R.
(3) There exists a finite subset {i1, . . . , in} ⊆ I such that R = Rαi1 + · · · +

Rαin .

Exercise 7.5.30. Let R = Z be the ring of integers and S = Z[2−1] the
localization of R obtained by inverting 2. Prove:

(1) S is not a projective R-module. (See Exercise 6.3.14.)
(2) S is a flat R-module.
(3) S is not a finitely generated R-module.
(4) S is not a faithfully flat R-module.
(5) The exact sequence 0→ R → S is not split exact. That is, R · 1 is not a

direct summand of S.

Exercise 7.5.31. Let R be a commutative ring and I an ideal of R which is
contained in the nil radical of R. Show that R/I is a flat R-algebra if and only if
I = (0).

Exercise 7.5.32. Let R be a commutative ring and W ⊆ R a multiplicative
set. Show that W−1R is a faithfully flat R-algebra if and only if W ⊆ Units(R).

Exercise 7.5.33. Let f : R → S be a homomorphism of commutative rings
and f ♯ : SpecS → SpecR the continuous map of Exercise 7.3.20. Assume

(a) f ♯ is one-to-one,
(b) the image of f ♯ is an open subset of SpecR, and
(c) for every q ∈ SpecS, if p = q ∩ R, then the natural map Rp → Sq is an

isomorphism.

If (a), (b) and (c) are satisfied, then we say f ♯ is an open immersion. Under these
hypotheses, prove the following.

(1) For every q ∈ SpecS, if p = q ∩R, then S ⊗R Rp is isomorphic to Sq.
(2) If α ∈ R and U(α) is a nonempty basic open subset of the image of f ♯,

then R[α−1] is isomorphic to S ⊗R R[α−1].

Exercise 7.5.34. Let f : R → S be a homomorphism of commutative rings.
Show that f is an isomorphism of rings if and only if
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(a) f ♯ : SpecS → SpecR is a homeomorphism and
(b) for every q ∈ SpecS, if p = q ∩ R, then the natural map Rp → Sq is an

isomorphism.

Exercise 7.5.35. Let f : R→ S be a homomorphism of commutative rings. In
each of the following, give a specific example to show that f is not an isomorphism
if either condition (a) or (b) of Exercise 7.5.34 is not satisfied.

(1) Give an example such that condition (a) is satisfied, condition (b) is not
satisfied, and f is not an isomorphism.

(2) Give an example such that f ♯ is one-to-one, condition (b) is satisfied, and
f is not an isomorphism.

(3) Give an example such that f ♯ is onto, condition (b) is satisfied, and f is
not an isomorphism.

5.7. Locally of Finite Type is Finitely Generated as an Algebra. If S
is a commutative R-algebra, then S is said to be locally of finite type in case there
exist elements f1, . . . , fn in S such that S = Sf1 + · · ·+Sfn and for each i, S[f−1i ]
is a finitely generated R-algebra. Proposition 7.5.36 is from [44, Proposition 1, p.
87].

Proposition 7.5.36. Let S be a commutative R-algebra. Then S is locally of
finite type if and only if S is a finitely generated R-algebra.

Proof. Assume S is locally of finite type and prove that S is finitely generated
as an R-algebra. The converse is trivial. We are given f1, . . . , fn in S such that S =
Sf1+· · ·+Sfn and for each i, S[f−1i ] is a finitely generated R-algebra. Fix elements

u1, . . . , un in S such that 1 = u1f1+ · · ·+unfn. Fix elements yi1, . . . , yim in S[f−1i ]

such that S[f−1i ] = R[yi1, . . . , yim]. There exist elements sij in S and nonnegative

integers ei such that yij = sijf
−ei
i in S[f−1i ]. Let S1 be the finitely generated

R-subalgebra of S generated by the finite set of elements {sij} ∪ {f1, . . . , fn} ∪
{u1, . . . , un}. To finish, it is enough to show that S1 is equal to S. Let α be an
arbitrary element of S and let 1 ≤ i ≤ n. Consider α/1 as an element of S[f−1i ].

Since S[f−1i ] is generated over R by si1, . . . , sim and f−1i , there exists an element βi
in S1 such that α/1 = βif

−ki
i for some ki ≥ 0. For some ℓi ≥ 0, f ℓii (βi−fkii α) = 0 in

S. For some large integer L, fLi α = fL−kii βi is an element of S1, for each i. For any
positive integer N , α = 1α = (u1f1+· · ·+unfn)Nα. By the multinomial expansion,
when N is sufficiently large, (u1f1+ · · ·+unfn)N is in the ideal S1f

L
1 + · · ·+S1f

L
n .

Therefore, α is in S1. □

Corollary 7.5.37. Let f : R→ S be a homomorphism of commutative rings.
If f ♯ : SpecS → SpecR is an open immersion (see Exercise 7.5.33), then S is a
finitely generated R-algebra.

Proof. Is left to the reader. □

Corollary 7.5.38. Let R be a commutative semilocal ring. If m ∈ MaxR,
then Rm is a finitely generated R-algebra. The map SpecRm → SpecR is an open
immersion.

Proof. If MaxR = {m}, then Rm = R and there is nothing to prove. As-
sume n ≥ 1 and MaxR = {m,m1, . . . ,mn}. For i = 1, . . . , n pick αi ∈ mi − m.
Set α = α1 · · ·αn. Then α ∈ mi − m for each i. Let R[α−1] be the R-algebra
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formed by inverting α. Let θ : R → R[α−1]. By Exercise 7.3.26, the image of
θ♯ : SpecR[α−1] → SpecR consists of those prime ideals of R that do not con-
tain α. So Max(R[α−1]) = {m}. By Exercise 7.1.21, Rm = R[α−1] ⊗R Rm. By
Exercise 7.5.16, the natural map ϕ : R[α−1] → Rm is an isomorphism. By Exer-
cise 4.1.29, R[α−1] is a finitely generated R-algebra. Since SpecR[α−1] → SpecR
is an open immersion, this also shows SpecRm → SpecR is an open immersion. □

6. Chain Conditions

Definition 7.6.1. Let R be any ring and M an R-module. Let S be the
set of all R-submodules of M , partially ordered by ⊆, the set inclusion relation.
The reader is referred to Section 1.1 for the definitions of ACC, DCC, maximum
condition, and minimum condition on the partially ordered set S. We say that M
satisfies the ascending chain condition (ACC) on submodules, if S satisfies the ACC.
We say that M satisfies the descending chain condition (DCC) on submodules, if S
satisfies the DCC. We say thatM satisfies themaximum condition on submodules, if
S satisfies the maximum condition. We say thatM satisfies the minimum condition
on submodules, if S satisfies the minimum condition.

Definition 7.6.2. Let R be any ring and M an R-module. We say M is
noetherian if M satisfies the ACC on submodules. We say M is artinian if M
satisfies the DCC on submodules. The ring R is said to be (left) noetherian if R
is noetherian when viewed as a left R-module. In this case we say R satisfies the
ACC on left ideals. The ring R is said to be (left) artinian if R is artinian when
viewed as a left R-module. In this case we say R satisfies the DCC on left ideals.

Lemma 7.6.3. Let R be a ring and M an R-module. Then M is artinian, that
is M satisfies the DCC on submodules, if and only if M satisfies the minimum
condition on submodules.

Proof. This follows from Exercise 1.4.11, □

Corollary 7.6.4. Let R be a ring. Then R is artinian, that is R satisfies the
DCC on left ideals, if and only if R satisfies the minimum condition on left ideals.

Example 7.6.5. We list a few examples of artinian rings. Some of the proofs
will come later.

(1) A division ring has only two left ideals, hence satisfies both ACC and
DCC on left ideals.

(2) If M is a finite dimensional vector space over a division ring D, then
HomD(M,M) is artinian, by Exercise 7.6.34. This and Corollary 4.4.12
says the ring of n-by-n matrices over a division ring is artinian.

(3) By Exercise 7.6.35, any finite dimensional algebra over a field is artinian.

Lemma 7.6.6. Let R be a ring and M an R-module. The following are equiva-
lent.

(1) M is noetherian. That is, M satisfies the ACC on submodules.
(2) M satisfies the maximum condition on submodules.
(3) Every submodule of M is finitely generated.

Proof. (1) and (2) are equivalent by Exercise 1.4.11.
(2) implies (3): Let A be a submodule of M and let S be the set of all finitely

generated submodules of A. Let B be a maximal member of S. If B = A, then
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we are done. Otherwise, let x be an arbitrary element of A − B. So B + Rx is a
finitely generated submodule of A which properly contains B. This contradicts the
maximality of B.

(3) implies (1): Suppose M0 ⊆M1 ⊆M2 ⊆ . . . is a chain of submodules in M .
The set theoretic union U =

⋃
n≥0Mn is also a submodule ofM . Then U is finitely

generated, so for large enough m, Mm contains each element of a generating set for
U . Then U ⊆ Mm. Moreover, for each i ≥ m, U ⊆ Mm ⊆ Mi ⊆ U . This proves
that the ACC is satisfied by M . □

Corollary 7.6.7. Let R be a ring. The following are equivalent.

(1) R is noetherian. That is, R satisfies the ACC on left ideals.
(2) Every left ideal of R is finitely generated as an R-module.
(3) Every nonempty set of left ideals of R contains a maximal member.

Example 7.6.8. We list a few examples of noetherian rings. Some of the proofs
will come later.

(1) In a principal ideal ring R, left ideals are principal, so Corollary 7.6.7 (3)
is satisfied. In particular, a PID is noetherian.

(2) It follows from the Hilbert Basis Theorem, Theorem 10.2.1, that a poly-
nomial ring k[x1, . . . , xn] in n variables over a field k is noetherian.

(3) It follows from Theorem 8.4.1 that an artinian ring is noetherian.

Lemma 7.6.9. Let R be any ring and

0→ A
α−→ B

β−→ C → 0

a short exact sequence of R-modules.

(1) The following are equivalent.
(a) B satisfies the ACC on submodules.
(b) A and C satisfy the ACC on submodules.

(2) The following are equivalent.
(a) B satisfies the DCC on submodules.
(b) A and C satisfy the DCC on submodules.

Proof. (2): Is left to the reader.
(1): (a) implies (b): Assume B satisfies the ACC on submodules. By virtue of

α we can identify A with an R-submodule of B. Any ascending chain of submodules
of A is also an ascending chain of submodules in B, hence is eventually constant.
Therefore A satisfies the ACC on submodules. If C0 ⊆ C1 ⊆ C2 ⊆ . . . is a chain
of submodules in C, then β−1(C0) ⊆ β−1(C1) ⊆ β−1(C2) ⊆ . . . is a chain of
submodules of B. There exists d such that for all i > d, β−1(Cd) = β−1(Ci). But
β is onto, so Cd = Ci and we have shown C satisfies the ACC on submodules.

(b) implies (a): Assume A and C satisfy the ACC on submodules. For sim-
plicity’s sake, identify A with the kernel of β. Let B0 ⊆ B1 ⊆ B2 ⊆ . . . be a
chain of submodules in B. For each i set Ci = β(Bi) and let Ai be the kernel of
β : Bi → Ci. The ascending chain C0 ⊆ C1 ⊆ C2 ⊆ . . . eventually is constant. The
reader should verify that the Ais form an ascending chain A0 ⊆ A1 ⊆ A2 ⊆ . . . in
A which also is eventually constant. Find some d > 0 such that for all i > d we
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have Ad = Ai and Cd = Ci. The diagram

0 // Ad
α //

=

��

Bd
β //

⊆
��

Cd //

=

��

0

0 // Ai
α // Bi

β // Ci // 0

commutes. By the Five Lemma, (Theorem 6.6.1), the center vertical arrow is onto
so Bd = Bi. □

Corollary 7.6.10. Let R be a ring, M an R-module and A a submodule.

(1) The following are equivalent.
(a) M satisfies the ACC on submodules.
(b) A and M/A satisfy the ACC on submodules.

(2) The following are equivalent.
(a) M satisfies the DCC on submodules.
(b) A and M/A satisfy the DCC on submodules.

Proof. Apply Lemma 7.6.9 to the exact sequence 0 → A → M → M/A →
0. □

Corollary 7.6.11. Let R be a ring and M1, . . . ,Mn some R-modules.

(1) The following are equivalent.
(a) For each i, Mi satisfies the ACC on submodules.
(b) M1 ⊕ · · · ⊕Mn satisfies the ACC on submodules.

(2) The following are equivalent.
(a) For each i, Mi satisfies the DCC on submodules.
(b) M1 ⊕ · · · ⊕Mn satisfies the DCC on submodules.

Proof. If n = 2, the result follows from Lemma 7.6.9 applied to the exact
sequence 0→M1 →M1⊕M2 →M2 → 0. Use induction on n. Apply Lemma 7.6.9
to the exact sequence

0→M1 ⊕ · · · ⊕Mn−1 →M1 ⊕ · · · ⊕Mn →Mn → 0

to finish the proof. □

Corollary 7.6.12. If R is a noetherian ring and M is a finitely generated
R-module, then

(1) M satisfies the ACC on submodules,
(2) M is finitely presented,
(3) M satisfies the maximum condition on submodules, and
(4) every submodule of M is finitely generated.

Proof. By Lemma 4.2.12, for some m > 0, M is the homomorphic image of
R(m). There is an exact sequence

0→ K → R(m) θ−→M → 0

where K is defined to be the kernel of θ. To prove (2) it is enough to prove K
is finitely generated. If we prove M and K both satisfy the ACC on submodules,
then we get (1) and Lemma 7.6.6 implies (2), (3) and (4). By Definition 7.6.2, R as
an R-module satisfies the ACC on submodules. By Corollary 7.6.11, R(m) satisfies
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the ACC on submodules. By Lemma 7.6.9, M and K both satisfy the ACC on
submodules. □

Corollary 7.6.13. Let R be a noetherian ring.

(1) If I is a two-sided ideal of R, then R/I is noetherian.
(2) If R is commutative and W ⊆ R is a multiplicative set, then RW is

noetherian.

Proof. (1) Lemma 7.6.9 applied to the exact sequence of R-modules

0→ I → R→ R/I → 0

shows that R/I satisfies the ACC on left ideals, hence is noetherian.
(2) Let J be an ideal in RW . If x/w ∈ J , then x/1 ∈ J . Let I be the ideal of

R consisting of all x such that x/1 ∈ J . Then I is finitely generated, IW = J , and
a generating set for I as an ideal in R maps to a generating set for IW as an ideal
of RW . □

Proposition 7.6.14. Let R be a commutative noetherian ring.

(1) SpecR is a noetherian topological space.
(2) SpecR has a finite number of irreducible components.
(3) SpecR has a finite number of connected components.

Proof. Apply Corollary 7.3.10 and Proposition 1.4.7 □

Corollary 7.6.15. Let R be a commutative noetherian ring and I an ideal of
R which is not the unit ideal. There is a one-to-one correspondence between the
irreducible components of V (I) and the minimal prime over-ideals of I given by
Z 7→ I(Z).

Proof. Let V (I) = Z1∪· · ·∪Zr be the decomposition into irreducible compo-
nents, which exists by Propositions 7.6.14 and 1.4.7. For each i, let Pi = I(Zi). By
Lemma 7.3.11, each of the ideals P1, . . . , Pr is prime. First we show that each Pi
is minimal. Assume I ⊆ Q ⊆ Pi, for some prime Q. Then V (I) ⊇ V (Q) ⊇ Zi. By
Lemma 7.3.11, V (Q) is irreducible. By the uniqueness part of Proposition 1.4.7,
V (Q) = Zi. Therefore, Q = I(V (Q)) = Pi. Now let P be a minimal prime over-
ideal of I. We show that P is equal to one of P1, . . . , Pr. By Lemma 7.3.11, V (P )
is an irreducible subset of V (I). Since V (P ) ⊆ Z1 ∪ · · · ∪ Zr, V (P ) ⊆ Zi, for some
i. Therefore, I ⊆ Pi ⊆ P . Since P is minimal, P = Pi. □

Theorem 7.6.16. Let R be a commutative noetherian ring. Then there exist
primitive idempotents e1, . . . , en in R such that R is the internal direct sum R =
Re1 ⊕ · · · ⊕ Ren. This decomposition is unique in the sense that, if R = Rf1 ⊕
· · · ⊕ Rfp is another such decomposition of R, then n = p, and after rearranging,
e1 = f1, . . . , en = fn.

Proof. Let SpecR = X1∪· · ·∪Xn be the decomposition into connected com-
ponents, which exists by Propositions 7.6.14 and 1.4.7. By Corollary 7.3.15 there
are idempotents e1, . . . , en in R such that Xi = U(ei) = V (1−ei) is homeomorphic
to SpecRei, and R = Re1⊕· · ·⊕Ren. Corollary 7.3.17 implies each ei is a primitive
idempotent. The uniqueness claim comes from Theorem 7.2.5. □
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Example 7.6.17. Consider the localization Z[2−1] of Z at the multiplicative
set {1, 2, 22, 23, . . . }. By Example 7.6.8, the principal ideal domain Z is noetherian.
By Corollary 7.6.13, Z[2−1] is a noetherian ring. As a Z-module Z[2−1] is not
noetherian since

Z · 2−1 ⊊ Z · 2−2 ⊊ Z · 2−3 ⊊ · · · ⊊ Z · 2−i ⊊ · · ·
is a strictly increasing chain of Z-submodules.

6.1. Exercises.

Exercise 7.6.18. Let R1, . . . , Rn be rings. Prove that the direct sum R1 ⊕
· · · ⊕Rn is an artinian ring if and only if each Ri is an artinian ring.

Exercise 7.6.19. Let R be an artinian ring and M a finitely generated R-
module. Show that M satisfies the DCC on submodules.

Exercise 7.6.20. Prove that if R is an artinian ring and I is a two-sided ideal
in R, then R/I is artinian.

Exercise 7.6.21. Let R be a commutative artinian ring andW is a multiplica-
tive set in R. Show that W−1R is artinian.

Exercise 7.6.22. Let R be a noetherian ring and M a finitely generated R-
module. Prove that the following are equivalent.

(1) M is flat.
(2) M is projective.

Exercise 7.6.23. Prove that if R is an artinian domain, then R is a division
ring.

Exercise 7.6.24. Let θ : R → S be a homomorphism of commutative rings
such that S is a faithfully flat R algebra. Prove:

(1) If S is artinian, then R is artinian.
(2) If S is noetherian, then R is noetherian.

Exercise 7.6.25. Let R be a noetherian commutative ring. Show that if M
and N are finitely generated R-modules, then HomR(M,N) is a finitely generated
R-module.

Exercise 7.6.26. This exercise is based on an example attributed to Lance

Small. Let R be the subring ofM2(Q) consisting of all matrices of the form

(
a 0
b c

)
where a ∈ Z and b, c ∈ Q. Show that every left ideal of R is finitely generated.
Show that R does not satisfy the ACC on right ideals. Conclude that R is left
noetherian but not right noetherian. Show R is not isomorphic to the opposite ring
Ro.

6.2. Composition Series.

Definition 7.6.27. Let R be any ring and M an R-module. We say M is
simple if M ̸= 0 and 0 is a maximal submodule of M . So if M is a simple module,
then (0) and M are the only submodules.

Definition 7.6.28. Let R be any ring and M an R-module. Suppose there is
a strictly descending finite chain of submodules

M =M0 ⊋M1 ⊋M2 ⊋ · · · ⊋Mn = 0
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starting with M = M0 and ending with Mn = 0. The length of the chain is n.
A composition series for M is a chain such that Mi/Mi+1 is simple. If M has
no composition series, define ℓ(M) = ∞. Otherwise, let ℓ(M) be the minimum
of the lengths of all composition series of M . The number ℓ(M) is called the
length of M . If ℓ(M) <∞, then we say M is a module of finite length. We prove in
Proposition 7.6.29 below that ifM has a composition series, then every composition
series has the same length. We show in Proposition 7.6.30 below that a module M
of finite length satisfies both the ACC and DCC on submodules. In particular, M
is finitely generated.

Proposition 7.6.29. Let R be any ring and M an R module. Suppose that M
has a composition series of length n. Then

(1) If N is a proper submodule of M , then ℓ(N) < ℓ(M).
(2) Every chain in M has length less than or equal to ℓ(M).
(3) Every composition series has length n.
(4) Every chain in M can be extended to a composition series.

Proof. (1): Suppose

M =M0 ⊋M1 ⊋M2 ⊋ · · · ⊋Mn = 0

is a composition series forM such that n = ℓ(M). For each i, set Ni = N∩Mi. The
reader should verify that the kernel of the composite map Ni → Mi → Mi/Mi+1

is Ni+1. Therefore, Ni/Ni+1 → Mi/Mi+1 is one-to-one. Either Ni+1 = Ni, or
Ni/Ni+1

∼= Mi/Mi+1 is simple. If we delete any repetitions from N = N0 ⊇ N1 ⊇
· · ·Nn = 0, then we are left with a composition series for N . This shows ℓ(N) ≤
ℓ(M). For contradiction’s sake assume ℓ(N) = ℓ(M). Then Ni/Ni+1

∼= Mi/Mi+1

for each i = 0, . . . , n− 1. By a finite induction argument we conclude that N =M ,
a contradiction.

(2): Given any chain of submodules

M =M0 ⊋M1 ⊋M2 ⊋ · · · ⊋Mm = 0

starting at M and ending at 0, apply Part (1) to get

0 < ℓ(Mm−1) < · · · < ℓ(M1) < ℓ(M)

which proves that m ≤ ℓ(M).
(3): Follows straight from Part (2) and the definition of ℓ(M).
(4): Consider any chain of submodules

M =M0 ⊋M1 ⊋M2 ⊋ · · · ⊋Mm = 0

starting at M and ending at 0. If m = ℓ(M), then this is a composition series.
Otherwise for some i, Mi/Mi+1 is not simple, so there exists a proper submodule
Mi ⊊ N ⊊Mi+1. Insert N into the chain, re-label and get a chain of length m+1.
Repeat this insertion procedure until the length of the new chain is equal to ℓ(M),
at which point it must be a composition series. □

Proposition 7.6.30. Let R be any ring and M an R-module. The following
are equivalent.

(1) M has a composition series.
(2) M satisfies both the ACC and the DCC on submodules.
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Proof. (1) implies (2): By Proposition 7.6.29 all chains in M are of bounded
length.

(2) implies (1): By Lemma 7.6.6, every submodule ofM satisfies the maximum
condition on submodules. Set M0 = M . Let M1 be a maximal submodule of M0.
Iteratively suppose i > 0 and letMi+1 be a maximal submodule ofMi. The strictly
descending chain M0,M1,M2, . . . must converge to 0 since M satisfies the DCC on
submodules. The result is a composition series. □

Proposition 7.6.31. Let R be any ring and

0→ A
α−→ B

β−→ C → 0

an exact sequence of R-modules of finite length. Then ℓ(B) = ℓ(A) + ℓ(C).

Proof. Start with a composition series A = A0 ⊋ A1 ⊋ · · · ⊋ Am = 0 for A
and a composition series C = C0 ⊋ C1 ⊋ · · · ⊋ Cn = 0 for C. Then

B = β−1(C0) ⊋ β−1(C1) ⊋ · · · ⊋ β−1(Cn) = α(A0) ⊋ α(A1) ⊋ · · · ⊋ α(Am) = 0

is a composition series for B. □

6.3. Exercises.

Exercise 7.6.32. Let D be a division ring and V a finite dimensional vector
space over D. Prove:

(1) V is a simple module if and only if dimD(V ) = 1.
(2) dimD(V ) = ℓ(V ).

Exercise 7.6.33. Let D be a division ring and V a vector space over D. Prove
that the following are equivalent.

(1) V is finite dimensional over D.
(2) V is a D-module of finite length.
(3) V satisfies the ACC on submodules.
(4) V satisfies the DCC on submodules.

Exercise 7.6.34. Let D be a division ring.

(1) Prove that the ring Mn(D) of all n-by-n matrices over D is both artinian
and noetherian.

(2) LetM be a finite dimensionalD-vector space. Prove that the ring HomD(M,M)
is both artinian and noetherian.

Exercise 7.6.35. Let k be a field and R a k-algebra which is finite dimensional
as a k-vector space. Prove that the ring R is both artinian and noetherian. See
Exercise 10.2.23 for the converse of this statement when R is commutative.

Exercise 7.6.36. Let θ : R→ S be a homomorphism of rings. Let M be a left
S-module. View M as a left R-module using θ (Example 4.1.4 (4)). Show that if
M is an R-module of finite length, then M is an S-module of finite length.

7. Locally Free Modules

7.1. Locally Free of Finite Rank Equals Finitely Generated Projec-
tive.
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Definition 7.7.1. Let R be a commutative ring and M an R-module. Then
M is locally free of finite rank if there exist elements f1, . . . , fn in R such that
R = Rf1+ · · ·+Rfn and for each i, Mfi =M ⊗RRfi is free of finite rank over Rfi .

Proposition 7.7.2. Let R be a commutative ring and M an R-module. The
following are equivalent.

(1) M is finitely generated projective.
(2) M is locally free of finite rank.
(3) M is an R-module of finite presentation and for each p ∈ SpecR, Mp is

a free Rp-module.
(4) M is an R-module of finite presentation and for each m ∈ MaxR, Mm is

a free Rm-module.

Proof. (1) implies (3): This part follows directly from Corollary 6.2.8 and
Proposition 7.4.2. It is trivial that (3) implies (4).

(4) implies (2): Using Lemma 7.1.11, for each m ∈ MaxR pick αm ∈ R−m such
thatMαm

=M⊗RRαm
is free of finite rank over Rαm

. Let U(αm) = SpecR−V (αm)
be the basic open set associated to αm. Since U(αm) is an open neighborhood of
m, we have an open cover {U(αm) | m ∈ MaxR} of SpecR (Exercise 7.3.18). By
Exercise 7.3.29, there is a finite subset of {αm | m ∈ MaxR}, say {α1, . . . , αn} such
that {U(α1), . . . , U(αn)} is an open cover of SpecR. For each i,Mαi

is free of finite
rank over Rαi

which proves M is locally free of finite rank.
(2) implies (1): Assume {U(f1), . . . , U(fn)} is an open cover of SpecR and that

for each i, Mfi is free of rank Ni over Rfi . Let N = max{N1, . . . , Nn}. Then

Fi =Mfi ⊕R
(N−Ni)
fi

is free of rank N over Rfi . Set S =
⊕

iRfi . Then R → S is faithfully flat
(Exercise 7.5.28). Set F =

⊕
i Fi. Then F is free over S of rank N and M ⊗R S =⊕

iMfi is a direct summand of F (Exercise 7.7.11). Now apply Lemma 7.5.12 (3).
□

Let R be a commutative ring. For any prime ideal p ∈ Spec(R), write kp for
the residue field Rp/pRp. If M is a finitely generated R-module, then M can be
used to define a rank function SpecR→ {0, 1, 2, . . . }, where p 7→ dimkp(M ⊗R kp).
The next two corollaries to Proposition 7.7.2 utilize this rank function to give us a
powerful test for locally free modules and for flatness over an integral domain.

Corollary 7.7.3. Let R be an integral domain with quotient field K. For each
maximal ideal m ∈ Max(R), write km for R/m. The following are equivalent for
any finitely generated R-module M .

(1) M is a locally free R-module of constant rank n.
(2) dimK(M ⊗R K) = n and for every m ∈ Max(R), dimkm(M/mM) = n.

Proof. (1) implies (2): If M ∼= R(n), then M ⊗R km ∼= k
(n)
m and M ⊗R K ∼=

K(n).
(2) implies (1): Let m be a maximal ideal of R and write Mm for M ⊗R Rm.

Since M/mM is free of dimension n over km, there exist x1, . . . , xn in Mm which
restrict to a km-basis under the natural map Mm →M/mM . For some α ∈ R−m,
the finite set x1, . . . , xn is in the image of the natural map Mα → Mm. Define

θ : R
(n)
α → Mα by mapping the standard basis vector ei to xi. By Lemma 7.4.1,
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Mm is generated by x1, . . . , xn as an Rm-module. Therefore, upon localizing θ at
the maximal ideal mRα, it becomes onto. Because the cokernel of θ is a finitely
generated Rα-module, by Lemma 7.1.8, there exists β ∈ Rα −mRα such that if we
replace α with αβ, then θ is onto. The diagram

0 // ker θ //

α

��

R
(n)
α

θ //

β

��

Mα
//

��

0

0 // ker θ ⊗R K // K(n) θ⊗1 // M ⊗R K // 0

commutes, where the second row is obtained by tensoring the top row with ( )⊗RK.
Since the top row is exact, by Lemma 7.1.4 so is the second row. Since R is an
integral domain, R→ K is one-to-one. Therefore β is one-to-one. SinceM⊗K has
dimension n and θ ⊗ 1 is onto, it follows that ker θ ⊗R K = 0. The Snake Lemma
implies that ker θ = 0. We have shown that every maximal ideal m ∈ Max(R) has
a basic open neighborhood U(α) such that Mα is a free Rα-module of rank n. The
argument that was used to show (4) implies (2) in Proposition 7.7.2 can now be
applied to finish the proof. □

Corollary 7.7.4. Let R be an integral domain with quotient field K and M
a finitely generated R-module. Then the following are equivalent.

(1) M is of finite presentation and flat.
(2) M is an R-progenerator.
(3) There exists n > 0 such that dimK(M ⊗R K) = n and for every maximal

ideal m in Max(R), dimkm(M/mM) = n.

Proof. By Theorem 6.7.27 and Corollary 6.3.4, (1) and (2) are equivalent.
Proposition 7.7.2, Corollary 7.7.3, and Corollary 6.3.4 imply that (2) and (3) are
equivalent. □

7.2. Invertible Modules and the Picard Group.

Lemma 7.7.5. Let M be a finitely generated projective faithful module over the
commutative ring R. Then the following are equivalent.

(1) RankR(M) = 1.
(2) RankR(M

∗) = 1.
(3) HomR(M,M) ∼= R.
(4) M∗ ⊗RM ∼= R.

Proof. The hypotheses on M imply that M is an R-progenerator module.

Fix a prime P ∈ SpecR. Then MP
∼= R

(m)
P for some positive integer m. By Corol-

lary 6.5.13 and Exercise 7.4.9,M∗⊗RRP = HomR(M,R)⊗RRP ∼= HomRP
(MP , RP )

is isomorphic to R
(m)
P . Likewise, RP ⊗RHomRP

(M,M) ∼= HomRP
(MP ,MP ) is iso-

morphic to R
(m2)
P . By properties of tensors and Exercise 7.4.9, RP ⊗RM∗⊗RM ∼=

(RP ⊗R M∗) ⊗RP
MP is isomorphic to R

(m2)
P . From this it follows that (1) – (4)

are equivalent for the prime P . Since P was arbitrary, this proves the lemma. □

Definition 7.7.6. If M is an R-module that satisfies any of the equivalent
properties of Lemma 7.7.5, then we say M is invertible. Given a commutative
ring R let Pic(R) be the set of isomorphism classes of invertible R-modules. The
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isomorphism class containing a module M is denoted by |M |. As stated in Propo-
sition 7.7.8, Pic(R) is an abelian group, which is called the Picard group of R.

Proposition 7.7.7. Let R be a commutative ring and M an R-module. Then
M is invertible if and only if there exists an R-module N such that M ⊗R N ∼= R.
In this case, N ∼=M∗ = HomR(M,R).

Proof. AssumeM is an invertible R-module. By Lemma 7.7.5, if we takeN to
beM∗, thenM⊗RN ∼= R. Conversely, assumeM⊗RN ∼= R. By Proposition 6.4.25,

both M and N are R-progenerators. Fix a prime P ∈ SpecR. Then MP
∼= R

(m)
P

and NP ∼= R
(n)
P for some positive integers m, n. Tensor both sides of M ⊗RN ∼= R

with RP to get RP ∼= RP ⊗R (M ⊗RN) ∼= (M ⊗RRP )⊗RP
(N ⊗RRP ∼= R

(m)
P ⊗RP

R
(n)
P
∼= R

(mn)
P . It follows that m = n = 1. Since P was arbitrary, this shows

M has constant rank 1. Tensor both sides of M ⊗R N ∼= R with M∗ to get
M∗ ∼=M∗ ⊗RM ⊗R N ∼= R⊗R N ∼= N . □

Proposition 7.7.8. Under the binary operation |P | · |Q| = |P ⊗R Q|, Pic(R)
is an abelian group. The identity element is the class |R|. The inverse of |M | ∈
Pic(R) is |M∗|. The assignment R 7→ Pic(R) defines a (covariant) functor from
the category of commutative rings to the category of abelian groups.

Proof. Is left to the reader. □

Example 7.7.9. See Exercise 6.3.7. Let k be any field. Let x and y be in-
determinates. Let f be the polynomial f = y2 − x(x2 − 1). Let R be the factor
ring

R =
k[x, y]

(y2 − x(x2 − 1))
.

Then R is an integral domain. Let M be the maximal ideal of R generated by x
and y. If we invert x2 − 1, then x = y2(x2 − 1)−1, so M becomes principal. If
we invert x, then M becomes the unit ideal, and is principal. Since R(x2 − 1) and
R(x) are comaximal, there is an open cover U(x2 − 1) ∪ U(x) = SpecR on which
M is locally free of rank 1. Proposition 7.7.2 shows that |M | ∈ PicR. Note that
M2 is generated by x2, xy, y2. But an ideal that contains x2 and y2 also contains
x. We see that M2 is generated by x, hence is free of rank one. The map

M ⊗RM →M2

a⊗ b 7→ ab

is R-linear. Since this map is onto and both sides are projective of rank one, it is
an isomorphism. This proves that M∗ ∼=M and |M |−1 = |M |.

Example 7.7.10. If R is a commutative ring with the property that every
progenerator module is free, then Pic(R) contains just one element, namely |R|.
Using the notation of abelian groups, we usually write Pic(R) = (0) in this case.
For example, Pic(R) = (0) in each of the following cases.

(1) R is a field (Theorem 4.2.34).
(2) R is a local ring (Proposition 7.4.2).
(3) R is a principal ideal domain (Proposition 4.3.5).
(4) R is a semilocal ring (Exercise 8.1.12).
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7.3. Exercises.

Exercise 7.7.11. Let R1 and R2 be rings and let S = R1 ⊕ R2 be the direct
sum. Let M1 be an R1-module and M2 an R2-module and let M = M1 ⊕M2.
Prove:

(1) M is an S-module.
(2) If Mi is free of rank N over Ri for each i, then M is free of rank N over

S.
(3) If Mi is finitely generated and projective over Ri for each i, then M is

finitely generated and projective over S.

Exercise 7.7.12. LetR1 andR2 be commutative rings. Show that Pic(R1⊕R2)
is isomorphic to Pic(R1)⊕ Pic(R2).

Exercise 7.7.13. Let R be a commutative ring. A quadratic extension of R
is an R-algebra S which as an R-module is an R-progenerator of rank two. Prove
that a quadratic extension S of R is commutative. (Hint: First prove this when S
is free of rank two. For the general case, use the fact that S is locally free of rank
two.)

Exercise 7.7.14. Let R be a commutative ring and M a finitely generated
projective R-module of constant rank n. Show that there exist elements f1, . . . , fm
of R satisfying the following:

(1) R = Rf1 + · · ·+Rfm.
(2) If S = Rf1 ⊕ · · · ⊕Rfm , then M ⊗R S is a free S-module of rank n.

Exercise 7.7.15. Let R be a commutative ring and M an R-progenerator.
Prove:

(1) If L is an invertible R-module, then there is an isomorphism of R-algebras

HomR(M,M) ∼= HomR(M ⊗R L,M ⊗R L).

(2) If N is an R-progenerator such that HomR(M,M) and HomR(N,N) are
isomorphic as R-algebras, then there exists an invertible R-module L such
that N and M ⊗R L are isomorphic as R-modules.

Exercise 7.7.16. Let k be a field and A = k[x] the polynomial ring over k in
one variable. Let R = k[x2, x3] be the k-subalgebra of A generated by x2 and x3.
In Algebraic Geometry, the ring k[x2, x3] corresponds to a cuspidal cubic curve.
From Exercise 3.6.21 we know that R and A have the same quotient field, namely
K = k(x). Show:

(1) A is a finitely generated R-module.
(2) The conductor ideal from A to R is m = (x2, x3) which is a maximal ideal

of R (see Exercise 4.1.25).
(3) Use Corollary 7.7.4 to show that A is not flat over R. (Hint: Consider

R/m and A/mA.)
(4) The rings R[x−2] and A[x−2] are equal, hence the extension R→ A is flat

upon localization to the nonempty basic open set U(x2).

For a continuation of this example, see Exercise 10.1.21.

Exercise 7.7.17. Let k be a field, n > 1 an integer, T = k[x, y], S =
k[xn, xy, yn], and S → T the set containment map. Using Corollary 7.7.4 and
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Exercise 6.4.46, show that T is not flat over S. See [20, Exercise 4.4.19] for more
properties of the extension T/S.

Exercise 7.7.18. Let k be a field and A = k[x] the polynomial ring over k in
one variable. Let R = k[x2 − 1, x3 − x] be the k-subalgebra of A generated by the
polynomials x2 − 1 and x3 − x. In Algebraic Geometry, the ring k[x2 − 1, x3 − x]
corresponds to a nodal cubic curve. Show:

(1) The quotient field of k[x2−1, x3−x] is k(x). In other words, k[x2−1, x3−x]
and k[x] are birational.

(2) k[x2 − 1, x3 − x] is not a UFD.
(3) A is a finitely generated R-module.
(4) The conductor ideal from A to R is m = (x2−1, x3−x) which is a maximal

ideal of R (see Exercise 4.1.25).
(5) A is not flat over R.
(6) The rings R[(x2 − 1)−1] and A[(x2 − 1)−1] are equal, hence the extension

R→ A is flat upon localization to the nonempty basic open set U(x2−1).

For a continuation of this example, see Exercise 10.1.23.

8. Flat Modules and Algebras

8.1. Flat if and only if Locally Flat.

Proposition 7.8.1. Let R be a commutative ring and A an R-module. The
following are equivalent.

(1) A is a flat R-module.
(2) Ap is a flat Rp-module, for every p ∈ SpecR.
(3) Am is a flat Rm-module, for every m ∈ MaxR.

Proof. (1) implies (2): This follows from Theorem 6.4.23.
(2) implies (3): This is trivially true.
(3) implies (1): Denote by S the exact sequence

0→M
α−→ N

β−→ P → 0

of R-modules. Let m ∈ MaxR. Because Rm is flat over R and Am is flat over Rm,

(S)⊗R Rm ⊗Rm
Am = (S)⊗R Am

is an exact sequence. Take the direct sum over all m. It follows from Exercise 4.2.24
that

(S)⊗R

( ⊕
m∈MaxR

Am

)
= (S)⊗R A⊗R

( ⊕
m∈MaxR

Rm

)
is exact. By Proposition 7.5.3,

E =
⊕

m∈MaxR

Rm

is a faithfully flat R-module, so (S)⊗R A is exact. □

Proposition 7.8.2. Let f : R→ S be a homomorphism of commutative rings.
The following are equivalent.

(1) S is a flat R-algebra.
(2) Sq is a flat Rp-algebra, for every q ∈ SpecS, if f−1(q) = p.
(3) Sm is a flat Rp-algebra, for every m ∈ MaxS, if f−1(m) = p.
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Proof. Is left to the reader. (Hints: For (1) implies (2), use Exercise 7.8.12.
For (3) implies (1), there is an isomorphism (A⊗R S)⊗S Sm

∼= (A⊗R Rp)⊗Rp
Sm

for any R-module A.) □

8.2. A Finiteness Criterion for Flat.

Proposition 7.8.3. Let R be any ring and M a right R-module. Then M is
flat if and only if given any exact sequence

0→ A→ B

of finitely generated left R-modules, the sequence

0→M ⊗R A→M ⊗R B

is an exact sequence of Z-modules.

Proof. If M is flat, the second statement is trivially true. We prove the
converse. Start with an exact sequence

0→ A
α−→ B

of left R-modules. We need to show that

0→M ⊗R A
1⊗α−−−→M ⊗R B

is exact. We show that if v =
∑n
i=1 xi⊗yi is an element in the kernel of 1⊗α, then

v = 0. Set A1 equal to Ry1 + · · ·+Ryn, which is a finitely generated submodule of
A. Set B1 equal to Rα(y1)+· · ·+Rα(yn), which is a finitely generated submodule of
B. As in Exercise 6.8.25, B = lim−→Bα where {Bα} is the directed system of finitely

generated submodules of B. By Corollary 6.8.10, M ⊗R B = lim−→ (M ⊗R Bα). In

M⊗RB1 we have the element u =
∑
xi⊗α(yi) and the image of u in lim−→ (M ⊗R Bα)

is equal to (1 ⊗ α)(v) = 0. By Lemma 6.8.5, there exists B2, a finitely generated
submodule of B which contains B1, such that under the restriction map ϕ12 :M ⊗R
B1 →M ⊗R B2 we have ϕ12(u) = 0. The sequence

0→ A1
α−→ B2

is exact and the modules are finitely generated over R. Therefore, tensoring with
M gives the exact sequence

0→M ⊗R A1
1⊗α−−−→M ⊗R B2.

In M ⊗R A1 there is the element v1 =
∑n
i=1 xi⊗ yi which maps onto v in M ⊗R A.

Under 1 ⊗ α, the image of v1 in M ⊗R B2 is ϕ12(u), which is 0. Therefore v1 = 0,
hence v = 0. □

If R is any ring, M is any left R-module, and I is a right ideal in R, the
multiplication map

µ : I ⊗RM →M

is defined by r ⊗ x 7→ rx. The image of µ is

IM =

{
n∑
i=1

rixi | n ≥ 1, ri ∈ I, xi ∈M

}
which is a Z-submodule ofM . If I is a two-sided ideal, then IM is an R-submodule
of M .
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Corollary 7.8.4. Let R be any ring and M a left R-module. The following
are equivalent.

(1) M is a flat R-module.
(2) For every right ideal I of R, the sequence

0→ I ⊗RM
µ−→M →M/IM → 0

is an exact sequence of Z-modules.
(3) For every finitely generated right ideal I of R, the sequence

0→ I ⊗RM
µ−→M →M/IM → 0

is an exact sequence of Z-modules.
(4) If there exist a1, . . . , ar in R and x1, . . . , xr in M such that

∑
i aixi = 0,

then there exist an integer s, elements {bij ∈ R | 1 ≤ i ≤ r, 1 ≤ j ≤ s} in
R, and y1, . . . , ys in M satisfying

∑
i aibij = 0 for all j and xi =

∑
j bijyj

for all i.

Proof. (1) implies (2): is routine.
(2) implies (3): is trivial.
(3) implies (2): Let I be any right ideal in R. According to Exercise 6.8.25,

I = lim−→ Iα, where each Iα is a finitely generated right ideal in R and Iα ⊆ I. By

Corollary 6.8.10, lim−→ (Iα ⊗RM) = I ⊗RM . By hypothesis the sequence

0→ Iα ⊗RM
µα−−→M

is exact for each α. By Theorem 6.8.6, the sequence

0→ lim−→ Iα ⊗RM →M

is exact, which proves (2).
(2) implies (1): Start with the exact sequence of right Z-modules

0→ I ⊗RM → R⊗RM.

Since Q/Z is an injective Z-module, the sequence

HomZ(R⊗RM,Q/Z)→ HomZ(I ⊗RM,Q/Z)→ 0

is an exact sequence of Z-modules. By Theorem 6.5.10, the sequence

HomR(R,HomZ(M,Q/Z)→ HomR(I,HomZ(M,Q/Z)→ 0

is an exact sequence of Z-modules. By Lemma 6.7.4, HomZ(M,Q/Z) is an injective
right R-module. By Theorem 6.7.26, this implies M is a flat left R-module.

(1) implies (4): Assume M is a flat R-module and
∑
i aixi = 0 for some

elements ai ∈ R and xi ∈M . Define θ : R(r) → R by the assignment (b1, . . . , br) 7→∑
i aibi. Then θ is a homomorphism of right R-modules and the image of θ is the

right ideal of R generated by a1, . . . , ar. Let K = ker(θ) and apply the tensor
functor ( )⊗RM to the exact sequence 0→ K → R(r) → R. The sequence

0→ K ⊗RM →M (r) θM−−→M

is an exact sequence of Z-modules, since M is flat. Moreover, θM is defined by
the assignment (m1, . . . ,mr) 7→

∑
i aimi. We identify K ⊗R M with ker(θM ).

Since (x1, . . . , xr) ∈ ker(θM ), there exists λ =
∑
j κj ⊗ yj ∈ K ⊗R M such that

λ = (x1, . . . , xr). Since κj ∈ K, we can write κj = (b1j , . . . , brj) for each j. This
proves (4).
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(4) implies (2): Let I be any right ideal of R and let θ : I⊗RM →M . Suppose
λ is an arbitrary element of the kernel of θ. Then there exist a1, . . . , ar in I and
x1, . . . , xr in M such that λ =

∑
i ai⊗xi and θ(λ) =

∑
i aixi = 0. By (4) there are

elements bij in R and yj in M such that xi =
∑
j bijyj and

∑
i aibij = 0. In this

case,

λ =
∑
i

ai ⊗
(∑

j

bijyj

)
=
∑
j

(∑
i

aibij

)
⊗ yj = 0

so θ is one-to-one. □

In Corollary 7.8.5 we show that over a local ring a finitely generated moduleM
is flat if and only if it is free if and only if it is projective. Since we do not assume
M is of finite presentation, this statement is stronger than that of Theorem 6.7.27.

Corollary 7.8.5. Let R be a local ring and M a finitely generated R-module.
The following are equivalent.

(1) M is a free R-module.
(2) M is a projective R-module.
(3) M is a flat R-module.

Proof. (1) implies (2): Follows straight from the definition of projective.
(2) implies (3): This is Exercise 6.4.31.
(3) implies (1): If m is the maximal ideal of R and {xi + mM | 1 ≤ i ≤ n} is

a basis for the vector space M/mM over the residue field R/m, then {x1, . . . , xn}
generate M over R. This follows from Lemma 7.4.1.

To prove that {x1, . . . , xn} is a free basis for M , it is enough to show that any
dependence relation

∑n
i=1 aixi = 0 is trivial. The proof is by induction on n. We

prove that if 1 ≤ j ≤ n and ξ1, . . . , ξj are elements of M such that {ξi + mM |
1 ≤ i ≤ j} is a linearly independent set in M/mM over R/m, then ξ1, . . . , ξj are
linearly independent over R.

For the basis step, say x ∈ M − mM and that there exists a ∈ R such that
ax = 0. By Corollary 7.8.4 (4), there exist b1, . . . , bs in R and y1, . . . , ys in M such
that abj = 0 for each bj and x =

∑
j bjyj . Since x ̸∈ mM , not all of the bj are in

m. Suppose b1 ∈ R−m. Then b1 is invertible in R, so ab1 = 0 implies a = 0.
Inductively assume n > 1 and that the result holds for n − 1 elements of M .

Assume {xi+mM | 1 ≤ i ≤ n} are linearly independent over the residue field R/m
and that there is a dependence relation

∑
i aixi = 0. By Corollary 7.8.4 (4), there

exist bij inR and y1, . . . , ys inM such that
∑
i aibij = 0 for each j and xi =

∑
j bijyj

for each i. Since xn ̸∈ mM , not all of the bnj are in m. Let bn1 ∈ R−m. Then bn1
is invertible in R, so we can solve

∑
i aibi1 = 0 for an to get

an = −b−1n1
n−1∑
i=1

aibi1 =

n−1∑
i=1

ciai.

Substitute to get

0 =
∑
i

aixi

= a1x1 + · · ·+ an−1xn−1 +

n−1∑
i=1

ciaixn

= a1(x1 + c1xn) + · · ·+ an−1(xn−1 + cn−1xn).
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The set {x1 + c1xn, . . . , xn−1 + cn−1xn} is linearly independent modulo mM . By
the induction hypothesis we conclude that a1 = a2 = · · · = an−1 = 0. Since

an =
∑n−1
i=1 ciai = 0, we are done. □

8.3. Finitely Presented and Flat is Projective.

Lemma 7.8.6. Let R be any ring, M a flat left R-module and

0→ A
⊆−→ B

θ−→M → 0

an exact sequence of left R-modules, where A = ker(θ).

(1) For any right ideal I of R, A ∩ IB = IA.
(2) Suppose B is a free left R-module, and {bi | i ∈ J} is a basis for B over

R. If x =
∑
i ribi is in A, then there exist ai ∈ A such that x =

∑
i riai.

(3) Suppose B is a free left R-module. For any finite set {a1, . . . , an} of
elements of A, there exists f ∈ HomR(B,A) such that f(ai) = ai for
i = 1, . . . , n.

Proof. (1): The multiplication map µ induces a commutative diagram

I ⊗R A

��

µ // IA

⊆
��

// 0

I ⊗R B
µ // IB // 0

of Z-modules with exact rows. The image of I⊗RA→ B is equal to IA and clearly
IA ⊆ A ∩ IB. Since M is flat, Corollary 7.8.4 implies µ : I ⊗R M ∼= IM is an
isomorphism. The diagram

I ⊗R A //

γ

��

I ⊗R B
1⊗θ //

µ

��

I ⊗RM //

∼=
��

0

0 // A ∩ IB // IB
θ // IM

is commutative and the rows are exact. The Snake Lemma (Theorem 6.6.2) says
that γ is onto. This proves that the image of I ⊗R A→ B is equal to A ∩ IB.

(2): Suppose we are given x =
∑
i ribi ∈ A, where only finitely many of the ri

are nonzero. Let I be the right ideal of R generated by the coordinates {ri} of x.
Then x ∈ A ∩ IB = IA. Since IA = (

∑
i riR)A =

∑
i riRA =

∑
i riA, there exist

ai ∈ A such that x =
∑
i riai.

(3): Let {bj | j ∈ J} be a basis for the free module B. Let x1, . . . , xn be
elements in A. The proof is by induction on n. Assume n = 1. Since x1 ∈ B, we
write x1 =

∑
j rjbj where rj ∈ R and only finitely many of rj are nonzero. By

Part (2) there exist aj ∈ A such that x =
∑
j rjaj . Define f : B → A on the basis

by setting f(bj) = aj . Then f(x1) = x1.
Inductively, assume n > 1 and that the result holds for any set involving n− 1

or fewer elements of A. By the n = 1 case, there exists f1 : A → B such that
f1(x1) = x1. By the n − 1 case applied to the set x2 − f1(x2), . . . , xn − f1(xn),
there exists f2 : A → B such that f2(xj − f1(xj)) = xj − f1(xj) for j = 2, . . . , n.
Set f = f1 + f2 − f2f1. Note that

f(x1) = f1(x1) + f2(x1)− f2(f1(x1)) = x1,
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and if 2 ≤ j ≤ n, then
f(xj) = f1(xj) + f2(xj)− f2(f1(xj))

= f1(xj) + f2(xj − f1(xj))
= f1(xj) + xj − f1(xj)
= xj .

□

We give another proof of Theorem 6.7.27.

Corollary 7.8.7. Let R be any ring and M a finitely generated left R-module.
The following are equivalent.

(1) M is projective.
(2) M is of finite presentation and flat.

Proof. (1) implies (2): If M is finitely generated and projective, then M is
flat by Exercise 6.4.31 and of finite presentation by Corollary 6.2.8.

(2) implies (1): Let

0→ A→ B
θ−→M → 0

be a finite presentation of M , where B is a finitely generated free left R-module,
and A is a finitely generated submodule of B. According to Lemma 7.8.6 (3), this
sequence is split exact. □

8.4. Flat Algebras.

Lemma 7.8.8. Let S be a commutative flat R-algebra. If I and J are ideals in
R, then

(1) (I ∩ J)S = IS ∩ JS.
(2) If J is finitely generated, then (I : J)S = (IS : JS).

Proof. (1): The sequence of R-modules

0→ I ∩ J → R→ R/I ⊕R/J
is exact, by Theorem 3.3.8. Tensoring with S,

0→ (I ∩ J)⊗R S → S → S/IS ⊕ S/JS
is exact. By Corollary 7.8.4, this implies (I ∩ J)⊗R S = (I ∩ J)S = IS ∩ JS.

(2): Step 1: J = Ra is principal. Let ℓa : R → R be “left-multiplication by
a” and η : R → R/I the natural map. The kernel of the composite map η ◦ ℓa is
(I : Ra). Tensor the exact sequence

0→ (I : Ra)→ R
η◦ℓa−−−→ R/I

with S and use Corollary 7.8.4 to get

0→ (I : Ra)S → S
η◦ℓa−−−→ S/IS.

This shows (I : Ra)S = (IS : aS).
Step 2: J = Ra1 + · · · + Ran. By Exercise 3.2.31, (I : J) =

⋂
i(I : Rai). By

Part (1) and Step 1,

(I : J)S =
⋂
i

(I : Rai)S =
⋂
i

(IS : RaiS) = (IS :
∑
i

RaiS) = (IS : JS).

□



360 7. MODULES OVER COMMUTATIVE RINGS

In Proposition 7.8.9 we give another proof of Proposition 7.5.11.

Proposition 7.8.9. Let S be a commutative flat R-algebra and M a finitely
generated R-module. Then annihR(M)S = annihS(M ⊗R S).

Proof. The proof is by induction on the number of generators of M . Assume
M = Ra is a principal R-module. If a = annihR(M), then R/a = M . By Corol-
lary 7.8.4, a ⊗R S = aS. Tensor the exact sequence 0 → a → R → M → 0 with
S to get aS = annihR(M)S = annihS(M ⊗R S). Inductively, assume I and J are
finitely generated submodules ofM for which the proposition holds. Since S is flat,
we view I ⊗R S, J ⊗R S, and (I + J)⊗R S as submodules of M ⊗R S. We have

annihR(I + J)S = (annihR(I) ∩ annihR(J))S (Exercise 4.1.26)

= annihR(I)S ∩ annihR(J)S (Lemma 7.8.8)

= annihS(I ⊗R S) ∩ annihS(J ⊗R S) (Induction Hypothesis)

= annihS(I ⊗R S + J ⊗R S) (Exercise 4.1.26)

= annihS ((I + J)⊗R S) .
Hence the proposition holds for I + J . □

Corollary 7.8.10. Let R be a commutative ring and W a multiplicative set.

(1) IfM is a finitely generated R-module, thenW−1 annihR(M) = annihW−1R(W
−1M).

(2) If I and J are finitely generated ideals in R, then W−1(I : J) = (W−1I :
W−1J).

Proof. (1): Follows from Proposition 7.8.9.
(2): By Exercise 4.1.27, (I : J) = annihR ((I + J)/I). To complete the proof,

apply Part (1). □

8.5. Exercises.

Exercise 7.8.11. Let A be an R-algebra and M a faithfully flat left A-module
which is also faithfully flat as a left R-module. Prove that A is a faithfully flat
R-algebra.

Exercise 7.8.12. Let f : R → S be a homomorphism of commutative rings
such that S is a flat R-algebra. Let V ⊆ R and W ⊆ S be multiplicative sets such
that f(V ) ⊆W . Prove that W−1S is a flat V −1R-module.

Exercise 7.8.13. Let R be a ring, M a left R-module, and a ∈ R. Let
ℓa :M →M be “left multiplication by a”. Prove:

(1) If M is a flat R-module, and ℓa : R→ R is one-to-one, then ℓa :M →M
is also one-to-one.

(2) If R is commutative, A is a flat R-algebra, and a ∈ R is not a zero divisor,
then a is not a zero divisor in A.

(3) If R is an integral domain and A is a flat R-algebra, then the structure
homomorphism R → A which maps x 7→ x · 1 is one-to-one, hence A is a
faithful R-module.

Exercise 7.8.14. Let R ⊆ S be an extension of integral domains. Assume
R has the property that for every m ∈ MaxR, Rm is a principal ideal domain (a
Dedekind domain has this property). Show that S is a flat R-algebra. (Hint: Use
Proposition 7.8.1 to assume R is a local PID. Use Corollary 7.8.4.)
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9. Multilinear Algebra

9.1. Graded Algebras. A graded ring is a commutative ring R which under
addition is the internal direct sum R =

⊕∞
n=0Rn of a set of additive subgroups

{Rn}n≥0 satisfying the property that RiRj ⊆ Ri+j for all i, j ≥ 0. The reader
should verify (Exercise 7.9.16) that R0 is a subring of R and each Rn is an R0-
module. An element of Rn is said to be homogeneous of degree n. The set R+ =⊕∞

n=1Rn is an ideal of R (Exercise 7.9.17), and is called the exceptional ideal of R.
Let R be a graded ring. A graded R-module is an R-moduleM which under addition
is the internal direct sum M =

⊕
n∈ZMn of a set of additive subgroups {Mn}n∈Z

and such that RiMj ⊆ Mi+j for all pairs i, j. The reader should verify that each
Mn is an R0-module (Exercise 7.9.18). Any x ∈ Mn is said to be homogeneous of

degree n. Every y ∈M can be written uniquely as a finite sum y =
∑d
n=−d yn where

yn ∈Mn. We call the elements y−d, . . . , y0, . . . , yd the homogeneous components of
y. The set of homogeneous elements of M is

Mh =
⋃
d∈Z

Md.

Let M and N be graded R-modules and θ :M → N an R-module homomorphism.
We say θ is a homomorphism of graded R-modules if for every n ∈ Z we have
θ(Mn) ⊆ Nn.

Let R be a commutative ring. A graded R-algebra is an R-algebra A which as
an R-module is the internal direct sum A =

⊕∞
n=0An of a set of R-submodules

{An}n≥0 satisfying the property that AiAj ⊆ Ai+j for all i, j ≥ 0. It follows
that A0 is a subalgebra of A and R · 1 ⊆ A0. An element x in An is said to be
homogeneous of degree n and we write deg (x) = n. Let B be another graded R-
algebra, and θ : A→ B an R-algebra homomorphism. Then θ is a graded R-algebra
homomorphism in case θ(Ai) ⊆ Bi for all i ≥ 0. A graded R-subalgebra of A is
a subalgebra B of A such that B is a graded R-submodule of A. A graded left
ideal of A is an ideal I of A which is a graded R-submodule of A. The definitions
for graded right ideal and graded two-sided ideal of A are similar. If I is a graded
two-sided ideal of A, the reader should verify that A/I is a graded R-algebra. If
θ : A → B is a graded homomorphism of graded R-algebras, the reader should
verify that the kernel of θ is a graded two-sided ideal of A and the image of θ is a
graded subalgebra of B.

Proposition 7.9.1. Let R be a commutative ring and A a graded R-algebra.
Let S be a set of homogeneous elements of A. The R-subalgebra of A generated by
S is a graded subalgebra. The left ideal of A generated by S is a graded left ideal.
The right ideal of A generated by S is a graded right ideal. The two-sided ideal of
A generated by S is a graded two-sided ideal.

Proof. Let B denote the R-subalgebra of A generated by S. Let P be the set
of all products of finitely many elements of S. Then B is equal to the R-submodule
ofA generated by P∪{1}, which is graded since P consists of homogeneous elements.
The rest is left to the reader. □

Definition 7.9.2. Let R be a commutative ring. A graded R-algebra A is said
to be anticommutative if for all homogeneous elements x, y in A

xy = (−1)deg(x) deg(y)yx.
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A graded R-algebra A is said to be alternating if A is anticommutative and x2 = 0
for all homogeneous elements x of odd degree.

Definition 7.9.3. Let R be a commutative ring. Let A and B be graded R-
algebras. The graded tensor product of A and B, denoted A ⊗R B, is defined by
the following rules.

(1) As an R-module, A⊗R B is the usual tensor product.
(2) As a graded R-module, the homogeneous component of degree n is

(A⊗R B)n =
⊕
i+j=n

(Ai ⊗R Bj) .

(3) The multiplication rule on A⊗R B is defined to be

(u⊗ x)(v ⊗ y) = (−1)deg(x) deg(v)uv ⊗ xy
for homogeneous elements u, v ∈ A, x, y ∈ B.

The reader should verify that the multiplication rule can be extended to A ⊗R B
and that A ⊗R B is a graded R-algebra. If A and B are two commutative graded
R-algebras, we define the commutative graded tensor product of A and B, denoted
A⊗RB, in the same way, except the multiplication rule is induced by (u⊗x)(v⊗y) =
uv ⊗ xy.

Proposition 7.9.4. Let R be a commutative ring. Let A and B be graded
R-algebras. The graded tensor product A⊗R B satisfies the following.

(1) The assignments a 7→ a ⊗ 1, b 7→ 1 ⊗ b are graded R-algebra homomor-
phisms ρ1 : A → A ⊗R B, ρ2 : B → A ⊗R B. For any homogeneous
elements x ∈ A, y ∈ B, ρ1(x)ρ2(y) = (−1)deg(x) deg(y)ρ2(y)ρ1(x).

(2) Suppose C is a graded R-algebra and α : A → C, β : B → C are graded
R-algebra homomorphisms such that α(x)β(y) = (−1)deg(x) deg(y)β(y)α(x)
for any homogeneous x ∈ A, y ∈ B. Then there exists a unique graded
R-algebra homomorphism γ : A⊗R B → C such that the diagram

C

A

α

;;

ρ1
// A⊗R B

∃γ

OO

B
ρ2
oo

β

cc

commutes.

Proof. Is left to the reader. □

9.2. The Tensor Algebra of a Module. Let R be a commutative ring and
A an R-algebra, and M a left A-module. Then M is a left R-module by the action
rx = (r · 1)x for all r ∈ R and x ∈ M . A two-sided A/R-module is a left A right
A bimodule M such that the two induced R-actions are equal. That is, for all
a, b ∈ A, r ∈ R, x ∈M :

(1) (ax)b = a(xb) and
(2) rx = (r · 1)x = x(r · 1) = xr.

The enveloping algebra of A is Ae = A ⊗R Ao. If M is a left Ae-module, then we
can make M into a two-sided A/R-module by

ax = a⊗ 1 · x,
xa = 1⊗ a · x.
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Conversely, any two-sided A/R-module can be turned into a left Ae-module in the
same way.

Definition 7.9.5. Let A be an R-algebra and M a two-sided A/R-module.
For n ≥ 0 we define two-sided A/R-modules Tn(M) as follows. Define T 0(M) to
be A, the free two-sided A/R-module of rank one. If n > 0, define Tn(M) to be
M⊗n by which we mean M ⊗A · · · ⊗A M , the tensor product of n copies of M .
By Lemma 6.4.10, Tn(M) is a two-sided A/R-module. The tensor algebra of M ,
denoted T (M), is the graded R-algebra defined by the following rules.

(1) As a graded R-module, T (M) is equal to
⊕

n≥0 T
n(M).

(2) The product rule on T (M) is induced on homogeneous components by

T i(M)⊗A T j(M)
ηi,j−−→ T i+j(M)

which is a two-sided A/R-module isomorphism.

The reader should verify that T (M) is a graded R-algebra, the identity mapping
of A onto T 0(M) is a natural R-algebra homomorphism τ0 : A → T (M), and the
identity mapping of M onto T 1(M) is a two-sided A/R-module homomorphism
τ1 : M → T (M). In case the rings A and R are ambiguous, we write TnA/R(M)

instead of Tn(M) and TA/R(M) instead of T (M). If A = R, we sometimes write
TnR(M) instead of TnA/R(M) and TR(M) instead of TA/R(M).

Proposition 7.9.6. Let A be an R-algebra and M a two-sided A/R-module.
The tensor algebra satisfies the following.

(1) The R-algebra T (M) is generated by the set T 0(M) + T 1(M).
(2) (Universal Mapping Property) For any R-algebra homomorphism θ : A→

B and two-sided A/R-module homomorphism f : M → B, there exists a
unique homomorphism ϕ of both R-algebras and two-sided A/R-modules
such that the diagram of R-algebras

A
τ0

//

θ ��

T (M)

∃ϕ
||

B

commutes and the diagram of two-sided A/R-modules

M
τ1

//

f ��

T (M)

∃ϕ
||

B

commutes. Up to an isomorphism of both R-algebras and two-sided A/R-
modules, T (M) is uniquely determined by this mapping property.
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(3) If θ : M → N is a homomorphism of two-sided A/R-modules, then there
exists a unique homomorphism T (θ) of both graded R-algebras and two-
sided A/R-modules such that the diagram

M
τM //

θ

��

T (M)

T (θ)

��
N

τN // T (N)

commutes.
(4) The assignment M 7→ T (M) defines a covariant functor from the cate-

gory of two-sided A/R-modules to the category of graded R-algebras which
are also two-sided A/R-modules. The assignment M 7→ Tn(M) defines
a covariant functor from the category of two-sided A/R-modules to the
category of two-sided A/R-modules.

(5) Given an exact sequence of two-sided A/R-modules

0→ K →M
θ−→ N → 0

the graded R-algebra homomorphism T (θ) : T (M) → T (N) is onto, and
the kernel of T (θ) is the ideal in T (M) generated by the image of K in
T 1(M).

(6) If R → S is a homomorphism of commutative rings, then for all n ≥ 0
there is an isomorphism of two-sided (S ⊗R A)/S-modules

S ⊗R TnA/R(M) ∼= TnS⊗RA/S
(S ⊗RM)

and an isomorphism

S ⊗R TA/R(M) ∼= TS⊗RA/S(S ⊗RM)

of both graded S-algebras and two-sided (S ⊗R A)/S-modules.

Proof. (1), (4) and (6): Are left to the reader.
(2): Notice that

ϕ(x) =

{
θ(x) for all x ∈ T 0(M),

f(x) for all x ∈ T 1(M)

and T 0(M) + T 1(M) contains a generating set for the R-algebra T (M). The rest
is left to the reader.

(3): Apply Part (2) to the composite map M → N → T (N).
(5): Use Lemma 7.9.7 below and induction on n to show that Tn(θ) : Tn(M)→

Tn(N) is onto. Since T (θ)(K) = 0, it is clear that the ideal generated by K is in
the kernel of T (θ). Use Lemma 7.9.7 and induction on n to show that the kernel of
Tn(θ) : Tn(M) → Tn(N) is generated by elements of the form x1 ⊗ x2 ⊗ · · · ⊗ xn
where at least one of the xi is in K. Elements of this form are in the two-sided
ideal of T (M) generated by K. □

Lemma 7.9.7. Let R be any ring. Let

0→ A
α−→ B

β−→ C → 0

be an exact sequence in MR and

0→ D
δ−→ E

ϵ−→ F → 0
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an exact sequence in RM. Then

(A⊗R E)⊕ (B ⊗R D)
α⊗1+1⊗δ−−−−−−→ B ⊗R E

β⊗ϵ−−→ C ⊗R F → 0

is an exact sequence of abelian groups.

Proof. This is a restatement of Exercise 6.4.28. □

9.3. The Symmetric Algebra of a Module.

Definition 7.9.8. Let R be a commutative ring, M an R-module, and T (M)
the tensor algebra of M . Let I be the ideal of T (M) generated by the set {x⊗ y−
y ⊗ x | x, y ∈ T 1(M)}. By Proposition 7.9.1, I is a graded ideal of T (M). The
symmetric algebra of M , denoted S(M), is the graded R-algebra T (M)/I. The
homogeneous component of degree n in S(M) is denoted Sn(M). In case the ring
of scalars is ambiguous, we write SnR(M) instead of Sn(M) and SR(M) instead of
S(M).

The reader should verify that the sequence 0 → I ∩ Tn(M) → Tn(M) →
Sn(M)→ 0 is exact. In particular, R = S0(M) and M = S1(M).

Proposition 7.9.9. Let R be a commutative ring and M an R-module. The
symmetric algebra of M , S(M), satisfies the following.

(1) The R-algebra S(M) is generated by the set M = S1(M).
(2) S(M) is a commutative graded R-algebra.
(3) (Universal Mapping Property) Let τ :M → S(M) be the identity mapping

of M onto S1(M). For any R-algebra A and R-module homomorphism
f : M → A such that f(x)f(y) = f(y)f(x) for all x, y ∈ M , there exists
a unique R-algebra homomorphism ϕ such that the diagram

M
τ //

f ��

S(M)

∃ϕ
||

A

commutes. Up to an R-algebra isomorphism, S(M) is uniquely determined
by this mapping property.

(4) If θ : M → N is an R-module homomorphism, then there exists a unique
graded R-algebra homomorphism S(θ) such that the diagram

M
τM //

θ

��

S(M)

S(θ)

��
N

τN // S(N)

commutes.
(5) S(M) is a covariant functor from the category of R-modules to the category

of commutative graded R-algebras. Sn(M) is a covariant functor from the
category of R-modules to the category of R-modules.

(6) Given an exact sequence of R-modules

0→ K →M
θ−→ N → 0
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the graded R-algebra homomorphism S(θ) : S(M) → S(N) is onto, and
the kernel of S(θ) is the ideal in S(M) generated by the image of K in
S1(M).

(7) If R → T is a homomorphism of commutative rings, then for all n ≥ 0
there is an isomorphism of T -modules T ⊗R SnR(M) ∼= SnT (T ⊗RM) and
an isomorphism of graded T -algebras T ⊗R SR(M) ∼= ST (T ⊗RM).

(8) Let M1, M2 be two R-modules. There is a natural isomorphism of graded
R-algebras S(M1) ⊗R S(M2) ∼= S(M1 ⊕ M2), where S(M1) ⊗R S(M2)
denotes the commutative graded tensor product.

Proof. (1): Since T 1(M) contains a generating set for the R-algebra T (M),
it follows that S1(M) contains a generating set for the R-algebra S(M).

(2): For all x, y ∈M = T 1(M), x⊗ y + I = y ⊗ x+ I. Use Part (1).
(3): Apply Proposition 7.9.6 (2) to get ϕ : T (M)→ A. Check that I ⊆ ker(ϕ),

so ϕ factors through S(M).
(4) , (5) and (7): Are left to the reader.
(6): Write I(M) for the ideal in T (M) which defines S(M). Similarly, let I(N)

denote the ideal in T (N) which defines S(N). By Proposition 7.9.6 (5), T (θ) is
onto. Since θ is onto, for any x, y ∈ N , we can write x = θ(u) and y = θ(v) for
some u, v ∈M . Therefore, T (θ) maps u⊗ v − v ⊗ u onto x⊗ y − y ⊗ x. Therefore,
the restriction of T (θ) defines a homomorphism I(M) → I(N). The diagram of
R-modules

0 // I(M) //

��

T (M)

T (θ)

��

// S(M)

S(θ)

��

// 0

0 // I(N) // T (N) // S(N) // 0

commutes and the rows are exact. The three vertical maps are onto. By the Snake
Lemma, Theorem 6.6.2, ker (T (θ)) → ker (S(θ)) is onto. By Proposition 7.9.6 (5),
the kernel of T (θ) is the ideal generated by K. This proves Part (6).

(8): For each j, let ιj :Mj →M1⊕M2 be the natural injection homomorphism.
By Part (4), there exists a natural homomorphism of graded rings S(ιj) : S(Mj)→
S(M1 ⊕M2). By Exercise 6.4.35 there exists a unique R-algebra homomorphism

S(M1)⊗R S(M2)
γ−→ S(M1 ⊕M2).

The reader should verify that γ is a graded homomorphism of graded R-algebras.
To complete the proof, we construct the inverse mapping to γ. By Exercise 6.3.11,
there exists a unique R-module homomorphism f such that the diagram

Mj

ιj $$

τj // S(Mj)
ρj // S(M1)⊗R S(M2)

M1 ⊕M2

∃f

66
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commutes. The maps ρj are as in Exercise 6.4.35. By Part (3) there exists a unique
R-algebra homomorphism ϕ such that the diagram

M1 ⊕M2
f //

τ
''

S(M1)⊗R S(M2)

S(M1 ⊕M2)

ϕ

66

commutes. The reader should verify that ϕ is a graded R-algebra homomorphism
and that γ and ϕ are inverses of each other. □

9.4. The Exterior Algebra of a Module.

Definition 7.9.10. Let R be a commutative ring, M an R-module, and T (M)
the tensor algebra of M . Let I be the ideal of T (M) generated by the set {x⊗ x |
x ∈ T 1(M)}. By Proposition 7.9.1, I is a graded ideal of T (M). The exterior
algebra of M , denoted

∧
(M) (and pronounced “wedge”), is the graded R-algebra

T (M)/I. The homogeneous component of degree n in
∧
(M) is denoted

∧n
(M).

In case the ring of scalars is ambiguous, we write
∧n
R(M) instead of

∧n
(M) and∧

R(M) instead of
∧
(M). The coset of x1 ⊗ x2 ⊗ · · · ⊗ xn in

∧n
(M) is denoted

x1 ∧ x2 ∧ · · · ∧ xn.

The reader should verify that the sequence 0 → I ∩ Tn(M) → Tn(M) →∧n
(M)→ 0 is exact. In particular, R =

∧0
(M) and M =

∧1
(M).

Proposition 7.9.11. Let R be a commutative ring and M an R-module. The
exterior algebra of M ,

∧
(M), satisfies the following.

(1) The R-algebra
∧
(M) is generated by the set M =

∧1
(M).

(2) (Universal Mapping Property) Let τ :M →
∧
(M) be the identity mapping

of M onto
∧1

(M). For any R-algebra A and R-module homomorphism
f : M → A such that f(x)f(x) = 0 for all x ∈ M , there exists a unique
R-algebra homomorphism ϕ such that the diagram

M
τ //

f ��

∧
(M)

∃ϕ
||

A

commutes. Up to an R-algebra isomorphism,
∧
(M) is uniquely deter-

mined by this mapping property.
(3) If θ : M → N is an R-module homomorphism, then there exists a unique

graded R-algebra homomorphism
∧
(θ) such that the diagram

M
τM //

θ

��

∧
(M)

∧
(θ)

��
N

τN // ∧(N)

commutes.
(4) Given an exact sequence of R-modules

0→ K →M
θ−→ N → 0
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the graded R-algebra homomorphism
∧
(θ) :

∧
(M) →

∧
(N) is onto, and

the kernel of
∧
(θ) is the ideal in

∧
(M) generated by the image of K in∧1

(M).
(5)

∧
(M) is an alternating R-algebra.

(6) IfM is a finitely generated R-module which has a generating set consisting
of n elements, then

∧
(M) is a finitely generated R-module and for all

p > n,
∧p

(M) = 0.
(7)

∧
(M) is a covariant functor from the category of R-modules to the cat-

egory of alternating R-algebras.
∧n

(M) is a covariant functor from the
category of R-modules to the category of R-modules.

(8) If R → T is a homomorphism of commutative rings, then for all n ≥ 0
there is a natural isomorphism of T -modules

∧n
T (T⊗RM) ∼= T⊗R

∧n
R(M)

and a natural isomorphism of graded T -algebras
∧
T (T ⊗R M) ∼= T ⊗R∧

R(M).
(9) Let M1, M2 be two R-modules. There is a natural isomorphism of graded

R-algebras
∧
(M1) ⊗R

∧
(M2) ∼=

∧
(M1 ⊕M2), where

∧
(M1) ⊗R

∧
(M2)

denotes the graded tensor product.

Proof. (1): Is left to the reader.
(2): Similar to the proof of Proposition 7.9.9 (3).
(3): Is left to the reader.
(4): Similar to the proof of Proposition 7.9.9 (6).
(5): Assume m > 0 and n > 0. Let u ∈

∧m
(M) and v ∈

∧n
(M). Write

u =
∑
ui where each ui is of the form x1 ∧ · · · ∧ xm. Likewise, write v =

∑
vi

where each vi is of the form y1∧· · ·∧yn. By Exercise 7.9.27, ui∧vj = (−1)mnvj∧ui
for each pair i, j. It follows that u∧v = (−1)mnv∧u, so

∧
(M) is anticommutative.

If m is odd, the reader should verify that u ∧ u = 0, hence
∧
(M) is alternating.

(6): Suppose M is generated by x1, . . . , xn. Let J = {1, . . . , n}. For all p ≥ 1,∧p
(M) is generated by the finite set {xσ1

∧ · · · ∧ xσp
| σ ∈ Jp}. Suppose σ ∈ Jp

and p > n. The pigeon hole principle says that σi = σj for some i ̸= j, and
Exercise 7.9.25 says xσ1 ∧ · · · ∧ xσp = 0. That is,

∧p
(M) = 0 for all p > n.

(7) and (8): Are left to the reader.
(9): For each j, let ιj : Mj → M1 ⊕ M2 be the natural injection homo-

morphism. By Part (3), there exists a natural homomorphism of graded rings∧
(ιj) :

∧
(Mj)→

∧
(M1 ⊕M2). By Proposition 7.9.4, there exists a unique graded

R-algebra homomorphism∧
(M1)⊗R

∧
(M2)

γ−→
∧

(M1 ⊕M2).

To complete the proof, we construct the inverse mapping to γ. By Exercise 6.3.11,
there exists a unique R-module homomorphism f such that the diagram

Mj

ιj $$

τj // ∧(Mj)
ρj // ∧(M1)⊗R

∧
(M2)

M1 ⊕M2

∃f

66

commutes. The maps ρj are as in Proposition 7.9.4. The reader should verify that
the graded tensor product

∧
(M1)⊗R

∧
(M2) is alternating. By Part (2) there exists
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a unique R-algebra homomorphism ϕ such that the diagram

M1 ⊕M2
f //

τ
''

∧
(M1)⊗R

∧
(M2)

∧
(M1 ⊕M2)

ϕ

66

commutes. The reader should verify that ϕ is a graded R-algebra homomorphism
and that γ and ϕ are inverses of each other. □

Definition 7.9.12. Let R be a commutative ring andM andN two R-modules.
For n ≥ 1, let Mn = M ⊕ · · · ⊕M denote the direct sum of n copies of M . As
in Definition 4.7.1, an alternating multilinear form is a function f : Mn → N
satisfying the following two properties.

(1) For each coordinate i, f is R-linear. That is,

f(x1, . . . , xi−1, αu+ βv, xi+1, . . . , xn) =

αf(x1, . . . , xi−1, u, xi+1, . . . , xn) + βf(x1, . . . , xi−1, v, xi+1, . . . , xn).

(2) f(x1, , . . . , xn) = 0 whenever xi = xj for some pair i ̸= j.

Example 7.9.13. Let τ :Mn →
∧n

(M) be the composite map

Mn → Tn(M)→
n∧
(M)

defined by (x1, . . . , xn) 7→ x1 ⊗ · · · ⊗ xn 7→ x1 ∧ · · · ∧ xn. By Definition 6.4.2,
Definition 7.9.10, and Exercise 7.9.25 it follows that τ is an alternating multilinear
form.

Proposition 7.9.14. (Universal Mapping Property) Let R be a commutative
ring and M and N two R-modules. For any alternating multilinear form f :Mn →
N there exists a unique R-module homomorphism f̄ :

∧n
(M) → N such that

f̄ τ = f .

Mn τ //

f !!

∧n
(M)

∃f̄{{
N

commutes. Up to an R-module isomorphism,
∧n

(M) is uniquely determined by this
mapping property.

Proof. Since f is multilinear, it factors through the tensor product Tn(M).
That is, there exists a unique f ′ : Tn(M)→ N such that the left side of the diagram

Mn //

f
##

Tn(M) //

f ′

��

∧n
(M)

∃f̄
yy

N

commutes. The reader should verify that f ′(I ∩ Tn(M)) = 0. Therefore, f ′ factors
through

∧n
(M), giving f̄ . The map f̄ is unique because

∧n
(M) is generated by

the image of τ . The last claim is proved as in the proof of Theorem 6.4.3. □
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Proposition 7.9.15. Let R be a commutative ring, L an invertible R-module,
and M a finitely generated projective R-module of constant rank n. Then

n∧
(L⊗RM) = L⊗n ⊗R

n∧
(M).

Proof. Let σ : Tn(L ⊗R M) → Tn(L) ⊗R Tn(M) be the R-module isomor-
phism induced by (l1 ⊗ x1, . . . , ln ⊗ xn) 7→ (l1 ⊗ · · · ⊗ ln) ⊗ (x1 ⊗ · · · ⊗ xn). The
reader should verify that the composite map

(L⊗RM)n → Tn(L⊗RM)
σ−→ Tn(L)⊗R Tn(M)→ Tn(L)⊗R

n∧
(M)

is alternating multilinear. By Proposition 7.9.14 this map factors through an R-
module homomorphism f̄ :

∧n
(L ⊗M) → Tn(L) ⊗R

∧n
(M). In the special case

that M is a free R-module, it follows from Exercise 7.9.28 and Exercise 7.9.30 that
f̄ is an isomorphism. By Proposition 7.9.11 (8), the exterior power commutes with
change of base. Localizing at a prime ideal P of R, the modules M and L are free.
Therefore, f̄ is locally an isomorphism. □

9.5. Exercises.

Exercise 7.9.16. Let R =
⊕∞

n=0Rn be a graded ring. Show that R0 is a
subring of R and each Rn is an R0-module.

Exercise 7.9.17. Let R =
⊕∞

n=0Rn be a graded ring. Show that the set
R+ =

⊕∞
n=1Rn is an ideal of R.

Exercise 7.9.18. Let R =
⊕∞

n=0Rn be a graded ring and M =
⊕∞

n=0Mn a
graded R-module. Show that each Mn is an R0-module.

Exercise 7.9.19. Let R be a commutative ring and M a finitely generated
projective R module with RankR(M) = n. Show that T r(M) is a finitely generated
projective R-module and RankR (T r(M)) = nr.

Exercise 7.9.20. Let R be a commutative ring. Let M = Ra be a free R-
module of rank 1 with generator a. Show that there is an isomorphism of R-algebras
T (M)→ R[x] defined by the assignment a 7→ x.

Exercise 7.9.21. Let R be a commutative ring. Let M be a rank one R-
progenerator. Use Proposition 7.7.2, Exercise 7.5.28, and Exercise 7.9.20 to prove
that the tensor algebra T (M) is commutative.

Exercise 7.9.22. Let R be an integral domain with field of fractions K. Let
M be a finitely generated torsion-free R-module. If K ⊗R M has dimension one
over K, prove that the tensor algebra T (M) is commutative.

Exercise 7.9.23. Let R be a commutative ring. Let M be a finitely generated
free R-module of rank n with basis m1, . . . ,mn. Show that there is an isomorphism
of R-algebras S(M)→ k[x1, . . . , xn] defined by the assignments mi 7→ xi.

Exercise 7.9.24. Let R be a commutative ring and M a finitely generated
projective R module with RankR(M) = n. Show that Sr(M) is a finitely generated
projective R-module and RankR (Sr(M)) =

(
n+r−1
n−1

)
.

Exercise 7.9.25. Prove that x1 ∧ x2 ∧ · · · ∧ xn = 0, if there exist distinct
subscripts i and j such that xi = xj .
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Exercise 7.9.26. For any permutation σ of the set {1, 2, . . . , n}, show that

xs1 ∧ xs2 ∧ · · · ∧ xsn = sign(σ)x1 ∧ x2 ∧ · · · ∧ xn.

Exercise 7.9.27. For any elements x1, . . . , xm, y1, . . . , yn ∈M , show that

x1 ∧x2 ∧ · · · ∧xm ∧ y1 ∧ y2 ∧ · · · ∧ yn = (−1)mny1 ∧ y2 ∧ · · · ∧ yn ∧x1 ∧x2 ∧ · · · ∧xm.

Exercise 7.9.28. Let R be a commutative ring and M a free R-module with
basis {x1, . . . , xn}. Use Proposition 7.9.11 to prove that if 0 ≤ m ≤ n, then

∧m
(M)

is a free R-module of rank
(
n
m

)
with basis {xi1 ∧ · · · ∧ xim | 1 ≤ i1 < · · · < im ≤ n}.

Exercise 7.9.29. Let R be a commutative ring and M a finitely generated
projective R-module. Prove:

(1)
∧m

(M) is a finitely generated projective R-module.
(2)

∧
(M) is a finitely generated projective R-module.

(3) IfM has constant rank n, then
∧m

(M) has constant rank
(
n
m

)
and

∧
(M)

has constant rank 2n.

Exercise 7.9.30. Let R be a commutative ring and M = P1⊕· · ·⊕Pm, where
each Pi is an invertible R-module (see Definition 7.7.6). Prove:

(1)
∧m

(M) ∼= P1 ⊗R P2 ⊗R · · · ⊗R Pm.
(2) Suppose N = Q1 ⊕ · · · ⊕Qn, where each Qi is an invertible R-module. If

M ∼= N , thenm = n and P1⊗RP2⊗R · · ·⊗RPm ∼= Q1⊗RQ2⊗R · · ·⊗RQn.

Exercise 7.9.31. Let R be a commutative ring, S a commutative R-algebra,
and M an S-module. Show that TnR(M) is a left TnR(S)-module where the multi-
plication rule is (s1 ⊗ · · · ⊗ sn)(x1 ⊗ · · · ⊗ xn) = (s1x1 ⊗ · · · ⊗ snxn). Prove the
following.

(1) If M is a finitely generated S-module, then TnR(M) is a finitely generated
TnR(S)-module.

(2) IfM is a projective S-module, then TnR(M) is a projective TnR(S)-module.
(3) IfM is an S-module generator, then TnR(M) is a TnR(S)-module generator.
(4) If A is an S-algebra, then TnR(A) is a T

n
R(S)-algebra.

Exercise 7.9.32. Let R be a commutative ring andM = Rn the free R-module
of rank n. Let θ :M →M be an R-module homomorphism, and

∧n
(θ) :

∧n
(M)→∧n

(M) the R-module homomorphism guaranteed by Proposition 7.9.11 (3). By
Exercise 7.9.28,

∧n
(M) ∼= R. Show that

∧n
(θ) : R → R is left multiplication by

det(θ), the determinant of θ (Section 4.7.1).





CHAPTER 8

Artinian and Noetherian Rings and Modules

1. The Jacobson Radical and Nakayama’s Lemma

Definition 8.1.1. Let R be any ring and M a left R-module. If N is a
submodule of M , then N is called maximal in case N ̸= M and whenever there is
a submodule P such that N ⊆ P ⊆ M , then N = P or P = M . If N ⊆ M is a
maximal submodule of M , then N/M is simple. The Jacobson radical of M is

J(M) =
⋂
{N | N is a maximal submodule of M}

=
⋂
{ker f | f ∈ HomR(M,S) and S is simple}.

By J(R) we denote the Jacobson radical of R viewed as a left R-module. Then
J(R) is equal to the intersection of all maximal left ideals of R.

Lemma 8.1.2. J (R) is a two-sided ideal of R.

Proof. For any R-module M , let g ∈ HomR(M,M), let S be any simple R-
module and let f ∈ HomR(M,S). Then f ◦ g ∈ HomR(M,S) so J(M) ⊆ ker(f ◦ g).
Then f(g(J(M))) = 0 for all f . That is, g(J(M)) ⊆ J(M). Given r ∈ R, let
ρr ∈ HomR(R,R) be “right multiplication by r” (Lemma 6.5.7). Then ρr(J(R)) =
J(R) · r ⊆ J(R). □

Theorem 8.1.3. (Nakayama’s Lemma) Let R be any ring and I a left ideal of
R. The following are equivalent.

(1) I ⊆ J(R).
(2) 1 + I = {1 + x | x ∈ I} ⊆ Units(R).
(3) If M is a finitely generated left R-module and IM =M , then M = 0.
(4) If M is a finitely generated left R-module and N is a submodule of M and

IM +N =M , then N =M .

Proof. (1) implies (2): Let x ∈ I. Assume 1 + x has no left inverse. Then
R(1 + x) ̸= R. By Zorn’s Lemma, Proposition 1.3.3, R(1 + x) is contained in
some maximal left ideal L of R. Then 1 + x = y ∈ L. But I ⊆ J(R) ⊆ L.
So x ∈ L. Therefore 1 = y − x ∈ L. This contradiction means there exists
u ∈ R such that u(1 + x) = 1. We show u has a left inverse. Since 1 = u + ux,
u = 1−ux = 1+(−u)x ∈ 1+ I and by the previous argument, u has a left inverse.
Then u ∈ Units(R) and 1 + x = u−1.

(2) implies (1): Assume L is a maximal left ideal and L does not contain I.
Then I + L = R, so 1 = x + y for some x ∈ I and y ∈ L. Hence y = 1 − x =
1 + (−x) ∈ 1 + I ⊆ Units(R), a contradiction.

(1) plus (2) implies (3): Assume IM = M and prove that M = 0. Now I ⊆
J(R) and IM =M implies J(R)M ⊆M = IM ⊆ J(R)M . Therefore J(R)M =M .
Assume M ̸= 0. Pick a generating set {x1, . . . , xn} for M with n ≥ 1 minimal. A

373



374 8. ARTINIAN AND NOETHERIAN RINGS AND MODULES

typical element of M looks like
∑n
i=1 rixi, ri ∈ R. A typical element of J(R)M

looks like
∑n
i=1 airixi, ai ∈ J(R). By Lemma 8.1.2, bi = airi ∈ J(R), so each

element of J(R)M can be written in the form
∑n
i=1 bixi, bi ∈ J(R). In particular,

x1 =
∑n
i=1 bixi, some bi ∈ J(R). Then x1(1− b1) =

∑n
i=2 bixi. Now 1− b1 ∈ 1+ I,

so 1−b1 is a unit. This shows thatM is generated by x2, . . . , xn. This contradiction
implies M = 0.

(3) implies (4): Since M is finitely generated so is M/N . Then

I(M/N) =
IM +N

N
=M/N

and by (3) we conclude that M/N = 0, or N =M .
(4) implies (1): Assume L is a maximal left ideal of R and that L does not

contain I. Then I+L = R. Apply (4) with L = N , R =M . Since IR ⊇ I we have
IR+ L = R so L = R, a contradiction. □

Corollary 8.1.4. Let

Jr(R) =
⋂
{I | I is a maximal right ideal of R}.

Then Jr(R) = J(R).

Proof. By Lemma 8.1.2 both Jr(R) and J(R) are two-sided ideals of R. It
follows from Theorem 8.1.3 (2) that 1 + J(R) consists of units of R. Apply a
right-sided version of Theorem 8.1.3 to the right ideal J(R) and conclude that
J(R) ⊆ Jr(R). The converse follows by symmetry. □

Corollary 8.1.5. If I is a left ideal of R which consists of nilpotent elements,
then I ⊆ J(R).

Proof. Let a ∈ I and assume an = 0 for some n ≥ 1. Then (1 − a)(1 + a +
a2 + · · ·+ an−1) = 1. So 1 + I ⊆ Units(R). □

Corollary 8.1.6. If R is artinian, then J(R) is nilpotent.

Proof. Consider the chain of left ideals

J(R) ⊇ J(R)2 ⊇ J(R)3 ⊇ . . . .

There is some n ≥ 1 such that J(R)n = J(R)n+1. Assume J(R)n ̸= 0. Since
R is artinian, by Lemma 7.6.3, the minimum condition is satisfied on left ideals.
Consider the set L of all finitely generated left ideals L such that J(R)nL ̸= 0.
Since J(R)n = J(R)n J(R) ̸= 0, there exists a ∈ J(R) such that J(R)nRa ̸= 0.
Since Ra ∈ L, the set is nonempty. Pick a minimal element L of L. Now J(R)nL ⊆
L. Since L ̸= 0, Theorem 8.1.3 (3) says J(R)nL is a proper subset of L. But
J(R)n (J(R)nL) = J(R)2nL = J(R)nL ̸= 0. There exists a ∈ J(R)nL such that
J(R)nRa ̸= 0. So Ra ∈ L. But Ra ⊆ J(R)nL ⊊ L. This is a contradiction, because
L is minimal. We conclude J(R)n = 0. □

Corollary 8.1.7. Let R be a ring.

(1) If M is a maximal two-sided ideal of R, then J(R) ⊆M .
(2) If f : R→ S is an epimorphism of rings, then f(J(R)) ⊆ J(S).
(3) If R is commutative and A is an R-algebra which is finitely generated as

an R-module, then J(R)A ⊆ J(A).
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Proof. (1): Assume the contrary. The ideal J(R) +M is a two-sided ideal
of R. Since M is maximal, J(R) + M = R. By Theorem 8.1.3 (4), M = R, a
contradiction.

(2): Let x ∈ J(R) and a ∈ R. By Theorem 8.1.3, 1 + ax ∈ Units(R), so
f(1 + ax) = 1 + f(a)f(x) ∈ Units(S). Therefore the left ideal Sf(x) is contained
in J(S).

(3): Let M be a finitely generated left A-module. Then M is finitely generated
as an R-module. If (J(R)A)M = M , then J(R)(AM) = J(R)M = M . By (1)
implies (3) of Theorem 8.1.3,M = 0. By (3) implies (1) of Theorem 8.1.3, J(R)A ⊆
J(A). □

1.1. Idempotents and the Jacobson Radical. As in Section 7.3.1, if R is
a ring, then idemp(R) = {x ∈ R | x2 − x = 0} denotes the set of idempotents of R.
The homomorphic image of an idempotent is an idempotent, so given a homomor-
phism of rings A→ B, there is a function idemp(A)→ idemp(B). If this function
is onto, then we say idempotents of B lift to idempotents of A. Corollary 8.1.8
is a corollary to Theorem 8.1.3, Nakayama’s Lemma. It provides useful sufficient
conditions for lifting idempotents modulo an ideal.

Corollary 8.1.8. Let R be a ring and I a two-sided ideal of R.

(1) If R is commutative and I ⊆ J (R), then idemp (R) → idemp (R/I) is one-to-
one.

(2) If I consists of nilpotent elements, then idemp (R)→ idemp (R/I) is onto.

Proof. (1): Let e0, e1 ∈ idemp(R) and assume x = e0− e1 ∈ I. We show that
x = 0. Look at

x3 = e30 − 3e20e1 + 3e0e
2
1 − e31

= e0 − 3e0e1 + 3e0e1 − e1
= e0 − e1
= x.

Then x(x2 − 1) = 0. By Theorem 8.1.3, x2 − 1 is a unit, which implies that x = 0.
(2): Assume I consists of nilpotent elements. By Corollary 8.1.5, I ⊆ J(R).

If x ∈ R, denote by x̄ the image of x in R/I. Assume x̄2 = x̄. It follows that
(1−x̄)2 = 1−x̄. Since x−x2 ∈ I, for some n > 0 we have (x−x2)n = xn(1−x)n = 0.
Set e0 = xn and e1 = (1 − x)n. Then e0e1 = e1e0 = 0, ē0 = x̄n = x̄, and
ē1 = (1 − x̄)n = 1 − x̄. This says that e0 + e1 − 1 ∈ I, so by Theorem 8.1.3,
u = e0 + e1 is a unit in R. We have 1 = e0u

−1 + e1u
−1 = u−1e0 + u−1e1, hence

e0 = e20u
−1 = u−1e20, and e0u = e20 = ue0. We have shown that e0 commutes with u.

From this it follows that e0u
−1 is an idempotent of R. Since ū = 1, ē0ū

−1 = x̄. □

1.2. Exercises.

Exercise 8.1.9. Let R be a ring, I an ideal contained in J(R), and η : R→ R/I
the natural map. Prove the following generalization of Exercise 3.2.29:

(1) If η(r) is a unit in R/I, then r is a unit in R.
(2) The natural map η : Units(R) → Units(R/I) is onto and the kernel is

1 + I.

Exercise 8.1.10. Let R be a ring and J(R) ⊇ B ⊇ A a chain of ideals. Prove
this generalization of Exercise 4.3.10: Units(R) ⊇ 1+B ⊇ 1+A is a series of normal
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subgroups and the quotient group (1+B)/(1+A) is isomorphic to 1+(B/A). (Hint:
Show that the image of the natural map 1 +B → Units(R/A) is 1 + (B/A).)

Exercise 8.1.11. Let R = R1 ⊕ · · · ⊕ Rn be a direct sum, where each Ri is a
commutative local ring. Prove that a finitely generated projective R-module M of
constant rank r is a free R-module of rank r.

Exercise 8.1.12. Let R be a commutative semilocal ring. Prove:

(1) R/J(R) is isomorphic to a finite direct sum of fields.
(2) If M is a finitely generated projective R-module of constant rank r, then

M is a free R-module of rank r. (Hint: Mimic the proof of Proposi-
tion 7.4.2.)

Exercise 8.1.13. Let R be a ring. Prove that J (Mn(R)) =Mn (J(R)). (Hint:
First show that if S is a simple left R-module, then Sn is a simple left Mn(R)-
module.)

Exercise 8.1.14. Let R be a ring and I a two-sided ideal of R such that
I ⊆ J(R). Let M,N ∈ RM and θ : N → M a homomorphism of left R-modules.
Let 1⊗ θ : R/I⊗RN → R/I⊗RM be the homomorphism of R/I-modules induced
by tensoring with R/I ⊗R ( ).

(1) Assuming M is finitely generated as an R-module, prove that θ is onto if
and only if 1⊗ θ is onto.

(2) Assuming M and N are finitely generated projective R-modules, prove
that θ is an isomorphism if and only if 1⊗ θ is an isomorphism.

2. Semisimple Modules and Semisimple Rings

Theorem 8.2.1. Let R be a ring and M a nonzero R-module. The following
are equivalent.

(1) M =
⊕

i∈IMi is the internal direct sum of a family of simple submodules
{Mi | i ∈ I}.

(2) M =
∑
i∈IMi is the sum of a family of simple submodules {Mi | i ∈ I}.

(3) Every submodule of M is a direct summand of M .

Proof. (2) clearly follows from (1).
(2) implies (1): Assume M =

∑
i∈IMi and each Mi is a simple submodule of

M . By Zorn’s Lemma, Proposition 1.3.3, choose a maximal subset J ⊆ I such that
the sum

∑
i∈JMi is a direct sum. Assume

∑
i∈JMi ̸= M . Then there is some

k ∈ I such that Mk is not contained in
∑
i∈JMi. Since Mk is simple,(∑

i∈J
Mi

)⋂
Mk = 0.

In this case, the sum
(∑

i∈JMi

)
+Mk is a direct sum which contradicts the choice

of J .
(1) plus (2) implies (3): ThenM is an internal direct sum of simple submodules

{Mi | i ∈ I}. Let N be a submodule of M . If N = M , then we are done. Assume
N ̸= M . For each i ∈ I, Mi ∩ N is a submodule of Mi hence Mi ∩ N = 0 or
Mi∩N =Mi. Then for some k ∈ I we haveMk∩N = 0. Choose a maximal subset
J ⊆ I such that

(2.1)
(∑
i∈J

Mi

)⋂
N = 0.
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Let
N ′ =

(∑
i∈J

Mi

)
+N.

If N ′ =M , then M =
(∑

i∈JMi

)
⊕N and we are done. Otherwise for some index

k ∈ I, Mk ∩N ′ = 0. Consider

x ∈
(∑
i∈J

Mi +Mk

)
∩N.

Write x = x0+xk where x0 ∈
∑
i∈JMi and xk ∈Mk. So xk = x−x0 ∈ N ′∩Mk = 0.

By (2.1) we see that x = 0. Then J∪{k} satisfies (2.1) which contradicts the choice
of J .

(3) implies (2): Let {Mi | i ∈ I} be the family of all simple submodules of
M . Set N =

∑
iMi. Assume N ̸= M . By (3), M = N ⊕ N ′ for some nonzero

submodule N ′. To finish the proof, it is enough to show the existence of a simple
submodule of N ′. Let x ∈ N ′− (0). Being a direct summand of M , N ′ satisfies (3)
(the reader should verify this). Therefore N ′ = Rx⊕N ′′. Let L be a maximal left
ideal of R such that L contains annihR(x). Then R/L is simple. The diagram

0 // L //

α

��

R //

β

��

R/L //

η

��

0

0 // Lx // Rx // Rx/Lx // 0

commutes. The rows are exact. The vertical maps α and β are onto, therefore η
is onto. Since x ̸∈ Lx, we know Rx/Lx is not zero. Then η is not the zero map.
Since R/L is simple, η is an isomorphism. Applying (3) to Rx gives Rx = Lx⊕ S
where S ∼= Rx/Lx is a simple R-submodule of Rx. But then N ′ contains S, so we
are done. □

Definition 8.2.2. Let R be a ring and M an R-module. If M satisfies any of
the properties of Theorem 8.2.1, then M is called semisimple.

Theorem 8.2.3. Let R be a ring. The following conditions are equivalent.

(1) Every left R-module is projective.
(2) Every short exact sequence of left R-modules splits.
(3) Every left R-module is semisimple.
(4) R is semisimple when viewed as a left R-module.
(5) R is artinian and J(R) = 0.

Proof. The reader should verify that (3) implies (4) and that the first three
statements are equivalent.

(4) implies (1): Let M be a left R-module. Let I = M and F = RI . As in
the proof of Proposition 6.2.3, there is an R-module homomorphism π : F → M
which is surjective. Because R is semisimple, R is the internal direct sum of simple
R-submodules. So F is an internal direct sum of simple R-modules. So F is
semisimple and kerπ is a direct summand of F . Then F ∼= kerπ ⊕M , hence M is
projective.

(4) implies (5): Since J(R) is a submodule of R, it is an internal direct summand
of R. For some left ideal L we have R = J(R)⊕L. By Lemma 7.2.4, J(R) = Re1 and
L = Re2 and e1e2 = 0 and 1 = e1 + e2. By Nakayama’s Lemma (Theorem 8.1.3),
e2 is a unit in R. Therefore e1 = 0 and J(R) = 0. To show that R is artinian,
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assume I1 ⊇ I2 ⊇ I3 . . . is a descending chain of ideals. Since R is semisimple as
an R-module, I1 is a direct summand of R, and we can write R = L0 ⊕ I1. Also,
I2 is a direct summand of I1, so R = L0 ⊕ L1 ⊕ I2. For each index i, Ii+1 is a
direct summand of Ii and we can write Ii = Li ⊕ Ii+1. Each Li = Rei for some
idempotent ei and

⊕∞
i=1 Li is a direct summand of R. That is,

R =

( ∞⊕
i=1

Li

)
⊕ L

for some L. The representation of 1 in the direct sum involves only a finite number
of the ei, and the rest are 0.

(5) implies (4): We show that R is the direct sum of a finite collection of
minimal left ideals and apply Theorem 8.2.1 (1). Let L1 be a minimal left ideal of
R. This exists since R is artinian. Since J(R) = 0 it follows from Corollary 8.1.5
that L2

1 ̸= 0. By Lemma 7.2.4 (3), there is a left ideal I1 and R = L1⊕I1. If I1 = 0,
then we are done. Otherwise, by the minimum condition, there is a minimal left
ideal L2 of R contained in I1. Again from Lemma 7.2.4 we have R = L2 ⊕ J
for some J . There exists an R-module homomorphism π : R → L2 which splits
L2 ⊆ R. The restriction of π to I1 is therefore a splitting of L2 ⊆ I1. Therefore,
I1 = L2 ⊕ I2, where I2 = {x ∈ I1 | π(x) = 0} = I1 ∩ kerπ. Hence R = L1 ⊕L2 ⊕ I2
where L1, L2 are minimal ideals in R. If I2 = 0, then we are done. Otherwise we
continue inductively to get R = L1 ⊕ · · · ⊕ Ln ⊕ In where each Li is a minimal
left ideal. After a finite number of iterations, the process terminates with In = 0
because R is artinian and I1 ⊇ I2 ⊇ · · · ⊇ In is a descending chain of ideals. □

Definition 8.2.4. The ring R is called semisimple if R satisfies any of the
equivalent conditions of Theorem 8.2.3.

Example 8.2.5. Let R be an artinian ring. Then R/ J(R) satisfies Theo-
rem 8.2.3 (5), hence is semisimple.

3. Simple Rings and the Wedderburn-Artin Theorem

Definition 8.3.1. A ring R is called simple if R is artinian and the only two-
sided ideals of R are 0 and R. Since J(R) is a two-sided ideal, a simple ring satisfies
Theorem 8.2.3 (5) hence is semisimple.

Example 8.3.2. Let D be a division ring and M a finite dimensional D-vector
space. Let S = HomD(M,M). By Exercise 7.6.34, S is artinian. By Corollary 6.9.4
it follows that there is a one-to-one correspondence between two-sided ideals of D
and two-sided ideals of S. Since D is a simple ring, it follows that S is a simple
ring. We prove the converse of this fact in Theorem 8.3.5.

Theorem 8.3.3. Let A be an artinian ring and let R be a semisimple ring.

(1) Every simple left R-module is isomorphic to a minimal left ideal of R.
(2) R is a finite direct sum of simple rings.
(3) R is simple if and only if all simple left R-modules are isomorphic.
(4) If A is simple, then every nonzero A-module is faithful.
(5) If there exists a simple faithful A-module, then A is simple.

Proof. (1): Let R be a semisimple ring. By the proof of Theorem 8.2.3 there
are idempotents e1, . . . , en such that each Rei is a minimal left ideal of R and
R = Re1 ⊕ · · · ⊕ Ren. Let S be any simple left R-module. Let x be a nonzero
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element of S. Then for some ei we have eix ̸= 0. The R-module homomorphism
Rei → S defined by rei 7→ reix is an isomorphism because both modules are simple.
This proves (1).

(2): Let S1, . . . , Sm be representatives for the distinct isomorphism classes of
simple left R-modules. By (1) there are only finitely many such isomorphism classes.
For each i, define

Ri =
∑
j

{Lij | Lij is a left ideal of R and Lij ∼= Si} .

We proceed in four steps to show that R = R1 ⊕ · · · ⊕Rm and each Ri is a simple
ring.

Step 1: Ri is a two-sided ideal. By definition, Ri is a left ideal of R. Pick any
Lij . Let r ∈ R and consider the R-module homomorphism ρr : Lij → R which is
“right multiplication by r”. Since Lij is simple, either ker ρr = Lij and Lijr ⊆ Lij ,
or ker ρr = 0 and Lij ∼= Lijr. In the latter case, the left ideal Lij is isomorphic to
some Lik. In both cases, Lijr ⊆ Ri which shows Rir ⊆ Ri and Ri is a two-sided
ideal of R.

Step 2: Let L be a minimal left ideal of R contained in Ri. We show that
L ∼= Si. Since L is idempotent generated, there is some e ∈ L such that e2 = e ̸= 0.
Since e ∈ L ⊆ Ri, the R-module homomorphism ρe : Ri → L is nonzero. Since
Ri is generated by the ideals Lij , there is some j such that Lije ̸= 0. The map
ρe : Lij → L is an isomorphism. Therefore L ∼= Si.

Step 3: R = R1⊕· · ·⊕Rm. Clearly R = R1+· · ·+Rm. For contradiction’s sake,
assume R1 ∩ (R2 + · · ·+Rm) ̸= 0. Let L be a minimal left ideal of R contained in
R1∩(R2+· · ·+Rm). By Step 2, L ∼= S1. There is an idempotent e such that L = Re.
As in Step 2, the map ρe : R2 + · · · + Rm → L is nonzero. Hence there exists Lik
such that 2 ≤ i ≤ m and ρe : Lik → L is an isomorphism. This is a contradiction,
since S1 and Si are not isomorphic. Therefore R1 ∩ (R2 + · · · + Rm) = 0. By
induction on m, this step is done.

Step 4: Fix i and show that Ri is simple. By Theorem 8.2.3, R is artinian. Let
I be a nonzero two-sided ideal in Ri. To show I = Ri, the plan is to show I contains
each of the ideals Lij . By Step 3 and Theorem 3.3.5, ideals of Ri are also ideals in
R. In particular, I is a two-sided ideal in R. Let L be any minimal left ideal of R
contained in I. By Step 2, L = Lik for some k. There exists an idempotent e such
that Lik = Re. Let Lij be another minimal left ideal in Ri. There is an R-module
isomorphism ϕ : Iik ∼= Iij . We have

Lij = imϕ

= {ϕ(re) | r ∈ R}
= {ϕ(ree) | r ∈ R}
= {reϕ(e) | r ∈ R}.

Since e belongs to the two-sided ideal I, Lij ⊆ I. Thus I = Ri.
(4): Assume A is simple. Let M be any nonzero left A-module. Let I =

annihA(M), a two-sided ideal of A. Since 1 ̸∈ I, it follows that I ̸= A. Therefore
I = 0 and M is faithful.

(3): By (2) we can write R = R1 ⊕ · · · ⊕Rm as a direct sum of simple rings. If
all simple left R-modules are isomorphic, then m = 1 and R is simple. Now say R
is simple and L is a simple left R-module. We know that m = 1, otherwise R1 is a
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proper two-sided ideal. Then L ∼= L1j for some j and all simple left R-modules are
isomorphic.

(5): Assume A is artinian and S is a simple faithful left A-module. Since S
is simple, J(A)S is either 0 or S. Since S is simple and faithful, S is nonzero
and generated by one element. By Theorem 8.1.3 (3) we know J(A)S ̸= S. So
J(A)S = 0. Since S is faithful, J(A) = 0. This proves A is semisimple. By (2)
A = A1 ⊕ · · · ⊕An where each Ai is a two-sided ideal of A. Assume n ≥ 2. By (1),
we assume without loss of generality that S ∼= S1. Then A1S = S. Since the ideals
are two-sided, A2A1 ⊆ A1 ∩ A2 = 0. Therefore 0 = (A2A1)S = A2(A1S) = A2S.
So A2 ⊆ annihA(S). This contradiction implies n = 1, and A is simple. □

Lemma 8.3.4. (Schur’s Lemma) Let R be any ring and M a simple left R-
module. Then S = HomR(M,M) is a division ring.

Proof. Is left to the reader. □

Theorem 8.3.5. (Wedderburn-Artin) Let R be a simple ring. Then R ∼=
HomD(M,M) for a finite dimensional vector space M over a division ring D. The
division ring D and the dimension dimD(M) are uniquely determined by R.

Proof. Since R is semisimple, by the proof of Theorem 8.2.3 there are idem-
potents e1, . . . , en such that each Li = Rei is a minimal left ideal of R and
R = Re1⊕· · ·⊕Ren is an R-module direct sum. But R is simple, so L1

∼= . . . ∼= Ln
by Theorem 8.3.3. Set M = L1 and D = HomR(M,M). By Lemma 8.3.4, D is
a division ring. Since L1 = Re1 for some idempotent e1, M is finitely generated.
By Theorem 8.2.3, M is projective. By Lemma 6.2.10, the trace ideal of M is a
two-sided ideal of R. Since R is simple, M is a generator over R. By Morita The-
ory, Corollary 6.9.3 (1), R ∼= HomD(M,M). By Corollary 6.9.3 (5), M is a finitely
generated D-vector space.

To prove the uniqueness claims, assume D′ is another division ring and M ′

is a finite dimensional D′-vector space and HomD(M,M) ∼= HomD′(M ′,M ′). By
Morita Theory, D′ ∼= HomR(M

′,M ′) and M ′ is an R-progenerator. We know
M ′ is a simple R-module, otherwise M ′ would have a nontrivial direct summand
and HomR(M

′,M ′) would contain noninvertible elements. Since R is simple, by
Theorem 8.3.3, M ∼=M ′ as R-modules. □

3.1. Central Simple Algebras.

Definition 8.3.6. Let k be a field and A a k-algebra. We say A is a central
simple k-algebra if these three conditions are met:

(1) A is a simple ring.
(2) A is a central k-algebra.
(3) dimk(A) <∞.

Example 8.3.7. It follows from Example 8.3.2 that the ring of matricesMn(k)
over a field k is a central simple k-algebra. If A is a central simple k-algebra, then
by Theorem 8.3.5 we know A ∼= HomD(E,E) where D is a division ring and E is
a finite dimensional D-vector space. The reader should verify that dimk(D) < ∞
and Z(D) = k.

Proposition 8.3.8. Let k be an algebraically closed field and A a central simple
k-algebra. Then A ∼=Mn(k) for some n.
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Proof. Let D be the division algebra component of A. Let α ∈ D. Because
D is a finite dimensional division algebra over k, k[α] is an algebraic field extension
of k. Because k is algebraically closed, α ∈ k. Therefore, k = D. □

Theorem 8.3.9. Let k be a field and let A and B be simple k-algebras. If A is
a central simple k-algebra, then

(1) A⊗k B is a simple ring.
(2) Z(A⊗k B) = Z(B).

Proof. (1): Let I be a nonzero two-sided ideal in A⊗kB. Let x be a nonzero
element of I. Then there are a1, . . . , an in A and there are k-linearly independent
b1, . . . , bn in B such that x =

∑n
i=1 ai⊗ bi. Choose x such that n is minimal. Since

A is simple, the principal ideal Aa1A is the unit ideal. Pick r1, . . . , rm, s1, . . . , sm
in A such that

∑
j rja1sj = 1. Since (rj ⊗ 1)x(sj ⊗ 1) ∈ I for each j,

y =
∑
j

(rj ⊗ 1)x (sj ⊗ 1)

=
∑
j

(
(rj ⊗ 1)

(∑
i

ai ⊗ bi
)
(sj ⊗ 1)

)
=
∑
j

∑
i

(rjaisj ⊗ bi)

=
∑
i

((∑
j

rjaisj

)
⊗ bi

)
= 1⊗ b1 + a′2 ⊗ b2 + · · ·+ a′n ⊗ bn

is an element of I for some a′2, . . . , a
′
n in A. For all a ∈ A we have

(a⊗ 1)y − y(a⊗ 1) = a⊗ b1 + aa′2 ⊗ b2 + · · ·+ aa′n ⊗ bn
− (a⊗ b1 + a′2a⊗ b2 + · · ·+ a′na⊗ bn)

= (aa′2 − a′2a)⊗ b2 + · · ·+ (aa′n − a′na)⊗ bn

is in I. Because the length n of x was minimal, (a ⊗ 1)y − y(a ⊗ 1) = 0. Because
b1, . . . , bn are k-linearly independent in B, it follows that 1 ⊗ b1, . . . , 1 ⊗ bn are
A-linearly independent in A ⊗k B. It follows that aa′i = a′ia for all a ∈ A and all
2 ≤ i ≤ n. That is to say, each a′i is in Z(A) = k. In that case we can write

y = 1⊗ b1 + 1⊗ a′2b2 + · · ·+ 1⊗ a′nbn
= 1⊗ (b1 + a′2b2 + · · ·+ a′nbn)

= 1⊗ b

where b is nonzero because b1 ̸= 0 and the set {bi} is k-linearly independent. Since
B is simple, there exist u1, . . . , up, v1, . . . , vp ∈ B such that

∑
j ujbvj = 1. Now

y = 1⊗ b is in the ideal I, so∑
j

(
(1⊗ uj)(1⊗ b)(1⊗ vj)

)
= 1⊗

∑
j

ujbvj = 1⊗ 1

is in I. This shows I = A⊗k B.
(2): It is easy to see that 1 ⊗k Z(B) ⊆ Z(A ⊗k B). Let x ∈ Z(A ⊗k B).

Assume x ̸= 0 and write x =
∑n
i=1 ai ⊗ bi where we assume b1, . . . , bn are linearly



382 8. ARTINIAN AND NOETHERIAN RINGS AND MODULES

independent over k. For each a ∈ A we have

0 = (a⊗ 1)x− x(a⊗ 1)

= aa1 ⊗ b1 + · · ·+ aan ⊗ bn − (a1a⊗ b1 + · · ·+ ana⊗ bn)
= (aa1 − a1a)⊗ b1 + · · ·+ (aan − ana)⊗ bn

Since 1⊗ bi are A-linearly independent in A⊗k B, we conclude that aai = aia for
each i. That is, each ai is in Z(A) = k. Therefore, x = 1 ⊗ b. It is now easy to
verify that b ∈ Z(B). □

Corollary 8.3.10. Let k be a field and A a central simple k-algebra. Then
dimk(A) = n2 for some n ≥ 1.

Proof. Let K be an algebraic closure of k. By Theorem 8.3.9, A ⊗k K is a
central simple K-algebra. By Proposition 8.3.8, A ⊗k K is isomorphic to Mn(K),
for some n ≥ 1. By Theorem 6.4.23, dimk(A) = dimK(A⊗k K) = n2. □

3.2. Exercises.

Exercise 8.3.11. Let k be a field and A a finite dimensional k-algebra. Let N
be a nilpotent left ideal of A such that dimk(N) ≤ 2. Prove that N is commutative.
That is, xy = yx for all x and y in N .

Exercise 8.3.12. Let k be a field and let A be the subset of M2(k) consisting
of all matrices of the form

(
a 0
b c

)
where a, b, c are in k.

(1) Show that A is a k-subalgebra of M2(k), and dimk(A) = 3.
(2) Show that A is noncommutative.
(3) Let I1 be the set of all matrices of the form

(
a 0
b 0

)
. Show that I1 is a

maximal left ideal of A and I = Ae1 for an idempotent e1.
(4) Let I2 be the set of all matrices of the form

(
0 0
b c

)
. Show that I2 is a

maximal left ideal of A. Show that I2 is not an A-module direct summand
of A.

(5) Determine the Jacobson radical J(A) and show that A is not semisimple.
(6) Classify A/ J(A) in the manner of Exercise 4.5.12.

Exercise 8.3.13. Let k be a field. Let A be the k-subspace of M3(k) spanned
by 1, α, β, where

α =

0 1 0
1 0 0
0 0 −1

 , β =

0 0 0
0 0 0
1 1 0

 .
(1) Show that A is a k-subalgebra of M3(k), and dimk(A) = 3.
(2) Show that A is commutative if and only if char k = 2.
(3) Determine the Jacobson radical J(A) and show that A is not semisimple.
(4) Classify A/ J(A) in the manner of Exercise 4.5.12.

Exercise 8.3.14. Let k be a field. Let A be the k-subspace of M3(k) spanned
by 1, α, β, where

α =

0 0 0
1 1 0
0 0 0

 , β =

0 0 0
0 0 0
1 1 0

 .
(1) Show that A is a k-subalgebra of M3(k), and dimk(A) = 3.
(2) Show that A is noncommutative.
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(3) Determine the Jacobson radical J(A) and show that A is not semisimple.
(4) Classify A/ J(A) in the manner of Exercise 4.5.12.

Exercise 8.3.15. Let k be a field and n ≥ 1. Prove:

(1) Every finitely generated left Mn(k)-module is free.
(2) If m does not divide n, then Mn(k) has no k-subalgebra isomorphic to

Mm(k).
(3) If m | n, then Mn(k) contains a k-subalgebra which is isomorphic to

Mm(k).

Exercise 8.3.16. Let R be a ring,M an R-module and supposeM =
⊕

i∈IMi

is the internal direct sum of a family of simple R-submodules, for some index set
I. Prove that the following are equivalent.

(1) M is artinian.
(2) M is noetherian.
(3) I is finite.

Exercise 8.3.17. Let R be a semisimple ring andM an R-module. Prove that
M is artinian if and only if M is noetherian.

Exercise 8.3.18. Prove the converse of Theorem 8.3.3 (2). That is, a finite
direct sum of simple rings is a semisimple ring.

Exercise 8.3.19. Let k be a field and A =M2(k) the ring of all 2-by-2 matrices
over k. Let I be the set of all matrices of the form

(
a 0
b 0

)
. Show that I is a left ideal

of A. Let λ : A → Homk(A/I,A/I) be the left regular representation of A (see
Exercise 4.4.4). Show that λ is an isomorphism of rings. (Hint: Exercise 4.1.28.)

Exercise 8.3.20. Let k be an algebraically closed field and A a finite dimen-
sional k-algebra. Show that if A is a simple ring, then A is isomorphic to Mn(k),
for some n. In particular, dimk(A) = n2.

4. Commutative Artinian Rings

Theorem 8.4.1. Let R be an artinian ring and M an R-module. If M is
artinian, then M is noetherian. In particular, R is a noetherian ring.

Proof. Let J = J(R) denote the Jacobson radical of R. Then R/J is a
semisimple ring, by Example 8.2.5. By Lemma 7.6.9, since M is artinian, so are
the submodules JnM and the quotient modules JnM/Jn+1M , for all n ≥ 0. By
Exercise 4.1.20, the quotient module JnM/Jn+1M is artinian over R/J . By Exer-
cise 8.3.17, JnM/Jn+1M is noetherian as a R/J-module. Again by Exercise 4.1.20,
JnM/Jn+1M is noetherian as an R-module. For each n ≥ 0, the sequence

0→ Jn+1M → JnM → JnM

Jn+1M
→ 0

is exact. By Corollary 8.1.6, for some r, we have Jr+1 = (0). Taking n = r in
the exact sequence, Lemma 7.6.9 implies JrM is noetherian. A finite induction
argument using Lemma 7.6.9 and the exact sequence proves JnM is noetherian for
n = r, . . . , 1, 0. □

Lemma 8.4.2. Let R be a commutative noetherian local ring with maximal ideal
m. If m is the only prime ideal of R, then R is artinian.
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Proof. By Lemma 7.3.8, I(V (0)) = RadR(0) = m. Therefore, mn = (0), for
some n ≥ 1. Look at the filtration

R ⊇ m ⊇ m2 ⊇ · · · ⊇ mn−1 ⊇ (0).

Each factor mi/mi+1 is finitely generated as an R-module, hence is finitely generated
as a vector space over the field R/m. By Exercise 4.1.20, the R-submodules of
mi/mi+1 correspond to R/m-subspaces. By Exercise 7.6.33, mi/mi+1 satisfies DCC
as an R/m-vector space, hence as an R-module. In particular, mn−1 satisfies DCC
as an R-module. A finite induction argument using Lemma 7.6.9 and the exact
sequences

0→ mi+1 → mi → mi/mi+1 → 0

shows that each R-module mi has the DCC on submodules. In particular, R is
artinian. □

Proposition 8.4.3. Let R be a commutative artinian ring.

(1) Every prime ideal of R is maximal.
(2) The nil radical RadR(0) is equal to the Jacobson radical J(R).
(3) There are only finitely many maximal ideals in R.
(4) The nil radical RadR(0) is nilpotent.

Proof. (1): Let P be a prime ideal in R. Then R/P is an artinian integral
domain. By Exercise 7.6.23, R/P is a field.

(2): This is Exercise 8.4.9.
(3): Theorem 8.4.1 implies R is noetherian, and Proposition 7.6.14 implies

SpecR has only a finite number of irreducible components. By Corollary 7.6.15,
the irreducible components of SpecR correspond to the minimal primes of R. It
follows from Part (1) that every prime ideal in R is minimal. Therefore, SpecR is
finite.

(4): In an artinian ring the Jacobson radical is always nilpotent, by Corol-
lary 8.1.6. □

Proposition 8.4.4. Let R be a commutative ring. The following are equivalent.

(1) R is artinian.
(2) R is noetherian and every prime ideal is maximal (dim(R) = 0, in the

notation of Section 13.6.1).
(3) R is an R-module of finite length.

Proof. By Proposition 7.6.30, it is enough to show (1) and (2) are equivalent.
(1) implies (2): By Theorem 8.4.1, R is noetherian. By Proposition 8.4.3, every

prime ideal of R is maximal.
(2) implies (1): By Theorem 7.6.16, R has a decomposition R = R1 ⊕ · · · ⊕Rn

where each Ri has only two idempotents. By Exercise 7.6.18 it suffices to show
each Ri is artinian. Therefore, assume SpecR is connected. By Proposition 1.4.7,
SpecR decomposes into a union of a finite number of irreducible closed subsets.
Each prime ideal of R is maximal, so the irreducible components of SpecR are
closed points. Since we are assuming SpecR is connected, this proves R is a local
ring. By Lemma 8.4.2, R is artinian. □

Proposition 8.4.5. Let R be a commutative noetherian local ring and let m
be the maximal ideal of R.

(1) If mn ̸= mn+1 for all n ≥ 1, then R is not artinian.
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(2) If there exists n ≥ 1 such that mn = mn+1, then mn = 0 and R is artinian.

Proof. (1): If R is artinian, then by Proposition 8.4.3 (4) there exists n > 0
such that mn = 0.

(2) If mn = mn+1, then by Nakayama’s Lemma (Theorem 8.1.3), mn = 0. If P is
a prime ideal of R, then mn ⊆ P . By Exercise 7.3.21, m = Rad(mn) ⊆ Rad(P ) = P .
This proves that P = m, so by Proposition 8.4.4, R is artinian. □

Theorem 8.4.6. Let R be a commutative artinian ring.

(1) R = R1 ⊕R2 ⊕ · · · ⊕Rn where each Ri is a local artinian ring.
(2) The rings Ri in Part (1) are uniquely determined up to isomorphism.
(3) If m1, . . .mn is the complete list of prime ideals in SpecR, then the natural

homomorphism R→ Rm1
⊕ · · · ⊕Rmn

is an isomorphism.

Proof. (1): By Proposition 8.4.3, MaxR = SpecR = {m1, . . . ,mn} is a finite
set. So the topological space SpecR has the discrete topology. By Theorem 7.6.16,
R can be written as a direct sum R = R1 ⊕ · · · ⊕ Rr where SpecRi is connected.
Since the topology is discrete, this implies SpecRi is a singleton set, hence Ri is a
local ring. This also proves n = r.

(2): A local ring has only two idempotents, so this follows from Theorem 7.2.5.
(3): Start with the decomposition R ∼= R1 ⊕ · · · ⊕ Rn of Part (1) and apply

Exercise 7.1.15. □

4.1. Finitely Generated Projective of Constant Rank is Free.

Corollary 8.4.7. Let R be a commutative artinian ring. If M is a finitely
generated projective R module of constant rank r, then M is a free R-module of
rank r.

Proof. By Theorem 8.4.6, R is the finite direct sum of local rings. By Exer-
cise 8.1.11, M is a free module of rank r. □

Corollary 8.4.8. Let R be a commutative ring and S a commutative R-
algebra which is finitely generated and projective as an R-module. Let M be a
finitely generated projective S-module. Let p be a prime ideal in SpecR such that
RankSp

(Mp) = s is defined. Then

RankRp
(Mp) = RankRp

(Sp)RankSp
(Mp)

Proof. Let k = Rp/pRp be the residue field of Rp. Then S ⊗R k is a finite
dimensional k-algebra, hence is artinian. By Corollary 8.4.7, M ⊗R k = M ⊗S
(S ⊗R k) is a free S ⊗R k-module of constant rank s. Proposition 4.2.39 applies to
the trio k, S ⊗R k, M ⊗R k. Applying Proposition 7.4.2 we get the rank formula
over the local ring Rp. □

4.2. Exercises.

Exercise 8.4.9. Let R be a commutative artinian ring. Prove that the Jacob-
son radical J(R) is equal to the nil radical RadR(0).

Exercise 8.4.10. Let R be a commutative artinian ring and M a finitely
generated free R-module of rank n. Prove that the length of M is equal to ℓ(M) =
nℓ(R).
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Exercise 8.4.11. Let R be a commutative ring with the property that for
every maximal ideal m in R, V (m) is both open and closed in SpecR. Prove that
every prime ideal of R is maximal.

Exercise 8.4.12. Let R be a commutative noetherian ring. Recall that a
topological space has the discrete topology if “points are open”. Prove that the
following are equivalent.

(1) R is artinian.
(2) SpecR is discrete and finite.
(3) SpecR is discrete.
(4) For each maximal ideal m in MaxR, the singleton set {m} is both open

and closed in SpecR.

Exercise 8.4.13. Let k1, . . . , km be fields and R = k1⊕· · ·⊕km. Show that R
has exactly m maximal ideals. Prove that if σi : R→ ki is the ring homomorphism
onto ki and mi the kernel of σi, then the maximal ideals of R are m1, . . . ,mm.

Exercise 8.4.14. Let R be a commutative noetherian semilocal ring. Let I
be an ideal which is contained in the Jacobson radical, I ⊆ J(R). Prove that the
following are equivalent.

(1) There exists ν > 0 such that J(R)ν ⊆ I ⊆ J(R).
(2) R/I is artinian.

Exercise 8.4.15. Let R be a commutative noetherian ring, m a maximal ideal
in R, and n ≥ 1.

(1) Prove that R/mn is a local artinian ring.
(2) Prove that the natural map R/mn → Rm/m

nRm is an isomorphism.

Exercise 8.4.16. Let k be a field and R = k[x1, . . . , xn]. Let α1, . . . , αn be
elements of k and m the ideal in R generated by x1 − α1, . . . , xn − αn.

(1) Show that m is a maximal ideal, and the natural map k → R/m is an
isomorphism.

(2) Show that m/m2 is a k-vector space of dimension n.
(3) Show that mRm/m

2Rm is a k-vector space of dimension n.

Exercise 8.4.17. Let k be an algebraically closed field. Show that if A and B
are local artinian k-algebras, then A⊗k B is a local artinian k-algebra.

Exercise 8.4.18. Let k be a field and R = k[x, y]/(xn, ym), where m,n ∈
N. Show that R is a local k-algebra with maximal ideal m = (x, y). Show that
dimk(R) = nm.

Exercise 8.4.19. Let R = (Z/4)[x]/(x4 + 1).

(1) Show that R is a local ring.
(2) Show that the maximal ideal of R is the principal ideal m = (x+ 1).

Exercise 8.4.20. Let f : R → S be a homomorphism of commutative rings
and assume S is finitely generated as an R-module. Let f ♯ : SpecS → SpecR
be the continuous map of Exercise 7.3.20. For each P ∈ SpecR, show that the
set (f ♯)−1(P ) is finite. In other words, show that there are only finitely many
Q ∈ SpecS such that f−1(Q) = P . (Hint: Exercise 7.4.11.)
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5. Examples

This section is devoted to applications and examples. First we apply the results
from the previous sections to study algebras which are three dimensional over a
field. Let k be a field and A a k-algebra such that dimk(A) = 3. We show that if
A is semisimple, then either A is a field extension of k, or the direct sum of field
extensions of k. If A is noncommutative, then we show that A is isomorphic to
the subring of M2(k) consisting of lower triangular matrices. If A is a commutative
local ring, then there are two possibilities for A, depending on whether the Jacobson
radical J(A) contains an element with index of nilpotency greater than 2. The last
case is when A is the direct sum of a local ring of dimension two and a copy of
k. Our second application is a classification of all finite rings of order p3, where
p is a prime number. Most of the cases that arise in this context fall under the
hypotheses of an algebra of dimension three over the finite field Fp. In particular,
there is exactly one case where the ring A is noncommutative. In the computation
of this example, most of the work is spent on the case where A is a finite ring
of order p3 and characteristic p2. We show that such a ring A is a commutative
Z/p2-algebra. If p = 2, then up to isomorphism there are three distinct possibilities
for A, but if p is odd, there are four.

5.1. Three Dimensional Algebras. Let k be a field. We apply the results of
the previous sections to classify up to isomorphism all three dimensional k-algebras.
First we review in Example 8.5.1 below the classification of k-algebras A such that
dimk(A) = 2.

Example 8.5.1. Let k be a field and A a finite dimensional k-algebra. Assume
dimk(A) = 2. By Exercise 4.5.13, A is commutative. In fact A is a simple exten-
sion of k, hence the classification of Exercise 4.5.12 applies to A. We outline the
computation here. Let u be an element of A that is not in k. As in Theorem 4.5.2,
let τ : k[x] → A be the evaluation homomorphism. Since {1, u} is a k-basis for A,
A ∼= k[x]/(f), where f = min.polyk(u). So deg f = 2. If f is irreducible over k,
then A is a quadratic extension field of k. Otherwise f = (x − a)(x − b) splits in
k. If a ̸= b, then A is isomorphic to a direct sum k⊕ k of two copies of k. If a = b,
then A is isomorphic to the local ring k[x]/(x2).

Theorem 8.5.2. Let k be a field and A a finite dimensional k-algebra. If
dimk(A) = 3, then exactly one of the following is true.

(1) A is a field extension of k of degree 3. A is a simple ring.
(2) A is isomorphic to k⊕F , a direct sum of k and a field extension F/k of degree

2. A is semisimple but not simple.
(3) A is isomorphic to k⊕ k⊕ k, a direct sum of three copies of k. In this case, A

is semisimple.

(4) A is isomorphic to


x 0 0
y x 0
z 0 x

 | x, y, z ∈ k
, a subring of the ring of matrices

M3(k), a commutative local ring. If J = J(A), then dimk(J) = 2 and J2 = (0).
By Exercise 8.5.13, this ring is isomorphic to the ring R = k[x, y]/(x2, xy, y2).

(5) A is isomorphic to


x 0 0
y x 0
z y x

 | x, y, z ∈ k
, a subring of the ring of ma-

trices M3(F2), a commutative local ring. If J = J(A), then dimk(J) = 2 and



388 8. ARTINIAN AND NOETHERIAN RINGS AND MODULES

dimk(J
2) = 1. There is an element u ∈ J such that u2 ̸= 0, u3 = 0. By

Exercise 8.5.14, this ring is isomorphic to the ring R = k[x, y]/(x2− y, xy, y2).
(6) A is isomorphic to k ⊕ k[x]/(x2), a commutative ring, the Jacobson radical is

the principal ideal generated by the ordered pair (0, x).

(7) A is isomorphic to

{[
x 0
y z

]
| x, y, z ∈ k

}
, which is a subring of the ring of

matrices M2(k), a noncommutative ring. The Jacobson radical is the principal

ideal generated by

[
0 0
1 0

]
. This is the ring of Exercise 8.3.12.

A finite dimensional k-algebra A is artinian (Exercise 7.6.35). By Corol-
lary 8.1.6, J(A) is a nilpotent ideal. It follows that every element of J(A) is nilpotent
(Exercise 3.2.33).

For the remainder of this section, we will use the notation Ring (1), . . . , Ring (7)
to refer to the seven rings of Theorem 8.5.2. The proof is divided into a series of
lemmas.

Lemma 8.5.3. Let k be a field and A a finite dimensional k-algebra such that
dimk(A) = 3.

(1) If J(A) = (0), then A is either a field, or a direct sum of fields. Hence A is
either a direct sum k⊕ k⊕ k of three copies of k, or a direct sum k⊕F , where
F is a quadratic extension field of k, or A is an extension field of k with degree
3. In this case A is isomorphic to exactly one of the rings (1), (2) or (3) of
Theorem 8.5.2.

(2) If dimk J(A) = 1, then A/ J(A) ∼= k ⊕ k. In this case, A contains exactly two
maximal ideals m1 and m2, where dimk mi = 2 and J(A) = m1 ∩m2.

(3) If dimk J(A) = 2, then A/ J(A) ∼= k.

Proof. (1): Since A is semisimple, A is a direct sum of simple rings. By Theo-
rem 8.3.5, a simple ring is a ring of matrices over a division ring. Since dimk(A) = 3,
a simple k-algebra is necessarily a division ringD such that dimk(D) = 3. By Corol-
lary 8.3.10, the dimension of D over the center Z(D) is a square. If D is a simple
ring that is a direct summand of A, then D = Z(D), hence D is a field.

(2): By Exercise 4.4.37, if J(A) has dimension one, then A contains a maximal
ideal m such that A/m ∼= k. By Corollary 8.1.7 (1), J(A) is contained in m. By
Proposition 3.2.12, A/ J(A) is not simple. By Example 8.5.1, A/ J(A) is isomorphic
to the ring k ⊕ k. By Exercise 8.4.13, A/ J(A) has exactly two maximal ideals,
hence, so does A.

(3): In this case, A/ J(A) is a k-algebra of dimension 1. □

The classification of algebras A such that J(A) has dimension 2 over k will
utilize the following result on two-by-two nilpotent matrices.

Lemma 8.5.4. Let k be a field andM2(k) the ring of two-by-two matrices over k.
Let U and V be nonzero nilpotent matrices in M2(k). The following are equivalent.

(1) kerU = kerV .
(2) imU = imV .
(3) U = sV for some s ∈ k∗.
(4) For every pair (s, t) ∈ k2, the matrix sU + tV is singular.

Proof. (1) and (2) are equivalent: Since U and V are nonzero nilpotent ma-
trices in M2(k), kerU = imU and kerV = imV .
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(1) and (2) imply (3): Let u be an eigenvector for U . If u1 ∈ k2 − kerU , then
B = {u, u1} is a basis for k2. We have Uu1 = su for some s ∈ k∗. Likewise, since
kerU = kerV , V u1 = tu for some t ∈ k∗. On the basis B, we have tU = sV . This
proves U = t−1sV .

(3) implies (4): Say s ∈ k∗ and U = sV . For contradiction’s sake, assume
aU + bV is nonsingular, where (a, b) ∈ k2. Substituting, aU + bV = asV + bV =
(as+ b)V is nonsingular. But (as+ b)V has rank less than or equal to one, hence
is singular.

(4) implies (1): Suppose kerU ̸= kerV . Let u be an eigenvector for U and v an
eigenvector for V . Then B = {u, v} is a basis for k2. By the proof of (1) and (2)
implies (3), there exist a, b in k∗ such that Uv = au and V u = bv. On the basis B,
we have (U +V )(U +V )u = (U +V )bv = abu and (U+V )(U +V )v = (U +V )au =
abv. This proves U + V is invertible and (U + V )−1 = (ab)−1(U + V ). □

Lemma 8.5.5. Let k be a field and A a finite dimensional k-algebra such that
dimk(A) = 3. If J = J(A) and dimk(J) = 2, then A is isomorphic to exactly one
of the two rings (4) or (5) of Theorem 8.5.2.

Proof. Let {u, v} be a k-basis for J . Then u and v are nilpotent. Let λ : A→
Homk(J, J) be the left regular representation of A (Example 4.4.4). The image of
A under λ is a k-subalgebra S = imλ of Homk(J, J). By Proposition 4.4.13,
Homk(J, J) is isomorphic to M2(k) as k-algebras. The image of J under λ consists
of nilpotent matrices. By Lemma 8.5.4, dimk λ(J) ≤ 1. Therefore, the kernel of
λ : J → Homk(J, J) is not equal to (0). In other words, there exists w ∈ J − (0)
such that 0 = wu = uw = wv = vw = w2. We split the rest of the proof into two
cases.

Case 1: λ(J) ̸= (0). Since dimk(J) = 2 and λ(J) ∼= J/(ker (λ)∩ J), this means
ker (λ) ∩ J = kw has dimension one. Then there exists some u ∈ J such that
u ̸∈ annihR(J). Thus, u ̸∈ kw. Since λ(u)2 = 0, we have u2 ∈ kw. Hence u2 = aw,
for some a ∈ k. A basis for J over k is {u,w}. With respect to this basis, the

matrix for λ(u) is

[
0 0
a 0

]
. Since λ(u) ̸= 0, this implies a ̸= 0. Define a k-linear

transformation f : A→M3(k) on the basis {1, u, aw} by

f(1) =

1 0 0
0 1 0
0 0 1

 , f(u) =

0 0 0
1 0 0
0 1 0

 , f(aw) =

0 0 0
0 0 0
1 0 0

 .
It is routine to check that f maps the ring A isomorphically onto Ring (5).

Case 2: λ(J) = (0). We have J ⊆ annihR(J), thus J
2 = (0). As above, a basis

for A over k is {1, u, v}, where J = ku + kv. On this basis we define a k-linear
transformation f : A→M3(k) by

f(1) =

1 0 0
0 1 0
0 0 1

 , f(u) =

0 0 0
1 0 0
0 0 0

 , f(v) =

0 0 0
0 0 0
1 0 0

 .
It is routine to check that f maps the ring A isomorphically onto Ring (4). □

Lemma 8.5.6. Let k be a field and A a finite dimensional k-algebra such that
dimk(A) = 3. If J = J(A) and dimk(J) = 1, then A is isomorphic to exactly one
of the two rings (6) or (7) of Theorem 8.5.2.



390 8. ARTINIAN AND NOETHERIAN RINGS AND MODULES

Proof. Let v ∈ J − (0). Then J = kv. By Lemma 8.5.3, A/J is isomorphic
to k ⊕ k. By Corollary 8.1.8 (2), lift one of the nontrivial idempotents of A/J to
an idempotent e ∈ A. Then {1, e, v} is a basis for A as a k-vector space. Let
λ : A → Homk(J, J) be the left regular representation. The ring Homk(J, J)
is isomorphic to the field k, hence has only two idempotents. Therefore, either
λ(e) = 0, or λ(e) = 1. Thus ev is either 0 or v. Likewise, ve is either 0 or v. There
are four mutually exclusive cases.

Case 1: ev = ve = 0. Then A = k1+ke+kv is clearly a commutative ring and
A is the internal direct sum A = Ae⊕A(1− e). So Ae = ke is isomorphic as a ring
to k by the assignment e 7→ 1. Moreover, v(1−e) = v, (1−e)v = v. The assignment
1−e 7→ 1 and v 7→ x induces an isomorphism of rings from A(1−e) = k(1−e)+kv
to k[x]/(x2). Hence, A is isomorphic to Ring (6).

Case 2: ev = ve = v. Then (1− e)v = 0, v(1− e) = 0. It follows at once that
this is Case 1, with the roles of e and 1 − e reversed. Hence, A is isomorphic to
Ring (6).

Case 3: ev = 0 and ve = v. Then (1− e)v = v and v(1− e) = 0. On the basis
{1, e, v} define a k-linear transformation ϕ : A→M2(k):

ϕ(1) =

[
1 0
0 1

]
, ϕ(v) =

[
0 0
1 0

]
, ϕ(e) =

[
1 0
1 0

]
.

It is routine to check that ϕ(e)ϕ(v) = 0, ϕ(v)ϕ(e) = ϕ(v) and that ϕ maps A
isomorphically onto Ring (7).

Case 4: ev = v, ve = 0. With the roles of e and 1− e reversed, this is Case 3.
The ring A is isomorphic to Ring (7).

□

5.2. Finite Rings of Order p3. Throughout this section p is a fixed prime
number. The goal of this section is to classify in a systematic way all finite rings
of order p3. In Theorem 8.5.8 we show that if p is odd, then up to isomorphism
there are twelve different rings of order p3. If p = 2, we show that there are eleven
different rings of order eight.

Example 8.5.7. We know from Exercise 5.5.8 that up to isomorphism there
are exactly four different rings of order p2.

(1) Z/p2. This ring has order p2 and characteristic p2.
(2) (Z/p)[x]/(x2). This ring has order p2, characteristic p, is a local ring, and

has nontrivial Jacobson radical.
(3) Z/p⊕Z/p. This ring has order p2, characteristic p, trivial Jacobson radical,

and is not a field.
(4) Fp2 , the unique field of order p2, which exists by Lemma 5.5.2 and Theo-

rem 5.5.3.

Theorem 8.5.8. Let R be a finite ring of order p3. Then R is isomorphic to
exactly one of the following rings.

(1) Z/p3, the ring of integers modulo p3, a local ring with characteristic p3. The
Jacobson radical is {0, p, 2p, . . . , (p− 1)p}, which has order p2.

(2) Fp3 , the field of order p3 and characteristic p, a simple ring.
(3) Fp2 ⊕ Fp, the direct sum of the field of order p2 and the field of order p. The

characteristic is p. This is a semisimple ring which is not simple.
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(4) Fp ⊕ Fp ⊕ Fp, the direct sum of three copies of the field of order p. The char-
acteristic is p. This is a semisimple ring which is not simple.

(5)


x 0 0
y x 0
z 0 x

 | x, y, z ∈ Fp

, a subring of the ring of matrices M3(Fp), a com-

mutative local ring with characteristic p. The Jacobson radical, J , has order
p2, and J2 = (0). By Exercise 8.5.13, this ring is isomorphic to the ring
R = Fp[x, y]/(x2, xy, y2).

(6)


x 0 0
y x 0
z y x

 | x, y, z ∈ Fp

, a subring of the ring of matrices M3(Fp), a com-

mutative local ring with characteristic p. The Jacobson radical, J , has order
four, and J2 has order two. There is an element b ∈ J such that b2 ̸= 0, b3 = 0.
By Exercise 8.5.14, this ring is isomorphic to the ring R = Fp[x, y]/(x2 −
y, xy, y2).

(7) Fp⊕Fp[x]/(x2), a commutative ring with characteristic p. The Jacobson radical
is the principal ideal generated by the ordered pair (0, x).

(8)

{[
x 0
y z

]
| x, y, z ∈ Fp

}
, which is a subring of the ring of matrices M2(Fp), a

noncommutative ring with characteristic p. The Jacobson radical is the princi-

pal ideal generated by

[
0 0
1 0

]
.

(9) Z/p2⊕Z/p, the direct sum of the local ring Z/p2 and the field Z/p, the Jacobson
radical is {0, p, 2p, . . . , (p− 1)p}, the characteristic is p2.

(10) Z/p2[x]/(px, x2), the polynomial ring Z/p2[x] modulo the ideal (px, x2), a local
ring with characteristic p2. The maximal ideal m is generated by {p, x}, where
pv = 0, x2 = 0, and m2 = (0). The additive group (m,+) is an elementary
p-group of order p2.

(11) Z/p2[x]/(px, x2− p), the polynomial ring Z/p2[x] modulo the ideal (px, x2− p),
a local ring with characteristic p2. The maximal ideal m is principal, generated
by {x}, where pv = 0, x2 = p, and m2 = {0, p, 2p, . . . , (p − 1)p}. The additive
group (m,+) is an elementary p-group of order p2.

(12) This case does not occur if p = 2. Z/p2[x]/(px, x2 − ap), the polynomial ring
Z/p2[x] modulo the ideal (px, x2−ap), a is any quadratic nonresidue modulo p.
A local ring with characteristic p2, the maximal ideal m is principal, generated
by {x}, where pv = 0, x2 = ap, and m2 = {0, p, 2p, . . . , (p− 1)p}. The additive
group (m,+) is an elementary p-group of order p2. In this ring p is not a
square.

For the remainder of this section, we will use the notation Ring (1), . . . ,
Ring (12) to refer to the twelve rings of Theorem 8.5.8. Rings (2) – (8) all have
characteristic p and these seven fall under the hypotheses of Theorem 8.5.2. The
only ring of order p3 that has characteristic p3 is Z/p3, which is Ring (1). To com-
plete the proof of Theorem 8.5.8, it suffices to classify all rings of order p3 that have
characteristic p2. The rings of characteristic p2 in Theorem 8.5.8 are Rings (9) –
(12). We show in Lemma 8.5.12 below that if p is odd, then a ring A of order p3

and characteristic p2 is isomorphic to exactly one of the Rings (9) – (12). If p = 2,
then we show A is isomorphic to one of the Rings (9) – (11).
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For the rest of this section, A denotes a finite ring of order p3, characteristic
p2, and C denotes the image of the natural map Z → A. So C is isomorphic to
Z/p2. In Lemma 8.5.9 we use notation from Section 2.8.1 for the image and kernel
of the “multiplication by p” map on an abelian group.

Lemma 8.5.9. Let A be a finite ring of order p3 and characteristic p2. Let C
be the canonical subring of order p2, the image of the natural map Z→ A.

(1) A is a commutative ring and generated as a C-algebra by any element v ∈ A−C.
(2) The abelian group (A,+) is isomorphic to Z/p2 ⊕ Z/p.
(3) Denote by A(p) the subgroup of (A,+) annihilated by p. Then A(p) is isomor-

phic to Z/p⊕ Z/p.
(4) Denote by pA the ideal generated by p. Then pA is equal to the ideal pC and

has order p.

Proof. (1): Since C is central, given any v ∈ A − C, the assignment x 7→ v
defines an evaluation homomorphism C[x] → A. The image is the commutative
subring C[v]. By Corollary 2.2.12, the order of C[v] is necessarily p3.

(2): This follows from Theorem 2.8.7, since (A,+) has order p3 and exponent
p2.

(3) and (4): Apply Lemmas 2.8.3 and 2.8.4. Notice that the ideal pC is actually
an A-module contained in C and is equal to C : A, the conductor from A to C (see
Exercise 4.1.25). □

Lemma 8.5.10. If A is a finite ring of order p3 and characteristic p2, then
exactly one of the following is true.

(1) A is a local ring.
(2) A is isomorphic to Z/p2 ⊕ Z/p.

Proof. By Lemma 8.5.9, A is commutative. Since A is finite, A is artinian.
By Theorem 8.4.6, A is a direct sum of local artinian rings. If A is not a local ring,
then A = A1⊕A2. Since A has characteristic p2, either A1 or A2 has characteristic
p2 and the other has order p. By Example 8.5.7, one of the direct summands is
isomorphic to Z/p2 and the other is isomorphic to Z/p. □

In Lemma 8.5.11 (4), we denote by Up the group of units modulo p. As in
Section 2.8.1 we use the notation U2

p to denote the image of the map π2 : Up → Up.
Since Up is a cyclic group of order p−1 (Theorem 5.5.3), it follows from Lemma 2.8.3
that [Up : U

2
p ] = 2, if p is odd.

Lemma 8.5.11. Let p be an odd prime number and i an integer such that
gcd(i, p) = 1. Consider the quotient ring

Ai = Z/p2[x]/(px, x2 − ip).
In the following, cosets in the ring Ai are written without brackets or any extra
adornment.

(1) Ai is a local ring of order p3 and characteristic p2. The Jacobson radical
J = J(Ai) is equal to the principal ideal (x) and (J,+) is an elementary
p-group of order p2.

(2) J2 is equal to the principal ideal (p), which has order p.
(3) The set {α2 | α ∈ J} is equal to the subset {u2ip | u ∈ Z} of (p) and has

order (p+ 1)/2.
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(4) If j is an integer such that gcd(j, p) = 1, then the rings Ai and Aj are
isomorphic if and only if the cosets of i and j in the factor group Up/U

2
p

are equal.

Proof. (1) and (2): This is Exercise 8.5.15.
(3): Since J2 = (p), the set {α2 | α ∈ J} is a subset of (p). The additive group

(J,+) is an elementary p-group of rank 2, and {p, x} is a basis. A typical element
α ∈ J is of the form α = ux + vp, where u and v are integers. Since px = 0,
p2 = 0, and x2 = ip, we have α2 = u2ip. If p | u, then α2 = 0. If gcd(u, p) = 1,
then u2i is in the coset of i in Up/U

2
p . Since [Up : U2

p ] = 2, this implies there are

(p− 1)/2 + 1 = (p+ 1)/2 squares α2 in J .
(4): If i and j are not congruent modulo U2

p , then by (3), the rings Ai and

Aj are not isomorphic. Conversely, assume i = ju2 + kp for some integers u
and k such that gcd(u, p) = 1. Define ϕ : Ai → Aj by ϕ(x) = ux. Note that
ϕ(x2 − ip) = (ux)2 − ip = u2jp− ip = (i− kp)p− ip = 0. From this it is routine to
check that ϕ is well defined, and ϕ is an isomorphism. □

Lemma 8.5.12. Let A be a finite ring of order p3 and characteristic p2. If
p = 2, then A is isomorphic to exactly one of the Rings (9), (10), or (11) of
Theorem 8.5.8. If p is odd, then A is isomorphic to exactly one of the Rings (9),
(10), (11), or (12).

Proof. By Lemma 8.5.10, if A is not a local ring, then A is isomorphic to
Ring (9). Assume from now on that A is a local ring with maximal ideal J = J(A).
By Lemma 8.5.9, A(p) is a maximal ideal. Therefore, J = A(p). Then (J,+) is
an elementary p-group of order p2. Let v ∈ J − (p). By Lemma 8.5.9, a basis for
(J,+) is the set {p, v}, and A is generated as a C-algebra by v. By Corollary 8.1.6,
either J2 = (0), or J2 = (p). We now consider these two mutually exclusive cases.

Case 1: Assume J2 = (0). Then v2 = 0. Define a homomorphism from
Ring (10) to A by the assignment x 7→ v. It is immediate that this is an isomor-
phism.

Case 2: Assume J2 = (p). Then v2 = ip for some integer i such that gcd(i, p) =
1. As in Lemma 8.5.11, let Ai = Z/p2[x]/(px, x2 − ip). Define a homomorphism
from Ai to A by the assignment x 7→ v. It is immediate that this is an isomorphism.
If p = 2, then (p) = {0, p}. In this case there is only one choice for i, and A is
isomorphic to Ring (11). If p is odd, then by Lemma 8.5.11, A is isomorphic to
exactly one of Ring (11) or (12). □

5.3. Exercises.

Exercise 8.5.13. Let k be a field and k[x, y] the polynomial ring over k in
two variables. Consider the quotient ring R = k[x, y]/(x2, xy, y2). In the following,
cosets in the ring R are written without brackets or any extra adornment. Prove:

(1) R is a local ring with maximal ideal m = Rx+Ry.
(2) R has Krull dimension 0.
(3) dimk(R) = 3. (Hint: a basis for R over k is 1, x, y.)
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(4) R is isomorphic to the subring


α 0 0
β α 0
γ 0 α

 | α, β, γ ∈ k
 of M3(k).

(Hints: map x to

0 0 0
1 0 0
0 0 0

, and y to

0 0 0
0 0 0
1 0 0

.)
Exercise 8.5.14. Let k be a field and k[x, y] the polynomial ring over k in two

variables. Consider the quotient ring R = k[x, y]/(x2 − y, xy, y2). In the following,
cosets in the ring R are written without brackets or any extra adornment. Prove:

(1) R is a local ring with maximal ideal m = Rx+Ry.
(2) R has Krull dimension 0.
(3) dimk(R) = 3. (Hint: a basis for R over k is 1, x, y.)

(4) R is isomorphic to the subring


α 0 0
β α 0
γ β α

 | α, β, γ ∈ k
 of M3(k).

(Hints: map x to

0 0 0
1 0 0
0 1 0

, and y to

0 0 0
0 0 0
1 0 0

.)
Exercise 8.5.15. Let p be a prime number and i an integer such that gcd(i, p) =

1. Consider the quotient ring R = Z/p2[x]/(px, x2− ip). In the following, cosets in
the ring R are written without brackets or any extra adornment. Prove:

(1) R has order p3 and characteristic p2.
(2) Denote by (x) the principal ideal generated by x. Then (x) has order p2

and (x) is equal to RadR(0), the nil radical of R.
(3) R is a local ring, the maximal ideal is (x).
(4) The ideals (x2) and (p) are equal and they both have order p.
(5) Find the invariants (Theorem 2.8.7) of the abelian groups (R,+) and

(Rx,+).



CHAPTER 9

Separable Algebras, Definition and First
Properties

1. Separable Algebra, the Definition

In this section the notion of a separable algebra over a commutative ring is
defined. The basic properties of separable algebras are studied.

Definition 9.1.1. Let R be a commutative ring and A an R-algebra. The
enveloping algebra of A is Ae = A⊗RAo. We make A into a left Ae-module by the
action [∑

i

(ai ⊗ bi)

]
· c =

∑
i

(aicbi).

The reader should verify that this is a left module action on A by the ring Ae.
There is an Ae-module homomorphism

Ae
µ−→ A

a⊗ b 7→ ab.

The reader should verify that this is a well defined map and that µ is Ae-linear.
Denote by JA/R the kernel of µ. Then JA/R is an Ae-submodule of Ae, hence is a
left ideal. Since µ(1⊗ 1) = 1, the sequence

0→ JA/R → Ae
µ−→ A→ 0

is an exact sequence of Ae-modules. When A is commutative, µ is a homomor-
phism of R-algebras (see Exercise 6.4.36). See Example 9.5.2 for an example of
a noncommutative algebra A over a field k such that µ is not a homomorphism
of rings and JA/k is not a two-sided ideal. Notice that µ(a ⊗ 1 − 1 ⊗ a) = 0 so
a⊗ 1− 1⊗ a ∈ JA/R (see Exercise 9.1.13).

Proposition 9.1.2. Let R be a commutative ring and A an R-algebra. The
following are equivalent.

(1) A is projective as a left Ae-module.
(2) The sequence

0→ JA/R → Ae
µ−→ A→ 0

of left Ae-modules is split exact.
(3) There is an element e ∈ Ae such that µ(e) = 1 and JA/Re = 0.
(4) There is an idempotent e ∈ Ae such that JA/R is equal to the principal

left ideal in Ae generated by 1− e.

Proof. Follows from Exercise 7.2.6. □

395
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Definition 9.1.3. Let R be a commutative ring and A an R-algebra. If A
satisfies any of the equivalent properties of Proposition 9.1.2, then we say A is a
separable R-algebra. Notice that the same element e works for both (3) and (4).
The element e ∈ Ae is called a separability idempotent for A. If A is commutative,
then a separability idempotent is unique, if it exists (Exercise 9.1.11).

Definition 9.1.4. Let R be a commutative ring, A an R-algebra, and Ae the
enveloping algebra. By Definition 9.1.1, A is a left Ae-module. By Example 4.4.4,
the left regular representation of Ae as a ring of R-module endomorphisms of A
induces an R-algebra homomorphism

φ : Ae → HomR(A,A)

where an element α of Ae is mapped to the element φ(α) of HomR(A,A) which is
“left multiplication by α”. Specifically, if α =

∑
ai ⊗ bi, then for any x ∈ A,

φ(α)(x) = α · x

=
∑
i

aixbi.

The map φ will be called the enveloping homomorphism of A.

Definition 9.1.5. A two-sided A/R-module is a left A right A bimodule M
such that the two induced R-actions are equal. That is, for all a, b ∈ A, r ∈ R,
x ∈M :

(1) (ax)b = a(xb) and
(2) rx = (r · 1)x = x(r · 1) = xr.

Definition 9.1.6. Let R be a commutative ring, A an R-algebra. If M is a
left Ae-module, then we can make M into a two-sided A/R-module by

ax = a⊗ 1 · x,
xa = 1⊗ a · x.

Conversely, any two-sided A/R-module can be turned into a left Ae-module in the
same way. If M is a two-sided A/R-module, define

MA = {x ∈M | ax = xa, ∀a ∈ A}.
This is an R-submodule of M .

Lemma 9.1.7. Let R be a commutative ring, A an R-algebra, and M an Ae-
module. Then

HomAe(A,M)
∼=−→MA

f 7→ f(1)

is an isomorphism of R-modules. If g : M → N is an Ae-module homomorphism,
then the diagram

HomAe(A,M)
g◦(·) //

��

HomAe(A,N)

��
MA g // NA

commutes. The functors HomAe(A, ·) and (·)A are naturally isomorphic and both
are left exact.
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Proof. Let f ∈ HomAe(A,M). Then for a ∈ A,

a · f(1) = a⊗ 1 · f(1)
= f(a⊗ 1 · 1)
= f(a)

= f(1⊗ a · 1)
= 1⊗ a · f(1)
= f(1) · a.

So f(1) ∈MA. Conversely, say x ∈MA. Define ρx : A→M to be “right multipli-
cation by x”, ρx(a) = ax. See that ρx is Ae-linear:

ρx(b⊗ c · a) = ρx(bac)

= (bac)x

= (b⊗ c · a)x
= b⊗ c · (a⊗ 1 · x)
= b⊗ c · (ax)
= b⊗ c · ρx(a).

Since ρx(1) = x and ρf(1)(x) = xf(1) = f(x), these are inverses of each other. The
rest of the proof is left to the reader. □

Corollary 9.1.8. HomAe(A,A) ∼= Z(A) under the correspondence f 7→ f(1).

Proof. Take M = A in Lemma 9.1.7 and note that AA = Z(A). □

Corollary 9.1.9. Let (0 :JA/R) = {x ∈ Ae| yx = 0, ∀y ∈ JA/R} be the right
annihilator of JA/R in Ae. Then HomAe(A,Ae) ∼= (0:JA/R). If A is R-separable,
then µ(0 :JA/R) = Z(A).

Proof. Take M = Ae in Lemma 9.1.7. Then

HomAe(A,Ae) ∼=
(
Ae
)A

= {x ∈ Ae | (a⊗ 1− 1⊗ a)x = 0, ∀a ∈ A}
= (0:JA/R).

If A is R-separable, then A is Ae-projective. Since

Ae
µ−→ A→ 0

is exact, it follows from Proposition 6.5.5 that

HomAe(A,Ae)
µ◦( )−−−→ HomAe(A,A)→ 0

is exact. By Lemma 9.1.7, µ(0 :JA/R) = Z(A). □

Corollary 9.1.10. An R-algebra A is separable if and only if (·)A is a right
exact functor.

Proof. By Proposition 6.5.5, the functor HomAe(A, ·) is right exact if and
only if A is a projective Ae-module. □
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1.1. Exercises.

Exercise 9.1.11. If S is a commutative separable R-algebra, then the separa-
bility idempotent is unique. (Hint: Lemma 7.3.13.)

Exercise 9.1.12. Let R be a commutative ring.

(1) R is a separable R-algebra.
(2) If W ⊆ R is a multiplicative set, then the localization RW is a separable

R-algebra.
(3) If I ⊆ R is a nonunit ideal, then R/I is a separable R-algebra.

Exercise 9.1.13. Let µ : A ⊗R Ao → A be as in Definition 9.1.1 Prove that
JA/R, the kernel of µ, is the left ideal in A⊗RAo generated by the set {a⊗1−1⊗a |
a ∈ A}.

Exercise 9.1.14. Let R be a commutative ring.

(1) Let R ⊕R be the ring direct sum of two copies of R. Let e1 = (1, 0) and
e2 = (0, 1) be the orthogonal idempotents in R ⊕ R. Use Exercise 9.1.13
to show that e = e1 ⊗ e1 + e2 ⊗ e2 is a separability idempotent. Hence,
R⊕R is separable over R.

(2) Let Rn = R ⊕ · · · ⊕ R be the ring direct sum of n copies of R. Show
that Rn is separable over R. (Hint: e =

∑n
i=1 ei ⊗ ei is a separability

idempotent, where e1, . . . , en are the orthogonal idempotents in Rn.)

Exercise 9.1.15. Show that C is separable over R. (Hint: Use Exercise 9.1.13
to show that 1

2 (1⊗ 1− i⊗ i) is a separability idempotent.)

Exercise 9.1.16. Let H = R1+Ri+Rj+Rij be the ring of real quaternions. As
an R-vector space H is spanned by the four linearly independent elements 1, i, j, ij.
Multiplication in H is determined by the rules:

i2 = j2 = (ij)2 = −1, ij = −ji.

Show that H is a separable R-algebra. (Hint: e = 1
4 (1⊗ 1− i⊗ i− j ⊗ j − ij ⊗ ij)

is a separability idempotent.)

Exercise 9.1.17. If A is a separable R-algebra and e is a separability idempo-
tent, then (A⊗R Ao)e = (A⊗R 1)e = (1⊗R Ao)e.

Exercise 9.1.18. Prove the following generalization of Lemma 9.1.7. Let R be
a commutative ring, A an R-algebra, and S a commutative R-subalgebra of A. If
M is a left S⊗RAo-module, then the assignment f 7→ f(1) induces an isomorphism
of R-modules HomS⊗RAo(A,M) ∼= MS . If g : M → N is a homomorphism of left
S ⊗R Ao-modules, then the diagram

HomS⊗RAo(A,M)
g◦(·) //

��

HomS⊗RAo(A,N)

��
MS g // NS

commutes. The functors HomS⊗RAo(A, ·) and (·)S are naturally isomorphic and
both are left exact.
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2. Examples of Separable Algebras

In this section three standard examples of separable algebras are presented.
More examples appear in the exercises (Sections 9.1.1 and 9.4.1).

Example 9.2.1. Let R be a commutative ring and let Mn(R) be the ring of
n-by-n matrices over R. Let eij be the elementary matrix having a single 1 in
position (i, j) and 0 elsewhere. Notice that

ekℓeij =

{
ekj if ℓ = i

0 otherwise.

Fix j and define

e =

n∑
i=1

eij ⊗ eji

in the enveloping algebra of Mn(R). Then

µ(e) =
∑
i

eijeji

=
∑
i

eii

= 1.

For any k and l,

(ekl ⊗ 1− 1⊗ ekl)e =
∑
i

(ekleij ⊗ eji − eij ⊗ ejiekl)

= ekj ⊗ ejl − ekj ⊗ ejl
= 0.

Since the ekl generate Mn(R) as an R-module, Exercise 9.1.13 shows that JA/Re =
0. By Proposition 9.1.2 we see that Mn(R) is a separable R-algebra and e is a
separability idempotent.

Example 9.2.2. Let G be a finite multiplicative group and R a commutative
ring. Suppose G has order n and assume n = n · 1 is a unit in R. Starting with the
identity element, let G = {1 = σ1, σ2, . . . , σn} be an enumeration of the elements
of G. Let R(G) = R · 1⊕R ·σ2⊕· · ·⊕R ·σn be the group algebra (Example 3.1.6).
Let

e =
1

n

∑
σ∈G

σ ⊗ σ−1

which is an element in the enveloping algebra
[
R(G)

]e
. Then

µ(e) =
1

n

∑
σ∈G

σσ−1 =
1

n

∑
σ∈G

1 = 1.
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If we fix any τ ∈ G, then as sets we have G = {στ |σ ∈ G}, hence

(τ ⊗ 1)e =
1

n

∑
σ∈G

τσ ⊗ σ−1

=
1

n

∑
ρ

ρ⊗ ρ−1τ

=
1

n

∑
ρ

ρ⊗ τ ∗ ρ−1

= (1⊗ τ)e.

(We write x ∗ y = yx as the product in the opposite algebra.) The group algebra
R(G) is generated over R by the basis elements τ ∈ G. This together with Ex-
ercise 9.1.13 and Proposition 9.1.2 shows that e is a separability idempotent for
R(G) and the group algebra R(G) is a separable R-algebra. For the converse of
this result see Exercise 9.5.15.

Example 9.2.3. Let R be an integral domain and assume 2 = 1+1 is a unit in
R. In this example, we see that an element of order two in the Picard group gives
rise to a quadratic Galois extension of R. Let I ⊆ R an ideal which is an invertible
R-module (I is projective and has rank one). Suppose I2 = Rα is principal. In this
case, there is an isomorphism of R-modules ϕ : I2 → R defined by ϕ(x) = α−1x.
The multiplication map R ⊗R R → R of Exercise 6.4.36 induces an R-module
homomorphism ψ : I ⊗R I → I2. Since ψ is onto and I2 ∼= R, ψ splits. But I2

is free of rank one, so by counting ranks it follows that ψ is is an isomorphism of
R-modules. By Lemma 7.7.5, I ∼= I∗. It follows that in the Picard group, |I| has
order 1 or 2. Let S = R⊕I as R-modules. We turn S into a commutative R-algebra
using ϕ to define a multiplication operation:

(a⊕ b)(c⊕ d) = (ac+ ϕ(bd))⊕ (ad+ cb).

The reader should verify that this multiplication rule is associative, commutative,
distributes over addition, and that 1⊕ 0 is the identity element.

We show S is separable by constructing a separability idempotent in Se. By
assumption, there exist elements a1, . . . , an, b1, . . . , bn in I and

∑
i aibi = α. In S

define two sequences

x1 = 0⊕ a1, . . . , xn = 0⊕ an, xn+1 = 1⊕ 0

and

y1 = 0⊕ b1, . . . , yn = 0⊕ bn, yn+1 = 1⊕ 0.

Notice that

n+1∑
i=1

xiyi = x1y1 + · · ·+ xnyn + xn+1yn+1

=
(
ϕ(a1b1) + · · ·+ ϕ(anbn) + 1

)
⊕ 0

= (ϕ(a1b1 + · · ·+ anbn) + 1)⊕ 0

= (1 + 1)⊕ 0

= 2⊕ 0
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In the enveloping algebra Se, define

e =
1

2

n+1∑
i=1

xi ⊗ yi.

By the above,

µ(e) =
1

2

∑
i

xiyi = 1⊕ 0 = 1.

By Exercise 9.1.13, JS/R is generated by elements of the form x⊗ 1− 1⊗ x, where
x ∈ S = R⊕ I. Since a⊗ 1− 1⊗ a = 0, if a ∈ R, it follows that JS/R is generated

by elements of the form x⊗1−1⊗x, where x ∈ 0⊕I. Notice that (0⊕I)2 ⊆ R⊕0.
Therefore, if x ∈ 0⊕ I, then

x⊗ 1 · e = 1

2

 n∑
j=1

xxj ⊗ yj + x⊗ 1


=

1

2

 n∑
j=1

1⊗ xxjyj + x⊗ 1


=

1

2

1⊗

 n∑
j=1

xjyj

 · 1⊗ x+ x⊗ 1


=

1

2
(1⊗ x+ x⊗ 1)

which by a similar argument is equal to 1⊗ x · e. Then JS/Re = (0). By Proposi-
tion 9.1.2, e is a separability idempotent for S and S is separable over R.

3. Separable Algebras Under Change of Base Ring

In this section we prove that the property of an algebra being separable is
preserved under a change of base ring. The first results on descent (Proposition 9.3.3
and its corollaries) are also proved.

Proposition 9.3.1. Let R be a commutative ring and S1 and S2 commutative
R-algebras. Let A1 be a separable S1-algebra and A2 a separable S2-algebra. Then
A1 ⊗R A2 is separable over S1 ⊗R S2 provided A1 ⊗R A2 ̸= 0 and S1 ⊗R S2 ̸= 0.

Proof. We show that (·)A1⊗RA2 is an exact functor on two-sided A1 ⊗R
A2/S1 ⊗R S2-modules and then apply Corollary 9.1.10. Start with an exact se-
quence

M
f−→ N → 0

of two-sided A1 ⊗R A2/S1 ⊗R S2-modules. The diagram of ring homomorphisms

A1
// A1 ⊗R A2

S1

OO

// S1 ⊗R S2

OO

commutes so M and N can be turned into two-sided A1/S1-modules. Since A1 is
separable over S1, the sequence

(M)A1
f−→ (N)A1 → 0
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is exact. From Exercise 6.4.35 the diagram

A1 ⊗R A2

A1

ρ1

::

A2

ρ2

dd

R

ee 99

commutes and im(ρ1) commutes with im(ρ2). So we turn MA1 and NA1 into two-
sided A2/S2-modules. Since A2 is separable over S2, the sequence(

MA1
)A2 f−→

(
NA1

)A2 → 0

is exact. As a ring A1⊗RA2 is generated by the images of ρ1 and ρ2. So
(
MA1

)A2 ⊆
MA1⊗RA2 . Conversely, MA1⊗RA2 ⊆MA1⊗R1 ∩M1⊗RA2 =

(
MA1

)A2
. □

Corollary 9.3.2. Let A be a separable R-algebra and S a commutative R-
algebra. Then A⊗R S is a separable S-algebra.

Proof. Take A = A1, R = S1, S = S2 = A2 in Proposition 9.3.1. □

Proposition 9.3.3. (Descent of Separable Algebras) Let R be a commutative
ring and S1 and S2 commutative R-algebras. Let A1 be any S1-algebra and A2 any
S2-algebra such that A1 ⊗R A2 is separable over S1 ⊗R S2. If A2 is faithful as an
R-module and R · 1 is an R-module direct summand of A2, then A1 is separable
over S1.

Proof. We show that (·)A1 is right exact and apply Corollary 9.1.10. Let M
be a two-sided A1/S1-module. The reader should verify that M ⊗R A2 is then a
two-sided A1 ⊗R A2/S1 ⊗R S2-module. By our hypothesis, the sequence of natural
maps 0 → R → A2 splits. That is, A2 = L ⊕ R · 1 as R-modules and there is an
isomorphism

M ⊗R A2 =M ⊗R (L⊕R · 1) ∼= (M ⊗R L)⊕ (M ⊗R R · 1).

The reader should verify that in factM⊗RR ·1 is a two-sided A1/S1-module direct
summand of M ⊗R A2, hence there is a projection

(3.1) M ⊗R A2
π−→M ⊗R R · 1

of two-sided A1/S1-modules. Apply the functor (·)A1 to (3.1) to get the R-module
homomorphism

(M ⊗R A2)
A1 π−→ (M ⊗R R · 1)A1 .

Since
(
M⊗RA2

)A1⊗RA2 ⊆ (M ⊗R A2)
A1 , the map π restricted to

(
M⊗RA2

)A1⊗RA2

takes values in (M ⊗R R · 1)A1 . Using the fact that A2 is R-faithful, the reader

should verify that MA1 ⊗R R · 1 = (M ⊗R R · 1)A1 and the sequence

(3.2)
(
M ⊗R A2

)A1⊗RA2 π−→MA1 ⊗R R · 1→ 0

is exact. Consider an arbitrary exact sequence

(3.3) M
f−→ N → 0
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of two-sided A1/S1-modules. Combine (3.2) with (3.3) to get the diagram(
M ⊗R A2

)A1⊗RA2

π

��

f⊗1 //
(
N ⊗R A2

)A1⊗RA2

π

��

// 0

MA1 ⊗R R · 1
f⊗1 // NA1 ⊗R R · 1 // 0

(3.4)

which commutes. The functor (·)⊗R A2 is always right exact, and by assumption
the functor (·)A1⊗RA2 is right exact. Therefore the top row of (3.4) is exact. By
(3.2), π is onto, which implies the bottom row of (3.4) is exact. Since R→ R · 1 is
an isomorphism, f :MA1 → NA1 is onto. □

Corollary 9.3.4. Let A1 and A2 be R-algebras such that A2 is faithful over
R, and R · 1 is an R-module direct summand of A2. If A1 ⊗R A2 is separable over
R, then A1 is separable over R.

Proof. Take S1 = S2 = R in Proposition 9.3.3. □

Corollary 9.3.5. Let S be a commutative faithful R-algebra such that R · 1
is an R-module direct summand of S. Let A be an R-algebra such that A ⊗R S is
S-separable.

(1) A is R-separable.
(2) If the image of R ⊗R S → A⊗R S is equal to the center of A⊗R S, then

R · 1 is equal to the center of A.

Proof. For the first part, take A1 = A, A2 = S2 = S and S1 = R in Proposi-
tion 9.3.3. For the second part, notice that

1⊗R S = Z(A⊗R S) =
(
A⊗R S

)A⊗RS

maps onto AA = Z(A) by the proof of Proposition 9.3.3. But the projection map
π is the splitting map to R→ S which has image R · 1. Hence 1⊗ S projects onto
1⊗R ∼= R · 1. □

Remark 9.3.6. Say A is an R-algebra with structure homomorphism θ : R →
Z(A). If I is an ideal in R and I ⊆ ker θ, then θ factors through R/I so A is an
R/I-algebra and A ⊗R Ao = A ⊗R/I Ao so A is R-separable if and only if A is
R/I-separable.

Proposition 9.3.7. Say A is a separable R-algebra and I is a two-sided ideal
of A. Then A/I is a separable R-algebra. Moreover,

Z(A/I) =
Z(A) + I

I

Proof. Let M be a two-sided (A/I)/R-module. Then M can be viewed as
a two-sided A/R-module using the natural homomorphism η : A → A/I. Then
MA =MA/I . Then A/I is R-separable by Corollary 9.1.10. Now

A→ A/I → 0

is an exact sequence of two-sided A/R-modules. Since A is R-separable,

AA → (A/I)A → 0

is exact. So Z(A/I) is the image under η of Z(A). □
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Corollary 9.3.8. Let A1 be an R1-algebra and A2 an R2-algebra, where R1

and R2 are commutative rings. Then A1⊕A2 is a separable R1⊕R2-algebra if and
only if both A1 and A2 are separable over R1 and R2 respectively.

Proof. Follows from Corollary 9.1.10 and Proposition 9.3.7. □

4. Homomorphisms of Separable Algebras

Let R be a commutative ring and θ : A → B an R-algebra homomorphism.
Consider the commutative diagram

A⊗R B0 γ //

θ⊗1 &&

B

B ⊗R Bo
µ

;;

(4.1)

where γ is defined to be the R-algebra homomorphism θ ⊗ 1, followed by the left
B ⊗R Bo-module homomorphism µ. Therefore, all of the terms in (4.1) can be
viewed as left A ⊗R Bo-modules. Notice that γ(x ⊗ y) = θ(x)y, hence the left
A⊗R Bo-module action on B is given by (a⊗ b) · x = θ(a)xb. We emphasize that
γ is not a homomorphism of rings unless the image of θ is a subring of the center
of B.

Proposition 9.4.1. Let R be a commutative ring and θ : A→ B an R-algebra
homomorphism. If A/R is separable, then the following are true.

(1) The sequence of left A⊗R Bo-modules

A⊗R Bo
γ−→ B → 0

is split-exact. The kernel of γ is idempotent generated, and B is projective
as a left A⊗R Bo-module.

(2) If B is a flat left R-module, then B is a flat left A-module.
(3) If B is a projective left R-module, then B is a projective left A-module.
(4) If A is commutative, im(θ) ⊆ Z(B), and B/R is separable, then B/A is

separable.

Proof. (1): Since A/R is separable, there is a split-exact sequence

(4.2) 0→ JA/R → Ae
µ−→ A→ 0

of left Ae-modules. The R-algebra homomorphism 1 ⊗ θ : Ae → A ⊗R Bo allows
us to view A ⊗R Bo as a left A ⊗R Bo right Ae-bimodule. Applying the functor
(A⊗R Bo)Ae( ) to sequence (4.2) yields the split-exact sequence

(4.3) 0→ (A⊗R Bo)⊗Ae JA/R → (A⊗R Bo)⊗Ae Ae
1⊗µ−−−→ (A⊗R Bo)AeA→ 0

of left A⊗RBo-modules. By Lemma 6.4.13, the middle term in (4.3) is isomorphic
to A ⊗R Bo. Define ϕ : B → (A ⊗R Bo) ⊗Ae A by x 7→ 1 ⊗ x ⊗ 1. The reader
should verify that ϕ is onto. Notice a⊗ b · ϕ(x) = a⊗ b · 1⊗ x⊗ 1 = a⊗ xb⊗ 1 =
1⊗ xb⊗ a = 1⊗ θ(a)xb⊗ 1 = ϕ(a⊗ b · x), so ϕ is a well defined A⊗R Bo-module
epimorphism. To see that ϕ is one-to-one, look at the Z-module homomorphisms

(4.4) B
ϕ−→ (A⊗R Bo)AeA

θ⊗1⊗θ−−−−→ (B ⊗R Bo)AeB
ξ−→ (B ⊗R Bo)BeB

∼=−→ B

where ξ is from Exercise 6.4.41, and the last isomorphism is Lemma 6.4.13. In
(4.4), the composite map is the identity on B. This shows ϕ is an isomorphism,
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hence the last term in (4.3) is isomorphic to B. The reader should verify that γ is
the map induced by 1⊗ µ, and that

0→ ker(γ)→ A⊗R Bo
γ−→ B → 0

is a split-exact sequence of left A ⊗R Bo-modules. The kernel of γ is idempotent
generated, by Lemma 7.2.4. This proves (1).

(2): Since B is a flat left R-module, A ⊗R Bo is a flat left A-module (Theo-
rem 6.4.23). By Exercise 6.4.31, a projective module is flat. Part (1) and Exer-
cise 7.5.24 imply that B is a flat left A-module.

(3): This can be proved using the method of Part (2). Alternatively, this follows
from Theorem 9.4.2.

(4): This is Theorem 9.4.3(2). □

Theorem 9.4.2. Let R be a commutative ring and A a separable R-algebra.
By the structure homomorphism θ : R → A, any left A-module M inherits the
structure of a left R-module.

(1) Let

0→ L→ N
η−→M → 0

be any exact sequence of left A-modules. If the sequence is split exact in

RM, then it is split-exact in AM.
(2) Let M be a left A-module. If M is R-projective, then M is A-projective.

Proof. By Proposition 6.2.3, (2) follows from (1). Suppose there exists an
R-module homomorphism ψ : M → N with ηψ = 1M . Since both N and M are
left A-modules, Lemma 6.5.1 shows that HomR(M,N) can be given the structure
of a left Ae-module under the operation induced by[

(x⊗ y) · f
]
(m) = x · f(y ·m),

where x ⊗ y ∈ A ⊗R Ao, f ∈ HomR(M,N), and m ∈ M . Since A is R-separable,
let e ∈ Ae be a separability idempotent for A. Define ψ′ = e · ψ. That is, if
e =

∑
i xi ⊗ yi, and m ∈M then

ψ′(m) =
∑
i

xiψ(yim).

Since η is an A-module homomorphism and µ(e) = 1, we have

ηψ′(m) = η
(∑
i

xiψ(yim)
)

=
∑
i

xiη · ψ(yim)

=
∑
i

xiyim

= m

for all m ∈M . Since JA/Re = 0, we have

(a⊗ 1− 1⊗ a)ψ′ = (a⊗ 1− 1⊗ a)e · ψ
= 0,
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for all a ∈ A. It follows that
aψ′(m) = a⊗ 1 · ψ′(m)

= 1⊗ a · ψ′(m)

= ψ′(am),

for all a ∈ A, m ∈M . □

Theorem 9.4.3. Let S be a commutative R-algebra and let A be an S-algebra.
Then A is also an R-algebra.

(1) (Separable over Separable is Separable) If S is separable over R and A is
separable over S, then A is separable over R.

(2) If A is separable over R, then A is separable over S.
(3) If A is separable over R and A is an S-progenerator, then S is separable

over R.

Proof. (1): Any two-sided A/R-module M is also a two-sided S/R-module.
Given any x ∈MS , a ∈ A and s ∈ S, the equations

s · (a · x) = a · (s · x)
= a · (x · s)
= (a · x) · s

show that ax ∈MS . It follows thatMS is a two-sided A/S-module, with
(
MS

)A
=

MA. For any two-sided A/R-modules M and N , if

M
f−→ N → 0

is exact then, by Corollary 9.1.10 applied to the separable R-algebra S, it follows
that

MS f−→ NS → 0

is exact. But
(
MS

)A
=MA and

(
NS
)A

= NA. By Corollary 9.1.10 applied to the
separable S-algebra A, it follows that

MA f−→ NA → 0

exact. Hence A is R-separable, which proves (1).
(2): In the commutative diagram

0 // JA/R

��

// A⊗R Ao
µ //

��

A

=

��

// 0

0 // JA/S // A⊗S Ao
µ // A // 0

all of the vertical maps are onto (Exercise 6.4.41). A separability idempotent for
A/R maps to a separability idempotent for A/S.

(3): By part (2), A is separable over S. Since A is S-projective, so is Ao.
The reader should verify (for example, by an argument involving dual bases) that
A⊗R Ao is projective over S ⊗R S. Because A is separable over R, A is projective
as a left A⊗RAo-module under the µ-action. By Proposition 6.2.12, it follows that
A is projective as a left S ⊗R S-module. By Proposition 7.5.6, S · 1 is an S-module
direct summand of A, so we can write A = S ⊕ L for some L. It follows that S
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is also an S ⊗R S-module direct summand of A under the µ-action. Hence S is
S ⊗R S-projective and S is R-separable. □

Let A be a ring and Z(A) the center of A. The next three results are concerned
with the tower of subrings of A:

(4.5) R ⊆ S ⊆ Z(A) ⊆ A.

Corollary 9.4.4. As in Eq. (4.5), let R and S be subrings of the center of
A. Then any two of the following statements imply the third.

(1) S is a separable R-algebra and a finitely generated projective R-module.
(2) A is a separable S-algebra and a finitely generated projective S-module.
(3) A is a separable R-algebra and a finitely generated projective R-module.

Proof. (1) and (2) implies (3): Apply Proposition 6.2.12 and Theorem 9.4.3(1).
(1) and (3) implies (2): Since A is a finitely generated R-module, A is a finitely

generated S-module. Since A is projective over R and S is separable over R, by
Theorem 9.4.2, A is projective over S. Since A is separable over R, by Theo-
rem 9.4.3(2), A is separable over S.

(2) and (3) implies (1): By Theorem 9.4.3(3), S is separable over R. By
Proposition 7.5.6, S · 1 is a S-module direct summand of A. Therefore, the R-
module S is isomorphic to a direct summand of the R-progenerator A. This shows
that S is a finitely generated projective R-module. □

Corollary 9.4.5. As in Eq. (4.5), let R and S be subrings of the center of
A. Assume A is a separable R-algebra and an R-module progenerator. If S is a
separable R-algebra, then S is an R-module progenerator.

Proof. By Theorem 9.4.2, A is a finitely generated projective S-module. By
Theorem 9.4.3 (2), A is separable over S. By Corollary 9.4.4 and Corollary 6.3.4,
S is an R-progenerator. □

Corollary 9.4.6. Let S and A be separable R-algebras and f : S → A an
R-algebra homomorphism. Assume the image of f is contained in the center of A,
and A is an R-module progenerator. The following are true:

(1) The diagram of R-algebra homomorphisms

R
α //

β
!!

f(S)
⊆ // Z(A)

⊆ // A

S

OO

f

55

commutes.
(2) α and β are one-to-one.
(3) The kernel of f is idempotent generated.
(4) If S is commutative and connected, then f is a monomorphism.

Proof. By Proposition 7.5.6, α is one-to-one. By Proposition 9.3.7, the image
of f is a separableR-subalgebra of A. By Corollary 9.4.5, f(S) is anR-progenerator.
By Theorem 9.4.2, f(S) is projective over S. By Exercise 7.2.6, the kernel of f is
idempotent generated. The rest is left to the reader. □

Corollary 9.4.7. Let R be a commutative ring and A a separable R-algebra.
Then
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(1) There is a one-to-one correspondence between the set of all R-algebra ho-
momorphisms σ : A → R, and the set of all central idempotents e in A
such that the composite mapping

R→ Re→ Ae

is one-to-one and onto. In this case σ(e) = 1 and σ(x)e = xe for all
x ∈ A.

(2) Suppose R is connected, σ1, . . . , σn are distinct R-algebra homomorphisms
from A to R, and e1, . . . , en are the corresponding idempotents. Then
(a) σj(ei) = 0 if i ̸= j, and
(b) eiej = 0, if i ̸= j.

Proof. (1): Let θ : R→ A be the structure homomorphism. Let e be a central
idempotent in A and π : A→ Ae the canonical projection map. The diagram

R
α //

θ
��

Re

⊆
��

A
π // Ae

of R-algebra homomorphisms commutes, where α(x) = xe. If Re = Ae and α is
one-to-one, then α−1π is an R-algebra homomorphism.

Conversely, assume σ : A → R is an R-algebra homomorphism. By Theo-
rem 9.4.2, σ makes R into a projective A-module. By Exercise 7.2.6 kerσ is an
A-module direct summand of A, hence kerσ = Ae0 for some idempotent e0 ∈ A.
Since kerσ is a two-sided ideal of A, e = 1 − e0 is a central idempotent by Theo-
rem 3.3.5. The rest is left to the reader.

(2): Since R is connected, σj(ei) is equal to either 0 or 1. Suppose σj(ei) = 1.
Then for every x ∈ A, σj(x) = σj(x)σj(ei) = σj(xei) = σj(σi(x)ei) = σi(x)σj(ei) =
σi(x) which implies i = j. This proves (a). Lastly, σj(x)ej = xej for all x ∈ A
implies σj(ei)ej = eiej . This proves (b). □

4.1. Exercises.

Exercise 9.4.8. Let f : R→ S be a homomorphism of commutative rings. Let
q ∈ SpecS and p = f−1(q). If S is a separable R-algebra, then Sq is a separable
Rp-algebra.

Exercise 9.4.9. Let R be a commutative ring. Let A1 and A2 be R-algebras.
Prove that A1⊕A2 is separable over R if and only if A1 and A2 are separable over
R.

Exercise 9.4.10. Let k be any field and x an indeterminate.

(1) Show that A = k[x]/(x2) is not separable over k. (Hint: Show that Ae is
a local ring. What are the candidates for e?)

(2) Show that k[x]/(xn) is k-separable if and only if n = 1.
(3) Suppose f ∈ k[x] is a nonconstant polynomial such that each irreducible

factor of f has degree one. Show that k[x]/(f) is separable over k if and
only if f has no repeated roots.

(4) Suppose f ∈ k[x] is a nonconstant polynomial and F is a splitting field
for f over k. Show that k[x]/(f) is separable over k if and only if f has
no repeated roots in F .
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Exercise 9.4.11. Let k be a field and k[x] the polynomial ring over k in one
variable. Show that A = k[x] is not separable over k. (Hint: Show that Ae is an
integral domain.)

Exercise 9.4.12. Let R be a commutative ring. Show that A = R[x] is not
separable over R.

Exercise 9.4.13. Let A = Z[i] be the ring of gaussian integers. Then up to iso-
morphism A is equal to Z[x]/(x2+1). Show that A is not separable over Z. (Hints:
Use Corollary 9.3.2. Take S = Z/2 and apply the argument of Exercise 9.4.10 to
show A ⊗ Z/2 is not separable over the field Z/2. We say that A ramifies at the
prime 2.)

Exercise 9.4.14. Let R be an integral domain in which 2 = 1+1 is a unit. Let
a be a unit of R and define S = R[

√
a] to be R with the square root of a adjoined.

That is, S = R[x]/(x2 − a).
(1) Show that S is a faithfully flat R-algebra. (Hint: Exercise 4.2.26.)
(2) Show that the

√
a 7→ −

√
a induces an R-algebra automorphism σ : S → S.

(Hint: Exercise 3.6.34.)
(3) The trace map T : S → R is defined by T (z) = z+σ(z). Show that T is an

R-module homomorphism and the image of T is R. Show that the kernel
of T is the R-submodule generated by

√
a. Conclude that S ∼= R ·1⊕R

√
a

as R-modules.
(4) If m is any maximal ideal in S, then m does not contain the R-submodule

R
√
a.

(5) Show that S is a separable R-algebra. (Hint: e = 1
2 (1⊗ 1 +

√
a⊗ 1√

a
) is

a separability idempotent.)

Exercise 9.4.15. Let R be an integral domain in which 2 is a unit. Let a ∈ R
and S = R[

√
a] = R[x]/(x2 − a).

(1) If a = b2 and b is a unit in R, then S ∼= R⊕R as R-algebras.
(2) If a is not a unit in R, then S is not separable over R.

Exercise 9.4.16. Let the Cartesian plane R2 have the usual metric space
topology. Let X be the x-axis and π : R2 → X the standard projection map defined
by π(x, y) = x.

(1) Let S = R[x, y]/(x2 − y2) and R = R[x]. Show that S is faithfully flat
over R, but is not separable.

Geometrically, S corresponds to two intersecting lines and R corre-
sponds to the x-axis. In R2 let Y denote the two lines x = ±y. The
projection π : Y → X of Y onto the x-axis is two-to-one everywhere ex-
cept at the origin, hence is not a local homeomorphism.

(2) Let S = R[x, y]/(x2+y2−1). Show that S is faithfully flat over R = R[x],
but is not separable.

Geometrically, S corresponds to a circle of radius 1 and R corresponds
to the x-axis. In R2 let Y denote the circle x2 + y2 = 1. The projection
π : Y → X of Y onto the x-axis is two-to-one everywhere except at the
points where x = ±1, hence is not a local homeomorphism.

Exercise 9.4.17. Let R be an integral domain in which 2 is a unit. Assume
i ∈ R such that i2 = −1. Let α and β be units of R. Define an R algebra A by the
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following rules. As an R-module, A is the free R-module on the basis 1, u, v, uv:

A = R · 1 +R · u+R · v +R · uv.
Multiplication in A is determined by the relations

u2 = α, v2 = β, uv = −vu.
(1) Show that A is a separable R-algebra. (Hint: e = 1

4 (1⊗ 1+u⊗u−1 + v⊗
v−1 + uv ⊗ (uv)−1) is a separability idempotent.)

(2) Assume α = a2 and β = b2 for some a, b in R. Show that A is isomorphic
to the ring M2(R) of two-by-two matrices over R. (Hint: Define the map
A→M2(R) on generators by

u 7→
[
0 −ia
ia 0

]
, v 7→

[
0 b
b 0

]
.

Show that this definition extends to A.)
(3) If R = C, then A ∼=M2(C) for every choice of α and β.

Exercise 9.4.18. Let S be a commutative separable R-algebra. For n ≥ 1, let
TnR(S) = S ⊗R S ⊗R · · · ⊗R S be the tensor product of n copies of S. View TnR(S)
as an S-algebra by the homomorphism ρ : S → TnR(S), where ρ(s) = s⊗1⊗· · ·⊗1.
Let µ : TnR(S)→ S be the product map, where µ(x1 ⊗ · · · ⊗ xn) = x1 · · ·xn.

(1) Show that µ is an S-algebra homomorphism and the kernel of µ is idem-
potent generated.

(2) Show that there is an idempotent e ∈ TnR(S) such that Se = (S ⊗R 1⊗R
· · · ⊗R 1)e = TnR(S)e.

5. Separable Algebras over a Field

5.1. Central Simple Equals Central Separable. Let k be a field. As in
Definition 8.3.6, a k-algebra A is central simple in case k = Z(A), dimk(A) is finite,
and A is a simple ring.

Proposition 9.5.1. Let k be a field and A a finite dimensional k-algebra.
Then A is a central simple k-algebra if and only if the enveloping homomorphism
φ : Ae → Homk(A,A) of Definition 9.1.4 is an isomorphism.

Proof. If A is a central simple k-algebra, then so is Ao. By Proposition 8.3.9
it follows that Ae is a central simple k-algebra. Therefore φ is one-to-one and
counting dimensions over k proves that φ is onto. Conversely, suppose that φ is
an isomorphism. Since Homk(A,A) is isomorphic to a ring of matrices Mn(k), it
is a central simple k-algebra by Example 8.3.2. If I is a two-sided ideal of A, then
I ⊗k Ao is an ideal in Ae. So I is either (0) or A. If α ∈ Z(A), then α⊗ 1 ∈ Z(Ae)
so φ(α ⊗ 1) ∈ k. Since φ is a k-algebra isomorphism, α ⊗ 1 ∈ k · 1 ⊗ 1. It follows
that α ∈ k. □

Example 9.5.2. Let k be a field and A a finite dimensional central simple
k-algebra. Assume dimk(A) = n ≥ 2. Consider the exact sequence

0→ JA/k → A⊗k Ao
µ−→ A→ 0

of Definition 9.1.1, where µ is the multiplication map defined by a ⊗ b 7→ ab.
In this example we show that µ is not a ring homomorphism and JA/k is not
a two-sided ideal. By Proposition 9.5.1, the enveloping algebra Ae = A ⊗k Ao
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is isomorphic to the endomorphism ring Homk(A,A). By Proposition 4.4.13, Ae

is isomorphic to the ring of matrices Mn(k). This implies Ae is a simple ring
(see Exercise 3.2.22). Since the multiplication map µ is always onto, we have
dimk JA/k = dimk(A

e) − dimk(A) = n2 − n > 0. Since Ae is a simple ring, this
implies JA/k is not a two-sided ideal. It follows that µ is not a homomorphism of
rings.

Proposition 9.5.3. Let R be a commutative ring and A a separable R-algebra
which is projective as an R-module. Then A is finitely generated as an R-module.

Proof. Since A and Ao are identical as R-modules, it is enough to show Ao

is finitely generated. Let {fi, ai} be a dual basis for Ao over R with ai ∈ Ao and
fi ∈ HomR(A

o, R). For every a ∈ Ao, fi(a) = 0 for almost all i and

a =
∑
i

fi(a)ai.

Identify A⊗R R with A, and consider 1A ⊗ fi as an element of HomA(A
e, A). The

set {1A ⊗ fi, 1⊗ ai} forms a dual basis for Ae as a projective left A-module. That
is,

u =
∑
i

(1A ⊗ fi)(u) · (1⊗ ai)

for all u ∈ Ae. Applying the multiplication map µ and setting u = (1⊗ a)e where
e is a separability idempotent for A over R, we obtain

a = µ
(
(1⊗ a)e

)
=
∑
i

[
(1A ⊗ fi)

(
(1⊗ a)e

)]
· ai(5.1)

for each a ∈ Ao. Since
(1A ⊗ fi)

(
(1⊗ a)e

)
= (1A ⊗ fi)

(
(a⊗ 1)e

)
= (a⊗ 1)

(
(1A ⊗ fi)(e)

)
the set of subscripts i for which (1A⊗fi)

(
(1⊗a)e

)
is not equal to zero is contained

in the finite set of subscripts for which (1A⊗ fi)(e) is not equal to zero. This latter
set is independent of a. Therefore the summation (5.1) may be taken over a fixed
finite set. Writing

e =
∑
j

xj ⊗ yj ,

we have from (5.1) that

a =
∑
i,j

xjfi(yja)ai

=
∑
i,j

fi(yja)xjai

for each a ∈ Ao. This shows that the finite set {xjai} generates Ao over R. □

Corollary 9.5.4. Let A be a separable k-algebra where k is a field. Then A
is a finite dimensional k-vector space.

Corollary 9.5.5. Let k be a field and A a k-algebra. Then A is a central
simple k-algebra if and only if A is a central separable k-algebra.



412 9. SEPARABLE ALGEBRAS, DEFINITION AND FIRST PROPERTIES

Proof. Assume A is a central simple k-algebra. Let K be an algebraic closure
of k. Then by Theorem 8.3.9, A ⊗k K is a central simple K-algebra. By Proposi-
tion 8.3.8, A ⊗k K ∼= Mn(K) for some n. By Example 9.2.1, A ⊗k K is a central
separable K-algebra. By Corollary 9.3.5, A is a separable k-algebra. Conversely
assume A is a central separable k-algebra. Then Z(A) = k and by Corollary 9.5.4,
A is finite dimensional over k. Any left A-module is a k-vector space, hence is
projective as a k-module. By Theorem 9.4.2, every left A-module is projective.
By Theorem 8.2.3, A is semisimple. By Theorem 8.3.3, A is a finite direct sum of
simple rings. Since the center of A is the field k, it follows that A is simple. □

5.2. A Separable Field Extension is a Separable Algebra.

Theorem 9.5.6. Let k be a field and A a k-algebra. The following are equiva-
lent.

(1) A is a separable k-algebra.
(2) A is finite dimensional over k and if K/k is any field extension of k, then

A⊗k K is semisimple.

Proof. (1) implies (2): By Proposition 9.5.3, A is finite dimensional over k.
By Corollary 9.3.2, A⊗kK is a separable K-algebra. Every A⊗kK-module is free
over K. By Theorem 9.4.2, every A⊗kK-module is projective. By Theorem 8.2.3,
A⊗k K is semisimple.

(2) implies (1): Let k̄ be the algebraic closure of k. By Theorem 8.3.3(2),
A⊗k k̄ = R1 ⊕ · · · ⊕Rn is a direct sum of a finite number of simple rings Ri. Each
Ri is finite dimensional over k̄. Since k̄ is algebraically closed, the center of Ri is
k̄. By Corollary 9.5.5, each Ri is central separable over k̄. Therefore A ⊗k k̄ is
separable over k̄ ⊕ · · · ⊕ k̄. By Exercise 9.1.14, k̄ ⊕ · · · ⊕ k̄ is separable over k̄. By
Theorem 9.4.3 (1), A ⊗k k̄ is separable over k̄. By Corollary 9.3.5, A is separable
over k. □

Proposition 9.5.7. Let k be a field and F a finite dimensional extension field
of k. Then F is a separable k-algebra if and only if F/k is a separable field extension.

Proof. Assume F is a separable field extension of k. Then F = k(u1, . . . , um)
where each ui is separable over k. By Theorem 9.4.3 (1), it is enough to assume
F = k[x]/(f(x)) is a simple extension and prove that F is a separable k-algebra.
Let K/k be a splitting field for f(x). In K[x] we have the factorization f(x) =
(x − α1) . . . (x − αn) where the roots αi are distinct. The Chinese Remainder
Theorem shows that F ⊗k K ∼= K[x]/(f(x)) is isomorphic to a direct sum of n
copies of K. By Exercise 9.1.14, F ⊗k K is separable over K. By Corollary 9.3.5,
F is a separable k-algebra.

Conversely assume F/k is not a separable extension of fields and let S be the
separable closure of k in F (Theorem 5.6.2). Let p be the characteristic of k. Since
F/S is purely inseparable, there exists u ∈ F , n ≥ 1, and α ∈ S such that the
irreducible polynomial of u over S is Irr.polyS(u) = xp

n −α. Consider the element
t = u ⊗ 1 − 1 ⊗ u in F ⊗S F . It is easy to see that t is nonzero and that tp

n

= 0.
Therefore the ring F⊗SF is not semisimple. By Theorem 9.5.6, F is not a separable
S-algebra. By Theorem 9.4.3 (2), F is not a separable k-algebra. □

Theorem 9.5.8. Let k be a field and A a k-algebra. Then A is a separable k-
algebra if and only if A is isomorphic to a finite direct sum of matrix rings Mni

(Di)
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where each Di is a finite dimensional k-division algebra such that the center Z(Di)
is a finite separable extension field of k.

Proof. If A is separable over k, then by Theorem 9.5.6, A is semisimple. It
follows from Theorem 8.3.3(2) that A = A1 ⊕ · · · ⊕ Am is a direct sum of a finite
number of simple rings Ai. By Exercise 9.4.9, Ai is separable over k, for each i. By
Theorem 8.3.5, Ai ∼= Mni

(Di) where Di is a finite dimensional k-division algebra.
The center of Ai is Z(Di) and by Theorem 9.4.3(3), Z(Di) is separable over k. By
Proposition 9.5.7, Z(Di)/k is a finite separable field extension.

For the converse, suppose K/k is a finite separable field extension and D is
a finite dimensional K-central division algebra. Then by Example 8.3.2 and The-
orem 8.3.9, Mn(D) ∼= HomK(K(n),K(n)) ⊗K D is K-central simple. By Corol-
lary 9.5.5,Mn(D) isK-central separable. By Proposition 9.5.7 and Theorem 9.4.3 (1),
Mn(D) is separable over k. The part about direct sums follows from Exercise 9.4.9.

□

Corollary 9.5.9. Let k be a field and A a commutative k-algebra. Then the
following are true.

(1) A is separable over k if and only if A is isomorphic to a finite direct sum
of fields K1 ⊕ · · · ⊕Kn where each Ki is a finite separable extension field
of k.

(2) If k is infinite and A is separable over k, then there is a monic polynomial
f(x) ∈ k[x] such that gcd(f, f ′) = 1 and A is isomorphic to k[x]/(f(x)) as
a k-algebra. There is a primitive element α ∈ A such that A is generated
as a k-algebra by α.

Proof. (1): Follows from Theorem 9.5.8.
(2): By Part (1), there is a k-algebra isomorphism A ∼= K1 ⊕ · · · ⊕Kn, where

each Ki is a separable extension field of k. By the Primitive Element Theorem
(Theorem 5.4.7), Ki

∼= k[x]/(pi(x)), for some irreducible monic separable polyno-
mial pi(x) ∈ k[x]. By induction, assume n ≥ 2 and there is a monic polynomial
f(x) such that gcd(f, f ′) = 1 and K2 ⊕ · · · ⊕ Kn is isomorphic to k[x]/(f(x)) as
a k-algebra. Let F be a splitting field for f(x)p1(x). Let {u1, . . . , ur} be all the
roots of f(x)p1(x) in F . Assume p1(u1) = 0. Since k is infinite, pick a ∈ k such
that a is not in the set {0, u2−u1, . . . , ur−u1}. So p1(x− 1) is a monic irreducible
separable polynomial in k[x] and a + u1 is a root of p1(x − a) but not a root of
f(x). Therefore, p1(x−a) does not divide f(x). Hence p1(x−a)f(x) is a separable
polynomial. By the Chinese Remainder Theorem (Theorem 3.3.8),

k[x]

(p1(x− a)f(x))
→ k[x]

(p1(x− a))
⊕ k[x]

(f(x))

is an isomorphism. But the k-algebra on the right is isomorphic to A. □

Corollary 9.5.10 is a kind of “Primitive Element Theorem” for commutative
separable algebras over a finite field which is due to T. McKenzie ([42]).

Corollary 9.5.10. If k is a finite field and A is a commutative separable k-
algebra, then there is a monic polynomial f(x) ∈ k[x] such that gcd(f, f ′) = 1 and
A is isomorphic to a k-subalgebra of k[x]/(f(x)).

Proof. By Corollary 9.5.9 (1), there is a k-algebra isomorphism A ∼= K1 ⊕
· · ·⊕Kn, where each Ki is a separable extension field of k. Let di = dimk(Ki), and
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d = lcm(d1, . . . , dn). By Exercise 5.5.7 there exists a polynomial f(x) ∈ k[x] such
that gcd(f, f ′) = 1 and k[x]/(f(x)) is isomorphic to the direct sum F ⊕ · · · ⊕ F of
n copies of the field F , where dimk(F ) = dm, for some m ≥ 1. By Theorem 5.5.3,
F contains a subfield isomorphic to Ki, and we can embed A into k[x]/(f(x)). □

5.3. The Skolem-Noether Theorem.

Theorem 9.5.11. (Skolem-Noether) Let A be a central simple k-algebra. Let B

and B̃ be two simple k-subalgebras of A and φ : B → B̃ a k-algebra isomorphism.
Then φ extends to an inner automorphism of A. That is, there exists an invertible
u ∈ A such that φ(x) = uxu−1, for all x ∈ B.

Proof. By Theorem 8.3.5, if M is a minimal left ideal of A, then D =
HomA(M,M) is a division ring, and A ∼= HomD(M,M). For a ∈ A, let λa :
M → M be “left multiplication by a”. For all x ∈ M , d ∈ D, b ∈ B, we
have λdλbx = λbλdx. Therefore, we can make M into a left D ⊗k B-module by
d ⊗ b · x = dbx. Using φ, define a second left D ⊗k B-module structure on M by
d⊗b·x = dφ(b)x. Denote this module by φM . By Theorem 8.3.9, D⊗kB is a simple
ring. It follows from Theorem 8.2.1 and Theorem 8.3.3 that V and φM are isomor-
phic D ⊗k B-modules. Therefore, there exists an isomorphism θ ∈ Homk(M,M)
satisfying:

θ(d⊗ b · x) = d⊗ b · θ(x) = dφ(b)θ(x).

For b = 1, this implies θ(dx) = dθ(x), so θ ∈ HomD(M,M) = A. That is, θ = λu,
for some invertible u ∈ A. The equation above becomes

u(db)x = dφ(b)ux.

If d = 1, this becomes: ubx = φ(b)ux. SinceM is a faithful module (Theorem 8.3.3),
this proves φ(b) = ubu−1. □

Corollary 9.5.12. Let k be a field and A a central simple k-algebra. If θ :
A→ A is a k-algebra homomorphism, then θ is an inner automorphism of A.

Proof. Since A is simple, the kernel of θ is the zero ideal, hence θ is one-to-one.
The image of θ has dimension dimk(A), hence θ is onto. □

5.4. Exercises.

Exercise 9.5.13. Let k be a field and f ∈ k[x] a monic polynomial. Let
S = k[x]/(f). Show that S/k is separable if and only if gcd(f, f ′) = 1. For a
generalization of this result, see Proposition 9.6.2.

Exercise 9.5.14. Let k be a field and G a finite group of order [G : 1].

(1) (Maschke’s Theorem) If [G : 1] is invertible in k, then the group algebra
k(G) is semisimple.

(2) This exercise contains an outline of a proof of the converse to Maschke’s
Theorem. In the group algebra k(G), let t =

∑
σ∈G σ and I = k(G)t be

the left ideal generated by t.
(a) Show that I is equal to kt.
(b) Show that if the characteristic of k divides [G : 1], then I2 = 0.

Conclude that I is not a k(G)-module direct summand of k(G).
(c) Show that if the group algebra k(G) is semisimple, then [G : 1] is

invertible in k.
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Exercise 9.5.15. The purpose of this exercise is to prove the converse of Ex-
ample 9.2.2. Let R be a commutative ring and G a finite group of order [G : 1].
Show that if the group algebra R(G) is separable over R, then [G : 1] is invert-
ible in R. (Hint: If m is a maximal ideal in R which contains [G : 1], then by
Exercise 9.5.14, the group algebra (R/m)(G) is not semisimple.)

Exercise 9.5.16. Let θ : R → S be a local homomorphism of local rings and
assume θ makes S into a separable R-algebra. Let m be the maximal ideal of R,
n the maximal ideal of S, and R/m → S/n the corresponding extension of residue
fields. Then mS = n, S ⊗R R/m = S/n, and R/m → S/n is a finite separable
extension of fields.

Exercise 9.5.17. This exercise generalizes Exercises 9.4.14 (5) and 9.4.15 (2).
Let n ≥ 2 be an integer and R a commutative ring. Prove the following for S =
R[x]/(xn − a).

(1) S is free of rank n as an R-module with basis 1, x, . . . , xn−1.
(2) If na is a unit of R, then x is a unit of S and S is a separable R-algebra.

(Hint: e = 1
n

∑n−1
i=0 x

i ⊗ x−i is a separability idempotent.)
(3) If n is not a unit of R, then S is not separable over R.
(4) If a is not a unit of R, then S is not separable over R.

6. Commutative Separable Algebras

References for the material in this section are [52] and [31]. If S is a commuta-
tive ring and R is a subring of S, then we say S/R is an extension of commutative
rings.

Definition 9.6.1. Let R be a commutative ring. A monic polynomial f(x)
in R[x] is called separable in case R[x]/(f(x)) is separable over R. If S/R is an
extension of commutative rings, and b ∈ S, then we say b is a separable element in
S in case there is a separable polynomial f(x) ∈ R[x] and f(b) = 0.

Proposition 9.6.2, a generalization of Exercise 9.5.13, provides a useful Jacobian
Criterion for a polynomial to be separable. See Proposition 14.2.7 for a more general
version that applies when the extension S/R is not necessarily a simple extension.

Proposition 9.6.2. Let R be a commutative ring and f(x) a monic polynomial
in R[x]. Let I = (f(x), f ′(x)) be the ideal of R[x] generated by f(x) and the formal
derivative, f ′(x). Let S = R[x]/(f(x)). Then the following are true.

(1) S is a free R-module. RankR(S) = deg(f(x)).
(2) S is separable over R if and only if the ideal I is the unit ideal.

Proof. (1): This is Exercise 4.2.26.
(2): Assume I is not the unit ideal of R[x]. By (1), R[x]/I is a finitely generated

R-module. By Nakayama’s Lemma (Corollary 6.3.2), there is a maximal ideal m in
R such that

(R[x]/I)⊗R (R/m) =
(R/m)[x]

(f, f ′)

is nonzero. Let k = R/m. Then in k[x], (f, f ′) is not the unit ideal. By Exer-
cise 9.5.13, S ⊗R k is not separable over k. By Corollary 9.3.2, S is not separable
over R.
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Now we prove the converse of (2). In R[x, y], y − x is monic in y and linear,
so The Division Algorithm (Theorem 3.6.4) applies. Upon dividing f(y)− f(x) by
y − x one finds the remainder is 0. We can write f(y) = f(x) + (y − x)q(x, y).
Compute the derivative with respect to y: f ′(y) = q(x, y) + (y − x)qy(x, y). By
assumption, there are u(y), v(y) ∈ R[y] such that

1 = f(y)u(y) + f ′(y)v(y)

=
(
f(x) + (y − x)q(x, y)

)
u(y) + (q(x, y) + (y − x)qy(x, y))v(y)

= (y − x)
(
q(x, y)u(y) + qy(x, y)v(y)

)
+ f(x)u(y) + q(x, y)v(y)

(6.1)

Under the mapping R[x, y]→ S[y], all of the polynomials above represent elements
in S[y]. Consider the principal ideals A = (y − x), B = (q(x, y)) in S[y]. By
(6.1), A and B are comaximal in S[y]. By Exercise 3.3.18 A ∩ B = AB. But in
S[y] the equation f(y) = (y − x)q(x, y) holds. The Chinese Remainder Theorem
(Theorem 3.3.8) implies

(6.2)
S[y]

(f(y))

ϕ1⊕ϕ2−−−−→ S[y]

(y − x)
⊕ S[y]

(q(x, y))

is an isomorphism. To interpret the map µ : S ⊗R S → S of Definition 9.1.1, it is
convenient to write the generators of the three copies of S as x, y, and z. Then
µ(x⊗ 1) = µ(1⊗ y) = z. The diagram

S ⊗R S
µ //

��

S

��
R[x]
(f(x)) ⊗R

R[y]
(f(y))

µ //

��

R[z]
(f(z))

��
S ⊗R R[y]

(f(y))

ϕ1 // S[y]
(y−x)

commutes, the vertical maps are isomorphisms. As we have already seen in (6.2),
the kernel of ϕ1 is idempotent generated. □

6.1. Algebras over Local Rings. Given a local ring R with residue field
k, Corollary 9.6.3 shows that a separable finite simple field extension k(u)/k lifts
to an extension of local rings S/R where S is a commutative separable R-algebra
that is generated by a primitive element and as an R-module is finitely generated
and faithfully flat. See Section 15.5.2 for similar existence theorems in the larger
category of all faithfully flat local R-algebras S.

Corollary 9.6.3. Let R be a local ring with maximal ideal m and residue field
k. Let F be a finite dimensional commutative k-algebra such that dimk(F ) = n.
Assume F is generated as a k-algebra by a primitive element u. Then there is a
commutative faithful R-algebra S satisfying the following.

(1) S is a free R-module of rank n.
(2) S is generated as an R-algebra by a primitive element a.
(3) S ⊗R k is isomorphic to F .
(4) If F is a field, then S is a local ring and mS is the maximal ideal of S.
(5) If F/k is a separable extension, then S/R is separable.
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Proof. Let θ : k[x] → F be defined by x 7→ u. Let f ∈ k[x] be the monic
polynomial that generates the kernel of θ. Since θ is onto, f has degree n. Lift f
to a monic polynomial g ∈ R[x]. Set S = R[x]/(g).

(1): This is Exercise 4.2.26.
(2): Take a to be the image of x.
(3): This follows from S ⊗R k = k[x]/(f) = F .
(4): If F is a field, then by (3), it follows that mS is a maximal ideal of S. By

Exercise 6.3.21, S is a local ring.
(5): Under the map R[x] → k[x], the ideal (g, g′) in R[x] restricts to the ideal

(f, f ′) in k[x]. Since F/k is separable, Proposition 9.6.2 implies (f, f ′) = k[x]. Since
R[x]/(g, g′) is a finitely generated R-module, Nakayama’s Lemma (Corollary 6.3.2)
implies (g, g′) = R[x]. Proposition 9.6.2 implies S/R is separable. □

Corollary 9.6.4. Let θ : R→ S be a local homomorphism of local rings such
that S is a separable R-algebra and finitely generated as an R-module. Then S is a
homomorphic image of R[x]. That is, S is generated as an R-algebra by a primitive
element a.

Proof. Let m be the maximal ideal of R, and k the residue field. By Ex-
ercise 9.5.16, mS is equal to the maximal ideal of S, and S/mS is a finite sepa-
rable extension field of k. By the Primitive Element Theorem (Theorem 5.4.7),
S/mS = k(u) is a simple extension. Define ϕ : R[x]→ S by x 7→ a, where a ∈ S is
a preimage of u. Then R[x]⊗R k → S⊗R k is onto, S is generated as an R-module
by im(ϕ) and mS, and Nakayama’s Lemma (Corollary 6.3.5) implies ϕ is onto. □

If the residue field of R is infinite, then Corollary 9.6.5 shows that it is not
necessary to assume S is local.

Corollary 9.6.5. Let R be a local ring with infinite residue field k. If S
is a separable R-algebra which is finitely generated as an R-module, then S is a
homomorphic image of R[x]. That is, S is generated as an R-algebra by a primitive
element a.

Proof. By Corollary 9.5.9, there is a monic separable polynomial f ∈ k[x]
such that gcd(f, f ′) = 1 and k[x]/(f) ∼= S ⊗R k. The rest of the proof is as in
Corollary 9.6.4. □

6.2. Separability and the Trace.

Definition 9.6.6. Let A be any R-algebra. Let M be a left A-module which
as an R-module is finitely generated and projective. Let x1, . . . , xm ∈ M and

f1, . . . , fm ∈ HomR(M,R) be a dual basis for the R-moduleM . Define TA,MR : A→
R by the rule

TA,MR (x) =

m∑
i=1

fi(xxi).

The reader should verify that TA,MR ∈ HomR(A,R). We call TA,MR the trace from

A to R afforded by M . By Exercise 9.6.14, TA,MR is independent of the choice of
a dual basis for M . When M = A, we simplify the notation and write TAR . The
reader should verify that TRR (x) = x for all x ∈ R.
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Example 9.6.7. Let F/k be a Galois extension of fields with finite group G.
By Exercise 5.7.8, the trace map is given by

TFk (x) =
∑
σ∈G

σ(x)

for all x ∈ F .

Theorem 9.6.8. Let S/R be an extension of commutative rings. Then S is
finitely generated as an R-module, projective, and separable over R if and only if
there exists an element T ∈ HomR(S,R) and elements x1, . . . , xn, y1, . . . , yn in S
satisfying

(1)
n∑
j=1

xjyj = 1, and

(2)

n∑
j=1

xjT (yjx) = x for all x ∈ S.

Moreover, the map T is always equal to TSR , the trace map from S to R.

Proof. Assume S is a finitely generated R-module, projective, and separable
over R. Pick a dual basis {a1, . . . , am}, {f1, . . . , fm} for the R-module S. The trace
map from S to R is given by

TSR(x) =

m∑
j=1

fj(xaj)

for all x ∈ S. Since S is a finitely generated, projective extension of R, by The-
orem 6.4.23, S ⊗ S is a finitely generated projective extension of S ⊗ 1. A dual
basis for S ⊗ S over S ⊗ 1 is {1 ⊗ a1, . . . , 1 ⊗ am}, {1 ⊗ f1, . . . , 1 ⊗ fm} and the

trace map from S ⊗ S to S ⊗ 1 is equal to TS⊗SS⊗1 = 1⊗ TSR . Since S is a separable
extension of R, S ⊗ S is a separable extension of S ⊗ 1, by Corollary 9.3.2. Let e
be a separability idempotent for S over R. Under the homomorphism µ of Propo-
sition 9.1.2, (S ⊗ 1)e ∼= S ⊗ 1. By Proposition 9.1.2, as S ⊗ S-modules, we have
S ⊗ S ∼= JA/R ⊕ (S ⊗ 1)e ∼= JA/R ⊕ (S ⊗ 1). Exercise 9.6.15 allows us to write the
trace from S ⊗ S to S ⊗ 1 as the sum

TS⊗SS⊗1 = T
JA/R

S⊗1 + TS⊗1S⊗1 ,

where T
JA/R

S⊗1 is the restriction of the trace map to JA/R and TS⊗1S⊗1 is the restriction

to (S⊗1)e. To compute TS⊗1S⊗1 , use the dual basis {e, σ} where σ : (S⊗1)e→ S⊗1
is the isomorphism defined by σ(e) = 1. For any x ∈ S,

TS⊗SS⊗1 ((x⊗ 1)e) = T
JA/R

S⊗1 ((x⊗ 1)e) + TS⊗1S⊗1 ((x⊗ 1)e)

= TS⊗1S⊗1 ((x⊗ 1)e)

= x⊗ 1.
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Now let x ∈ S and let e =
∑n
j=1 xj⊗yj . Then (1) follows from µ(e) =

∑n
j=1 xjyj =

1 and (2) follows from applying µ to both sides of

x⊗ 1 = TS⊗SS⊗1 ((x⊗ 1) · e)

= TS⊗SS⊗1 ((1⊗ x) · e)

=
(
1⊗ TSR

) n∑
j=1

xj ⊗ yjx


=

n∑
j=1

xj ⊗ TSR(yjx).

Conversely, suppose we are given T ∈ HomR(S,R) and elements x1, . . . , xn,
y1, . . . , yn in S satisfying (1) and (2). The reader should verify that the assign-
ment s 7→ T (yjs) defines an element T (yj ·) in HomR(S,R). The set {x1, . . . , xn},
{T (y1·), . . . , T (yn·)} forms a dual basis for S over R. Therefore S is a finitely gen-
erated, projective R-module. Define an element in S ⊗R S by e =

∑n
j=1 xj ⊗ yj . If

µ is as in Proposition 9.1.2, µ(e) =
∑n
j=1 xjyj = 1. For any x ∈ S,

(1⊗ x)e =
n∑
j=1

xj ⊗ yjx

=

n∑
j=1

n∑
i=1

xj ⊗ xiT (yiyjx)

=

n∑
i=1

n∑
j=1

xjT (yjyix)⊗ xi

=

n∑
i=1

xyi ⊗ xi.

If x = 1, then we see e =
∑n
j=1 xj ⊗ yj =

∑n
i=1 yi ⊗ xi. It follows that (1⊗ x)e =

(x⊗ 1)e and by Proposition 9.1.2, S is separable over R.
Lastly, the set {x1, . . . , xn}, {T (y1·), . . . , T (yn·)} is a dual basis for S over R,

so by Exercise 9.6.14,

TSR(x) =

n∑
j=1

T (yjxxj) = T (x

n∑
j=1

xjyj) = T (x).

□

Assume S/R is an extension of commutative rings. As we saw in Example 4.4.3,
there is an R-algebra embedding θ : S → HomR(S, S) given by α 7→ ℓα where ℓα is
“left multiplication by α”. Using Lemma 6.5.1, we turn HomR(S,R) into a right
S-module. In fact, for every f ∈ HomR(S,R) and α ∈ S, fα is defined to be f ◦ ℓα.

Corollary 9.6.9. Let S/R be an extension of commutative rings such that S
is a finitely generated projective R-module. Then S is separable over R if and only
if the trace map TSR from S to R is a free right S-module generator of HomR(S,R).

Proof. Assume S/R is a separable extension of R which is a finitely generated
projective R-module. Let x1, . . . , xn, y1, . . . , yn be elements in R guaranteed by
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Theorem 9.6.8. For any f ∈ HomR(S,R) and any x ∈ S

f(x) =

n∑
j=1

f
(
xjT

S
R(yjx)

)
=

n∑
j=1

TSR(yjx)f(xj)

= TSR
( n∑
j=1

yjxf(xj)
)
.

Let α =
∑n
j=1 f(xj)yj . Then f(x) = TSR(αx), for all x ∈ S, which shows that

f = TSR ◦ ℓα. If TSRα = 0 in HomR(S,R), then by Theorem 9.6.8(2),

0 =

n∑
j=1

xjT
S
R(yjα) = α.

This shows that the assignment α 7→ TSRα defines an S-module isomorphism S ∼=
HomR(S,R).

Conversely suppose x1, . . . , xm, f1, . . . , fm is a dual basis for S over R. Assum-
ing TSR generates HomR(S,R) as an S-module, there exist y1, . . . , ym in S such that
fj = TSR ◦ ℓyj . We prove that (1) and (2) of Theorem 9.6.8 are satisfied. For any
x ∈ S,

x =

m∑
j=1

fj(x)xj =

m∑
j=1

xjT
S
R(yjx)

which is (2). For any z ∈ S

TSR

((
1−

m∑
j=1

xjyj
)
z
)
= TSR(z)− TSR

( m∑
j=1

xjyjz
)

=

m∑
j=1

fj(zxj)− TSR
( m∑
j=1

xjyjz
)

=

m∑
j=1

TSR(yjzxj)− TSR
( m∑
j=1

xjyjz
)

= TSR

( m∑
j=1

yjxjz
)
− TSR

( m∑
j=1

xjyjz
)

= 0.

Since TSR is a free generator of HomR(S,R), we conclude that

m∑
j=1

xjyj = 1 which

is (1). □

Corollary 9.6.10. If S is a separable extension of R which is a finitely gen-
erated projective R-module, and TSR is the trace map from S to R, then there is an
element c ∈ S with TSR(c) = 1. Moreover R · c is an R-module direct summand of
S.
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Proof. By hypothesis, S is finitely generated projective and faithful as an R-
module. By Corollary 6.3.4, S is an R-progenerator module. There exist elements
f1, . . . , fn in HomR(S,R) and x1, . . . , xn in S with 1 =

∑n
j=1 fj(xj). By Corol-

lary 9.6.9, for each j there is a unique element aj ∈ S such that fj(x) = TSR(ajx)
for all x ∈ S. Set c =

∑n
j=1 ajxj . Then T

S
R(c) = 1. The R-module homomorphism

R→ S which is defined by 1 7→ c is split by the trace map TSR : S → R. □

6.3. Twisted Form of the trivial extension. Let R be a commutative ring
and n ≥ 1. We write Rn for the direct sum R⊕ · · · ⊕R. By Exercise 9.1.14, Rn is
separable over R. We call Rn the trivial commutative separable extension of R of
rank n.

Proposition 9.6.11. Let S be a commutative R-algebra. The following are
equivalent.

(1) S is a separable R-algebra and an R-module progenerator of constant rank
n.

(2) There is a commutative separable R-algebra T which is an R-module pro-
generator of constant rank n! and S ⊗R T ∼= Tn as T -algebras.

(3) There is a faithfully flat R-algebra T such that S⊗RT ∼= Tn as T -algebras.

Proof. (1) implies (2): Let e ∈ S ⊗R S be a separability idempotent. Then
S⊗R S = (S⊗R S)e⊕ (S⊗R S)(1−e) and (S⊗R S)e ∼= S. Using Exercise 9.4.9 one
can check that (S⊗RS)(1−e) is separable over S and is an S-module progenerator
of constant rank n− 1. By Proposition 7.4.5, S ⊗R S is an S-module progenerator
of rank n − 1. If n = 1, then we take T = S. Otherwise, inductively, there is
a commutative separable S-algebra T which is an S-module progenerator of rank
(n− 1)! such that (S ⊗R S)(1− e)⊗S T ∼= Tn−1. The reader should verify that T
is a separable R-algebra, an R-module progenerator of rank n!, and S ⊗R T ∼= Tn.

(2) implies (3): By Proposition 7.5.6, T is faithfully flat.
(3) implies (1): We are given that T is faithfully flat over R and S⊗R T ∼= Tn.

Using this and Lemma 7.5.12, the reader should verify that S is an R-module which
is a progenerator of constant rank n. A projective dual basis for S over R gives rise
to a dual basis for S⊗R T , so the trace TS⊗RT

T is TSR ⊗ 1. By Proposition 7.5.9, we
see that TSR⊗1 is a free right S⊗RT -module generator of HomR(S,R)⊗RT . Using
the fact that T is faithfully flat over R, the reader should verify that TSR is a free
right S-module generator for HomR(S,R). Corollary 9.6.9 implies S is separable
over R. □

6.4. The Trivial Galois Extension of a Field. In this section we derive
some results on separable field extensions that will be used in the proof of Dirichlet’s
Unit Theorem, Section 16.8.2.

Example 9.6.12. Let R be a commutative ring and G a finite group of order
n = [G : 1]. As in Section 9.6.3, let S =

⊕
σ∈GReσ be the trivial commutative

separable extension ofR of rank n. For τ ∈ G, let λτ : G→ G be “left multiplication
by τ”. Using λ we make S into a left ZG-module. The G-action is defined on
the basis {eσ | σ ∈ G} by λτ (eσ) = eτσ. Denote by Sλ the R-algebra S with
the left ZG-module defined using λ. Following [20, Example 12.2.5], we call Sλ
the trivial, or split, G-Galois extension of R. Now let ρτ : G → G be “right
multiplication by τ−1”. Using ρ we define another ZG-module structure on S.
This G-action is defined on the basis {eσ | σ ∈ G} by the rule ρτ (eσ) = eστ−1 .
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Denote by Sρ the R-algebra S with the left ZG-module defined using ρ. The two
ZG-actions we have just defined on the R-algebra S are isomorphic. To see this,
define h : Sλ → Sρ on the basis {eσ | σ ∈ G} by h(eσ) = eσ−1 . For τ ∈ G we
have h(λτeσ) = h(eτσ) = eσ−1τ−1 which is equal to ρτh(eσ) = ρτeσ−1 = eσ−1τ−1 .
Although it is not required for our purposes here, the interested reader is referred
to Chapter 12 of [20] for an introduction to Galois Theory of commutative rings.

Now we establish some notation that will be in effect for the remainder of this
section. Let F/k be a Galois extension of fields with finite group G = Autk(F )
of order n = [G : 1]. By The Primitive Element Theorem, Theorem 5.4.7, there
exists a separable element u ∈ F such that F = k(u). Let f = Irr.polyk(u) be the
irreducible polynomial for u over k. Let k̄ be any splitting field for f containing k.
In Proposition 9.6.13 we show that F ⊗k k̄ is a trivial G-Galois extension of k̄. The
rings defined so far make up the following commutative diagram. Each arrow is a
one-to-one homomorphism of rings.

F ⊗k k̄ = k̄[x]
(f)

F = k(u) = k[x]
(f)

ϕ
77

k̄

OO

k

66
OO

Proposition 9.6.13. Let F/k be a Galois extension of fields with finite group
G = Autk(F ). Suppose F = k(u), f = Irr.polyk(u) and k̄ is a splitting field for f
containing k. Then F ⊗k k̄ is a trivial G-Galois extension of k̄.

Proof. We know from Exercise 5.7.9 that in the polynomial ring k̄[x], the
polynomial f has the splitting f =

∏
σ∈G(x − σ(u)). By the Chinese Remainder

Theorem, Theorem 3.3.8,

(6.3) F ⊗k k̄ =
k̄[x]

(f)
=
⊕
σ∈G

k̄[x]

(x− σ(u))
=
⊕
σ∈G

k̄eσ

where {eσ | σ ∈ G} are the idempotents in F ⊗k k̄ corresponding to the direct sum
decomposition. For each σ ∈ G, the projection map πσ :

⊕
σ∈G k̄eσ → k̄eσ is a ring

homomorphism. The ring homomorphism

ϕ : F → F ⊗k k̄ =
⊕
σ∈G

k̄eσ

is one-to-one. By Theorem 5.1.4 we see that

(6.4) ϕ(u) =
∑
σ∈G

σ(u)eσ.
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Let α ∈ F be an arbitrary element of F . If n = [G : 1], there are unique a0, . . . , an−1
in k such that α =

∑n−1
i=0 aiu

i. Hence

ϕ(α) =

n−1∑
i=0

ai(ϕ(u))
i

=

n−1∑
i=0

ai

(∑
σ∈G

σ(u)eσ

)i

=

n−1∑
i=0

(∑
σ∈G

ai(σ(u))
ieσ

)

=
∑
σ∈G

(
n−1∑
i=0

ai(σ(u))
i

)
eσ

=
∑
σ∈G

σ(α)eσ.

(6.5)

For each τ ∈ G, the diagram

F

ϕ
��

τ // F

ϕ
��

F ⊗k k̄
τ⊗1 // F ⊗k k̄

commutes and τ ⊗ 1 is a k̄-algebra automorphism. Therefore the G-action on F
extends to a G-action on F ⊗k k̄. Notice that

ϕ(τ(u)) =
∑
σ∈G

σ(τ(u))eσ

=
∑
γ∈G

γ(u)eγτ−1 .
(6.6)

Let ρτ : F ⊗k k̄ → F ⊗k k̄ be the “left multiplication by τ ⊗ 1” homomorphism.
Comparing (6.4) and (6.6) we see that the G-action on the ring

⊕
σ∈G k̄eσ is defined

on the basis {eσ | σ ∈ G} by the rule ρτ (eσ) = eστ−1 . By Example 9.6.12, this
shows that F ⊗k k̄ together with the G-action inherited from F is isomorphic to
the trivial G-Galois extension of k̄. □

From (6.5) we see that the composite map ϕσ = πσϕ is one-to-one and factors
through σ : F → F . The diagram

F

σ

��

ϕσ // k̄eσ

F
⊆ // k̄

∼=

OO

commutes.

6.5. Exercises.

Exercise 9.6.14. In Definition 9.6.6 the trace map from A to R afforded by

M , TA,MR , was defined using a dual basis for M . Prove that the function TA,MR is
independent of the choice of dual basis for M .
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Exercise 9.6.15. Let A be an R-algebra and M a left A-module which is a
finitely generated projective R-module. If M =M1⊕M2 as A-modules, prove that

TA,MR = TA,M1

R + TA,M2

R .

Exercise 9.6.16. Let A be an R-algebra which is finitely generated and free as
an R-module. Show that the trace mapping TSR defined in Exercise 4.7.26 is equal
to the trace mapping defined in Definition 9.6.6.

Exercise 9.6.17. Let k be a field and A a finite dimensional k-algebra. Suppose
α ∈ A and min.polyk(α) = xm + am−1x

m−1 + · · · + a1 + a0 is irreducible in k[x].
Prove that TAk (α) = ram−1 for some integer r.

Exercise 9.6.18. Let S be a commutative faithful R-algebra which is a finitely
generated free R-module of rank n. Let λ1, . . . , λn be a free basis for S over R. For
each i, let πi ∈ HomR(S,R) be the projection onto the coefficient of λi.

(1) The trace map is given by TSR(z) =
∑n
i=1 πi(zλi).

(2) The following are equivalent.
(a) S is separable over R.
(b) There exist µ1, . . . , µn in S such that TSR · µi = πi.

(3) If S/R is separable, then the elements µ1, . . . , µn appearing in (2) make
up a free R-basis for S and TSR(µiλj) = δij (Kronecker’s delta).

Exercise 9.6.19. Let R be a commutative ring and P a finitely generated pro-
jective R-module. By Lemma 6.9.1, θR : P ∗⊗RP → HomR(P, P ) is an isomorphism
of R-modules, where θR(f ⊗ p)(x) = f(x)p.

(1) Define T : P ∗⊗RP → R by T (f⊗p) = f(p). Show that T is an R-module
homomorphism.

(2) Assume P is free and finitely generated. Show that the map T induces
a map T : HomR(P, P ) → R which is equal to the trace map of Exer-
cise 4.7.26 and the trace map of Definition 9.6.6.

Exercise 9.6.20. Let S be a commutative faithful R-algebra which is finitely
generated and projective as an R-module. Let A be a faithful S-algebra which is
finitely generated and projective as an S-module. Prove the following generalization
of Exercise 4.7.41 (1): For every a ∈ A, TAR (a) = TSR

(
TAS (a)

)
.

Exercise 9.6.21. Let R be a connected commutative ring and S a commutative
separable R-algebra that as an R-module is a progenerator of rank n. Then there
exists a commutative R-algebra T that satisfies:

(1) T is connected.
(2) T is separable over R.
(3) T is an R-module progenerator.
(4) S ⊗R T ∼= Tn.

(Hints: Start with the algebra T constructed in Proposition 9.6.11. By Exer-
cise 7.4.14, SpecT has only finitely many connected components. Show that T can
be replaced with one of its connected components.)



CHAPTER 10

The Integral Closure of a Commutative Ring

1. Integral Extensions

1.1. Integral elements. Let R be a commutative ring and A an R-algebra.
An element a ∈ A is said to be integral over R in case there exists a monic poly-
nomial p ∈ R[x] such that p(a) = 0. If every element of A is integral over R, then
we say A is integral over R. The reader should verify that any homomorphic image
of R is integral over R. The R-algebra A comes with a structure homomorphism
θ : R → Z(A). Assume θ is one-to-one, or equivalently, A is a faithful R-module.
Then we identify R with θ(R) which is a subring of A. In this case, if every element
of A is integral over R, we say A/R is an integral extension. If no element of A−R
is integral over R, then we say R is integrally closed in A.

If A is an R-algebra which is R-faithful, and a ∈ A, then the R-subalgebra
of A generated by a is denoted R[a]. Since R ⊆ Z(A), R[a] is commutative,
and the substitution homomorphism R[x] → A defined by x 7→ a is an R-algebra
homomorphism with image R[a].

Example 10.1.1. Let R be a commutative ring. Let A = Mn(R), the ring of
n-by-n matrices over R. Let M ∈ Mn(R) and let p(x) = char.polyM (x) be the
characteristic polynomial of M . Then p(x) is a monic polynomial of degree n in
R[x]. By Cayley-Hamilton (Theorem 4.7.12) we know p(M) = 0. This shows A is
integral over R.

Proposition 10.1.2. Let A be a faithful R-algebra, and a ∈ A. The following
are equivalent.

(1) a is integral over R.
(2) R[a] is a finitely generated R-module.
(3) There is an R-subalgebra B of A such that R[a] ⊆ B ⊆ A and B is a

finitely generated R-module.
(4) There exists a faithful R[a]-module which is finitely generated as an R-

module.

Proof. (1) implies (2): Since a is integral overR, there exist elements r0, r1, . . . , rn−1
in R such that an = r0 + r1a+ · · ·+ rn−1a

n−1. Let B be the R-submodule of R[a]
generated by 1, a, a2, . . . , an−1. Then we have shown that an ∈ B. Inductively
assume k > 0 and that ai ∈ B for all i such that 0 ≤ i ≤ n+ k − 1. It follows that
an+k = r0a

k + r1a
k+1 + · · ·+ rn−1a

n+k−1 is also in B, hence B = R[a].
(2) implies (3): For B take R[a].
(3) implies (4): Since B contains R[a] as a subring, B is a faithful R[a]-module.
(4) implies (1): Let M be a faithful R[a]-module. There are ring homomor-

phisms

R[a]
α−→ HomR[a](M,M)

β−→ HomR(M,M)

425
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where α is the left regular representation of Example 4.4.2. Since M is faithful,
α is one-to-one. Since R[a] is an R-algebra, β is one-to-one. If u ∈ R[a], then
by Exercise 4.7.36, βα(u) satisfies a monic polynomial p ∈ R[x]. Therefore, every
u ∈ R[a] is integral over R. □

Theorem 10.1.3. Let A be a commutative faithful R-algebra.

(1) If a1, . . . , an ∈ A are integral over R, then R[a1, . . . , an] is a finitely gen-
erated R-module.

(2) Let S be the set of all a ∈ A such that a is integral over R. Then S is an
R-subalgebra of A. We say that S is the integral closure of R in A.

(3) (Integral over Integral is Integral) Let R ⊆ S ⊆ A be three rings such that
A is integral over S and S is integral over R. Then A is integral over R.

(4) Let S be the integral closure of R in A. Then S is integrally closed in A.

Proof. (1): By Proposition 10.1.2 (2), R[a1] is a finitely generated R-module.
Set S = R[a1, . . . , an−1]. Then an is integral over S, so S[an] is a finitely gen-
erated S-module. Inductively assume S is a finitely generated R-module. By
Exercise 4.1.23, S[an] = R[a1, . . . , an] is a finitely generated R-module.

(2): Given x, y ∈ S, by Part (1) it follows that R[x, y] is a finitely generated
R-module of A. By Proposition 10.1.2, S contains x+ y, x− y, xy. Since R ⊆ S,
S is an R-algebra.

(3): Let a ∈ A and p ∈ S[x] a monic polynomial such that p(a) = 0. Suppose
p = s0 + s1x+ · · ·+ sn−1x

n−1 + xn. Set T = R[s0, . . . , sn−1]. Then T is a finitely
generated R-module and p ∈ T [x], so a is integral over T . It follows that T [a] is
finitely generated over T . By Exercise 4.1.23, T [a] = R[s0, . . . , sn−1, a] is a finitely
generated R-module. Therefore a is integral over R.

(4): By the proof of Part (3), if a ∈ A is integral over S, then a is integral over
R. □

Lemma 10.1.4. Let A be a faithful integral R-algebra.

(1) If x ∈ R− (0), then x is invertible in A if and only if x is invertible in R.
(2) If A is a division ring, then R is a field.
(3) If R is a field and A has no zero divisors, then A is a division ring.

Proof. (1): Assume x ∈ R − (0) and x−1 ∈ A. Then x−1 is integral over R.
There exist n ≥ 1 and ri ∈ R such that

x−n + rn−1x
1−n + · · ·+ r1x

−1 + r0 = 0.

Multiply by xn−1 and get

x−1 + rn−1 + rn−2x+ · · ·+ r1x
n−2 + r0x

n−1 = 0

which shows x−1 ∈ R. We identify R with a subring of A, so the converse is obvious.
(2): This follows straight from (1).
(3): Assume R is a field and A has no zero divisors. If y ∈ A − (0), then y is

algebraic over R and Corollary 4.5.3 (4) implies y is invertible. □

1.2. Integrally Closed Domains. If R is an integral domain with quotient
field K, then we say R is integrally closed if R is integrally closed in K.

Proposition 10.1.5. If R is a unique factorization domain (UFD) with quo-
tient field K, then R is integrally closed in K.
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Proof. Let n/d ∈ K where n, d ∈ R and we assume gcd(n, d) = 1. Suppose
p(x) = xm+rm−1x

m−1+· · ·+r1x+r0 is a monic polynomial in R[x] and p(n/d) = 0.
It follows from the Rational Root Theorem (Proposition 3.7.1) that d is a unit of
R. That is, n/d ∈ R. □

Example 10.1.6. Applying Proposition 10.1.5, we list some examples.

(1) The ring of integers Z is integrally closed in Q.
(2) If k is a field, then the ring of polynomials k[x] is integrally closed.
(3) If R is a UFD, then the polynomial ring R[x1, . . . , xn] is integrally closed.
(4) If D is a square free integer and D ≡ 1 (mod 4), then by Example 3.7.10,

the ring Z[
√
D] is an integral domain that is not integrally closed.

Lemma 10.1.7. Suppose R ⊆ T is an extension of commutative rings and S is
the integral closure of R in T . If W is a multiplicative set in R, then SW is the
integral closure of RW in TW .

Proof. By Exercise 10.1.15, SW = RW ⊗R S is integral over RW . Suppose
t/w ∈ TW is integral over RW . Let(

t

w

)n
+
rn−1
wn−1

(
t

w

)n−1
+ . . .

r1
w1

t

w
+
r0
w0

be an integral dependence relation where each ri ∈ R and wi ∈ W . Let d =
w0 . . . wn−1 and multiply through by (dw)n to get an integral dependence relation
for dt over R. Then dt ∈ S, so t/w = (dt)/(dw) ∈ SW . □

Corollary 10.1.8. Let R be an integral domain with quotient field K.

(1) If Λ is a commutative K-algebra, and S is the integral closure of R in Λ,
then the image of the natural map K ⊗R S → Λ is equal to the integral
closure of K in Λ.

(2) If L/K is a finite dimensional extension of fields and S is the integral
closure of R in L, then L is equal to the quotient field of S.

Proof. (1): Apply Lemma 10.1.7 with T = Λ and multiplicative set W =
R − (0). By Lemma 7.1.1 (6), SW is isomorphic to K ⊗R S. Part (2) is a special
case of Part (1). □

Proposition 10.1.9. Let R be an integral domain with quotient field K. The
following are equivalent.

(1) R is integrally closed in K.
(2) For each P ∈ SpecR, RP is integrally closed in K.
(3) For each P ∈ MaxR, RP is integrally closed in K.

Proof. Let S be the integral closure of R in K. Then R is integrally closed if
and only if R → S is onto. By Lemma 10.1.7, SP is the integral closure of RP in
K for each P ∈ SpecR. The rest follows from Exercise 7.5.16. □

Lemma 10.1.10. (Gauss’ Lemma) Let R be an integrally closed integral domain
with quotient field K. Let f ∈ R[x] be a monic polynomial, and suppose there is a
factorization f = gh, where g, h are monic polynomials in K[x]. Then both g and
h are in R[x].
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Proof. By Proposition 5.3.7, let L/K be an extension of fields such that L is
a splitting field for f over K. By Theorem 10.1.3 (2), let S be the integral closure
of R in L. Since f splits in L[x], so does g. Write g =

∏
(x−αi). Each αi is a root

of f , hence is integral over R, hence lies in S. This shows that every coefficient of g
is in S. So each coefficient of g is in S ∩K which is equal to R since R is integrally
closed in K. So g ∈ R[x]. The same argument applies to h. □

Theorem 10.1.11. Let R be an integrally closed integral domain with quotient
field K. Let A be a finite dimensional K-algebra. An element α ∈ A is integral
over R if and only if min.polyK(α) ∈ R[x].

Proof. Let f = min.polyK(α) ∈ K[x]. Assume α is integral over R. Then
there exists a monic polynomial g ∈ R[x] such that g(α) = 0. In this case, f divides
g in K[x]. There is a factorization g = fh for some monic polynomial h ∈ K[x].
By Gauss’ Lemma 10.1.10, both f and h lie in R[x]. □

Corollary 10.1.12. Let R be an integral domain which is integrally closed in
its quotient field K. Let L/K be a finite separable field extension and let S be the
integral closure of R in L. Then the trace and norm functions from L to K restrict
to trace and norm functions from S to R. That is, TLK : S → R, and NL

K : S → R.

Proof. Let α ∈ S and f = min.polyK(α). By Theorem 10.1.11, f ∈ R[x]. By
Lemma 5.7.1 (3), the characteristic polynomial of ℓα : L→ L is a power of f . Since
TLK(α) and NL

K(α) are coefficients of char.polyK(ℓα), they are elements of R. □

Theorem 10.1.13. Let R be an integral domain which is integrally closed in
its quotient field K. Let L/K be a finite separable field extension and let S be the
integral closure of R in L. There exist bases {λ1, . . . , λn} and {µ1, . . . , µn} for L/K
such that Rλ1 + · · ·+Rλn ⊆ S ⊆ Rµ1 + · · ·+Rµn. If R is noetherian, then S is a
finitely generated R-module.

Proof. Our proof is based on [5, Theorem 5.17]. Every λ ∈ L is algebraic
over K. There is an equation rmλ

m + · · · + r1λ + r0 = 0, where each ri is in R.
Multiply by rm−1m to get (rmλ)

m + · · · + r1r
m−2
m (rmλ) + r0r

m−1
m = 0. This shows

that rmλ is integral over R, hence is in S. There exists a basis λ1, . . . , λn for L/K
such that each λi is in S. By Lemma 5.7.3 (3), there is a K-basis µ1, . . . , µn for
L such that TLK(µiλj) = δij (the Kronecker delta function). Let s be an arbitrary
element of S. View s as an element of L and write s = α1µ1 + · · · + αnµn, where
each αi ∈ K. Since λi ∈ S, we have sλi ∈ S. By Corollary 10.1.12, TLK(sλi) ∈ R.
Then

TLK(sλi) = TLK

( n∑
j=1

αjλiµj

)
=

n∑
j=1

TLK (αjλiµj) =

n∑
j=1

αjT
L
K (λiµj) = αi

shows that each αi is in R. It follows that S ⊆ Rµ1+ · · ·+Rµn. If R is noetherian,
then by Corollary 7.6.12, S is a finitely generated R-module. □

Remark 10.1.14. In the terminology of Definition 16.1.2, Theorem 10.1.13 says
that S is an R-lattice in L. When R is a finitely generated algebra over a field, see
Theorem 14.3.11 for a stronger version of Theorem 10.1.13.
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1.3. Exercises.

Exercise 10.1.15. Let A be an integral R-algebra and S a commutative R-
algebra. Show that S ⊗R A is an integral S-algebra.

Exercise 10.1.16. Let A be an integral faithful R-algebra and I a two-sided
ideal in A. Show that A/I is an integral R/(I ∩R)-algebra.

Exercise 10.1.17. Let R be a commutative ring and A = R[x] the polynomial
ring in one variable over R. Show that R is integrally closed in A if and only if
RadR(0) = (0).

Exercise 10.1.18. Let S be a commutative faithfully flat R-algebra. Prove:

(1) If S is an integral domain, then R is an integral domain.
(2) If S is an integrally closed integral domain, then R is an integrally closed

integral domain. (Hint: If K is the quotient field of R, show that S is
integrally closed in S ⊗R K.)

(3) If S has the property that SQ is an integrally closed integral domain
for each Q ∈ SpecS, then R has the property that RP is an integrally
closed integral domain for each P ∈ SpecR. In the terminology of Defi-
nition 15.1.4, this says if S is a normal ring, then R is a normal ring.

Exercise 10.1.19. Let R be a commutative ring and A an R-algebra which
is integral over R. Show that A = lim−→Aα where Aα runs over the set of all R-
subalgebras of A such that Aα is finitely generated as an R-module.

Exercise 10.1.20. Let S be a commutative faithful integral R-algebra. Assume
R is an integral domain with quotient field K and S is an integral domain with
quotient field L. By Exercise 7.1.22, L can be viewed as a field extension of K.
Prove that L is algebraic over K.

Exercise 10.1.21. Let k be a field and A = k[x] the polynomial ring over k in
one variable. Let R = k[x2, x3] be the k-subalgebra of A generated by x2 and x3.
We know from Exercises 7.7.16 and 3.6.21 that A is a finitely generated R-module
and R and A have the same quotient field, namely K = k(x). Show that A is equal
to the integral closure of R in K.

Exercise 10.1.22. This exercise is a generalization of Exercise 10.1.21. Let k
be a field, x an indeterminate, and n > 1 an integer. Let T = k[x], S = k[xn, xn+1],
and R = k[xn]. We know from Exercise 5.1.30 that T is a finitely generated R-
module and T and S have the same quotient field, namely K = k(x). For the tower
of rings: R ⊆ S ⊆ T , prove the following.

(1) T is equal to the integral closure of S in K.
(2) T is not a separable R-algebra.
(3) S is not a separable R-algebra.
(4) T is not a separable S-algebra.

Exercise 10.1.23. Let k be a field and A = k[x] the polynomial ring over k
in one variable. Let R = k[x2 − 1, x3 − x] be the k-subalgebra of A generated by
x2 − 1 and x3 − x. We know from Exercise 7.7.18 that R and A have the same
quotient field, namely K = k(x). Show that A is equal to the integral closure of R
in K. For a continuation of this example, see Section 16.4.2.
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2. Some Theorems of Hilbert

In this section we prove the Hilbert Basis Theorem, Theorem 10.2.1 as well as
the two classical versions of Hilbert’s Nullstellensatz. Corollary 10.2.4 is commonly
called the Weak Form of the Nullstellensatz while Theorem 10.2.9 is essentially
the theorem that was originally proved by Hilbert. The Basis Theorem states
sufficient conditions for a commutative ring to be noetherian. The two forms of the
Nullstellensatz are logically equivalent and state that if k is an algebraically closed
field, A = k[x1, . . . , xn] the polynomial ring in n variables, and f1, . . . , fm a set of
polynomials in A, then the system of m polynomial equations f1 = 0, . . . , fm = 0
in n variables has a solution if and only if the ideal generated by f1, . . . , fm in A is
not the unit ideal.

2.1. The Hilbert Basis Theorem. To show that a commutative ring S is
noetherian, by Theorem 10.2.1, it is sufficient to show that S is a finitely generated
algebra over a noetherian ring R.

Theorem 10.2.1. (Hilbert Basis Theorem) Let R be a commutative noetherian
ring.

(1) The polynomial ring R[x] in the variable x over R is a noetherian ring.
(2) The polynomial ring R[x1, . . . , xn] over R in n variables is a noetherian

ring.
(3) If R is a commutative noetherian ring and S is a finitely generated com-

mutative R-algebra, then S is noetherian.

Proof. (1): By Corollary 7.6.7, it is enough to show every ideal of R[x] is
finitely generated. Let J be an ideal in R[x]. Let I be the set of all r ∈ R such
that r is the leading coefficient for some polynomial f ∈ J . Then I is an ideal in
R, hence is finitely generated, so we can write I = Ra1 + · · · + Ram. For each ai
there is some fi ∈ J such that ai is the leading coefficient of fi. Let di = deg fi and
let d be the maximum of {d1, . . . , dm}. If J ′ denotes the ideal of R[x] generated by
f1, . . . , fm, then J ′ ⊆ J . By Corollary 7.6.12 and Corollary 7.6.10 it is enough to
prove J/J ′ is finitely generated. We prove that J/J ′ is finitely generated over R,
which is a stronger statement.

Consider a typical polynomial p in J . Assume p has degree ν ≥ d and leading
coefficient r. Since r ∈ I, write r = u1a1 + · · · + umam. Then q = u1f1x

ν−d1 +
· · ·+ umfmx

ν−dm is in J ′, has degree ν, and leading coefficient r. The polynomial
p− q is in J and has degree less than ν. By iterating this argument a finite number
of steps, we can show that p is congruent modulo J ′ to a polynomial of degree less
than d. If L is the R-submodule of R[x] generated by 1, x, . . . , xd−1, then we have
shown that J/J ′ is generated over R by images from the set J ∩ L. But J ∩ L is
an R-submodule of L, hence is finitely generated over R, by Corollary 7.6.12.

(2): This follows from (1), by induction on n.
(3): For some n, S is the homomorphic image of the polynomial ringR[x1, . . . , xn]

in n variables over R. It follows from (2) and Corollary 7.6.13 (1) that S is noe-
therian. □

Proposition 10.2.2 is due to Emil Artin and John Tate, [3].

Proposition 10.2.2. Let A ⊆ B ⊆ C be a tower of commutative rings and
assume A and B are subrings of C. Suppose
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(1) A is noetherian,
(2) C is finitely generated as an A-algebra,
(3) and either

(a) C is finitely generated as a B-module, or
(b) C is integral over B.

Then B is finitely generated as an A-algebra.

Proof. Assume (1), (2) and (3) (b) are all satisfied. Suppose C = A[x1, . . . , xm].
In this case, we also have C = B[x1, . . . , xm] and x1, . . . , xm are integral over B. By
Theorem 10.1.3 (1), C is finitely generated as a B-module, so (3)(a) is also satisfied.
Let C = By1 + by2 + · · ·+Byn. Each xi and each product yiyj is in C, so we can
write

xi =

n∑
j=1

bijyj

yiyj =

n∑
k=1

bijkyk

(2.1)

for certain bij ∈ B and bijk ∈ B. Let B0 be the A-subalgebra of B generated by
all of the bij and bijk. By Theorem 10.2.1 (3), we know that B0 is noetherian. Let
c = p(x1, . . . , xm) be an arbitrary element in A[x1, . . . , xm] = C. Using (2.1), the
reader should verify that

c = p(

n∑
j=1

b1jyj ,

n∑
j=1

b2jyj , . . . )

is in B0y1 +B0y2 + · · ·+B0yn. Therefore C is finitely generated as a B0-module.
By Corollary 7.6.12, B is finitely generated as a B0-module. Since B0 is finitely
generated as an A-algebra, it follows that B is finitely generated as an A-algebra.

□

Proposition 10.2.3. Let F/k be an extension of fields. The following are
equivalent.

(1) F is finitely generated as a k-algebra.
(2) F is finitely generated and algebraic as an extension field of k.
(3) dimk(F ) <∞.

Proof. By Proposition 5.1.10, (2) is equivalent to (3). It follows from The-
orem 5.1.3 that (2) implies (1). To prove that (1) implies (2) we use a proof by
contradiction. By (1) we can write F = k[x1, . . . , xn]. Since F is an extension
field of k, this implies F = k(x1, . . . , xn). For contradiction’s sake, assume not all
of x1, . . . , xn are algebraic over k. By Lemma 5.10.4 we can re-order and assume
for some 1 ≤ r ≤ n that {x1, . . . , xr} is a transcendence base for F over k. Then
F = k(x1, . . . , xr)[xr+1, . . . , xn] is algebraic over the field K = k(x1, . . . , xr). By
Proposition 5.1.2, K is isomorphic to the field of rational functions over k in r vari-
ables. That is, K is the quotient field of the polynomial ring k[x1, . . . , xr]. Applying
Proposition 10.2.2 to the tower of rings k ⊆ K ⊆ F , we conclude that K is finitely
generated as a k-algebra. Write K = k[y1, . . . , ys]. Viewing each yi as a rational
function in k(x1, . . . , xr), there exist polynomials fi, gi in k[x1, . . . , xr] such that
yi = fi/gi. Set g = g1g2 · · · gs. Without loss of generality assume deg g ≥ 1 and
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let h be any irreducible factor of g + 1. Therefore, gcd(h, g) = 1. Consider the ele-
ment h−1 as an element of the field K = k[y1, . . . , ys] = k[f1/g1, . . . , fs/gs]. Then
h−1 = p(f1/g1, . . . , fs/gs) where p is a polynomial in s variables with coefficients
in k. The denominators involve only the polynomials g1, . . . , gs. For some positive
integer N , we get an equation of polynomials gN = hf where f ∈ k[x1, . . . , xr].
This is a contradiction. □

Historically, Hilbert’s Nullstellensatz, Theorem 10.2.9, was proved first and
used to prove Corollary 10.2.4. For this reason Corollary 10.2.4 is called the Weak
Form of the Nullstellensatz. This name is a misnomer because the two are logically
equivalent. The line of proof we use here is due to O. Zariski who in the article
[64] proved a version of Proposition 10.2.3 and applied it to prove Corollary 10.2.4.
The Weak Nullstellensatz will be applied below in the proof of the Nullstellen-
satz. In Exercise 10.2.28 the reader is asked to prove that the Weak Form of the
Nullstellensatz follows from the Nullstellensatz.

Corollary 10.2.4. (Hilbert’s Nullstellensatz, Weak Form) If k is a field, A
is a commutative finitely generated k-algebra, and m is a maximal ideal in A, then
A/m is a finitely generated algebraic extension field of k.

Proof. Apply Proposition 10.2.3 to the field F = A/m. □

2.2. Algebraic Varieties.

Definition 10.2.5. Let k be any field. Let n ≥ 0. Define affine n-space over
k to be

Ank = {(a1, . . . , an) | ai ∈ k}.
We write simply An if k is apparent. Let

A = k[x1, . . . , xn]

and f ∈ A. The zero set of f is the set Z(f) = {P ∈ An | f(P ) = 0}. If T ⊆ A,
then

Z(T ) = {P ∈ An | f(P ) = 0 ∀ f ∈ T}.
If I is the ideal generated by T in A, then Z(I) = Z(T ). This is because any g ∈ I is
a linear combination of elements of T . Since A is noetherian, I is finitely generated,
hence Z(T ) can be expressed as the zero set of a finite set of polynomials. A subset
Y ⊆ An is an algebraic set if there exists T ⊆ A such that Y = Z(T ).

Theorem 10.2.6. Let k be an algebraically closed field and A = k[x1, . . . , xn].

(1) If M is a maximal ideal in A, then there exist elements a1, a2, . . . , an in
k such that M = (x1 − a1, . . . , xn − an).

(2) If I is a proper ideal in A, then Z(I) is nonempty.

Proof. (1): Since k is algebraically closed, Corollary 10.2.4 says the natural
map k → A/M is onto. There exist a1, . . . , an ∈ k such that ai +M = xi +M for
i = 1, . . . , n. That is, xi − ai ∈ M for each i. The reader should verify that the
ideal J = (x1 − a1, . . . , xn − an) is maximal. Because J is a subset of M , we see
that J =M .

(2): Take any maximal ideal M which contains I. By Part (1), M = (x1 −
a1, . . . , xn − an) for elements a1, a2, . . . , an in k. The reader should verify that
Z(I) ⊇ Z(M) and that Z(M) is the singleton set {(a1, . . . , an)}. □
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Proposition 10.2.7. Let An be affine n-space over the field k.

(1) The sets ∅ and An are algebraic sets.
(2) The union of two algebraic sets is an algebraic set.
(3) The intersection of any family of algebraic sets is an algebraic set.
(4) The algebraic sets can be taken as the closed sets for a topology on An

which is called the Zariski topology.

Proof. (1): Note that ∅ = Z(1) and An = Z(0).
(2): If Y1 = Z(T1) and Y2 = Z(T2), then

Y1 ∪ Y2 = Z(T1T2),

where T1T2 = {f1f2 | f1 ∈ T1, f2 ∈ T2}. Prove this in two steps:
Step 1: Let P ∈ Y1. Then f1(P ) = 0 for all f1 ∈ T1. Then (f1f2)(P ) = 0.

Similarly for P ∈ Y2.
Step 2: Let P ∈ Z(T1T2) and assume P ̸∈ Y1. Then there exists f1 ∈ T1

such that f1(P ) ̸= 0. But for every f2 ∈ T2 we have (f1f2)(P ) = 0 which implies
f2(P ) = 0. Thus P ∈ Y2.

(3): Let {Yα = Z(Tα)} be a family of algebraic sets. Then⋂
Yα = Z(

⋃
Tα).

To see this, proceed in two steps:
Step 1: If P ∈

⋂
Yα, the P is a zero of all of the Tα, hence is in Z(

⋃
Tα).

Step 2: If P is a zero of all of the Tα, then P is in all of the Yα.
(4): Follows from the first three parts. □

Definition 10.2.8. Let k be any field. For any Y ⊆ An, we define the ideal of
Y in A = k[x1, . . . , xn] by

I(Y ) = {f ∈ A | f(P ) = 0 ∀ P ∈ Y }.
This is an ideal, as is easily checked. The reader should verify that I(Y ) =
Rad(I(Y )). Recall that any ideal that is equal to its radical is called a radical
ideal. By default, I(∅) = A.

Theorem 10.2.9. (Hilbert’s Nullstellensatz) Let k be an algebraically closed
field and J an ideal in A = k[x1, . . . , xn]. Then Rad(J) = I(Z(J)).

Proof. By Exercise 10.2.19, Rad(J) ⊆ I(Z(J)). Let f ∈ A − Rad(J). We
prove that there exists x ∈ Z(J) such that f(x) ̸= 0. By Lemma 7.3.8, there exists
a prime ideal P ∈ SpecA such that J ⊆ P and f ̸∈ P . If f̄ denotes the image
of f in the integral domain R = A/P , then f̄ ̸= 0. As a k-algebra, R is finitely
generated. The localization Rf̄ is generated as an R-algebra by the element f̄−1,
hence Rf̄ is finitely generated as a k-algebra. Let m be any maximal ideal in Rf̄ .
Since k is algebraically closed, Corollary 10.2.4 says the natural map k → Rf̄/m is
onto. Let M be the kernel of the composition of natural maps

A→ R→ Rf̄ → Rf̄/m.

Then M is a maximal ideal in A such that f ̸∈ M and J ⊆ P ⊆ M . By Theo-
rem 10.2.6, Z(M) is a singleton set {x}. This shows x ∈ Z(J) and f(x) ̸= 0. □

Proposition 10.2.10. Let k be an algebraically closed field and A = k[x1, . . . , xn].

(1) If T1 ⊆ T2 are subsets of A, then Z(T1) ⊇ Z(T2).
(2) If Y1 ⊆ Y2 are subsets of An, then I(Y1) ⊇ I(Y2).
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(3) For Y1, Y2 ⊆ An we have I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).
(4) For any ideal J ⊆ A, I(Z(J)) = Rad(J).
(5) For any subset Y ⊆ An, Z(I(Y )) = Ȳ , the closure of Y .

Proof. (1), (2), (3): are obvious.
(4): is a restatement of Theorem 10.2.9.
(5) The proof of Lemma 7.3.9 applies. □

Corollary 10.2.11. Let k be an algebraically closed field. There is a one-
to-one order-reversing correspondence between algebraic subsets of An and radical
ideals in A given by Y 7→ I(Y ) and J 7→ Z(J). Under this correspondence, an
algebraic set Y is irreducible if and only if I(Y ) is a prime ideal.

Proof. The first part follows from Proposition 10.2.10. The last part can be
proved as in Lemma 7.3.11. □

Example 10.2.12. Let k be an algebraically closed field and A = k[x1, . . . , xn].
The zero ideal (0) is a prime ideal of A. By Corollary 10.2.11 this implies Ank is
irreducible. By Lemma 1.4.4, if U is a nonempty open subset of Ank , then U is
irreducible and dense.

Example 10.2.13. Let k be a field and A a k-algebra. Assume dimk(A) = n is
finite. Using the left regular representation, we can embed A as a k-subalgebra of
Homk(A,A) (see Example 4.4.3). As in Example 4.8.3, the norm NA

k : A→ k is a
homogeneous polynomial function on A of degree n and the trace TAk : A→ k is a
homogeneous linear polynomial function on A. Fix a k-basis α1, . . . , αn for A. With
respect to this basis, we identify A with affine n-space over k (Definition 10.2.5).
That is, an element a1α1 + · · ·+ anαn ∈ A corresponds to the point (a1, . . . , an) ∈
Ank . With this identification, the norm NA

k : A→ k corresponds to a homogeneous
polynomial in k[x1, . . . , xn] of degree n. Using Exercise 4.7.26 we see that an element
α in A is invertible if and only if NA

k (α) ̸= 0. The set A∗ of invertible elements of A
is therefore a proper open subset of Ank . If k is algebraically closed, Example 10.2.12
implies A∗ is a dense open subset of Ank . If A is a division algebra over k, then
the norm defines a homogeneous polynomial in k[x1, . . . , xn] of degree n with no
nontrivial zeros. We should advise the reader that the norm used in this example is
not the norm defined specifically for an Azumaya algebra (or central simple algebra)
in [20, Section 11.1.1].

Example 10.2.14. Let k be a field and n ≥ 1. Given any point P = (a1, . . . , xn)
in Ank , let M be the ideal in k[x1, . . . , xn] generated by x1 − a1, . . . , xn − an. Then
Z(M) = {P}, so singleton sets are closed in the Zariski topology. In the terminology
of Section 1.4, this shows Ank is a T1-space.

Example 10.2.15. Let k be an algebraically closed field and n ≥ 1. If M is
a maximal ideal in A = k[x1, . . . , xn], then by Theorem 10.2.6, there is a point
P = (a1, . . . , an) in Ank such that M = (x1 − a1, . . . , xn − an) and Z(M) is the
singleton set {P}. Conversely, if P = (a1, . . . , xn) is an arbitrary point in Ank , then
I(P ) is the maximal ideal in k[x1, . . . , xn] generated by x1−a1, . . . , xn−an. Under
the one-to-one correspondence of Corollary 10.2.11, maximal ideals in A correspond
to closed points in Ank .
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Corollary 10.2.16. If k is an algebraically closed field and I is an ideal in
A = k[x1, . . . , xn], then the radical of I is equal to the intersection of those maximal
ideals of A that contain I. That is,

Rad(I) =
⋂
{m | m ∈ MaxA and I ⊆ m}.

Proof. By Lemma 7.3.8, Rad(I) =
⋂

p∈V (I) p. Hence Rad(I) is always a

subset of
⋂
{m | m ∈ MaxA and I ⊆ m}. Let α ∈ A and assume α belongs to every

maximal ideal m of A such that I ⊆ m. There is a one-to-one correspondence
between points P ∈ Z(I) and maximal ideals m in A such that I ⊆ m. Therefore,
α(P ) = 0 for every P ∈ Z(I). By Theorem 10.2.9, α ∈ Rad(I). □

See Exercise 10.3.10 for a generalization of Corollary 10.2.16 to the case where
the ground field k is not algebraically closed.

2.3. A Nonsingular Affine Elliptic Curve. This section is devoted to an
example of an algebraic curve that is nonsingular and nonrational. Assume that
the characteristic of k, the base field, is not 2. Let A = k[x] be the polynomial ring
in one variable over k. Then A is a UFD (Corollary 3.6.6) and x is a prime in A.
Let K = k(x) be the quotient field of A. Consider the polynomial y2−x(x2− 1) in
A[y]. By Eisenstein’s Criterion (Corollary 3.7.7) with prime p = x, y2−x(x2−1) is
irreducible in A[y]. By Gauss’ Lemma (Theorem 3.7.3), y2−x(x2−1) is irreducible
in K[y] and F = K[y]/(y2 − x(x2 − 1)) is a field. By Exercise 5.9.11, F/K is a
Galois extension, AutK(F ) = ⟨σ⟩ has order 2, and σ is defined by y 7→ −y.

In the following, cosets in the factor ring F are written without brackets or any
extra adornment. By Theorem 3.7.4, the polynomial ring A[y] = k[x, y] is a UFD.
Therefore, R = k[x, y]/(y2 − x(x2 − 1)) is an integral domain, by Corollary 3.4.14.
The diagram of ring homomorphisms

(2.2) A = k[x] //

��

K = k(x)

��
A[y]

α //

η

��

K[y]

η

��
R = A[y]/(y2 − x(x2 − 1))

ϕ // F = K[y]/(y2 − x(x2 − 1))

commutes by Exercise 3.7.20. The vertical maps are the natural maps. The hori-
zontal map α exists by Theorem 3.6.3 applied to A → K. The map ϕ is induced
by α and is one-to-one.

Proposition 10.2.17. In the above context, the following are true.

(1) The quotient field of R is F .
(2) As an A-module, R is free of rank 2. The set {1, y} is a free basis. The

image of ϕ is {p(x) + q(x)y | where p(x) and q(x) are in A = k[x]}.
(3) The homomorphism A → R defined by sending x to its image in R is

one-to-one.
(4) The automorphism σ ∈ AutK(F ) defined by y 7→ −y restricts to an auto-

morphism σ : R→ R.
(5) For any a ∈ R, define the norm of a to be N(a) = aσ(a). Then N(1) = 1,

N : R→ A, and N is multiplicative.
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(6) The map on groups of units k∗ → R∗ is an isomorphism. That is, the
units of R are precisely the units of k.

(7) x and y are irreducible elements of R.
(8) R is not a unique factorization domain.
(9) R is not a principal ideal domain.

Proof. (1): Exercise 3.7.20.
(2): Exercise 4.2.26.
(3): The composite map A→ K → F is one-to-one and factors through R.
(4): Using Theorem 3.6.3, we see that the map σ : A[y] → A[y] defined by

y 7→ −y is an automorphism and maps the principal ideal (y2 − x(x2 − 1)) onto
itself.

(2.3) A[y]
σ //

η

��

A[y]

η

��
R // R

The kernel of ησ is the principal ideal (y2 − x(x2 − 1)). Hence σ : R → R is an
automorphism.

(5): Let a ∈ R. By (2), a has a unique representation in the form a = f+gy, for
polynomials f and g in A = k[x]. ThenN(a) = aσ(a) = f2−g2y2 = f2−g2x(x2−1)
is in the image of A → R. Since σ is an automorphism, N(1) = σ(1) = 1 and
N(ab) = abσ(a)σ(b) = N(a)N(b).

(6): The map k → R is one-to-one because k is a field. We show that k∗ → R∗

is onto. Let a, b ∈ R and assume ab = 1. Then N(a)N(b) = 1 in A. But A∗ = k∗.
This proves N(a) ∈ k. By (2), a has a unique representation in the form a = f+gy,
for polynomials f and g in A = k[x]. Then N(a) = f2 − g2x(x2 − 1) = u for some
u ∈ k∗. Then (f(0))2 = u. If g ̸= 0, then the leading term of f2 which is even is
equal to the leading term of g2x(x2 − 1), which is odd, a contradiction. Therefore,
g = 0 and a = f = f(0) is in k.

(7): If x is not irreducible, then there is a nontrivial factorization x = ab.
By (5), we have the factorization N(x) = x2 = N(a)N(b) in A = k[x]. Therefore,
N(a) = x up to associates. By (2), a has a representation in the form a = f+gy, for
polynomials f and g in A = k[x]. Then up to associates, N(a) = f2−g2x(x2−1) =
x. Then f2 = g2x(x2 − 1) + x which is impossible because the degree of the left
hand is even and that of the right hand side is odd. This proves x is not in the
image of the norm map N : R→ A, hence x is irreducible in R.

If y is not irreducible in R, then there is a nontrivial factorization y = ab. By
(5), we have the factorization N(y) = x(x2−1) = N(a)N(b) in A = k[x]. Therefore,
up to associates, one of N(a) or N(b) is in {x, x+ 1, x− 1}. The same proof from
above shows that x+ 1 and x− 1 are not in the image of N : R→ A. Therefore, y
is irreducible in R.

(8): In R we have the identity y2 = x(x2 − 1). By the proof of (7), N(x) = x2

and N(y) = x(x2 − 1). Therefore, x and y are not associates of each other. So
unique factorization does not exist.

(9): Consider the ideal m = (x, y). Then R/m = k[x, y]/(x, y) = k is a field,
hence m is a maximal ideal. If m = (a) is principal, then a | x and a | y. Since x
and y are irreducible, by Lemma 3.4.5, this implies x and y are associates of each
other, a contradiction to (8). □
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2.4. An Application to Characteristic Polynomials. We apply results
from Section 10.2.2 to show that the characteristic polynomial of AB is equal to
the characteristic polynomial of BA when A and B are two n-by-n matrices with
entries in an integral domain R.

Theorem 10.2.18. Let R be an integral domain. If A and B are n-by-n ma-
trices in Mn(R), then char.polyR(AB) = char.polyR(BA).

Proof. Let k be an algebraically closed field containing R as a subring. Let
θ : R→ k be the set containment map. By Exercise 4.7.33 applied to θ, it suffices
to prove the theorem for matrices in Mn(k). By Lemma 4.4.8, Mn(k) is a k-vector
space of dimension n2 and the set {eij | 1 ≤ i ≤ n, 1 ≤ j ≤ n} of elementary

matrices is a basis. We identify Mn(k) with the point set An2

k . As in Lemma 4.8.2,
if C is a matrix inMn(k) and the characteristic polynomial of C is char.polyk(C) =
xn + a1x

n−1 + · · · + an−1x + an, then for each i = 1, . . . , n, the assignment C 7→
(−1)iai defines a polynomial function Ni : Mn(k) → k which is homogeneous of
degree i in n2 variables. Fix A in Mn(k) and define fi : Mn(k) → k by fi(B) =
Ni(AB) − Ni(BA). Using the definition of multiplication of matrices we see that
f is a polynomial function which is homogeneous of degree i in n2 variables. The
set of zeros of fi is a closed subset of Mn(k). If B is an invertible matrix in Mn(k),
then BA = B(AB)B−1. In this case, Exercise 4.7.22 implies char.polyk(AB) =
char.polyk(BA). For each 1 ≤ i ≤ n, this implies fi(B) = 0 for all invertible
matrices B in Mn(k). By Example 10.2.13, the set of invertible matrices in Mn(k)
is a dense open set. Since fi is zero on a dense set, fi is the zero function. By
Exercise 3.6.31, this implies fi is the zero polynomial. Since this is true for each i,
we conclude that char.polyR(AB) = char.polyR(BA) for all A and for all B. □

2.5. Exercises.

Exercise 10.2.19. Let k be any field and I an ideal in A = k[x1, . . . , xn].
Prove:

(1) Z(I) = Z(Rad(I)).
(2) Rad(I) ⊆ I(Z(I)).

Exercise 10.2.20. Let k be a field, I an ideal in A = k[x1, . . . , xn], and
S = A/I. A point P = (a1, . . . , an) in Z(I) is called a k-rational point on the
algebraic set. Show that the k-rational points on Z(I) correspond to k-algebra
homomorphisms σ : S → k.

Exercise 10.2.21. Let R be a commutative ring, I = (f1, . . . , fm) an ideal
in A = R[x1, . . . , xn] generated by m polynomials, and S = A/I. A point P =
(a1, . . . , an) in AnR is called an R-rational point of S if fi(P ) = 0 for 1 ≤ i ≤ m.
Show that the R-rational points of S correspond to R-algebra homomorphisms
σ : S → R.

Exercise 10.2.22. Let R be a commutative ring and ϕ : R[x1, . . . , xm] →
R[y1, . . . , yn] an R-algebra homomorphism between two polynomial rings with co-
efficients in R.

(1) Let S ⊆ R be a finite subset which contains all of the coefficients of
the polynomials ϕ(x1), . . . , ϕ(xm). View R as a Z-algebra. Let N be
the Z-subalgebra of R generated by S. Show that there is an N -algebra
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homomorphism ϕN such that the diagram

N [x1, . . . , xm]
ϕN //

��

N [y1, . . . , yn]

��
R[x1, . . . , xm]

ϕ // R[y1, . . . , yn]

commutes, where the vertical maps are induced by N ⊆ R. Moreover,
show that the bottom row is obtained from the top by applying the functor
( )⊗N R.

(2) Show that im(ϕ) = im(ϕN )⊗N R.
(3) Show that ker(ϕN ) is a finitely generated ideal.
(4) Show that ker(ϕ) is a finitely generated ideal.

Exercise 10.2.23. The purpose of this exercise is to prove the converse of
Exercise 7.6.35 when R is commutative. Let k be a field and R a commutative
artinian finitely generated k-algebra. Prove that R is finite dimensional as a k-
vector space. (Hints: Use Theorem 8.4.6 to reduce to the case where R is local
artinian. Consider the chain R ⊇ m ⊇ m2 ⊇ · · · ⊇ mk ⊇ 0. Show that each factor
mi/mi+1 is a finitely generated vector space over k. For the first factor R/m, apply
Corollary 10.2.4.)

Exercise 10.2.24. Let k be an algebraically closed field, I an ideal in A =
k[x1, . . . , xn], and R = A/I. Prove that the following are equivalent.

(1) R is artinian.
(2) dimk(R) <∞.
(3) Z(I) is a finite set.

Moreover, prove that dimk(R) is an upper bound on the number of points in Z(I).

Exercise 10.2.25. Let R be a commutative ring. Viewing R as a Z-algebra,
show that R = lim−→Rα, where {Rα} is a directed system of noetherian subrings of
R.

Exercise 10.2.26. Let R be a commutative local ring with maximal ideal
m. Show that there is a directed system {Rα} of noetherian local subrings of R
satisfying the following:

(1) The maximal ideal of Rα is mα = m ∩Rα.
(2) R = lim−→Rα.

(3) m = lim−→mα.

(4) R/m = lim−→(Rα/mα).

Exercise 10.2.27. In the context of Proposition 10.2.17, consider the maximal
ideal m = (x, y). Show that m2 is principal.

Exercise 10.2.28. Let k be a field and A = k[x1, . . . , xn] the polynomial ring
over k in n variables. Let m be a maximal ideal in A. The following is an outline
of a proof that Hilbert’s Nullstellensatz (Theorem 10.2.9) implies the Weak Form
of the Nullstellensatz (Corollary 10.2.4).

(1) Let Ω be an algebraic closure of k. View A as a subring of Ω[x1, . . . , xn].
Using Theorem 10.2.9, show that there exists a point P = (a1, . . . , an) in
AnΩ such that P is in Z(m), the zero set of m.
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(2) Let P = (a1, . . . , an) be the point in AnΩ from (1). Show that F =
k(a1, . . . , an) is a finitely generated algebraic extension field of A/m.

(3) Use the above to prove Corollary 10.2.4.

Exercise 10.2.29. Let k be a field. Let A and B be finitely generated k-
algebras and assume A and B are integral domains. Suppose there exist p ∈ SpecA,
q ∈ SpecB and a k-algebra isomorphism ϕ : Ap → Bq. Show that there exists
α ∈ A−p, β ∈ B−q such that ϕ restricts to a k-algebra isomorphism ϕ : Aα → Bβ .
(Hint: Lemma 7.1.9.)
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3. Integral Extensions and Prime Ideals

In this section we prove the Going Up and Going Down Theorems, which are
also known as the Cohen-Seidenberg Theorems. These are combined in Theo-
rem 10.3.7. For an integral extension of commutative rings A→ B these theorems
relate the correspondence between prime ideals in A and B.

3.1. Prime Ideals.

Definition 10.3.1. If P is a two-sided ideal in a ring R, then we say P is
prime in case P ̸= R and for any two-sided ideals I and J , if IJ ⊆ P , then I ⊆ P
or J ⊆ P . If R is a commutative ring, Proposition 3.2.14 shows that this definition
agrees with Definition 3.2.11.

Lemma 10.3.2. Let R be a ring and assume I, P1, P2, . . . , Pn are two-sided
ideals. If n ≥ 3, then assume P3, . . . , Pn are prime. If I ⊆ P1 ∪ P2 ∪ · · · ∪ Pn, then
I ⊆ Pk for some k.

Proof. By removing any Pi which is contained in another Pj , we can assume
that no containment relation Pi ⊆ Pj occurs unless i = j. The proof is by induction
on n. Assume I ⊆ P1 ∪ P2. For contradiction’s sake assume I is not contained in
P1 or P2. Pick x2 ∈ I − P1 and x1 ∈ I − P2. Then x1 ∈ P1 and x2 ∈ P2. Since
x1 + x2 ∈ I ⊆ P1 ∪ P2, there are two cases. If x1 + x2 ∈ P1, then we get x2 ∈ P1

which is a contradiction. Otherwise, x1+x2 ∈ P2, which says x1 ∈ P2 which is also
a contradiction.

Inductively assume n > 2 and that the result holds for n − 1. Assume Pn is
prime and that no containment relation Pi ⊆ Pn occurs unless i = n. Assume
I ⊆ P1 ∪ · · · ∪ Pn and for contradiction’s sake, assume I ̸⊆ Pi for all i. Then
IP1 · · ·Pn−1 ̸⊆ Pn. Pick an element x in IP1 · · ·Pn−1 which is not in Pn. If
I ⊆ P1 ∪ · · · ∪ Pn−1, then by induction I ⊆ Pi for some i. Therefore we assume
S = I − (P1 ∪ · · · ∪ Pn−1) is not empty. So S ⊆ Pn. Pick s ∈ S and consider s+ x
which is in I because both s and x are. Then by assumption, s + x is in one of
the ideals Pi. Suppose s+ x ∈ Pi and 1 ≤ i ≤ n− 1. Because x ∈ Pi, this implies
s ∈ Pi which is a contradiction. Therefore s+ x ∈ Pn. But s ∈ Pn implies x ∈ Pn
which is again a contradiction. □

Lemma 10.3.3. Let P, I1, . . . , In be ideals in the commutative ring R and assume
P is prime.

(1) If P ⊇
⋂n
i=1 Ii, then P ⊇ Ii for some i.

(2) If P =
⋂n
i=1 Ii, then P = Ii for some i.

Proof. (1): For contradiction’s sake, assume for each i that there exists xi ∈
Ii − P . Let x = x1x2 · · ·xn. So x ̸∈ P but x ∈

⋂
Ii, a contradiction.

(2): Is left to the reader. □

3.2. Going Up and Going Down Theorems.

Proposition 10.3.4. Let ϕ : A → B be a homomorphism of commutative
rings. The following are equivalent.

(1) For any p1, p2 in SpecA such that p1 ⊊ p2, and for any q2 ∈ SpecB lying
over p2, there exists q1 ∈ SpecB lying over p1 such that q1 ⊊ q2.

(2) For any p in SpecA, if q is a minimal prime over-ideal in SpecB for pB,
then q ∩A = p.
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Proof. (1) implies (2): Let p ∈ SpecA and assume q ∈ SpecB is minimal
such that q ⊇ pB. Then q ∩ A ⊇ p. Assume q ∩ A ̸= p. According to (1) there
exists q1 ∈ SpecB such that q1 ∩A = p and q1 ⊊ q. In this case pB ⊆ q1 ⊊ q which
is a contradiction to the minimal property of q.

(2) implies (1): Assume p1 ⊊ p2 are in SpecA and q2 ∈ SpecB such that
q2 ∩A = p2. By Exercise 7.3.25, pick any minimal prime over-ideal q1 for p1B such
that p1B ⊆ q1 ⊆ q2. By (2), we have q1 ∩A = p1. □

Definition 10.3.5. If ϕ : A → B is a homomorphism of commutative rings
which satisfies one of the equivalent properties of Proposition 10.3.4, then we say
going down holds for ϕ.

Theorem 10.3.6. If ϕ : A→ B is a homomorphism of commutative rings such
that B is a flat A-algebra, then going down holds for ϕ.

Proof. Let p1 ⊊ p2 in SpecA and q2 ∈ SpecB such that q2 ∩ A = p2. Then
ϕ2 : Ap2 → Bq2 is a local homomorphism of local rings. By Proposition 7.8.2, Bq2
is a flat Ap2-algebra. By Exercise 7.5.27, Bq2 is a faithfully flat Ap2-algebra. By

Lemma 7.5.5, ϕ♯2 : SpecBq2 → SpecAp2 is onto. Let Q1 ∈ SpecBq2 be a prime ideal
lying over p1Ap2 and set q1 = Q1 ∩B. Then q1 ⊆ q2. The commutative diagram

SpecBq2

��

ϕ♯
2 // SpecAp2

��
SpecB

ϕ♯

// SpecA

shows that q1 is a prime ideal of B lying over p1. □

Theorem 10.3.7. Assume B is a commutative faithful integral A-algebra.

(1) The natural map θ♯ : SpecB → SpecA is onto.
(2) If p ∈ SpecA and q1, q2 ∈ SpecB are two primes in B lying over p, then

q1 is not a subset of q2.
(3) (Going Up Holds) For any p1, p2 in SpecA such that p1 ⊊ p2, and for any

q1 ∈ SpecB lying over p1, there exists q2 ∈ SpecB lying over p2 such that
q1 ⊊ q2.

(4) If q ∈ SpecB and p = q ∩ A, then q is a maximal ideal of B if and only
if p is a maximal ideal of A.

For (5) and (6) assume A and B are integral domains, that K is the quotient field
of A and that A is integrally closed in K.

(5) (Going down holds) For any p1, p2 in SpecA such that p1 ⊊ p2, and for
any q2 ∈ SpecB lying over p2, there exists q1 ∈ SpecB lying over p1 such
that q1 ⊊ q2.

(6) If L is a normal extension field of K, and B is equal to the integral
closure of A in L, then any two prime ideals of B lying over the same
prime p ∈ SpecA are conjugate to each other by some automorphism
σ ∈ AutK(L).

Proof. (4): We have B/q is a faithful integral A/p-algebra (Exercise 10.1.16).
If follows from Lemma 10.1.4 that A/p is a field if and only if B/q is a field. Or in
other words, q is a maximal ideal if and only if p is a maximal ideal.
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(1) and (2): Let p ∈ SpecA. Tensoring the integral extension A → B with
( ) ⊗A Ap we get the integral extension Ap → B ⊗A Ap. The prime ideals of B
lying over p correspond to the prime ideals of Bp lying over pAp. By (4), these
are the maximal ideals of Bp. The ring Bp contains at least one maximal ideal, by
Proposition 3.2.15. This proves (1). Because there is no inclusion relation between
two maximal ideals, this proves (2).

(3): Suppose p1, p2 are in SpecA and p1 ⊊ p2. Assume q1 is in SpecB such
that p1∩A = p1. Then A/p1 → B/q1 is an integral extension of rings. By (1) there
exists a prime ideal q2/q1 in Spec(B/q1) lying over p2/p1. Then q2 ∈ SpecB lies
over p2 and q1 ⊊ q2.

(6): Let G = AutK(L) be the group of K-automorphisms of L. If σ ∈ G, then
σ restricts to an A-automorphism of B. In particular, if q ∈ SpecB, then σ(q)
is also in SpecB. Let q, q′ ∈ SpecB and assume q ∩ A = q′ ∩ A. We show that
q′ = σ(q) for some σ ∈ G.

First we prove this under the assumption that (L : K) is finite. Then G =
{σ1, . . . , σn} is finite as well. Let σi(q) = qi, for 1 ≤ i ≤ n. For contradiction’s sake,
assume q′ ̸= qi for any i. By (2), q′ is not contained in any qi. By Lemma 10.3.2,
there exists x ∈ q′ such that x is not in any qi. Suppose ℓ is the characteristic of
K. Set

y =

{∏n
i=1 σi(x) if ℓ = 0(∏n
i=1 σi(x)

)ℓν
if ℓ > 0

where ν is chosen to be a sufficiently large positive integer such that y is separable
over K. It follows that y ∈ K. Since σi(x) ̸∈ q for each i and q is a prime
ideal, it follows that y ̸∈ q. Notice that y ∈ B ∩ K, so y is integral over A.
Since A is integrally closed in K we see that y ∈ A. Since x ∈ q′, it follows that
y ∈ q′ ∩A = q ∩A. This is a contradiction.

Now assume L is infinite over K. Let F = LG be the subfield fixed by G. Then
L is Galois over F and F is purely inseparable over K.

If F ̸= K, let ℓ be the characteristic of K and let C be the integral closure of
A in F . Let p ∈ SpecA and let S be the set of all x in C such that xℓ

ν ∈ p for
some ν ≥ 0. Let q ∈ SpecC such that p = q ∩ A. Then clearly S ⊆ q. Conversely,
if x ∈ q, then x ∈ F , so x is algebraic and purely inseparable over K. So xℓ

ν ∈ K
for some ν ≥ 0. Since x is integral over A, there is a monic polynomial f(t) ∈ A[t]
such that f(x) = 0. Then 0 = (f(x))ℓ

ν

= f(xℓ
ν

) so xℓ
ν

is integral over A. Because
A is integrally closed in K, xℓ

ν ∈ A∩ q = p. This shows that S is the unique prime
ideal of C lying over p. Replace K with F , A with C and p with S. It is enough to
prove (6) under the assumption that L is Galois over K.

Assume L over K is a Galois extension and that B is the integral closure of A
in L. Let q, q′ ∈ SpecB and assume q ∩ A = q′ ∩ A = p. Let S be the set of all
finite Galois extensions T of K contained in L. If T ∈ S, let

F0(T ) = {σ ∈ AutK(T ) | σ(q ∩ T ) = q′ ∩ T}.

By the finite version of (6) we know that F0(T ) is a nonempty closed subset ofG. Let
F (T ) be the preimage of F0(T ) under the continuous mappingG→ AutK(T ). Then
F (T ) is a nonempty closed subset of G. If T ⊆ T ′ are two such intermediate fields in
S, then F (T ) ⊇ F (T ′). For any finite collection {T1, . . . , Tn} of objects in S, there is
another object T in S such that Ti ⊆ T for all i. Therefore, ∩ni=1F (Ti) ⊇ F (T ) ̸= ∅.
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Because G is compact, this means

F =
⋂
T∈S

F (T ) ̸= ∅.

Let σ ∈ F . For every x ∈ q, there is some intermediate field T in S such that
x ∈ q ∩ T . Hence σ(x) ∈ q′ ∩ T . Therefore σ(q) = q′.

(5): Let L1 be the quotient field of B and K the quotient field of A. Let L be a
normal extension of K containing L1. Let C be the integral closure of A in L. Then
C is also the integral closure of B in L. We are given p1, p2 ∈ SpecA such that
p1 ⊊ p2 and q2 ∈ SpecB such that p2 = q2 ∩A. Let Q1 be a prime ideal in SpecC
lying over p1. By Part (3) applied to A ⊆ C, there is Q2 ∈ SpecC lying over p2
such that Q1 ⊊ Q2. Let Q be in SpecC lying over q2. Since p2 = Q ∩A = Q2 ∩A,
by Part (6) there exists σ ∈ AutK(L) such that σ(Q2) = Q. Put q1 = σ(Q1) ∩ B.
Then q1 ⊊ q2 and q1 ∩A = σ(Q1) ∩A = Q1 ∩A = p1. □

Corollary 10.3.8. Let R be a local ring and S a commutative R-algebra which
is faithful and finitely generated as an R-module. Then S is semilocal.

Proof. Let m be the maximal ideal of R. By Theorem 10.3.7 (4), the maximal
ideals of S correspond to the maximal ideals of S/mS. Because S/mS is finite
dimensional over R/m, it is artinian (Exercise 7.6.35). By Proposition 8.4.3, S/mS
is semilocal. □

3.3. Exercises.

Exercise 10.3.9. Let S be a commutative faithful integral R-algebra. Let
J(R) be the Jacobson radical of R, and J(S) the Jacobson radical of S. Prove that
J(R) = J(S) ∩R.

Exercise 10.3.10. Prove the following generalization of Corollary 10.2.16. Let
k be a field and R a finitely generated k-algebra. Prove:

(1) The Jacobson radical of R, J(R), is equal to the nil radical of R, RadR(0).
(Hints: If k̄ is an algebraic closure of k, then R̄ = R ⊗R k̄ is a faithfully
flat integral R-algebra. Exercise 10.3.9.)

(2) If α ∈ R and α is not a nilpotent element of R, then the basic open set
U(α) contains a closed point of SpecR. If U is a nonempty open subset
of SpecR, then U contains a closed point of SpecR.





CHAPTER 11

The Topological Completion of Rings and Modules

1. I-adic Topology and Completion

1.1. Completion of a Linear Topological Module. Let R be a ring and
M an R-module. A filtration of M is a nonincreasing chain of submodules

M =M0 ⊇M1 ⊇M2 ⊇M3 . . . .

Using the set of submodules {Mn}n≥0 in a filtration, we define a topology on M .
Given any x ∈ M , a base for the neighborhoods of x is the set {x +Mn | n ≥ 0}.
The linear topology onM defined by the filtration {Mn}n≥0 is the smallest topology
on M containing all of the open sets {x+Mn | x ∈M,n ≥ 0}. If L is a submodule
of M and η : M → M/L is the natural map, then the chain {η(Mn)}n≥0 =
{(Mn + L)/L}n≥0 is a filtration of M/L that induces a linear topology on M/L.
The chain of submodules {Mn ∩ L}n≥0 is a filtration of L which induces a linear
topology on L. As in Section 1.4, we say that M is separated (that is, Hausdorff )
if for any two distinct points x, y ∈ M , there are neighborhoods x ∈ U and y ∈ V
such that U ∩ V = ∅. If I is a two-sided ideal in R, the chain of ideals R ⊇
I1 ⊇ I2 ⊇ I3 ⊇ . . . is a filtration of R which defines the I-adic topology on R.
This agrees with the terminology of Definition 6.8.20. The chain of submodules
M ⊇ I1M ⊇ I2M ⊇ I3M ⊇ . . . is a filtration of M which defines the I-adic
topology on M .

Lemma 11.1.1. Let R be a ring, M an R-module with a filtration {Mn}n≥0,
and L a submodule. With respect to the linear topology defined by this filtration,
the following are true.

(1) Each set Mn is open and closed.
(2) Addition on M is continuous.

(3) The natural maps 0→ L
⊆−→M

η−→M/L→ 0 are continuous.
(4) For each n, M/Mn has the discrete topology, which is to say “points are

open”.

Proof. (1): By definition, each left coset (x+Mn) is open. The decomposition
of M into left cosets gives M −Mn =

⋃
x ̸∈Mn

(x+Mn), which is open.

(2): Follows from the formula for addition of left cosets (x + y) +Mn = (x +
Mn) + (y +Mn).

(3): Is left to the reader.
(4): M/Mn has the finite filtration M/Mn ⊇ M1/Mn ⊇ · · · ⊇ Mn−1/Mn ⊇

Mn/Mn = 0 which terminates with (0). □

Lemma 11.1.2. Let {Mn}n≥0 be a filtration of the R-module M . Let N =⋂
n≥0Mn. Then

(1) N is the closure of {0}.

445
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(2) M is separated if and only if N = 0.
(3) If L is a submodule of M , then M/L is separated if and only if L is closed.

Proof. (1): An element x is in the closure of {0} if and only if every neigh-
borhood of x contains 0. Since {x+Mn}n≥0 is a base for the neighborhoods of x,
it follows that x is in the closure of {0} if and only if x ∈ N .

(2): If x ∈ N and x ̸= 0, then every neighborhood of x contains 0 so M is not
separated. If x, y ∈ M and x − y ̸∈ N , then for some n ≥ 0, x − y ̸∈ Mn. Then
(x+Mn) ∩ (y +Mn) = ∅. This says that M/N is separated, so if N = 0, then M
is separated.

(3): Is left to the reader. □

Definition 11.1.3. Let {Mn}n≥0 be a filtration of the R-module M . A se-
quence (xν) of elements of M is a Cauchy sequence if for every open submodule U
there exists n0 ≥ 0 such that xµ − xν ∈ U for all µ ≥ n0 and all ν ≥ n0. Since U
is a submodule, this is equivalent to xν+1 − xν ∈ U for all ν ≥ n0. A point x is
a limit of a sequence (xν) if for every open submodule U there exists n0 ≥ 0 such
that x − xν ∈ U for all ν ≥ n0. We say M is complete if every Cauchy sequence
has a limit. We say that two Cauchy sequences (xν) and (yν) are equivalent and
write (xν) ∼ (yν) if 0 is a limit of (xν − yν).

Lemma 11.1.4. In the setting of Definition 11.1.3, let C denote the set of all
Cauchy sequences in M .

(1) The relation ∼ is an equivalence relation on C.
(2) If (xν) ∈ C and (yν) ∈ C, then (xν + yν) ∈ C.
(3) If (xν) ∼ (x′ν) ∈ C and (yν) ∼ y′ν) ∈ C, then (xν + yν) ∼ (x′ν + y′ν) ∈ C.
(4) If (xν) ∈ C and r ∈ R, then (rxν) ∈ C.
(5) If (xν) ∼ (x′ν) ∈ C and r ∈ R, then (rxν) ∼ (rx′ν) ∈ C.

Proof. Is left to the reader. □

Definition 11.1.5. Let {Mn}n≥0 be a filtration of the R-module M . Let M∗

denote the set of all equivalence classes of Cauchy sequences in M . We call M∗ the
topological completion of M . Then Lemma 11.1.4 says that M∗ is an R-module.
For any x ∈M , the constant sequence (x) is a Cauchy sequence, so x 7→ (x) defines
an R-module homomorphism η : M → M∗. The reader should verify that the
kernel of η is the subgroup N of Lemma 11.1.2. Therefore η is one-to-one if and
only if M is separated. A Cauchy sequence is in the image of η if it has a limit
in M , hence M is complete if the natural map η : M → M∗ is onto. For M to
be separated and complete it is necessary and sufficient that η be an isomorphism,
which is true if and only if every Cauchy sequence has a unique limit in M .

Lemma 11.1.6. In the setting of Definition 11.1.3, assume L is a submodule of
M . If M is complete, then M/L is complete.

Proof. Let (xν + L) be a Cauchy sequence in M/L. For each ν there is a
positive integer i(ν) such that xν+1 − xν ∈ Mi(ν) + L for all ν ≥ i(ν). For each
ν pick yν ∈ Mi(ν) and zν ∈ L such that xν+1 − xν = yν + zν . Define a sequence
s = (x1, x1+y1, x1+y1+y2, x1+y1+y2+y3, . . . ) in M . Since 0 is a limit for (yν),
it follows that s is a Cauchy sequence in M . Since M is complete, s has a limit,
say s0. Notice that sν+1 − xν+1 ∈ L. Therefore, s0 + L is a limit for (xν + L) in
M/L. □
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1.2. Functorial Properties of Completion.

Proposition 11.1.7. Let {Mn}n≥0 be a filtration of the R-module M and M∗

the topological completion. Then M∗ is isomorphic to lim←−M/Mn as R-modules.

Proof. For any n the natural map ηn : M → M/Mn is continuous and
maps a Cauchy sequence (xν) in M to a Cauchy sequence (ηn(xν)) in M/Mn.
As M/Mn has the discrete topology, (ηn(xν)) is eventually constant, hence has a
limit. Two equivalent Cauchy sequences will have the same limit in M/Mn, so
there is a well defined continuous R-module homomorphism fn : M∗ → M/Mn

defined by (xν) 7→ lim−→(ηn(xν)). According to Definition 6.8.12, there is a unique

R-module homomorphism β : M∗ → lim←−M/Mn. A Cauchy sequence is in the
kernel of β if and only if it is equivalent to 0. Therefore, β is one-to-one. By Propo-
sition 6.8.13, we can view the inverse limit as a submodule of the direct product.
If the inverse limit is given the topology it inherits from the direct product of the
discrete spaces

∏
M/Mn, then β is continuous. An element of the inverse limit

can be viewed as (xn) ∈
∏
M/Mn such that xn = ϕn+1(xn+1) for all n, where

ϕn+1 : M/Mn+1 → M/Mn is the natural map. In this case, xn+1 − xn ∈ Mn so
(xn) is the image under η of a Cauchy sequence in M . This shows β is onto, and
therefore β is an isomorphism. □

Suppose that {An} is a filtration for the R-module A, and that {Bn} is a
filtration for B. A morphism from {An} to {Bn} is an R-module homomorphism
α : A → B such that for each n ≥ 0, α(An) ⊆ Bn. In this case α induces a
commutative square

A/An+1
α //

ϕn+1

��

B/Bn+1

ψn+1

��
A/An

α // B/Bn

for each n ≥ 0. Hence there is a morphism of inverse systems α : {A/An} →
{B/Bn}. As in Section 5.7, α induces a homomorphism lim←−A/An → lim←−B/Bn.

Proposition 11.1.8. If

{An}
α−→ {Bn}

β−→ {Cn}
is a sequence of morphisms of R-modules equipped with filtrations, such that for
every n ≥ 0 the sequence

0→ An
α−→ Bn

β−→ Cn → 0

is an exact sequence of R-modules. Then

0→ lim←−A/An
←−α−→ lim←−B/Bn

←−
β−→ lim←−C/Cn → 0

is an exact sequence of R-modules.

Proof. It follows from Theorem 6.6.2 that the sequence

0→ A/An
α−→ B/Bn

β−→ C/Cn → 0

is an exact sequence of R-modules for each n ≥ 0. Apply Proposition 6.8.19 to the

exact sequence of morphisms of inverse systems {A/An}
α−→ {A/Bn}

β−→ {C/Cn}.
□
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Corollary 11.1.9. Let {Bn} be a filtration for the R-module B. Suppose

0→ A
α−→ B

β−→ C → 0

is an exact sequence of R-modules. Give A the filtration {An} = {α−1(Bn)} and
C the filtration {Cn} = {β(Bn)}. Then the sequence of completions

0→ A∗
α∗

−−→ B∗
β∗

−→ C∗ → 0

is an exact sequence of R-modules.

Proof. By construction,

0→ A/An
α−→ B/Bn

β−→ C/Cn → 0

is an exact sequence of R-modules. Now apply Proposition 11.1.8 and Proposi-
tion 11.1.7. □

Corollary 11.1.10. Let {Mn} be a filtration for the R-module M and M∗ the
topological completion.

(1) For each n ≥ 0 we have M∗/M∗n
∼=M/Mn.

(2) With respect to the filtration {M∗n}, the R-module M∗ is complete and
separated. That is, M∗ ∼= (M∗)∗.

Proof. (1): Apply Corollary 11.1.9 to the sequence 0 → Mn → M →
M/Mn → 0. Since M/Mn has the discrete topology, M/Mn

∼= (M/Mn)
∗.

(2): Take inverse limits in Part (1). □

Proposition 11.1.11. Let R be a ring and I a two-sided ideal in R such that
R is separated and complete with respect to the I-adic topology. Then

(1) 1 + x is a unit of R for every x ∈ I, and
(2) I is contained in J(R), the Jacobson radical of R.

Proof. By Nakayama’s Lemma (Theorem 8.1.3), it is enough to prove that
1 − x is invertible for every x ∈ I. Since the I-adic topology on R is separated,
∩In = 0. The sequence s = (1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, . . . ) is a Cauchy
sequence in R. Since R is complete, s converges in R. Now (1− x)s = s(1− x) =
1− (x, x2, x3, . . . ) is equal to 1 since the Cauchy sequence (x, x2, x3, . . . ) converges
to 0. □

Corollary 11.1.12. Let R be a commutative ring and m a maximal ideal in
R. If R̂ = lim←−R/m

i is the m-adic completion, then R̂ is a local ring with maximal

ideal m̂ = lim←−m/mi.

Proof. By Corollary 11.1.10 (1), R̂/m̂ ∼= R/m, so m̂ is a maximal ideal of R̂.

By Corollary 11.1.10 (2), R̂ is separated and complete with respect to the topology
associated to the filtration (mi)̂. By Lemma 6.8.18, we can view m̂ as the set of
all sequences (x1, x2, . . . ) ∈

∏∞
i=1R/m

i such that x1 ∈ m and xi−xi+1 ∈ mi for all
i ≥ 1. From this we see that m̂i ⊆ (mi)̂. The proof of Proposition 11.1.11 shows

that m̂ is contained in the Jacobson radical of R̂. Hence, R̂ has a unique maximal
ideal and is a local ring. □
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1.3. Exercises.

Exercise 11.1.13. Let R be a commutative ring, I an ideal in R, and

A
α−→ B → 0

an exact sequence of R-modules. Prove that the I-adic filtration {InB}n≥0 of B is
equal to the filtration {α(InA)}n≥0 of B inherited from A by the surjection α.

Exercise 11.1.14. Let R be a commutative ring and I an ideal in R. Prove:

(1) The I-adic completion of M = R ⊕ R is isomorphic to R̂ ⊕ R̂. (Hint:
Corollary 11.1.9.)

(2) If M is a finitely generated free R-module, then the I-adic completion of

M is a finitely generated free R̂-module.

Exercise 11.1.15. Let R be a commutative ring and I a nilpotent ideal in R
(IN = (0), for some N ≥ 1).

(1) Show that lim←−R/I
i = R.

(2) If R is a commutative local artinian ring with maximal ideal m, show that
R is separated and complete with respect to the m-adic topology.

Exercise 11.1.16. Let R be a commutative ring and I an ideal in R. Let J
be another ideal of R such that I ⊆ J . Prove:

(1) In the I-adic topology on R, J is both open and closed.

(2) If Ĵ = lim←− J/I
n and R̂ = lim←−R/I

n, then R̂/Ĵ = R/J .

(3) J is a prime ideal if and only if Ĵ is a prime ideal.

Exercise 11.1.17. Let R be a commutative ring. Let I and J be ideals of R.
Prove:

(1) The I-adic topology on R is equal to the J-adic topology on R if and only
if there exists m > 0 such that Im ⊆ J and Jm ⊆ I.

(2) If the I-adic topology on R is equal to the J-adic topology on R, then there
is an isomorphism of rings lim←−R/I

k → lim←−R/J
k. (Hint: Exercise 6.8.42.)

For a continuation of this exercise, see Exercise 13.1.11.

2. Graded Rings and Graded Modules

In this section all rings are commutative.

2.1. Definitions and First Principles. A graded ring is a commutative ring
R which under addition is the internal direct sum R =

⊕∞
n=0Rn of a set of additive

subgroups {Rn}n≥0 satisfying the property that RiRj ⊆ Ri+j for all i, j ≥ 0. The
reader should verify (Exercise 7.9.16) that R0 is a subring of R and each Rn is
an R0-module. An element of Rn is said to be homogeneous of degree n. The set
R+ =

⊕∞
n=1Rn is an ideal of R (Exercise 7.9.17), and is called the exceptional ideal

of R.

Example 11.2.1. Let R be any commutative ring and S = R[x1, . . . , xm] the
polynomial ring over R in m variables x1, . . . , xm (see Section 3.6.1). A monomial
overR is any polynomial that looks like rxe11 · · ·xemm , where r ∈ R and each exponent
ei is a nonnegative integer. The degree of a monomial is −∞ if r = 0, otherwise
it is the sum of the exponents e1 + · · · + em. A polynomial in S is said to be
homogeneous if it is a sum of monomials all of the same degree. Let S0 = R be the
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set of all polynomials in S of degree less than or equal to 0. For all n ≥ 1, let Sn be
the set of all homogeneous polynomials in S of degree n. The reader should verify
that S is a graded ring.

Let R be a graded ring. A graded R-module is an R-module M which under
addition is the internal direct sum M =

⊕
n∈ZMn of a set of additive subgroups

{Mn}n∈Z and such that RiMj ⊆ Mi+j for all pairs i, j. The reader should ver-
ify that each Mn is an R0-module (Exercise 7.9.18). Any x ∈ Mn is said to be
homogeneous of degree n. Every y ∈ M can be written uniquely as a finite sum

y =
∑d
n=−d yn where yn ∈Mn. We call the elements y−d, . . . , y0, . . . , yd the homo-

geneous components of y. The set of homogeneous elements of M is

Mh =
⋃
d∈Z

Md.

Let M and N be graded R-modules and θ :M → N an R-module homomorphism.
We say θ is a homomorphism of graded R-modules if for every n ∈ Z we have
θ(Mn) ⊆ Nn.

Proposition 11.2.2. Let R be a graded ring. The following are equivalent.

(1) R is a noetherian ring.
(2) R0 is a noetherian ring and R is a finitely generated R0-algebra.

Proof. (2) implies (1): This follows straight from Theorem 10.2.1 (3).
(1) implies (2): By Corollary 7.6.13 (1), R0 = R/R+ is noetherian. By Corol-

lary 7.6.7, the ideal R+ is finitely generated. Write R+ = Rx1+ · · ·+Rxm. Assume
without loss of generality that each xi is homogeneous of degree di > 0. Let S be
the R0-subalgebra of R generated by x1, . . . , xm. Inductively assume n > 0 and
that S contains R0 + R1 + · · · + Rn−1. We show that S contains Rn, which will
finish the proof. Let y ∈ Rn. Write y = r1x1 + · · · + rmxm. Each ri can be
written as a sum of its homogeneous components. Because y is homogeneous and
each xi is homogeneous, after rearranging and re-labeling, we can assume each ri
is either zero or homogeneous of degree ei where ei + di = n. Because di > 0, we
have 0 ≤ ei < n, which says each ri is in R0 + R1 + · · · + Rn−1. By the inductive
hypothesis, each ri is in S which says y ∈ S. □

2.2. The Grading Associated to a Filtration.

Example 11.2.3. Let R be a commutative ring. Suppose we have a filtration
J = {Jn}n≥0 of R by ideals

R = J0 ⊇ J1 ⊇ J2 ⊇ . . .

such that for all m,n ≥ 0 we have JmJn ⊆ Jm+n. Multiplication in R defines an
R-module homomorphism

µ0 : Jm ⊗R Jn →
Jm+n

Jm+n+1

where µ0(x ⊗ y) = xy (mod Jm+n+1). The kernel of µ0 contains the image of
Jm+1 ⊗R Jn, so µ0 factors through

µ1 :
Jm
Jm+1

⊗R Jn →
Jm+n

Jm+n+1
.
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The kernel of µ1 contains the image of Jm
Jm+1

⊗R Jn+1, so µ1 factors through

µmn :
Jm
Jm+1

⊗R
Jn
Jn+1

→ Jm+n

Jm+n+1
.

The graded ring associated to this filtration is

grJ (R) =

∞⊕
n=0

Jn
Jn+1

=
R

J1
⊕ J1
J2
⊕ · · · ⊕ Jn

Jn+1
⊕ . . .

where multiplication of two homogeneous elements xm, xn is defined to be µmn(xm⊗
xn). The reader should verify that grJ (R) is a graded ring. When I is an ideal of
R, the I-adic filtration

R = I0 ⊇ I1 ⊇ I2 ⊇ . . .
has the associated graded ring grI (R) =

⊕
n≥0 I

n/In+1. The reader should ver-

ify that grI (R) is an R/I-algebra which is generated by the set of homogeneous
elements of degree one, grI(R)1 = I/I2.

Example 11.2.4. Let R be an integral domain. Let g be an element of R such
that g is nonzero and g is not invertible. Then there is a commutative diagram

0 // Rg //

��

R //

��

R/Rg //

��

0

0 // Rgi+1 // Rgi // Rgi/Rgi+1 // 0

of R-modules where the vertical maps are “multiply by gi”. If we set I = Rg, then
Ii/Ii+1 is a free R/I-module of rank 1 and is generated by the coset gi + Ii+1.
The R/I-algebra homomorphism δ : (R/I)[x]→ grI(R) =

⊕
i≥0 I

i/Ii+1 defined by

x 7→ g + I/I2 is an isomorphism of graded rings.

Example 11.2.5. Let R be a commutative ring and I an ideal of R. Let
M be an R module and F = {Mn}n≥0 an I-filtration of M . Set grF (M) =⊕∞

n=0Mn/Mn+1. Using the method of Example 11.2.3, the reader should verify
that grF (M) is a graded grI(R)-module. We call this the associated graded module
for the I-filtration F of M . The graded grI(R)-module associated to the I-adic
filtration {InM}n≥0 is denoted grI(M).

Definition 11.2.6. Let R be a commutative ring and J = {Jn}n≥0 a filtration
of R by ideals. LetM be an R-module which also has a filtration {Mn}n≥0. We say
that M is a filtered R-module, or that the filtrations of R and M are compatible, if
JiMj ⊆Mi+j , for all i ≥ 0 and j ≥ 0. If the filtration of R is defined by an ideal I,
then M is a filtered R-module if IMn ⊆ Mn+1 for all n ≥ 0. In this case, we also
say the filtration {Mn}n≥0 is an I-filtration. If IMn = Mn+1 for all sufficiently
large n, then we say the filtration is a stable I-filtration.

Example 11.2.7. Let R be a commutative ring and J = {Jn}n≥0 a filtration
of R by ideals. Let M be an R-module. The filtration of M inherited from R is
defined by Mn = JnM . The filtration {Mn}n≥0 makes M into a filtered R-module.

Example 11.2.8. Let R be a commutative ring, and I an ideal in R. The I-
adic filtration of R and the I-adic filtration {InM} ofM are compatible. Moreover,
{InM} is a stable I-filtration of M .
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According to Proposition 11.1.7, the completion depends only on the topology,
not necessarily the filtration. In other words, different filtrations may give rise to
the same topology, and therefore the same completions.

Proposition 11.2.9. Let R be a noetherian commutative ring and I an ideal
of R. The following are true.

(1) The associated graded ring grI(R) =
⊕

n≥0 I
n/In+1 is noetherian.

(2) Let M be a finitely generated R module and F = {Mn}n≥0 a stable I-
filtration of M . Then grF (M) =

⊕
n≥0Mn/Mn+1 is a finitely generated

graded grI(R)-module.

Proof. (1): Since R is noetherian, by Corollary 7.6.13, R/I is noetherian.
By Corollary 7.6.7, I is finitely generated. Therefore grI(R) is a finitely generated
R/I-algebra and by Proposition 11.2.2, grI(R) is noetherian.

(2): Since M is a finitely generated R-module and R is noetherian, Corol-
lary 7.6.12 implies each Mn is finitely generated over R. Each Mn/Mn+1 is finitely
generated over R and annihilated by I, soMn/Mn+1 is finitely generated over R/I.
For any d > 0, M0/M1 ⊕ · · · ⊕Md/Md+1 is finitely generated over R/I.

For some d > 0 we have IMd+r = Md+r+1, for all r ≥ 0. By induction,
IrMd =Md+r, for all r ≥ 1. It follows that(

Ir/Ir+1
)
(Md/Md+1) =Md+r/Md+r+1

which shows that grF (M) is generated as a graded grI(R)-module by the set
M0/M1 ⊕ · · · ⊕Md/Md+1. A finite set of generators for M0/M1 ⊕ · · · ⊕Md/Md+1

over R/I will also generate grF (M) as a graded grI(R)-module. □

2.3. The Artin-Rees Theorem.

Lemma 11.2.10. Let R be a commutative ring and I an ideal of R. If {Mn}
and {M ′n} are stable I-filtrations of the R-module M , then there exists an integer
n0 such that Mn+n0

⊆ M ′n and M ′n+n0
⊆ Mn for all n ≥ 0. All stable I-filtrations

of M give rise to the same topology on M , namely the I-adic topology.

Proof. It is enough to show this for {M ′n} = {InM}. For some n0 we have
IMn = Mn+1 for all n ≥ n0. Then IMn0 = Mn0+1, I

2Mn0 = IMn0+1 = Mn0+2,
and iterating n times, InMn0 = IMn0+n−1 = Mn0+n. Therefore I

nM ⊇ InMn0 =
Mn+n0

. For the reverse direction, start with IM = IM0 ⊆M1. We get I2M ⊆M2,
and iterating n times we get InM ⊆ Mn. Therefore In+n0 ⊆ InM ⊆ Mn for all
n ≥ 0. □

Example 11.2.11. Let R be a commutative ring and I an ideal of R. Then S =
R⊕I⊕I2⊕I3⊕ . . . is a graded ring. If R is noetherian, then I is finitely generated
so S is a finitely generated R-algebra and is noetherian by Proposition 11.2.2.
Let M be an R module and M = M0 ⊇ M1 ⊇ M2 ⊇ . . . an I-filtration of M
(Definition 11.2.6). For each i ≥ 0 we have IMi ⊆ Mi+1, hence I

jMi ⊆ Mi+j .
Therefore T =M0 ⊕M1 ⊕M2 ⊕M3 ⊕ . . . is a graded S-module.

Lemma 11.2.12. Let R be a commutative ring and I an ideal of R. Let M be
an R module and

M =M0 ⊇M1 ⊇M2 ⊇ . . .
an I-filtration of M such that for each i, Mi is a finitely generated R-module. The
following are equivalent.
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(1) The I-filtration {Mn}n≥0 is stable. That is, there exists d > 0 such that
IMn =Mn+1 for all n ≥ d.

(2) If S = R⊕ I ⊕ I2 ⊕ I3 ⊕ · · · and T =M0 ⊕M1 ⊕M2 ⊕M3 ⊕ · · · , then T
is a finitely generated S-module.

Proof. (2) implies (1): Assume T is finitely generated over S. Suppose U
is a finite subset of T which generates T over S. By making U larger (but still
finite), we may assume U consists of a finite set of homogeneous elements U =
{x1, . . . , xm} where xi has degree di. Let d be the maximum of {d1, . . . , dm}.
Assume n ≥ d and y ∈Mn. Write y = r1x1 + · · ·+ rmxm. Each ri can be written
as a sum of its homogeneous components. Because y is homogeneous and each xi
is homogeneous, after rearranging and re-labeling, we may assume each ri is either
zero or homogeneous of degree ei where ei + di = n. For each i, ri ∈ In−di . This
shows that

Mn =

m∑
i=1

In−diMdi

for all n ≥ d. It follows that

Mn+1 =

m∑
i=1

In−di+1Mdi = I

(
m∑
i=1

In−diMdi

)
= IMn.

(1) implies (2): If Mn+1 = IMn for all n ≥ d, then T is generated over S by
the set

C =M0 ⊕M1 ⊕M2 ⊕ · · · ⊕Md.

A finite set of generators for C over R will also generate T over S. □

Theorem 11.2.13. (Artin-Rees) Let R be a noetherian commutative ring, I an
ideal in R, M a finitely generated R-module, {Mn}n≥0 a stable I-filtration of M ,
and N a submodule of M . Then

(1) {N ∩Mn}n≥0 is a stable I-filtration of N .
(2) There exists an integer d > 0 such that

InM ∩N = In−d(IdM ∩N)

for all n > d.

Proof. (1): Let S =
⊕

n≥0 I
n. Since R is noetherian, by Corollary 7.6.7, I is

finitely generated. But S is generated as an R-algebra by I, so Proposition 11.2.2
implies S is noetherian. By Corollary 7.6.12, each Mn is finitely generated as
an R-module. By Lemma 11.2.12, T =

⊕
n≥0Mn is finitely generated as an S-

module. For each n ≥ 0 we have I(N ∩Mn) ⊆ IN ∩ IMn ⊆ N ∩Mn+1. Therefore
{N∩Mn}n≥0 is an I-filtration of N and U =

⊕
n≥0N∩Mn is an S-submodule of T .

By Corollary 7.6.12, U is finitely generated over S. We are done by Lemma 11.2.12.
Part (2) follows from Part (1) because the filtration {InM}n≥0 is a stable

filtration of M . □

Corollary 11.2.14. Let R be a noetherian commutative ring, I an ideal in
R, M a finitely generated R-module, and N a submodule of M . Then there exists
an integer n0 such that In+n0N ⊆ (InM) ∩ N and (In+n0M) ∩ N ⊆ InN for all
n ≥ 0. The I-adic topology of N coincides with the topology induced on N by the
I-adic topology of M .
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Proof. The filtration {InN}n≥0 is a stable filtration of N and by Theo-
rem 11.2.13, {(InM) ∩ Nn≥0} is a stable I-filtration of N . The rest comes from
Lemma 11.2.10. □

Corollary 11.2.15. Let R be a noetherian commutative ring, I an ideal in
R, and

0→ A
α−→ B

β−→ C → 0

an exact sequence of finitely generated R-modules. The sequence

0→ Â→ B̂ → Ĉ → 0

of I-adic completions is an exact sequence of R̂-modules.

Proof. First give B the I-adic filtration {InB}n≥0. Give C the filtration
{β(InB)}n≥0, which is the same as the I-adic filtration on C, by Exercise 11.1.13.
Give A the filtration {α−1(InB)}n≥0. By Corollary 11.1.9, the sequence of com-
pletions

0→ A∗
α∗

−−→ B∗
β∗

−→ C∗ → 0

is an exact sequence of R-modules. Because we started with I-filtrations, the ho-
momorphisms are R̂-linear. We already know that B∗ = B̂ and C∗ = Ĉ. By
Corollary 11.2.14, A∗ = Â, so we are done. □

3. The Completion of a Noetherian Ring

3.1. The Completion of a Noetherian Ring is Flat. Let R be a commu-
tative ring, I an ideal in R, andM an R-module. Let R̂ be the I-adic completion of
R and M̂ the I-adic completion of M . Then R̂ is an R-algebra and M̂ is a module
over both R̂ and R. The natural maps R → R̂, M → M̂ and the multiplication
map induce the R̂-module homomorphisms

R̂⊗RM → R̂⊗R M̂ → R̂⊗R̂ M̂
∼=−→ M̂.

Taking the composition gives the natural R̂-module homomorphism R̂⊗RM → M̂ .

Proposition 11.3.1. Let R be a commutative ring, I an ideal in R, and M a
finitely generated R-module. Let R̂ be the I-adic completion of R and M̂ the I-adic
completion of M .

(1) R̂⊗RM → M̂ is onto.

(2) If M is finitely presented, then R̂⊗RM ∼= M̂ .

(3) If R is noetherian, then R̂⊗RM ∼= M̂ .

Proof. (1): By hypothesis, M is finitely generated. By Lemma 4.2.12, M is
the homomorphic image of a finitely generated free R-module F . There is an exact
sequence

0→ K → F →M → 0

where K is the kernel. Apply the tensor functor R̂⊗R (·) and the I-adic completion
functor to this sequence to get the commutative diagram

R̂⊗R K

α
��

// R̂⊗R F

β
��

// R̂⊗RM

γ

��

// 0

0 // K̂ // F̂ // M̂ // 0
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The top row is exact because tensoring is right exact. By Corollary 11.2.15, the
bottom row is exact. By Exercise 11.1.14, R̂⊗R F ∼= F̂ , so β is an isomorphism. It
follows from Theorem 6.6.2 that γ is onto. This proves (1).

(2): If M is finitely presented, then K is finitely generated and applying (1) to
K we see that α is onto. It follows from Theorem 6.6.2 that γ is an isomorphism.

(3): Follows from (2) and Corollary 7.6.12. □

Corollary 11.3.2. Let R be a commutative noetherian ring, I an ideal in R,
and R̂ the I-adic completion of R. The following are true.

(1) R̂⊗R I ∼= Î = R̂I.

(2) În = (Î )n.

(3) R̂ is separated and complete for the Î-adic topology. Î is contained in the

Jacobson radical of R̂.
(4) In/In+1 ∼= În/În+1 and the associated graded rings grI(R) and grÎ(R̂)

are isomorphic as graded rings.

Proof. (1): Since R is noetherian, I is finitely generated. The diagram

0 // R̂⊗R I

α
��

a // R̂⊗R R

β
��

0 // Î
b // R̂

commutes and by Proposition 11.3.1, α and β are isomorphisms. The image of β ◦a
is R̂I.

(2): The diagram

0 // R̂⊗R In

α
��

a // R̂⊗R R

β
��

0 // În
b // R̂

commutes and by Proposition 11.3.1, α and β are isomorphisms. The image of β ◦a
is R̂In = (R̂I)n, which by Part (1) is (Î )n.

(3): The first claim follows from Corollary 11.1.10 and Part (2). The second
statement follows from Proposition 11.1.11.

(4): By Corollary 11.1.10, for each n ≥ 0, R/In ∼= R̂/În. Now use the exact
sequence 0→ In/In+1 → R/In+1 → R/In → 0 and Part (2). □

Corollary 11.3.3. Let R be a commutative noetherian local ring with maximal
ideal m and R̂ the m-adic completion of R. Then R̂ is a local ring with maximal
ideal m̂.

Proof. This follows from Corollary 11.1.12. □

Corollary 11.3.4. Let R be a commutative noetherian ring and I an ideal in
R. Then the I-adic completion R̂ is a flat R-module.

Proof. Let 0→ A→ B be an exact sequence of finitely generated R-modules.
By Corollary 11.2.15, the sequence of completions 0 → Â → B̂ is exact. By
Proposition 11.3.1, the sequence 0 → R̂ ⊗R A → R̂ ⊗R B is exact. It follows from
Proposition 7.8.3 that R̂ is flat as an R-module. □
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3.2. The Krull Intersection Theorem.

Theorem 11.3.5. (Krull Intersection Theorem) Let A be a commutative noe-
therian ring, I an ideal in A, and M a finitely generated A-module. If N =⋂
n≥0 I

nM , then IN = N .

Proof. By Theorem 11.2.13, there exists d such that for all n > d, InM∩N =
In−d(IdM ∩N). Fix n > d. Then In−d(IdM ∩N) ⊆ IN and N ⊆ InM . Putting
all of this together,

N ⊆ InM ∩N ⊆ In−d(IdM ∩N) ⊆ IN ⊆ N,
so we are done. □

Corollary 11.3.6. The following are true for any commutative noetherian
ring R with ideal I.

(1) If I is contained in the Jacobson radical of R and M is a finitely generated
R-module, then

⋂
n≥0 I

nM = 0. The I-adic topology of M is separated.

(2) If I is contained in the Jacobson radical of R, then
⋂
n≥0 I

n = 0. The
I-adic topology of R is separated.

(3) If R is a noetherian integral domain and I is a proper ideal of R, then⋂
n≥0 I

n = 0. The I-adic topology of R is separated.

Proof. (1): By Theorem 11.3.5, if N =
⋂
n≥0 I

nM , then IN = N . By
Nakayama’s Lemma, Theorem 8.1.3, N = 0.

(2): Follows from (1) with M = R.
(3): By Theorem 11.3.5, if N =

⋂
n≥0 I

n, then IN = N . By Nakayama’s

Lemma, Lemma 6.3.1, I + annihR(N) = R. Since I ̸= R and N ⊆ R and R is a
domain we conclude that annihR(N) = R. That is, N = 0. □

Theorem 11.3.7. Let R be a commutative noetherian ring and I an ideal in
R. The following are equivalent.

(1) Every ideal J in R is closed in the I-adic topology.
(2) I is contained in J(R), the Jacobson radical of R.

(3) The I-adic completion of R, R̂, is a faithfully flat R-algebra.
(4) If N is a finitely generated R-module, then the I-adic topology on N is

separated.
(5) If N is a finitely generated R-module, then every submodule of N is closed

in the I-adic topology on N .

If R and I satisfy any of the equivalent conditions in Theorem 11.3.7, then we
say R, I is a Zariski pair.

Proof. (1) implies (2): Assume I is not contained in J(R). Letm be a maximal
ideal of R such that I is not a subset of m. Since m is prime, In ̸⊆ m for all n ≥ 1
(Proposition 3.2.14). Then In + m = R for all n ≥ 1. By Lemma 11.1.2, m is not
closed.

(2) implies (3): By Corollary 11.3.4, R̂ is flat. Let m be a maximal ideal in

R. By Exercise 11.1.16, m̂ = lim←−m/Ii is a maximal ideal in R̂. Since mR̂ ⊆ m̂, it

follows from Lemma 7.5.1 (4) that R̂ is a faithfully flat R-algebra.
(3) implies (2): Let m be a maximal ideal of R. By Lemma 7.5.5, there is a

maximal ideal M in R̂ such that M ∩R = m. By Corollary 11.3.2 (3), IR̂ ⊆M . It

follows that I ⊆ IR̂ ∩R ⊆M ∩R = m. Therefore, I ⊆ J(R).



3. THE COMPLETION OF A NOETHERIAN RING 457

(2) implies (4): This is Corollary 11.3.6.
(4) implies (5): Apply Lemma 11.1.2.
(5) implies (1): Is trivial. □

3.3. Exercises.

Exercise 11.3.8. Let R be a commutative ring and S = R[x1, . . . , xm] the
polynomial ring over R in m variables x1, . . . , xm. Prove:

(1) If Sn is the set of homogeneous polynomials in S of degree n, then S =
S0 ⊕ S1 ⊕ S2 ⊕ · · · is a graded ring and S0 = R.

(2) As an R-algebra, S is generated by S1.
(3) Let I = S+ = S1 ⊕ S2 ⊕ · · · be the exceptional ideal of S. Then In =

Sn ⊕ Sn+1 ⊕ Sn+2 ⊕ · · ·

Exercise 11.3.9. Let k be a field and A = k[x1, . . . , xm] the polynomial ring
in m variables over k. As in Exercise 11.3.8, A = A0 ⊕ A1 ⊕ A2 ⊕ · · · is a graded
k-algebra and A0 = k. Also, if I = A+ = A1 ⊕ A2 ⊕ · · · is the exceptional ideal of
A, then In = An ⊕ An+1 ⊕ An+2 ⊕ · · · . Let R = A0 ⊕ An ⊕ An+1 ⊕ An+2 ⊕ · · · .
Prove:

(1) R is a graded k-subalgebra of A.
(2) In is an ideal in A, and an ideal in R.
(3) Prove that In is equal to R : A = {α ∈ A | αA ⊆ R}, the conductor ideal

from A to R (see Exercise 4.1.25).

Exercise 11.3.10. Let R =
⊕∞

i=0Ri be a graded ring.

(1) Show that Jn =
⊕∞

i=nRi is an ideal in R and J = {Jn}n≥0 is a filtration
of R by ideals.

(2) Give R the filtration J = {Jn}n≥0 defined in (1). Show that the natural
map from R to the associated graded ring grJ(R) is an isomorphism.

(3) If R∗ = lim←−R/Jn is the completion of R and P = {
∑∞
i=0 xi | xi ∈ Ri},

show that there is an R-module isomorphism R∗ ∼= P . (Hint: Use Propo-
sition 11.1.7. An element of the inverse limit can be viewed as a sequence
(sn) such that sn+1 − sn is in Rn.)

Exercise 11.3.11. Let R be a commutative ring and S = R[x1, . . . , xm] the
polynomial ring over R inm variables x1, . . . , xm. Show that if I = Sx1+· · ·+Sxm,
then the I-adic completion of S is isomorphic to the power series ring R[[x1, . . . , xm]]

Exercise 11.3.12. Let R be a commutative ring and I an ideal in R. Show
that if M is a finitely generated projective R-module, then the I-adic completion
of M is a finitely generated projective R̂-module.

Exercise 11.3.13. Let R be a noetherian ring, I an ideal in R, and {a1, . . . , an}
a set of generators of I. Show that the I-adic completion of R is isomorphic to
R[[x1, . . . , xn]]/(x1 − a1, . . . , xn − an).

3.4. The Completion of a Noetherian Ring is Noetherian. Let R be
any ring. Let A and B be two R-modules, let {An} be a filtration for A, and let
{Bn} be a filtration for B. As in Section 11.1.2, a morphism from {An} to {Bn}
is an R-module homomorphism α : A→ B such that for each n ≥ 0, α(An) ⊆ Bn.
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For each n ≥ 0 the diagram of R-modules

0 // An/An+1

γn

��

// A/An+1

βn+1

��

ϕn+1 // A/An

βn

��

// 0

0 // Bn/Bn+1
// B/Bn+1

ψn+1 // B/Bn // 0

commutes and the rows are exact. The three vertical arrows are induced by α. By
the universal mapping property of the inverse limit, α induces a homomorphism
lim←−A/An → lim←−B/Bn. By the isomorphism of Proposition 11.1.7, α induces a

homomorphism on the completions, α∗ : A∗ → B∗. The maps {γn}n≥0 define a
graded homomorphism

gr(α) : gr(A)→ gr(B)

of graded R-modules. (Here the grading of R is trivial. Every element is homoge-
neous of degree zero.)

Lemma 11.3.14. In the above context, let α : {An} → {Bn} be a morphism
of R-modules equipped with filtrations. Let α∗ : A∗ → B∗ be the homomorphism
of completions and gr(α) : gr(A) → gr(B) the graded homomorphism of graded
R-modules. Then

(1) if gr(α) is one-to-one, then α∗ is one-to-one, and
(2) if gr(α) is onto, then α∗ is onto.

Proof. The Snake Lemma (Theorem 6.6.2) applied to the previous diagram
gives an exact sequence

0→ ker γn → kerβn+1
θn+1−−−→ kerβn

∂−→ coker γn → cokerβn+1
ρn+1−−−→ cokerβn → 0.

(1): Assume ker γn = 0 for all n ≥ 0. Since β0 = 0, an inductive argument
shows that kerβn = 0 for all n ≥ 0. By Proposition 11.1.8, the homomorphism on
the inverse limits is one-to-one.

(2): Assume coker γn = 0 for all n ≥ 0. It is immediate that θn+1 : kerβn+1 →
kerβn is onto for all n ≥ 0. Since β0 = 0, an inductive argument shows that
cokerβn = 0 for all n ≥ 0. Applying Proposition 6.8.19 to the sequence of mor-
phisms of inverse systems of R-modules

{kerβn, θn+1} → {A/An, ϕn+1} → {B/Bn, ψn+1}

it follows that lim←−A/An → lim←−B/Bn is onto. Hence α∗ : A∗ → B∗ is onto. □

Definition 11.3.15. Suppose R =
⊕

i≥0Ri is a commutative graded ring and

M =
⊕

i∈ZMi is a graded R-module. Given any ℓ ∈ Z, define the twisted module
M(−ℓ) to be equal to M as a Z-module, but with the grading shifted by ℓ. That
is, M(−ℓ) =

⊕
d∈ZM(−ℓ)d, where M(−ℓ)d =Md−ℓ. The reader should verify that

M(−ℓ) is a graded R-module.

Definition 11.3.16. Let R be a commutative ring that has a filtration by
ideals, J = {Jn}n≥0. Given any ℓ ≥ 0, define a filtration shifted by ℓ by:

J(−ℓ)n =

{
R if n < ℓ

Jn−ℓ if n ≥ ℓ.
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Denote this new filtration by J(−ℓ). The reader should verify that grJ(−ℓ)(R)

and the twisted module grJ(R)(−ℓ) defined in Definition 11.3.15 are isomorphic as
graded grJ(R)-modules.

Proposition 11.3.17. Let R be a commutative ring with a filtration J =
{Jn}n≥0 by ideals under which R is complete. Let M be a filtered R-module with
filtration {Mn}n≥0 under which M is separated.

(1) If the graded grJ(R)-module gr(M) is finitely generated, then the R-module
M is finitely generated.

(2) If every graded grJ(R)-submodule of gr(M) is finitely generated, then the
R-module M satisfies the ACC on submodules (in other words, M is noe-
therian).

Proof. (1): Pick a finite generating set u1, . . . , um for gr(M) as a graded
grJ(R)-module. After splitting each ui into its homogeneous components we assume
each ui is homogeneous of degree di. For each i pick vi ∈ Mdi such that ui is
the image of vi under the map Mdi → Mdi/M1+di . By R(−di) we denote the
R-module R with the twisted filtration J(−di). The R-module homomorphism
ϕi : R → M defined by 1 7→ vi defines a morphism of filtrations {R(−di)n} →
{Mn}. Let F = R(−d1) ⊕ · · · ⊕ R(−dm) be the free R-module with the filtration
{Fn =

⊕m
i=1R(−di)n}. Let ϕ : F → M be the sum ϕ1 + · · · + ϕm where each

ϕi is applied to component i of the direct sum. So ϕ is a morphism of filtered
R-modules. There is a homomorphism gr(ϕ) : gr(F ) → gr(M) of graded grJ(R)-
modules. By construction, the image of gr(ϕ) contains a generating set so it is onto.

By Lemma 11.3.14, the map on completions ϕ̂ : F̂ → M̂ is onto. The square

F
ϕ //

α
��

M

β
��

F̂
ϕ̂ // M̂

commutes and ϕ̂ is onto. Because M is separated, β is one-to-one. Because R is
complete, so is each R(−di). Therefore, α is onto. The reader should verify that ϕ
is onto. This shows that M is generated as an R-module by v1, . . . , vm.

(2): By Lemma 7.6.6 it is enough to show that every submodule L of M is
finitely generated. Give L the filtration Ln = Mn ∩ L. Then this makes L into
a filtered R-module and

⋂
n≥0 Ln = 0. Since Ln+1 = Ln ∩ Mn+1, the induced

map Ln/Ln+1 → Mn/Mn+1 is one-to-one. The graded homomorphism gr(L) →
gr(M) of graded grJ(R)-modules is also one-to-one. By hypothesis, gr(L) is finitely
generated. By Part (1), L is finitely generated. □

Corollary 11.3.18. Let R be a commutative noetherian ring.

(1) If I is an ideal of R, then the I-adic completion of R is noetherian.
(2) If S = R[[x1, . . . , xm]] is the power series ring over R in m variables, then

S is noetherian.

Proof. (1): By Corollary 11.3.2 and Proposition 11.2.9, the associated graded

rings grI(R) and grÎ(R̂) are isomorphic to each other and are noetherian. So every

ideal of grÎ(R̂) is finitely generated. By Proposition 11.3.17, every ideal of R̂ is

finitely generated and by Corollary 7.6.7, R̂ is noetherian.
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(2): By The Hilbert Basis Theorem (Theorem 10.2.1) A = R[x1, . . . , xm] is
noetherian. By Exercise 11.3.11, S is the completion of A for the I-adic topology,
where I = Ax1 + · · ·+Axm. □

Corollary 11.3.19. Let R be a commutative ring with a filtration by ideals
{Jn}n≥0. Let M be a filtered R-module with filtration {Mn}n≥0. Assume that R is
complete and that M is separated. Let F be a finitely generated submodule of M .
If Mk =Mk+1 + JkF for all k ≥ 0, then F =M .

Proof. Let {x1, . . . , xm} be a generating set for the R-module F , which we
view as a subset of M = M0. Let ξi be the image of xi in M/M1. Let F1 be the
kernel of F → M/M1. For all k ≥ 0, JkF ⊆ Mk. By hypothesis, the natural map
ηk : JkF → Mk/Mk+1 is onto. Since JkF1 + Jk+1F ⊆ Mk+1, (Jk/Jk+1)(F/F1) →
Mk/Mk+1 is onto. Therefore, the graded grJ(R)-module gr(M) is generated by the
finite set {ξ1, . . . , ξm}. By Proposition 11.3.17,M is generated by {x1, . . . , xm}. □

Corollary 11.3.20. Let R, I be a Zariski pair (Theorem 11.3.7). Let a be an

ideal in R. If aR̂ is a principal ideal, then a is a principal ideal.

Proof. Assume aR̂ = αR̂, for some α ∈ R̂. By Corollary 11.3.18, R̂ is noe-
therian. By Corollary 11.2.14 there exists n0 ≥ 1 such that αR̂∩ În0 ⊆ ÎαR̂. Write
α =

∑m
i=1 aiβi, for some ai ∈ a and βi ∈ R̂. By Corollary 11.1.10 there exist ele-

ments bi in R such that bi−βi ∈ În0 for each i. Set a =
∑
i aibi. Then a ∈ a ⊆ αR̂.

Also, a−α =
∑
i ai(bi−βi) ∈ În0 is in În0∩αR̂ ⊆ ÎαR̂. Therefore, αR̂ ⊆ aR̂+ÎαR̂.

By Corollary 11.3.2, Î ⊆ J(R̂). By Nakayama’s Lemma (Corollary 6.3.5), αR̂ = aR̂.

Using Lemma 7.5.4, we get a = aR̂ ∩R = αR̂ ∩R = aR̂ ∩R = aR. □

3.5. Exercises.

Exercise 11.3.21. Let R =
⊕

i≥0R0 be a commutative graded ring and M =⊕
i≥0M0 a graded R-module. Prove that M(−ℓ) is a graded R-module, for any

ℓ ≥ 0.

Exercise 11.3.22. Let R be a commutative ring with ideal I. Given any
ℓ ≥ 0 prove that the twisted filtration {R(−ℓ)n}n≥0 is a stable I-filtration of the
R-module R(−ℓ).

Exercise 11.3.23. In Exercise 11.3.22, show that the graded grI(R)-module
associated to the twisted filtration {R(−ℓ)n}n≥0 is the twisted module grI(R)(−ℓ).
In other words, show that the graded grI(R)-modules gr (R(−ℓ)) and grI(R)(−ℓ)
are isomorphic.

Exercise 11.3.24. Let R be a commutative ring and I an ideal in R.

(1) Prove that if R/I is noetherian, and I/I2 is a finitely generated R/I-
module, then the associated graded ring grI(R) =

⊕
n≥0 I

n/In+1 is noe-
therian.

(2) Assume moreover that R is separated and complete for the I-adic topol-
ogy. Prove that R is noetherian.

4. Lifting of Idempotents and Hensel’s Lemma

As in Section 7.3.1, if R is a ring, then idemp(R) = {x ∈ R | x2 − x = 0}
denotes the set of idempotents of R. The homomorphic image of an idempotent
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is an idempotent, so given a homomorphism of rings A → B, there is a function
idemp(A) → idemp(B). If this function is onto, then we say idempotents of B
lift to idempotents of A. In this section we prove that when R is a ring and I is
an ideal of R such that I ⊆ J(R) and R is separated and complete with respect
to the I-adic topology, then idempotents of R/I lift to idempotents in R. This
is proved in the main result, Corollary 11.4.1, which is a corollary to Nakayama’s
Lemma (Theorem 8.1.3). We then proceed to give two important applications of
Corollary 11.4.1. In Proposition 11.4.3 we show that the change of base functor from
the category of finitely generated projective R-modules to the category of finitely
generated projective R/I-modules is essentially surjective. We end this section with
a second application of the main result to prove Corollary 11.4.4 which is a general
form of Hensel’s Lemma. In the classical Hensel’s Lemma, R is usually assumed
to be a complete local ring with maximal ideal m and residue field k. Then if
f ∈ R[x] is a monic polynomial such that f has a factorization f̄ = ḡ0h̄0 in k[x],
where g0 and h0 are monic and gcd(ḡ0, h̄0) = 1 in k[x], then the factorization lifts
to a factorization over R. That is, there exist monic polynomials g, h in R[x] such
that f = gh, ḡ = ḡ0, h̄ = h̄0, and g and h generate the unit ideal in R[x].

Corollary 11.4.1. Let R be a ring and I a two-sided ideal of R such that
I ⊆ J (R). If R is separated and complete with respect to the I-adic topology (that
is, R→ lim←−R/I

n is an isomorphism), then idemp (R)→ idemp (R/I) is onto.

Proof. Let x̄ ∈ R/I be an idempotent. For n ≥ 1, I/In is nilpotent. By
Corollary 8.1.8 (2), idemp (R/In) → idemp (R/I) is onto for n > 1. Set e1 = x.
By induction, there is a sequence (ēi) in

∏
iR/I

i such that e2n − en ∈ In and
en+1 − en ∈ In. So (ēi) is an idempotent in R = lim←−R/I

n which maps to x̄ in

R/I. □

Corollary 11.4.2. Let R be a commutative ring and I an ideal in R such
that R is separated and complete with respect to the I-adic topology (that is, R →
lim←−R/I

n is an isomorphism). Let A be an R-algebra which is integral over R.

(1) If A is an R-module of finite presentation, then A is separated and com-
plete in the IA-adic topology, IA ⊆ J(A), and idemp(A) → idemp(A ⊗R
(R/I)) is onto. That is, an idempotent ē in A/IA lifts to an idempotent
e in A.

(2) If A is commutative, then idemp(A)→ idemp(A⊗R (R/I)) is onto.

Proof. (1): Assume thatA is anR-module of finite presentation. We are given
that R → lim←−R/I

n is an isomorphism. By Proposition 11.3.1, A → lim←−A/(I
nA)

is an isomorphism, so A is separated and complete in the IA-adic topology. By
Proposition 11.1.11, IA is contained in the Jacobson radical of A. The conclusion
follows from Corollary 11.4.1 (3).

(2): First we reduce to the case where A is generated as an R-algebra by a single
element. Let a ∈ A be a preimage of ē. Let C be the R-subalgebra of A generated
by a. Then A is a faithful C-algebra which is integral over C. By Theorem 10.3.7,
SpecA → SpecC is onto. The reader should verify that Spec Ā → Spec C̄ is onto
as well, where C̄ = C/IC. Write ā for the image of a in C̄. Under the natural map
C̄ → Ā, we have ā 7→ ē. The reader should verify that Spec C̄ = V (ā) ∪ V (1− ā),
so by Corollary 7.3.15 there is a unique idempotent f̄ in C̄ such that V (ā) = V (f̄).
From this it follows that f̄ 7→ ē. If there exists an idempotent f in C that lifts f̄ ,
then using C → A, we get a lifting of ē.
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Now assume A is generated as an R-algebra by a single element a. Then a
is integral over R. Let p ∈ R[x] be a monic polynomial such that p(a) = 0. Let
C = R[x]/(p). Then C is a finitely generated free R-module. Let J be the kernel
of the natural projection C → A. Let {Jα} be the directed system of all finitely
generated ideals in C such that Jα ⊆ J . Then Cα = C/Jα is an R-module of finite
presentation, for each α, and A = lim−→Cα. Therefore, Ā = A/IA = lim−→Cα/ICα =

lim−→ C̄α. By Exercise 6.8.41, an idempotent ē in Ā comes from an idempotent ēα in

C̄α, for some α. By (1) we can lift ēα to an idempotent eα ∈ Cα. Using Cα → A,
we get a lifting of ē to an idempotent in A. □

As an application of Corollary 11.4.1, we give sufficient conditions on a ring R
and an ideal I in R such that every finitely generated projective R/I-module lifts to
a finitely generated projective R-module. If C is the category of finitely generated
projective R-modules and D is the category of finitely generated projective R/I-
modules, then Proposition 11.4.3 shows that the functor ( ) ⊗R (R/I) : C → D is
essentially surjective.

Proposition 11.4.3. Let R be a ring and I a two-sided ideal of R such that
I ⊆ J (R) and R is separated and complete with respect to the I-adic topology (that
is, R→ lim←−R/I

n is an isomorphism).

(1) If Q is a finitely generated projective R/I-module, then there is a finitely
generated projective R-module P such that Q ∼= P ⊗R (R/I).

(2) If g : Q1 → Q2 is a homomorphism of finitely generated projective R/I-
modules, then g lifts to a homomorphism f : P1 → P2 of finitely generated
projective R-modules.

(3) If Q is an R/I-progenerator module, then there is an R-progenerator mod-
ule P such that Q ∼= P ⊗R (R/I).

Proof. (1): For some m > 0, there is an isomorphism (R/I)m ∼= Q⊕Q0. Let
ē be the idempotent matrix in Mm(R/I) such that Q ∼= im(ē) and Q0

∼= ker(ē).
Since lim←−Mn(R/I

n) = Mn(lim←−R/I
n) = Mn(R), by Corollary 11.4.1, we can lift ē

to an idempotent e ∈Mn(R). If we set P = im(e), then Q ∼= P ⊗R (R/I).
(2): Using (1), there are projective R-modules Pi such that Qi ∼= Pi⊗R (R/I).

Combined with g, there is a diagram

P1
//

∃f
��

Q1

g

��

// 0

P2
// Q2

// 0

where the rows are exact. Since P1 is a projective R-module, there exists a map f
which makes the diagram commutative (Proposition 6.2.3).

(3): Is left to the reader. □

As an application of Corollary 11.4.2, we prove the following form of Hensel’s
Lemma.

Corollary 11.4.4. (Hensel’s Lemma) Let R be a commutative ring and I
an ideal of R such that R is separated and complete with respect to the I-adic
topology (that is, R → lim←−R/I

n is an isomorphism). If there exist polynomials

f, g0, h0 ∈ R[x] such that
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(1) f , g0 and h0 are monic,
(2) f − g0h0 ∈ IR[x], and
(3) R[x] = g0R[x] + h0R[x] + IR[x],

then there exist polynomials g, h ∈ R[x] such that

(4) g and h are monic,
(5) R[x] = gR[x] + hR[x],
(6) g − g0 ∈ IR[x],
(7) h− h0 ∈ IR[x], and
(8) f = gh ∈ R[x].

Proof. Write R̄ for R/I and let f̄ , ḡ0, h̄0 denote the images of the polynomials
in R̄[x]. By (2) we have f̄ = ḡ0h̄0 and by (3), (ḡ0, h̄0) is the unit ideal of R̄[x]. If we
set S = R[x]/(f), then S is a finitely generated free R-module and the rank of S
is equal to deg f = deg g0 + deg h0 (Exercise 4.2.26). Write S̄ for S/IS = S ⊗R R̄.
By the Chinese Remainder Theorem (Corollary 3.3.10),

S̄ =
R̄[x]

(f̄)
=

R̄[x]

(ḡ0h̄0)
=
R̄[x]

(ḡ0)
⊕ R̄[x]

(h̄0)
.

By Lemma 7.2.4, corresponding to the direct summands of S̄ are orthogonal idem-
potents ē1, ē2 and 1 = ē1+ ē2. By Corollaries 11.4.2 and 11.4.1, the map idempS →
idemp S̄ is a one-to-one correspondence. The idempotents ē1, ē2 lift to idempotents
e1, e2 of S such that e1e2 = 0 and e1 + e2 = 1. The decomposition of S̄ lifts to a
decomposition S = R[x]/(f) = Se1 ⊕ Se2. Let θ1 : R[x] → Se1 be the composite
map R[x]→ R[x]/(f) ∼= S → Se1. Denote by n0 the degree of g0. In R[x] consider
the R-submodule T = R · 1 +Rx+ · · ·+Rxn0−1. Consider the composite map

R[x]
θ1−→ Se1 →

Se1
ISe1

∼=
R̄[x]

(ḡ0)
.

If x̄ denotes the coset x + (ḡ0) in R̄[x]/(ḡ0), then the image of T in R̄[x]/(ḡ0) is
the R̄-submodule R̄ · 1 + R̄x̄ + · · · + R̄x̄n0−1, which is equal to R̄[x]/(ḡ0). There-
fore, Se1 is generated as an R-module by θ1(T ) and ISe1. Nakayama’s Lemma
(Corollary 6.3.5 (2)) says that θ1(T ) = Se1. If we write y1 = θ1(x) = xe1, then
yn0
1 ∈ θ1(T ). Hence there is a monic polynomial g ∈ R[x] of degree n0 such that

θ1(g) = g(y1) = 0. There is a map θ̃1 such that

R[x]
θ1 //

!!

Se1

R[x]
(g)

θ̃1

>>

is a commutative diagram. Tensoring θ̃1 with ( )⊗R R̄, the diagram

R[x]
(g)

��

θ̃1 // Se1

��
R̄[x]
(ḡ)

θ̃1⊗1 // Se1
ISe1

∼= // R̄[x]
(ḡ0)
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commutes. Therefore, in the ring R̄[x], ḡ is in the ideal (ḡ0). That is, ḡ0 divides ḡ.
Since both polynomials are monic of degree n0, Theorem 3.6.4 implies that ḡ0 = ḡ.
This shows θ̃1 ⊗ 1 is an isomorphism of R̄-modules. Since Se1 is a direct summand
of S, Se1 is R-projective. By Exercise 4.2.26, R[x]/(g) is a free R-module of rank

n0. By Exercise 8.1.14, it follows that θ̃1 is an isomorphism. Likewise there is a
monic polynomial h ∈ R[x] such that the degree of h is equal to the degree of h0,
h̄ = h̄0, h(xe2) = 0, and R[x]/(h) ∼= Se2. So the image of h under θ2 : R[x]→ Se2
is 0. Since gh is in the kernel of the map R[x] → R[x]/(f) = S = Se1 ⊕ Se2, it
follows that f divides gh. Since gh and f are both monic of the same degree, it
follows that f = gh. In the commutative diagram

R[x]
(f)

��

// R[x]
(g)

⊕ R[x]
(h)

��
S // Se1

⊕
Se2

all of the maps are isomorphisms. By Theorem 3.3.8, the ideal (g, h) is equal to
R[x]. □

When R is a complete local ring with maximal ideal m, Lemma 11.4.5, which
is due to Azumaya [9], shows that simple roots have unique liftings modulo m.

Lemma 11.4.5. Let R be a local ring with maximal ideal m and residue field
k such that R is separated and complete with respect to the m-adic topology. Let
f ∈ R[x] be a monic polynomial and a ∈ R. If ā ∈ k is a simple root of f̄ , then
there exists a unique b ∈ R such that f(b) = 0 and b− a ∈ m.

Proof. Assume ā is a simple root of f̄ . Then there exists a monic polynomial
g0 ∈ R[x] such that f̄ = (x − ā)ḡ0 in k[x] and ḡ0(ā) ̸= 0. Therefore, x − ā and
ḡ0 generate the unit ideal in k[x]. By Corollary 11.4.4, there are b ∈ R, g ∈ R[x]
such that f = (x− b)g, b− a ∈ m and ḡ = ḡ0. This shows f(b) = 0. Now suppose
c − a ∈ m and f(c) = 0. Then (c − b)g(c) = 0. But g(c) ̸∈ m because c̄ = ā is not
a root of ḡ. Since R is a local ring, this implies g(c) is an invertible element of R.
Hence c− b = 0 and b is unique. □



CHAPTER 12

Homological Algebra

Throughout this chapter, R denotes an arbitrary ring. Unless otherwise speci-
fied, a module will be a left R-module, a homomorphism will be a homomorphism
of R-modules, and a functor will be an additive functor from the category of R-
modules to the category of abelian groups. (See Example 12.1.2 for the definition
of additive functor.)

1. Homology Group Functors

1.1. Chain Complexes. A chain complex in RM is a sequence of R-modules
{Ai | i ∈ Z} and homomorphisms di : Ai → Ai−1 such that di−1di = 0 for all
i ∈ Z. The maps di are called the boundary maps. The notation A• denotes a chain
complex. If it is important to reference the boundary maps, we will write (A•, d•).
If the modules Ai are specified for some range n0 ≤ i ≤ n1, then it is understood
that Ai = 0 for i < n0 or i > n1. Let A• and B• be chain complexes. A morphism
of chain complexes is a sequence of homomorphisms f = {fi : Ai → Bi | i ∈ Z}
such that for each i the diagram

Ai+1

di+1 //

fi+1

��

Ai
di //

fi

��

Ai−1

fi−1

��
Bi+1

di+1 // Bi
di // Bi−1

commutes. In this case we write f : A• → B•. The reader should verify that the
collection of all chain complexes over R together with morphisms is a category.
In some of the exercises listed below the reader is asked to verify many of the
important features of this category.

Suppose A• is a chain complex and n ∈ Z. Elements of An are called n-chains.
The module An contains the two submodules

Bn(A•) = im dn+1, and

Zn(A•) = ker dn.

Elements of Bn(A•) are called n-boundaries and elements of Zn(A•) are called
n-cycles. The condition didi+1 = 0 translates into Bn(A•) ⊆ Zn(A•). The nth
homology module of A• is defined to be the quotient

Hn(A•) = Zn(A•)/Bn(A•) = ker dn/ im dn+1.

Example 12.1.1. (1) A short exact sequence 0 → A → B → C → 0 is
a chain complex. It is understood that the sequence is extended with 0
terms.

465
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(2) If M is an R-module, then a projective resolution

· · · → P1 → P0 →M → 0

of M is a chain complex (see Exercise 6.3.10). It is understood that the
sequence is extended with 0 terms.

(3) If A• is a chain complex, the reader should verify that the following are
equivalent
(a) Hn(A•) = 0 for all n ∈ Z.
(b) A• is an exact sequence.

Example 12.1.2. A covariant functor F : RM → ZM is said to be addi-
tive in case for every pair of R-modules A,B, the map F(·) : HomR(A,B) →
HomZ(F(A),F(B)) is a Z-module homomorphism. In particular, under a covariant
additive functor, the zero homomorphism is mapped to the zero homomorphism.
It follows that if A• is a chain complex, then F(A•) is a chain complex. It is for
this reason that additive functors play an important role in homological algebra. A
contravariant functor F : RM→ ZM is said to be additive in case for every pair of
R-modules A,B, the map F(·) : HomR(A,B) → HomZ(F(B),F(A)) is a Z-module
homomorphism.

Lemma 12.1.3. Let n be an arbitrary integer.

(1) If f : A• → B• is a morphism of chain complexes, then the assignment

zn +Bn(A•) 7→ fn(zn) + Bn(B•)

defines an R-module homomorphism

Hn(f) : Hn(A•)→ Hn(B•).

(2) The assignment A• 7→ Hn(A•) defines a functor from the category of chain
complexes to the category of R-modules.

Proof. (1): Given zn ∈ Zn(A•), we have dnfn(zn) = fn−1dn(zn) = fn−1(0) =
0. This says that the composite map

fn : Zn(A•)→ Zn(B•)→ Hn(B•)

is well defined. Given an+1 ∈ An+1, fndn+1(an+1) = dn+1fn+1(an+1). This implies
that fn(Bn(A•)) ⊆ Bn(B•), so Hn(f) : Hn(A•)→ Hn(B•) is well defined.

(2): is left to the reader. □

1.2. Exercises.

Exercise 12.1.4. For the category of chain complexes, the reader should give
appropriate definitions for the following terminology.

(1) The kernel of a morphism.
(2) The cokernel of a morphism.
(3) The image of a morphism.
(4) A subchain complex of a chain complex and the quotient of a chain complex

modulo a subchain complex.
(5) monomorphism, epimorphism, and isomorphism.
(6) short exact sequence.

Exercise 12.1.5. Let A• be a chain complex. For each n ∈ Z there are short
exact sequences of R-modules.
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(1) 0→ Bn(A•)→ Zn(A•)→ Hn(A•)→ 0
(2) 0→ Zn(A•)→ An → Bn−1(A•)→ 0
(3) 0→ Hn(A•)→ An/Bn(A•)→ Bn−1(A•)→ 0

Exercise 12.1.6. Let A• be a chain complex. For each n ∈ Z there is an exact
sequence of R-modules.

0→ Hn(A•)→ An/Bn(A•)
dn−→ Zn−1(A•)→ Hn−1(A•)→ 0

Exercise 12.1.7. Let F be an exact covariant additive functor from RM to

ZM. If A• is a chain complex, then F(Hn(A•)) ∼= Hn(F(A•)). (Hint: Start with
the exact sequences

0→ Bn(A•)→ Zn(A•)→ Hn(A•)→ 0

0→ Zn(A•)→ An → Bn−1(A•)→ 0

and apply F.)

Exercise 12.1.8. Let J be an index set and {(Aj)• | j ∈ J} a collection of
chain complexes.

(1) Show that

· · · ⊕dn+1−−−−→
⊕
j∈J

(Aj)n
⊕dn−−−→

⊕
j∈J

(Aj)n−1
⊕dn−1−−−−→ · · ·

is a chain complex, which is called the direct sum chain complex.
(2) Show that homology commutes with a direct sum. That is

Hn

(⊕
j∈J

(Aj)•

)
∼=
⊕
j∈J

Hn
(
(Aj)•

)
.

(Hint: Start with the exact sequences

0→ Bn((A
j)•)→ Zn((A

j)•)→ Hn((A
j)•)→ 0

0→ Zn((A
j)•)→ (Aj)n → Bn−1((A

j)•)→ 0

and take direct sums.)

Exercise 12.1.9. Let {(Aj)•, ϕij} be a directed system of chain complexes for
a directed index set I.

(1) Show that

· · · d⃗n+1−−−→ lim−→(Aj)n
d⃗n−→ lim−→(Aj)n−1

d⃗n−1−−−→ · · ·

is a chain complex, which is called the direct limit chain complex.
(2) Show that homology commutes with a direct limit. That is

Hn

(
lim−→(Aj)•

)
∼= lim−→Hn

(
(Aj)•

)
.

(Hint: Start with the exact sequences

0→ Bn((A
j)•)→ Zn((A

j)•)→ Hn((A
j)•)→ 0

0→ Zn((A
j)•)→ (Aj)n → Bn−1((A

j)•)→ 0

and take direct limits.)
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1.3. The long exact sequence of homology.

Theorem 12.1.10. Let

0→ A•
f−→ B•

g−→ C• → 0

be an exact sequence of chain complexes. Then there is a long exact sequence of
homology modules

· · · → Hn(A•)
H(f)−−−→ Hn(B•)

H(g)−−−→ Hn(C•)
∂−→ Hn−1(A•)

H(f)−−−→ Hn−1(B•)
H(g)−−−→ · · ·

Proof. The idea for the proof is to reduce the problem into two applications
of the Snake Lemma (Theorem 6.6.2).

Step 1: For each n ∈ Z the sequences

0→ Zn(A•)
fn−→ Zn(B•)

gn−→ Zn(C•)

An/Bn(A•)
fn−→ Bn/Bn(B•)

gn−→ Cn/Bn(C•)→ 0

are exact. To see this, start with the commutative diagram

0 // An
fn //

dn

��

Bn
gn //

dn

��

Cn //

dn

��

0

0 // An−1 // Bn−1 // Cn−1 // 0

and apply the Snake Lemma. For the first sequence, use the fact that Zn(X•) is
the the kernel of dn for X = A,B,C. For the second sequence, use the fact that
Bn−1(X•) is the image of dn for X = A,B,C and increment n by one.

Step 2: For each n ∈ Z there is an exact sequence

Hn(A•)
H(f)−−−→ Hn(B•)

H(g)−−−→ Hn(C•)
∂−→ Hn−1(A•)

H(f)−−−→ Hn−1(B•)
H(g)−−−→ Hn−1(C•)

of R-modules. To see this, start with the commutative diagram

An/Bn(A•)
fn //

dn

��

Bn/Bn(B•)
gn //

dn

��

Cn/Bn(C•) //

dn

��

0

0 // Zn−1(A•)
fn−1 // Zn−1(B•)

gn−1 // Zn−1(C•)

the rows of which are exact by Step 1. The exact sequence of Exercise 12.1.6
says that the kernel of dn is Hn( ) and the cokernel is Hn−1( ). Apply the Snake
Lemma. □

Theorem 12.1.11. In the context of Theorem 12.1.10, the connecting homo-
morphism ∂ : Hn(C•)→ Hn−1(A•) is natural. More specifically, if

0 // A•
f //

χ

��

B•
g //

ρ

��

C• //

σ

��

0

0 // A′•
f ′
// B′•

g′ // C ′• // 0
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is a commutative diagram of chain complexes with exact rows, then there is a com-
mutative diagram

Hn(A•)
H(f) //

H(χ)

��

Hn(B•)
H(g) //

H(ρ)

��

Hn(C•)
∂ //

H(σ)

��

Hn−1(A•)

H(χ)

��
Hn(A

′
•)

H(f ′) // Hn(B′•)
H(g′) // Hn(C ′•)

∂′
// Hn−1(A′•)

with exact rows for each n ∈ Z.

Proof. Most of this follows straight from Lemma 12.1.3 and Theorem 12.1.10.
It is only necessary to check that the third square is commutative. For this, use
the definition of ∂ given in the proof of Theorem 6.6.2. The gist of the proof is

H(χ)∂ = χn−1f
−1
n−1dng

−1
n = f ′n−1

−1
d′ng
′
n
−1
σn = ∂′H(σ). The details are left to the

reader. □

1.4. Homotopy Equivalence. LetA• andB• be chain complexes. By Hom(A•, B•)
we denote the set of all morphisms f : A• → B•. For each i ∈ Z, fi : Ai → Bi is
an R-module homomorphism. As in Example 4.4.1, we can turn Hom(A•, B•) into
a Z-module. Two morphisms f, g ∈ Hom(A•, B•) are said to be homotopic if there
exists a sequence of R-module homomorphisms {ki : Ai → Bi+1 | i ∈ Z} such that
fn − gn = dn+1kn + kn−1dn for each n ∈ Z. If f and g are homotopic, then we
write f ∼ g and the sequence {ki} is called a homotopy operator. The reader should
verify that homotopy equivalence is an equivalence relation on Hom(A•, B•).

Theorem 12.1.12. Let A• and B• be chain complexes. For each n ∈ Z, the
functor Hn() is constant on homotopy equivalence classes. In other words, if f and g
are homotopic in Hom(A•, B•), then H(f) is equal to H(g) in HomR(Hn(A•),Hn(B•)).

Proof. We are given a homotopy operator {ki : Ai → Bi+1 | i ∈ Z} such that
for any z ∈ Zn(A•)

(fn − gn)(z) = dn+1kn(z) + kn−1dn(z)

for each n ∈ Z. But dn(z) = 0, which implies fn(z) − gn(z) = dn+1kn(z) ∈
Bn(B•). □

Theorem 12.1.13. Let X• and Y• be chain complexes such that each Xi is
a projective R-module and Xi = Yi = 0 for all i < 0. Suppose M and N are
R-modules and that there exist R-module homomorphisms ϵ and π such that

· · · → X2 → X1 → X0
ϵ−→M → 0

is a chain complex and

· · · → Y2 → Y1 → Y0
π−→ N → 0

is a long exact sequence.

(1) Given any f ∈ HomR(M,N), there exists a morphism f : X• → Y• which
commutes with f on the augmented chain complexes. That is, fϵ = πf0.

(2) The morphism f is unique up to homotopy equivalence.
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Proof. (1): The morphism f is constructed recursively. To construct f0,
consider the diagram

X0

∃f0
��

fϵ

  
Y0

π // N // 0

with bottom row exact. Since X0 is projective, there exists f0 : X0 → Y0 such that
πf0 = fϵ.

To construct f1, start with the commutative diagram

X1

∃f1
��

d1 // X0

f0

��

ϵ // M

f

��
Y1

d1 // Y0
π // N

The top row is a chain complex, the bottom row is exact. Because πf0d1 = fϵd1 =
0, it follows that im(f0d1) ⊆ ker(π) = im(d1). Consider the diagram

X1

∃f1
��

f0d1

""
Y1

d1 // im d1 // 0

in which the bottom row is exact. Since X1 is projective, there exists f1 : X1 → Y1
such that d1f1 = f0d1.

Recursively construct fn+1 using fn and fn−1. Start with the commutative
diagram

Xn+1

∃fn+1

��

dn+1 // Xn

fn

��

dn // Xn−1

fn−1

��
Yn+1

dn+1 // Yn
dn // Yn−1

The top row is a chain complex, the bottom row is exact. Since dnfndn+1 =
fn−1dndn+1 = 0, it follows that im(fndn+1) ⊆ ker(dn) = im(dn+1). Consider the
diagram

Xn+1

∃fn+1

��

fndn+1

$$
Yn+1

dn+1 // im dn+1
// 0

in which the bottom row is exact. Since Xn+1 is projective, there exists fn+1 :
Xn+1 → Yn+1 such that dn+1fn+1 = fndn+1. This proves Part (1).

(2): Assume that g : X• → Y• is another morphism such that gϵ = g0π. We
construct a homotopy operator {ki : Xi → Yi+1} recursively. Start by setting
ki = 0 for all i < 0.
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To construct k0, start with the commutative diagram

X0

f0−g0
��

ϵ // M

f

��
Y1

d1 // Y0
π // N

in which the bottom row is exact. Because πf0 = πg0 = fϵ, it follows that im(f0−
g0) ⊆ ker(π) = im(d1). Consider the diagram

X0

∃k0

||
f0−g0
��

Y1
d1 // im d1 // 0

in which the bottom row is exact. Since X0 is projective, there exists k0 : X0 → Y1
such that d1k0 = f0 − g0.

Recursively construct kn using kn−1 and kn−2. Start with the commutative
diagram

Xn

fn−gn

��

dn // Xn−1

fn−1−gn−1

��

kn−1

}}

dn−1 // Xn−2

kn−2

||
Yn+1

dn+1

// Yn
dn

// Yn−1

The top row is a chain complex, the bottom row is exact. Since

dn(fn − gn) = (fn−1 − gn−1)dn = (dnkn−1 + kn−2dn−1)dn = dnkn−1dn

it follows that im(fn − gn − kn−1dn) ⊆ ker(dn) = im(dn+1). Consider the diagram

Xn

∃kn

vv
fn−gn−kn−1dn

��
Yn+1

dn+1 // im dn+1
// 0

in which the bottom row is exact. Since Xn is projective, there exists kn : Xn →
Yn+1 such that dn+1kn = fn − gn − kn−1dn. This proves Part (2). □

1.5. Exercises.

Exercise 12.1.14. Suppose f and g are homotopic morphisms from A• to B•
and F is an covariant additive functor on R-modules. Prove that F(f) and F(g) are
homotopic morphisms from F(A•) to F(B•).

Exercise 12.1.15. Let A• be a chain complex. A contracting homotopy is a
homotopy operator {ki : Ai → Ai+1 | i ∈ Z} such that dn+1kn+ kn−1dn is equal to
the identity function on An for each n ∈ Z. Show that if a contracting homotopy
exists, then Hn(A•) = 0 for all n.

Exercise 12.1.16. (Tensor defines an additive functor) Let M be a right R-
module. Show that M ⊗R (·) is an additive functor RM→ ZM.



472 12. HOMOLOGICAL ALGEBRA

Exercise 12.1.17. (Hom defines an additive functor) Let M be an R-module.
Prove that HomR(M, ·) is a covariant additive functor and HomR(·,M) is a con-
travariant additive functor.

Exercise 12.1.18. Assume we are given a commutative diagram

// An

αn

��

fn // Bn

βn

��

gn // Cn

∼= γn

��

hn // An−1

αn−1

��

fn−1 // Bn−1

βn−1

��

gn−1 // Cn−1

∼= γn−1

��

//

// Xn
rn // Yn

sn // Zn
tn // Xn−1

rn−1 // Yn−1
sn−1 // Zn−1 //

where the rows are chain complexes. If the rows are exact sequences and γn is an
isomorphism for every n, then there is an exact sequence

· · · → An
δn−→ Xn ⊕Bn

ϵn−→ Yn
∂n−→ An−1

δn−1−−−→ Xn−1 ⊕Bn−1
ϵn−1−−−→ Yn−1

∂n−1−−−→ · · ·
where the maps are defined as follows: δn = (αn, fn), ϵn = rn − βn, and ∂n =
hnγ

−1
n sn. The maps γn are called excision isomorphisms and the resulting long

exact sequence is called a Mayer-Vietoris sequence. (Hint: This can be proved
directly by showing exactness at each term.)

1.6. Left Derived Functors. Let F : RM → ZM be a covariant additive
functor. To F we associate a sequence of functors Ln F : RM → ZM, one for each
n ≥ 0, called the left derived functors of F. For any left R-moduleM , if P• →M →
0 is a projective resolution of M , define Ln F(M) to be the nth homology group
of the complex F(P•). In Theorem 12.1.19, we show that this definition does not
depend on the choice of P•. Given any R-module homomorphism ϕ : M → N , let
P• →M be a projective resolution of M and Q• → N a projective resolution of N .
According to Theorem 12.1.13 there is an induced morphism of chain complexes
ϕ : P• → Q• which is unique up to homotopy equivalence. Applying the functor,
we get a morphism of chain complexes F(ϕ) : F(P•) → F(Q•). According to
Exercise 12.1.14, this morphism depends only on the homotopy class of ϕ : P• → Q•.
This morphism induces a Z-module homomorphism Ln F(ϕ) : Ln F(M)→ Ln F(N)
for each n. In Theorem 12.1.19, we show that this definition does not depend on
the choice of P• and Q•.

Theorem 12.1.19. Let F : RM → ZM be an additive covariant functor. For
each n ≥ 0 there is an additive covariant functor Ln F : RM→ ZM.

Proof. First we show that the definition of left derived functors does not
depend on the choice of projective resolution. Let M be an R-module and suppose
we are given two projective resolutions P• → M and Q• → M . Starting with
the identity map 1 : M → M , apply Theorem 12.1.13 (1) from both directions to
get morphisms f : P• → Q• and g : Q• → P•. Theorem 12.1.13 (2) (from both
directions) says fg ∼ 1 and gf ∼ 1. By Exercise 12.1.14, F(fg) ∼ 1 and F(gf) ∼ 1.
In conclusion, there is an isomorphism

ψ(P•, Q•) : Hn(F(P•)) ∼= Hn(F(Q•))

which is uniquely determined by the moduleM and the two resolutions P• and Q•.
The inverse function is ψ(Q•, P•).

Secondly, suppose ϕ :M → N is any R-module homomorphism. We show that

Ln F(ϕ) : Ln F(M)→ Ln F(N)
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is well defined. Start with a projective resolution P• → M of M and a projective
resolution R• → N of N . In the paragraph preceding this theorem it was shown
that ϕ, P• and R• uniquely determine a homomorphism

ϕ(P•, R•) : Hn(F(P•))→ Hn(F(R•)).

Suppose Q• → M is another projective resolution of M , and S• → N is another
projective resolution of N , and

ϕ(Q•, S•) : Hn(F(Q•))→ Hn(F(S•))

is the associated homomorphism. By the first paragraph of this proof, there are
isomorphisms ψ(P•, Q•) : Hn(F(P•)) ∼= Hn(F(Q•)) and ψ(R•, S•) : Hn(F(R•)) ∼=
Hn(F(S•)). To show that Ln F(ϕ) is well defined, it suffices to show that the square

Hn(F(P•))
ψ(P•,Q•) //

ϕ(P•,R•)

��

Hn(F(Q•))

ϕ(Q•,S•)

��
Hn(F(R•))

ψ(R•,S•) // Hn(F(S•))

commutes. The Z-module homomorphisms in this square are uniquely determined
by morphisms in the category of chain complexes which make up a square

P•
α //

γ

��

Q•

δ

��
R•

β // S•

which is not necessarily commutative. Nevertheless, up to homotopy equivalence,
this square is commutative. That is, by Theorem 12.1.13, δα ∼ βγ.

The rest of the details are left to the reader. □

Theorem 12.1.20. Let

· · · d3−→ P2
d2−→ P1

d1−→ P0
ϵ−→M → 0

be a projective resolution of the R-module M . Define K0 = ker ϵ, and for each
n > 0, define Kn = ker dn. If F : RM→ ZM is an additive covariant functor, then

Ln+1 F(M) = Ln−i F(Ki)

for i = 0, . . . , n− 1.

Proof. Notice that for each ℓ ≥ 1

(1.1) · · · → Pn+1
dn+1−−−→ Pn → · · ·

dℓ+1−−−→ Pℓ
dℓ−→ Kℓ−1 → 0

is a projective resolution for Kℓ−1. Define a chain complex P (−ℓ)• by truncating
P• and shifting the indices. That is, P (−ℓ)i = Pℓ+i and d(−ℓ)i = dℓ+i, for each
i ≥ 0. Using this notation, (1.1) becomes
(1.2)

· · · → P (−ℓ)n−ℓ+1
d(−ℓ)n−ℓ+1−−−−−−−→ P (−ℓ)n−ℓ → · · ·

d(−ℓ)1−−−−→ P (−ℓ)0
d(−ℓ)0−−−−→ Kℓ−1 → 0

By Theorem 12.1.19 we may compute the (n− ℓ+ 1)th left derived of Kℓ−1 using
the projective resolution (1.2). For ℓ ≥ 1 the sequences (1.1) and (1.2) agree, hence
applying F and taking homology yields

Ln−ℓ+1 F(Kℓ−1) = Ln+1 F(M)
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as required. □

1.7. The Long Exact Sequence.

Lemma 12.1.21. Suppose

0→ A
σ−→ B

τ−→ C → 0

is a short exact sequence of R-modules, P• → A is a projective resolution of A, and
R• → C is a projective resolution of C. Then there exists a projective resolution
Q• → B for B and morphisms σ and τ such that

0→ P•
σ−→ Q•

τ−→ R• → 0

is a short exact sequence of chain complexes. Moreover, for each n ≥ 0 the short
exact sequence

0→ Pn
σn−−→ Qn

τn−→ Rn → 0

is split exact.

Proof. Start with the diagram

P0

α

��

R0

γ

��
0 // A

��

σ // B
τ // C

��

// 0

0 0

where the horizontal row is exact, and P0 and R0 are projectives. Because R0

is projective, there exists β2 : R0 → B such that τβ2 = γ. Let β1 = σα. Let
β : P0 ⊕ R0 → B be defined by (x, y) 7→ β1(x) + β2(y). Let Q0 = P0 ⊕ R0 and let
σ0 and τ0 be the injection and projection maps. The diagram

0 // P0
σ0 //

α

��

Q0

β

��

τ0 // R0

γ

��

// 0

0 // A

��

σ // B

��

τ // C

��

// 0

0 0 0

commutes and the rows and columns are exact. The Snake Lemma (Theorem 6.6.2)
says that

0→ kerα
σ−→ kerβ

τ−→ ker γ → 0

is a short exact sequence. The proof follows by induction. □

Theorem 12.1.22. Suppose

0→ A
σ−→ B

τ−→ C → 0

is a short exact sequence of R-modules and F : RM→ ZM is an additive covariant
functor.
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(1) There exists a long exact sequence of left derived groups

· · · τ−→ Ln+1 F(C)
∂−→ Ln F(A)

σ−→ Ln F(B)
τ−→ Ln F(C)

∂−→ Ln−1 F(A)→ · · ·

· · · ∂−→ L1 F(A)
σ−→ L1 F(B)

τ−→ L1 F(C)
∂−→ L0 F(A)

σ−→ L0 F(B)
τ−→ L0 F(C)→ 0.

(2) The functor L0 F is right exact.

Proof. (1): Start with projective resolutions P• → A for A and R• → C for
C. Use Lemma 12.1.21 to construct a projective resolution Q• → B for B and
morphisms σ and τ such that

0→ P•
σ−→ Q•

τ−→ R• → 0

is a short exact sequence of chain complexes. Applying the functor,

(1.3) 0→ F(P•)
σ−→ F(Q•)

τ−→ F(R•)→ 0

is a short exact sequence of chain complexes because for each n

0→ Pn
σn−−→ Qn

τn−→ Rn → 0

is split exact. The result follows from Theorem 12.1.10 applied to (1.3).
(2): Because the chain complex A• is zero in degrees i < 0, the sequence

L0 F(A)→ L0 F(B)→ L0 F(C)→ 0

is exact. □

Lemma 12.1.23. (The Cube Lemma) Let

K
a //

  

b

��

L

~~

d

��

A //

α

��

��

B
β

~~

��

E //

��

F

��
G // H

C

γ
??

// D
δ

``

M

>>

c // N

``

be a diagram of R-module homomorphisms. The subdiagram made up of the 8 inner
vertices and 12 edges is called a cube. Let K,L,M,N be the kernels of α, β, γ, δ
respectively. If the cube is commutative, then there exist unique homomorphisms
a, b, c, d such that the overall diagram commutes.
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Proof. There is a unique a : K → L such that the diagram

0 // K

a

��

// A

��

α // E

��
0 // L // B

β // F

commutes. Likewise for b : K → M , c : M → N , and d : L → N . To finish the
proof, we show that the square

K

b
��

a // L

d
��

M
c // N

commutes. Look at the composite homomorphism

K
a−→ L

d−→ N → D

which factors into

K → A→ B → D

which factors into

K → A→ C → D

which factors into

K
b−→M → C → D

which factors into

K
b−→M

c−→ N → D.

Since N → D is one-to-one, this proves da = cb. □

Lemma 12.1.24. Suppose

0 // A
σ //

a

��

B
τ //

b
��

C //

c

��

0

0 // A′
σ′
// B′

τ ′
// C ′ // 0

is a commutative diagram of R-modules, with exact rows. Suppose we are given
projective resolutions for the four corners P• → A, R• → C, P ′• → A′, and R′• →
C ′. Then there exist projective resolutions Q• → B and Q′• → B′ and morphisms
such that the diagram of chain complexes

0 // P•
σ //

a

��

Q•
τ //

b

��

R• //

c

��

0

0 // P ′•
σ′
// Q′•

τ ′
// R′• // 0

is commutative with exact rows.

Proof. The morphisms a : P• → P ′• and c : R• → R′• exist by Theo-
rem 12.1.13. The projective resolutions Q• → B, Q′• → B′ and the remaining
morphisms are constructed iteratively. The reader should verify the inductive step,
which is similar to the basis step given below.
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Start with the commutative diagram

P0

a0

~~
d

��

R0

c0

~~
f

��

P ′0

d′

��

R′0

f ′

��

A

a

~~

σ // B
b

~~

τ // C
c

}}
A′

σ′
// B′

τ ′
// C ′

The maps d, d′, f, f ′, τ, τ ′ are onto and σ, σ′ are one-to-one. TheR-modules P0, R0, P
′
0, R

′
0

are projective. Because R0 is projective, there exists e2 : R0 → B such that
τe2 = f . Let e1 = σd. Because R′0 is projective, there exists e′2 : R′0 → B′ such
that τ ′e′2 = f ′. Let e1 = σ′d′. Consider the diagram

R0

e2

vv
f~~

c0

��

B

b

��

τ
// C

c

��
P ′0

σ′d′ // B′
τ ′
// C ′

R′0

e′2

gg
f ′

``

which is not necessarily commutative. The row P ′0 → B′ → C ′ is exact. By
construction of e2 and e′2, it follows that τ

′(be2− e′2c0) = 0. Since R0 is projective,
there exists e3 : R0 → P ′0 such that σ′d′e3 = be2−e′2c0. Set Q0 = P0⊕R0 and define
e : Q0 → B by (x, y) 7→ e1(x) + e2(y). Set Q′0 = P ′0 ⊕ R′0 and define e′ : Q′0 → B′

by (x, y) 7→ e′1(x) + e′2(y). Let σ0, σ
′
0 be the injection maps and let τ0, τ

′
0 be the

projection maps. The diagram

0 // P0
σ0 //

d

��

Q0

e

��

τ0 // R0

f

��

// 0

0 // A
σ // B

τ // C // 0

commutes, the top row is split exact and e is onto. The diagram

0 // P ′0
σ′
0 //

d′

��

Q′0

e′

��

τ ′
0 // R′0

f ′

��

// 0

0 // A′
σ′
// B′

τ ′
// C ′ // 0

commutes, the top row is split exact, and e′ is onto. Define b0 : Q0 → Q′0 by
the assignment (x, y) 7→ (a0(x) + e3(y), c0(y)). The reader should verify that the
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diagram

Q0
b0 //

e

��

Q′0

e′

��
B

b // B′

commutes. Let K,L,M be the kernels of d, e, f respectively. Let K ′, L′,M ′ be
the kernels of d′, e′, f ′ respectively. According to Lemma 12.1.23 there are unique
homomorphisms connecting the kernels to the rest of the diagram. The overall
diagram

K

}}

��

// L //

��

}}

M

}}

��

K ′ //

��

L′

��

// M ′

��

P0

~~

��

// Q0
//

��

~~

R0

~~

��

P ′0 //

��

Q′0

��

// R′0

��

A

}}

// B

}}

// C

}}
A′ // B′ // C ′

commutes, which completes the basis step. The reader should verify the inductive
step and complete the proof. □

Theorem 12.1.25. In the long exact sequence of Theorem 12.1.22, the con-
necting homomorphisms ∂ are natural. That is, given a commutative diagram

0 // A
σ //

a

��

B
τ //

b
��

C //

c

��

0

0 // A′
σ′
// B′

τ ′
// C ′ // 0

of R-modules, with exact rows, the diagram

Ln F(C)
∂ //

c

��

Ln−1 F(A)

a

��
Ln F(C

′)
∂ // Ln−1 F(A′)

commutes for all n ≥ 1.

Proof. Use Lemma 12.1.24 to get the two short exact sequences of projec-
tive resolutions. The split exact rows remain exact after applying F. Use Theo-
rem 12.1.11. □
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1.8. Exercises.

Exercise 12.1.26. If F : RM→ ZM is an exact additive functor, then for any
left R-module A, Li F(A) = 0 for all i ≥ 1.

Exercise 12.1.27. Let F : RM→ ZM be a right exact additive functor.

(1) For any left R-module A, L0 F(A) = F(A).
(2) For any short exact sequence of R-modules 0 → A → B → C → 0, there

is a long exact sequence of left derived groups

· · · ∂−→ L1 F(A)→ L1 F(B)→ L1 F(C)
∂−→ F(A)→ F(B)→ F(C)→ 0

Exercise 12.1.28. If P is a projective R-module, and F : RM → ZM is a
covariant additive functor, then Li F(P ) = 0 for all i ≥ 1.

1.9. Left Derived Groups of an Acyclic Resolution. Let F : RM→ ZM
be a right exact covariant additive functor. We say that the left R-module C is
F-acyclic in case Ln F(C) = 0 for all n ≥ 1. The next result says that the left
derived groups Ln F(M) may be computed using a resolution of M by F-acyclic
modules.

Theorem 12.1.29. Let F : RM → ZM be a right exact covariant additive
functor. Let M be a left R-module and C• → M → 0 a resolution of M by F-
acyclic modules. Then

Ln F(M) ∼= Hn(F(C•))

for all n ≥ 0.

Proof. If we take C−1 to be M and take Kj to be ker{dj : Cj → Cj−1}, then
there is a short exact sequence

(1.4) 0→ Kj → Cj → Kj−1 → 0

for each j ≥ 0.
Step 1: Prove that there is an exact sequence

0→ Hj+1(F(C•))→ FKj → FCj → FKj−1 → 0

for each j ≥ 0. Since F is right exact, (1.4) gives rise to the exact sequence

(1.5) 0→ Xj → FKj → FCj → FKj−1 → 0

where we take Xj to be the group that makes the sequence exact. The goal is to
prove Xj

∼= Hj+1(F(C•)). The commutative diagram

Cj+1

""

dj+1 // Cj

Kj

!!

>>

0

<<

0
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gives rise to the commutative diagram

FCj+1

##

dj+1 // FCj

FKj

""

<<

0

Using this and (1.5) we see that

Bj(FC•) = im{FKj → FCj} = ker{FCj → FKj−1}.
By Exercise 12.1.5 there is an exact sequence

(1.6) 0→ Zj(FC•)→ FCj → Bj−1(FC•)→ 0.

Combine (1.5) and (1.6) to get the commutative diagram with exact rows and
columns

0

��

0

��
0 // Bj(FC•) //

��

Bj(FC•)

��

// 0

��
0 // Zj(FC•) //

��

FCj //

��

Bj−1(FC•)

��
0 // Xj−1

��

// FKj−1

��

// FCj−1

0 0

the first column of which shows Hj(FC•) ∼= Xj−1 for each j ≥ 0. The reader should
verify that Step 1 did not use the fact that the modules Cj are acyclic.

Step 2: By Theorem 12.1.22, the short exact sequence (1.4) gives rise to the
long exact sequence

(1.7) · · · → Ln+1 F(Cj)→ Ln+1 F(Kj−1)
∂−→ Ln F(Kj)→ Ln F(Cj)→ · · · .

Because the modules Cj are acyclic, the boundary maps in (1.7) are isomorphisms

(1.8) Ln+1 F(Kj−1) ∼= Ln F(Kj)

for all n ≥ 1 and j ≥ 0. Iterate (1.8) to get

(1.9) Ln+1 F(M) = Ln+1 F(K−1) ∼= Ln F(K0) ∼= Ln−1 F(K1) ∼= · · · ∼= L1 F(Kn−1).

When n = 0, (1.7) looks like

(1.10) 0→ L1 F(Kj−1)→ FKj → FCj → FKj−1 → 0.

Comparing (1.10) and (1.9) with Step 1 we get

Lj+1 F(M) ∼= Hj+1(FC•)
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which finishes the proof. □

1.10. Bifunctors.

Definition 12.1.30. Suppose A, B, and C are categories, and F : A×B→ C
is a correspondence which maps a pair of objects (A,B) to the object F(A,B).
Let A be an object of A and B an object of B. Denote by F2(A, ·) the assignment
B 7→ F(A,B) which keeps the first variable fixed. Denote by F1(·, B) the assignment
A 7→ F(A,B) which keeps the second variable fixed. We call F a bifunctor if the
following three properties are satisfied.

(1) F1(·, B) is a covariant functor from A to C, and
(2) F2(A, ·) is a covariant functor from B to C.
(3) For any pair of morphisms ϕ : A1 → A2 in A, ψ : B1 → B2 in B, the

diagram

F(A1, B1)
ϕ //

ψ

��

F(A2, B1)

ψ

��
F(A1, B2)

ϕ // F(A2, B2)

commutes in C,

A bifunctor may also be contravariant in one or both variables, in which case the
reader should make the necessary changes to the commutative square in number
(3).

Example 12.1.31. Let R be a ring. The assignment (A,B) 7→ A ⊗R B is a
bifunctor from MR × RM to the category of Z-modules. This bifunctor is right
exact covariant in each variable (Lemma 6.4.18).

Example 12.1.32. Let R be a ring. The assignment (A,B) 7→ HomR(A,B) is
a bifunctor from RM× RM to the category of Z-modules. If the second variable is
fixed, the functor is left exact contravariant in the first variable (Proposition 6.5.5).
If the first variable is fixed, the functor is left exact covariant in the second variable
(Proposition 6.5.5).

Lemma 12.1.33. Let F : MR×MR → ZM be a bifunctor which in each variable
is covariant right exact and additive. Let M be a fixed R-module. For any short
exact sequence of R-modules 0→ A→ B → C → 0, there is a long exact sequence
of groups

· · · ∂−→ L1 F1(A,M)→ L1 F1(B,M)→ L1 F1(C,M)
∂−→ F(A,M)→ F(B,M)→ F(C,M)→ 0

The counterpart of this sequence is exact for the groups Li F2(M, ·).

Proof. Follows straight from Exercise 12.1.27. □

Theorem 12.1.34. Let F : MR×MR → ZM be a bifunctor which in each vari-
able is covariant right exact and additive. Assume L1 F2(P,B) = 0 and L1 F1(A,P ) =
0 for any projective module P and any modules A and B. Then the two left derived
groups Ln F1(A,B) and Ln F2(A,B) are naturally isomorphic for all R-modules A
and B and all n ≥ 0.
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Proof. By Exercise 12.1.27 we know L0 F1(A,B) = F(A,B) = L0 F2(A,B).
Let P• → A → 0 be a projective resolution for A and Q• → B → 0 a projective
resolution for B. Define P−1 to be A and Kj to be ker{dj : Pj → Pj−1}. Define
Q−1 to be B and Lj to be ker{dj : Qj → Qj−1}.

For each pair (i, j), consider the two short exact sequences

0→ Ki → Pi → Ki−1 → 0(1.11)

0→ Lj → Qj → Lj−1 → 0(1.12)

To sequence (1.11) apply Lemma 12.1.33 three times to to get three exact sequences

L1 F1(Pi, Lj)→ L1 F1(Ki−1, Lj)
∂−→ F(Ki, Lj)

α−→ F(Pi, Lj)→ F(Ki−1, Lj)→ 0

L1 F1(Pi, Qj)→ L1 F1(Ki−1, Qj)
∂−→ F(Ki, Qj)

β−→ F(Pi, Qj)→ F(Ki−1, Qj)→ 0

L1 F1(Pi, Lj−1)→ L1 F1(Ki−1, Lj−1)
∂−→ F(Ki, Lj−1)

γ−→ F(Pi, Lj−1)→ F(Ki−1, Lj−1)→ 0

By assumption L1 F1(Ki−1, Qj) = 0 because Qj is projective, hence β is one-to-
one. By Exercise 12.1.28, L1 F1(Pi, Lj) = 0 and L1 F1(Pi, Lj−1) = 0 because Pi is
projective.

To sequence (1.12) apply Lemma 12.1.33 three times to to get three exact
sequences

L1 F2(Ki, Qj)→ L1 F2(Ki, Lj−1)
∂−→ F(Ki, Lj)

σ−→ F(Ki, Qj)→ F(Ki, Lj−1)→ 0

L1 F2(Pi, Qj)→ L1 F2(Pi, Lj−1)
∂−→ F(Pi, Lj)

τ−→ F(Pi, Qj)→ F(Pi, Lj−1)→ 0

L1 F2(Ki−1, Qj)→ L1 F2(Ki−1, Lj−1)
∂−→ F(Ki−1, Lj)

ρ−→ F(Ki−1, Qj)→ F(Ki−1, Lj−1)→ 0

By assumption L1 F2(Pi, Lj−1) = 0 because Pi is projective, hence τ is one-to-one.
By Exercise 12.1.28, L1 F2(Ki, Qj) = 0 and L1 F2(Ki−1, Qj) = 0 because Qj is
projective. The diagram

L1 F1(Ki−1, Lj)

��

0

��

L1 F1(Ki−1, Lj−1)

��
L1 F2(Ki, Lj−1) // F(Ki, Lj)

α

��

σ // F(Ki, Qj)β

��

// F(Ki, Lj−1)

γ

��
0 // F(Pi, Lj)

��

τ // F(Pi, Qj) //

��

F(Pi, Lj−1)

��
L1 F2(Ki−1, Lj−1) // F(Ki−1, Lj) // F(Ki−1, Qj) // F(Ki−1, Lj−1)

commutes, where the three rows and three columns are the exact sequences from
above. Apply the Snake Lemma (Theorem 6.6.2) to see that

(1.13) L1 F1(Ki−1, Lj−1) ∼= L1 F2(Ki−1, Lj−1)

Since β and τ are one-to-one it follows that

(1.14) L1 F1(Ki−1, Lj) = L1 F2(Ki, Lj−1)

Combine (1.14) and (1.13) to get

L1 F1(Ki−1, Lj) ∼= L1 F2(Ki, Lj−1) ∼= L1 F1(Ki, Lj−1)
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Iterate this n times to get
(1.15)

L1 F1(A,Ln−1) ∼= L1 F1(K−1, Ln−1) ∼= L1 F1(Kn−1, L−1) ∼= L1 F1(Kn−1, B)

Combine (1.15) with (1.13) and Theorem 12.1.20 to get

Ln+1 F1(A,B) ∼= L1 F1(Kn−1, B) (by Theorem 12.1.20)

∼= L1 F1(A,Ln−1) (1.15)

∼= L1 F2(A,Ln−1) (1.13)

∼= Ln+1 F2(A,B) (by Theorem 12.1.20)

□
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2. Cohomology Group Functors

2.1. Cochain Complexes. A cochain complex in RM is a sequence of R-
modules {Ai | i ∈ Z} and homomorphisms di : Ai → Ai+1 such that di+1di = 0 for
all i ∈ Z. The maps di are called the coboundary maps. The notation A• denotes
a cochain complex. If it is important to reference the coboundary maps, we will
write (A•, d•). If the modules Ai are specified for some range n0 ≤ i ≤ n1, then
it is understood that Ai = 0 for i < n0 or i > n1. Let A• and B• be cochain
complexes. A morphism of cochain complexes is a sequence of homomorphisms
f = {f i : Ai → Bi | i ∈ Z} such that for each i the diagram

Ai−1
di−1

//

fi−1

��

Ai
di //

fi

��

Ai+1

fi−1

��
Bi−1

di−1
// Bi

di // Bi+1

commutes. In this case we write f : A• → B•. The reader should verify that the
collection of all cochain complexes over R together with morphisms is a category.
In some of the exercises listed below the reader is asked to verify many of the
important features of this category.

Suppose A• is a cochain complex and n ∈ Z. Elements of An are called n-
cochains. The module An contains the two submodules

Bn(A•) = im dn−1, and

Zn(A•) = ker dn.

Elements of Bn(A•) are called n-coboundaries. Elements of Zn(A•) are called n-
cocycles. The condition di−1di = 0 translates into Bn(A•) ⊆ Zn(A•). The nth
cohomology module of A• is defined to be the quotient

Hn(A•) = Zn(A•)/Bn(A•) = ker dn/ im dn−1.

Example 12.2.1. (1) A short exact sequence 0 → A0 → A1 → A2 → 0
is a cochain complex. It is understood that the sequence is extended with
0 terms.

(2) If M is an R-module, then an injective resolution

0→M → E0 → E1 → E2 → · · ·
of M is a cochain complex (see Exercise 6.7.16). It is understood that the
sequence is extended with 0 terms.

(3) If A• is a cochain complex, the reader should verify that the following are
equivalent
(a) Hn(A•) = 0 for all n ∈ Z.
(b) A• is an exact sequence.

Example 12.2.2. As in Example 12.1.2, if A• is a cochain complex, and F :

RM→ ZM is a covariant additive functor, then F(A•) is a cochain complex. If A•
is a chain complex, and F : RM → ZM is a contravariant additive functor, then
F(A•) is a cochain complex.

Lemma 12.2.3. Let n be an arbitrary integer.

(1) If f : A• → B• is a morphism of cochain complexes, then the assignment

z +Bn(A•) 7→ fn(z) + Bn(B•)
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defines an R-module homomorphism

Hn(f) : Hn(A•)→ Hn(B•).

(2) The assignment A• 7→ Hn(A•) defines a functor from the category of
cochain complexes to the category of R-modules.

Proof. Use Lemma 12.1.3. The details are left to the reader. □

2.2. Exercises.

Exercise 12.2.4. For the category of cochain complexes, the reader should
give appropriate definitions for the following terminology.

(1) The kernel of a morphism.
(2) The cokernel of a morphism.
(3) The image of a morphism.
(4) A subcochain complex of a cochain complex and the quotient of a cochain

complex modulo a subcochain complex.
(5) monomorphism, epimorphism, and isomorphism.
(6) short exact sequence.

Exercise 12.2.5. Let A• be a cochain complex. For each n ∈ Z there are short
exact sequences of R-modules.

(1) 0→ Bn(A•)→ Zn(A•)→ Hn(A•)→ 0
(2) 0→ Zn(A•)→ An → Bn+1(A•)→ 0
(3) 0→ Hn(A•)→ An/Bn(A•)→ Bn+1(A•)→ 0

Exercise 12.2.6. Let A• be a cochain complex. For each n ∈ Z there is an
exact sequence of R-modules.

0→ Hn(A•)→ An/Bn(A•)
dn−→ Zn+1(A•)→ Hn+1(A•)→ 0

Exercise 12.2.7. Let F be an exact covariant functor from RM to ZM. If A•

is a cochain complex, then F(Hn(A•)) ∼= Hn(F(A•)).

Exercise 12.2.8. Let J be an index set and {(Aj)• | j ∈ J} a collection of
cochain complexes.

(1) Show that

· · · ⊕d
n−1

−−−−→
⊕
j∈J

(Aj)
n ⊕dn−−−→

⊕
j∈J

(Aj)
n+1 ⊕dn+1

−−−−→ · · ·

is a cochain complex, which is called the direct sum cochain complex.
(2) Show that cohomology commutes with a direct sum. That is

Hn
(⊕
j∈J

(Aj)
•
)
∼=
⊕
j∈J

Hn
(
(Aj)

•).
Exercise 12.2.9. Let {(Aj)•, ϕij} be a directed system of cochain complexes

for a directed index set I.

(1) Show that

· · · d⃗
n−1

−−−→ lim−→(Aj)
n d⃗n−→ lim−→(Aj)

n+1 d⃗n+1

−−−→ · · ·
is a cochain complex, which is called the direct limit cochain complex.
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(2) Show that cohomology commutes with a direct limit. That is

Hn
(
lim−→(Aj)

•
)
∼= lim−→Hn

(
(Aj)

•).
2.3. The long exact sequence of cohomology.

Theorem 12.2.10. Let

0→ A•
f−→ B•

g−→ C• → 0

be an exact sequence of cochain complexes. Then there is a long exact sequence of
cohomology modules

· · · → Hn(A•)
H(f)−−−→ Hn(B•)

H(g)−−−→ Hn(C•)
δn−→ Hn+1(A•)

H(f)−−−→ Hn+1(B•)
H(g)−−−→ · · ·

Proof. Use Theorem 12.1.10. The details are left to the reader. □

Theorem 12.2.11. In the context of Theorem 12.2.10, the connecting homo-
morphism δn : Hn(C•)→ Hn+1(A•) is natural. More specifically, if

0 // A•
f //

χ

��

B•
g //

ρ

��

C• //

σ

��

0

0 // D•
ϕ // E•

ψ // F • // 0

is a commutative diagram of cochain complexes with exact rows, then there is a
commutative diagram

Hn(A•)
H(f) //

H(χ)

��

Hn(B•)
H(g) //

H(ρ)

��

Hn(C•)
δn //

H(σ)

��

Hn+1(A•)

H(χ)

��
Hn(D•)

H(ϕ) // Hn(E•)
H(ψ) // Hn(F •)

δn // Hn+1(D•)

with exact rows for each n ∈ Z.

Proof. Use Theorem 12.1.11. The details are left to the reader. □

2.4. Homotopy Equivalence. Let A• and B• be cochain complexes. By
Hom(A•, B•) we denote the set of all morphisms f : A• → B•. For each i ∈ Z,
f i : Ai → Bi is an R-module homomorphism. We can turn Hom(A•, B•) into a
Z-module. Two morphisms f, g ∈ Hom(A•, B•) are said to be homotopic if there
exists a sequence of R-module homomorphisms {ki : Ai → Bi−1 | i ∈ Z} such that
fn − gn = dn−1kn + kn+1dn for each n ∈ Z. If f and g are homotopic, then we
write f ∼ g and the sequence {ki} is called a homotopy operator. The reader should
verify that homotopy equivalence is an equivalence relation on Hom(A•, B•).

Theorem 12.2.12. Let A• and B• be cochain complexes. For each n ∈ Z, the
functor Hn( ) is constant on homotopy equivalence classes. In other words, if f and
g are homotopic in Hom(A•, B•), then H(f) is equal to H(g) in HomR(H

n(A•),Hn(B•)).

Proof. Use Theorem 12.1.12. The details are left to the reader. □
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Theorem 12.2.13. Consider the diagram of R-modules

0 // M

f

��

ϵ // X0 d0 //

∃f0

��

X1 d1 //

∃f1

��

X2 d2 //

∃f2

��

· · ·

0 // N
φ // Y 0 d0 // Y 1 d1 // Y 2 d2 // · · ·

in which the following are satisfied.

(A) The top row is an exact sequence.
(B) The second row is a cochain complex and each Yi is an injective R-module.

Then the following are true.

(1) There exists a morphism f : X• → Y • which commutes with f on the
augmented cochain complexes. That is, f0ϵ = φf .

(2) The morphism f is unique up to homotopy equivalence.

Proof. (1): The morphism f is constructed recursively. To construct f0,
consider the diagram

0 // M
ϵ //

φf !!

X0

∃f0

��
Y 0

with top row exact. Since Y 0 is injective, there exists f0 : X0 → Y 0 such that
φf = f0ϵ.

To construct f1, start with the commutative diagram

M

f

��

ϵ // X0

f0

��

d0 // X1

∃f1

��
N

φ // Y 0 d0 // Y 1

The top row is exact, the bottom row is a cochain complex. Because d0f0ϵ =
d0φf = 0, it follows that ker(d0) = im(ϵ) ⊆ ker(d0f0). Consider the diagram

0 // X0/ im(ϵ)
d0 //

d0f0

$$

X1

∃f1

��
Y 1

with top row exact. Since Y 1 is injective, there exists f1 : X1 → Y 1 such that
d0f0 = f1d0.

Recursively construct fn+1 using fn and fn−1. Start with the commutative
diagram

Xn−1

fn−1

��

dn−1
// Xn

fn

��

dn // Xn+1

∃fn+1

��
Y n−1

dn−1
// Y n

dn // Y n+1

The top row is exact, the bottom row is a cochain complex. Since the diagram
commutes, dnfndn−1 = dndn−1fn−1 = 0. It follows that ker(dn) = im(dn−1) ⊆
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ker(dnfn). Consider the diagram

0 // Xn/ im(dn−1)
dn //

dn−1fn−1 &&

Xn+1

∃fn+1

��
Y n+1

with top row exact. Since Y n+1 is injective, there exists fn+1 : Xn+1 → Y n+1 such
that dnfn = fn+1dn. This proves Part (1).

(2): Assume that g : X• → Y • is another morphism such that g0ϵ = φf . We
construct a homotopy operator {ki : Xi → Y i−1} recursively. Start by setting
ki = 0 for all i ≤ 0.

To construct k1, start with the commutative diagram

M

f

��

ϵ // X0

f0−g0
��

d0 // X1

∃k1}}
N

φ
// Y 0

in which the top row is exact. Because f0ϵ = g0ϵ = φf , it follows that im(ϵ) =
ker(d0) ⊆ ker(f0 − g0). Consider the diagram

0 // X0/ ker (d0)

f0−g0
��

d0 // X1

∃k1yy
Y 0

in which the top row is exact. Since Y 0 is injective, there exists k1 : X1 → Y 0 such
that k1d0 = f0 − g0.

Recursively construct kn+1 using kn−1 and kn. Start with the commutative
diagram

Xn−1

kn−1

||
fn−1−gn−1

��

dn−1
// Xn

fn−gn

��

kn

}}

dn // Xn+1

∃kn+1

}}
Y n−2

dn−2

// Y n−1
dn−1

// Y n

The top row is exact, the bottom row is a cochain complex. Since

(fn − gn)dn−1 = dn−1(fn−1 − gn−1) = dn−1(kndn−1 + dn−2kn−1) = dn−1kndn−1

it follows that ker(dn) = im(dn−1) ⊆ ker(fn− gn− dn−1kn). Consider the diagram

0 // Xn/ ker (dn)

fn−gn−dn−1kn

��

dn // Xn+1

∃kn+1

xx
Y n
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in which the top row is exact. Since Y n is injective, there exists kn+1 : Xn+1 → Y n

such that kn+1dn = fn − gn − dn−1kn). This proves Part (2). □

2.5. Exercises.

Exercise 12.2.14. Suppose f and g are homotopic morphisms from A• to B•

and F is an additive covariant functor on R-modules. Prove that F(f) and F(g) are
homotopic morphisms from F(A•) to F(B•).

Exercise 12.2.15. Suppose f and g are homotopic morphisms from A• to B•
and F is an additive contravariant functor on R-modules. Prove that F(f) and F(g)
are homotopic morphisms from F(B•) to F(A•).

2.6. Right Derived Functors. The right derived functors are defined by
taking cohomology groups of cochain complexes. The situation for right derived
functors is different than that for left derived functors. For right derived functors
we consider both covariant and contravariant functors.

2.6.1. Covariant Functors. Let F : RM→ ZM be an additive covariant functor.
To F we associate a sequence of functors Rn F : RM → ZM, one for each n ≥ 0,
called the right derived functors of F. For any left R-module M , if 0→M → I• is
an injective resolution ofM , define Rn F(M) to be the nth cohomology group of the
cochain complex F(I•). In Theorem 12.2.16, we show that this definition does not
depend on the choice of I•. Given any R-module homomorphism ϕ : M → N , let
M → I• be an injective resolution of M and N → J• an injective resolution of N .
According to Theorem 12.2.13 there is an induced morphism of cochain complexes
ϕ : I• → J• which is unique up to homotopy equivalence. Applying the functor
F, we get a morphism of cochain complexes F(ϕ) : F(I•) → F(J•). According to
Exercise 12.2.14, this morphism preserves the homotopy class of ϕ : I• → J•. This
morphism induces a Z-module homomorphism Rn F(ϕ) : Rn F(M) → Rn F(N) for
each n. In Theorem 12.2.16, we show that this definition does not depend on the
choice of I• and J•.

Theorem 12.2.16. Let F : RM → ZM be an additive covariant functor. For
each n ≥ 0 there is an additive covariant functor Rn F : RM→ ZM.

Proof. First we show that the definition of right derived functors does not
depend on the choice of injective resolution. Let M be an R-module and suppose
we are given two injective resolutions M → I• and M → J•. Starting with the
identity map 1 : M → M , apply Theorem 12.2.13 (1) from both directions to
get morphisms f : I• → J• and g : J• → I•. Theorem 12.2.13 (2) (from both
directions) says fg ∼ 1 and gf ∼ 1. By Exercise 12.2.14, F(fg) ∼ 1 and F(gf) ∼ 1.
In conclusion, there is an isomorphism

ψ(I•, J•) : Hn(F(I•)) ∼= Hn(F(J•))

which is uniquely determined by the module M and the two resolutions I• and J•.
The inverse function is ψ(J•, I•).

Secondly, suppose ϕ :M → N is any R-module homomorphism. We show that

Rn F(ϕ) : Rn F(M)→ Rn F(N)

is well defined. Start with an injective resolution M → I• of M and an injective
resolution N → K• of N . In the paragraph preceding this theorem it was shown
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that ϕ, I• and K• uniquely determine a homomorphism

ϕ(I•,K•) : Hn(F(I•))→ Hn(F(K•)).

Suppose M → J• is another injective resolution of M , and N → L• is another
injective resolution of N , and

ϕ(J•, L•) : Hn(F(J•))→ Hn(F(L•))

is the associated homomorphism. By the first paragraph of this proof, there are
isomorphisms ψ(I•, J•) : Hn(F(I•)) ∼= Hn(F(J•)) and ψ(K•, L•) : Hn(F(K•)) ∼=
Hn(F(L•)). To show that Rn F(ϕ) is well defined, it suffices to show that the square

Hn(F(I•))
ψ(I•,J•) //

ϕ(I•,K•)

��

Hn(F(J•))

ϕ(J•,L•)

��
Hn(F(K•))

ψ(K•,L•) // Hn(F(L•))

commutes. The Z-module homomorphisms in this square are uniquely determined
by morphisms in the category of cochain complexes which make up a square

I•
α //

γ

��

J•

δ
��

K•
β // L•

which is not necessarily commutative. Nevertheless, up to homotopy equivalence,
this square is commutative. That is, by Theorem 12.2.13, δα ∼ βγ.

The rest of the details are left to the reader. □

Theorem 12.2.17. Let

0→M
ϵ−→ I0

d0−→ I1
d1−→ I2

d2−→ · · ·
be an injective resolution of the R-module M . Define Kn = ker dn, for each n ≥ 0.
If F : RM→ ZM is an additive covariant functor, then

Rn F(M) = Rn−i F(Ki)

for 0 ≤ i < n.

Proof. Suppose 0 ≤ ℓ < n. Notice that

(2.1) 0→ Kℓ → Iℓ
dℓ−→ Iℓ+1 dℓ+1

−−−→ · · · → In
dn−→ In+1 → · · ·

is an injective resolution for Kℓ. Define a cochain complex I(−ℓ)• by truncating I•

and shifting the indices. That is, I(−ℓ)i = Iℓ+i and d(−ℓ)i = dℓ+i, for each i ≥ 0.
Using this notation, (2.1) becomes
(2.2)

0→ Kℓ → I(−ℓ)0 d(−ℓ)0−−−−→ I(−ℓ)1 d(−ℓ)1−−−−→ · · · → I(−ℓ)n−ℓ d(−ℓ)n−ℓ

−−−−−−→ I(−ℓ)n−ℓ+1 → · · ·
By Theorem 12.2.16 we may compute the (n − ℓ)th right derived of Kℓ using the
injective resolution (2.2). The sequences (2.1) and (2.2) agree if we ignore the
indexes. Applying F and taking cohomology yields

Rn−ℓ F(Kℓ) = Rn F(M)

as required. □
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2.6.2. Contravariant Functors. Let F : RM→ ZM be an additive contravariant
functor. To F we associate a sequence of contravariant functors Rn F : RM→ ZM,
one for each n ≥ 0, called the right derived functors of F. For any left R-module
M , if

· · · → P3
d3−→ P2

d2−→ P1
d1−→ P0

ϵ−→M → 0

is a projective resolution of M , define Rn F(M) to be the nth cohomology group of
the cochain complex

0→ FP0
Fd1−−→ FP1

Fd2−−→ FP2
Fd3−−→ FP3 → · · · .

That is,
Rn F(M) = ker(Fdn+1)/ im(Fdn)

where the indices are shifted because the contravariant functor reversed the arrows.
As in the proof of Theorem 12.1.19, this definition does not depend on the choice of
P•. Given any R-module homomorphism ϕ :M → N , let P• →M be a projective
resolution of M and Q• → N a projective resolution of N . According to Theo-
rem 12.1.13 there is an induced morphism of chain complexes ϕ : P• → Q• which
is unique up to homotopy equivalence. Applying the functor F, we get a morphism
of cochain complexes F(ϕ) : F(Q•) → F(P•). According to Exercise 12.2.15, this
morphism preserves the homotopy class of ϕ : P• → Q•. This morphism induces
a Z-module homomorphism Rn F(ϕ) : Rn F(N) → Rn F(M) for each n. As in the
proof of Theorem 12.1.19, this definition does not depend on the choice of P• and
Q•.

Theorem 12.2.18. Let F : RM → ZM be an additive contravariant functor.
For each n ≥ 0 there is an additive contravariant functor Rn F : RM→ ZM.

Proof. Use Theorem 12.1.19. The details are left to the reader. □

Theorem 12.2.19. Let

· · · d3−→ P2
d2−→ P1

d1−→ P0
ϵ−→M → 0

be a projective resolution of the R-module M . Define K0 = ker ϵ, and for each
n > 0, define Kn = ker dn. If F : RM → ZM is an additive contravariant functor,
then

Rn F(M) = Rn−i F(Ki−1)

for 0 ≤ i < n.

Proof. Suppose 0 < ℓ ≤ n. Notice that

(2.3) · · · → Pn+1
dn+1−−−→ Pn → · · ·

dℓ+1−−−→ Pℓ
dℓ−→ Kℓ−1 → 0

is a projective resolution for Kℓ−1. Define a chain complex P (−ℓ)• by truncating
P• and shifting the indices. That is, P (−ℓ)i = Pℓ+i and d(−ℓ)i = dℓ+i, for each
i ≥ 0. Using this notation, (2.3) becomes
(2.4)

· · · → P (−ℓ)n−ℓ+1
d(−ℓ)n−ℓ+1−−−−−−−→ P (−ℓ)n−ℓ → · · ·

d(−ℓ)1−−−−→ P (−ℓ)0
d(−ℓ)0−−−−→ Kℓ−1 → 0

By Theorem 12.2.18, we may compute the (n − ℓ)th right derived group of Kℓ−1
using the projective resolution (2.4). The sequences (2.3) and (2.4) agree if we
ignore the indexes. Applying F and taking cohomology yields

Rn−ℓ F(Kℓ−1) = Rn F(M)
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as required. □

2.7. The Long Exact Sequence.

Lemma 12.2.20. Suppose

0→ A
σ−→ B

τ−→ C → 0

is a short exact sequence of R-modules, A→ I• is an injective resolution of A, and
C → K• is an injective resolution of C. Then there exists an injective resolution
B → J• for B and morphisms σ and τ such that

0→ I•
σ−→ J•

τ−→ K• → 0

is a short exact sequence of cochain complexes. Moreover, for each n ≥ 0 the short
exact sequence

0→ In
σn−−→ Jn

τn−→ Kn → 0

is split exact.

Proof. Start with the diagram

0

��

0

��
0 // A

α

��

σ // B
τ // C

γ

��

// 0

I0 K0

where the horizontal row is exact, and I0 and K0 are injectives. Because I0 is
injective, there exists β1 : B → I0 such that β1σ = α. Let β2 = γτ . Let β : B →
I0 ⊕K0 be defined by x 7→ (β1(x), β2(x)). Let J0 = I0 ⊕K0 and let σ0 and τ0 be
the injection and projection maps. The diagram

0

��

0

��

0

��
0 // A

α

��

σ // B

β

��

τ // C

γ

��

// 0

0 // I0
σ0
// J0 τ0

// K0 // 0

commutes and the rows are exact. Since α and γ are one-to-one and the diagram
commutes, β is one-to-one. The Snake Lemma (Theorem 6.6.2) says that

0→ cokerα
σ−→ cokerβ

τ−→ coker γ → 0

is a short exact sequence. The proof follows by induction. □

Theorem 12.2.21. Suppose

0→ A
σ−→ B

τ−→ C → 0

is a short exact sequence of R-modules and F : RM→ ZM is an additive functor.
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(1) If F is covariant, then there exists a long exact sequence of right derived
groups

0→ R0 F(A)
σ−→ R0 F(B)

τ−→ R0 F(C)
δ0−→ R1 F(A)

σ−→ R1 F(B)
τ−→ R1 F(C)

δ1−→ · · ·

· · · τ−→ Rn−1 F(C)
δn−1

−−−→ Rn F(A)
σ−→ Rn F(B)

τ−→ Rn F(C)
δn−→ Rn+1 F(A)→ · · · .

(2) If F is contravariant, then there exists a long exact sequence of right de-
rived groups

0→ R0 F(C)
τ−→ R0 F(B)

σ−→ R0 F(A)
δ0−→ R1 F(C)

τ−→ R1 F(B)
σ−→ R1 F(A)

δ1−→ · · ·

· · · σ−→ Rn−1 F(A)
δn−1

−−−→ Rn F(C)
τ−→ Rn F(B)

σ−→ Rn F(A)
δn−→ Rn+1 F(C)→ · · · .

(3) The either case, the functor R0 F is left exact.

Proof. (1): Start with injective resolutions A → I• for A and C → K• for
C. Use Lemma 12.2.20 to construct an injective resolution B → J• for B and
morphisms σ and τ such that

0→ I•
σ−→ J•

τ−→ K• → 0

is a short exact sequence of cochain complexes. Applying the functor,

(2.5) 0→ F(I•)
σ−→ F(J•)

τ−→ F(K•)→ 0

is a short exact sequence of cochain complexes because for each n

0→ In
σn−−→ Jn

τn−→ Kn → 0

is split exact. The result follows from Theorem 12.2.10 applied to (2.5).
(2): Start with projective resolutions P• → A for A and R• → C for C. Use

Lemma 12.1.21 to construct a projective resolution Q• → B for B and morphisms
σ and τ such that

0→ P•
σ−→ Q•

τ−→ R• → 0

is a short exact sequence of chain complexes. Applying the functor,

(2.6) 0→ F(R•)
σ−→ F(Q•)

τ−→ F(P•)→ 0

is a short exact sequence of cochain complexes because for each n

0→ Pn
σn−−→ Qn

τn−→ Rn → 0

is split exact. The result follows from Theorem 12.2.10 applied to (2.6).
(3): This follows from Theorem 12.2.10. The cochain complex A• is zero in

degrees i < 0, hence the sequence

0→ R0 F(A)→ R0 F(B)→ R0 F(C)

is exact. □
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Lemma 12.2.22. (The Cube Lemma) Let

A //

α

��

��

B
β

~~

��

E //

  

��

F

~~

��

K
a //

b
��

L

d
��

M
c // N

G

>>

// H

``

C

γ
??

// D

δ

``

be a diagram of R-module homomorphisms. Let K,L,M,N be the cokernels of
α, β, γ, δ respectively. If the outer cube is commutative, then there exist unique
homomorphisms a, b, c, d such that the overall diagram commutes.

Proof. There is a unique a : K → L such that the diagram

A

��

α // E

��

// K

a

��

// 0

B
β // F // L // 0

commutes. Likewise for b : K → M , c : M → N , and d : L → N . To finish the
proof, we show that the square

K

b
��

a // L

d
��

M
c // N

commutes. Look at the composite homomorphism

E → K
a−→ L

d−→ N

which factors into

E → F → L
d−→ N

which factors into

E → F → H → N

which factors into

E → G→ H → N

which factors into

E → G→M
c−→ N

which factors into

E → K
b−→M

c−→ N.
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Since E → K is onto, this proves da = cb. □

Lemma 12.2.23. Suppose

0 // A
σ //

a

��

B
τ //

b

��

C //

c

��

0

0 // A′
σ′ // B′

τ′ // C′ // 0

is a commutative diagram of R-modules, with exact rows. Suppose we are given
injective resolutions for the four corners A → I•, C → K•, A′ → I′

•, and C′ →
K′
•. Then there exist injective resolutions B → J• and B′ → J′

• and morphisms
such that the diagram of cochain complexes

0 // I•
σ //

a

��

J•
τ //

b

��

K• //

c

��

0

0 // I•′
σ′ // J•′

τ′ // K•′ // 0

is commutative with exact rows.

Proof. The morphisms a : I• → I•′ and c : K• → K•′ exist by Theo-
rem 12.2.13. The injective resolutions B → J•, B′ → J•′ and the remaining
morphisms are constructed iteratively. The reader should verify the inductive step,
which is similar to the basis step given below.

Start with the commutative diagram

A

d

��

a

~~

σ // B
b

~~

τ // C

f

��

c

}}
A′

d′

��

σ′ // B′
τ′ // C′

f′

��

I0

a0

��

K0

c0

}}
I0′ K0

′

The maps d, d′, f, f′, σ, σ′ are one-to-one and τ, τ′ are onto. TheR-modules I0,K0, I0′ ,K
0
′

are injective. Because I0 is injective, there exists e1 : B → I0 such that e1σ = d.
Let e2 = fτ . Because I0′ is injective, there exists e1′ : B′ → I0′ such that e1′ σ′ = d′.
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Let e2′ = f′τ′. The diagram

I0

a0

��

A
σ //

d

``

a

��

B

b

��

fτ //

e1

gg

K0

A′
d′

��

τ ′
// B′

e1′ww
I0′

is not necessarily commutative. The row A→ B → K0 is exact. Notice that

(a0e1 − e1′ b)σ = a0d− e1′ τ′a
= a0d− d′a
= 0

so (a0e1 − e1′ b) : B/A → I0′ is well defined. Since I0′ is injective, there exists e3 :
K0 → I0′ such that e3fτ = a0e1 − e1′ b. Set J0 = I0 ⊕K0 and define e : B → J0 by
x 7→ (e1(x), e2(x)). Set J0

′ = I0′ ⊕K0
′ and define e′ : B′ → J0

′ by x 7→ (e1′ (x), e
2
′ (y)).

Let σ0, σ0
′ be the injection maps and let τ0, τ0′ be the projection maps. The diagram

0 // A

d
��

σ // B

e
��

τ // C //

f
��

0

0 // I0
σ0
// J0 τ0

// K0 // 0

commutes, the top row is split exact and e is one-to-one. The diagram

0 // A′

d′
��

σ′ // B′

e′

��

τ′ // C′

f′
��

// 0

0 // I0′
σ0
′ // J0

′
τ0
′ // K0

′
// 0

commutes, the top row is split exact, and e′ is one-to-one. Define b0 : J0 → J0
′ by

the assignment (x, y) 7→ (a0(x) − e3(y), c0(y)). The reader should verify that the
diagram

B

e

��

b // B′

e′

��
J0 b0 // J0

′

commutes. Let K,L,M be the cokernels of d, e, f respectively. Let K′, L′,M′ be
the cokernels of d′, e′, f′ respectively. According to Lemma 12.2.22 there are unique
homomorphisms connecting the cokernels to the rest of the diagram. The overall
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diagram

A

~~

//

��

B //

��

~~

C

}}

��

A′ //

��

B′

��

// C′

��

I0

��

��

// J0 //

��

~~

K0

}}

��

I0′ //

��

J0
′

��

// K0
′

��

K

~~

// L

~~

// M

}}
K′ // L′ // M′

commutes, which completes the basis step. The reader should verify the inductive
step and complete the proof. □

Theorem 12.2.24. In the long exact sequence of Theorem 12.2.21, the con-
necting homomorphisms δ are natural. That is, given a commutative diagram

0 // A
σ //

a

��

B
τ //

b

��

C //

c

��

0

0 // A′
σ′ // B′

τ′ // C′ // 0

of R-modules, with exact rows the following are true.

(1) If F is covariant, the diagram

Rn F(C)
δn //

c

��

Rn+1 F(A)

a

��
Rn F(C′)

δn // Rn+1 F(A′)

commutes for all n ≥ 0.
(2) If F is contravariant, the diagram

Rn F(A)
δn //

c

��

Rn+1 F(C)

a

��
Rn F(A′)

δn // Rn+1 F(C′)

commutes for all n ≥ 0.

Proof. (1): Use Lemma 12.2.23 to get the two short exact sequences of in-
jective resolutions. The split exact rows remain exact after applying F. Use Theo-
rem 12.2.11.
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(2) Use Lemma 12.1.24 to get the two short exact sequences of projective resolu-
tions. The split exact rows remain exact after applying F. Use Theorem 12.2.11. □

2.8. Exercises.

Exercise 12.2.25. If F : RM→ ZM is an exact covariant functor, then for any
left R-module A, Ri F(A) = 0 for all i ≥ 1.

Exercise 12.2.26. If F : RM→ ZM is an exact contravariant functor, then for
any left R-module A, Ri F(A) = 0 for all i ≥ 1.

Exercise 12.2.27. Let F : RM→ ZM be a left exact covariant functor.

(1) For any left R-module A, R0 F(A) = F(A).
(2) For any short exact sequence of R-modules 0 → A → B → C → 0, there

is a long exact sequence of cohomology groups

0→ F(A)→ F(B)→ F(C)
δ0−→ R1 F(A)→ R1 F(B)→ R1 F(C)

δ1−→ · · ·

Exercise 12.2.28. Let F : RM→ ZM be a left exact contravariant functor.

(1) For any left R-module A, R0 F(A) = F(A).
(2) For any short exact sequence of R-modules 0 → A → B → C → 0, there

is a long exact sequence of cohomology groups

0→ F(C)→ F(B)→ F(A)
δ0−→ R1 F(C)→ R1 F(B)→ R1 F(A)

δ1−→ · · ·

Exercise 12.2.29. If E is an injective R-module, and F : RM → ZM is a
covariant functor, then Ri F(E) = 0 for all i ≥ 1.

Exercise 12.2.30. If P is a projective R-module, and F : RM → ZM is a
contravariant functor, then Ri F(P ) = 0 for all i ≥ 1.

2.9. Right Derived Groups of an Acyclic Resolution. Let F : RM →
ZM be a left exact additive functor. We say that the left R-module C is F-acyclic
in case Rn F(C) = 0 for all n ≥ 1. Theorem 12.2.31 says that the right derived
groups Rn F(M) may be computed using a resolution of M by F-acyclic modules.

Theorem 12.2.31. Let M be a left R-module and F : RM → ZM a left exact
functor.

(1) If F is covariant and 0 → M → C• is a resolution of M by F-acyclic
modules, then

Rn F(M) ∼= Hn(F(C•))

for all n ≥ 0.
(2) If F is contravariant and C• →M → 0 is a resolution of M by F-acyclic

modules, then
Rn F(M) ∼= Hn(F(C•))

for all n ≥ 0.

Proof. (1): Define Kj to be ker{dj : Cj → Cj+1}, then K0 = M and there
is a short exact sequence

(2.7) 0→ Kj → Cj → Kj+1 → 0

for each j ≥ 0.
Step 1: There is an exact sequence

0→ FKj → FCj → FKj+1 → Hj+1(F(C•))→ 0
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for each j ≥ 0. Since F is left exact, (2.7) gives rise to the exact sequence

0→ FKj → FCj → FKj+1 → Xj → 0

where we take Xj to be the group that makes the sequence exact. The goal is to
prove Xj ∼= Hj+1(F(C•)). Apply the left exact functor F to the exact sequence
0→ Kj → Cj → Cj+1 to get the exact sequence 0→ FKj → FCj → FCj+1. This
shows FKj = Zj(FC•) for all j ≥ 0. The commutative diagram

Cj

""

dj // Cj+1

Kj+1

$$

;;

0

<<

0

gives rise to the commutative diagram

FCj

##

dj // FCj+1

FKj+1

::

0

::

Using this we see that Bj(FC•) ⊆ im{FKj+1 → FCj+1}. Therefore the diagram

FCj //

%%

FKj+1 // Xj // 0

Bj+1(FC•)

&&

88

0

99

0

commutes. But FKj+1 = Zj+1(FC•), which shows Xj ∼= Hj+1(FC•) for each j ≥ 0.
The reader should verify that Step 1 did not use the fact that the modules Cj are
acyclic.

Step 2: By Theorem 12.2.21, the short exact sequence (2.7) gives rise to the
long exact sequence

(2.8) · · · → Rn F(Cj)→ Rn F(Kj+1)
δn−→ Rn+1 F(Kj)→ Rn+1 F(Cj)→ · · · .

Because the modules Cj are acyclic, the connecting homomorphisms in (2.8) are
isomorphisms

(2.9) Rn F(Kj+1) ∼= Rn+1 F(Kj)

for all n ≥ 1 and j ≥ 0. Iterate (2.9) to get

(2.10) Rn+1 F(M) = Rn+1 F(K0) ∼= Rn F(K1) ∼= Rn−1 F(K2) ∼= · · · ∼= R1 F(Kn).



500 12. HOMOLOGICAL ALGEBRA

When n = 0, (2.8) looks like

(2.11) 0→ FKj → FCj → FKj+1 δ0−→ R1 FKj → 0.

Comparing (2.11) and (2.10) with Step 1 we get

Rj+1 F(M) ∼= Hj+1(FC•)

which finishes the proof of Part (1).
(2): Assume F is contravariant and

· · · d3−→ C2
d2−→ C1

d1−→ C0 →M → 0

is a long exact sequence of R-modules. Define C−1 to be M and take Kj to be
ker{dj : Cj → Cj−1}. There are short exact sequences

(2.12) 0→ Kj → Cj → Kj−1 → 0,

one for each j ≥ 0.
Step 1: There is an exact sequence

0→ FKj−1 → FCj → FKj → Hj+1(F(C•))→ 0

for each j ≥ 0. Since F is left exact, (2.12) gives rise to the exact sequence

0→ FKj−1 → FCj → FKj → Xj → 0

where we take Xj to be the group that makes the sequence exact. The goal is to

prove Xj ∼= Hj+1(F(C•)). Apply the left exact contravariant functor F to the exact
sequence

Cj+1
dj+1−−−→ Cj

dj−→ Kj−1 → 0

to get the exact sequence

0→ FKj−1 → FCj
Fdj+1−−−−→ FCj+1.

This shows
FKj−1 = ker(Fdj+1) = Zj(FC•)

for all j ≥ 0. The commutative diagram

Cj+1

""

dj+1 // Cj

Kj

!!

>>

0

<<

0

gives rise to the commutative diagram

0

""
FKj

##
FCj

<<

Fdj+1 // FCj+1
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Using this we see that im(Fdj+1) = Bj+1(FC•) ⊆ im{FKj → FCj+1} = Zj+1(FC•).
Therefore the diagram

FCj //

$$

FKj
// Xj // 0

Bj+1(FC•)

%%

::

0

99

0

commutes. But FKj = Zj+1(FC•), which shows Xj ∼= Hj+1(FC•) for each j ≥ 0.
The reader should verify that Step 1 did not use the fact that the modules Cj are
acyclic.

Step 2: By Theorem 12.2.21, the short exact sequence (2.12) gives rise to the
long exact sequence

(2.13) · · · → Rn F(Cj)→ Rn F(Kj)
δn−→ Rn+1 F(Kj−1)→ Rn+1 F(Cj)→ · · · .

Because the modules Cj are acyclic, the connecting homomorphisms δn are isomor-
phisms

(2.14) Rn F(Kj) ∼= Rn+1 F(Kj−1)

for all n ≥ 1 and j ≥ 0. Iterate (2.14) to get
(2.15)

Rn+1 F(M) = Rn+1 F(K−1) ∼= Rn F(K0) ∼= Rn−1 F(K1) ∼= · · · ∼= R1 F(Kn−1).

When n = 0, (2.13) looks like

(2.16) 0→ FKj−1 → FCj → FKj
δ0−→ R1 FKj−1 → 0.

Comparing (2.16) and (2.15) with the exact sequence of Step 1 we get

Rj+1 F(M) ∼= Hj+1(FC•)

which finishes the proof of Part (2). □

2.10. Bifunctors. The reader is referred to Definition 12.1.30 for the def-
inition of a bifunctor. In this section we restrict our attention to a bifunctor
F : RM × RM → ZM which is left exact contravariant in the first variable and
left exact covariant in the second variable.

Lemma 12.2.32. Let M be a fixed R-module. Suppose F : RM× RM→ ZM is
a bifunctor such that F1(·,M) is left exact contravariant and F2(M, ·) is left exact
covariant. For any short exact sequence of R-modules 0→ A→ B → C → 0, there
are long exact sequences of groups

0→ F(C,M)→ F(B,M)→ F(A,M)
δ0−→

R1 F1(C,M)→ R1 F1(B,M)→ R1 F1(A,M)
δ1−→ · · ·
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and

0→ F(M,A)→ F(M,B)→ F(M,C)
δ0−→

R1 F2(M,A)→ R1 F2(M,B)→ R1 F2(M,C)
δ1−→ · · · .

Proof. Follows straight from Exercises 12.2.27 and Exercises 12.2.28. □

Theorem 12.2.33. Suppose F : RM×RM→ ZM is a bifunctor which satisfies
the following.

(1) For any R-moduleM , F1(·,M) is left exact contravariant and R1 F1(M, I) =
0 for any injective R-module I.

(2) For any R-moduleM , F2(M, ·) is left exact covariant and R1 F2(P,M) = 0
for any projective R-module P .

Then the two right derived groups Rn F1(A,B) and Rn F2(A,B) are naturally iso-
morphic for all R-modules A and B and all n ≥ 0.

Proof. By Exercises 12.2.27 and Exercises 12.2.28, we know R0 F1(A,B) =
F(A,B) = R0 F2(A,B). Let P• → A → 0 be a projective resolution for A and
0 → B → Q• an injective resolution for B. Define P−1 to be A and Kj to be
ker{dj : Pj → Pj−1}. Define Lj to be ker{dj : Qj → Qj+1}. For each pair (i, j),
consider the two short exact sequences

0→ Ki → Pi → Ki−1 → 0(2.17)

0→ Lj → Qj → Lj+1 → 0(2.18)

To sequence (2.17) apply Lemma 12.2.32 three times to get three exact sequences

0→ F(Ki−1, L
j)→ F(Pi, L

j)
α−→ F(Ki, L

j)
δ−→ R1 F1(Ki−1, L

j)→ R1 F1(Pi, L
j)

0→ F(Ki−1, Q
j)→ F(Pi, Q

j)
β−→ F(Ki, Q

j)
δ−→ R1 F1(Ki−1, Q

j)→ R1 F1(Pi, Q
j)

0→ F(Ki−1, L
j+1)→ F(Pi, L

j+1)
γ−→ F(Ki, L

j+1)
δ−→ R1 F1(Ki−1, L

j+1)→ R1 F1(Pi, L
j+1)

By assumption, R1 F1(Ki−1, Q
j) = 0 because Qj is injective, hence β is onto. By

Exercise 12.2.30, R1 F1(Pi, L
j) = R1 F1(Pi, L

j+1) = 0 because Pi is projective. To
sequence (2.18) apply Lemma 12.2.32 three times to get three exact sequences

0→ F(Ki−1, L
j)→ F(Ki−1, Q

j)
ρ−→ F(Ki−1, L

j+1)
δ−→ R1 F2(Ki−1, L

j)→ R1 F2(Ki−1, Q
j)

0→ F(Pi, L
j)→ F(Pi, Q

j)
σ−→ F(Pi, L

j+1)
δ−→ R1 F2(Pi, L

j)→ R1 F2(Pi, Q
j)

0→ F(Ki, L
j)→ F(Ki, Q

j)
τ−→ F(Ki, L

j+1)
δ−→ R1 F2(Ki, L

j)→ R1 F2(Ki, Q
j)

By assumption R1 F2(Pi, L
j) = 0 because Pi is projective, hence σ is onto. By

Exercise 12.2.29, R1 F2(Ki, Q
j) = R1 F2(Ki−1, Q

j) = 0 because Qj is injective.
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The diagram

F(Ki−1, L
j) //

��

F(Ki−1, Q
j)

ρ //

��

F(Ki−1, L
j+1) //

��

R1 F2(Ki−1, L
j)

F(Pi, L
j)

α

��

// F(Pi, Qj)
σ //

β

��

F(Pi, L
j+1)

γ

��

// 0

F(Ki, L
j) //

��

F(Ki, Q
j)

τ //

��

F(Ki, L
j+1) //

��

R1 F2(Ki, L
j)

R1 F1(Ki−1, L
j) 0 R1 F1(Ki−1, L

j+1)

commutes, where the three rows and three columns are the exact sequences from
above. Apply the Snake Lemma (Theorem 6.6.2) to see that

(2.19) R1 F2(Ki−1, L
j) ∼= R1 F1(Ki−1, L

j).

Since β and σ are onto, it follows that

(2.20) R1 F2(Ki, L
j) = R1 F1(Ki−1, L

j+1).

Combine (2.20) and (2.19) to get

R1 F1(Ki−1, L
j+1) ∼= R1 F2(Ki, L

j) ∼= R1 F1(Ki, L
j).

Iterate this n times to get
(2.21)

R1 F1(A,L
n−1) ∼= R1 F1(K−1, L

n−1) ∼= R1 F1(Kn−2, L
0) ∼= R1 F1(Kn−2, B).

Combine (2.21), (2.19), Theorem 12.2.17, and Theorem 12.2.19 to get

Rn F2(A,B) ∼= R1 F2(A,L
n−1) (Theorem 12.2.17)

∼= R1 F1(A,L
n−1) (2.19)

∼= R1 F1(Kn−2, B) (2.21)

∼= Rn F1(A,B) (Theorem 12.2.19).

□
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3. Introduction to Tor and Ext Groups

3.1. Introduction to Tor groups. Throughout this section, R is an arbi-
trary ring. Let A be a right R-module and B a left R-module. The assignment
(A,B) 7→ A⊗R B is a bifunctor T : MR × RM→ ZM which is covariant, additive
(Exercise 12.1.16), and right exact (Lemma 6.4.18) in both variables. If P is a
projective right R-module, then T2(P, ·) is an exact functor (Exercise 6.4.31). By
Exercise 12.1.26, Ln T2(P,B) = 0 for all n ≥ 1 and all B. Likewise, if Q is a
projective left R-module, then Ln T1(A,Q) = 0 for all n ≥ 1 and all A.

Definition 12.3.1. For n ≥ 0 define

TorRn (A,B) = Ln T1(A,B) ∼= Ln T2(A,B)

where the last isomorphism is due to Theorem 12.1.34. More specifically, if P• → A
is a projective resolution for A and Q• → B is a projective resolution for B, then

TorRn (A,B) = Hn(P• ⊗R B)

= Hn(A⊗R Q•).

Lemma 12.3.2. Let M be a right R-module and N a left R-module.

(1) If M is flat or N is flat, then TorRn (M,N) = 0 for all n ≥ 1.
(2) If 0→ A→ B → C → 0 is a short exact sequence of left R-modules, then

· · · → TorRn (M,A)→ TorRn (M,B)→ TorRn (M,C)
∂−→ TorRn−1(M,A)→ · · ·

· · · → TorR1 (M,C)
∂−→M ⊗R A→M ⊗R B →M ⊗R C → 0

is a long exact sequence of abelian groups.
(3) If 0 → A → B → C → 0 is a short exact sequence of right R-modules,

then

· · · → TorRn (A,N)→ TorRn (B,N)→ TorRn (C,N)
∂−→ TorRn−1(A,N)→ · · ·

· · · → TorR1 (C,N)
∂−→ A⊗R N → B ⊗R N → C ⊗R N → 0

is a long exact sequence of abelian groups.
(4) If C• → M → 0 is a resolution of M by flat R-modules Ci and if D• →

N → 0 is a resolution of N by flat R-modules Di, then

TorRn (M,N) = Hn(C• ⊗R N)

= Hn(M ⊗R D•).

(5) For all n ≥ 0, TorRn (M,N) ∼= TorR
o

n (N,M).

(6) For a fixed M , if TorR1 (M,N) = 0 for all N , then M is flat.
(7) If I is an index set and {Mi} is a collection of right R-modules, then

TorRn

(⊕
i

Mi, N

)
∼=
⊕
i

TorRn (Mi, N)

for all n ≥ 0.
(8) If I is a directed index set and {Mi} is a directed system of right R-

modules, then

TorRn
(
lim−→Mi, N

) ∼= lim−→TorRn (Mi, N)

for all n ≥ 0.
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Proof. (1): Tensoring with a flat R-module defines an exact functor. This
follows from Exercise 12.1.26.

(2) and (3): Follow straight from Exercise 12.1.27.
(4): By Part (1) flat modules are acyclic for the tensor functor. This follows

from Theorem 12.1.29.
(5): Start with a projective resolution P• →M and use Lemma 6.4.16 to show

Hn(P• ⊗R N) ∼= Hn(N ⊗Ro P•).

(6): Follows from Part (2).
(7): Let 0 → K → P → N → 0 be a short exact sequence, where P is

projective. By Part (1) Torn(X,P ) = 0 for all X and for all n ≥ 1. By Part (2),
for each i ∈ I there is a long exact sequence

(3.1) 0→ TorRn+1(Mi, N)
∂−→ TorRn (Mi,K)→ 0→ · · ·

· · · → 0→ TorR1 (Mi, N)
∂−→Mi ⊗R K →Mi ⊗R P →M ⊗R N → 0

Another long exact sequence is

(3.2) 0→ TorRn+1

(⊕
i

Mi, N

)
∂−→ TorRn

(⊕
i

Mi,K

)
→ 0→ · · ·

· · · → 0→ TorR1

(⊕
i

Mi, N

)
∂−→
⊕
i

Mi⊗RK →
⊕
i

Mi⊗RP →
⊕
i

Mi⊗RN → 0.

Take direct sums of (3.1) and combine with (3.2). In degrees one and zero, we get
the diagram

0 //⊕
i Tor

R
1 (Mi, N)

∂ //

γ

��

⊕
i

(
Mi ⊗R K

)
//

α

��

⊕
i

(
Mi ⊗R P

)
β

��
0 // TorR1

(⊕
iMi, N

)
∂ //⊕

iMi ⊗R K //⊕
iMi ⊗R P

which is commutative and has exact rows. By Lemma 6.4.15, α and β are iso-
morphisms. Therefore γ is an isomorphism. In degrees n + 1 and n, we get the
diagram

0 //⊕
i Tor

R
n+1(Mi, N)

∂ //

γ
��

⊕
iTor

R
n (Mi,K) //

α
��

0

0 // TorRn+1

(⊕
iMi, N

)
∂ // TorRn

(⊕
iMi,K

)
// 0

which is commutative and has exact rows. By induction on n we assume α is an
isomorphism. Therefore γ is an isomorphism.
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(8): Use the same notation as in the proof of Part (7). Another long exact
sequence is

(3.3) 0→ TorRn+1

(
lim−→Mi, N

) ∂−→ TorRn
(
lim−→Mi,K

)
→ 0→ · · ·

· · · → 0→ TorR1
(
lim−→Mi, N

) ∂−→ lim−→Mi⊗RK → lim−→Mi⊗RP → lim−→Mi⊗RN → 0.

Take direct limits of (3.1) and combine with (3.3). By Theorem 6.8.6, in degrees
one and zero, we get the diagram

0 // lim−→TorR1 (Mi, N)
∂ //

γ

��

lim−→
(
Mi ⊗R K

)
//

α

��

lim−→

(
Mi ⊗R P

)
β

��
0 // TorR1

(
lim−→Mi, N

) ∂ // lim−→Mi ⊗R K // lim−→Mi ⊗R P

which is commutative and has exact rows. By Corollary 6.8.10, α and β are iso-
morphisms. Therefore γ is an isomorphism. In degrees n + 1 and n, we get the
diagram

0 // lim−→TorRn+1(Mi, N)
∂ //

γ

��

lim−→TorRn (Mi,K) //

α

��

0

0 // TorRn+1

(
lim−→Mi, N

) ∂ // TorRn
(
lim−→Mi,K

)
// 0

which is commutative and has exact rows. By induction on n we assume α is an
isomorphism. Therefore γ is an isomorphism. □

Lemma 12.3.3. Let R be any ring and M a left R-module. The following are
equivalent.

(1) M is a flat R-module.

(2) For every right ideal I of R, TorR1 (R/I,M) = 0.

(3) For every finitely generated right ideal I of R, TorR1 (R/I,M) = 0.

(4) For every right R-module N , TorR1 (N,M) = 0.

(5) For every finitely generated right R-module N , TorR1 (N,M) = 0.

Proof. Is left to the reader. □

Lemma 12.3.4. Let R be a commutative ring and M and N two R-modules.

(1) TorRn (M,N) is an R-module.

(2) TorRn (M,N) ∼= TorRn (N,M).
(3) If R → S is a homomorphism of commutative rings such that S is a flat

R-algebra, then

TorRn (M,N)⊗R S = TorSn(M ⊗R S,N ⊗R S)

for all n ≥ 0.
(4) If P ∈ SpecR, then

TorRn (M,N)P = TorRP
n (MP , NP )

for all n ≥ 0.
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Proof. (1), (2) and (4): are left to the reader.
(3): Let P• → M → 0 be a projective resolution of M . Since S is a flat

R-algebra, ( ) ⊗R S is an exact functor. Therefore P• ⊗R S → M ⊗R S → 0 is a
projective resolution of the S-module M ⊗R S. It follows that

TorRn (M,N)⊗R S = Hn(P• ⊗R N)⊗R S

and

TorSn(M ⊗R S,N ⊗R S) = Hn
(
(P• ⊗R S)⊗S (N ⊗R S)

)
= Hn

(
(P• ⊗R N)⊗R S

)
.

By Exercise 12.1.7, Hn(P• ⊗R N)⊗R S = Hn
(
(P• ⊗R N)⊗R S

)
. □

Lemma 12.3.5. Let R → S be a homomorphism of commutative rings. Let M
be an S-module and N an R-module.

(1) For all n ≥ 0, TorRn (M,N) is an S-module.
(2) If R and S are noetherian, N is finitely generated over R, andM is finitely

generated over S, then TorRn (M,N) is finitely generated over S.
(3) If P ∈ SpecS and Q = P ∩R, then

TorRn (M,N)⊗S SP = TorRQ
n

(
MP , NQ

)
= TorRn

(
MP , N

)
.

Proof. (1): Let A• → N be a projective resolution ofN . The functor (·)⊗RM
maps the category MR to the category MS , so for each n, Hn(A• ⊗RM) is an S-
module.

(2): By Exercise 12.3.10, let A• → N be a resolution of N where each Ai is a
finitely generated free R-module. Then Ai ⊗R M is finitely generated over S. It
follows from Corollary 7.6.12 that Hn(A• ⊗R M) is a finitely generated S-module
for each n.

(3): Let A• → N be a projective resolution of N . Then

TorRn (M,N)⊗S SP = Hn(A• ⊗RM)⊗S SP
= Hn

(
A• ⊗RM ⊗S SP

)
(by Exercise 12.1.7)

= TorRn
(
MP , N

)
.

Continue from the same starting point,

TorRn (M,N)⊗S SP = Hn(A• ⊗RM)⊗S SP
= Hn

(
A• ⊗RM ⊗S SP

)
(by Exercise 12.1.7)

= Hn
(
(A• ⊗R RQ)⊗RQ

(M ⊗S SP )
)

= TorRQ
n

(
MP , NQ

)
where the last equality holds because A• ⊗R RQ is a projective resolution of the
RQ-module N ⊗R RQ. □

Corollary 12.3.6. Let R→ S be a homomorphism of commutative rings. Let
M be an S-module. The following are equivalent.

(1) M is flat when viewed as an R-module.
(2) MP is a flat RQ-module for all P ∈ SpecS, if Q = P ∩R.
(3) Mm is a flat Rn-module for all m ∈ MaxS, if n = m ∩R.
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Proof. (1) implies (2): Let N be any RQ-module. Then NQ = N⊗RRQ = N .

By Lemma 12.3.5, Tor
RQ

1

(
MP , NQ

)
=
(
TorR1 (M,N)

)
P
= 0.

(2) implies (3): is trivially true.
(3) implies (1): Let N be any R-module, m ∈ MaxS, and set n = m ∩ R. It

follows from Lemma 12.3.5 that
(
TorR1 (M,N)

)
m
= TorRn

1

(
Mm, Nn

)
= 0. □

3.2. Tor and Torsion. In this section R is an integral domain and K is the
field of fractions of R. The reader is referred to Definition 4.3.4 for the definition
of torsion module.

Lemma 12.3.7. Let R be an integral domain, K the field of fractions of R, and
M an R-module.

(1) TorRn (K/R,M) = 0 for all n ≥ 2.

(2) If M is torsion free, then TorR1 (K/R,M) = 0.
(3) If M is a torsion R-module, then the connecting homomorphism induces

a natural isomorphism TorR1 (K/R,M) ∼=M of R-modules.

Proof. (1): The exact sequence of R-modules 0→ R→ K → K/R→ 0 gives
rise to the long exact sequence

(3.4) · · · → TorRn (K,M)→ TorRn (K/R,M)
∂n−→ TorRn−1(K/R,M)→ . . .

· · · → TorR1 (K,M)→ TorR1 (K/R,M)
∂1−→ R⊗RM → K⊗RM → K/R⊗RM → 0

of R-modules (Lemma 12.3.2). Clearly R is flat, and by Lemma 7.1.4, K is flat. It

follows from Lemma 12.3.3 that TorRi (R,M) = TorRi (K,M) = 0 for i ≥ 1.

(2): Since TorR1 (K,M) = 0, ∂1 is one-to-one. By Lemma 7.1.1, M → K ⊗RM
is one-to-one, so ∂1 = 0.

(3): By Exercise 6.4.45, K ⊗R M = 0. The connecting homomorphism ∂1,
which is natural by Theorem 12.1.25, is an isomorphism. □

3.3. Exercises.

Exercise 12.3.8. Let 0 → A → B → C → 0 be a short exact sequence of
R-modules. If A and C are flat, then B is flat.

Exercise 12.3.9. Use Lemma 12.3.5 to give another proof of Proposition 7.8.2.

Exercise 12.3.10. If R is noetherian and M is a finitely generated R-module,
then there exists a resolution P• → M → 0 of M such that each Pi is a finitely
generated free R-module.

3.4. Introduction to Ext Groups. Throughout this section, R is an arbi-
trary ring. The assignment (A,B) 7→ HomR(A,B) is a bifunctor E : RM×RM→ Z-
modules. Let A and B be left R-modules. By Proposition 6.5.5, the functor E1(·, B)
is left exact contravariant whereas the functor E2(A, ·) is left exact covariant. By
Proposition 6.5.5, if P is a projective R-module, the functor E2(P, ·) is exact. By
Exercise 12.2.25, Rn E2(P,B) = 0 for all n ≥ 1 and all B. By Theorem 6.7.2,
if Q is an injective R-module, the functor E1(·, Q) is exact. By Exercise 12.2.26,
Rn E1(A,Q) = 0 for all n ≥ 1 and all A.

Definition 12.3.11. Let A and B be left R-modules. For n ≥ 0 define

ExtnR(A,B) = Rn E1(A,B) ∼= Rn E2(A,B)
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where the last isomorphism is due to Theorem 12.2.33. More specifically, if P• → A
is a projective resolution for A and B → Q• is an injective resolution for B, then

ExtnR(A,B) = Hn
(
HomR(P•, B)

)
= Hn

(
HomR(A,Q

•)
)
.

Proposition 12.3.12. Let M and N be left R-modules.

(1) Ext0R(M, ·) = HomR(M, ·) and Ext0R(·, N) = HomR(·, N).
(2) If 0→ A→ B → C → 0 is a short exact sequence of left R-modules, then

there are long exact sequences

0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C)
δ0−→ Ext1R(M,A)→ · · ·

· · · → ExtnR(M,A)→ ExtnR(M,B)→ ExtnR(M,C)
δn−→ Extn+1

R (M,A)→ · · ·

and

0→ HomR(C,N)→ HomR(B,N)→ HomR(A,N)
δ0−→ Ext1R(C,N)→ · · ·

· · · → ExtnR(C,N)→ ExtnR(B,N)→ ExtnR(A,N)
δn−→ Extn+1

R (C,N)→ · · ·

of abelian groups.
(3) If M is projective, then ExtnR(M,N) = 0 for all n ≥ 1. Conversely, if

Ext1R(M,N) = 0 for all N , then M is projective.
(4) If N is injective, then ExtnR(M,N) = 0 for all n ≥ 1. Conversely, if

Ext1R(M,N) = 0 for all M , then N is injective.
(5) If {Mi | i ∈ I} is a collection of R-modules, then

ExtnR

(⊕
i∈I

Mi, N
)
∼=
∏
i∈I

ExtnR(Mi, N)

for all n ≥ 0.
(6) If {Nj | j ∈ J} is a collection of R-modules, then

ExtnR

(
M,
∏
j∈J

Nj

)
∼=
∏
j∈J

ExtnR(M,Nj)

for all n ≥ 0.

Proof. (1): Follows straight from Exercise 12.2.27 (1) and Exercise 12.2.28 (1).
(2): Follows straight from Exercise 12.2.27 (2) and Exercise 12.2.28 (2).
(3): Follows straight from Exercise 12.2.30, Proposition 6.5.5 (2), and the exact

sequence of Part (2).
(4): Follows straight from Exercise 12.2.29, Theorem 6.7.2, and the exact se-

quence of Part (2).
(5): Let 0→ N → Q→ C → 0 be a short exact sequence, where Q is injective.

By Part (4) ExtnR(X,Q) = 0 for all X and for all n ≥ 1. By Part (2), for each i ∈ I
there is a long exact sequence

(3.5)

0→ HomR(Mi, N)→ HomR(Mi, Q)→ HomR(Mi, C)
δ0−→ Ext1R(Mi, N)→ 0→

· · · → 0→ ExtnR(Mj , C)
δn−→ Extn+1

R (Mj , N)→ 0→ · · ·
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Another long exact sequence is

(3.6) 0→ HomR

(⊕
i∈I

Mi, N
)
→ HomR

(⊕
i∈I

Mi, Q
)
→

HomR

(⊕
i∈I

Mi, C
)

δ0−→ Ext1R

(⊕
i∈I

Mi, N
)
→ 0→

· · · → 0→ ExtnR

(⊕
i∈I

Mi, C
)

δn−→ Extn+1
R

(⊕
i∈I

Mi, N
)
→ 0→ · · ·

Take direct products of (3.5) and combine with (3.6). In degrees zero and one we
get the diagram

HomR

(⊕
i∈IMi, Q

)
//

α

��

HomR

(⊕
i∈IMi, C

)
δ0 //

β

��

Ext1R

(⊕
i∈IMi, N

)
γ

��

// 0

∏
i∈I HomR(Mi, Q) // ∏

i∈I HomR(Mi, C)
δ0 // ∏

i∈I Ext
1
R(Mi, N) // 0

which commutes and has exact rows. By Proposition 6.5.8, α and β are isomor-
phisms. Therefore γ is an isomorphism. In degrees n and n+1 we get the diagram

0 // ExtnR
(⊕

i∈IMi, C
)

δn //

β

��

Extn+1
R

(⊕
i∈IMi, N

)
γ

��

// 0

0 // ∏
i∈I Ext

n
R(Mj , C)

δn // ∏
i∈I Ext

n+1
R (Mj , N) // 0

which commutes and has exact rows. By induction on n we assume β is an isomor-
phism. Therefore γ is an isomorphism.

(6): Start with a short exact sequence 0 → K → P → M → 0 where P is
projective. Proceed as in Part (5). □

Lemma 12.3.13. Let R be a commutative ring and M and N two R-modules.

(1) For all n ≥ 0 ExtnR(M,N) is an R-module.
(2) If R is noetherian, and M and N are finitely generated R-modules, then

for all n ≥ 0, ExtnR(M,N) is a finitely generated R-module.
(3) If R is noetherian, M is a finitely generated R-module, and R → S is a

homomorphism of commutative rings such that S is a flat R-algebra, then

ExtnR(M,N)⊗R S = ExtnS(M ⊗R S,N ⊗R S)

for all n ≥ 0. In particular, if P ∈ SpecR, then

ExtnR(M,N)P = ExtnRP
(MP , NP )

for all n ≥ 0.

Proof. (1) and (2): Are left to the reader.
(3): By Exercise 12.3.10 there exists a projective resolution P• → M → 0 of

M such that each Pi is a finitely generated free R-module. Since (·) ⊗R S is an
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exact functor, P• ⊗R S → M ⊗R S → 0 is a projective resolution of the S-module
M ⊗R S.

ExtnS(M ⊗R S,N ⊗R S) = Hn(HomS(P• ⊗R S,N ⊗R S))
= Hn(HomR(P•, N)⊗R S) (Proposition 7.5.8)

= Hn(HomR(P•, N))⊗R S (Exercise 12.2.7)

= ExtnR(M,N)⊗R S
□

Lemma 12.3.14. Let A ∈ RM, B ∈ SMR and C ∈ SM.

(1) If A is a projective left R-module, then there are isomorphisms of Z-
modules

ExtnS(B ⊗R A,C) ∼= HomR(A,Ext
n
S(B,C))

for all n ≥ 0.
(2) If the functor B⊗R (·) : RM→ SM maps projective R-modules to projec-

tive S-modules, then there are isomorphisms of Z-modules

ExtnS(B ⊗R A,C) ∼= ExtnR(A,HomS(B,C))

for all n ≥ 0.

In both instances, the isomorphisms are induced by the adjoint isomorphisms of
Theorem 6.5.10.

Proof. (1): Let C → I• be an injective resolution of C. By the adjoint
isomorphism,

(3.7) HomS(B ⊗R A, I•) ∼= HomR(A,HomS(B, I•))

is an isomorphism of complexes. Then ExtnS(B⊗RA,C) is the nth homology group
of the complex on the left hand side of (3.7). Since A is projective, HomR(A, ·) is
an exact covariant functor. Using Exercise 12.1.7, the nth homology group of the
complex on the right hand side of (3.7) is isomorphic to HomR(A,Ext

n
S(B,C)).

(2): Let P• → A be a projective resolution of the left R-module A. Then
B⊗R P• → B⊗R A is a projective resolution of the left S-module B⊗R A. By the
adjoint isomorphism,

(3.8) HomS(B ⊗R P•, C) ∼= HomR(P•,HomS(B,C))

is an isomorphism of complexes. Then ExtnS(B ⊗R A,C), which is the nth ho-
mology group of the complex on the left hand side of (3.8), is isomorphic to
ExtnR(A,HomS(B,C)), which is the nth homology group of the complex on the
right hand side of (3.8). □
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4. Cohomological Dimension of a Ring

Let R be a ring and M a left R-module. The projective dimension of M ,
written proj.dimRM , is the length of a shortest projective resolution for M . If
0 → Pn → · · · → P1 → P0 → M → 0 is a projective resolution of M , then
proj.dimR(M) ≤ n. It follows that M is projective if and only if proj.dimR(M) =
0. The injective dimension of M , written inj.dimRM , is the length of a shortest
injective resolution for M .

Lemma 12.4.1. (Schanuel’s Lemma) Let R be any ring and M a left R-module.
Suppose P and Q are projective R-modules such that the sequences

0→ K → P →M → 0

0→ L→ Q→M → 0

are exact. The R-modules K ⊕Q and L⊕ P are isomorphic.

Proof. Consider the diagram

0 // K
ϕ //

∃ρ
��

P
ψ //

∃η
��

M //

=

��

0

0 // L
α // Q

β // M // 0

with rows given. By Proposition 6.2.3 (3), there exists a homomorphism η such that
βη = ψ because P is projective. Now βηϕ = ψϕ = 0 so im ηϕ ⊆ kerβ = imα. Since
α is one-to-one, there exists ρ making the diagram commute. Define δ : K → P ⊕L
by δ(x) = (ϕ(x), ρ(x)). Since ϕ is one-to-one, so is δ. Define π : P ⊕ L → Q by
π(u, v) = η(u) − α(v). Since the diagram commutes, πδ = 0. The reader should
verify that the sequence

(4.1) 0→ K
δ−→ P ⊕ L π−→ Q→ 0

is exact. Since Q is projective, sequence (4.1) splits. □

Definition 12.4.2. Let R be any ring and M a left R-module. Let P• → M
be a projective resolution of M . Define Kn−1 to be the kernel of dn−1. Then

0→ Kn−1 → Pn−1 → · · ·
d1−→ P0

ϵ−→M → 0

is exact. Let K0 be the kernel of ϵ. We say Kn is the nth syzygy of M with respect
to the projective resolution P•.

Definition 12.4.3. If R is a ring and M and N are two left R-modules, then
we sayM and N are projectively equivalent in case there exist projective R-modules
P and Q such that M ⊕ P ∼= N ⊕Q.

Theorem 12.4.4. Let R be any ring andM a left R-module. Given a projective
resolution P• →M with syzygies {Kn} and another projective resolution Q• →M
with syzygies {Ln}, for each n ≥ 0, Kn and Ln are projectively equivalent.

Proof. Use induction on n. For n = 0, this is Lemma 12.4.1. The rest is left
to the reader. □

Theorem 12.4.5. Let R be any ring and M a left R-module. For any n ≥ 0,
the following are equivalent.
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(1) proj.dimR(M) ≤ n.
(2) For all R-modules N , ExtkR(M,N) = 0 for all k ≥ n+ 1.
(3) For all R-modules N , Extn+1

R (M,N) = 0.
(4) There exists a projective resolution P• →M with syzygies {Kn} such that

Kn−1 is projective.
(5) For any projective resolution P• → M with syzygies {Kn}, Kn−1 is pro-

jective.

Proof. (1) implies (2): Use a projective resolution for M of length n to com-

pute ExtkR(M,N) = 0 for all k ≥ n+ 1.
(2) implies (3): Is trivial.
(3) implies (4): Let P• → M be a projective resolution of M with syzygies

{Kn}. Then

(4.2) 0→ Kn−1 → Pn−1 → · · ·
d1−→ P0

ϵ−→M → 0

is exact. By Theorem 12.2.19, the groups Extn+1
R (M,N) and Ext1R(Kn−1, N) are

naturally isomorphic. By (3), both groups are zero and by Proposition 12.3.12 (3),
Kn−1 is a projective R-module.

(4) implies (5): Suppose we are given a projective resolution P• → M with
syzygies {Kn} such that Kn−1 is projective. Let Q• → M be another projective
resolution with syzygies {Ln}. By Theorem 12.4.4, there exist projectives P and
Q such that Kn−1⊕P ∼= Ln−1⊕Q. Being a direct summand of a projective, Ln−1
is projective by Proposition 6.2.3 (1).

(5) implies (1): Let P• → M be a projective resolution with syzygies {Kn}.
Then Kn−1 is projective. It follows that (4.2) is a projective resolution of M of
length less than or equal to n. □

Lemma 12.4.6. Let R be a commutative ring and M an R-module. For any
n ≥ 0, the following are equivalent.

(1) inj.dimR(M) ≤ n.
(2) For every ideal I of R, Extn+1

R (R/I,M) = 0.

Proof. (1) implies (2): Follows from Exercise 12.4.17.
(2) implies (1): Let M → E• be an injective resolution of the R-module M .

Define Kn to be the kernel of dn. The sequence

0→M
ϵ−→ E0 d0−→ E1 d1−→ · · · → En−1 → Kn → 0

is exact. Let I be an ideal of R. By Theorem 12.2.17, Extn+1
R (R/I,M) is naturally

isomorphic to Ext1R(R/I,K
n). By (2), Extn+1

R (R/I,M) = 0. By Exercise 12.4.18,
Kn is an injective R-module. There exists an injective resolution of M of length
less than or equal to n. □

Lemma 12.4.7. Let R be a noetherian ring and M a finitely generated left
R-module. The following are equivalent.

(1) M is a projective R-module.
(2) Ext1R(M,N) = 0 for all finitely generated left R-modules N .

Proof. (1) implies (2): Follows from Proposition 12.3.12 (3).
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(2) implies (1): By Corollary 7.6.12, M is finitely presented, so there exists an
exact sequence

(4.3) 0→ A
α−→ B →M → 0

such that B is a finitely generated free R-module and A is a finitely generated R-
module. By (2), Ext1R(M,A) = 0. The long exact sequence of Proposition 12.3.12 (2)
degenerates into the short exact sequence

0→ HomR(M,A)→ HomR(B,A)
Hα−−→ HomR(A,A)→ 0.

There exists ϕ ∈ HomR(B,A) such that ϕα is the identity map on A. The sequence
(4.3) splits, so M is projective by Proposition 6.2.3 (1). □

Lemma 12.4.8. Let R be a commutative noetherian ring and M a finitely gen-
erated R-module. For any n ≥ 0, the following are equivalent.

(1) proj.dimR(M) ≤ n.
(2) For every ideal I of R, Extn+1

R (M,R/I) = 0.

Proof. (1) implies (2): Follows from Exercise 12.4.17.
(2) implies (1): Let N be an arbitrary finitely generated R-module. By Exer-

cise 12.4.22, it suffices to show Extn+1
R (M,N) = 0. Proceed by induction on the

number of generators of N . Suppose N = Rx1 + · · · + Rxm. Let N0 = Rx1. By
(2), Extn+1

R (M,N0) = 0 and by induction on m, Extn+1
R (M,N/N0) = 0. The long

exact sequence of Proposition 12.3.12 (2) becomes

· · · → Extn+1
R (M,N0)→ Extn+1

R (M,N)→ Extn+1
R (M,N/N0)→ . . .

which proves Extn+1
R (M,N) = 0. □

Corollary 12.4.9. Let R be a commutative noetherian ring.

(1) For any R-module M ,

inj.dimR(M) = sup{inj.dimRP
(M ⊗R RP ) | P ∈ Spec(R)}

= sup{inj.dimRm
(M ⊗R Rm) | m ∈ Max(R)}.

(2) For any finitely generated R-module M ,

proj.dimR (M) = sup{proj.dimRP
(M ⊗R RP ) | P ∈ SpecR}

= sup{proj.dimRm
(M ⊗R Rm) | m ∈ MaxR}.

Proof. (1): Suppose inj.dimR(M) ≤ n. Let P be a prime ideal of R. Every
ideal of RP is of the form IRP for some ideal I of R. By Lemma 12.4.6 and
Lemma 12.3.13, 0 = Extn+1

R (R/I,M)P = Extn+1
RP

(RP /IRP ,MP ). Lemma 12.4.6
implies inj.dimRP

(MP ) ≤ n.
Suppose n = inj.dimR(M) is finite. By Lemma 12.4.6, there exists an ideal I in

R such that ExtnR(R/I,M) ̸= 0. By Proposition 7.1.6 there exists a maximal ideal
m ∈ MaxR such that ExtnR(R/I,M)m = ExtnRm

(Rm/IRm,Mm) ̸= 0. In follows
from Lemma 12.4.6, inj.dimRm

(Mm) ≥ n.
(2): Is left to the reader. □

Proposition 12.4.10. Let R be a commutative noetherian local ring with max-
imal ideal m and residue field k = R/m. Let M be a finitely generated R-module.

(1) If TorR1 (M,k) = 0, then M is a free R-module.

(2) For all n ≥ 0, proj.dim(M) ≤ n if and only if TorRn+1(M,k) = 0.
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(3) If M is of finite projective dimension, then

proj.dimR(M/aM) = proj.dimR(M) + 1

for any M -regular element a ∈ m.

Proof. (1): By Exercise 12.4.20, there exists a free R-module Rν and an exact
sequence

0→ K → Rν
f−→M → 0

such that f ⊗ 1 is an isomorphism. The long exact sequence of Theorem 12.3.2 (3)
is

TorR1 (M,k)→ K ⊗R k → kν
f−→M ⊗R k → 0.

Therefore, K ⊗R k = 0. By Corollary 6.3.2, K = 0, hence M is free.
(2): Assume n ≥ 0 and TorRn+1(M,k) = 0. If n = 0, this is Part (1). Assume

n > 0. By Exercise 12.3.10, let P• → M be a projective resolution of M such
that each Pi is finitely generated. Let Kn−1 = ker dn−1. By Theorem 12.1.20,
0 = TorRn+1(M,k) = TorR1 (Kn−1, k). Since R is noetherian, by Part (1) applied
to the finitely generated R-module Kn−1, it follows that Kn−1 is free. Therefore,
proj.dim(M) ≤ n. The converse is Exercise 12.4.17.

(3): By definition, left multiplication by a is one-to-one, so the sequence

0→M
ℓa−→M →M/aM → 0

is exact. By Lemma 12.3.2 (3) and Lemma 12.3.4 (1), there is a long-exact sequence

. . .
ℓa−→ TorRn+1(M,k)→ TorRn+1(M/aM, k)

∂−→

TorRn (M,k)
ℓa−→ TorRn (M,k)→ TorRn (M/aM, k)

∂−→

of R-modules. Left multiplication by a annihilates k, hence the long-exact sequence
breaks down into short exact sequences

(4.4) 0→ TorRn+1(M,k)→ TorRn+1(M/aM, k)
∂−→ TorRn (M,k)

ℓa−→ 0.

Let d = proj.dimR(M). By Part (2) and Exercise 12.4.17,

TorRn (M,k)

{
= 0 if n > d

̸= 0 if n = d.

By (4.4),

TorRn (M/aM, k)

{
= 0 if n > d+ 1

̸= 0 if n = d+ 1.

By Part (2), proj.dimR(M/aM) = d+ 1. □

Lemma 12.4.11. Let R be a commutative noetherian ring. The following are
equivalent, for any finitely generated R-module M .

(1) proj.dimR(M) ≤ n.
(2) TorRn+1(M,R/m) = 0 for all m ∈ MaxR.

Proof. By Corollary 12.4.9, (1) is equivalent to proj.dimRm
(Mm) ≤ n for all

m ∈ MaxR. By Proposition 12.4.10, this is equivalent to TorRm
n+1(Mm, Rm/mRm) =

0 for all m ∈ MaxR. By Lemma 12.3.4 this is equivalent to (2). □
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Proposition 12.4.12. (M. Auslander) Let R be a commutative ring and n ≥ 0.
The following are equivalent.

(1) proj.dimR(M) ≤ n for all R-modules M .
(2) proj.dimR(M) ≤ n for all finitely generated R-modules M .
(3) inj.dimR(M) ≤ n for all R-modules M .
(4) Extn+1

R (M,N) = 0 for all R-modules M and N .

Proof. (1) implies (2): Is trivial.
(2) implies (3): Let M be an R-module. As in the proof of Lemma 12.4.6,

let M → E• be an injective resolution of the R-module M . Define Kn to be the
kernel of dn. Let I be an ideal of R. By Theorem 12.2.17, Extn+1

R (R/I,M) =

Ext1R(R/I,K
n). Since R/I is finitely generated, by (2) and Exercise 12.4.17,

Extn+1
R (R/I,M) = 0. By Exercise 12.4.18, Kn is an injective R-module. This

proves (3).
(3) implies (4): Follows from Exercise 12.4.17.
(4) implies (1): Follows from Theorem 12.4.5. □

Definition 12.4.13. Let R be a commutative ring. The global cohomological
dimension of R (or cohomological dimension of R, or global dimension of R) is
defined to be

coh.dim(R) = sup{proj.dimR(M) |M ∈ RM}
= sup{inj.dimR(M) |M ∈ RM}

where the last equality follows from Proposition 12.4.12.

Lemma 12.4.14. Let R be a commutative noetherian ring.

(1) The following are equivalent.
(a) coh.dim(R) ≤ n.
(b) proj.dimR(M) ≤ n for all finitely generated R-modules M .
(c) inj.dimR(M) ≤ n for all finitely generated R-modules M .
(d) Extn+1

R (M,N) = 0 for all finitely generated R-modules M and N .

(e) TorRn+1(M,N) = 0 for all finitely generated R-modules M and N .
(2) coh.dim(R) = sup{coh.dim(RP ) | P ∈ SpecR} = sup{coh.dim(Rm) |

m ∈ MaxR}.

Proof. (1): (a) is equivalent to (b), by Proposition 12.4.12.
(b) implies (c), by Proposition 12.4.12.
(c) implies (d): Follows from Exercise 12.4.17.
(b) implies (e): Follows from Exercise 12.4.17.
(e) implies (b): Follows from Lemma 12.4.11.
(d) implies (b): Follows from Exercise 12.4.22.
(2): Follows from Part (1) and Corollary 12.4.9. □

Theorem 12.4.15. Let R be a commutative noetherian local ring with maximal
ideal m and residue field k = R/m.

(1) For a nonnegative integer n, the following are equivalent.
(a) coh.dimR ≤ n.
(b) TorRn+1(k, k) = 0.

(2) coh.dimR = proj.dimR (k).
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Proof. (1): (a) implies (b): Follows directly from Definition 12.4.13.

(b) implies (a): Assume TorRn+1(k, k) = 0. By Proposition 12.4.10 (2), proj.dimR(k) ≤
n. By Exercise 12.4.17, TorRn+1(M,k) = 0. By Proposition 12.4.10 (2), proj.dimR(M) ≤
n. By Lemma 12.4.14, coh.dimR ≤ n.

(2): Is left to the reader. □

Proposition 12.4.16. Let ϕ : R→ S be a local homomorphism of commutative
noetherian local rings. If S is a flat R-module, then coh.dim(R) ≤ coh.dim(S).

Proof. LetM andN be arbitrary finitely generatedR-modules. By Lemma 12.3.4,

(4.5) TorRn (M,N)⊗R S = TorSn(M ⊗R S,N ⊗R S)

for all n ≥ 0. If coh.dim(S) = d is finite, then by Lemma 12.4.14, the groups in
(4.5) are zero for n > d. By Exercise 7.5.27, S is a faithfully flat R-module, hence

TorRd+1(M,N) = 0. By Lemma 12.4.14, coh.dim(R) ≤ d. □

4.1. Exercises.

Exercise 12.4.17. Let R be a commutative ring, F : RM → ZM a covariant
additive functor, and M an R-module.

(1) If proj.dimR(M) ≤ n, then Li F(M) = 0 for all i > n.
(2) If inj.dimR(M) ≤ n, then Ri F(M) = 0 for all i > n.

Exercise 12.4.18. Let R be a commutative ring and E an R-module. Then
E is injective if and only if Ext1R(R/I,E) = (0) for all ideals I in R.

Exercise 12.4.19. Let R be a commutative local ring with maximal ideal m
and residue field k = R/m. Let M and N be finitely generated R-modules and
f ∈ HomR(M,N). The following are equivalent.

(1) f ⊗ 1 :M ⊗R k → N ⊗R k is an isomorphism.
(2) ker f ⊆ mM and f is onto.

Exercise 12.4.20. Let R be a commutative local ring with maximal ideal m
and residue field k = R/m. Let M be a finitely generated R-module. Show that
there exists an exact sequence

0→ K → Rn
f−→M → 0

such that f ⊗ 1 : kn →M ⊗R k is an isomorphism.

Exercise 12.4.21. Let R be a noetherian commutative local ring with maximal
ideal m and residue field k = R/m. Let M be a finitely generated R-module. Show
that there exists a resolution

· · · d3−→ F2
d2−→ F1

d1−→ F0
ϵ−→M → 0

such that for all i ≥ 0, Fi is a finitely generated free R-module and im di+1 ⊆ mFi.

Exercise 12.4.22. Let R be a commutative noetherian ring, n a nonnegative
integer, and M a finitely generated R-module. The following are equivalent.

(1) proj.dimR(M) ≤ n.
(2) Extn+1

R (M,N) = 0 for all finitely generated R-modules N .

Exercise 12.4.23. Let k be a field. Prove that coh.dim(k) = 0.
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Exercise 12.4.24. Let R be a PID. Prove that coh.dim(R) ≤ 1. Prove that
R is a field if and only if coh.dim(R) = 0.

Exercise 12.4.25. Let R be a commutative ring and M an R-module. If
S is a submodule of M which is a direct summand of M , then proj.dimR(S) ≤
proj.dimR(M).
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5. Group Cohomology

Let G be a group, written multiplicatively, with identity element denoted 1.
Let ZG denote the group ring, as defined in Example 3.1.6. A left ZG-module is
also called a G-module. The augmentation map ϵ : ZG→ Z is the homomorphism
of rings induced by G → ⟨1⟩ (Example 3.2.5 (3)). Via ϵ, any Z-module A can be
made into a trivial G-module. In this case, for every x ∈ A and σ ∈ G we have
σx = x. That is, every σ ∈ G acts as the trivial automorphism of A. In particular,
ϵ induces the trivial left ZG-module structure on Z.

Definition 12.5.1. Let G be a group and A a left G-module. For n ≥ 0,
the nth cohomology group of G with coefficients in A is defined to be Hn(G,A) =
ExtnZG(Z, A), where Z has the trivial left ZG-module structure. By Definition 12.3.11,
the groups Hn(G,A) are isomorphic to the right derived groups of the left exact
contravariant functor HomZG(·, A), as well as the right right derived groups of the
left exact covariant functor HomZG(Z, ·). Exercise 12.5.10 shows that the groups
Hn(G,A) are also isomorphic to the right derived groups of the left exact covariant
functor A 7→ AG.

Example 12.5.2. Suppose G = ⟨1⟩ is the trivial group. Then Hn(G,A) =
ExtnZ(Z, A). From Proposition 12.3.12 we find

Hn(G,A) =

{
A if n = 0,

0 if n > 0.

The goal of this section is to describe Hn(G,A) for n = 0, 1, 2, 3. We do this by
presenting formulas for generators and relations for the groups. First we derive the
so-called homogeneous cochain complex. This is based on the unnormalized resolu-
tion of Z and is the classical approach, because it was inspired by the homology of
a simplicial complex. After that, we derive the so-called in-homogeneous cochain
complex. This comes from the bar resolution (or normalized resolution) of Z. It
is the second cochain complex that leads us to the familiar normalized factor sets
that are useful for the crossed product construction.

5.1. The Resolutions of Z by Free G-Modules. Throughout this section,
G denotes a group. The group ring ZG is a free Z-module on the index set G (see
Definition 4.2.9). For any r ≥ 1, let Gr =

∏r
i=1G be the product of r copies of G.

Elements of Gr are written as (σ1, . . . , σn), or sometimes as (σ0, . . . , σn−1).

Definition 12.5.3. By Pn we denote the free Z-module on the index set Gn+1.
The diagonal map δ : G → Gn+1, which is defined by σ 7→ (σ, . . . , σ) is a homo-
morphism of groups. By virtue of δ, G acts as a group of permutations of Gn+1

by σ(σ0, . . . , σn) = (σσ0, . . . , σσn). By this action, Pn is a left ZG-module. For
0 ≤ i ≤ n, the projection homomorphism πn,i : G

n+1 → Gn is defined by reducing
modulo the ith factor. We signify this projection map on n+1-tuples by the “hat”
notation: πn,i(σ0, . . . , σn) = (σ0, . . . , σ̂i, . . . , σn). For n ≥ 1 define a boundary map
∂n : Pn → Pn−1 by specifying its value on a Z-basis element to be

∂n(σ0, . . . , σn) =

n∑
i=0

(−1)iπn,i(σ0, . . . , σn).

Theorem 12.5.4 shows that when augmented by ϵ, we have a resolution

· · · → Pn
∂n−→ Pn−1

∂n−1−−−→ · · · → P1
∂1−→ P0

ϵ−→ Z→ 0
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of Z by free ZG-modules. This complex will be denoted P•.

Theorem 12.5.4. In the above context,

(1) πn,i induces a ZG-module epimorphism πn,i : Pn → Pn−1.
(2) Pn is a free ZG-module with basis {(1, σ1, . . . , σn) | σi ∈ G}.
(3) ∂n is a ZG-module homomorphism.
(4) ∂n−1∂n = 0.
(5) The sequence P• of Definition 12.5.3 is a free resolution of the ZG-module

Z.

Proof. (1), (2), (3): Are left to the reader.
(4): The reader should verify that

πn−1,jπn,i(σ0, . . . , σn) =

{
(σ0, . . . , σ̂i, . . . , σ̂j+1, . . . , σn) if 0 ≤ i ≤ j < n

(σ0, . . . , σ̂j , . . . , σ̂i, . . . , σn) if 0 ≤ j < i ≤ n.

We have

∂n−1∂n(σ0, . . . , σn) =

n∑
i=0

(−1)i∂n−1(πn,i(σ0, . . . , σn))

=

n∑
i=0

(−1)i
n−1∑
j=0

(−1)jπn−1,jπn,i(σ0, . . . , σn)

=
∑
i≤j

(−1)i+jπn−1,jπn,i(σ0, . . . , σn) +
∑
i>j

(−1)i+jπn−1,jπn,i(σ0, . . . , σn)

and∑
i≤j

(−1)i+jπn−1,jπn,i(σ0, . . . , σn) =
∑
i≤j

(−1)i+j(σ0, . . . , σ̂i, . . . , σ̂j+1, . . . , σn)

=

n−1∑
i=0

n∑
k=i+1

(−1)i+k+1(σ0, . . . , σ̂i, . . . , σ̂k, . . . , σn)

and∑
i>j

(−1)i+jπn−1,jπn,i(σ0, . . . , σn) =
∑
i>j

(−1)i+j(σ0, . . . , σ̂j , . . . , σ̂i, . . . , σn)

=

n−1∑
j=0

n∑
ℓ=j+1

(−1)j+ℓ(σ0, . . . , σ̂j , . . . , σ̂ℓ, . . . , σn)

from which (4) follows.
(5): It follows from (4) and the fact that ϵ(σ) = 1, that P• is a complex.

To show that P• is exact, we construct a contracting homotopy and apply Exer-
cise 12.1.15. If n ≥ 0, define kn : Pn → Pn+1 by specifying its value on a Z-basis
element: kn(σ0, . . . , σn) = (1, σ0, . . . , σn). Define k−1 : Z→ P0 by k−1(n) = (n · 1).
Notice that kn is a Z-module homomorphism, not a ZG-module homomorphism.
Nevertheless, to prove (5), this is sufficient. Extending the complex with 0 and
taking ∂0 = ϵ, we must verify that ∂n+1kn + kn−1∂n is the identity map on Pn, for
all n. The first non-trivial case is n = −1. Since

ϵk−1(n) = ϵ(n · 1) = n



5. GROUP COHOMOLOGY 521

the identity holds. For n ≥ 0 we check the identity on a typical basis element.
Then

(∂n+1kn + kn−1∂n)(σ0, . . . , σn) = ∂n+1(1, σ0, . . . , σn) + kn−1

n∑
i=0

(−1)i(σ0, . . . , σ̂i, . . . , σn)

= (σ0, . . . , σn) +

n∑
j=0

(−1)j+1(1, σ0, . . . , σ̂i, . . . , σn)

+

n∑
i=0

(−1)i(1, σ0, . . . , σ̂i, . . . , σn)

= (σ0, . . . , σn)

which completes the proof. □

Definition 12.5.5. For n ≥ 1, we define Qn to be the free ZG-module on
the index set Gn. To distinguish the basis elements of Qn from those of Pn (see
Definition 12.5.3), we use brackets instead of parentheses. The basis for Qn is the
set {[σ1, . . . , σn] | σi ∈ G}. For consistency, define Q0 to be the free ZG-module
on the singleton set {[ ]}. For n ≥ 1 define a boundary map dn : Qn → Qn−1 by
specifying its value on a typical basis element:

dn[σ1, . . . , σn] = σ1[σ2, . . . , σn] +

n−1∑
i=1

(−1)i[σ1, . . . , σi−1, σiσi+1, σi+2, . . . , σn]

+ (−1)n[σ1, . . . , σn−1].

Theorem 12.5.6 shows that when augmented by ϵ, we have a resolution of Z by free
ZG-modules. This complex will be denoted Q• and is called the unnormalized, or
homogeneous, standard resolution.

Theorem 12.5.6. The sequence

· · · → Qn
dn−→ Qn−1

dn−1−−−→ · · · → Q1
d1−→ Q0

ϵ−→ Z→ 0

is a free resolution of the ZG-module Z.

Proof. The proof consists in showing that Q• is isomorphic to the free reso-
lution P•. Define fn : Pn → Qn by the formula

fn(σ0, . . . , σn) = σ0[σ
−1
0 σ1, σ

−1
1 σ2, . . . , σ

−1
n−1σn].

Define gn : Qn → Pn by the formula

gn[σ1, . . . , σn] = (1, σ1, σ1σ2, σ1σ2σ3, . . . , σ1σ2 · · ·σn).

The reader should verify that fn and gn are ZG-module homomorphisms and that
they are inverses to each other. The square

Pn Pn−1

Qn Qn−1

-∂n

?

fn

?

fn−1

-dn
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commutes for all n ≥ 1 since

fn−1∂ngn[σ1, . . . , σn] = fn−1∂n(1, σ1, σ1σ2, . . . , σ1σ2 · · ·σn)

=

n∑
i=0

(−1)ifn−1(1, σ1, σ1σ2, . . . , σ1σ2 · · ·σn)

= σ1[σ2, . . . , σn] +

n−1∑
i=1

(−1)i[σ1, . . . , σi−1, σiσi+1, σi+2, . . . , σn]

+ (−1)n[σ1, . . . , σn−1]
= dn[σ1, . . . , σn].

Therefore, Q• is a complex, and f : P• → Q• is an isomorphism of complexes. The
rest follows from Lemma 12.2.3. □

Definition 12.5.7. Let G1 = G − ⟨1⟩ = {σ ∈ G | σ ̸= 1}. For n ≥ 1 define
Bn to be the ZG-submodule of Qn (see Definition 12.5.5) generated by those basis
elements [σ1, . . . , σn] which belong to Gn1 . We take B0 = Q0, the free module on
[ ]. The set inclusion map Gn1 ⊆ Gn induces an idempotent ηn ∈ HomZG(Qn, Qn)
which projects Qn onto Bn. The boundary map dn : Bn → Bn−1 is defined to be
the inclusion map Bn ⊆ Qn followed by the boundary map dn : Qn → Qn−1 of
Definition 12.5.5 followed by ηn−1. By construction, the diagram

Bn Bn−1

Qn Qn−1 Qn−1

-dn

?

⊆

?

⊆

-dn -ηn−1

commutes. Theorem 12.5.8 shows that when augmented with ϵ : B0 → Z, this is a
free ZG-module resolution of Z. This complex is denoted B•, and is called the bar
resolution, or normalized standard resolution.

Theorem 12.5.8. In the context of Definition 12.5.7,

· · · → Bn
dn−→ Bn−1

dn−1−−−→ · · · → B1
d1−→ B0

ϵ−→ Z→ 0

is a free resolution of the ZG-module Z.

Proof. We must show that dn−1dn = 0, and that the homology of the complex
is (0). Take B−1 to be Z and d0 to be ϵ. Define Z-module homomorphisms hn :
Bn → Bn+1 for each n ≥ −1. The map h−1 : Z → B0 is induced by the natural
homomorphism of rings Z → ZG. For n ≥ 0, Bn is generated as a free Z-module
by elements of the form σ[σ1, . . . , σn], where σ ∈ G, and [σ1, . . . , σn] ∈ Gn1 . The
map hn is defined by

hn(σ[σ1, . . . , σn]) = ηn+1[σ, σ1, . . . , σn].

First we check that the contracting homotopy relations

dn+1hn + hn−1dn = 1Bn

are satisfied. For n = 0 we get

d0h−1(1) = d0[ ] = ϵ(1) = 1
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For n = 1,

(d1h0 + h−1d0)(σ[ ]) = d0η1[σ] + ϵ(σ) =

{
ϵ(1) = [ ] if σ = 1

d1[σ] = σ[ ] if σ ̸= 1

Now suppose n > 1. First assume σ = 1. The reader should verify that

dn+1hn[σ1, . . . , σn] = 0

and
hn−1dn[σ1, . . . , σn] = [σ1, . . . , σn]

so the formula holds. Now assume σ ̸= 1. Then

dn+1hn(σ[σ1, . . . , σn]) = dn+1[σ, σ1, . . . , σn]

= σ[σ1, . . . , σn]− [σσ1, σ2, . . . , σn]

+

n−1∑
i=1

(−1)i+1[σ, σ1, . . . , σiσi+1, . . . , σn]

+ (−1)n+1[σ, σ1, . . . , σn−1]

and

hn−1dn(σ[σ1, . . . , σn]) = hn−1

(
σσ1[σ2, . . . , σn] +

n−1∑
i=1

(−1)iσ[σ1, . . . , σiσi+1, . . . , σn]

+ (−1)nσ[σ1, . . . , σn−1]
)

= [σσ1, σ2, . . . , σn] +

n−1∑
i=1

(−1)i[σ, σ1, . . . , σiσi+1, . . . , σn]

+ (−1)n[σ, σ1, . . . , σn−1]
From this we get dn+1hn + hn−1dn = 1Bn . To finish, we must show dndn+1 = 0.
The proof is by induction on n. The basis step follows from d0d1[σ] = ϵσ[ ] = 0,
since σ ̸= 1. Notice that the image of hn contains a ZG-basis for Bn+1. Inductively
assume n > 0 and dn−1dn = 0. Using the identity dn+1hn + hn−1dn = 1Bn

, we get

dndn+1hn = dn(1Bn − hn−1dn)
= dn1Bn

− dnhn−1dn)
= dn − (1Bn

− hn−2dn−1)dn
= dn − dn + hn−2dn−1dn

= 0.

Applying Exercise 12.1.15 completes the proof. □

5.2. Exercises.

Exercise 12.5.9. Let Fn = (ZG)⊗(n+1) be the tensor product of n+ 1 copies
of the Z-module ZG. In the notation of Definition 7.9.5, Fn = Tn+1(ZG). Make
Fn into a left ZG-module by acting on the left factor: σ(σ0 ⊗ σ1 ⊗ · · · ⊗ σn) =
σσ0 ⊗ σ1 ⊗ · · · ⊗ σn. Prove that Fn is isomorphic as a ZG-module to Pn.

Exercise 12.5.10. Let G be a group.

(1) Show that the assignment FG(A) = AG defines a left exact covariant
functor from ZGM to ZM.
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(2) For every A ∈ ZGM, the assignment f 7→ f(1) induces an isomorphism of
abelian groups HomZG(Z, A) ∼= AG.

(3) Show that the functors FG and HomZG(Z, ·) are naturally equivalent.
(4) The cohomology groups Hn(G,A) are isomorphic to the right derived

groups RnFG(A).

5.3. Cocycle and Coboundary Groups in Low Degree. Let A be a ZG-
module. So A is an abelian group with binary operation written additively, and
G acts as a group on A. The cohomology groups Hn(G,A) are defined to be
ExtnZG(Z, A). If Q• → Z is the standard (homogeneous) resolution from Defini-
tion 12.5.5, and B• → Z is the bar resolution from Definition 12.5.7, then by
Definition 12.3.11, we have

Hn(G,A) = ExtnZG(Z, A)
= Hn(HomZG(Q•, A))

= Hn(HomZG(B•, A)).

Notice that Hn(HomZG(Q•, A)) is an abelian group, where functions are added
point-wise: (f + g)(x) = f(x) + g(x). Since Q0 = ZG, we have HomZG(Q0, A) = A
(Lemma 6.5.7). For n ≥ 1, because Qn is the free ZG-module on Gn, we can
identify HomZG(Qn, A) with Map(Gn, A), the set of all functions mapping Gn to
A. The cochain map

HomZG(Qn−1, A)
dn−1

−−−→ HomZG(Qn, A)

is defined by dn−1(f) = fdn. Using the formula for the boundary dn in Defini-
tion 12.5.5, on a typical basis element of Qn we have

(5.1) dn−1(f)[σ1, . . . , σn] = fdn[σ1, . . . , σn]

= σ1f [σ2, . . . , σn] +

n−1∑
i=1

(−1)if [σ1, . . . , σiσi+1, . . . , σn] + (−1)nf [σ1, . . . , σn−1].

In the first summand, we have used the fact that f is ZG-linear. For all n ≥ 0,

Hn(G,A) = Zn(G,A)/Bn(G,A)

where Zn(G,A) = ker dn, and Bn(G,A) = im dn−1. By convention, d−1 = 0 and
B0(G,A) = 0.

Proposition 12.5.11. In the above context,

(1) H0(G,A) = Z0(G,A) = AG is the subset of A fixed by G.
(2) Z1(G,A) is the set of all functions f : G→ A such that

f(στ) = f(σ) + σf(τ),

for all (σ, τ) ∈ G2.
(3) B1(G,A) is the set of all functions f : G→ A such that there exists x ∈ A

and f(σ) = σ(x)− x, for all σ ∈ G.
(4) Z2(G,A) is the set of all functions f : G×G→ A such that

f(ρ, σ) + f(ρσ, τ) = ρf(σ, τ) + f(ρ, στ),

for all (ρ, σ, τ) ∈ G3.
(5) B2(G,A) is the set of all functions f : G ×G → A such that there exists

g : G→ A and f(σ, τ) = σg(τ)− g(στ) + g(σ), for all (σ, τ) ∈ G2.
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Proof. Follows straight from (5.1) and the definitions. □

Corollary 12.5.12. In the above context, the normalized cocycles and cobound-
aries in degrees 1 and 2 are:

(1) Z1(G,A) is the set of all functions f : G→ A such that f(1) = 0, and

f(στ) = f(σ) + σf(τ),

for all (σ, τ) ∈ G2.
(2) Z2(G,A) is the set of all functions f : G×G→ A such that

f(ρ, σ) + f(ρσ, τ) = ρf(σ, τ) + f(ρ, στ),

and f(1, τ) = f(σ, 1) = 0, for all (ρ, σ, τ) ∈ G3.
(3) B2(G,A) is the set of all functions f : G ×G → A such that there exists

g : G → A where g(1) = 0 and f(σ, τ) = σg(τ) − g(στ) + g(σ), for all
(σ, τ) ∈ G2.

Proof. Use the bar resolution B• → Z. In (5.1), dn is zero whenever 1 appears
in the n-tuple. Notice that elements of B1(G,A) are always normalized. □

Remark 12.5.13. For the record, we mention that the group Z3(G,A) is the
set of all f : G3 → A such that the 3-cocycle identity

f(σ1σ2, σ3, σ4) + f(σ1, σ2, σ3σ4) = f(σ1, σ2, σ3) + σ1f(σ2, σ3, σ4) + f(σ1, σ2σ3, σ4)

is satisfied for all (σ1, σ2, σ3, σ4) ∈ G4. Moreover, to compute H3(G,A), normalized
cocycles can be used. That is, f(σ1, σ2, 1) = f(σ1, 1, σ3) = f(1, σ2, σ3) = 0. The
set of 3-coboundaries, B3(G,A), consists of all f : G3 → A for which there exists
g : G×G→ A and

f(ρ, σ, τ) = ρg(σ, τ)− g(ρσ, τ) + g(ρ, στ)− g(σ, τ)

for all (ρ, σ, τ) ∈ G3.

5.4. Applications and Computations.

Definition 12.5.14. Let G be a group.

(1) If θ : G→ K is a homomorphism of groups, and A is a ZK-module, then
the ring homomorphism θ : ZG→ ZK makes A into a ZG-module.

(2) If H is a subgroup of G and A is a ZH-module, then HomZH(ZG,A) is
a left ZG-module (see Lemma 6.5.1(1)) which is called the induced G-
module.

Theorem 12.5.15. (Shapiro’s Lemma) Let G be a group, H a subgroup of G,
and A a ZH-module. There are isomorphisms

Hn(H,A) ∼= Hn(G,HomZH(ZG,A))

which are induced by the adjoint isomorphism of Theorem 6.5.10.

Proof. Since ZG is a free left ZH-module, this follows directly from the iso-
morphism

ExtnZH(ZG⊗ZG Z, A) ∼= ExtnZG(Z,HomZH(ZG,A))
of Lemma 12.3.14 (2). It is also of interest to know how this map is defined on
cochains. Let Q• → Z be the standard resolution of Z as a ZG-module. By
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Proposition 4.2.39, Q• → Z is also a free resolution of Z as a ZH-module. The
adjoint isomorphism

HomZH(Qn, A)
ϕ−→ HomZG(Qn,HomZH(ZG,A))

maps an n-cochain f to ϕf . If y ∈ Qn, then (ϕf)(y) is the element of HomZH(ZG,A)
defined by (ϕf)(y)(x) = f(xy). The details are left to the reader. □

Lemma 12.5.16. Let G be a group and A a ZG-module.

(1) If ψ : A → B is a homomorphism of ZG-modules, then ψ induces a
homomorphism

Hn(G,A)→ Hn(G,B)

of abelian groups, for each n ≥ 0.
(2) If θ : H → G is a homomorphism of groups, then θ induces a homomor-

phism

Hn(G,A)→ Hn(H,A)

of abelian groups, for each n ≥ 0.

Proof. (1): Follows from the fact that ExtnZG(Z, ·) is a covariant functor (see
Section 12.3.4).

(2): Let (QG)• → Z be the standard resolution for the ZG-module Z, and
(QH)• → Z the counterpart for the ZH-module. The homomorphism θ : H → G
induces a homomorphism Hn → Gn, for each n. For each n, (QH)n is free on Hn

and (QH)n is free on Gn. Hence there is an induced morphism

(5.2) θ : (QG)• → (QH)•

of complexes. Now suppose A is a ZG-module, which is made into a ZH-module
by virtue of θ : ZH → ZG. There are morphisms of complexes

HomZG((QG)•, A)→ HomZG((QH)•, A)→ HomZH((QH)•, A)

where the first morphism is induced by the functor HomZG(·, A) applied to the
morphism (5.2) and the second is induced by the map defined in Exercise 4.4.33.
The rest follows from Lemma 12.1.3. □

Definition 12.5.17. Let G be a group and A a ZG-module.

(1) If H is a subgroup of G, then the homomorphism of abelian groups

Res : Hn(G,A)→ Hn(H,A)

defined in Lemma 12.5.16 (2) is called the restriction homomorphism.
Suppose f : Gn → A is an n-cocycle in Zn(G,A). Viewing Hn as a subset
of Gn, the restriction of f defines g : Hn → A which is an n-cocycle in
Zn(H,A). The restriction homomorphism maps the cohomology class f̄
to ḡ.

(2) If N is a normal subgroup of G, then AN can be made into a Z(G/N)-
module. The multiplication rule is induced by (gN)x = gx. The natural
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map η : G → G/N and the set inclusion ι : AN → A induce homomor-
phisms

Hn(G/N,AN ) Hn(G,A)

Hn(G,AN )

HHHHjη

-Inf

����*
ι

and the composite map, Inf , is called the inflation homomorphism. Sup-
pose f : (G/H)n → AH is an n-cocycle in Zn(G/H,AH). Define g :
Gn → A by the rule g(σ1, . . . , σn) = f(σ̄1, . . . , σ̄n), where σ̄i is the coset
represented by σi in G/H. Then g is an n-cocycle in Zn(G,A), and the
inflation homomorphism maps the cohomology class f̄ to ḡ.

(3) Suppose H is a subgroup of G of finite index [G : H] = m and x1, . . . , xm
is a full set of left coset representatives for H. Let A be a left ZG-module.
The reader should verify that the map

HomZH(ZG,A) ψ−→ A

defined by ψ(f) =
∑m
i=1 xif(x

−1
i ) is a homomorphism of ZG-modules and

does not depend on the choices of x1, . . . , xm. This defines a homomor-
phism on cohomology groups

Hn(G,HomZH(ZG,A)) ψ−→ Hn(G,A).

The corestriction homomorphism, denoted Cor, is defined by composing
ψ with the isomorphism from Shapiro’s Lemma (Theorem 12.5.15). By
definition, the diagram

Hn(H,A) Hn(G,A)

Hn(G,HomZH(ZG,A))

-Cor

HHH
HHHj

∼=
���

���*

ψ

commutes. Using the description of the isomorphism in the proof of The-
orem 12.5.15, we can describe the corestriction map on n-cocycles. Say f
is a cocycle in HomZH(Qn, A) defining a cohomology class c in Hn(H,A).
Then Cor(f) is a cocycle in HomZG(Qn, A) which represents a cohomology
class Cor(c) in Hn(G,A). If y ∈ Qn, then

Cor(f)(y) =

m∑
i=1

xiϕ(f)(y)(x
−1
i ) =

m∑
i=1

xif(x
−1
i y).

For example, consider the n = 0 case. From Proposition 12.5.11, Z0(H,A) =
AH . Then f is a constant valued function, say f(x) = a. In this case,
Cor(f) is the constant valued function

∑m
i=1 xia. For a Galois extension

of fields K/k with group G, the corestriction homomorphism in degree
zero is the trace of Definition 5.7.2, when A = K+, and it is the norm
map when A = K∗. See Example 12.5.27.
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Theorem 12.5.18. Let H be a subgroup of G of finite index [G : H] = m. If
A is a left ZG-module, then

CorResHn(G,A) = mHn(G,A).

Proof. Use the description of the corestriction given in Definition 12.5.17. Let
f be a cocycle in HomZH(Qn, A) defining a cohomology class c in Hn(H,A). If f
is in the image of Res : Hn(G,A), then f is ZG-linear. For any y ∈ Qn,

Cor(f)(y) =

m∑
i=1

xif(x
−1
i y)

m∑
i=1

xix
−1
i f(y) = mf(y)

which proves the claim. □

Corollary 12.5.19. If G is a finite group of order m and A is any ZG-module,
then mHn(G,A) = 0 for all n ≥ 1.

Proof. If H = ⟨1⟩, then [G : H] = m. By Theorem 12.5.18, the diagram

Hn(G,A) Hn(G,A)

Hn(H,A)

-m

H
HHjRes �

��*
Cor

commutes, where the horizontal map is “multiplication bym”. By Proposition 12.3.12(3),
the group ExtnZ(Z, A) = Hn(⟨1⟩, A) is trivial for n ≥ 1. □

Lemma 12.5.20. Let H be a subgroup of G of finite index [G : H] = m and
x1, . . . , xm a full set of left coset representatives for H. If A is a left ZH-module,
then there is an isomorphism of ZG-modules

HomZH(ZG,A) ψ−→ ZG⊗ZH A

defined by ψ(f) =
∑m
i=1 xi ⊗ f(x

−1
i ).

Proof. The reader should verify that the map ψ does not depend on the
choices for x1, . . . , xm. Notice that ZG ∼=

⊕m
i=1 xiZH as right ZH-modules. By

Lemma 6.4.15,

ZG⊗ZH A ∼=
m⊕
i=1

xi ⊗ZH A

as left Z-modules. Also, ZG ∼=
⊕m

i=1 ZHx
−1
i as left ZH-modules. By Proposi-

tion 6.5.8,

HomZH(ZG,A) ∼=
m⊕
i=1

HomZH(ZHx−1i , A)

as left Z-modules. The reader should verify that f in HomZH(ZHx−1i , A) is mapped

by ψ to xi ⊗ f(x−1i ) and hence ψ is bijective. We check that ψ is ZG-linear. Let
g ∈ G. Right multiplication by g is a permutation of the right cosets of H. For
each i, there is a unique i′ and hi ∈ H such that x−1i g = hix

−1
i′ , or equivalently

xihi = gxi′ . Let f ∈ HomZH(ZG,A). For x ∈ ZG, (gf)(x) = f(xg). Therefore,
ψ(gf) =

∑
xi⊗f(x−1i g) =

∑
xi⊗f(hix−1i′ ) =

∑
xihi⊗f(x−1i′ ) =

∑
gxi′⊗f(x−1i′ ) =

gψ(f). □
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5.4.1. Cohomology of a Finite Cyclic Group.

Lemma 12.5.21. Let G = ⟨σ⟩ be a finite cyclic group of order m. In ZG, let
D = σ−1, and N = 1+σ+ · · ·+σm−1. Then multiplication by D and N , together
with the augmentation map ϵ define an exact sequence

· · · N−→ ZG D−→ ZG N−→ ZG D−→ ZG ρ−→ Z→ 0

which is a free resolution of the trivial ZG-module Z.

Proof. The maps are ZG-module homomorphisms because G is abelian. The
kernel of ϵ is equal to the image of D, by Example 3.2.5 (3). The sequence is a
complex, since DN = ND = 0. Let x =

∑
aiσ

i be a typical element of ZG. Then

x = a0 + a1σ + a2σ
2 + · · ·+ am−1σ

m−1

σx = am−1 + a0σ + a1σ
2 + · · ·+ am−2σ

m−1

σ2x = am−2 + am−1σ + a0σ
2 + · · ·+ am−3σ

m−1

...

σm−1x = a1 + a2σ + a3σ
2 + · · ·+ a0σ

m−1

(5.3)

If x = σx, then (5.3) shows that a0 = a1 = · · · = am−1, hence x = Na0. Thus
kerD = imN . It follows from (5.3) that Nx = (

∑
i ai)N . If Nx = 0, then

∑
i ai =

0. Hence, the kernel of N is equal to the kernel of ϵ. Thus kerN = imD. □

Let G = ⟨σ⟩ be a finite cyclic group of order m. In ZG, let D = σ − 1, and
N = 1 + σ + · · · + σm−1. For any ZG-module A, left multiplication by D and
N define ZG-module endomorphisms D : A → A, N : A → A. The images are
denoted DA and NA, respectively. The kernel of D is AG, and the kernel of N is
denoted NA = {x ∈ A | Nx = 0}. The reader should verify that the groups DA,
NA and NA do not depend on the choice of σ.

Theorem 12.5.22. Let G be a finite cyclic group. For any ZG-module A,

Hn(G,A) =


AG if n = 0,

NA/DA if n is odd,

AG/NA if n > 0 is even.

Proof. Apply the functor HomZG(·, A) to the resolution of Z in Lemma 12.5.21.
□

Corollary 12.5.23. If G is a finite cyclic group of order m and A is a trivial
ZG-module, then

Hn(G,A) =


A if n = 0,

mA if n is odd,

A/mA if n > 0 is even,

where mA = {x ∈ A | mx = 0}, and mA = {mx | x ∈ A}.

Proof. The map D is the zero operator on A, and N is the multiplication by
m operator. □
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Corollary 12.5.24. Let G = ⟨σ⟩ be a finite cyclic group of order n and A
a ZG-module (written multiplicatively). If m | n, τ = σn/m, and H = ⟨τ⟩ is
the subgroup of order m, then the image of the inflation homomorphism (Defini-
tion 12.5.17 (2))

Inf : H2(G/H,AH)→ H2(G,A)

is divisible by m. That is, for any z ∈ H2(G/H,AH), there exists y ∈ H2(G,A)
such that Inf(z) = ym.

Proof. Let z̄ ∈ H2(G/H,AH). Write σ̄ for the coset represented by σ in
G/H. By Exercise 12.5.34, there is a ∈ AG such that z̄ is represented by a 2-
cocycle z : (G/H)× (G/H)→ AH of the form

z(σ̄i, σ̄j) =

{
1 if i+ j < n/m

a if i+ j ≥ n/m

for 0 ≤ i, j < n/m. The image of z̄ under the inflation homomorphism is represented
by the 2-cocycle ξ : G×G→ A defined by ξ(σi, σj) = z(σ̄i, σ̄j). By Exercise 12.5.34,
there is an isomorphism H2(G,A)→ AG/NA which is induced by ξ 7→ aξ, where

aξ =

n−1∏
j=0

ξ(σj , σ)

=

m−1∏
k=0

n/m−1∏
i=0

ξ
(
(σn/m)kσi, σ

)
= am.

By Exercise 12.5.34, ξ is cohomologous to χma , where

χa(σ
i, σj) =

{
1 if i+ j < n

a if i+ j ≥ n

for 0 ≤ i, j < n. □

5.4.2. Application to Galois Cohomology of Fields. Let F be a field and G a
finite group of automorphisms of F . Write F+ for the additive group of F , and F ∗

for the group of units. Theorem 12.5.25 is a generalization of Theorem 5.7.5.

Theorem 12.5.25. Let F be a field and G a finite group of automorphisms of
F .

(1) (Hilbert’s Theorem 90) H1(G,F ∗) = ⟨1⟩.
(2) For all n ≥ 1, Hn(G,F+) = ⟨0⟩.

Proof. (1): Let f ∈ Z1(G,F ∗) be a 1-cocycle. By Proposition 12.5.11, we can
assume f : G → F ∗ and f(στ) = f(σ)σf(τ). By Lemma 5.2.5, there exists x ∈ F
such that

α =
∑
τ∈G

f(τ)τ(x) ̸= 0.

In other words, α is a unit in F . For any σ ∈ G we have σ(α) =
∑
τ∈G σf(τ)στ(x).

By the 1-cocycle identity, σ(α) =
(∑

τ∈G σf(στ)στ(x)
)
f(σ)−1 = αf(σ)−1. There-

fore, f(σ) = α/σ(α), for all σ ∈ G, which proves f is the 1-coboundary defined by
α.
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(2): By Exercise 12.5.28, F+ ∼= ZG⊗Zk
+. This follows from Exercise 12.5.30 (1).

□

Corollary 12.5.26. Let F be a finite field, G a group of automorphisms of
F , and k = FG. Then

Hn(G,F ∗) =

{
k∗ if n = 0,

⟨1⟩ if n > 0.

Proof. By Theorem 5.5.3, G is a finite cyclic group. If n = 0 or n is odd,
this follows from Theorem 12.5.25 and Theorem 12.5.22. If n is even, then by
Exercise 5.7.7, NF ∗ = k∗, and this follows from Theorem 12.5.22. □

Example 12.5.27. Let K/k be a Galois extension of fields with finite group
G. Let H be a subgroup of G and let F = KH . In degree zero the corestric-
tion homomorphism Cor : Hn(H,K+) → Hn(G,K+) is Cor : F+ → k+. If
τ1, . . . , τm is a complete set of left coset representatives for H in G, then for
α ∈ F , Cor(α) =

∑m
i=1 τi(α). This agrees with the trace map of Definition 5.7.2.

That is, Cor(α) = TFk (α). In degree zero the corestriction homomorphism Cor :
Hn(H,K∗) → Hn(G,K∗) is Cor : F ∗ → k∗. This corestriction homomorphism is
the norm function NF

k of Definition 5.7.2.

5.5. Exercises.

Exercise 12.5.28. Let F/k be a Galois extension of fields with finite group G.

(1) Show that the additive group F+ is a ZG-module.
(2) Show that there is an isomorphism of ZG-modules ϕ : ZG ⊗Z k

+ → F+.
(Hint: By the Primitive Element Theorem (Theorem 5.4.7) F = k(α) for
some element α. Define ϕ(σ ⊗ a) = σ(α)a.)

Exercise 12.5.29. Let G = AutR(C) be the Galois group of C/R. Prove that

Hn(G,C∗) =


R∗ if n = 0,

⟨1⟩ if n is odd,

⟨−1⟩ if n is even.

Exercise 12.5.30. Let G be a finite group.

(1) Prove that the induced ZG-module ZG ⊗Z A has trivial cohomology, for
any abelian group A. That is, Hn(G,ZG⊗ZA) = (0), for all n > 0. (Hint:
Use Lemma 12.5.20, Theorem 12.5.15, and Example 12.5.2.)

(2) In [54], a ZG-module M is said to be relatively projective if M is a ZG-
module direct summand of an induced G-module ZG ⊗Z A for some Z-
module A. Prove that Hn(G,M) = (0), for all n > 0, if M is relatively
projective. The reader is also referred to [14] where such modules are
called weakly projective. (Hint: Proposition 12.3.12 (6).)

Exercise 12.5.31. Let G be a finite group and {Ai | i ∈ I} a collection of
ZG-modules. If H1(G,Ai) = 0 for each i ∈ I, then H1(G,

⊕
iAi) = 0.

Exercise 12.5.32. Let G be a finite group and {Ai | i ∈ I} a collection of
ZG-modules. Then for all r ≥ 0, Hr(G,

⊕
iAi) =

⊕
iH

r(G,Ai). (Hint: Apply
Exercise 6.8.40 to the bar resolution of Z.)
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Exercise 12.5.33. Let G = ⟨σ⟩ be a finite cyclic group of order n. Let A
be a left ZG-module (written multiplicatively). In this exercise we outline a proof
that H1(G,A) ∼= NA/DA (Theorem 12.5.22) by exhibiting the isomorphism on
normalized 1-cocycles. Let Z1(G,A) be the normalized 1-cocycles and B1(G,A)
the normalized 1-coboundaries, as defined in Corollary 12.5.12. Define a function
θ : Z1(G,A) → A by the rule θ(ξ) = ξ(σ). Define another function χ : NA →
Map(G,A) by the rule b 7→ χb, where χb(σ

i) = bσ(b) · · ·σi−1(b), for all 0 < i.
Prove the following.

(1) θ induces a homomorphism of groups H1(G,A)→ NA/DA.
(2) χ induces a homomorphism of groups NA/DA→ H1(G,A).
(3) The homomorphisms of (1) and (2) are inverses of each other.

Exercise 12.5.34. Let G = ⟨σ⟩ be a finite cyclic group of order n. Let A
be a left ZG-module (written multiplicatively). In this exercise we outline a proof
that H2(G,A) ∼= AG/NA (Theorem 12.5.22) by exhibiting the isomorphism on
normalized 2-cocycles. Let Z2(G,A) be the normalized 2-cocycles and B2(G,A) the
2-coboundaries, as defined in Corollary 12.5.12. Define a function θ : Z2(G,A)→ A
by the rule

θ(ξ) = aξ =

n−1∏
j=0

ξ(σj , σ).

Define another function ϕ : AG → Map(G×G,A) by the rule ϕ(a) = ϕa, where

ϕa(σ
i, σj) =

{
1 if i+ j < n

a if i+ j ≥ n

for all 0 ≤ i, j ≤ n− 1. Prove the following.

(1) θ and ϕ are homomorphisms of groups.
(2) The image of θ is contained in AG.
(3) If ξ ∈ B2(G,A), then aξ is in NA.

(4) θ induces a homomorphism of groups H2(G,A)→ AG/NA.
(5) If a ∈ AG, then ϕa(σi, σj)ϕa(σi+j , σk) = ϕa(σ

j , σk)ϕa(σ
i, σj+k). There-

fore, the image of ϕ is contained in Z2(G,A).
(6) Let b ∈ A, and assume a = bσ(b) · · ·σn−1(b) = N(b). Define χ : G → A

by

χ(σi) =

{
1 i = 0

bσ(b) · · ·σi−1(b) 0 < i < n.

Then ϕa is the 2-coboundary defined by χ.
(7) ϕ induces a homomorphism of groups AG/NA→ H2(G,A).
(8) The homomorphisms of (4) and (7) are inverses of each other, hence

H2(G,A) ∼= AG/NA.

Exercise 12.5.35. Let G be a group, H a normal subgroup of G, and A a left
ZG-module.

(1) If n ≥ 1, show that Res ◦ Inf : Hn(G/H,AH)→ Hn(H,A) is the zero map.
(Hint: Use normalized cocycles and the descriptions of the maps given in
Definition 12.5.14.)
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(2) Show that the sequence

0→ H1(G/H,AH)
Inf−−→ H1(G,A)

Res−−→ H1(H,A)

is exact.

Exercise 12.5.36. In this exercise we construct an example of a Z/n-module
which is not free. LetG = ⟨σ⟩ be a finite cyclic group of order n andM = Z(n−1) the
free Z-module of rank n−1 with standard basis e1, . . . , en−1. Let C be the (n−1)-
by-(n−1) companion matrix of the cyclotomic polynomial xn−1+xn−2+ · · ·+x+1.
Let σ : M →M be the homomorphism defined by C with respect to the standard
basis. Show that this makes M into a left ZG-module and

Hr(G,M) =

{
0 if r is even,

Z/n if r is odd.
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6. Theory of Faithfully Flat Descent

6.1. The Amitsur Complex. Let θ : R → S be a homomorphism of com-
mutative rings. Let {Mi | i ∈ I} be a family of R-modules. For any n + 1-tuple
(i0, . . . , in) in I

(n+1), and for any j such that 0 ≤ j ≤ n+ 1, there is an R-module
homomorphism

Mi0 ⊗R · · · ⊗RMin

ej−→Mi0 ⊗R · · · ⊗RMij−1
⊗R S ⊗RMij ⊗R · · · ⊗RMin

(x0 ⊗ · · · ⊗ xn) 7→ x0 ⊗ · · · ⊗ xj−1 ⊗ 1⊗ xj ⊗ · · · ⊗ xn.

By S⊗r we denote S⊗R · · ·⊗R S, the tensor product of r copies of S. The Amitsur
complex for S/R is

0→ R
θ−→ S

d0−→ S⊗2
d1−→ S⊗3

d2−→ · · ·

where the coboundary map dr : S⊗(r+1) → S⊗(r+2) is defined to be dr =
∑r+1
i=0 (−1)iei.

Denote this complex by C•(S/R). The reader should verify that ejei = ei+1ej for
all j ≤ i, and that this is a complex of R-modules.

Proposition 12.6.1. Let S be a commutative faithfully flat R algebra.

(1) The Amitsur complex C•(S/R) is an exact sequence.
(2) If M is any R-module, then the complex M ⊗R C•(S/R)

0→M
1⊗θ−−→M ⊗R S

1⊗d0−−−→M ⊗ S⊗2 1⊗d1−−−→M ⊗ S⊗3 1⊗d2−−−→ · · ·

is an exact sequence.

Proof. (1): Step 1: Show that C•(S/R) is exact if there exists an R-module
homomorphism σ : S → R which is a splitting map for the structure homomorphism
θ : R→ S. This is true for example, if S is faithful and R·1 is an R-direct summand
of S. Define a homotopy operator kr : S⊗(r+2) → S⊗(r+1) by kr(x0⊗· · ·⊗xr+1) =
σ(x0)x1 ⊗ · · · ⊗ xr+1. It follows from

krdr(x0 ⊗ · · · ⊗ xr) = kr
r∑
i=0

(−1)rei(x0 ⊗ · · · ⊗ xr)

= x0 ⊗ · · · ⊗ xr − σ(x0)⊗ x1 ⊗ · · · ⊗ xr + σ(x0)x1 ⊗ 1⊗ · · · ⊗ xr + · · ·

and

dr−1kr−1(x0 ⊗ · · · ⊗ xr) = dr−1(σ(x0)x1 ⊗ · · · ⊗ xr)
= 1⊗ σ(x0)x1 ⊗ · · · ⊗ xr − σ(x0)x1 ⊗ 1⊗ · · · ⊗ xr + · · ·

that krdr + dr−1kr−1 is the identity map on S⊗(r+1). By Exercise 12.1.15, the
complex is an exact sequence.

Step 2: If T is another commutative R-algebra, then C•(S⊗R T/T ), the Amit-
sur complex for S⊗R T over T , is obtained by applying the functor (·)⊗R T to the
complex C•(S/R). This is because S⊗r ⊗R T ∼= (S ⊗R T )⊗r.

Step 3: Let ρ : S → S ⊗R S by a 7→ a ⊗ 1. Define µ : S ⊗R S → S by
µ(a⊗ b) = ab. Then µ is a splitting map for ρ and by Step 1 the Amitsur complex
C•(S ⊗R S/S) for ρ : S → S ⊗R S is exact. Since C•(S ⊗R S/S) is exact and S is
faithfully flat, by Step 2 applied to S, it follows that C•(S/R) is exact.

(2): As in (1), assume there is a section and construct a contracting homotopy.
The rest is left to the reader. □
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6.2. The Descent of Elements.

Example 12.6.2. Let R be a commutative ring and α1, . . . , αn a set of n
elements of R such that R = Rα1 + · · · + Rαn. For the localization of R with
respect to the multiplicative set {αn | n ≥ 0}, write Rα instead of R[α−1]. By
Lemma 7.3.3, U(α1), . . . , U(αn) is an open cover for the Zariski topology on SpecR.
By Exercise 7.5.28, S =

⊕n
i=1Rαi

is faithfully flat over R. Using Lemma 7.1.1, we
identify Rαi

⊗R Rαj
with Rαiαj

. Then the Amitsur complex C•(S/R) looks like

0→ R
θ−→
⊕
i∈In

Rαi

d0−→
⊕

(i,j)∈I2n

Rαiαj

d1−→
⊕

(i,j,k)∈I3n

Rαiαjαk

d2−→ · · ·

where In = {1, . . . , n}. By Proposition 12.6.1, this sequence is exact, so we
know that an element y ∈ R is completely determined by a set of local data
x = (x1, . . . , xn) ∈ S such that xi = xj in Rαiαj

.
The element y can be constructed from the local data x and the elements

αi. For some p ≥ 0 there exist y1, . . . , yn in R such that xi = yiα
−p
i . Assuming

d0(x) = 0, there exists q ≥ 0 such that for all i, j pairs

(αiαj)
q(αpjyi − α

p
i yj) = 0.

Since R = Rαq+p1 + · · · + Rαq+pn , there exist gi ∈ R such that 1 = g1α
q+p
1 +

· · · + gnα
q+p
n . Set y = g1α

q
1y1 + · · · + gnα

q
nyn. The reader should verify that

y = yjα
−p
j = xj in Rαj

, hence θ(y) = x.

Example 12.6.3. Let R be a commutative ring, P a finitely generated projec-
tive R-module, and ϕ ∈ HomR(P, P ). In this example, we show how to construct
the characteristic polynomial of ϕ. Let α1, . . . , αn be a set of n elements of R
such that R = Rα1 + · · · + Rαn and Pαi

= P ⊗R Rαi
is free of finite rank over

Rαi
. Let S =

⊕n
i=1Rαi

and as in Example 12.6.2 identify S⊗2 =
⊕

(i,j)Rαiαj
.

Then S[x] = S⊗RR[x] =
⊕n

i=1Rαi [x] and S
⊗2[x] =

⊕
(i,j)Rαiαj [x]. The Amitsur

complex C•(S[x]/R[x]) becomes

0→ R[x]
θ−→
⊕
i∈In

Rαi
[x]

d0−→
⊕

(i,j)∈I2n

Rαiαj
[x]

d1−→ · · ·

which is an exact sequence, because S[x] is faithfully flat over R[x].
For each i, let ϕi = ϕ⊗ 1 ∈ HomRαi

(Pαi , Pαi). By Definition 4.7.11, the char-

acteristic polynomial pi(x) = char.polyRαi
(ϕi) can be computed as a determinant

of x−ϕi and does not depend on the choice of a basis of Pαi . The polynomial pi(x)
is an element of Rαi [x]. We remark that the determinant operator commutes with
change of base ring. In other words, if θ : A→ B is a homomorphism of commuta-
tive rings and M is a matrix in Mn(A), then det(θ(M)) = θ(det(M)). This follows
straight from Definition 4.7.4. Therefore, if ϕij = ϕ⊗ 1 ∈ HomRαiαj

(Pαiαj
, Pαiαj

),

then in Rαiαj
[x] we have the equalities char.polyRαi

(ϕi) = char.polyRαiαj
(ϕij) =

char.polyRαj
(ϕj). This says d0(p1(x), . . . , pn(x)) = 0. Therefore, the local data

(p1(x), . . . , pn(x)) descend to a polynomial p(x) in R[x]. The polynomial p(x) is
usually denoted by char.polyR(ϕ) and is called the characteristic polynomial of ϕ.

Now we show that the polynomial char.polyR(ϕ) just constructed does not
depend on the open cover of SpecR. Let β1, . . . , βm be another set of elements in
R that generated the unit ideal and such that Pβj

is free over Rβj
for each j. Let
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T =
⊕m

j=1Rβj
and by the above method, let q(x) be the characteristic polynomial

of ϕ constructed using the faithfully flat R-algebra T . We show that q(x) is equal
to the polynomial p(x) which was constructed initially. Notice that S ⊗R T is a
faithfully flat R-algebra and we can identify S ⊗R T =

⊕
(i,j)Rαiβj

. The image

of p(x) in Rαiβj
[x] is equal to the image of q(x) in Rαiβj

[x]. Since the Amitsur
complex C•(S ⊗R T [x]/R[x]) is exact, this proves p(x) = q(x).

Now we prove the Cayley-Hamilton theorem applies to p(x) = char.polyR(ϕ).
Since S is faithfully flat over R, by Proposition 12.6.1, the sequence

0→ HomR(P, P )
θ−→ HomR(P, P )⊗R S

is exact. We identify HomR(P, P ) ⊗R S with
⊕n

i=1 HomRαi
(Pαi

, Pαi
). The image

of p(ϕ) under θ is (p1(ϕ1), . . . , pn(ϕn)). By Theorem 4.7.12, this image is (0, . . . , 0),
which means p(ϕ) = 0.

If RankR(P ) = n is defined, then the characteristic polynomial will have con-
stant degree n. Let char.polyR(ϕ) = xn+an−1x

n−1+· · ·+a1x+a0. Following Exer-
cise 4.7.28, we define the determinant of ϕ to be det(ϕ) = (−1)na0 and the trace of
ϕ to be trace(ϕ) = −an−1. The reader should verify that det(ϕψ) = det(ϕ) det(ψ).

6.3. Descent of Homomorphisms. Let S be a commutative R-algebra and
M and N a pair of R-modules. The goal is to find sufficient conditions on a
homomorphism g ∈ HomS(M ⊗R S,N ⊗R S) such that g = f ⊗ 1 for some
f ∈ HomR(M,N). The maps ei : S → S ⊗R S defined by e0(s) = 1 ⊗ s and
e1(s) = s ⊗ 1 are both R-algebra homomorphisms. Therefore, S ⊗R S is an S-
algebra in two different ways. Tensoring ei with (M ⊗R S)⊗S () we get the maps
of Paragraph 12.6.1

ei :M ⊗R S → (M ⊗R S)⊗S (S ⊗R S) ∼=M ⊗R S ⊗R S

where e0(x ⊗ s) = x ⊗ 1 ⊗ s and e1(x ⊗ s) = x ⊗ s ⊗ 1. Assign the appellation
Fi to the functor “tensoring with the S-algebra ei : S → S ⊗R S”. There is a
commutative square

M ⊗R S M ⊗R S ⊗R S

N ⊗R S N ⊗R S ⊗R S

-ei

?
g

?
Fi(g)

-ei

for i = 0, 1 and Fi(g) is an S ⊗R S-module homomorphism.

Proposition 12.6.4. Let R be a commutative ring, S a faithfully flat commu-
tative R-algebra, and M and N a pair of R-modules. The sequence

0→ HomR(M,N)
F−→ HomS(M ⊗R S,N ⊗R S)

F0−F1−−−−→ HomS⊗RS(M ⊗R S ⊗R S,N ⊗R S ⊗R S)

is exact, where F(f) = f ⊗ 1 and F0, F1 are defined in the previous paragraph.
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Proof. Since each Fi is an additive functor, F0−F1 is a Z-module homomor-
phism. If f ∈ HomR(M,N), then the diagram

0 M M ⊗R S M ⊗R S ⊗R S

0 N N ⊗R S N ⊗R S ⊗R S

- -

?
f

?
f⊗1

-d
0

?
f⊗1⊗1

- - -d
0

commutes and the rows are exact. Therefore, F is one-to-one and f ⊗1⊗1 = 0. To
complete the proof, we show ker(F0−F1) ⊆ im(F). Let g ∈ HomS(M⊗RS,N⊗RS)
and assume F0(g) = F1(g). Given m ∈M we have e0(m⊗ 1) = e1(m⊗ 1), so

e0g(m⊗ 1) = F0(g)e0(m⊗ 1) = F0(g)e1(m⊗ 1) = F1(g)e1(m⊗ 1) = e1g(m⊗ 1).

By Proposition 12.6.1, this proves that g(m⊗ 1) ∈ N ⊗R 1. Define f :M → N by
f(m) = g(m⊗ 1). Then g = F(f). □

Example 12.6.5. Let R be a commutative ring and P a finitely generated
projective R-module. By Lemma 6.9.1, θR : P ∗ ⊗R P → HomR(P, P ) is an iso-
morphism of R-modules, where θR(f ⊗ p)(x) = f(x)p. Define T : P ∗ ⊗R P → R
by T (f ⊗ p) = f(p). By Exercise 9.6.19, this induces an R-module homomor-
phism T : HomR(P, P ) → R which is equal to the trace map of Exercise 4.7.26
and the trace map of Definition 9.6.6, when P is free. As in Example 12.6.2, let
R → S be a faithfully flat R-algebra such that P ⊗R S is free. Upon change of
base, T ⊗ 1 : HomS(P ⊗R S, P ⊗R S) → S is the trace map of Exercise 4.7.26.
By Proposition 12.6.4, the map T is equal to the trace map of Definition 9.6.6.
Assuming RankR(P ) is defined, we also see that T is equal to the trace defined in
Example 12.6.3 using the characteristic polynomial.

6.4. Descent of Modules. Let θ : R→ S be a homomorphism of commuta-
tive rings. Given S-modules A, B, C and D and an S⊗RS-module homomorphism
f : A⊗R B → C ⊗R D, there are three S ⊗R S ⊗R S-module homomorphisms

f1 : S ⊗R A⊗R B → S ⊗R C ⊗R D
f2 : A⊗R S ⊗R B → C ⊗R S ⊗R D
f3 : A⊗R B ⊗R S → C ⊗R D ⊗R S

where fi is obtained by tensoring f with the identity map on S in position i. We
employ this construction in the following setting. Start with any S-module M .
Then S ⊗R M and M ⊗R S are two S ⊗R S-modules. Then an S ⊗R S-module
homomorphism g : S ⊗R M → M ⊗R S gives rise to three S ⊗R S ⊗R S-module
homomorphisms

g1 : S ⊗R S ⊗RM → S ⊗RM ⊗R S
g2 : S ⊗R S ⊗RM →M ⊗R S ⊗R S
g3 : S ⊗RM ⊗R S →M ⊗R S ⊗R S.

The ring homomorphism θ induces θ : M → S ⊗R M , where x 7→ 1 ⊗ x. Let
µ :M ⊗R S →M be the multiplication map, where x⊗ s 7→ sx. The composition

S ⊗RM
g−→M ⊗R S

µ−→M
θ−→ S ⊗RM

upon restriction to im θ induces an S-module homomorphism which will be denoted
by ḡ : 1⊗RM → 1⊗RM . Then ḡ(1⊗m) = 1⊗ µg(1⊗m).
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Proposition 12.6.6. Let θ : R→ S be a homomorphism of commutative rings,
M an S-module and g : S ⊗R M → M ⊗R S an S ⊗R S-module homomorphism.
The following are equivalent.

(1) ḡ is the identity map on 1⊗RM and g2 = g3g1.
(2) g is an isomorphism of S ⊗R S-modules and g2 = g3g1.

Proof. (1) implies (2): Let τ :M ⊗R S → S ⊗RM be the twist map defined
by x ⊗ s 7→ s ⊗ x. The reader should verify that g̃ = t−1gτ is an S ⊗R S-module
homomorphism. We show that g̃ is the inverse of g. Let m ∈M . Then 1⊗m is a
typical generator for the S⊗RS-module S⊗RM . If we write g(1⊗m) =

∑
imi⊗si,

then since ḡ is the identity map,

1⊗m = ḡ(1⊗m) = 1⊗
∑
i

misi.

Next write g(1⊗mi) =
∑
jmij ⊗ tij . We have

g̃
(
g(1⊗m)

)
= g̃
(∑

i

mi ⊗ si
)

=
∑
i

g̃(mi ⊗ si)

=
∑
i

(1⊗ si)g̃(mi ⊗ 1)

=
∑
i

(1⊗ si)
∑
j

tij ⊗mij

=
∑
i

∑
j

tij ⊗ simij .

Let ω :M⊗RS⊗RS → S⊗RM be the function x⊗a⊗b 7→ a⊗xb which multiplies
the two extreme factors. Since g2 = g3g1,

ω (g2(1⊗ 1⊗m)) = ω
(∑

i

mi ⊗ 1⊗ si
)
= 1⊗

∑
i

misi = 1⊗m

is equal to

ωg3g1(1⊗1⊗m) =
∑
i

ωg3(1⊗mi⊗si) =
∑
i

∑
j

ω(mij⊗tij⊗si) =
∑
i

∑
j

tij⊗mijsi

which is equal to g̃g(1⊗m). This proves that g̃g is the identity map on S ⊗RM .
The reader should verify that gg̃ is the identity map on M ⊗R S.

(2) implies (1): We are given an isomorphism g : S ⊗R M → M ⊗R S. Let
m ∈M and write g(1⊗m) =

∑
imi ⊗ si. Then

ḡ(1⊗m) = 1⊗ µg(1⊗m) = 1⊗
∑
i

misi.

Since g is one-to-one, it is enough to show g(1 ⊗ m) = g
(
1 ⊗

∑
imisi

)
. Write

g(1⊗mi) =
∑
jmij ⊗ tij . We have

g
(
1⊗

∑
i

misi
)
=
∑
i

g(1⊗mi)(1⊗ si) =
∑
i

∑
j

mij ⊗ tijsi.
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Let ω :M⊗RS⊗RS →M⊗RS be the function x⊗a⊗b 7→ x⊗ab which multiplies
the last two factors. Since g2 = g3g1,

ωg2(1⊗ 1⊗m) = ω
(∑

i

mi ⊗ 1⊗ si
)
=
∑
i

mi ⊗ si

is equal to

ωg3g1(1⊗1⊗m) =
∑
i

ωg3(1⊗mi⊗si) =
∑
i

∑
j

ω(mij⊗tij⊗si) =
∑
i

∑
j

mij⊗tijsi.

It follows from these computations that g(1⊗m) = g
(
1⊗

∑
imisi

)
. □

If one of the equivalent properties of Proposition 12.6.6 is satisfied, then we say
g is a descent datum for M over S.

Theorem 12.6.7. (The Theorem of Faithfully Flat Descent) Let S be a commu-
tative faithfully flat R-algebra. Let M be an S-module and g : S⊗RM →M⊗RS a
descent datum forM over S. Then there exists an R-module N and an isomorphism
ν : N ⊗R S →M of S-modules such that the diagram of S ⊗R S-modules

(6.1)

S ⊗R N ⊗R S S ⊗RM

N ⊗R S ⊗R S M ⊗R S

-1⊗ν

?

τ

?

g

-ν⊗1

commutes, where τ(a ⊗ b ⊗ c) = b ⊗ a ⊗ c. Up to isomorphism, these properties
uniquely determine the module N and the isomorphism ν.

Proof. (Existence.) Set N = {x ∈M | x⊗1 = g(1⊗x)} and let ν : N⊗RS →
M be the multiplication map ν(x ⊗ s) = xs. We show that N and ν have the
desired properties. Notice that N is the kernel of the R-module homomorphism
ge0 − e1 :M →M ⊗R S, hence the sequence

(6.2) 0→ N →M
ge0−e1−−−−→M ⊗R S

is exact and N is an R-module. Over S⊗RS, the module S⊗RN⊗RS is generated
by elements of the form 1⊗ x⊗ 1, for x ∈ N . Diagram (6.1) commutes since

g
(
(1⊗ν)(1⊗x⊗1)

)
= g(1⊗x) = x⊗1 = (ν⊗1)(x⊗1⊗1) = (ν⊗1)

(
τ(1⊗x⊗1)

)
.

The diagram of S-module homomorphisms

(6.3)

S ⊗RM S ⊗RM ⊗R S

M ⊗R S M ⊗R S ⊗R S

-1⊗e1

?
g

?
g3=g⊗1

-
1⊗e1=e2

commutes, since

g3
(
(1⊗ e1)(a⊗ x)

)
= g3(a⊗ x⊗ 1) = g(a⊗ x)⊗ 1 = e2

(
g(a⊗ x)

)
.

Since g2 = g3g1, it follows that

g3
(
(1⊗ge0)(a⊗x)

)
= g3

(
a⊗g(1⊗x)

)
= g3g1(a⊗1⊗x) = g2(a⊗1⊗x) = e1g(a⊗x).
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Therefore, the diagram of S-module homomorphisms

(6.4)

S ⊗RM S ⊗RM ⊗R S

M ⊗R S M ⊗R S ⊗R S

-1⊗ge0

?
g

?
g3=g⊗1

-
1⊗e0=e1

commutes. Consider the diagram of S-module homomorphisms

(6.5)

0 S ⊗R N S ⊗RM S ⊗RM ⊗R S

0 M M ⊗R S M ⊗R S ⊗R S

- -ppppppp?ϕ
-1⊗(ge0−e1)

?
g

?
g3

- -
1⊗θ

-
1⊗(e0−e1)

The top row of (6.5) is exact, because it is obtained by applying the exact func-
tor S ⊗R () to the exact sequence (6.2). The bottom row of (6.5) is exact by
Proposition 12.6.1. The diagram (6.5) commutes because it is constructed from
the commutative diagrams (6.3) and (6.4). Since g and g3 are isomorphisms, the
S-module homomorphism ϕ exists and is an isomorphism, by Theorem 6.6.2. For
x ∈ N , ϕ(1⊗ x) = x, hence ϕ agrees with ν. This proves ν is an isomorphism.

(Uniqueness.) Suppose K is another R-module and κ : K ⊗R S → M the
corresponding S-module isomorphism. Consider the commutative diagram

S ⊗R K ⊗R S S ⊗RM S ⊗R N ⊗R S

K ⊗R S ⊗R S M ⊗R S N ⊗R S ⊗R S

-1⊗κ

?

τ

?

g

�1⊗ν

?

τ

-
κ⊗1

�
ν⊗1

In the notation of Proposition 12.6.4, this says

F0(ν
−1κ) = τ

(
(1⊗ ν−1κ)

(
τ−1(x⊗ a⊗ b)

))
is equal to

F1(ν
−1κ) =

(
(ν−1κ)(x⊗ a)

)
⊗ b.

By Proposition 12.6.4, there exists λ ∈ HomR(K,N) such that ν−1κ = λ⊗1. Since
S is faithfully flat over R and ν−1κ is an isomorphism, λ : K → N is an R-module
isomorphism. Lastly, κ = ν(λ⊗ 1). □

Remark 12.6.8. Theorem 12.6.7 is sometimes stated from the opposite point
of view. That is, the role of the descent datum is played by the function h = g−1.
Then h :M⊗RS → S⊗RM is an S⊗RS-module isomorphism which satisfies the 1-
cocycle identity h1h3 = h2. Then N = {x ∈M | h(x⊗1) = 1⊗x}, ν : N⊗RS →M
is the multiplication map ν(x⊗ s) = xs, and h = (1⊗ ν)(ν ⊗ 1)−1.

Example 12.6.9. Let R be a commutative ring and α1, . . . , αn a set of n
elements of R such that R = Rα1 + · · · + Rαn. For the localization of R with
respect to the multiplicative set {αn | n ≥ 0}, write Rα instead of R[α−1]. By
Exercise 7.5.28, S =

⊕n
i=1Rαi

is faithfully flat over R. Using Lemma 7.1.1, we
identify Rαi ⊗R Rαj with Rαiαj . Then S ⊗R S =

⊕
(i,j)∈I2n

Rαiαj , where In =
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{1, . . . , n}. Suppose for each i that Mi is an Rαi
-module. Then M =

⊕n
i=1Mi is

an S-module. We have

S ⊗RM =
⊕

(i,j)∈I2n

Rαi
⊗RMj

and

M ⊗R S =
⊕

(i,j)∈I2n

Mi ⊗R Rαj .

A descent datum g : S ⊗R M → M ⊗R S consists of a collection of Rαiαj
-module

isomorphisms

Rαi ⊗RMj
gij−−→Mi ⊗R Rαj

where (i, j) ∈ I2n. The identity g2 = g3g1 is equivalent to the statement that the
diagram of Rαiαjαk

-module homomorphisms

Rαi ⊗R Rαj ⊗RMk Mi ⊗R Rαj ⊗R Rαk

Rαi
⊗RMj ⊗R Rαk

-gik⊗1

H
HHH

HHHHj
gjk⊗1

��
���

���*

gij⊗1

commutes for all triples (i, j, k) ∈ I3n. If a descent datum exists, then by Theo-
rem 12.6.7, there is an R-module N and for each i an isomorphism Mi

∼= N ⊗RRαi

of Rαi-modules.

6.5. Descent of Algebras. Let R be a commutative ring and S a faith-
fully flat commutative R-algebra. Let N be an R-module such that the S-module
NS = N ⊗R S has a multiplication operation which is defined by an S-module
homomorphism µ : NS ⊗S NS → NS . If we identify NS ⊗S NS with N ⊗RN ⊗R S,
then µ belongs to HomS(N ⊗RN ⊗R S,N ⊗R S). By Proposition 12.6.4, the homo-
morphism µ descends to a unique R-module homomorphism N ⊗R N → N if and
only if F0(µ) and F1(µ) induce equal multiplication operations on N ⊗R S ⊗R S.

Theorem 12.6.10. Let S be a commutative faithfully flat R-algebra. Let B be
an S-algebra and g : S ⊗R B → B ⊗R S a descent datum for B over S such that
g is an isomorphism of S ⊗R S-algebras. Then there exists an R-algebra A and an
isomorphism ν : A⊗R S → B of S-algebras.

Proof. The existence and uniqueness of the R-module A and the S-module
isomorphism ν : A⊗R S → B are guaranteed by Theorem 12.6.7. The diagram

(6.6)

S ⊗R A⊗R S S ⊗R B

A⊗R S ⊗R S B ⊗R S

-1⊗ν

?

τ

?

g

-ν⊗1
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commutes, where τ(a⊗b⊗c) = b⊗a⊗c. The counterpart of (6.6) for A⊗RA⊗RS ∼=
B ⊗S B is the commutative square

(6.7)

S ⊗R (A⊗R A)⊗R S S ⊗R (B ⊗R B)

(A⊗R A)⊗R S ⊗R S (B ⊗R B)⊗R S

-1⊗(ν⊗Sν)

?

τ

?

g⊗Sg

-(ν⊗Sν)⊗1

Because g is an S ⊗R S-algebra isomorphism, the diagram

(6.8)

S ⊗R B ⊗R B = (S ⊗R B)⊗S (S ⊗R B) S ⊗R B

B ⊗R B ⊗R S = (B ⊗R S)⊗S (B ⊗R S) B ⊗R S

-

?

g⊗Sg

?

g

-

commutes, where the horizontal arrows are the multiplication maps. The multipli-
cation µ on AS = A⊗R S is defined by the multiplication operation on B and the
S-algebra isomorphism ν. By definition of µ, the diagram

(6.9)

A⊗R A⊗R S = AS ⊗S AS AS

B ⊗S B B

-µ

?

ν⊗Sν

?

ν

-

commutes, where the bottom arrow is multiplication in B. As was mentioned in the
paragraph preceding the theorem, it suffices to show that F0(µ) and F1(µ) induce
equal multiplication operations on A ⊗R S ⊗R S. Apply either functor Fi to the
commutative square (6.9) to get the commutative square

(6.10)

(A⊗R A)⊗R S ⊗R S A⊗R S ⊗R S

B ⊗S B ⊗R S B ⊗R S

-Fi(µ)

?

(ν⊗Sν)⊗1

?

ν⊗1

-
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Combine diagrams (6.6), (6.7), (6.8), and (6.10) to get the commutative diagram

(A⊗R A)⊗R S ⊗R S A⊗R S ⊗R S

S ⊗R B ⊗R B S ⊗R B

B ⊗R B ⊗R S B ⊗R S

-Fi(µ)

@
@
@
@
@
@
@
@@R

(ν⊗Sν)⊗1

HH
HHH

HHj

(1⊗(ν⊗Sν))τ
−1 �

�
�

�
�

�
�

��	

ν⊗1

��
���

���

(1⊗ν))τ−1

-

?

g⊗Sg

?

g

-

This diagram commutes with either F0(µ) or F1(µ) in the top row. Therefore the
multiplication on AS descends to a multiplication on A. The associative, commu-
tative and distributive laws hold in A because they hold in AS . □

6.6. Applications. The results of Section 6 are applied to prove two impor-
tant theorems. The first result gives a complete classification for involutions of
quadratic extensions of a commutative ring. The second application is a criterion
due to H. Bass for a module over a commutative ring to be a progenerator.

6.6.1. Quadratic Extensions. Let R be a commutative ring and A an R-algebra.
An R-algebra involution of A is a function σ : A→ A satisfying

σ(x+ y) = σ(x) + σ(y), if x, y ∈ A
σ(xy) = σ(y)σ(x), if x, y ∈ A

σ(σ(x)) = x, if x ∈ A
σ(x) = x, if x ∈ R

Associated to an involution σ are the trace TAR : A→ A and the norm NA
R : A→ A,

defined by

TAR (x) = x+ σ(x)

NA
R (x) = xσ(x)

Notice that

(6.11) x2 − xTAR (x) +NA
R (x) = 0

for all x ∈ A. We call σ a standard involution in case TSR(x) ∈ R and NS
R(x) ∈ R

for all x ∈ S. If σ is a standard involution, the reader should verify

NS
R(x) = xσ(x) = σ(x)x

and

NA
R (xy) = NA

R (x)NA
R (y)

for all x, y ∈ A.

Proposition 12.6.11. If S is an R-algebra which as an R-module is a progen-
erator, then there exists at most one standard involution on S.

Proof. Suppose σ1 and σ2 are standard involutions of S. By Proposition 7.7.2,
there exist f1, . . . , fn in R such that Sfi is a free Rfi module of of finite rank and⊕n

i=1 Sfi is a faithfully flat S-algebra. It suffices to show that σ1 = σ2 upon
restriction to Sfi , for each i. Therefore we assume from now on that S is free. By
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Proposition 7.5.6, R·1 is an R-module direct summand of S. Let b1, . . . , bn be a free
R-basis for S and assume b1 = 1. Write Ti and Ni for the trace and norm associated
to σi. Then T1(b1) = T2(b1). By (6.11), b2j = bjT1(bj)−N1(bj) = bjT2(bj)−N2(bj),
from which it follows that T1(bj) = T2(bj) for 2 ≤ j ≤ n. □

A quadratic extension of R is an R-algebra S which is an R-progenerator of
rank two. By Exercise 7.7.13, a quadratic extension is commutative.

Proposition 12.6.12. A quadratic extension S/R has a unique standard invo-
lution.

Proof. Case 1: Assume S is a free R-module of rank two. As in the proof
of Proposition 12.6.11, assume S = R · 1 + R · β. There exist a, b ∈ R such that
β2 = a+bβ. Define σ : S → S by 1 7→ 1 and β 7→ b−β. Then σ(x+yβ) = x+yb−yβ.
The reader should verify that σ is a standard involution.

Case 2: S is locally free of rank two. As in the proof of Proposition 12.6.11,
there exist f1, . . . , fn in R such that Sfi is a free Rfi module of of finite rank,
R =

⊕n
i=1Rfi is a faithfully flat R-algebra, and S =

⊕n
i=1 Sfi is a faithfully

flat S-algebra. By Case 1 there exist Rfi-algebra involutions σi on Sfi and σ =
⊕σi is an R-involution on S. Let σij denote the restriction of σi to Sfifj . By
Proposition 12.6.11, σij = σji. By Example 12.6.2, the right-most square of the
diagram

0 S

⊕
i

Sfi

⊕
(i,j)

Sfifj

0 S

⊕
i

Sfi

⊕
(i,j)

Sfifj

- -ppppppppppppppp?
∃σ

-d
0

?

⊕σi

?

⊕σij

- - -d
0

commutes. The rows are exact, so σ defines an involution on S. The reader should
verify that σ is a standard involution. □

6.6.2. A Theorem of Bass. In this short section we prove a theorem of Bass
(Theorem 12.6.14) which was stated without proof in [20, Theorem 14.2.1]. The
proof given in [10, Proposition (4.6), p. 476] is K-theoretic, whereas the proof given
below is based on the method suggested in the paragraph immediately preceding
[40, Theorem III.17] and utilizes only theorems proven in this book. The main idea
for the proof is the following lemma.

Lemma 12.6.13. Let R be a ring and M a left R-module. For any n > 0, the
assignment

HomR(M,M)
∆−→ HomR(M

(n),M (n))

that maps a homomorphism φ in HomR(M,M) to the corresponding diagonal homo-
morphism ∆(φ) = ⊕ni=1φ in HomR(M

(n),M (n)) defines a monomorphism of rings.
If R is commutative, ∆ is an R-algebra homomorphism.

Proof. The proof is left to the reader. □
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Theorem 12.6.14. (H. Bass) Let R be a commutative ring and M an R-
module. Then M is an R-progenerator if and only if there exists an R-module
P such that P ⊗RM ∼= R(s) for some s > 0.

Proof. If there exists an R-module P such that P ⊗R M ∼= R(s), then by
Proposition 6.4.25, both M and P are R-progenerators.

Assume M is an R-progenerator. First we show how to reduce to the case
where M has constant rank. Assume M does not have constant rank. As in
Corollary 7.4.7, let e1, . . . , et be the structure idempotents of M in R. Write Ri for
Rei and Mi for Mei. Then R = R1 ⊕ · · · ⊕Rt, M =M1 ⊕ · · · ⊕Mt, and Mi is an
Ri-progenerator of constant rank. For each i, assume there exists an integer si > 0

and an Ri-module Pi such that Mi ⊗Ri
Pi ∼= R

(si)
i . Let s be the least common

multiple of {s1, . . . , st}. Then M ⊗R
(
P

(s/s1)
1 ⊕ · · · ⊕ P (s/st)

t

) ∼= R(s).
Assume from now on that M has constant rank r. If M is free, then there

is nothing to prove. Assume N is an R-progenerator such that M ⊕ N is free of
rank rn and n ≥ 2. By Exercises 7.7.14 and 7.5.28, there exists a commutative
faithfully flat R-algebra S such that M ⊗R S and N ⊗R S are isomorphic to the
free S-modules S(r) and S(rn−r), respectively. Then (M ⊕ N) ⊗R S can be writ-
ten as a direct sum ⊕ni=1S

(r), which is isomorphic to the direct sum (M ⊗R S)(n).
Applying Lemma 12.6.13 to this direct sum decomposition defines the homomor-
phism ∆ : HomS(M ⊗R S,M ⊗R S)→ HomS((M ⊕N)⊗R S, (M ⊕N)⊗R S). By
Lemma 6.9.1 (1),

M∗ ⊗RM
θR−−→ HomR(M,M)

is an isomorphism of HomR(M,M)-modules, hence is an isomorphism ofR-modules.
By Corollary 6.9.3 (6),M∗ is anR-progenerator. By Proposition 6.4.24, HomR(M,M)
is an R-progenerator module. By Proposition 7.5.6, HomR(M,M) is a faithfully
flat R-algebra. Therefore, the natural map HomR(M,M)→ HomR(M,M)⊗R S is
one-to-one. By Proposition 7.5.8, HomR(M,M)⊗RS is isomorphic to HomS((M⊕
N) ⊗R S, (M ⊕ N) ⊗R S). Similarly, the natural map HomR(M ⊕ N,M ⊕ N) →
HomS((M ⊕N)⊗R S, (M ⊕N)⊗R S) is one-to-one. Consider the diagram

HomS(M ⊗R S,M ⊗R S)
∆ // HomS((M ⊕N)⊗R S, (M ⊕N)⊗R S)

HomR(M,M)⊗R S

∼=

OO

HomR(M ⊕N,M ⊕N)⊗R S

∼=

OO

HomR(M,M)

⊆

OO

∃δ // HomR(M ⊕N,M ⊕N)

⊆

OO
(6.12)

of homomorphisms of R-algebras. Next we show that ∆ restricts to a homomor-
phism δ : HomR(M,M)→ HomR(M⊕N,M⊕N). The proof is by faithfully flat de-
scent. Start with a basis {b1, . . . , br} for the S-moduleM⊗RS and extend it to a ba-
sis for (M⊕N)⊗RS. With respect to these bases, interpret HomS(M⊗RS,M⊗RS)
as r-by-r matrices over S (denotedMr(S)) and HomS((M⊕N)⊗RS, (M⊕N)⊗RS)
as rn-by-rn matrices over S (denoted Mrn(S)). We see that ∆ :Mr(S)→Mrn(S)
sends a matrix A to the block diagonal matrix A⊕· · ·⊕A. Let e0 : S → S⊗R S be
defined by s 7→ 1⊗ s. Likewise, let e1 : S → S ⊗R S be defined by s 7→ s⊗ 1. Then
each ei is an R-algebra homomorphism. Let Fi be the functor from S-modules to
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S⊗R S-modules induced by tensoring with ei. From the description of ∆ above we
see that F0(∆) is equal to F1(∆). By Proposition 12.6.4, there exists an R-algebra
homomorphism δ such that diagram (6.12) commutes. By the homomorphism δ,
we can view HomR(M,M) as a ring of endomorphisms of the R-moduleM⊕N . By
the Morita Theorem 6.9.2, there is an R-module P and a left HomR(M,M)-module
isomorphism σ : P ⊗RM → M ⊕N . Since HomR(M,M) is an R-algebra, σ is an
R-module isomorphism. Since M ⊕ N is a free R-module of rank s = rn, we are
finished. □

7. Hochschild Cohomology

Definition 12.7.1. Let R be a commutative ring, A an R-algebra, and Ae =
A⊗RAo the enveloping algebra (Definition 9.1.1). IfM is a two-sided A/R-module,
then (Definition 9.1.6). the nth Hochschild cohomology group of A with coefficients
in M is defined to be

Hn(A,M) = ExtnAe(A,M)

where we make M into a left Ae-module by a⊗ b · x = axb

7.1. The Standard Complex. Let R be a commutative ring and A an R-
algebra. We construct a chain complex S•(A) → A of Ae-modules. When A is a
projective R-module, S•(A) is a projective resolution of A as a left Ae-module, and
is called the standard resolution. The standard resolution is applied to compute
the Hochschild cohomology groups (Definition 12.7.1).

For n ≥ 0, define left Ae-modules by

(7.1) Sn(A) =

{
Ae = A⊗R Ao if n = 0,

A⊗R (A⊗n)⊗R A if n > 0.

As in Definition 7.9.5, A⊗n is the tensor product of n copies of A, and Sn(A) is a
left Ae-module by a⊗ b · x = axb. For notational convenience, we define S−1(A) to
be A. For n ≥ 0 and for 0 ≤ i ≤ n, let µn,i : Sn → Sn−1 be define by

µn,i(x0 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xn+1) = x0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1.

Then µn,i is defined by tensoring the multiplication map µ : Ae → A in the ith
factor with the identity map elsewhere. Define boundary maps dn : Sn → Sn−1 by

dn =

n∑
i=0

(−1)nµn,i.

Since µ is an Ae-module homomorphism, it follows that µn,i and dn are Ae-module
homomorphisms.

Lemma 12.7.2. In the above context,

· · · → Sn(A)
dn−→ Sn−1(A)→ · · · → S1

d1−→ S0
µ−→ A→ 0

is an exact sequence. If A is projective as an R-module, then S•(A) → A is a
projective resolution of A as a left Ae-module.

Proof. By a slight variation of Theorem 6.4.23, we see that if A is a projective
R-module, then Sn(A) is a projective Ae-module. We must show that dn−1dn = 0,
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and that the homology of the complex is (0). For n ≥ −1 define kn : Sn(A) →
Sn+1(A) by kn(x) = 1⊗ x. For all n ≥ 0 and x ∈ Sn(A), we see that

dn+1kn(x) = dn+1(1⊗ x)

= x+

n+1∑
i=1

(−1)iµn+1,i(1⊗ x)

= x−
n∑
i=0

(−1)i1⊗ µn,i(x)

and

kn−1dn(x) = kn+1

n∑
i=0

(−1)iµn,i(x)

=

n∑
i=0

(−1)i1⊗ µn,i(x).

Therefore, the contracting homotopy relations

dn+1kn(x) + kn−1dn = 1

are satisfied. Now we show that dn−1dn = 0. For n = 1,

µd1(x⊗ y ⊗ z) = µ(xy ⊗ z − x⊗ yz) = (xy)z − x(yz) = 0

by the associative property for multiplication in A. By induction on n and the
contracting homotopy relations, it follows that dn−1dn = 0 for all n ≥ 1 (see the
proof of Theorem 12.5.8). Applying Exercise 12.1.15 completes the proof. □

7.2. Cocycle and Coboundary Groups in Low Degree. Let A be an
R-algebra which is projective as an R-module. Let M be a left Ae-module. The
Hochschild cohomology groups Hn(A,M) are defined to be ExtnAe(A,M) (Defini-
tion 12.7.1). The projective resolution S•(A) → A of Lemma 12.7.2 is called the
standard complex of A. From (7.1) we have

Sn(A) = A⊗R Tn(A)⊗R A = Ae ⊗R Tn(A)
where Tn(A) = A⊗n is the nth tensor module of A over R (Definition 7.9.5). Then
the Adjoint Isomorphism (Theorem 6.5.10 (1) implies

HomAe(Sn(A),M) ∼= HomAe(Ae ⊗R Tn(A),M)

∼= HomR(T
n(A),HomAe(Ae,M))

∼= HomR(T
n(A),M).

By Definition 12.3.11, the cohomology groups are the homology groups of the trun-
cated complex

HomAe(S•(A),M) = HomAe(Ae ⊗R Tn(A),M)

= HomR(T
n(A),M).

The terms of low degree are

(7.2) 0→M
δ0−→ HomR(A,M)

δ1−→ HomR(A⊗R A,M)

δ2−→ HomR(A⊗R A⊗R A,M)
δ3−→ HomR(A

⊗4,M)→ · · · .
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A tedious computation involving (7.2), the boundary maps dn of Lemma 12.7.2, the
Adjoint Isomorphism, and the Hom functor results in a formula for the coboundary
maps. Let f ∈ HomR(A

⊗n,M) be an n-cochain. Then

(7.3) (δnf)(x1 ⊗ · · · ⊗ xn+1) = x1f(x2 ⊗ . . . xn+1)

+

n∑
i=1

(−1)if(x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1)

+ (−1)n+1f(x1 ⊗ · · · ⊗ xn)xn+1.

8. Amitsur Cohomology

Amitsur cohomology was first used in [2]. It is the basis of the Čech cohomol-
ogy which was introduced by Grothendieck and Cartier for schemes. The results
presented here are taken from various sources, including [28], [34] and [47].

8.1. The Definition and First Properties. Let S be a commutative R-
algebra. By S⊗r we denote S ⊗R · · · ⊗R S, the tensor product of r copies of S. As
in Section 12.6.1, for 0 ≤ j ≤ n+ 1, there is an R-algebra homomorphism

S⊗(n+1) ej−→ S⊗(n+2)

(x0 ⊗ · · · ⊗ xn) 7→ x0 ⊗ · · · ⊗ xj−1 ⊗ 1⊗ xj ⊗ · · · ⊗ xn.

Let F be a covariant functor from the category of commutative R-algebras to the
category of abelian groups. The Amitsur complex for S/R with coefficients in F is

(8.1) 1→ F(S)
d0−→ F(S⊗2)

d1−→ F(S⊗3)
d2−→ · · ·

where the coboundary map dr : F(S⊗(r+1))→ F(S⊗(r+2)) is defined to be

dr =

r+1∏
i=0

F(ei)
(−1)i .

Denote this complex by C•(S/R,F). Since ejei = ei+1ej for all j ≤ i, the reader
should verify that (8.1) is a complex of abelian groups.

Definition 12.8.1. In the cochain complex (8.1), the kernel of dn is the
group of n-cocycles, Zn(S/R,F) = ker dn. The image of dn−1 is the group of n-
coboundaries, Bn(S/R,F) = im dn−1. The group of cocycles modulo the cobound-
aries is

Hn(S/R,F) = Zn(S/R,F)/Bn(S/R,F)

which is called the nth Amitsur cohomology group of S/R with coefficients in F.

Example 12.8.2. In degrees 0 and 1, we have

Z0(S/R,F) = H0(S/R,F)

= {α ∈ F(S) | F(e0)(α) = F(e1)(α)}
B1(S/R,F) = {F(e0)(α)F(e1)(α−1) | α ∈ F(S)}
Z1(S/R,F) = {α ∈ F(S ⊗R S) | F(e2)(α)F(e0)(α) = F(e1)(α)}.

(8.2)
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Example 12.8.3. For any commutative R-algebra S, let Ga(S) be the additive
abelian group of S. If S is faithfully flat, then by Proposition 12.6.1,

Hn(S/R,Ga) =

{
Ga(R) if n = 0

0 if n ≥ 1.

Definition 12.8.4. When F is nonabelian, the cohomology is defined using the
relations of (8.2). In this case, the result is not a group, but a pointed set. Let F be
a functor from the category of commutative R-algebras to the category of groups.
We define

H0(S/R,F) = {α ∈ F(S) | F(e0)(α) = F(e1)(α)}
with base point being the group identity of F(S). We define

Z1(S/R,F) = {α ∈ F(S ⊗R S) | F(e2)(α)F(e0)(α) = F(e1)(α)}

with base point being the group identity of F(S ⊗R S). Define a relation on
Z1(S/R,F) by α ∼ β if there exists γ ∈ F(S) such that

α = F(e1)(γ)βF(e0)(γ
−1).

The reader should verify that ∼ is an equivalence relation. We define H1(S/R,F)
to be the set of equivalence classes Z1(S/R,F)/ ∼, with base point being the equiv-
alence class containing the group identity of F(S ⊗R S). When the functor F takes
its values in the category of abelian groups, it is clear that this definition agrees
with Definition 12.8.1 for n = 0, 1.

Theorem 12.8.5. Suppose

S S′

R R′

-f

6
θ

-ϕ

6
θ′

is a commutative diagram of homomorphisms of commutative R-algebras. Let F be
a functor from the category of commutative R-algebras to the category of abelian
groups. Then f induces homomorphisms

f∗ : Hn(S/R,F)→ Hn(S′/R′,F)

for n ≥ 0. Moreover, f∗ is independent of f . That is, if g : S → S′ is another such
homomorphism, then f∗ = g∗. If F is a functor that takes its values in the category
of nonabelian groups, then the above is true for n = 0, 1, where f∗ is a morphism
of pointed sets.

Proof. Since F is a functor, and the diagram of algebra homomorphisms com-
mutes, f induces a morphism of cochain complexes f : F(S⊗n)→ F((S′)⊗n). Con-
sequently, there are homomorphisms f∗ : Hn(S/R,F)→ Hn(S′/R′,F).

Case 1: Assume F is abelian and use additive notation in the groups F(·). By
Theorem 12.2.12, it is enough to show that the two morphisms f and g between
F(S⊗n) and F((S′)⊗n) are homotopic. We define kn : F(S⊗(n+1))→ F((S′)⊗n) and
show that

(8.3) (f∗)n − (g∗)n = dn−1kn + kn+1dn



550 12. HOMOLOGICAL ALGEBRA

for n ≥ 1. For 0 ≤ i < n define kni : S⊗(n+1) → (S′)⊗n by

(8.4) kni (s0 ⊗ · · · ⊗ sn) = f(s0)⊗ · · · ⊗ f(si)g(si+1)⊗ · · · ⊗ g(sn).

Then each kni is an R-algebra homomorphism (Exercises 6.4.35 and 6.4.43). The

homotopy operator is defined by kn =
∑n−1
i=0 (−1)iF(kni ). We define auxiliary R-

algebra homomorphisms hni : S⊗(n+1) → (S′)⊗(n+1) by
(8.5)

hni (s0 ⊗ · · · ⊗ sn) =


g(s0)⊗ · · · ⊗ g(sn) if i = 0

f(s0)⊗ · · · ⊗ f(si−1)⊗ g(si)⊗ · · · ⊗ g(sn) if 1 ≤ i ≤ n
f(s0)⊗ · · · ⊗ f(sn) if i = n+ 1.

The reader should verify the relations

(8.6) kn+1
j ei =


ei−1k

n
j if j < i− 1

hni if i− 1 ≤ j ≤ i
eik

n
j−1 if i < j.

Starting with the right-most term in (8.3),

kn+1dn =

n∑
j=0

n+1∑
i=0

(−1)j(−1)iF(kn+1
j )F(ei)

=

n∑
j=0

n+1∑
i=0

(−1)j+iF(kn+1
j ei)
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Using (8.6), we get

kn+1dn =

n+1∑
i=2

i−2∑
j=0

(−1)j+iF(ei−1knj )

+

n+1∑
i=1

(−1)i−1+iF(hi) +
n∑
i=0

(−1)i+iF(hi)

+

n−1∑
i=0

n∑
j=i+1

(−1)j+iF(eiknj−1))

=

n+1∑
i=2

i−2∑
j=0

(−1)j+iF(ei−1knj )

+ F(h0)− F(hn+1)

+

n−1∑
i=0

n∑
j=i+1

(−1)j+iF(eiknj−1))

=

n−1∑
j=0

(−1)j+n+1F(enk
n
j )

+

n−1∑
i=1

i−1∑
j=0

(−1)j+i+1F(eik
n
j )) +

n−1∑
j=i

(−1)j+i+1F(eik
n
j ))


+

n−1∑
j=0

(−1)jF(e0knj ))

+ F(h0)− F(hn+1)

= (g∗)n − (f∗)n −
n∑
i=0

n−1∑
j=0

(−1)j+iF(eiknj ))

= (g∗)n − (f∗)n − dn−1kn

Which proves the theorem when F is abelian.
Case 2: Assume F is non-abelian (written multiplicatively) and n = 0. Let k10 :

S ⊗R S → S′ be as in (8.4). Note that k10e0 = g and k10e1 = f . If α ∈ Z0(S/R,F),
then F(g)α = F(k10e0)α = F(k10)F(e0)α = F(k10)F(e1)α = F(k10e1)α = F(f)α.

Case 3: Assume F is non-abelian (written multiplicatively) and n = 1. Let k20
and k21 be the R-algebra homomorphisms defined in (8.4). If α ∈ Z1(S/R,F), then
on the one hand,

F(f ⊗ g)(α) = F(h11)(α) (by (8.5))

= F(k20e1)(α) (by (8.6))

= F(k20e2)(α)F(k
2
0e0)(α) (since α ∈ Z1(S/R,F))

= F(e1k
1
0)(α)F(h

1
0)(α) (by (8.6))

= F(e1k
1
0)(α)F(g ⊗ g)(α) (by (8.5)).

(8.7)
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On the other hand,

F(f ⊗ g)(α) = F(h11)(α) (by (8.5))

= F(k21e1)(α) (by (8.6))

= F(k21e2)(α)F(k
2
1e0)(α) (since α ∈ Z1(S/R,F))

= F(h12)(α)F(e0k
1
0)(α) (by (8.6))

= F(f ⊗ f)(α)F(e0k10)(α) (by (8.5)).

(8.8)

Set γ = F(k10)(α). Combining (8.7) and (8.8),

F(f ⊗ f)(α) = F(e1)(γ)F(g ⊗ g)(α)F(e0)(γ−1)

which shows F(f ⊗ f) ∼ F(g ⊗ g). □

8.2. Twisted Forms. Let R be a commutative ring and Cfl(R) the category
of isomorphism classes of faithfully flat R-algebras. If A is an R-module (or R-
algebra), let Aut(A) denote the functor from Cfl(R) to the category of groups defined
by S 7→ AutS(A⊗R S).

Definition 12.8.6. Let R be a commutative ring and A a fixed R-module (or
R-algebra). Given an R-module (or R-algebra) B and a faithfully flat R-algebra S,
we say B is a twisted form of A for the extension S/R if there exists an isomorphism
of S-algebras B ⊗R S ∼= A⊗R S.

Proposition 12.8.7. In the above context, the pointed set H1(S/R,Aut(A))
classifies up to R-module (or R-algebra) isomorphism the twisted forms of A for
the extension S/R.

Proof. Suppose B is a twisted form of A for the extension S/R, and β :
B ⊗R S → A⊗R S is an S-module isomorphism. In a switch from the notation of
Proposition 12.6.4, we write βi instead of Fi(β). Define θ ∈ AutS⊗RS(A⊗RS⊗RS)
by θ = β1β

−1
0 . So θ is the map that makes the diagram

A⊗R S ⊗R S

B ⊗R S ⊗R S

A⊗R S ⊗R S
?

θ

���
��*β0

HH
HHHjβ1

commute. The reader should verify the identities: (β0)0 = (β0)1, (β0)2 = (β1)0,
(β1)1 = (β1)2. Therefore, θ2θ0 = (β1β

−1
0 )2(β1β

−1
0 )0 = (β1)2(β

−1
0 )2(β1)0(β

−1
0 )0 =

(β1)1(β
−1
0 )1 = (β1β

−1
0 )1 = θ1. So θ is a 1-cocycle. To show that the cohomology

class of θ depends only on B, suppose α : B⊗RS → A⊗RS is another S-module iso-
morphism, and ϕ = α1α

−1
0 . Set γ = αβ−1. Then γ is an S-module automorphism

of A⊗RS. We have γ1θγ
−1
0 = γ1(β1β

−1
0 )γ−10 = α1β

−1
1 (β1β

−1
0 )β0α

−1
0 = α1α

−1
0 = ϕ.

Therefore, ϕ is cohomologous to θ.
Let θ ∈ AutS⊗RS(A ⊗R S ⊗ S). Assume θ is a 1-cocycle in Z1(S/R,Aut(A)).

In a switch from the notation of Section 12.8.1, write θi instead of F(ei)(θ). Then
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θ2θ0 = θ1. As in Section 12.6.3, for i = 0, 1 there are R-module homomorphisms
ei : A⊗R S → A⊗R S ⊗R S. Define

B =
{∑

ai ⊗ si ∈ A⊗R S | θ
(∑

ai ⊗ 1⊗ si
)
=
∑

ai ⊗ si ⊗ 1
}

= ker {θe0 − e1 : A⊗R S → A⊗R S ⊗R S} .

Then B is an R-module. Define β : B ⊗R S → A ⊗R S to be the multiplication
map, β((

∑
ai⊗si)⊗s) =

∑
ai⊗sis. As in the proof of Theorem 12.6.7, the reader

should verify that β is an isomorphism of S-modules and θ = β1β
−1
0 . Therefore B

is a twisted form of A for the extension S/R.
To see that B depends only on the cohomology class of θ, suppose ϕ is a 1-

cocycle that is cohomologous to θ. Then there is γ ∈ Aut(A ⊗R S) such that
γ1θγ

−1
0 = ϕ. Since ϕ is a descent datum, there is an R-module C, and an isomor-

phism α : C ⊗R S → A⊗R S such that ϕ = α1α
−1
0 . It follows from

ϕ = γ1θγ
−1
0

α1α
−1
0 = γ1β1β

−1
0 γ−10

α−10 γ0β0 = α−11 γ1β1

that (α−1γβ)0 = (α−1γβ)1. In the notation of Proposition 12.6.4, we see that
F0(α

−1γβ) = F0(α
−1γβ). This implies the isomorphism α−1γβ : B⊗RS → C⊗RS

of S-modules comes from an isomorphism B ∼= C of R-modules. □

8.2.1. Twisted Form of a Finitely Generated Free Module. Let R be a commuta-
tive ring and denote by Rn the direct sum of n copies of R. Let S be a commutative
faithfully flat R-algebra. A free module of rank n is a projective module of rank
n. It follows from Lemma 7.5.12 that a twisted form of Rn for S/R is a projective
module of rank n. The group AutS(R

n ⊗R S) = AutS(S
n) is isomorphic to the

group of invertible matrices inMn(S). The group of invertible n-by-n matrices over
S is also denoted GLn(S) and is called the general linear group. We also denote by
GLn the functor from Cfl to the category of groups defined by S 7→ GLn(S).

Corollary 12.8.8. Let S be a commutative faithfully flat R-algebra.

(1) The twisted forms of the free R-module of rank n for S/R are classified
up to isomorphism by the pointed set H1(S/R,GLn).

(2) If R is a ring for which finitely generated projective modules are free,
then H1(S/R,GLn) = {1}. This is true, for instance, if R is a local ring
(Proposition 7.4.2), or a PID (Proposition 4.3.5).

For n = 1, the general linear group GL1(S) is equal to S
∗ = Gm(S), the group

of invertible elements of S. Since S is commutative, Gm(S) is an abelian group
and the pointed set H1(S/R,GLn) is a group. By Corollary 12.8.8, H1(S/R,Gm)
classifies the group of rank one projective R-modules P such that P ⊗R S ∼= S.
This and Proposition 7.7.8 proves

Corollary 12.8.9. In the above context, the group H1(S/R,Gm) is isomorphic
to the kernel of the natural homomorphism PicR→ PicS.

8.2.2. Twisted Form of a Finitely Generated Free Algebra. Let Rn = R⊕ · · · ⊕
R be the trivial commutative separable extension of R of rank n. Let S be a
commutative faithfully flat R-algebra. It follows from Proposition 9.6.11 that if
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B is a twisted form of Rn for S/R, then B is a separable R-algebra which is an
R-module progenerator of constant rank n.

8.2.3. Twisted Form of Matrices. If S is a commutative R-algebra, then the
S-algebra Mn(R) ⊗R S is naturally isomorphic to Mn(S). Let Aut(Mn) denote
the functor from Cfl, the category of faithfully flat R-algebras, to the category of
groups, defined by S 7→ AutS(Mn(S)). Now let S be a commutative faithfully flat
R-algebra. By Proposition 12.8.7, H1(S/R,Aut(Mn)) classifies the twisted forms
of Mn(R) for S/R.



CHAPTER 13

Prime Ideals in Commutative Rings

This chapter consists of more results on the subject of Commutative Algebra.
For the most part, the topics involve prime ideals in noetherian commutative rings.
The notions of prime ideals, primary ideals, and more generally primary submodules
of an R-module are closely tied to the notion of zero divisors, and in particular to
the notion of nilpotency. In a commutative ring R, an ideal P is prime if if P is
not the unit ideal and R/P has no zero divisors. The ideal P is primary if P is not
the unit ideal and any zero divisor in R/P is nilpotent. If M is an R-module and
P ∈ SpecR, then P is an associated prime of M if there is a cyclic submodule of
M isomorphic to R/P . A primary submodule of M is a submodule N such that
M/N has a unique associated prime. An ideal P is a primary ideal in R if and
only if P is a primary submodule of R. The main result on this subject is the
Primary Decomposition Theorem, which says that every submodule N of a finitely
generated module M over a noetherian ring R can be written as an intersection of
primary submodules. This is proved in Theorem 13.3.8 below.

Zariski’s Main Theorem can be summarized by saying a quasi-finite morphism
factors into an open immersion followed by a finite morphism (see Corollary 13.4.16).

The Krull dimension of a commutative ring is defined in terms of the lengths
of chains of prime ideals in SpecR. We prove the fundamental properties of this
dimension. The Krull dimension of a polynomial ring in n indeterminates over a
field k is equal to n.

1. Primary Ideals in a Commutative ring

In this section, R is a commutative ring.

Lemma 13.1.1. Let R be a commutative ring and I an ideal of R. The following
are equivalent.

(1) I ̸= R and if xy ∈ I, then either x ∈ I or yn ∈ I for some n > 0.
(2) R/I ̸= 0 and any zero divisor in R/I is nilpotent.

Proof. Is left to the reader. □

An ideal that satisfies one of the equivalent conditions in Lemma 13.1.1 is
called a primary ideal. In Definition 13.3.2, the more general notion of primary
submodule is introduced. By Definition 3.2.11, an ideal I in a commutative ring R
is prime if and only if R/I is an integral domain. Therefore, a prime ideal satisfies
Lemma 13.1.1 (2) and we see that a prime ideal is a primary ideal.

By Proposition 13.1.2 (1), the nil radical of a primary ideal is a prime ideal.
For a given prime ideal P , an ideal I is said to be P -primary, if I is a primary ideal
and Rad(I) = P .

Proposition 13.1.2. Let R be a commutative ring and I an ideal of R.

555
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(1) If I is a primary ideal, then P = Rad(I) is a prime ideal. Hence I is
P -primary.

(2) If m = Rad(I) is a maximal ideal, then I is m-primary.
(3) If I = mn where m is a maximal ideal and n > 0, then I is m-primary.

Proof. (1): Assume xy ∈ Rad(I). For some n > 0, (xy)n = xnyn ∈ I. If
xn ̸∈ I, then ynm is in I for some m > 0. Therefore, one of x or y is in Rad(I).

(2): By Lemma 7.3.8, there is only one prime ideal that contains I, namely m.
Therefore, R/I is a local ring and the Jacobson radical is m/I, which is equal to
the nil radical. Then every element of R/I is either a unit, or a nilpotent. Every
zero divisor of R/I is nilpotent.

(3): This is Exercise 13.1.6. □

Proposition 13.1.3. Let R be a commutative noetherian ring.

(1) The nil radical RadR(0) is nilpotent.
(2) Let I be an ideal of R and let N = Rad(I). For some n > 0, Nn ⊆ I.

Proof. (1): Assume N = RadR(0) is generated by x1, . . . , xm. For each i,
there exists ei > 0 such that xeii = 0. Take n = e1 + · · · + em. Then Nn is

generated by elements of the form xd11 · · ·xdmm where d1+ · · ·+dm = n. For at least
one i we have di ≥ ei, so Nn = 0.

(2): Apply (1) to the ring R/I. □

Corollary 13.1.4. Let R be a commutative noetherian ring, m a maximal
ideal of R. For an ideal I of R, the following are equivalent.

(1) I is m-primary.
(2) Rad(I) = m.
(3) For some n > 0, mn ⊆ I ⊆ m.

Proof. (1) is equivalent to (2): Follows from Proposition 13.1.2.
(2) implies (3): Follows from Proposition 13.1.3.
(3) implies (2): Follows from Exercise 7.3.21. □

1.1. Exercises.

Exercise 13.1.5. Let f : R → S be a homomorphism of commutative rings.
Show that if I is a primary ideal of S, then f−1(I) is a primary ideal of R.

Exercise 13.1.6. Show that if m is a maximal ideal in the commutative ring
R, then mn is m-primary, for any positive integer n.

Exercise 13.1.7. Let R be a commutative ring and W ⊆ S a multiplicative
set. Let P be a prime ideal in R and let I be a P -primary ideal. Prove:

(1) If P ∩W ̸= ∅, then W−1I =W−1R.
(2) If P ∩W = ∅, then (W−1I) ∩R = I.
(3) Rad(W−1I) =W−1 Rad(I).
(4) If P ∩W = ∅, then W−1I is W−1P -primary.
(5) There is a one-to-one correspondence between primary ideals in W−1R

and primary ideals I of R such that I ⊆ R−W .

Exercise 13.1.8. Let k be a field and A = k[x, y] the polynomial ring in two
variables over k. Let I = (x, y2). Show that every zero divisor in A/I is nilpotent.
Conclude that I is m-primary, where m = (x, y) = Rad(I).
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Exercise 13.1.9. Let k be a field and A = k[x, y] the polynomial ring in two
variables over k. Let R be the k-subalgebra of A generated by x2, xy, y2. In R, let
P = (x2, xy).

(1) Prove that P is prime, P 2 = (x4, x3y, x2y2), and Rad(P 2) = P . Show
that y2 is a zero divisor in R/P 2 which is not nilpotent. Conclude that
P 2 is not a primary ideal.

(2) In R, let I = (x2). Prove that I is P -primary. (Hint: show that RP
is a principal ideal domain and P 2RP is a primary ideal. Show that
x2 ∈ P 2RP .)

Exercise 13.1.10. Let k be a field and A = k[x, y] the polynomial ring in two
variables over k. LetR be the k-subalgebra ofA generated by x2, xy, y2, x3, x2y, xy2, y3.
In R, let P = (x2, xy, x3, x2y, xy2) and I = (x3). Prove:

(1) P is prime. (Hint: R/P ∼= k[y2, y3].)
(2) P = Rad(I).
(3) In R/I the elements y2 and y3 are zero divisors, but not nilpotent. Con-

clude that I is not a primary ideal.

Exercise 13.1.11. Let R be a noetherian commutative ring. Let I be an ideal
of R and N = Rad(I) the nil radical of I. Prove that the I-adic topology on R is
equal to the N -adic topology on R and the I-adic completion of R is isomorphic to
the N -adic completion of R. (Hint: Exercise 11.1.17 and Proposition 13.1.3.)

2. The Associated Primes of a Module

General references for the material in this section are [12] and [39]. In this
section R is a commutative noetherian ring.

Lemma 13.2.1. Let R be a commutative noetherian ring, M an R-module, and
P ∈ SpecR. The following are equivalent.

(1) There exists an element x ∈M such that annihR(x) = P .
(2) M contains a submodule isomorphic to R/P .

Proof. Is left to the reader. □

If P ∈ SpecR satisfies one of the conditions of Lemma 13.2.1, then P is called
an associated prime ofM . The set of all associated primes ofM in SpecR is denoted
AssocR(M), or simply Assoc(M). If r ∈ R and ℓr :M →M is “left multiplication
by r”, then we say r is a zero divisor for M in case ℓr is not one-to-one. If r is not
a zero divisor for M , then we say r is M -regular.

Proposition 13.2.2. Let R be a commutative noetherian ring and M an R-
module.

(1) If P is a maximal member of the set of ideals C = {annihR(x) | x ∈
M − (0)}, then P is an associated prime of M .

(2) M = 0 if and only if Assoc(M) = ∅.
(3) The set of zero divisors of M is equal to the union of the associated primes

of M .
(4) If P is a prime ideal of R, then AssocR(R/P ) = {P}.
(5) If N is a submodule of M , then

Assoc(N) ⊆ Assoc(M) ⊆ Assoc(N) ∪Assoc(M/N).
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(6) Suppose I is an index set and {Mα | α ∈ I} is a family of submodules of
M such that M =

⋃
αMα. Then

AssocR(M) =
⋃
α∈I

AssocR(Mα).

Proof. (1): Suppose P = annih(x) is a maximal member of C. Assume a, b ∈
R, ab ∈ P , and b ̸∈ P . Then bx ̸= 0 and abx = 0. But P = annih(x) ⊆ annih(bx).
By maximality of P , we conclude a ∈ P .

(2): If M = 0, then clearly Assoc(M) = ∅. If M is nonzero, then in Part (1)
we see that C is nonempty. Because R is noetherian, C contains a maximal member
which is an associated prime of M .

(3): If r ∈ R, x ∈ M − (0) and rx = 0, then r ∈ annih(x). By Parts (1) and
(2), there exists a prime ideal P which contains r and which is an associated prime
of M . Conversely, if P is an associated prime, every element of P is a zero divisor
of M .

(4): If x+P ̸= P , then in the integral domain R/P , the principal ideal Rx+P
is a free R/P -module.

(5): The inclusion Assoc(N) ⊆ Assoc(M) follows straight from Lemma 13.2.1.
Let P ∈ Assoc(M) and let S ⊆ M be a submodule that is isomorphic to R/P . If
S ∩N = (0), then S is isomorphic to a submodule of M/N , so P ∈ Assoc(M/N).
If x ∈ S ∩ N , x ̸= 0, then by Part (4) the cyclic submodule Rx is isomorphic to
R/P . In this case, P ∈ Assoc(N).

(6): Is left to the reader. □

Corollary 13.2.3. Let R be a commutative noetherian ring and {Mα | α ∈ I}
a family of R-modules, where I is an index set. If M =

⊕
α∈IMα is the direct sum,

then AssocR(M) =
⋃
α∈I AssocR(Mα).

Proof. If I is a singleton set, then there is nothing to prove.
Step 1: Assume I = {α, β} has cardinality two. Since the sequence 0 →

Mα → M → Mβ → 0 is split exact, Proposition 13.2.2 (5) applied twice gives
Mα ∪Mβ ⊆M ⊆Mα ∪Mβ .

Step 2: Assume n ≥ 2 and I is a finite set of cardinality n. Then by Mathe-
matical Induction and Step 1, AssocR(M) =

⋃
α∈I AssocR(Mα).

Step 3: Assume I is infinite. Let F = {S ⊆ I | S is a finite subset of I and |S| ≥ 1}.
By Proposition 13.2.2 (6) and Step 2,

AssocR(M) =
⋃
S∈F

AssocR

(⊕
α∈S

Mα

)
=
⋃
S∈F

⋃
α∈S

AssocR (Mα)

=
⋃
α∈I

AssocR (Mα) .

□

Proposition 13.2.4. Let R be a commutative noetherian ring,M an R-module,
and Φ a subset of Assoc(M). Then there exists a submodule N of M such that
Assoc(N) = Assoc(M)− Φ and Assoc(M/N) = Φ.
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Proof. Let S be the set of all submodules S of M such that Assoc(S) ⊆
Assoc(M) − Φ. Since (0) ∈ S, S ̸= ∅. We partially order S by set inclusion.
If {Sα} is a chain in S, then by Proposition 13.2.2 (6), the union

⋃
Sα is also in

S. By Zorn’s Lemma, there exists a maximal element, say N , in S. By Propo-
sition 13.2.2 (5), to finish the proof it suffices to show Assoc(M/N) ⊆ Φ. Let
p ∈ Assoc(M/N). Then there is a submodule F/N of M/N such that F/N is
isomorphic to R/p. By Proposition 13.2.2 (2), we know N ⊊ F . By Proposi-
tion 13.2.2 (4) and (5), Assoc(F ) ⊆ Assoc(N) ∪ Assoc(F/N) ⊆ Assoc(N) ∪ {p}.
Since N is a maximal member of S, we know Assoc(F ) ̸⊆ Assoc(N). Therefore,
p ∈ Φ. □

See Corollary 13.3.12 for a generalization of Lemma 13.2.5.

Lemma 13.2.5. Let R be a commutative noetherian ring and M an R-module.
Let W ⊆ R be a multiplicative set and θ : R → W−1R the localization. Let
Φ = {P ∈ SpecR | P ∩W = ∅}. Then

θ♯(AssocW−1R(W
−1M)) = AssocR(M) ∩ Φ

= AssocR(W
−1M).

Proof. By Exercise 7.3.26, the continuous map θ♯ : Spec (W−1R) → SpecR
is one-to-one and has image equal to Φ.

Step 1: Suppose P ∈ AssocR(M) ∩ Φ. By Lemma 13.2.1, there exists x ∈ M
such that P = annihR(x). The diagram

0 // P //

��

R
17→x //

θ
��

Rx //

��

0

0 // W−1P // W−1R
17→x/1// (W−1R)(x/1) // 0

commutes and has exact rows. This proves W−1P is equal to annihW−1R(x/1).
Since P = θ♯(W−1P ), we have

AssocR(M) ∩ Φ ⊆ θ♯(AssocW−1R(W
−1M)).

Step 2: Suppose P ∈ Φ and W−1P is an associated prime of W−1M . Then
W−1P = annihW−1R(x/t) for some x ∈ M , t ∈ W . Then annihR(x/t) = W−1P ∩
R = P , so P ∈ AssocR(W

−1M). That is,

θ♯(AssocW−1R(W
−1M)) ⊆ AssocR(W

−1M).

Since R is noetherian, P is finitely generated. Write P = Ra1 + · · · + Ran for
some elements ai ∈ P . For each ai we have (ai/1)(x/t) = 0. That is, there exists
wi ∈ W such that wiaix = 0. Let w = w1w2 · · ·wn. Given any y =

∑
i riai ∈ P ,

it follows that ywx =
∑
i riwaix = 0. This proves P ⊆ annihR(wx). For the

reverse inclusion, suppose u ∈ R and uwx = 0. Then (u/1)(x/t) = 0 so u/1 is in
annihW−1R(x/t) = W−1P . This proves P = annihR(wx) is an associated prime of
M , so

θ♯(AssocW−1R(W
−1M)) ⊆ AssocR(M) ∩ Φ.

Step 3: Suppose P ∈ AssocR(W
−1M). Then P = annihR(x/t) for some x ∈M ,

t ∈ W . If w ∈ P ∩W , then w(x/t) = 0 implies x/t = 0. Therefore, P ∈ Φ. The
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diagram

0 // P //

��

R
17→x/t //

θ

��

R(x/t) //

��

0

0 // W−1P // W−1R
17→x/t // (W−1R)(x/t) // 0

commutes and the rows are exact. Therefore, W−1P = annihW−1R(x/t). It follows
that W−1P ∈ AssocW−1R(W

−1M). Since θ♯(W−1P ) = P , this proves

AssocR(W
−1M) ⊆ θ♯(AssocW−1R(W

−1M)),

which completes the proof. □

Proposition 13.2.6. Let R be a noetherian commutative ring and M an R-
module. Let W ⊆ R be a multiplicative set. Let Ψ = {p ∈ AssocR(M) | p ∩W =
∅}. If K is the kernel of the localization homomorphism θ : M → W−1M , then
K is the unique submodule of M such that AssocR(K) = AssocR(M) − Ψ and
AssocR(M/K) = Ψ.

Proof. LetN be any submodule ofM such that AssocR(N) = AssocR(M)−Ψ
and AssocR(M/N) = Ψ. There exists at least one such N , by Proposition 13.2.4.
The proof consists in showing N = ker θ. Let π : M → M/N be the natural
projection. The sequence

0→W−1N →W−1M
1⊗π−−−→W−1(M/N)→ 0

is exact because W−1R is a flat R-module (Lemma 7.1.4). If p ∈ AssocR(N), then
p ∩W ̸= ∅. By Lemma 13.2.5, AssocR(W

−1N) = ∅. By Proposition 13.2.2 (2),
W−1N = (0), hence 1 ⊗ π is one-to-one. Now consider the localization map
β : M/N → W−1(M/N). We have AssocR(kerβ) ⊆ AssocR(M/N) ⊆ Ψ. For
contradiction’s sake, suppose p ∈ AssocR(kerβ). Then there is some x ∈ kerβ and
p = annihR(x). Since β(x) = 0, p ∩W = annihR(x) ∩W ̸= ∅. In other words,
p ̸∈ Ψ. This contradiction implies AssocR(kerβ) = ∅, and therefore kerβ = (0). In
the commutative diagram

M

θ

��

π // M/N

β

��
W−1M

1⊗π // W−1(M/N)

the maps β and 1⊗ π are one-to-one. Therefore, K = ker θ = kerπ = N . □

Let M be a module over the commutative ring R. If P ∈ SpecR, then the
stalk of M at P is the localization MP of M with respect to the multiplicative set
R − P . The support of M is the set of all points in SpecR for which the stalk of
M is nontrivial,

SuppR(M) = {P ∈ SpecR |MP ̸= 0}.
If R is understood, we write simply Supp(M).

Theorem 13.2.7. Let R be a noetherian commutative ring andM an R-module.

(1) Assoc(M) ⊆ Supp(M).
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(2) If P ∈ Supp(M), then P contains a member of Assoc(M). If P is a
minimal member of Supp(M), then P ∈ Assoc(M).

(3) The sets Assoc(M) and Supp(M) have the same minimal elements.
(4) If I is an ideal in R, then the minimal associated primes of the R-module

R/I are precisely the minimal prime over-ideals of I.

Proof. (1): Let P ∈ Assoc(M) and set W = R − P . By Lemma 13.2.5,
W−1P is an associated prime of W−1M = MP . By Proposition 13.2.2, it follows
that MP ̸= 0.

(2): Let P ∈ Supp(M). Then MP ̸= 0. By Proposition 13.2.2, MP has an
associated prime in RP . By Lemma 13.2.5, elements of AssocRP

(MP ) correspond
bijectively to elements of AssocR(M) that are contained in P . This proves that P
contains an element of AssocR(M). If P is a minimal member of Supp(M), then
Supp(MP ) contains only one prime, namely PRP . In this case, it follows that P is
a minimal element in Assoc(M).

(3): Follows from the arguments in (1) and (2).
(4): By Exercise 13.2.10, the support of the module R/I is V (I). □

Definition 13.2.8. Let R be a noetherian commutative ring and M an R-
module. If P ∈ Assoc(M) and P is not a minimal member of Assoc(M), then we
say P is an embedded prime of M .

Theorem 13.2.9. Let R be a noetherian commutative ring and M a nonzero
finitely generated R-module.

(1) There exists a filtration 0 = M0 ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mn = M of M
and a set of prime ideals Pi ∈ SpecR such that Mi/Mi−1 ∼= R/Pi for
i = 1, . . . , n.

(2) If P1, . . . , Pn are the primes mentioned in Part (1), then Assoc(M) ⊆
{P1, . . . , Pn} ⊆ Supp(M).

(3) Assoc(M) is a finite set.

Proof. (1): Assume M ̸= (0). By Proposition 13.2.2, Assoc(M) ̸= ∅, so
there exists a submodule S of M isomorphic to R/P for some prime P . Define
C to be the set of all submodules S ⊆ M such that S has the kind of filtration
specified in Part (1). Since C is nonempty and R is noetherian, C has a maximal
member, say N . If N ̸= M , then by Proposition 13.2.2, Assoc(M/N) ̸= ∅. By
Lemma 13.2.1 applied to M/N there is a submodule S of M such that N ⊊ S ⊆M
and S/N ∼= R/P for some prime P . Therefore, S ∈ C which is a contradiction.
This proves Part (1).

(2): By Proposition 13.2.2 (4), Assoc(Mi/Mi−1) = {Pi}. Proposition 13.2.2 (5),
applied n− 1 times, yields

Assoc(M) ⊆ Assoc(M1) ∪Assoc(M2/M1) ∪ · · · ∪Assoc(Mn/Mn−1)

⊆ {P1, . . . , Pn}.

By Exercise 13.2.10, the support of the R-module R/Pi is V (Pi), which contains
Pi. By Exercise 13.2.11, Pi ∈ Supp(Mi) ⊆ Supp(M). This proves Part (2).

(3): This follows straight from Part (2). □

2.1. Exercises.
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Exercise 13.2.10. Let R be a commutative ring and I an ideal in R. Let
P ∈ SpecR. Prove that (R/I)P ̸= 0 if and only if I ⊆ P . Conclude that Supp(R/I)
is equal to V (I). In particular, Supp(R) = SpecR.

Exercise 13.2.11. Let R be a commutative ring, M an R-module and N a
submodule. Show that

Supp(M) = Supp(N) ∪ Supp(M/N).

(Hint: Localize the exact sequence 0→ N →M →M/N → 0.)

Exercise 13.2.12. Let R be a commutative ring, M an R-module and {Mα |
α ∈ I} a collection of submodules such that

∑
α∈IMα =M . Show that

Supp(M) =
⋃
α∈I

Supp(Mα).

(Hint: Use Exercise 13.2.11 and the exact sequence
⊕

α∈IMα →M → 0.)

Exercise 13.2.13. Let R be a commutative ring, M an R-module and {xα |
α ∈ I} a set of generators for M . Show that

Supp(M) =
⋃
α∈I

Supp(Rxα)

=
⋃
α∈I

V
(
annih(xα)

)
.

(Hint: Use Exercise 13.2.10, Exercise 13.2.12, and the isomorphismRxα ∼= R/ annih(xα).)

Exercise 13.2.14. Let R be a commutative ring and I1, . . . , In some ideals in
R. Show that

V (I1 ∩ · · · ∩ In) = V (I1 · · · In) = V (I1) ∪ · · · ∪ V (In).

(Hint: Use Lemma 10.3.3 and Lemma 7.3.3.)

Exercise 13.2.15. Let R be a commutative ring and M a finitely generated
R-module. Show that Supp(M) = V

(
annih(M)

)
. Conclude that Supp(M) is a

closed subset of SpecR. (Hint: annih(M) =
⋂n
i=1 annih(xi) where x1, . . . , xn is a

generating set for M . Use Exercise 13.2.13 and Exercise 13.2.14.)

Exercise 13.2.16. Let R be a noetherian commutative ring, M a finitely gen-
erated R-module and I an ideal of R such that Supp(M) ⊆ V (I). Show that there
exists n > 0 such that InM = 0. (Hint: Show that Rad(I) ⊆ Rad(annih(M)). Use
Proposition 13.1.3.)

Exercise 13.2.17. Let R be a commutative ring andM a finitely generated R-
module. Show that the minimal associated primes of M are precisely the minimal
prime over-ideals of annih(M).

Exercise 13.2.18. Let R be a commutative noetherian ring and P1, . . . , Pn the
complete list of distinct minimal primes of the zero ideal. Prove that the kernel of
the natural map

R
ϕ−→

n⊕
i=1

R/Pi

is equal to the nil radical of R.
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Exercise 13.2.19. Let A and R be as in Exercise 13.1.10. In R, let I = (x3)
and m = (x2, xy, y2, x3, x2y, xy2, y3). Prove:

(1) m is a maximal ideal.
(2) x4m ⊆ I.
(3) m ∈ AssocR(R/I).

Exercise 13.2.20. Let R be a noetherian commutative ring, M a finitely gen-
erated R-module and N an arbitrary R-module. Prove:

(1) Supp(HomR(M,N)) ⊆ Supp(M).
(2) For any n ≥ 1, AssocR(N) = AssocR(

⊕n
i=1N).

(3) If Rn → M → 0 is an exact sequence, then 0 → HomR(M,N) →
HomR(R

n, N) is an exact sequence.
(4) If p ∈ AssocR(HomR(M,N)), then p ∈ AssocR(N) ∩ Supp(M).

Exercise 13.2.21. Let R be a noetherian commutative ring, M a finitely gen-
erated R-module, and N an arbitrary R-module. Let p ∈ AssocR(N) ∩ Supp(M).
Follow the steps below to prove that p ∈ AssocR(HomR(M,N)).

(1) M ⊗R k(p) ̸= 0, where k(p) = Rp/pRp is the residue field.
(2) The natural map Homk(p)(M ⊗R k(p), k(p))→ HomRp

(M ⊗R k(p), k(p))
is one-to-one, hence both modules are nonzero.

(3) The natural map HomRp
(M ⊗R k(p), k(p)) → HomRp

(Mp, k(p)) is one-
to-one, hence both modules are nonzero.

(4) HomR(M,R/p) is nonzero.
(5) p is an associated prime of HomR(M,R/p).
(6) p is an associated prime of HomR(M,N).

Exercise 13.2.22. Let R be a noetherian integral domain and M a finitely
generated nonzero R-module. Prove that the following are equivalent.

(1) M is torsion free (see Definition 4.3.4).
(2) AssocR(M) = {(0)}.
(3) HomR(M,M) is torsion free.

(Hint: Exercises 13.2.20, and 13.2.21.)

Exercise 13.2.23. Let R be a noetherian commutative local ring with maximal
ideal m. Let C be a finitely generated nonzero R-module and assume AssocR(C) =
{m}. Prove that if M is a finitely generated nonzero R-module, then HomR(M,C)
is nonzero. (Hint: Exercise 13.2.21.)

Exercise 13.2.24. Let R be an integral domain andM and N two R-modules.
Prove that if N is torsion free (Definition 4.3.4), then HomR(M,N) is torsion free.
(Hint: Prove this directly, it does not require any theorem from this chapter.)

3. Primary Decomposition Theorem

3.1. Primary Submodules.

Proposition 13.3.1. If R is a noetherian commutative ring and M is an R-
module, then (1) and (2) are equivalent.

(1) Assoc(M) = {P}. In words, M has exactly one associated prime.
(2) (a) M ̸= 0, and

(b) if r ∈ R is a zero divisor for M , then for every x ∈ M there exists
n > 0 such that rnx = 0.
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Proof. (1) implies (2): Suppose r is a zero divisor for M . By Proposi-
tion 13.2.2 (3), r ∈ P . Given any x ∈M−(0), Rx ̸= 0. Therefore ∅ ≠ Assoc(Rx) ⊆
Assoc(M) = {P}, which implies Assoc(Rx) = {P}. By Theorem 13.2.7 (3), P is
the unique minimal member of Supp(Rx). By Exercise 13.2.15, P is the unique
minimal member of V (annih(Rx)). Therefore, P = Rad(annih(Rx))). There exists
n > 0 such that rn ∈ annih(Rx).

(2) implies (1): Let P be the set of all zero divisors in R for M . By (2), if
r ∈ P and x ∈ M , then there exists n > 0 such that rnx = 0. The reader should
verify that P is an ideal in R. Let Q ∈ Assoc(M). There exists x ∈ M such that
Q = annih(x). Every element of Q is a zero divisor, so Q ⊆ P . Given r ∈ P , there
exists n > 0 such that rn ∈ annih(x) = Q. Since Q is prime, this implies r ∈ Q. So
P ⊆ Q. □

Definition 13.3.2. Let R be a noetherian commutative ring and M an R-
module. Suppose N is a submodule of M and M/N satisfies the equivalent condi-
tions of Proposition 13.3.1. That is, assume Assoc(M/N) = {P}. Then we say N is
a P -primary submodule ofM . Suppose I is an ideal of R. Comparing Lemma 13.1.1
and Proposition 13.3.1 we see that I is a primary submodule of R if and only if I
is a primary ideal of R and in this case, AssocR(R/I) = Rad(I).

Lemma 13.3.3. Let R be a noetherian commutative ring, M an R-module, and
P a prime ideal of R. If S, T are P -primary submodules of M , then S ∩ T is a
P -primary submodule of M .

Proof. The sequence

0→M/(S ∩ T )→M/S ⊕M/T

is exact. By Proposition 13.2.2 (5), Assoc(M/(S∩T )) ⊆ Assoc(M/S)∪Assoc(M/T ) =
{P}. Since M/(S ∩ T ) ̸= 0, it follows that P is the only associated prime of
M/(S ∩ T ). □

3.2. Primary Decomposition.

Definition 13.3.4. Let R be a noetherian commutative ring, M an R-module,
and N a submodule ofM . A primary decomposition of N is a representation of the
formN = Y1∩Y2∩· · ·∩Yn where each Yi is a primary submodule ofM . Let Pi denote
the associated prime of M/Yi. The primary decomposition N = Y1 ∩ Y2 ∩ · · · ∩ Yn
is called reduced in case

(1) P1, . . . , Pn are distinct prime ideals and
(2) for j = 1, 2, . . . , n we have Yj ̸⊇

⋂
i̸=j Yi.

A primary decomposition can always be simplified to a reduced one. In fact, any
submodule Yj for which (2) fails is redundant hence can be removed. Furthermore,
Lemma 13.3.3 says that we can merge by intersection all of the Yi that have the
same associated prime.

Lemma 13.3.5. Let R be a noetherian commutative ring, M an R-module,
and N a submodule of M . Suppose N = Y1 ∩ Y2 ∩ · · · ∩ Yn is a reduced primary
decomposition. For each i, let Pi be the associated prime ideal of M/Yi. Then

(1) Assoc(M/N) = {P1, . . . , Pn}.
(2) In a reduced primary decomposition of N , the set of associated prime ideals

is uniquely determined by N .
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Proof. This proof uses Proposition 13.2.2, Parts (2) and (5). The sequence

0→ N →M →
n⊕
i=1

M/Yi

is exact. Therefore Assoc(M/N) ⊆ Assoc(M/Y1)∪· · ·∪Assoc(M/Yn) = {P1, . . . , Pn}.
Fix j and let Nj =

⋂
i̸=j Yi. Then Nj ∩ Yj = N , so the sequence

0→ N → Nj →M/Yj

is exact. Therefore Assoc(Nj/N) ⊆ Assoc(M/Yj) = {Pj}. Since the decomposition
of N is reduced, Nj/N ̸= 0, and Assoc(Nj/N) ̸= ∅. Thus Pj ∈ Assoc(Nj/N).
Because

0→ N → Nj →M/N

is exact, we conclude that Pj ∈ Assoc(Nj/N) ⊆ Assoc(M/N). □

Proposition 13.3.6. Let R be a noetherian commutative ring, P,Q ∈ SpecR,
M an R-module and N a P -primary submodule of M . Let θ : M → MQ be the
localization.

(1) If P ̸⊆ Q, then NQ =MQ.
(2) If P ⊆ Q, then N =M ∩NQ. That is, N = θ−1(NQ).

Proof. (1): By assumption, AssocR(M/N) = {P}. Let Φ = {x ∈ SpecR |
x ⊆ Q}. Then AssocR(M/N) ∩ Φ = ∅. By Lemma 13.2.5, AssocR

(
(M/N)Q

)
= ∅.

But Proposition 13.2.2 (2) implies MQ/NQ = (M/N)Q = 0.
(2): By Proposition 13.3.1, the set of all zero divisors for M/N is equal to P ,

which is contained in Q. The set R−Q does not contain any zero divisors forM/N ,
so the localization map M/N → (M/N)Q =MQ/NQ is one-to-one. □

Corollary 13.3.7. Let R be a noetherian commutative ring, M an R-module
and N a submodule of M which possesses a reduced primary decomposition, N =
Y1 ∩ · · · ∩ Yn. Let Pi denote the associated prime of M/Yi.

(1) If Pi is a minimal member of Assoc(M/N), then Yi =M ∩NPi
.

(2) In a reduced primary decomposition of N , a primary component belonging
to a minimal associated prime is uniquely determined by N and the prime.

Proof. (1): If i ̸= j, then by Proposition 13.3.6 applied with N = Yj , P = Pj ,
Q = Pi, it follows that (Yj)Pi =MPi . On the other hand,M∩(Yi)Pi = Yi. Together
with Exercise 7.1.12, we get

M ∩NPi
=M ∩ (Y1 ∩ · · · ∩ Yn)Pi

=M ∩
(
(Y1)Pi

∩ · · · ∩ (Yn)Pi

)
=M ∩ (Yi)Pi

= Yi

(2): Follows from (1). □

Theorem 13.3.8. Let R be a noetherian commutative ring andM an R-module.

(1) For each P ∈ Assoc(M) there exists a P -primary submodule YP of M
such that (0) =

⋂
P∈Assoc(M) YP .

(2) If M is finitely generated and N is a submodule of M , then there exists a
primary decomposition N =

⋂
P∈Assoc(M/N) YP , where YP is a P -primary

submodule of M .
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Proof. (1): Fix P ∈ Assoc(M). Let C be the set of all submodules S of M
such that P is not an associated prime of S. Because (0) ∈ C, this is a nonempty
set. Given a linearly ordered subset {Si | i ∈ I} ⊆ C, let S =

⋃
i∈I Si. Then S is a

submodule of M and P ̸∈ Assoc(S). Therefore, S ∈ C. By Zorn’s Lemma, Propo-
sition 1.3.3, there exists a maximal member, say Y , in C. Because P ∈ Assoc(M)
and P ̸∈ Assoc(Y ), Proposition 13.2.2 (5) implies P ∈ Assoc(M/Y ). To show that
Y is P -primary, suppose P ′ ∈ Assoc(M/Y ) and P ′ ̸= P . Then there exists a sub-
module Y ⊊ Y ′ ⊆M such that Y ′/Y ∼= R/P ′. Therefore Assoc(Y ′/Y ) = {P ′} and
by Proposition 13.2.2 (5), P ̸∈ Assoc(Y ′) ⊆ Assoc(Y ) ∪ {P ′}. Then Y ′ ∈ C which
contradicts the maximal choice of Y . We have shown that YP = Y is P -primary.
Since

Assoc

( ⋂
P∈Assoc(M)

YP

)
⊆

⋂
P∈Assoc(M)

Assoc(YP ) = ∅,

it follows from Proposition 13.2.2 (2) that
⋂
P∈Assoc(M) YP = (0). This proves (1).

(2): Apply Part (1) to the module M/N . The set Assoc(M/N) is finite, by
Theorem 13.2.9. □

3.3. Exercise.

Exercise 13.3.9. Let R be a commutative noetherian ring, P ∈ SpecR, and
n ≥ 1. Prove:

(1) P is the unique minimal associated prime of Pn.
(2) The P -primary component of Pn is uniquely determined by P and n.

The P -primary component of Pn is denoted P (n) and is called the nth
symbolic power of P .

(3) P (n) = PnRP ∩R.

3.4. Flat Algebras and Associated Primes. Throughout this section R
and S will be commutative rings. Usually R and S will be noetherian. Let f :
R→ S be a homomorphism of rings, and f ♯ : SpecS → SpecR the continuous map
of Exercise 7.3.20. Let P ∈ SpecR. The residue field at P is k(P ) = RP /PRP .
The fiber over P of the map f ♯ is Spec(S ⊗R k(P )), which is homeomorphic to
(f ♯)−1(P ), by Exercise 7.4.11. By Exercise 7.4.10, if Q is a prime ideal of S lying
over P , then the corresponding prime ideal of S⊗R k(P ) is Q⊗R k(P ) and the local
ring is SQ ⊗R k(P ) = SQ/PSQ.

Proposition 13.3.10. Let f : R → S be a homomorphism of commutative
noetherian rings, and M an S-module. Then

f ♯ (AssocS(M)) = AssocR(M).

Proof. Step 1: Show f ♯ (AssocS(M)) ⊆ AssocR(M). SupposeQ ∈ AssocS(M).
By Lemma 13.2.1, there exists x ∈M such that Q = annihS(x). Now annihR(x) =
annihS(x) ∩R = Q ∩R = f ♯(Q), which proves Step 1.

Step 2: We show that f ♯ (AssocS(M)) ⊇ AssocR(M). Suppose P ∈ AssocR(M).
By Lemma 13.2.1, there exists x ∈ M such that P = annihR(x). Set N =
annihS(x). By Theorem 13.3.8 there exists a reduced primary decomposition
N = Y1 ∩ Y2 ∩ · · · ∩ Yn. For each i, Yi is a primary ideal in S. By Propo-
sition 13.1.2, let Qi = RadS(Yi) be the associated prime ideal of S/Yi. Then
AssocS(S/N) = {Q1, . . . , Qn}, by Lemma 13.3.5. The cyclic submodule Sx of M
is isomorphic to S/N . By Proposition 13.2.2, each Qi is in AssocS(M). The proof
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will be complete if we show P = Qi ∩ R = f ♯(Qi) for some i. For contradiction’s
sake, assume P ̸= Qi ∩ R for each i. We have P = annihR(x) = annihS(x) ∩ R =
N ∩ R ⊆ Yi ∩ R ⊆ Qi ∩ R. So for each i there exists yi ∈ Qi ∩ R − P . Since
Qi = RadS(Yi), there exists αi > 0 such that yαi

i ∈ Yi ∩R. Then y = yα1
1 · · · yαn

n ∈
Y1 · · ·Yn ∩R ⊆ Y1 ∩ · · · ∩Yn ∩R = N ∩R = P . Since P is a prime ideal, yi ∈ P for
some i. This is a contradiction. □

Theorem 13.3.11. Let f : R → S be a homomorphism of commutative noe-
therian rings, B an S-module that is flat as an R-module. Then the following are
true.

(1) For each P ∈ SpecR,

f ♯ (AssocS(B/PB)) = AssocR(B/PB)

=

{
{P} if B/PB ̸= (0)

∅ if B/PB = (0).

(2) If A is any R-module, then

AssocS(A⊗R B) =
⋃

P∈AssocR(A)

AssocS(B/PB).

Proof. (1): By Proposition 13.2.2 (2)) we can assume B/PB ̸= (0), otherwise
all of the sets are empty. By Theorem 6.4.23, B/PB = B ⊗R R/P is a flat R/P -
module. Since R/P is an integral domain, B/PB is a torsion free R/P -module, by
Exercise 7.8.13. Applying Proposition 13.3.10 twice,

f ♯ (AssocS(B/PB)) = AssocR(B/PB)

= η♯
(
AssocR/P (B/PB)

)
= η♯ ({(0)})
= {P}

where η : R→ R/P is the natural homomorphism.
(2): First we show the right hand side is contained in the left. We remark that

this part of the proof does not require R to be noetherian. Let P ∈ AssocR(A).
There exists x ∈ A and R/P is isomorphic to the cyclic submodule Rx ⊆ A.
Tensoring with B which is a flat R-module, we see that R/P ⊗R B = B/PB is
isomorphic to the S-submodule Rx ⊗R B of A ⊗R B. By Proposition 13.2.2 (5),
AssocS(A⊗R B) ⊇ AssocS(B/PB).

Now we show the left hand side is contained in the right. This part of the proof
is split into three cases.

Case 1: We show that the result is true if A is a finitely generated R-module and
AssocR(A) = {P} is a singleton set. Let x1, . . . , xm be a generating set for A over
R. For any r ∈ P , there is n > 0 such that rnxi = 0 for all i (Proposition 13.3.1).

For any a ∈ A, rna = 0. Let Q ∈ AssocS(A⊗RB). Then there is z =
∑t
i=1 ai⊗bi ∈

A⊗R B such that Q = annihS(z). Since r
nai = 0 for each i, rn ∈ Q. Since Q is a

prime ideal, r ∈ Q. This shows Q∩R ⊇ P . Given r ∈ R−P , r is not a zero divisor
forM . That is, ℓr : A→ A is one-to-one. Since B is R-flat, ℓr⊗1 : A⊗RB → A⊗RB
is one-to-one. Therefore, r is not in Q. Hence Q ∩ R ⊆ P . We have shown that
f ♯ (AssocS(A⊗R B)) = AssocR(A) = {P}.
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Now apply Theorem 13.2.9 to get a filtration 0 = A0 ⊊ A1 ⊊ A2 ⊊ · · · ⊊
An = A of A and a set of prime ideals Pi ∈ SpecR such that Ai/Ai−1 ∼= R/Pi for
i = 1, . . . , n. Since B is R-flat, 0 = A0⊗RB ⊊ A1⊗RB ⊊ A2⊗RB ⊊ · · · ⊊ An⊗R
B = A⊗RB is a filtration of A⊗RB and Ai⊗RB/Ai−1⊗RB ∼= R/Pi⊗RB = B/PiB
for i = 1, . . . , n. Proposition 13.2.2 (5), applied n− 1 times, yields

AssocS(A⊗R B) ⊆
n⋃
i=1

AssocS(B/PiB).

By Part (1), if Q ∈ AssocS(B/PiB), then Q ∩ R = Pi. By what we proved in
the first paragraph of Case 1, if Pi ̸= P , then Q ̸∈ AssocS(A ⊗R B). This proves
AssocS(A⊗R B) ⊆ AssocS(B/PB).

Case 2: We prove (2) is true if A is a finitely generated R-module. By Theo-
rem 13.3.8, for each P ∈ AssocR(M) there is a P -primary submodule Y (P ) of A
such that (0) =

⋂
P∈AssocR(A) Y (P ). Then the sequence of R-modules

0→ A→
⊕

P∈AssocR(A)

A/Y (P )

is exact. Since B is R-flat,

0→ A⊗R B →
⊕

P∈AssocR(A)

A/Y (P )⊗R B

is an exact sequence of S-modules. By Case 1, AssocS(A/Y (P )⊗RB) = AssocS(B/PB).
Applying Proposition 13.2.2 (5),

AssocS(A⊗R B) ⊆
⋃

P∈AssocR(A)

AssocS(A/Y (P )⊗R B)

⊆
⋃

P∈AssocR(A)

AssocS(B/PB)

which proves (2) in this case.
Case 3: Let A be an R-module. Given any Q ∈ AssocS(A ⊗R B), there is

z ∈ A ⊗R B such that Q = annihS(z). Write z =
∑n
i=1 ai ⊗ bi for some elements

ai ∈ A and bi ∈ B. Let Z =
∑n
i=1Rai be the R-submodule of A generated by

a1, . . . , an. Since z is in the S-submodule Z ⊗R B of A ⊗R B, it follows that Q ∈
AssocS(Z⊗RB). By Case 2, there is P ∈ AssocR(Z) such thatQ ∈ AssocS(B/PB).
Since AssocR(Z) ⊆ AssocR(A), this completes the proof. □

The following corollary of Theorem 13.3.11 is a generalization of Lemma 13.2.5.

Corollary 13.3.12. Let f : R → S be a homomorphism of commutative
noetherian rings and assume S is flat as an R-module. Then the following are
true.

(1) AssocS(S) =
⋃
P∈AssocR(R) AssocS(S/PS)

(2) f ♯ (AssocS(S)) = {P ∈ AssocR(R) | S ̸= PS}.
(3) If S is faithfully flat over R, then f ♯ (AssocS(S)) = AssocR(R).
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4. Zariski’s Main Theorem

The proof we give is from [48, Chapter IV]. Throughout this section all rings
are commutative.

Let B be a finitely generated commutative A-algebra with structure homomor-
phism f : A→ B. If p ∈ SpecA and kp = Ap/pAp is the residue field at p, then the
fiber over p of f is B⊗Akp. If B⊗Akp is finite dimensional over kp for all p ∈ SpecA,
then we say B is quasi-finite over A (see Definition 13.4.4). As we see in Propo-
sition 13.4.3 below, this is equivalent to the property that for every p ∈ SpecA,
the fiber Spec(B ⊗A kp) is a discrete set. While the thrust of Zariski’s Main The-
orem itself can be somewhat difficult for one to grasp on first encounter, there is
one important application that can be readily stated here. In Corollary 13.4.16
we show that if B is a quasi-finite A-algebra, then there is an A-subalgebra R of
B such that R is finitely generated as an A-module and SpecB → SpecR is an
open immersion (see Exercise 7.5.33). In other words, this says that a quasi-finite
morphism f ♯ : SpecB → SpecA factors into an open immersion SpecB → SpecR
followed by a finite morphism SpecR→ SpecA.

4.1. Quasi-finite Algebras.

Proposition 13.4.1. Let k be a field, B a finitely generated commutative k-
algebra, and q ∈ SpecB. The following are equivalent.

(1) q is an isolated point in SpecB.
(2) Bq is a finite dimensional k-algebra.

Proof. (1) implies (2): If the point q is isolated in the Zariski topology, then
it is an open set. There exists f ∈ B such that q = SpecB−V (f) = SpecBf . Since
Bf is noetherian and has only one prime ideal, Bf is artinian by Proposition 8.4.4.
Since Bf has only one prime ideal, Bf is local with maximal ideal qBf . By Exer-
cise 10.2.23, Bf is finite dimensional over k. Since Bf is local, Bf = (Bf )q = Bq,
which shows Bq is finite dimensional over k.

(2) implies (1): Suppose Bq is finite dimensional over k. Let K and C be the
kernel and cokernel of the localization map B → Bq. Consider the sequence of
B-modules

0→ K → B → Bq → C → 0.

Then Kq = Cq = 0. Since B is noetherian, K is finitely generated over B. Since Bq
is finite dimensional over k, C is finite dimensional over k hence finitely generated
over B. By Lemma 7.1.7, there exists f ∈ B− q such that Kf = Cf = 0. Therefore
Bf = Bq. But Bq is local and finite dimensional over k, hence is artinian. So
SpecBq = q = SpecBf . So q is isolated. □

Proposition 13.4.2. Let B be a finitely generated commutative A-algebra, q ∈
SpecB, and p = q ∩A. The following are equivalent.

(1) q is an isolated point in the fiber Spec(B⊗A kp) = Spec (B ⊗A (Ap/pAp)).
(2) Bq/pBq is finite dimensional over kp.

Proof. By kp we denote the residue field of A at the prime p. That is, kp =
Ap/pAp. Then B ⊗A kp = B ⊗A Ap ⊗Ap kp = Bp ⊗Ap kp. Also, Bq = (Bp)q,
from which we get Bq/pBq = (Bp)q/p(Bp)q. It is enough to prove the proposition
when A is a local ring with maximal ideal p. In this case, B/pB = B ⊗A kp is a
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finitely generated algebra over the field A/p = kp and (B/pB)q = Bq/pBq. Apply
Proposition 13.4.1 to the algebra B/pB over kp. □

If A and B are as in Proposition 13.4.2 and either (1) or (2) is satisfied, then
we say B is quasi-finite over A at q.

Proposition 13.4.3. Let B be a finitely generated commutative A-algebra. The
following are equivalent.

(1) B is quasi-finite over A for all q ∈ SpecB.
(2) For all p ∈ SpecA, B ⊗A kp is a finite dimensional kp-algebra.

Proof. It is enough to prove the proposition when A = k is a field. Assume
that B is a finitely generated k-algebra.

(2) implies (1): Assume B is a finite dimensional k-algebra. Therefore, B is
artinian (Exercise 7.6.35) and semilocal (Proposition 8.4.3). By Theorem 8.4.6, the
natural homomorphism B →

⊕
Bq is an isomorphism, where q runs through the

finite set SpecB. Each Bq is finite dimensional over k. By Proposition 13.4.1, each
q is isolated in SpecB.

(1) implies (2): For each q ∈ SpecB, q is isolated. So SpecB is a disjoint
union ∪q∈SpecB SpecBf(q), where SpecBf(q) = q. Only finitely many of the f(q)
are required to generate the unit ideal, so the union is finite. Therefore B is a finite
direct sum of the local rings Bf(q) = Bq. Each Bq is finite dimensional over k, by
Proposition 13.4.1. Therefore B is finite dimensional over k. □

Definition 13.4.4. Let B be a commutative finitely generated A-algebra. If
either Part (1) or (2) of Proposition 13.4.3 is satisfied, then we say B is quasi-finite
over A.

Lemma 13.4.5. Let A ⊆ C ⊆ B be three rings. Assume B is finitely generated
over A and q ∈ SpecB. If B is quasi-finite over A at q, then B is quasi-finite over
C at q.

Proof. Let p = q ∩A and r = q ∩ C. The fiber over r is a subset of the fiber
over p. If q is isolated in the fiber over p, then q is isolated in the fiber over r. □

Example 13.4.6. (1) If B is a commutative A-algebra that is finitely generated
as an A-module, then B is quasi-finite over A (Exercise 13.4.20).

(2) Let A be a commutative ring, f ∈ A, and B = Af . If q ∈ SpecB, and
p = q ∩A, then Bq = Ap. Therefore, Af is quasi-finite over A.

4.2. Zariski’s Main Theorem.

Lemma 13.4.7. Let A ⊆ B be commutative rings, q ∈ SpecB and p = q ∩ A.
Assume

(1) A is integrally closed in B,
(2) B = A[x] is generated by one element as an A-algebra, and
(3) B is quasi-finite over A at q.

Then Bp = Ap.

Proof. The first step is to reduce to the case where A is a local ring with
maximal ideal p. Clearly Bp = A[x]⊗A Ap is finitely generated over Ap and Bp is
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quasi-finite over Ap. Let us check that Ap is integrally closed in Bp. Let b ∈ B and
f ∈ A− p and assume b/f is integral over Ap. Then

bn

fn
+
an−1
yn−1

bn−1

fn−1
+ · · ·+ a0

y0
= 0

for some ai ∈ A and yi ∈ A− p. Multiply both sides by fn to get

bn +
fan−1
yn−1

bn−1 + · · ·+ fna0
y0

.

Let y = y0 · · · yn−1 and multiply both sides by yn to get

ynbn +
fyan−1
yn−1

yn−1bn−1 + · · ·+ fnyna0
y0

= 0

(yb)n + αn−1(yb)
n−1 + · · ·+ α0 = 0

for some αi ∈ A. So yb is integral over A, hence b ∈ Ap.
From now on we assume

(1) A is integrally closed in B,
(2) B = A[x],
(3) A is local with maximal ideal p, and if q ∈ SpecB lies over p, then B is

quasi-finite over A at q.

Out goal is to prove that A = B. It is enough to show that x is integral over A. Let
k = A/p. Since B is quasi-finite over A at q, B/pB = A[x]⊗A k = k[x̄] is the fiber
over p and q is isolated in Spec k[x̄]. Throughout the rest of the proof, if b ∈ B, then
the image of b in B/pB will be denoted by b̄. By Exercise 13.4.19, x̄ is algebraic
over k. There exists a monic polynomial f(t) ∈ A[t] of degree greater than or equal
to one, such that f̄(x̄) = 0 in k[x̄]. That is, f(x) ∈ pB. Let y = 1 + f(x). We
have the inclusion relations A ⊆ A[y] ⊆ A[x] and because x is integral over A[y],
the map Spec k[x]→ Spec k[y] is onto by Theorem 10.3.7. Let ȳ denote the image
of y in k[y]⊗A k = k[ȳ]. Under the map k[ȳ]→ k[x̄], the image of ȳ is 1. Because ȳ
generates the unit ideal of k[x̄], we see that ȳ does not belong to any prime ideal of
k[ȳ]. Therefore, ȳ is a unit of k[ȳ]. Since Spec k[x̄] is finite, it follows that Spec k[ȳ]
is finite. That is to say, k[ȳ] is finite dimensional over k.

Now we show that y ∈ A. Since ȳ is algebraic over k, there exist ai ∈ A such
that

ȳn + ān−1ȳ
n−1 + · · ·+ ā0 = 0

where n ≥ 1 and ā0 ̸= 0. Therefore

yn + an−1y
n−1 + · · ·+ a0 ∈ pA[y],

which says there exist bi ∈ p such that

yn + an−1y
n−1 + · · ·+ a0 = bmy

m + · · ·+ b1y + b0.

After adding some zero terms we can suppose m = n. Subtracting,

(am − bm)ym + · · ·+ (a1 − b1)y + (a0 − b0) = 0.

But A is local and a0 is not in p, so a0 − b0 is a unit. There exist ci ∈ A such that

1 + (c0 + c1y + · · ·+ cm−1y
m−1)y = 0

which shows y is invertible in A[y]. The last equation yields

y−1 + c0 + (c1 + · · ·+ cm−1y
m−2)y = 0
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and

y−2 + c0y
−1 + c1(c2 + · · ·+ cm−1y

m−3)y = 0.

Iterating we get

y−m + c0y
1−m + · · ·+ cm−2y

−1 + cm−1 = 0

which shows that y−1 is integral over A. Since A is integrally closed in B, y−1 ∈ A.
Since y−1 is invertible in B, y−1 is not in q. Therefore, y−1 is not in p = q ∩ A.
Thus y−1 is invertible in A and y is in A. We have A = A[y] ⊆ A[x] = B and x is
integral over A. So A = B. □

Lemma 13.4.8. Assume B is an integral domain which is an integral extension
of the polynomial ring A[T ]. Let q be a prime ideal of B. Then B is not quasi-finite
over A at q.

Proof. Let p = q ∩ A and kp = Ap/pAp the residue field. Choose q to be
maximal among all primes lying over p. We will show q is not minimal, which will
prove that q is not isolated in the fiber B ⊗A kp, hence B is not quasi-finite over A
at q.

Assume A is integrally closed in its quotient field. Let r = q ∩A[T ]. Since B is
integral over A[T ], Theorem 10.3.7 (3) says that r is maximal among the set of prime
ideals of A[T ] lying over p. That is, r⊗Akp is a maximal ideal of A[T ]⊗Akp = kp[T ].
This says r properly contains the prime ideal pA[T ]. By Theorem 10.3.7 (5), there
is a prime ideal q1 ∈ SpecB such that q1 ⊊ q and q1 ∩ A[T ] = pA[T ]. This proves
q is not a minimal prime lying over p.

For the general case, let Ã be the integral closure of A in its field of quotients
and B̃ the integral closure of B in its field of quotients. Then B̃ is integral over
Ã[T ]. Let q̃ be a prime ideal of B̃ lying over q. Let p̃ = q̃∩Ã. By Theorem 10.3.7 (2),
q̃ is maximal among primes lying over p̃. By the previous paragraph, there is q̃1 in
Spec B̃ such that q̃1 ⊊ q̃ and q̃1 lies over p̃. By Theorem 10.3.7 (2), q̃1 ∩B ⊊ q so q
is not a minimal prime lying over p. □

Lemma 13.4.9. Let A ⊆ A[x] ⊆ B be three rings such that

(1) B is integral over A[x],
(2) A is integrally closed in B, and
(3) there exists a monic polynomial F (T ) ∈ A[T ] such that F (x)B ⊆ A[x].

That is, F (x) is in the conductor from B to A[x] (see Exercise 4.1.25).

Then A[x] = B.

Proof. Let b ∈ B. Our goal is to show b ∈ A[x]. We are given that F (x)b ∈
A[x], so F (x)b = G(x) for some G(T ) ∈ A[T ]. Since F is monic, we can divide
F into G. There exist Q(T ), R(T ) ∈ A[T ] such that G(T ) = F (T )Q(T ) + R(T )
and 0 ≤ degR < degF . Note that G(x) = F (x)b = Q(x)F (x) + R(x), hence
(b−Q(x))F (x) = R(x). Set y = b−Q(x). It is enough to show that y ∈ A[x].

Let θ : B → B[y−1] be the localization of B. Let Ā, ȳ, x̄, etc. denote the
images of A, y, x, etc. under θ. Then yF (x) = R(x) implies that F̄ (x̄) = y−1R̄(x̄)
in B[y−1]. Since degR < degF , this implies that x̄ is integral over Ā[y−1]. But
y ∈ B, so y is integral over A[x]. Hence ȳ is integral over Ā[x̄]. Since integral
over integral is integral, ȳ is integral over Ā[y−1]. There exists P (T ) ∈ Ā[y−1][T ]
such that (ȳ)n + P (ȳ) = 0 and degP (T ) < n. By clearing denominators, we see
that for some m > 0, (ȳ)n+m + (ȳ)mP (ȳ) = 0 is a monic polynomial equation
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in ȳ over Ā. Therefore, ȳ is integral over Ā and there exists a monic polynomial
H̄(T ) ∈ Ā[T ] such that H̄(ȳ) = 0. Let H ∈ A[T ] be a monic polynomial such
that θ(H(T )) = H̄(T ). Since θ(H(y)) = 0 in B[y−1], there exists u > 0 such that
yuH(y) = 0 in B. This shows that y is integral over A, hence y ∈ A. □

Lemma 13.4.10. Let A ⊆ R ⊆ B be three rings and p ∈ SpecA. Assume

(1) B is a finitely generated R-module,
(2) c is the conductor from B to R, and
(3) c′ is the conductor from Bp to Rp.

Then c′ = cp.

Proof. Let α/β ∈ cp, where α ∈ c, β ∈ A− p. Then
(α/β)Bp ⊆ (αB)p ⊆ Rp

shows that α/β ∈ c′.
Let α/β ∈ c′ where α ∈ R and β ∈ A− p. If b ∈ B and z ∈ A− p, then

(α/1)(b/z) = (α/β)((βb)/z) ∈ Rp
So α/1 ∈ c′. Let b1, . . . , bn be a generating set for B over R. Then (α/1)(bi/1) ∈ Rp
so there exists xi ∈ A− p such that αbixi ∈ R. Therefore αx1 · · ·xn ∈ c and since
βx1 · · ·xn ∈ A− p it follows that α/β ∈ cp. □

Lemma 13.4.11. Let A ⊆ A[x] ⊆ B be three rings, q ∈ SpecB and p = q ∩ A.
Assume

(1) B is finitely generated as a module over A[x],
(2) A is integrally closed in B, and
(3) B is quasi-finite over A at q.

Then Ap = Bp.

Proof. Let

c = {α ∈ A[x] | αB ⊆ A[x]}
be the conductor from B to A[x].

Case 1: c ̸⊆ q. Let r = q ∩ A[x]. There exists α ∈ c − r, hence A[x]r =
B ⊗A[x] A[x]r = Br. It follows that Br is a local ring and Br = Bq. Since
r ∩A = q ∩A = p, and B is quasi-finite over A at q, we have

Bq/pBq = A[x]r/pA[x]r

is finite dimensional over kp. This says A[x] is quasi-finite over A at r. Apply
Lemma 13.4.7 to get A[x]p = Ap. But B is finitely generated as a module over
A[x], so Bp is finitely generated over Ap = A[x]p. Since A is integrally closed in B,
Ap is integrally closed in Bp and Ap = Bp.

Case 2: c ⊆ q. Let n be a minimal element of the set {z ∈ SpecB | c ⊆
z ⊆ q} and let m = n ∩ A. First we show that the image of x in the residue field
kn = Bn/nBn is transcendental over the subfield km = Am/mAm. To prove this,
it is enough to assume A is local with maximal ideal m. Lemma 13.4.10 says the
conductor c is preserved under this localization step. Suppose that image of x in kn
is algebraic over km = A/m. Then n∩A[x] is a prime ideal, so the integral domain
A[x]/(n ∩A[x]) is a finite integral extension of the field km = A/m. Therefore,
A[x]/(n ∩A[x]) is a field so n ∩ A[x] is a maximal ideal. Since B is integral over
A[x], by Theorem 10.3.7, it follows that n is a maximal ideal of B and B/n = kn.
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By assumption, there exists a monic polynomial F (T ) ∈ A[T ] such that F (x) ∈ n.
But n is minimal with respect to prime ideals of B containing c. In Bn, nBn is
the only prime ideal containing cn and the radical of cn is equal to nBn. Let F̄ (x̄)
denote the image of F (x) in Bn. There exists ν > 0 such that (F̄ (x̄))ν ∈ cn.
There exists y ∈ B − n such that y(F (x))ν ∈ c. This implies y(F (x))νB ⊆ A[x].
Let B′ = A[x][yB]. Clearly F (x)ν is in the conductor from B′ to A[x]. Apply
Lemma 13.4.9 to A ⊆ A[x] ⊆ B′ with the monic polynomial F ν . Then A[x] = B′

which implies yB ⊆ A[x]. This says y ∈ c ⊆ n, which contradicts the choice of y.
For the rest of the proof, let B̄ = B/n and Ā = A/m and assume the image

x̄ of x in B̄ is transcendental over Ā. We have Ā ⊆ Ā[x̄] ⊆ B̄. Let q̄ denote the
image of q in B̄. Since B is quasi-finite over A at q, it follows that B̄ is quasi-finite
over Ā at q̄. This contradicts Lemma 13.4.8, so Case 2 cannot occur. □

Proposition 13.4.12. Let A ⊆ C ⊆ B be three commutative rings, q ∈ SpecB
and p = q ∩A. Assume

(1) C is finitely generated as an A-algebra,
(2) B is finitely generated as a C-module,
(3) A is integrally closed in B, and
(4) B is quasi-finite over A at q.

Then Bp = Ap.

Proof. Proceed by induction on the number n of generators for the A-algebra
C. If n = 0, then B is integral over A and by assumption, A = B.

Assume n > 0 and suppose the proposition is true when C is generated by
n − 1 elements over A. Let C = A[x1, . . . , xn]. Let Ã be the integral closure of

R = A[x1, . . . , xn−1] in B. Then B is finitely generated as a module over Ã[xn]

and Ã ⊆ Ã[xn] ⊆ B. Since B is quasi-finite over A at q, by Lemma 13.4.5, B is

quasi-finite over Ã at q. We are in the setting of Lemma 13.4.11, so if p̃ = q ∩ Ã,
then Ãp̃ = Bp̃.

Since Ã is integral over R = A[x1, . . . , xn−1], Ã is the direct limit Ã = lim−→α
Aα

over all subalgebras Aα where R ⊆ Aα ⊆ Ã and Aα is finitely generated as a module
over R. For any such Aα, let pα = q ∩Aα = p̃ ∩Aα.

Let r = q ∩ R. Since B is finitely generated as an R-algebra, Bp̃ = Ãp̃ is
finitely generated as an Rr-algebra. Pick a generating set z1/y1, . . . , zm/ym for

the Rr-algebra Ãp̃ where zi ∈ Ã and yi ∈ Ã − p̃. Since Ã is integral over R, it
follows that A1 = R[z1, . . . , zm, y1, . . . , ym] is finitely generated as a module over
R. Let p1 = q ∩ A1. For each i, we have zi/yi ∈ (A1)p1 so the natural map

(A1)p1 → Ãp̃ = Bp̃ is an isomorphism. Therefore, (A1)p1
∼= Ãp̃ = Bp̃ = Bq. By the

induction hypothesis applied to A ⊆ R ⊆ A1, we have Ap = (A1)p = (A1)p1 . This
shows Ap = Bp. □

Theorem 13.4.13. (Zariski’s Main Theorem) Let B be a finitely generated

commutative A-algebra, Ã the integral closure of A in B and q ∈ SpecB. If B is
quasi-finite over A at q, then there exists f ∈ Ã such that f ̸∈ q and Ãf = Bf .

Proof. By Lemma 13.4.5, B is quasi-finite over Ã at q. Let p̃ = q ∩ Ã.
By Proposition 13.4.12, Ãp̃ = Bp̃. Let b1, . . . , bn be a generating set for the Ã-

algebra B. For each i there exists ai/xi ∈ Ãp̃ such that ai/xi = bi/1 in Bp̃. Let

f = x1 · · ·xn. Then f ∈ Ã− p̃. The inclusion Ãf ⊆ Bf is an equality. □
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Corollary 13.4.14. Let A be a ring, B a finitely generated commutative A-
algebra. The set of all q in SpecB such that B is quasi-finite over A at q is an
open subset of SpecB.

Proof. Let q ∈ SpecB and assume B is quasi-finite over A at q. Let Ã be the
integral closure of A in B. By Theorem 13.4.13 (Zariski’s Main Theorem), there

exists f ∈ Ã− q such that Ãf = Bf . Since Ã is integral over A, we can write Ã as
the direct limit of all subalgebras Aα such that f ∈ Aα and Aα is finitely generated
as a module over A. Therefore

Ã = lim−→Aα

which implies

Bf = Ãf =
(
lim−→Aα

)
f
= lim−→ (Aα)f .

But B is finitely generated as an A-algebra, hence Bf is too. Let a1/f
ν , . . . , am/f

ν

be a set of generators of Ãf over A. For some α, {a1, . . . , am} ⊆ Aα. It follows
that Bf = (Aα)f for this α. By Example 13.4.6, (Aα)f is quasi-finite over A. The
open set V = SpecBf is a neighborhood of q. □

Example 13.4.15. Let A → B → C be homomorphisms of rings. Assume B
is finitely generated as an A-module, C is finitely generated as a B-algebra and
SpecC → SpecB is an open immersion (Exercise 7.5.33). Then C is quasi-finite
over A. The next corollary says every quasi-finite homomorphism factors in this
way.

Corollary 13.4.16. Let B be a commutative A-algebra which is finitely gen-
erated as an A-algebra and which is quasi-finite over A. If Ã is the integral closure
of A in B, then

(1) SpecB → Spec Ã is an open immersion and

(2) there exists an A-subalgebra R of Ã such that R is finitely generated as
an A-module and SpecB → SpecR is an open immersion.

Proof. By Corollary 13.4.14 there are a finite number of fi ∈ Ã such that
Bfi
∼= Ãfi and {fi} generate the unit ideal of B. The open sets Ui = SpecBfi

are an open cover of SpecB, so SpecB → Spec Ã is an open immersion. By
the argument of Corollary 13.4.14, the finite set {fi} of elements in Ã belongs to

a subalgebra R ⊆ Ã such that R is finitely generated as a module over A and
Rfi
∼= Bfi for each i. Therefore SpecB → SpecR is an open immersion. □

4.3. Exercises.

Exercise 13.4.17. (Quasi-finite over quasi-finite is quasi-finite) If B is quasi-
finite over A, and C is quasi-finite over B, then C is quasi-finite over A.

Exercise 13.4.18. If S is a commutative finitely generated separableR-algebra,
then S is quasi-finite over R.

Exercise 13.4.19. Show that if k is a field and x an indeterminate, then
Spec k[x] has no isolated point. (Hint: Show that Spec k[x] is infinite and that a
proper closed subset is finite.)

Exercise 13.4.20. Let B be a commutative A-algebra. Prove that if B is
finitely generated as an A-module, then B is quasi-finite over A.
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5. Graded Rings and Modules

Throughout this section all rings are commutative. We refer the reader to
Section 11.2 for the definitions of graded rings and modules.

5.1. Associated Prime Ideals of a Graded Module.

Lemma 13.5.1. Let R = ⊕∞n=0Rn be a graded ring and M = ⊕n∈ZMn a graded
R-module. If N is an R-submodule of M , then the following are equivalent.

(1) N =
⊕

n∈Z (N ∩Mn)
(2) N is generated by homogeneous elements.
(3) if x = xp + xp+1 + · · ·+ xp+m is in N where each xi is in Mi, then each

xi is in N .

Proof. Is left to the reader. □

If N satisfies the equivalent properties of Lemma 13.5.1, then we say N is a
graded submodule of M . A homogeneous ideal of R is an ideal which is a graded
submodule of the free R-module R.

Lemma 13.5.2. Let R = ⊕∞n=0Rn be a graded ring and I a homogeneous ideal
in R.

(1) I is a prime ideal if and only if for all homogeneous a, b ∈ Rh, if ab ∈ I,
then a ∈ I, or b ∈ I.

(2) Rad(I) is a homogeneous ideal.
(3) If {Ij | j ∈ J} is a family of homogeneous ideals in R, then

∑
j∈J Ij and⋂

j∈J Ij are homogeneous ideals.

(4) If p is a prime ideal in R and q is the ideal generated by the homogeneous
elements in p, then q is a prime ideal.

Proof. (1): Suppose x =
∑p
i=0 xi and y =

∑q
j=0 yj are in R and xy ∈ I and

y ̸∈ I. Prove that x ∈ I. Suppose ym ̸∈ I and that yj ∈ I for all j > m. The
homogeneous component of xy in degree p+m is zp+m = xpym +

∑p
i=1 xp−iym+i.

Therefore, xpym = zp+m −
∑p
i=1 xp−iym+i ∈ I and by hypothesis we get xp ∈ I.

Subtract to get (x − xp)y ∈ I. Descending induction on p shows xi ∈ I for each
i ≥ 0.

(2): Suppose x =
∑p
i=0 xi ∈ Rad(I). For some n > 0, xn ∈ I. The homoge-

neous component of xn of degree np is xnp , which is in I because I is homogeneous.
This implies xp ∈ Rad(I). Subtract to get x− xp ∈ Rad(I). Descending induction
on p shows xi ∈ Rad(I) for each i ≥ 0.

(3) and (4): Are left to the reader. □

Lemma 13.5.3. Let R = ⊕∞n=0Rn be a noetherian graded ring and M =
⊕n∈ZMn a graded R-module.

(1) annihR(M) is a homogeneous ideal.
(2) If P is a maximal member of the set of ideals C = {annihR(x) | x ∈

Mh − (0)}, then P is an associated prime of M .
(3) If P is an associated prime of M , then

(a) P is a homogeneous ideal,
(b) there exists a homogeneous element x ∈ M of degree n such that

P = annihR(x), and
(c) the cyclic submodule Rx is isomorphic to (R/P )(−n).



5. GRADED RINGS AND MODULES 577

(4) If I is a homogeneous ideal of R and P is a minimal prime over-ideal of
I, then P is homogeneous.

Proof. (1): Is left to the reader.
(2): Is left to the reader. Mimic the proof of Proposition 13.2.2 (1).
(3): There exists x = xp + · · ·+ xp+q in M such that P = annihR(x) and each

xi is homogeneous of degree i. Let f be an arbitrary element of P and write f in
terms of its homogeneous components, f = f0 + · · ·+ fr. The idea is to show each
fi is in P and apply Lemma 13.5.1 (3). Start with

0 = fx =

r∑
i=0

q∑
j=0

fixp+j

=

r+q∑
k=0

∑
i+j=k

fixp+j

Comparing homogeneous components we get
∑
i+j=k fixp+j = 0 for each k =

0, . . . , r + q. For k = r + q, this means frxp+q = 0. For k = r + q − 1, it means

0 = frxp+q−1 + fr−1xp+q

= f2r xp+q−1 + fr−1frxp+q

= f2r xp+q−1.

Inductively, we see that 0 = frxp+q = f2r xp+q−1 = · · · = f jrxp+q−j+1 for any
j ≥ 1. Therefore fq+1

r x = 0, which implies fr ∈ P . By descending induction on
r, we see that fi ∈ P for each i. This proves P satisfies Lemma 13.5.1 (3), so P is
homogeneous.

For (b), suppose we are given a homogeneous element h ∈ Ph, since 0 = hx =
hxp + · · · + hxp+q, it follows that hxj = 0 for each xj . Since P is generated by
homogeneous elements, this proves that P ⊆ annih(xj) for each j. We have

P ⊆
p+q⋂
j=p

annih(xj) ⊆ annih(x) = P.

Because P is prime, Lemma 10.3.3 says P = annih(xj) for some j.
(c): Assume x ∈ Mn and P = annih(x). Then 1 7→ x defines a function

(R/P )(−n)→ Rx which is an isomorphism of graded R-modules.
(4): By Theorem 13.2.7 (4), a minimal prime over-ideal P of an ideal I is an

associated prime of R/I. Part (3) (a) says P is homogeneous. □

The next result is the graded counterpart of Theorem 13.2.9.

Theorem 13.5.4. Let R = ⊕∞n=0Rn be a noetherian graded ring and M =
⊕n∈ZMn a finitely generated graded R-module.

(1) There exists a filtration 0 = S0 ⊊ S1 ⊊ S2 ⊊ · · · ⊊ Sr = M of M by
graded submodules, a set of homogeneous prime ideals Pi ∈ SpecR, and
integers ni such that Si/Si−1 ∼= (R/Pi)(−ni) for i = 1, . . . , r.

(2) The filtration in (1) is not unique, but for any such filtration we do have:
(a) If P is a homogeneous prime ideal of R, then

P ⊇ annihR (M)⇔ P ⊇ Pi
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for some i. In particular, the minimal elements of the set {P1, . . . , Pr}
are the minimal prime over-ideals of annihRM .

(b) For each minimal prime over-ideal P of annihRM , the number of
times which P occurs in the set {P1, . . . , Pr} is equal to the length of
MP over the local ring RP , hence is independent of the filtration.

Proof. AssumeM ̸= (0). By Proposition 13.2.2, Assoc(M) ̸= ∅. By Lemma 13.5.3
there exists a graded submodule S ofM isomorphic to (R/P )(−n) for some homoge-
neous prime P and some integer n. Define C to be the set of all graded submodules
S ⊆ M such that S has the kind of filtration specified in Part (1). Since C is
nonempty andM is a finitely generated module over the noetherian ring R, C has a
maximal member, say N . If N ̸=M , then by Proposition 13.2.2, Assoc(M/N) ̸= ∅.
By Lemma 13.5.3 applied to M/N there is a graded submodule S of M such that
N ⊊ S ⊆ M and S/N ∼= (R/P )(−n) for some homogeneous prime P and integer
n. Therefore, S ∈ C. But N is maximal in C, which is a contradiction. This proves
Part (1).

(2) We have annih
(
Si/Si−1

)
= annih

(
(R/Pi) (−ni)

)
= Pi. Because S0 = (0),

x ∈
∏r
i=1 Pi implies x ∈ annih(M). Thus

∏r
i=1 Pi ⊆ annih(M). If x ∈ annih (M),

then x ∈
⋂r
i=1 Pi. Therefore annih (M) ⊆

⋂r
i=1 pi. Let P be a homogeneous prime

ideal in R. If P ⊇ annih (M), then we have P ⊇
∏r
i=1 Pi. Proposition 3.2.14 implies

P ⊇ Pi for some i. Conversely, if P ⊇ Pi for some i, then P ⊇
⋂r
i=1 Pi ⊇ annih (M).

This proves (a).
For (b), localize at P . Consider

(5.1)
(
Si/Si−1

)
P
=
(
(R/Pi) (−ni)

)
P
.

If P = Pi, then the right-hand side of (5.1) is (R/P )P = RP /PRP which has length
one as an RP -module, since PRP is the maximal ideal of RP . Since P is a minimal
prime over-ideal of annih(M), if P ̸= Pi, then there exists some x ∈ Pi which is not
in P . In this case, the right-hand side of (5.1) is (0). That is, (Si−1)P = (Si)P .
We have shown that MP has a filtration of length equal to the number of times P
occurs in {P1, . . . , Pr}. □

Definition 13.5.5. If R is a noetherian graded ring, M is a finitely generated
graded R-module, and P is a minimal prime over-ideal of annihR(M), then the
length of MP over the local ring RP is called the multiplicity of M at P and is
denoted µP (M). In Algebraic Geometry, it plays an important role in the definition
of intersection multiplicity of two hypersurfaces along a subvariety.

The next result is the counterpart of Theorem 13.3.8 for a graded ring and
module.

Theorem 13.5.6. Let R = ⊕∞n=0Rn be a noetherian graded ring and M =
⊕n∈ZMn a graded R-module.

(1) For each P ∈ Assoc(M) there exists a P -primary graded submodule YP of
M such that (0) =

⋂
P∈Assoc(M) YP .

(2) If M is finitely generated and N is a graded submodule of M , then there
exists a primary decomposition N =

⋂
P∈Assoc(M/N) YP , where YP is a

P -primary graded submodule of M .

Proof. Is left to the reader. (Mimic the proof of Theorem 13.3.8, substituting
graded submodules.) □
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5.2. Numerical Polynomials.

Definition 13.5.7. A numerical polynomial is a polynomial p(x) ∈ Q[x] with
the property that there exists N > 0 such that p(n) ∈ Z for all integers n greater
than N . If r is a nonnegative integer, the binomial coefficient function is defined
to be (

x

r

)
=

1

r!
x(x− 1) · · · (x− r + 1)

which is clearly a polynomial of degree r in Q[x]. For any polynomial p ∈ Q[x],
define the difference polynomial to be

∆p(x) = p(x+ 1)− p(x).

Lemma 13.5.8. In the context of Definition 13.5.7,

(1) For any integer x,
(
x
r

)
is an integer.

(2) The binomial coefficient function is a numerical polynomial of degree r.
(3) The set {

(
x
i

)
| i = 0, . . . , r} is linearly independent over Q.

(4) The set {
(
x
i

)
| i = 0, . . . , r} is a Q-basis for {f ∈ Q[x] | deg f ≤ r}.

(5)

(
z + 1

r

)
−
(
z

r

)
=

(
z

r − 1

)
(6) For all integers d > 0,

(
z + d

r

)
−
(
z

r

)
=

(
z + d− 1

r − 1

)
+ · · ·+

(
z

r − 1

)
.

(7) ∆

(
z

r

)
=

(
z

r − 1

)
.

Proof. Is left to the reader. □

Proposition 13.5.9. In the context of Definition 13.5.7,

(1) If p(x) ∈ Q[x] is a numerical polynomial, then there exist integers ci such
that

p(x) = c0

(
x

r

)
+ c1

(
x

r − 1

)
+ · · ·+ cr.

In particular, p(n) ∈ Z for all n ∈ Z.
(2) If f : Z → Z is any function, and if there exists a numerical polynomial

q(x) ∈ Q[x] such that the difference function ∆f = f(n+1)−f(n) is equal
to q(n) for all sufficiently large integers n, then there exists a numerical
polynomial p(x) such that f(n) = p(n) for all sufficiently large integers n.

Proof. (1): The proof is by induction on r = deg p. If r = 0, then (1) is
obvious. Assume r > 0 and assume (1) is true for all numerical polynomials of
degree less than r. By Lemma 13.5.8 (4), write p as a linear combination of the
binomial coefficient functions

p(x) = c0

(
x

r

)
+ c1

(
x

r − 1

)
+ · · ·+ cr

where ci ∈ Q. Using Lemma 13.5.8 (5),

∆p(x) = c0

(
x

r − 1

)
+ c1

(
x

r − 2

)
+ · · ·+ cr−1

is a numerical polynomial of degree r − 1. By the induction hypothesis, and
Lemma 13.5.8 (3), it follows that c0, . . . , cr−1 are integers. Since p(n) ∈ Z for
all sufficiently large integers n, it follows that cr is an integer.
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(2): Applying Part (1) to q,

q(x) = c0

(
x

r

)
+ c1

(
x

r − 1

)
+ · · ·+ cr

for integers ci. Setting

p(x) = c0

(
x

r + 1

)
+ c1

(
x

r

)
+ · · ·+ cr

(
x

1

)
,

we see that ∆p = q. Therefore ∆(f − q)(n) = 0 for all sufficiently large integers
n. Hence (f − p)(n) = c is constant for all sufficiently large integers n. Then
f(n) = p(n) + c for all sufficiently large n. The desired polynomial is p(x) + c. □

5.3. The Hilbert Polynomial.

Example 13.5.10. Let A be a commutative artinian ring. By Proposition 8.4.4,
A is an A-module of finite length, say ℓ(A). If S = A[x0, . . . , xr], then S is a graded
ring, where S0 = A and each indeterminate xi is homogeneous of degree 1. The
homogeneous component Sd is a free A-module of rank ρ(d), where ρ(d) is equal to
the number of monomials of degree d in the variables x0, . . . , xr. The reader should
verify that RankA(Sd) = ρ(d) =

(
r+d
d

)
=
(
r+d
r

)
. By Exercise 8.4.10, the length of

the A-module Sd is equal to

ℓ(Sd) = ρ(d)ℓ(A)

=

(
r + d

d

)
ℓ(A)

=
(r + d)!

r!d!
ℓ(A)

=
ℓ(A)

r!
(d+ r) · · · (d+ 1)

which is a numerical polynomial in Q[d] of degree r and with leading coefficient
ℓ(A)/r!.

Example 13.5.11. Let A be a commutative artinian ring and S = A[x0, . . . , xr].
Let M = ⊕∞j=0Mj be a finitely generated graded S-module. Then M is generated

over S by a finite set of homogeneous elements. Let {ξ1, . . . , ξm} ⊆ Mh be a
generating set for M and suppose di = deg(ξi). Let S(−di) be the twisted S-
module. The map ϕi : S(−di)→M defined by 1 7→ ξi is a graded homomorphism
of graded S-modules. Let ϕ : ⊕mi=1S(−di)→M be the sum map. So ϕ is a graded
homomorphism of graded S-modules, and ϕ is onto because the image of ϕ contains
a generating set for M . For all d ≥ 0, there is an exact sequence

m⊕
i=1

S(−di)d →Md → 0.

By Proposition 7.6.31, ℓ(Md) ≤
∑m
i=1 ℓ(Sd−di). By Example 13.5.10, it follows that

ℓ(Md) is finite.

Definition 13.5.12. LetA be a commutative artinian ring and S = A[x0, . . . , xr].
Let M = ⊕∞j=0Mj be a finitely generated graded S-module. The Hilbert function
of M is defined to be φM (d) = ℓ(Md). By Example 13.5.11, φM (d) ∈ Z for all d.
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Theorem 13.5.13. (Hilbert-Serre) Let A be a commutative artinian ring and
S = A[x0, . . . , xr]. LetM = ⊕∞j=0Mj be a finitely generated graded S-module. There
exists a unique numerical polynomial PM (z) ∈ Q[z] such that φM (d) = PM (d) for
all sufficiently large integers d. The polynomial PM is called the Hilbert polynomial
of M .

Proof. A polynomial in Q[z] is determined by its values on a finite set, so
PM (z) is clearly unique, if it exists. Since A is noetherian, so is S.

Step 1: If S = S0 = A, is concentrated in degree 0, then since M is finitely
generated it follows that Md = 0 for all sufficiently large d. The polynomial is
PM (z) = 0. Proceed by induction on the number r + 1 of generators for S over
S0 = A. Assume r ≥ 0.

Step 2: For any short exact sequence of graded S-modules

0→ J → K → L→ 0

Proposition 7.6.31 implies φK = φJ +φL. If the Theorem is true for the S-modules
J and L, then it is true for K. By Theorem 13.5.4 there is a filtration of M by
graded submodules such that the consecutive factors are isomorphic to graded S
modules of the form (S/P )(−d), where P is a homogeneous prime ideal of S, and
d is an integer. The twist corresponds to a change of variables z 7→ z − d on the
Hilbert polynomials, so it suffices to prove the Theorem for S-modules of the form
M = S/P . Assume that M = S/P , where P is a homogeneous prime ideal in the
graded ring S = A[x0, . . . , xr].

Step 3: Assume P contains the exceptional ideal (x0, . . . , xr). Then M = S/P
is concentrated in degree 0, so φM (d) = ℓ(Md) = 0 for all d > 0. The desired
polynomial is PM (z) = 0.

Step 4: Assume P does not contain the exceptional ideal (x0, . . . , xr). Without
loss of generality, assume x0 ̸∈ P . Consider the S-module map λ : S/P → S/P
which is defined by 1 7→ x0. Then λ is “left multiplication by x0”. Since P is a
prime ideal and x0 ∈ S − P , x0 is not a zero divisor. The sequence

0→M
λ−→M →M ′ → 0

is exact, where M ′ = S/(P + (x0)). Since deg(x0) = 1, there is an exact sequence

0→Md−1
λ−→Md →M ′d → 0

for each d > 0. Proposition 7.6.31 implies φM (d) = φM (d − 1) + φM ′(d). In
the notation of Proposition 13.5.9, we have φM ′(d) = (∆φM )(d − 1). Since M ′

is a graded S/(x0)-module and S/(x0) = A[x1, . . . , xr] is generated over A by r
elements, our induction hypothesis applies to M ′. By Proposition 13.5.9, PM (z)
exists. □

6. Krull Dimension of a Commutative Noetherian Ring

6.1. Definitions. Let R be a commutative ring. Suppose

P0 ⊋ P1 ⊋ · · · ⊋ Pn

is a chain of n + 1 distinct prime ideals in SpecR. We say this is a prime chain
of length n. If P ∈ SpecR, the height of P , denoted ht(P ), is the supremum of
the lengths of all prime chains with P = P0. Let I be a proper ideal of R. The
height of I, denoted ht(I), is defined to be the infimum of the heights of all prime
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ideals containing I, ht(I) = inf{ht(P ) | P ∈ SpecR,P ⊇ I}. The Krull dimension,
or simply dimension of R is the supremum of the heights of all prime ideals in R,
dim(R) = sup{ht(P ) | P ∈ SpecR}.

Example 13.6.1. Let R be a commutative ring.

(1) If R is artinian, then by Proposition 8.4.3, every prime ideal is maximal,
so dim(R) = 0.

(2) If R is a PID, then by Lemma 3.4.5, nonzero prime ideals are maximal,
so dim(R) ≤ 1. If R is not a field, dim (R) = 1.

(3) If P is a minimal prime over-ideal of (0), then ht(P ) = 0.
(4) If R is a UFD with Krull dimension one, then by Theorem 3.4.17, R is a

PID.

Lemma 13.6.2. Let R be a commutative ring.

(1) If P ∈ SpecR, then ht(P ) = dim(RP ).
(2) If I is not the unit ideal, then dim(R/I) + ht(I) ≤ dim(R).
(3) Let R be an integral domain of finite Krull dimension and P a prime ideal

in R. If dim(R/P ) and dim(R) are equal, then P = (0).
(4) If W ⊆ R is a multiplicative set, then dim(W−1R) ≤ dim(R).

Proof. Is left to the reader. □

Definition 13.6.3. Let R be a commutative ring and M an R-module. The
Krull dimension of M is defined by

dimR(M) =

{
dim(R/ annihR(M)) if M ̸= (0)

−1 otherwise.

If the ring R is unambiguous, then we write dim(M) instead of dimR(M).

Lemma 13.6.4. Let R be a commutative noetherian ring and M a finitely gen-
erated nonzero R-module. The following are equivalent.

(1) The length of the R-module M is finite, ℓ(M) <∞.
(2) The ring R/ annihR(M) is artinian.
(3) The Krull dimension of M is zero, dim(M) = 0.

Proof. (2) is equivalent to (3): Follows from Proposition 8.4.4.
(2) implies (1): Follows from Proposition 7.6.30 and Exercise 7.6.19.
(1) implies (3): Prove the contrapositive. Replace R with R/ annih(M) and

assume annih(M) = (0). Assume dim(R) > 0. Let P be a minimal prime over-ideal
of 0 such that P is not maximal. Since annih(M) = 0 and M is finitely generated,
Lemma 7.1.7 says MP ̸= (0). Therefore P ∈ Supp(M) and because P is minimal,
Theorem 13.2.7 says P ∈ Assoc(M). By Lemma 13.2.1, M contains a submodule
isomorphic to R/P . The integral domain R/P contains a nonzero prime ideal, so by
Proposition 8.4.4, the R-module R/P has infinite length. Therefore ℓ(M) =∞. □

6.2. The Krull Dimension of a Noetherian Semilocal Ring.

Definition 13.6.5. Let R be a commutative noetherian semilocal ring with
Jacobson radical J = J(R). Let I be an ideal which is contained in J . By Exer-
cise 8.4.14, R/I is artinian if and only if there exists ν > 0 such that Jν ⊆ I ⊆ J .
If this is true, we call I an ideal of definition for R.
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Example 13.6.6. Let R be a commutative noetherian local ring and I ⊆ m
an ideal contained in the maximal ideal of R. By Corollary 13.1.4, I is an ideal of
definition for R if and only if I is m-primary.

Proposition 13.6.7. Let R be a commutative noetherian semilocal ring, M a
finitely generated R-module and I an ideal of definition for R.

(1) For d ≥ 0, M/IdM is an R/I-module of finite length.
(2) For all sufficiently large d, ℓ(M/IdM) is a numerical polynomial. This

polynomial, denoted χM,I(x), is called the Hilbert polynomial of M with
respect to I.

(3) If d(M) denotes the degree of the Hilbert polynomial χM,I , then d(M) is
independent of the choice of I.

(4) d(M) is bounded above by the number of elements in a generating set for
I.

Proof. As in Example 11.2.3, the associated graded ring for the I-adic fil-
tration of R is R∗ = grI(R) =

⊕
n≥0 I

n/In+1. As in Example 11.2.5, the as-

sociated graded R∗-module for the I-adic filtration of M is M∗ = grI(M) =⊕
n≥0 I

nM/In+1M . By Proposition 11.2.9, M∗ is a finitely generated R∗-module.
Because I is finitely generated, we can write I = Ru0 + · · · + Rum. Let S =
(R/I)[x0, . . . , xm]. The assignments xi 7→ ui define a graded homomorphism of
graded R/I-algebras S → R∗ which is onto. In degree d the length of the mod-
ules satisfy ℓ(Id/Id+1) ≤ ℓ(Sd). As computed in Example 13.5.10, the Hilbert
polynomial of S, PS(x), has degree m. Therefore, the Hilbert polynomial of R∗,
PR∗(x), has degree less than or equal to m. In Example 13.5.11 we computed
PM∗(d) = ℓ(IdM/Id+1M) ≤

∑
PR∗(d) where the sum is finite. It follows that the

Hilbert polynomial PM∗(x) has degree less than or equal to m. From the filtration
IdM ⊆ Id−1M ⊆ · · · ⊆ IM ⊆M , we compute

ℓ(M/IdM) =

d−1∑
j=0

ℓ(IjM/Ij+1M)

is finite, and is a polynomial of degree less than or equal to m for all sufficiently
large d. This proves Parts (1), (2) and (4).

(3): Suppose J is another ideal of definition for R. There exists ν > 0
such that Jν ⊆ I. For all d ≥ 0 we have ℓ(M/IdM) ≤ ℓ(M/JνdM). That is,
χM,I(x) ≤ χM,J(νx) for all sufficiently large x. Since ν is constant, we conclude
that deg(χM,I(x)) ≤ deg(χM,J(x)). By symmetry, we see that d(M) is independent
of the choice of I. □

Proposition 13.6.8. Let R be a commutative noetherian semilocal ring and I
an ideal of definition for R. Let

0→ A→ B → C → 0

be an exact sequence of finitely generated R-modules. Then

(1) d(B) is equal to the maximum of d(A) and d(C).
(2) The degree of the polynomial χB,I − χA,I − χC,I is less than d(B).

Proof. Since C/InC = B/(A+ InB), we have

ℓ(C/InC) = ℓ(B/(A+ InB)) ≤ ℓ(B/InB)
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hence d(C) ≤ d(B). From the exact sequence

0→ (A+ InB)/InB → B/InB → B/(A+ InB)→ 0

and (A+ InB)/InB = A/(A ∩ InB), we have

χB,I(n)− χC,I(n) = ℓ(B/InB)− ℓ(B/(A+ InB))

= ℓ((A+ InB)/InB)

= ℓ(A/(A ∩ InB)).

By Artin-Rees, Corollary 11.2.14, there exists an integer n0 such that In+n0A ⊆
A ∩ (InB) ⊆ In−n0A for all n > n0. This implies

ℓ(A/In+n0A) ≥ ℓ(A/(A+ InB)) ≥ ℓ(A/In−n0A)

for n > n0. Taken together, this says the polynomials χB,I − χC,I and χA,I have
the same degree and the same leading coefficient. □

Proposition 13.6.9. Let R be commutative noetherian ring.

(1) If R is a semilocal ring, then the Krull dimension of R is finite.
(2) If R is a semilocal ring, then dim(R) ≤ d(R).
(3) If P ∈ SpecR, then ht(P ) is finite.
(4) R satisfies the DCC on prime ideals.

Proof. (2): Let J = J(R). The proof is by induction on d(R). If d(R) =
0, then there exists N > 0, such that ℓ(R/Jd) is constant for all d ≥ N . By
Corollary 11.3.6, this implies JN = (0). By Proposition 8.4.2, R is artinian and as
we have seen in Example 13.6.1, dim(R) = 0.

Inductively suppose d(R) > 0 and that the result is true for any semilocal ring
S such that d(S) < d(R). If dim(R) = 0, then the result is trivially true. Assume
R has a prime chain P0 ⊋ · · · ⊋ Pr−1 ⊋ Pr = P of length r > 0. Let x ∈ P −Pr−1.
Then dim(R/(xR+P )) ≥ r−1. Since P is a prime ideal, if λ is “left multiplication
by x”, then

0→ R/P
λ−→ R/P → R/(xR+ P )→ 0

is an exact sequence. Apply Proposition 13.6.8 to get d(R/(xR + P )) < d(R/P ).
We always have d(R/P ) ≤ d(R). By the induction hypothesis, d(R/(xR + P )) ≥
dim(R/(xR+P )). Take together, this proves r−1 ≤ dim(R/(xR+P )) ≤ d(R/(xR+
P )) < d(R/P ) ≤ d(R).

The rest is left to the reader. □

Lemma 13.6.10. Let R be a commutative noetherian semilocal ring, x ∈ J(R),
and M a nonzero finitely generated R-module.

(1) d(M) ≥ d(M/xM) ≥ d(M)− 1.
(2) If the Krull dimension of M is r, then there exist elements x1, . . . , xr in

J(R) such that M/(x1M + · · ·+ xrM) is an R-module of finite length.

Proof. (1): Let I be an ideal of definition for R which contains x. By Propo-
sition 13.6.8, d(M) ≤ d(M/xM). From the short exact sequence

0→ (xM + InM)/InM →M/InM →M/(xM + InM)→ 0

we get

ℓ
(
(xM + InM)/InM

)
= ℓ(M/InM)− ℓ

(
M/(xM + InM)

)
.
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The kernel of the natural map M → xM/(xM ∩ InM) is {m ∈M | xm ∈ InM} =
(InM : x). Therefore,

(xM + InM)/InM = xM/(xM ∩ InM) =M/(InM : x).

Since x ∈ I, xIn−1M ⊆ InM , hence In−1M ⊆ (InM : x). Therefore

ℓ(M/In−1M) ≥ ℓ
(
M/(InM : x)

)
= ℓ(M/InM)− ℓ

(
M/(xM + InM)

)
,

or

ℓ
(
M/(xM + InM)

)
≥ ℓ(M/InM)− ℓ(M/In−1M),

which is true for all sufficiently large n. Since M/xM ⊗R/In =M/(xM + InM),
we can compare the Hilbert polynomials

χM/xM,I(n) ≥ χM,I(n)− χM,I(n− 1).

Comparing degrees, we get d(M/xM) ≥ d(M)− 1.
(2): The proof is by induction on r = dim(M). Lemma 13.6.4 says that M is

of finite length when r = 0. Inductively, assume r > 0 and that the result holds for
any module of dimension less than r. Since R is noetherian and M ̸= (0), Theo-
rem 13.3.8 says annih(M) has a primary decomposition. By Theorem 13.2.7, there
are only finitely many minimal prime over-ideals of annih(M). Suppose P1, . . . , Pt
are those minimal prime over-ideals of annih(M) such that dim(R/Pi) = r. Assume
Max(R) = {m1, . . . ,mu}, so that J(R) =

⋂u
j=1 mj . Since r > 0, we know that for

all i, j, there is no containment relation mj ⊆ Pi. By Lemma 10.3.3, for all i there
is no containment relation J(R) ⊆ Pi. By Lemma 10.3.2, J(R) is not contained in
the union P1 ∪ · · · ∪Pt. Pick x ∈ J(R)− (P1 ∪ · · · ∪Pt). Consider annih(M/xM) ⊇
xR+ annih(M). If P ∈ Spec(R) and annih(M) ⊆ P , then by choice of x we know
P is not in the set {P1, . . . , Pt}. Consequently, dim(R/P ) ≤ r − 1. This proves
dim(M/xM) ≤ r − 1. By the induction hypothesis applied to M/xM , there exist
x2, . . . , xr in J(R) such that M/(xM + x2M + · · ·+ xrM) is an R-module of finite
length. □

Let R be a commutative noetherian semilocal ring with Jacobson radical J =
J(R). Let M be a nonzero finitely generated R-module. Let S be the set of all
cardinal numbers r such that there exist elements x1, . . . , xr in J(R) satisfying
M/(x1M + · · · + xrM) is an R-module of finite length. By Lemma 13.6.10 (2), S
is nonempty. By the Well Ordering Principle, there is a minimum r ∈ S, which we
denote by δ(M) in the next theorem.

Theorem 13.6.11. Let R be a commutative noetherian semilocal ring with Ja-
cobson radical J = J(R). Let M be a nonzero finitely generated R-module. The
three integers

(1) d(M)
(2) dim(M)
(3) δ(M)

are equal.

Proof. If x1, . . . , xr are in J(R) and M/(x1M + · · · + xrM) is an R-module
of finite length, then by Exercise 13.6.16, d(M/(x1M + · · · + xrM) = 0 and by
Lemma 13.6.10 (1), d(M/(x1M + · · · + xr−1M) ≤ 1. Iterate this argument to get
d(M) ≤ r, which implies d(M) ≤ δ(M). By Lemma 13.6.10 (2) we have δ(M) ≤
dim(M). To finish, it is enough to prove dim(M) ≤ d(M).
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By Theorem 13.2.9 there exists a filtration 0 =M0 ⊊M1 ⊊M2 ⊊ · · · ⊊Mn =
M of M and a set of prime ideals Pi ∈ SpecR such that Mi/Mi−1 ∼= R/Pi for
i = 1, . . . , n. Also Assoc(M) ⊆ {P1, . . . , Pn} ⊆ Supp(M). By Exercise 13.2.17,
every minimal prime over-ideal of annih(M) is included in the set {P1, . . . , Pn}.
By Proposition 13.6.8, d(Mi) is equal to the maximum of d(Mi−1) and d(R/Pi).
Iterate this n times to show that d(M) is equal to the maximum number in the
set {d(R/Pi) | 1 ≤ i ≤ n}. By Proposition 13.6.9, it follows that d(M) is greater
than or equal to the maximum number in the set {dim(R/Pi) | 1 ≤ i ≤ n}. A
chain of prime ideals in Spec(R/ annih(M)) corresponds to a chain in Spec(R) of
prime ideals containing annih(M). If such a chain has maximal length, then it
terminates at a minimal member of the set {P1, . . . , Pn}. Therefore, dim(M) is
equal to the maximum number in the set {dim(R/Pi) | 1 ≤ i ≤ n}. This completes
the proof. □

Corollary 13.6.12. Let R be a commutative noetherian ring and x, x1, . . . , xn
elements of R.

(1) If P is a minimal prime over-ideal of Rx1 + · · ·+Rxn, then ht(P ) ≤ n.
(2) (Krull’s Hauptidealsatz) If x is not a zero divisor or a unit, and P is a

minimal prime over-ideal of Rx, then ht(P ) = 1.

Proof. (1): Let I = Rx1 + · · ·+Rxn and assume P is a minimal prime over-
ideal of I. There is the containment of sets I ⊆ P ⊆ R. Localizing gives rise to the
containment of sets IRP ⊆ PRP ⊆ RP . Therefore RP /IRP has only one prime
ideal, so RP /IRP is artinian. By Theorem 13.6.11, n ≥ δ(RP ) = dim(RP ). By
Lemma 13.6.2, ht(P ) = dim(RP ).

(2): By Part (1), ht(P ) ≤ 1. If ht(P ) = 0, then P is a minimal prime in
Spec(R). By Theorem 13.2.7 and Proposition 13.2.2, every element of P is a zero
divisor. This is a contradiction, since x ∈ P . □

Corollary 13.6.13. Let R be a commutative noetherian local ring with max-
imal ideal m = J(R).

(1) The numbers
(a) dim(R), the Krull dimension of R.
(b) d(R), the degree of the Hilbert polynomial χR,m(n) = ℓ(R/mn).
(c) δ(R), the minimum number r such that there exists a m-primary ideal

with a generating set consisting of r elements.
are equal.

(2) dim(R) ≤ dimR/m(m/m
2).

(3) If x ∈ m is not a zero divisor, then dim(R/xR) = dim(R)− 1.

(4) Let R̂ be the m-adic completion of R. Then dim(R) = dim(R̂).

Proof. (1): Follows straight from Theorem 13.6.11.
(2): Let x1, . . . , xt be elements of m that restrict to a R/m-basis for m/m2. By

Lemma 7.4.1, Rx1 + · · ·+Rxt = m. By Part (1), dim(R) = δ(R) ≤ t.
(3): By Corollary 13.6.12 (2), ht(Rx) = 1. By Lemma 13.6.2, dim(R/xR) ≤

dim(R)− 1. The reverse inequality follows from Lemma 13.6.10 (1) and Part (1).

(4): By Corollary 11.3.2, R/mn = R̂/m̂n, so the Hilbert polynomials χR,m and
χR̂,m̂ are equal. □

Definition 13.6.14. Let R be a commutative noetherian local ring with maxi-
mal ideal m and assume dim(R) = d. According to Corollary 13.6.13 (1) there exists
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a subset {x1, . . . , xd} ⊆ m such that the ideal Rx1+ · · ·+Rxd is m-primary. In this
case, we say x1, . . . , xd is a system of parameters for R. If Rx1 + · · · + Rxd = m,
then we say R is a regular local ring and in this case we call x1, . . . , xd a regular
system of parameters.

Proposition 13.6.15. Let R be a commutative noetherian local ring with max-
imal ideal m and x1, . . . , xd a system of parameters for R. Then

dim
(
R/(Rx1 + · · ·+Rxi)

)
= d− i = dim(R)− i

for each i such that 1 ≤ i ≤ d.

Proof. Let Ii = Rx1 + · · · + Rxi, Ri = R/Ii, mi = m/Ii. Let η : R → R/Ii.
Then Ri is a noetherian local ring with maximal ideal mi and η(xi+1), . . . , η(xd)
generate a mi-primary ideal in Ri. Therefore dim(Ri) = δ(Ri) ≤ d− i. Suppose we
are given a system of parameters η(z1), . . . , η(ze) for Ri. Then Rx1 + · · ·+ Rxi +
Rz1 + · · · + Rze is m-primary. This means δ(R) = d ≤ i + e, or e = dim(Ri) ≥
d− i. □

6.3. Exercises.

Exercise 13.6.16. Let R be a commutative noetherian semilocal ring and M
a nonzero R-module of finite length. Then d(M) = 0.

Exercise 13.6.17. Let R be a commutative noetherian local ring with maximal
ideal m. Then dim(R) = dimR/m(m/m

2) if and only if R is a regular local ring.

Exercise 13.6.18. Let R be a commutative ring and I an ideal of R. Then
dim(R/I) = dim(R/Rad(I)).

Exercise 13.6.19. Let R be a commutative noetherian ring. Let I be a proper
ideal in R such that ht(I) = h > 0.

(1) Let P1, . . . , Pt be the complete list of minimal prime over-ideals of (0) in

R. Show that there exists x ∈ I −
⋃t
j=1 Pj and that ht(Rx) = 1.

(2) If 1 ≤ r < h, and x1, . . . , xr is a sequence of elements of I such that
ht(x1, . . . , xr) = r, show that there exists an element xr+1 in I such that
ht(x1, . . . , xr, xr+1) = r + 1.

(3) Show that there exists a sequence x1, . . . , xh of elements of I such that if
1 ≤ i ≤ h, then ht(x1, . . . , xi) = i.

Exercise 13.6.20. Let R be a commutative ring and M an R-module.

(1) If N is a submodule of M , then dim(N) ≤ dim(M) and dim(M/N) ≤
dim(M).

(2) If W ⊆ R is a multiplicative set and M is finitely generated, then

dimW−1R(W
−1M) ≤ dimR(M).

(Hint: Corollary 7.8.10.)

6.4. The Krull Dimension of a Fiber of a Morphism. Let f : R → S
be a homomorphism of commutative rings, and f ♯ : SpecS → SpecR the contin-
uous map of Exercise 7.3.20. Let P ∈ SpecR. The fiber over P of the map f ♯

is Spec(S ⊗R kp), which is homeomorphic to (f ♯)−1(P ), by Exercise 7.4.11. By
Exercise 7.4.10, if Q is a prime ideal of S lying over P , then the corresponding
prime ideal of S ⊗R kp is Q⊗R kP and the local ring is SQ ⊗R kP .
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Theorem 13.6.21. Let f : R → S be a homomorphism of commutative noe-
therian rings. Let Q ∈ SpecS and P = Q ∩R. Then

(1) ht(Q) ≤ ht(P ) + ht(Q/PS).
(2) dim(SQ) ≤ dim(RP )+dim(SQ⊗RkP ) where kP = RP /PRP is the residue

field.
(3) If going down holds for f , then equality holds in Parts (1) and (2).
(4) If going down holds for f and f ♯ : SpecS → SpecR is surjective, then

(a) dim(S) ≥ dim(R), and
(b) for any ideal I ⊆ R, ht(I) = ht(IS).

Proof. (1): Follows from (2) by Lemma 13.6.2 and Exercise 7.4.10.
(2): Replace R with RP , S with SQ. Assume (R,P ) and (S,Q) are local rings

and f : R → S is a local homomorphism of local rings. The goal is to prove that
dim(S) ≤ dim(R)+dim(S/PS). Let x1, . . . , xn be a system of parameters for R and
set I = Rx1 + · · ·+ Rxn. There exists ν > 0 such that P ν ⊆ I. Therefore P νS ⊆
IS ⊆ PS and the ideals IS and PS have the same nil radicals. By Exercise 13.6.18,
dim(S/IS) = dim(S/PS). Let η : S → S/IS and let η(y1), . . . , η(yr) be a system
of parameters for S/IS. Then Sy1 + · · · + Syr + Sx1 + · · · + Sxn is a Q-primary
ideal. Then dim(S) ≤ r + n = dim(S/PS) + dim(R).

(3): Continue to use the same notation as in Part (2). Assume ht(Q/PS) = r
and ht(P ) = n. There exists a chain Q = Q0 ⊋ Q1 ⊋ · · · ⊋ Qr in SpecS such that
Qr ⊇ PS. Then P = Q ∩ R ⊇ Qi ∩ R ⊇ P . This implies each Qi lies over P . In
SpecR there exists a chain P ⊋ P1 ⊋ · · · ⊋ Pn. By going down, Proposition 10.3.4,
there exists a chain Qr ⊋ Qr+1 ⊋ · · · ⊋ Rr+n in SpecS such that Qr+i ∩ R = Pi
for i = 0, . . . , n. The chain Q ⊋ Q1 ⊋ · · · ⊋ Qr+n shows that ht(Q) ≥ r + n.

(4): (a): Let m be a maximal prime in R such that ht(m) = dim(R). Let n be
a maximal prime in S lying over m. By Part (3), dim(S) ≥ dim(Sn) ≥ dim(Rm) =
dim(R).

(b): Let Q be a minimal prime over-ideal of IS such that ht(Q) = ht(IS). If
P = Q∩R, then P ⊇ I and Q ⊇ PS ⊇ IS. By the choice of Q, ht(Q/PS) = 0. By
Part (3), ht(IS) = ht(Q) = ht(P ) ≥ ht(I). Conversely, let P be a minimal prime
over-ideal of I such that ht(P ) = ht(I). Let Q be a prime ideal in S lying over P .
Then Q ⊇ PS ⊇ IS. By Proposition 13.6.9 (4) we can assume Q is a minimal prime
over-ideal of PS. Then ht(Q/PS) = 0. By Part (3), ht(I) = ht(P ) = ht(Q) ≥
ht(IS). □

Theorem 13.6.22. Let f : R→ S where R and S are commutative noetherian
rings. Assume S is a faithful integral R-algebra.

(1) dim(R) = dim(S).
(2) If Q ∈ Spec(S), then ht(Q) ≤ ht(Q ∩R).
(3) If going down holds for f , then for any ideal J of S, ht(J) = ht(J ∩R).

Proof. We can assume f is the set inclusion map and view R as a subring of
S.

(1): It follows from Theorem 10.3.7 (2) that a chain Q0 ⊊ Q1 ⊊ · · · ⊊ Qn of
length n in Spec(S) gives rise to a chain Q0 ∩R ⊊ Q1 ∩R ⊊ · · · ⊊ Qn ∩R of length
n in Spec(R). Thus dim(S) ≤ dim(R). By Theorem 10.3.7 (3), a chain of length n
in Spec(R) lifts to a chain of length n in Spec(S). Thus dim(S) ≥ dim(R).

(2): We have Q ⊆ (Q ∩R)S and by Theorem 10.3.7 (2), Q is a minimal prime
over-ideal of (Q ∩R)S. Apply Theorem 13.6.21 (1).
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(3): Since going down holds for R→ S, by Theorem 13.6.21 (3), equality holds
in Part (2). Pick Q to be a minimal prime over-ideal of J such that ht(Q) = ht(J).
Then ht(J) = ht(Q) = ht(Q ∩ R) ≥ ht(J ∩ R). Pick P to be a minimal prime
over-ideal for J ∩R. By Exercise 10.1.16, S/J is an integral extension of R/(J ∩R).
By Theorem 10.3.7 (1), there exists Q ∈ Spec(S) such that Q ⊇ J and Q ∩R = P .
Then ht(J ∩R) = ht(P ) = ht(Q) ≥ ht(J). □

Theorem 13.6.23. Let f : R→ S where R and S are commutative noetherian
rings, and assume going up holds for f . If p, q ∈ SpecR such that p ⊇ q, then
dim(S ⊗R kp) ≥ dim(S ⊗R kq).

Proof. Let n = dim(S ⊗R kq). Then there exists a chain Q0 ⊊ · · · ⊊ Qn in
SpecS such that Qi ∩ R = q for all i = 0, . . . , n. Let m = ht(p/q). Then there
exists a chain q = p0 ⊊ · · · ⊊ pm = p in SpecR. Since going up holds, there exists a
chain Qn ⊊ · · · ⊊ Qn+m in SpecS such that Qn+i∩R = pi for all i = 0, . . . ,m. The
chain Q0 ⊊ · · · ⊊ Qn+m shows ht(Qn+m/Q0) ≥ n+m. Apply Theorem 13.6.21 to
R/q → S/Q0 with the prime ideals Qn+m/Q0 and p/q playing the roles of Q and
P . Then

n+m ≤ ht(Qn+r/Q0)

≤ ht(p/q) + ht(Qn+m/(Q0 + pS))

≤ ht(p/q) + ht(Qn+m/pS)

≤ ht(p/q) + dim(S ⊗R kp).

From which it follows that dim(S ⊗R kq) ≤ dim(S ⊗R kp). □

7. The Krull-Akizuki Theorem

This short section is devoted to a proof of Theorem 13.7.5, which is commonly
known as the Krull-Akizuki Theorem. The proof we give follows [12, Chapter VII,
§ 2.5]. Throughout this section, all rings are commutative. Given an R-module M ,
if M has a composition series, then we say M has finite length and ℓ(M) denotes
the length of any composition series for M (Definition 7.6.28). If R is an integral
domain with field of fractions K andM is a torsion free R-module, then the natural
mapping R⊗RM → K⊗RM is one-to-one (Lemma 7.1.1). We identifyM with the
R-submodule 1⊗RM of K⊗RM . The rank of M is defined to be dimK(K⊗RM).
If M is finitely generated, then by Theorem 6.4.23, M has finite rank. We mention
however that the converse is false. For example, if we assume R is not a field, then
K is not a finitely generated R-module (Lemma 10.1.4), but K has rank 1 since
K ⊗R K = K.

The Krull-Akizuki Theorem is concerned with the finiteness of the integral
closure S of a noetherian integral domain R in a finite algebraic field extension
L of the quotient field K of R. When R is integrally closed in K and L/K is
separable, Theorem 10.1.13 applies. When R is a finitely generated algebra over
a field k, there is a stronger result proved below in Theorem 14.3.11. The main
difference between these theorems and Theorem 13.7.5 below is that we assume
only that R is noetherian with Krull dimension one, and we show that S is also
noetherian and has dimension one. Also, in Corollary 13.7.6 we see that the fibers
of SpecS → SpecR are finite. Before restricting to the case where R is noetherian,
we prove in Lemma 13.7.1 that the fiber over the generic point of SpecR is the
generic point of S.
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Lemma 13.7.1. Let R be an integral domain with quotient field K. Let L be a
finitely generated algebraic extension field of K and S a subring of L containing R.
Then the following are true.

(1) There is an R-algebra homomorphism γ : K ⊗R S → L defined by x⊗ y 7→ xy
which maps K ⊗R S isomorphically onto a subfield of L containing K and S.

(2) S is an R-module of finite rank.
(3) If q is a prime ideal of S such that q ∩R = (0), then q = (0).

Proof. (1): Consider W = R − (0) which is a multiplicative subset of S
contained in R. We can identify the localization W−1S with an R-subalgebra of L
containing both K and S (Theorem 3.5.5). Since W−1S is finite dimensional over
K, W−1S is a field (Exercise 4.5.15). Hence W−1S is isomorphic to the quotient
field of S. By Lemma 7.1.1, γ maps K ⊗R S isomorphically onto W−1S.

Part (2) follows from the fact thatK⊗RS is finite dimensional overK. Part (3)
follows from Exercise 7.3.26. □

Lemma 13.7.2. Let R be a noetherian integral domain with dim(R) = 1. If M
is a finitely generated torsion R-module, then the length of M is finite, ℓ(M) <∞.

Proof. SinceM is torsion, annihR(M) is a proper ideal of R. Then dim(M) =
dim(R/ annihR(M)) = 0. By Lemma 13.6.4, M has finite length. □

Lemma 13.7.3. Let R be a commutative ring, M an R-module, and {Mi | i ∈ I}
a directed system of submodules of M ordered by set inclusion and indexed by a
directed set I. If M =

⋃
i∈IMi, then ℓ(M) = sup{ℓ(Mi) | i ∈ I}.

Proof. By Proposition 7.6.29, ℓ(Mi) ≤ ℓ(M) for each i. If the set {ℓ(Mi) |
i ∈ I} is unbounded, then ℓ(M) = sup{ℓ(Mi) | i ∈ I} = ∞. Assume N ∈ N and
N = sup{ℓ(Mi) | i ∈ I}. Therefore, there exists j ∈ I such that ℓ(Mj) = N . The
family of submodules is directed, hence given any pair i, j in I, there is k ∈ I such
that Mi∪Mj ⊆Mk. So for all k ≥ j we have ℓ(Mj) = ℓ(Mk) = N . Since the union
of the Mi is M , we have N = ℓ(M). □

Lemma 13.7.4. Let R be a noetherian integral domain with dim(R) = 1. Let
M be a torsion free R-module of finite rank n. If α is a nonzero element of R, then
R/αR is an R-module of finite length and

ℓ(M/αM) ≤ n ℓ(R/αR).

Proof. SinceR/αR is a torsionR-module, by Lemma 13.7.2, it is anR-module
of finite length.

Step 1: We prove that the inequality holds if M is a finitely generated R-
module. By Exercise 7.1.24, there is a free R-submodule F ⊆ M such that F
has rank n and M/F is a finitely generated torsion R-module. By Lemma 13.7.2,
ℓ(M/F ) is finite. Since M is torsion free, if i ≥ 0, then multiplication by αi defines
an isomorphism M/αM → αiM/αi+1M . Fix m ≥ 1. By Theorem 4.1.18 (b),
Proposition 7.6.31 and induction on m,

(7.1) ℓ(M/αmM) = mℓ(M/αM).

Since F is free of rank n, we have

(7.2) ℓ(F/αmF ) = mℓ(F/αF ) = nmℓ(R/αR).
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Consider the commutative diagram

0 // F

αm

��

// M

αm

��

// M/F

αm

��

// 0

0 // F

η1

��

// M

η2

��

// M/F

η3

��

// 0

F/αmF
ϕ // M/αmM // (M/F )/(αm(M/F )) // 0

(7.3)

where η1, η2, η3 are the natural maps and are onto. The bottom row of (7.3) is
exact by Theorem 6.6.2. Viewing F as a submodule of M , the image of ϕ is η2(F ).
By Theorem 4.1.18 (a),

(7.4) F/αmF
ϕ−→ F/ (F ∩ αmM)→ 0

is exact. Applying Proposition 7.6.31 to the bottom row of (7.3), (7.4), and the
rightmost column of (7.3), we have

ℓ(M/αmM) = ℓ(imϕ) + ℓ ((M/F )/(αm(M/F )))

≤ ℓ(F/αmF ) + ℓ ((M/F )/(αm(M/F )))

≤ ℓ(F/αmF ) + ℓ(M/F ).

(7.5)

Combining (7.5) with (7.1) and (7.2) yields

(7.6) ℓ(M/αM) ≤ n ℓ(R/αR) +m−1 ℓ(M/F ).

Since ℓ(M/F ) is finite and (7.6) holds for all m ≥ 1, this completes Step 1.
Step 2: Assume M is not finitely generated. Let {Mi | i ∈ I} be the directed

system of finitely generated submodules Mi ⊆ M ordered by set inclusion and
where each Mi has rank n. By Step 1, ℓ(Mi/αMi) ≤ n ℓ(R/αR) for each i. Using
a diagram similar to (7.3), we see that for each i, the image of Mi/αMi →M/αM
is Mi/(Mi ∩ αM). Therefore,

ℓ(Mi/(Mi ∩ αM)) ≤ ℓ(Mi/αMi)

≤ n ℓ(R/αR).
(7.7)

By Lemma 13.7.3 applied to M/αM and the directed system {Mi/(Mi ∩αM) | i ∈
I} of submodules, we conclude that ℓ(M/αM) ≤ n ℓ(R/αR). □

Theorem 13.7.5. (Krull-Akizuki) Let R be a noetherian integral domain with
dim(R) = 1. Let K be the quotient field of R, L a finitely generated algebraic
extension of K, and S a subring of L containing R. Then S is noetherian. If S is
not a field, then dim(S) = 1, and for every nonzero ideal A in S, S/A is a finitely
generated R-module.

Proof. Since a field is noetherian, assume from now on that S is not a field.
By Lemma 13.7.1, S is an R-module of finite rank.

Let A be a nonzero nonunit ideal of S. To show S is noetherian, it suffices to
show that A is finitely generated as an S-module. To show S/A is finitely generated
as an R-module, it suffices to show S/A is an R-module of finite length.
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Let u ∈ A− (0) and let f(x) = Irr.polyK(u) be the irreducible polynomial for
u in K[x]. Then f(u) = 0 and after clearing denominators by multiplying by some
element of R, we get an equation

rnu
n + · · ·+ r2u

2 + r1u+ r0 = 0

where r0, . . . , rn are elements in R. Since u is invertible in L, r0 ̸= 0. This shows
r0 ∈ Su ⊆ A. Apply Lemma 13.7.4 with M = S and α = r0. Then S/r0S is
an R-module of finite length. Since S/r0S → S/A is onto, this implies S/A is an
R-module of finite length.

By Exercise 7.6.36, S/r0S is an S-module of finite length. Since A/r0S →
S/r0S is one-to-one, it follows that A/r0S is an S-module of finite length. Hence
A/r0S is a finitely generated S-module. The exact sequence

0→ r0S → A→ A/r0S → 0

shows that A is a finitely generated S-module (Exercise 4.2.19). If p is a nonzero
prime ideal of S, then S/p is an integral domain and an S-module of finite length.
By Proposition 7.6.30, S/p is artinian. By Exercise 7.6.23, S/p is a field. Therefore,
p is a maximal ideal. □

Corollary 13.7.6. Let R, K, L and S be as in Theorem 13.7.5. If p is a
prime ideal of R, then there are only finitely many prime ideals of S lying over p.

Proof. If p = (0), then there is only one prime ideal of S lying over p, by
Lemma 13.7.1. If p ̸= (0), then by Theorem 13.7.5, S ⊗R R/p is a finitely gener-
ated R-module. Therefore, S ⊗R R/p is a finitely generated vector space over the
field R/p. By Exercise 7.4.11 there is a one-to-one correspondence between prime
ideals of S lying over p and prime ideals of S ⊗R R/p. By Exercise 7.6.35 and
Proposition 8.4.3, Spec (S ⊗R R/p) is finite. □



CHAPTER 14

Derivations, Differentials

This chapter introduces two powerful methods for studying separable algebras
over commutative rings. These new tools are the module of R-derivations on an R-
algebra, and the module of Kähler differentials. Applying results about derivations
allows us to prove theorems on faithfully flat descent of separability, the separability
at the stalks criteria, and the residue field tests for separability. Applying results on
Kähler differentials, we derive separability criteria for commutative R-algebras. For
example, the vanishing of the module of Kähler differentials leads to a separability
criterion for a finitely generated commutative algebra. Differentials are applied
to prove jacobian criteria for separability in Section 14.2, and for regularity in
Section 15.6.

Noether’s Normalization Lemma is proved in Theorem 14.3.3. In summary this
lemma states that if A is a finitely generated k-algebra, then A contains a subalgebra
Z isomorphic to a polynomial ring in n indeterminates, where A is integral over Z
and n is equal to the Krull dimension of A. When the ground field k is infinite, a
second version is proved in Corollary 14.3.3. As an application, a theorem on the
finiteness of the integral closure of an integral domain is proved (Theorem 14.3.11).

The useful Local Criteria for Flatness are proved in Theorem 14.4.13 and the
Theorem on Generic Flatness is proved in Theorem 14.4.21.

The last section of this chapter concludes with Corollary 14.5.4. This useful
result specifies sufficient criteria such that the direct limit of a directed system of
noetherian local rings is again a noetherian local ring.

1. Derivations

This section contains an introduction to R-derivations on an R-algebra with
coefficients in a two-sided module. General references for the material in this section
are [14], [34], [39], [30], [33], and [20].

1.1. The Definition and First Results. Let R be a commutative ring and
A an R-algebra. The enveloping algebra is Ae = A⊗RAo. A left right A-bimodule
M is called a two-sided A/R-module if the left and right R-actions agree (Defi-
nition 9.1.5). If M is a left Ae-module, then we can make M into a two-sided
A/R-module by defining ax = a ⊗ 1 · x and xa = 1 ⊗ a · x (Definition 9.1.6). In
particular, Ae is a left Ae-module, hence is a two-sided A/R-module.

If M is any two-sided A/R-module, then an R-derivation from A to M is an
R-module homomorphism ∂ : A→M satisfying

∂(ab) = a∂(b) + ∂(a)b

593
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for all a, b ∈ A. The set of all R-derivations from A to M is denoted DerR(A,M).
The reader should verify that DerR(A,M) is an R-submodule of HomR(A,M) and
that if ∂ is any R-derivation, then ∂(1) = 0.

Example 14.1.1. Let R be any ring, x an indeterminate, and A = R[x] the
polynomial ring. The usual derivative with respect to x is a Z-derivation ∂ : A→ A.

There is an exact sequence of Ae-modules

(1.1) 0→ JA/R → Ae
µ−→ A→ 0

where µ is defined by a ⊗ b 7→ ab and JA/R is defined to be the kernel of µ (Defi-
nition 9.1.1). By Definition 9.1.3, A is separable over R if and only if (1.1) is split
exact as a sequence of Ae-modules. By Exercise 9.1.13, JA/R is generated as a left
ideal in Ae by the set of all elements of the form a⊗ 1− 1⊗ a.

Lemma 14.1.2. Let R be a commutative ring, A an R-algebra and S a commu-
tative R-algebra. Then the following are true.

(1) The sequence (1.1) is a split exact sequence of A-modules and hence a split
exact sequence of R-modules.

(2) Ae ⊗R S = (A⊗R S)e.
(3) JA⊗RS/S = JA/R ⊗R S.

Proof. (1): By Exercise 6.4.35, there is an R-algebra homomorphism ρ : A→
A ⊗R Ao defined by ρ(a) = a ⊗ 1. Using ρ we view each term in (1.1) as a left
A-module. The reader should verify that µρ = 1 and that both ρ and µ are left
A-module homomorphisms. Therefore, (1.1) is split exact as a sequence of left
A-modules.

(2): This is left to the reader.
(3): This follows from (2) by tensoring the split exact sequence (1.1) with

( )⊗R S. □

Example 14.1.3. Define an R-module homomorphism δ : A→ JA/R by

δ(a) = a⊗ 1− 1⊗ a.
If a, b ∈ A, then

δ(ab) = ab⊗ 1− 1⊗ ab
= ab⊗ 1− a⊗ b+ a⊗ b− 1⊗ ab
= (a⊗ 1)(b⊗ 1− 1⊗ b) + (1⊗ b)(a⊗ 1− 1⊗ a)
= aδ(b) + δ(a)b.

Therefore δ : A→ JA/R is an R-derivation.

Lemma 14.1.4. If δ : A→ JA/R is from Example 14.1.3, then Aδ(A) = JA/R.
That is, the image of δ generates JA/R as a left A-module.

Proof. A typical element of JA/R is x =
∑
i xi ⊗ yi such that

∑
i xiyi = 0.

Then
∑
i xi(1⊗ yi − yi ⊗ 1) =

∑
i xi ⊗ yi −

(∑
i xiyi

)
⊗ 1 = x. □

Lemma 14.1.5. Let R be a commutative ring and A an R-algebra.

(1) If A is commutative and is generated as an R-algebra by the set X =
{xi}i∈I , then JA/R is generated as an Ae-module by the set δ(X) = {xi⊗
1− 1⊗ xi}i∈I .
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(2) If A is finitely generated as an R-module, then JA/R is finitely generated
as an R-module.

(3) Assume either
(a) A is a finitely generated R-module, or
(b) A a finitely generated commutative R-algebra.
Then JA/R is a finitely generated left ideal of Ae and A is an Ae-module
of finite presentation.

Proof. (1): A typical element of A can be written as a finite sum a =
∑
rimi,

where ri ∈ R and mi is a monomial in X. Since δ is R-linear, it is enough to show
δ(x1 · · ·xn) is in Aeδ(X), where x1, . . . , xn represent any elements (not necessarily
distinct) of X. Because δ is an R-derivation, this follows from the generalized
product rule, Exercise 14.1.8.

(2): By Proposition 6.4.24, Ae is a finitely generated R-module. The sequence
(1.1) is split exact as a sequence of R-modules, hence JA/R is a homomorphic image
of Ae.

(3): In both cases, JA/R is finitely generated over Ae. The exact sequence (1.1)
shows that A is of finite presentation as a left Ae-module. □

Given any f ∈ HomAe(JA/R,M), let αf : A→M be defined by

αf (a) = f(δ(a)).

The reader should verify that αf ∈ DerR(A,M) and that there is a homomorphism
of R-modules α : HomAe(JA/R,M)→ DerR(A,M) defined by f 7→ αf . Given any
m ∈M , let τm : A→M be defined by

τm(a) = am−ma.
The reader should verify that τm ∈ DerR(A,M) and that there is a homomorphism
of R-modules τ :M → DerR(A,M) defined by m 7→ τm.

Proposition 14.1.6. In the notation developed above, there is a commutative
diagram of R-modules

0 // HomAe(A,M) //

γ ∼=
��

HomAe(Ae,M)
σ //

β ∼=
��

HomAe(JA/R,M)

α ∼=
��

0 // MA // M
τ // DerR(A,M)

such that the three vertical maps are isomorphisms and the rows are exact.

Proof. Applying the left exact functor HomAe(·,M) to the exact sequence
(1.1) yields the top row. Clearly the kernel of τ is MA, so the bottom row is exact.
The isomorphism β comes from Lemma 6.5.7 and is defined by the action f 7→ f(1).
The isomorphism γ comes from Lemma 9.1.7. We check that ασ = τβ. Suppose
f ∈ HomAe(Ae,M), f(1) = m, and a ∈ A. Then

α(σ(f))(a) = f(δ(a))

= δ(a)f(1)

= (a⊗ 1− 1⊗ a)m
= am−ma
= τ(β(f))(a).
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Next we verify that α is one-to-one. Suppose αf = 0. Then f(δ(A)) = 0. It
follows from Lemma 14.1.4 that f(JA/R) = 0. Now we show that α is onto. Let
∂ ∈ DerR(A,M). We must show that there exists h ∈ HomAe(JA/R,M) such that
∂ = h ◦ δ. The reader should verify that the assignment x ⊗ y 7→ −x∂(y) defines
an R-module homomorphism h : Ae → M and h(δ(a)) = h(a ⊗ 1 − 1 ⊗ a) =
−a∂(1) + ∂(a) = ∂(a). To show that h is a homomorphism of Ae-modules, let
x =

∑
i xi ⊗ yi be a typical element of JA/R and a⊗ b ∈ Ae. Then

h(a⊗ b · x) = h
(
a⊗ b

∑
i

xi ⊗ yi
)

= h
(∑

i

axi ⊗ yib
)

= −
∑
i

axi∂(yib)

= −
∑
i

axi
(
yi∂(b) + ∂(yi)b

)
= −a

(∑
i

xiyi

)
∂(b)− a

(∑
i

xi∂(yi)
)
b

= a⊗ b · h(x)
completes the proof. □

The image of τ : M → DerR(A,M) is denoted Inn.DerR(A,M) and is called
the set of inner derivations. Because the diagram of Proposition 14.1.6 commutes,
under the isomorphism α, the set of inner derivations corresponds to the set of
f ∈ HomAe(JA/R,M) such that f extends to Ae →M .

Proposition 14.1.7. Let A and C be commutative R-algebras and

u : A→ C

a homomorphism of R-algebras. Let I be an ideal in C such that I2 = 0. Consider
the map on sets

β : HomR-alg(A,C)→ HomR-alg(A,C/I)

which is induced by the natural map η : C → C/I on R-algebras. Let ū = β(u) = ηu.
Make I into an A-module using the homomorphism u. That is, a · x = u(a)x.

(1) If D : A → I is an R-derivation, then u + D : A → C is an R-algebra
homomorphism in β−1(ū).

(2) If v : A → C is in β−1(ū), and D = v − u, then D : A → I is an
R-derivation.

(3) The mapping D 7→ u+D defines a one-to-one correspondence

DerR(A, I)→ {v ∈ HomR-alg(A,C) | β(v) = β(u)}.

Proof. (1): Because

(u+D)(ab) = u(ab) +D(ab)

= u(a)u(b) + u(a)D(b) + u(b)D(a)

is equal to

(u(a) +D(a))(u(b) +D(b)) = u(a)u(b) + u(a)D(b) + u(b)D(a) +D(a)D(b)

= u(a)u(b) + u(a)D(b) + u(b)D(a),



1. DERIVATIONS 597

u+D is multiplicative. The rest is left to the reader.
(2): For a ∈ A, D(a) = u(a)− v(a) is in I. The computation

v(ab) = v(a)v(b)

= (u(a) +D(a))(u(b) +D(b))

= u(a)u(b) + u(a)D(b) + u(b)D(a) +D(a)D(b)

= u(a)u(b) + u(a)D(b) + u(b)D(a),

shows that D(ab) = u(a)D(b) + u(b)D(a).
Part (3) follows from (1) and (2). □

1.2. Exercises.

Exercise 14.1.8. (Generalized Product and Power Rules) Suppose A is an
R-algebra, M is a two-sided A/R-module, ∂ ∈ DerR(A,M) and x, x1, . . . , xn ∈ A.
Prove that

∂(x1x2 · · ·xn) = ∂(x1)x2 · · ·xn + x1∂(x2)x3 · · ·xn + · · ·+ x1 · · ·xn−1∂(xn)

and if n ≥ 1, then ∂(xn) =
∑n−1
i=0 x

i∂(x)xn−1−i.

Exercise 14.1.9. (Chain Rule) Suppose A is a commutative R-algebra and M
is an A-module. Prove that if a ∈ A and f(x) ∈ R[x], then for any ∂ ∈ DerR(A,M),
∂(f(a)) = f ′(a)∂(a).

Exercise 14.1.10. Let A be an R-algebra. Show that M 7→ DerR(A,M)
defines a covariant functor from the category of two-sided A/R-modules to the
category of R-modules.

Exercise 14.1.11. Suppose S is a commutative R-algebra and A is any S-
algebra. Let M be a two-sided A/S-module. Show that there is an exact sequence
of abelian groups

0→ DerS(A,M)
a−→ DerR(A,M)

b−→ DerR(S,M).

Exercise 14.1.12. Let R be a commutative ring and S a commutative R-
algebra. Let A = S[x] be the polynomial ring over S in one variable and let M be
any A-module. Show that DerR(A,M)→ DerR(S,M) is onto. (Hint: If ∂ : S →M
is an R-derivation, show that the assignment axi 7→ xi∂(a) defines an R-derivation
D : A→M .)

Exercise 14.1.13. (The Extension of a Ring by a Module) Let A be an R-
algebra and N a two-sided A/R-module (Definition 9.1.5). Define a multiplication
on the two-sided A/R-module A⊕N by the formula (a, x)(b, y) = (ab, ay+xb), for
all a, b in A and all x, y in N .

(1) Show that the multiplication rule defined above turns the A-module A⊕N
into an R-algebra with unit element (1, 0). Denote this R-algebra by A∗N .

(2) Show that the subset {(0, x) | x ∈ N} is an ideal in A ∗ N satisfying
N2 = 0 and that there is a split exact sequence of two-sided A/R-modules
0 → N → A ∗N → A → 0. The ring A ∗N is called the trivial, or split
extension of A by N .

(3) Show that the map a 7→ (a, 0) defines an R-algebra homomorphism σ :
A→ A ∗N which is a section to the natural map η : A ∗N → A (that is,
ησ = 1).
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(4) Let D ∈ DerZ(A,N). Define u : A → A ∗ N by u(a) = (a,D(a)). Show
that u is a ring homomorphism which is a section to the natural map
η : A ∗N → A.

(5) Prove the converse to (4). That is, show that if u : A → A ∗ N is a
Z-algebra section to η, then u(a)− σ(a) : A→ N is a Z-derivation.

(6) Let B be a commutative R-algebra and I an ideal in B satisfying I2 = 0.
Let A = B/I. Show that there is an exact sequence of A-modules 0 →
I → B → A → 0. We say that B is an extension of A by I. Show that
B is isomorphic to A ∗ I as R-algebras if and only if there is an R-algebra
homomorphism σ : A→ B which is a section to the natural map B → A
(in this case the extension is also said to be trivial, or split).

Exercise 14.1.14. LetA be anR-algebra andD ∈ DerR(A,A). View DerR(A,A)
as an R-submodule of the ring HomR(A,A) of A-module endomorphisms of A. Let
Di denote the composition map where D is applied i times. Then Di is an element
of HomR(A,A), but not necessarily an element of DerR(A,A). Prove:

(1) (Leibniz Formula) For all a, b ∈ A and n ≥ 0,

Dn(ab) =

n∑
i=0

(
n

i

)
Di(a)Dn−i(b).

(2) If R has characteristic p, a prime number, then Dp ∈ DerR(A,A) is an
R-derivation on A.

1.3. More Tests for Separability. Now we apply the above results on deriva-
tions to establish separability criteria for algebras. The main results are the van-
ishing of the first Hochschild cohomology criterion, the theorems on faithfully flat
descent, the separability at the stalks criteria, and the residue field tests.

Let R be a commutative ring, A an R-algebra, and Ae = A⊗RAo the envelop-
ing algebra. If M is a two-sided A/R-module, then the nth Hochschild cohomology
group of A with coefficients in M is defined to be Hn(A,M) = ExtnAe(A,M) (Defi-
nition 12.7.1).

Lemma 14.1.15. In the above context, the following are true.

(1) H0(A,M) =MA = {x ∈M | ax = xa, for all a ∈ A}.
(2) H1(A,M) = DerR(A,M)/ Inn.DerR(A,M).

Proof. The sequence of left Ae-modules

0→ JA/R → Ae
µ−→ A→ 0

is exact (Definition 9.1.1). Consider the associated long exact sequence

0→ HomAe(A,M)→ HomAe(Ae,M)→ HomAe(JA/R,M)
δ0−→

Ext1Ae(A,M)→ Ext1Ae(Ae,M)→ Ext1Ae(JA/R,M)→
of abelian groups (Proposition 12.3.12 (2)). Since Ae is projective over Ae, it fol-
lows from Proposition 12.3.12 (3) that Ext1Ae(Ae,M) = 0. The rest follows from
Proposition 14.1.6. □

Theorem 14.1.16. Let R be a commutative ring and A an R-algebra. The
following are equivalent.

(1) A is a separable R-algebra.
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(2) H1(A,M) = 0 for every two-sided A/R-module M .
(3) The sequence

0→MA →M
τ−→ DerR(A,M)→ 0

is exact, for every two-sided A/R-module M .

Proof. (1) is equivalent to (2): Let Ae = A⊗R Ao be the enveloping algebra.
By Definition 9.1.3, A is R-separable if and only if A is projective as a left Ae-
module. By Proposition 12.3.12 (3), A is projective as a left Ae-module if and only
if H1(A,M) = Ext1Ae(A,M) = 0 for every two-sided A/R-module M .

(2) is equivalent to (3): This follows from an application of Proposition 14.1.6
and Lemma 14.1.15. □

We now prove a faithfully flat descent theorem for separability.

Theorem 14.1.17. Let A be an R-algebra and S a commutative faithfully flat
R-algebra. Assume A⊗R S is separable over S and either

(1) A is a finitely generated R-module, or
(2) A a finitely generated commutative R-algebra.

Then A is separable over R.

Proof. By Lemma 14.1.5, A is finitely presented as an Ae-module. By Propo-
sition 7.5.9, the functors HomAe(A, ·) ⊗R S and HomAe⊗RS(A ⊗R S, (·) ⊗R S) are
isomorphic. By Corollary 9.1.10, the functor HomAe⊗RS(A⊗R S, ·) is exact. Since
S is faithfully flat, it follows that HomAe(A, ·) is exact. By Corollary 9.1.10 again,
A is separable over R. □

The next theorem provides sufficient conditions allowing us to prove that an
algebra is separable if it is separable when localized at every prime.

Theorem 14.1.18. Let R be a commutative ring and A an R-algebra which
satisfies either

(a) A is a finitely generated R-module, or
(b) A a finitely generated commutative R-algebra.

Then the following are equivalent.

(1) A is a separable R-algebra.
(2) A⊗R RP is a separable RP -algebra for every prime ideal P of R.
(3) A⊗R Rm is a separable Rm-algebra for every maximal ideal m of R.

Proof. (1) implies (2): This follows straight from Corollary 9.3.2.
(2) implies (3): This is trivial.
(3) implies (1): By Proposition 9.1.2 (2), it suffices to show that sequence

0→ JA/R → Ae
µ−→ A→ 0

of left Ae-modules is split exact. By Exercise 6.5.24, it is enough to show that
µ ◦ ( ) : HomAe(A,Ae) → HomAe(A,A) is onto. By Lemma 14.1.5, A is of finite
presentation as a left Ae-module. Let m be any maximal ideal of R. Denote by Am
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the tensor product A⊗R Rm. By Lemma 14.1.2, Ae ⊗R Rm = Aem. The diagram

HomAe(A,Ae)⊗R Rm

µ◦( )⊗1 //

��

HomAe(A,A)⊗R Rm

��
HomAe

m
(Am, A

e
m)

µ◦( ) // HomAe
m
(Am, Am)

commutes. The vertical maps are isomorphisms, by Proposition 7.5.9. By Corol-
lary 9.1.10, the second horizontal map µ ◦ ( ) is onto. Hence the top horizontal map
is onto. By Exercise 7.5.16, µ ◦ ( ) : HomAe(A,Ae)→ HomAe(A,A) is onto. □

For an R-algebra A that is a finitely generated R-module, the next theorem
and its corollaries show that separability of A over R can be reduced to the same
question for certain algebras over fields. Separable algebras over fields are described
by the decomposition theorems of Section 9.5.

Theorem 14.1.19. Let R be a commutative ring and A an R-algebra which is
finitely generated as an R-module. The following are equivalent.

(1) A is a separable R-algebra.
(2) A/mA is a separable R/m-algebra for every maximal ideal m of R.

Proof. (1) implies (2): This follows straight from Corollary 9.3.2.
(2) implies (1): Let m be any maximal ideal of R. Since Rm/mRm

∼= R/m we
have

(A⊗R Rm) /m(A⊗R Rm) ∼= A⊗R (Rm/mRm)

∼= A⊗R (R/m)

∼= A/mA.

Since we already proved that (3) implies (1) in Theorem 14.1.18, it is enough to
prove (2) implies (1) when R is a local ring.

Assume R is a local ring with maximal ideal m and A is an R-algebra which
is finitely generated as an R-module and such that A/mA is separable over R/m.
For the remainder of this proof, we write simply JA/mA instead of J(A/mA)/(R/m)

and JA rather than JA/R. Let δ : A/mA → JA/mA be the derivation defined by
ā 7→ ā⊗1−1⊗ ā. By Theorem 14.1.16, δ = τz̄ for some z̄ ∈ JA/mA. In other words,
for each ā ∈ A/mA, δ(ā) = āz̄ − z̄ā = (ā⊗ 1− 1⊗ ā)z̄ = δ(ā)z̄. By Lemma 14.1.4,
it follows that

JA/mA = (A/mA)δ(A/mA) = (A/mA)δ(A/mA)z̄ = JA/mAz̄.

By Lemma 14.1.2, JA/mA = JA/(mJA). If z ∈ JA is a preimage of z̄, then JA =
JAz + mJA. In Lemma 14.1.5 it was shown that JA is finitely generated over
R. By Nakayama’s Lemma (Theorem 8.1.3), it follows that JA = JAz. Define
a homomorphism ϕ in HomAe(Ae, JA) by ϕ(x) = xz. Then ϕ(JA) = JAz = JA.
By Corollary 6.5.2, ϕ : JA → JA is an automorphism of Ae-modules. Therefore
sequence (1.1) is split exact as Ae-modules. □

Example 14.1.20. Let R be a commutative ring and f ∈ R[x] a monic poly-
nomial. We proved in Proposition 9.6.2 that S = R[x]/(f) is separable over R if
and only if (f, f ′) = R[x]. In this example, we apply the Residue Field Criterion to
give another proof that S/R is separable if (f, f ′) = R[x]. Since f is monic, S is a
free R-module of finite rank. By Theorem 14.1.19, S/R is separable if and only if
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S ⊗R km = km[x]/(f) is separable over km for every maximal ideal m in R, where
km denotes the residue field R/m. By Exercise 9.5.13, km[x]/(f) is separable over
km if and only if (f, f ′) is the unit ideal in km[x]. If (f, f

′) is the unit ideal in R[x],
then for every maximal ideal m, (f, f ′) is the unit ideal in km[x] and we are done.

Corollary 14.1.21. Let R be a local ring with maximal ideal m and residue
field k. The change of base functor ( ) ⊗R k from the category of commutative
separable R-algebras which are finitely generated free R-modules and the category
of commutative separable k-algebras is essentially surjective.

Proof. A commutative separable k-algebra is a direct sum F1 ⊕ · · · ⊕ Fn,
where each Fi is a finite separable field extension of k (Corollary 9.5.9). Let F/k
be a finite separable field extension. To show ( ) ⊗R k is essentially surjective, it
is enough to show that F = S ⊗R k, for an appropriate extension S/R. By the
Primitive Element Theorem (Theorem 5.4.7) and Corollary 9.6.3, we are done. □

1.4. Exercises.

Exercise 14.1.22. This exercise is based on [25, Proposition I.3.1, p. 2] and
[43, Proposition I.3.5] Let R be a commutative ring and S a commutative finitely
generated R-algebra. Show that the following are equivalent.

(1) S is a separable R-algebra.
(2) The homomorphism of R-algebras µ : Se → S makes S into a flat Se-

module.
(3) For every q ∈ SpecS, if p = µ−1(q), then µ : (Se)p → Sq is an isomor-

phism. In the terminology of Algebraic Geometry, the diagonal morphism
µ♯ : SpecS → SpecSe is said to be an open immersion (Exercise 7.5.33).

(Hint: Exercise 7.2.6 and Proposition 7.8.2.)

Exercise 14.1.23. Let R be a commutative ring and S a commutative R-
algebra. In Algebraic Geometry, the morphism µ♯ : SpecS → SpecS ⊗R S associ-
ated to µ : S ⊗R S → S is called the diagonal morphism.

(1) For every q ∈ SpecS, show that µ−1(q) is the ideal q⊗ S + S ⊗ q+ JS/R.
(2) Let k be an algebraically closed field. Let α ∈ k and let q be the maximal

ideal in k[x] generated by x − α. Show that under the diagonal map
µ♯ : Spec k[x]→ Spec k[x]⊗k k[x], the image of q is the maximal ideal in
k[x]⊗k k[x] generated by (x− α)⊗ 1 and 1⊗ (x− α).

Exercise 14.1.24. (An Open Immersion is Separable) Let f : R → S be
a homomorphism of commutative rings. Show that if the continuous map f ♯ :
SpecS → SpecR is an open immersion (see Exercise 7.5.33), then S is separable
over R. (Use Corollary 7.5.37 to show S is a finitely generated R-algebra.)

2. Differentials

This section contains an introduction to the module of Kähler differentials
associated to a commutative R-algebra. The module of differentials is defined and
its fundamental properties are proved. These results are applied in Section 14.2.2
to derive new tests for separability, in Section 14.3.2 to study separably generated
field extensions, and in Section 15.6 to derive new tests for regularity.
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2.1. The Definition and Fundamental Exact Sequences. A general ref-
erence for this section is [39]. Let A be a commutative R-algebra and Ae = A⊗RA.
The multiplication map a ⊗ b 7→ ab induces a homomorphism of R-algebras µ :
A⊗RA→ A (see Exercise 6.4.36). As in Definition 9.1.1 the kernel of µ is denoted
JA/R and there is an exact sequence of Ae-modules

0→ JA/R → Ae
µ−→ A→ 0.

Using the R-algebra homomorphism ρ : A→ Ae defined by a 7→ a⊗ 1, we turn Ae

into a left A-module. Consequently JA/R and J2
A/R are also A-modules. Let ΩA/R

be defined by the exact sequence

0→ J2
A/R → JA/R

π−→ ΩA/R → 0.

The left A-module ΩA/R is called the module of Kähler differentials. As in Exam-
ple 14.1.3, there is an R-derivation δ : A→ JA/R defined by a 7→ a⊗ 1− 1⊗ a. Let
dA/R = πδ. The reader should verify that dA/R : A → ΩA/R is an R-derivation.
The derivation dA/R, together with the module of Kähler differentials satisfies a
universal mapping property. In Theorem 14.2.1, a left A-module is made into a
two-sided A/R-module by making the right multiplication agree with the left mul-
tiplication. An R-module homomorphism ∂ : A → M is an R-derivation of A, if
∂(ab) = a∂(b) + b∂(a), for all a, b ∈ A.

Theorem 14.2.1. Let A be a commutative R-algebra. For any left A-module
M , if ∂ : A → M is an R-derivation of A, then there exists a unique A-module
homomorphism f : ΩA/R →M such that the diagram

A

dA/R !!

∂ // M

ΩA/R

∃f

<<

commutes. The assignment f 7→ fdA/R defines an isomorphism of A-modules
HomA(ΩA/R,M) ∼= DerR(A,M).

Proof. The exact sequence

JA/R
π−→ ΩA/R → 0

gives rise to the exact sequence

0→ HomA(ΩA/R,M)→ HomA(JA/R,M).

Let f ∈ HomA(ΩA/R,M). For any a, b, x ∈ A,

(fπ)
(
(a⊗ b)(x⊗ 1− 1⊗ x)

)
= (fπ)

((
a(1⊗ b− b⊗ 1)

+ ab⊗ 1
)
(x⊗ 1− 1⊗ x)

)
= (fπ)

(
a(1⊗ b− b⊗ 1)(x⊗ 1− 1⊗ x)
+ ab(x⊗ 1− 1⊗ x)

)
= f

(
ab(x⊗ 1− 1⊗ x)

)
= abf(x⊗ 1− 1⊗ x).
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This means fπ is in HomAe(JA/R,M), so the sequence

0→ HomA(ΩA/R,M)
ζ−→ HomAe(JA/R,M)

is exact. Let g ∈ HomAe(JA/R,M). For all a, b ∈ A,

g
(
(a⊗ 1− 1⊗ a)(b⊗ 1− 1⊗ b)

)
= g
(
a⊗ 1(b⊗ 1− 1⊗ b)

)
− g
(
1⊗ a(b⊗ 1− 1⊗ b)

)
= ag(b⊗ 1− 1⊗ b)− g(b⊗ 1− 1⊗ b)a
= 0.

Since g annihilates J2
A/R, there exists f : ΩA/R →M such that g = fπ. This proves

ζ is an isomorphism. Combined with Proposition 14.1.6, this shows that there is
an isomorphism HomA(ΩA/R,M) ∼= DerR(A,M) which is defined by f 7→ fπδ.
Because A is commutative, the maps are A-linear. □

Proposition 14.2.2. Let S be a commutative R-algebra which is generated as
an R-algebra by the set X = {xi}i∈I . Then

(1) ΩS/R is generated as an S-module by dS/R(X) = {dS/Rxi}i∈I .
(2) If S is a polynomial ring over R (that is, if X is a set of indeterminates),

then ΩS/R is a free S-module with basis dS/R(X).
(3) If S is a finitely generated R-algebra, then ΩS/R is a finitely generated

S-module.

Proof. Part (3) follows directly from Part (1).
(1): By Lemma 14.1.5, JS/R is generated as an Se-module by the set δ(X) =

{xi ⊗ 1 − 1 ⊗ xi}i∈I . Let π : JS/R → JS/R/J
2
S/R be the natural map. Given any

a, b ∈ S and x ∈ X,

π
(
a⊗ b(x⊗ 1− 1⊗ x)

)
= π

(
(a(1⊗ b− b⊗ 1) + (ab⊗ 1))(x⊗ 1− 1⊗ x)

)
= π

(
a(1⊗ b− b⊗ 1)(x⊗ 1− 1⊗ x)

)
+ π

(
(ab⊗ 1)(x⊗ 1− 1⊗ x)

)
= π

(
(ab⊗ 1)(x⊗ 1− 1⊗ x)

)
.

It follows from this that ΩS/R = JS/R/J
2
S/R is generated as a left S-module by the

set πδ(X) = dS/R(X).
(2): For each i ∈ I, let ∂i : S → S represent the “partial derivative with respect

to xi” function. By the Universal Mapping Property (Theorem 14.2.1), there exists
a unique bi ∈ HomS(ΩS/R, S) such that for all j ∈ I

bidS/Rxj = ∂ixj =

{
1 if i = j,

0 if i ̸= j.

Suppose
∑
j sjdS/Rxj = 0 is a finite dependence relation in ΩS/R where each sj ∈ S.

Applying bi we see that si = 0. □

2.1.1. The Fundamental Exact Sequences. Now we derive the so-called funda-
mental exact sequences for the module of differentials.

Theorem 14.2.3. (The First Fundamental Exact Sequence) Let S be a com-
mutative R-algebra and A a commutative S-algebra.
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(1) There is an exact sequence of natural homomorphisms of A-modules

ΩS/R ⊗S A
a−→ ΩA/R

b−→ ΩA/S → 0.

(2) There is a split-exact sequence of natural homomorphisms of A-modules

0→ ΩS/R ⊗S A
a−→ ΩA/R

b−→ ΩA/S → 0

if and only if given any A-module M and any R-derivation ∂ : S → M ,
there exists an R-derivation D : A→M such that the diagram

S
∂ //

��

M

A

D

>>

commutes.

Proof. (1): Step 1: Define the map a. By Exercise 14.2.10, the commutative
diagram of commutative rings

R

��

// R

��
S // A

induces a natural homomorphism of A-modules a : ΩS/R ⊗S A→ ΩA/R.
Step 2: Define the map b. Again, by Exercise 14.2.10, the commutative diagram

of commutative rings

R

��

// S

��
A // A

induces a natural homomorphism of A-modules b : ΩA/R → ΩA/S .
Step 3: b is onto. A generating set for A as an R-algebra is a generating set for

A as an S-algebra. It is evident that b is onto, by Proposition 14.2.2.
Step 4: The sequence is a complex. In the commutative diagram

S

dS/R

��

// A

dA/S

��
ΩS/R

c // ΩA/S

c is the zero map. Therefore, ba = 0.
Step 5: ker b = im a. By Lemma 6.5.6, this is true if

(2.1) 0→ HomA(ΩA/S ,M)
Hb−−→ HomA(ΩA/R,M)

Ha−−→ HomA(ΩS/R ⊗S A,M)

is exact for all A-modules M . By the adjoint isomorphism of Theorem 6.5.10 and
Theorem 14.2.1, (2.1) is naturally isomorphic to

0→ DerS(A,M)→ DerR(A,M)→ DerR(S,M)

which is exact, by Exercise 14.1.11.
(2): By Exercise 6.5.17, there is a left inverse for a if and only if for all

all A-modules M , the map Ha in (2.1) is onto. Equivalently, DerR(A,M) →
DerR(S,M)→ 0 is exact, for all A-modules M . □
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Let R be a commutative ring and S a commutative R-algebra. Let I be an
ideal of S and set A = S/I. Define a function γ : I → ΩS/R⊗SA by x 7→ dS/Rx⊗1.
If x, y ∈ I, then γ(xy) = xdS/Ry ⊗ 1 + ydS/Rx ⊗ 1 = dS/Ry ⊗ x + dS/Rx ⊗ y = 0.

Therefore, γ factors through I2 and we have the A-module homomorphism (also
denoted by γ)

γ : I/I2 → ΩS/R ⊗S A.

Theorem 14.2.4. (The Second Fundamental Exact Sequence) Let S be a com-
mutative R-algebra, I an ideal in S, and A = S/I. The sequence of A-modules

I/I2
γ−→ ΩS/R ⊗S A

a−→ ΩA/R → 0

is exact.

Proof. Step 1: a is onto and the sequence is a complex. By Exercise 14.2.10,
the diagram

S

dS/R

��

θ // A

dA/R

��
ΩS/R

a // ΩA/R

commutes. Since θ is onto and the vertical maps are onto, a is onto. If x ∈ I, then
dA/Rθ(x) = 0, hence im γ ⊆ ker a.

Step 2: im γ = ker a. As in the proof of Theorem 14.2.3, it suffices to prove

0→ HomA(ΩA/R,M)
Ha−−→ HomA(ΩS/R ⊗S A,M)

Hγ−−→ HomA(I/I
2,M)

is exact, for every A-module M . By the adjoint isomorphism of Theorem 6.5.10
and Theorem 14.2.1, this last sequence is isomorphic to

0→ DerR(A,M)→ DerR(S,M)→ HomS(I,M).

The reader should verify that this last sequence is exact. □

2.2. More Tests for Separability. In this section ideas from Section 14.2
are applied to derive separability criteria for commutative R-algebras. For example,
for a finitely generated algebra, the vanishing of the module of Kähler differentials
is equivalent to being separable (Theorem 14.2.5). As an application, we prove the
Jacobian Criterion for Separability (Proposition 14.2.7). General references for the
material in this section are [20], [34] and [48].

Theorem 14.2.5. Let S be a commutative finitely generated R-algebra. The
following are equivalent.

(1) S is a separable R-algebra.
(2) DerR(S,M) = 0 for every left S-module M .
(3) ΩS/R = 0.

Proof. (3) implies (2): This follows from Theorem 14.2.1.
(2) implies (3): If DerR(S,ΩS/R) = 0, then HomS(ΩS/R,ΩS/R) = 0, by Theo-

rem 14.2.1. From this we conclude that ΩS/R = 0.
(1) implies (3): By Proposition 9.1.2, JS/R is an idempotent generated ideal in

Se. Therefore, J2
S/R = JS/R, by Exercise 6.3.18 (1).

(3) implies (1): This is the only part of the proof where we need to assume S is
finitely generated. By Lemma 14.1.5, JS/R is a finitely generated ideal of Se. We are
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given that J2
S/R = JS/R. It follows from Exercise 6.3.18 (2) and Proposition 9.1.2

that S/R is separable. □

Theorem 14.2.6. Let S be a commutative finitely generated R-algebra with
structure homomorphism θ : R→ S. The following are equivalent.

(1) S is a separable R-algebra.
(2) For every p ∈ SpecR, if kp = Rp/(pRp), then S ⊗R kp is a separable

kp-algebra.
(3) For every p ∈ SpecR, and every q ∈ SpecS such that p = θ−1(q), pSq =

qSq, and kq = Sq/(qSq) is a finite separable extension of the field kp =
Rp/(pRp).

(4) For every algebraically closed field F and homomorphism of rings ϕ : R→
F , S ⊗R F is a separable F -algebra.

Proof. (1) implies (2): This follows directly from Corollary 9.3.2.
(1) implies (4): This follows directly from Corollary 9.3.2.
(4) implies (2): Let p ∈ SpecR. Let F be the algebraic closure of kp =

Rp/(pRp) and ϕ : R → F the natural map. By assumption, S ⊗R F is separable
over F . Corollary 9.3.5 implies S ⊗R kp is separable over kp.

(2) implies (1): By Proposition 14.2.2, ΩS/R is a finitely generated S-module.
By Theorem 14.2.5, to finish the proof it is enough to show ΩS/R = 0. By Propo-
sition 7.1.6, it is enough to show ΩS/R ⊗S Sq = 0 for every q ∈ SpecS. Fix

q ∈ SpecS and let p = q ∩ R. Since
(
ΩS/R

)
q
= ΩS/R ⊗S Sq is finitely generated

over Sq and mp ⊆ mq, by Theorem 8.1.3 (Nakayama’s Lemma), it is enough to
show

(
ΩS/R

)
q
/mp

(
ΩS/R

)
q
= 0. By Exercise 14.2.11, ΩS/R ⊗R kp = ΩS⊗Rkp/kp ,

and by Theorem 14.2.5, ΩS⊗Rkp/kp = 0. The reader should verify that(
ΩS/R

)
q
/mp

(
ΩS/R

)
q
=
(
ΩS/R

)
q
⊗Rp

Rp/mp

=
(
ΩS/R

)
q
⊗R kp

∼= Sq ⊗S ΩS/R ⊗R kp
∼= Sq ⊗S ΩS⊗Rkp/kp

= 0.

(1) implies (3): Assume S is R-separable, q ∈ SpecS and p = q ∩ R. By
Exercise 9.4.8, Sq is separable over Rp. By Exercise 9.5.16, mpSq = mq and kq =
Sq ⊗R kp is a separable field extension of kp.

(3) implies (2): Fix p ∈ SpecR such that there exists some q ∈ SpecS and
p = q ∩R. By Exercise 7.1.22, qp = q⊗R Rp is a prime ideal of Sp = S ⊗R Rp and
the local ring of Sp at qp is Sq. By Exercise 7.1.17, Sp/qp is an integral domain
with quotient field kq = Sq/mq. The diagram

Sp/qp // kq

Rp/mp

OO

= // kp

OO

commutes. By hypothesis, kq/kp is a finite dimensional field extension. It follows
from Lemma 10.1.4 that Sp/qp is a field. That is, qp is a maximal ideal in Sp. It
follows from Exercise 7.4.10 that every prime ideal in S ⊗R kp is a maximal ideal,
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and moreover each maximal ideal is of the form q ⊗R kp for some q lying over
p. Because S ⊗R kp is finitely generated as a kp-algebra, S ⊗R kp is noetherian
by the Hilbert Basis Theorem (Theorem 10.2.1). By Proposition 8.4.4, S ⊗R kp
is artinian. By Theorem 8.4.6, if Max(S ⊗R kp) = {n1, . . . , nn}, then S ⊗R kp =
(S ⊗R kp)n1

⊕ · · · ⊕ (S ⊗R kp)nn
. Suppose ni = qi ⊗R kp is an arbitrary maximal

ideal of S ⊗R kp. By Exercise 7.4.10,

(S ⊗R kp)ni
= (S ⊗R kp)qi⊗Rkp = Sqi

/mpSqi
= Sqi

/mqi
= kqi

.

This proves that S⊗R kp ∼= kq1
⊕· · ·⊕kqn

and by Corollary 9.5.9, we are done. □

We conclude this section with a proof of a jacobian criterion for separability.
For computations it turns out to be one of the most useful tests for separability.
Proposition 14.2.7 is a generalization of Proposition 9.6.2.

Proposition 14.2.7. Let R be a commutative ring. Let I = (f1, . . . , fn) be an
ideal in S = R[x1, . . . , xn] generated by a set of n polynomials in n indeterminates.
Then S/I is separable over R if and only if the determinant of the jacobian matrix
(∂fi/∂xj) maps to a unit in S/I.

Proof. Let A = S/I. We use the notation of Theorem 14.2.4. The sequence

I/I2
γ−→ ΩS/R ⊗S A

a−→ ΩA/R → 0

is exact. By Theorem 14.2.5, A/R is separable if and only if γ is onto. By Propo-
sition 14.2.2, ΩS/R ⊗S A is a free A-module on the basis {dx1, . . . , dxn}. For each
i,

γ(fi) =

n∑
j=1

∂fi
∂xj

dxj .

Thus, ΩA/R is isomorphic to the cokernel of the A-module homomorphism

A(n) J−→ A(n)

where J denotes multiplication by the jacobian matrix (∂fi/∂xj). By Lemma 4.7.5,
J is invertible if and only if the determinant of J is a unit. By Corollary 6.5.2, if J
is onto, then J is invertible. □

2.3. An Application to Algebraic Varieties. Let k be a field and B a
finitely generated k-algebra such that B is an integral domain with Krull dimension
one. Let q be a maximal ideal of B such that the local ring Bq is a PID with
maximal ideal m(q) and residue field k(q). Using Exercise 3.5.10 we see that there
exists π ∈ B such that m(q) = πBq. Hence π is a local parameter for Bq (see
Theorem 15.2.10). Proposition 14.2.8 is from [55, Proposition II.1.4, p. 18].

Proposition 14.2.8. Let k be a field and B a finitely generated k-algebra such
that B is an integral domain with Krull dimension one and quotient field L. Let q
be a maximal ideal in B such that Bq is a PID with maximal ideal m(q) and residue
field k(q). Let π ∈ B such that m(q) = πBq. Then π is transcendental over k, k(π)
is a subfield of L, and if k(q) is a separable extension of k, then L is a separable
field extension of k(π).

Proof. Since π ∈ q, π is not invertible in Bq. Therefore, the map k[x]→ Bq

defined by x 7→ π, maps k[x] isomorphically onto k[π]. So π is transcendental over
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k. Let A = k[π] ⊆ B. Let R be the local ring Ap, where p = πA. Then Ap is a
local PID with maximal ideal πAp. We have the commutative diagram of subrings:

L

Bq

<<

k(π)

OO

B

;;

Ap

==OO

A = k[π]

OO ;;

Since B is a finitely generated k-algebra, L is a finitely generated field extension of
k(π). By Corollary 14.3.3, L has transcendence degree 1 over k. Therefore, L is a
finitely generated algebraic extension of k(π). Let S = B ⊗A R the localization of
B in L with respect to the multiplicative set A− p. Then S is a finitely generated
R-algebra. Consider the tower of subrings B ⊆ S ⊆ Bq ⊆ L. By Corollary 13.7.6,
SpecS is finite, and by Corollary 7.5.38, Bq is a finitely generated S-algebra. It
follows that Bq is a finitely generated R-algebra. By Theorem 14.2.6, Bq is a
separable R-algebra. Then by Exercise 9.4.8, L is separable over k(π). □

Now we prove a converse to Proposition 14.2.8.

Proposition 14.2.9. Let k be a field, S/R an extension of finitely generated
commutative k-algebras. Assume S and R are integral domains and let L/K be
the corresponding extension of the fields of fractions. If L is a finitely generated
separable extension field of K, then there exists a maximal ideal m ∈ MaxS such
that Sm is separable over R.

Proof. Let U be the set of all points P in SpecS such that SP is a separable
R-algebra. By Exercise 14.2.14, U is an open subset of SpecS. By Exercise 9.1.12,
Proposition 9.5.7, and Theorem 9.4.3, L is separable over R. Therefore, U is an open
neighborhood of (0). By Exercise 10.3.10, U contains a closed point of SpecS. □

2.4. Exercises.

Exercise 14.2.10. Let

R

��

// S

��
A

θ // B

be a commutative diagram of commutative rings. Show that there exists a unique
homomorphism ψ such that the diagram

A

dA/R

��

θ // B

dB/S

��
ΩA/R

∃ψ // ΩB/S
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of A-modules commutes. Show that ψ induces a homomorphism ΩA/R ⊗A B →
ΩB/S of B-modules.

Exercise 14.2.11. Suppose A and S are commutative R-algebras. Show that
there exists a unique isomorphism ϕ such that the diagram

A⊗R S

dA⊗RS/S %%

dA/R⊗1 // ΩA/R ⊗R S

ΩA⊗RS/S

∃ϕ

88

of S-modules commutes. (Hint: The inverse of ϕ is constructed in Exercise 14.2.10.)

Exercise 14.2.12. Let A be a commutative R-algebra and W ⊆ A a multi-
plicative set. Let AW denote the localization W−1A. Show that there exists an
isomorphism of AW -modules ΩAW /R

∼= ΩA/R ⊗A AW = W−1ΩA/R. (Hint: Con-
struct ΩA/R ⊗A AW → ΩAW /R using Exercise 14.2.10.)

Exercise 14.2.13. Let R be a commutative ring and S a commutative R-
algebra. Let A = S[x1, . . . , xn] be the polynomial ring over S in n variables. Show
that the sequence

0→ ΩS/R ⊗S A
a−→ ΩA/R

b−→ ΩA/S → 0

is split-exact.

Exercise 14.2.14. Let S be a finitely generated commutative R-algebra. Let
U be the set of all points P in SpecS such that SP is a separable R-algebra. Prove
that U is an open (possibly empty) subset of SpecS. (Hint: Apply Exercise 13.2.15
to ΩS/R.)

3. Noether Normalization

This section is devoted to proving Emmy Noether’s Normalization Lemma. We
actually prove two different versions. The first form appears in Corollary 14.3.3.
In summary, it says that if A is a finitely generated commutative algebra over a
field k with Krull dimension dim(A) = m, then there is a subring S of A which
is isomorphic to a polynomial ring in m variables over k and A is integral over
S. Section 14.3.2 contains an introduction to the notion of separably generated
field extensions. We prove a strong version of the Noether Normalization Lemma
(Theorem 14.3.10) and apply it to prove the theorem on the finiteness of the integral
closure of a finitely generated k-algebra (Theorem 14.3.11). General references for
this section are [20], [39] and [65].

3.1. First Form of the Normalization Lemma.

Theorem 14.3.1. Let R be a commutative noetherian ring and x1, . . . , xn some
indeterminates.

(1) dim(R[x1, . . . , xn]) = dim(R) + n.
(2) If R is a field, dim(R[x1, . . . , xn]) = n and the ideal (x1, . . . , xj) is a prime

ideal of height j for all j = 1, . . . , n.
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Proof. (2): Is left to the reader.
(1): It is enough to prove dim(R[x]) = dim(R) + 1. For notational simplicity,

write S = R[x]. Since S is a free R-module, it is a faithfully flat R-module.
Therefore SpecS → SpecR is onto and going down holds. Let P ∈ SpecR and
choose Q ∈ SpecS to be maximal among all primes lying over P . The prime
ideals lying over P are in one-to-one correspondence with the elements of the fiber
over P . But the fiber over P is Spec(R[x] ⊗R kP ), which we can identify with
Spec(kP [x]). The ring kP [x] is a PID, so a maximal ideal has height one. This
proves ht(Q/PS) = 1. If we pick P ∈ Spec(R) such that ht(P ) = dim(R), then by
Theorem 13.6.21, dim(S) ≥ dim(SQ) = dim(RP ) + 1 = dim(R) + 1. Conversely,
pick Q ∈ Spec(S) such that ht(Q) = dim(S). Set P = Q∩R. By Theorem 13.6.21,
dim(S) = dim(SQ) = dim(RP ) + 1 ≤ dim(R) + 1. □

Theorem 14.3.2. Let k be a field and A = k[x1, . . . , xn]. Let I be a nonunit
ideal of A such that I has height r. There exist y1, . . . , yn in A such that

(1) the set {y1, . . . , yn} is algebraically independent over k,
(2) A is integral over k[y1, . . . , yn],
(3) I ∩ k[y1, . . . , yn] = (y1, . . . , yr), and
(4) y1, . . . , yn can be chosen in such a way that for 1 ≤ j ≤ n − r, yr+j =

xr+j+hj(x1, . . . , xr), where hj is a polynomial in the image of Z[x1, . . . , xr]→
A. Moreover, if char k = p > 0, then hj can be chosen to be in the image
of Z[xp1, . . . , xpr ]→ A.

Proof. The proof is by induction on r. If r = 0, then I = (0) because A is an
integral domain. Take each yi to be equal to xi.

Step 1: r = 1. Pick y1 = f(x1, . . . , xn) to be any nonzero element in I. Write

y1 = f(x1, . . . , xn) =

t∑
i=1

aifi

as a sum of distinct monomials, where each ai is an invertible element of k and fi =
xe1i1 · · ·xeni

n . The exponents eji define t distinct monomials, hence they also define
t distinct polynomials qi(z) = e1i+ e2iz

2+ · · ·+ enizn in Z[z]. For some sufficiently
large positive integer v, the values q1(v), . . . , qt(v) are distinct. Define a weight
function µ on the set of monomials in k[x1, . . . , xn] by the rule µ(xe11 · · ·xenn ) =
e1 + e2v

2 + · · · + env
n. So µ(f1), . . . , µ(ft) are distinct positive integers. Without

loss of generality, assume µ(f1) is maximal. Set y2 = x2 − xv
2

1 , . . . , yn = xn − xv
n

1 .
Consider

y1 = f(x1, y2 + xv
2

1 , . . . , yn + xv
n

1 )

=

t∑
i=1

aifi(x1, y2 + xv
2

1 , . . . , yn + xv
n

1 )

=

t∑
i=1

aix
e1i
1 (y2 + xv

2

1 )e2i · · · (yn + xv
n

1 )eni

=

t∑
i=1

ai
(
x
µ(fi)
1 + gi(x1, y2, . . . , yn)

)
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where each gi is a polynomial in k[x1, y2, . . . , yn] and the degree of gi in x1 is less
than µ(fi). Assuming µ(f1) is maximal, we can write

(3.1) y1 = a1x
µ(fi)
1 + g(x1, y2, . . . , yn)

where g is a polynomial in k[x1, y2, . . . , yn], and the degree of g in x1 is less than
µ(fi). Equation (3.1) shows that x1 is integral over k[y1, . . . , yn]. It follows that
A = k[x1, . . . , xn] = k[y1, . . . , yn][x1] is integral over k[y1, . . . , yn]. Therefore the
extension of quotient fields k(x1, . . . , xn)/k(y1, . . . , yn) is algebraic. It follows from
results in Section 5.10 that the set {y1, . . . , yn} is algebraically independent over k.
Up to isomorphism, the ring B = k[y1, . . . , yn] is a polynomial ring in n variables
over k, hence is integrally closed in its field of quotients. By Theorem 10.3.7 (5), go-
ing down holds between B and A. By Theorem 14.3.1, the ideal (y1) in k[y1, . . . , yn]
is prime of height one. By Theorem 13.6.22, ht(I) = ht(I ∩B). Since (y1) ⊆ I ∩B,
putting all this together proves that (y1) = I ∩B.

Step 2: r > 1. By Exercise 13.6.19, let J ⊆ I be an ideal such that the height
of J is equal to r − 1. By induction on r, there exist z1, . . . , zn in A such that
A is integral over B = k[z1, . . . , zn] and J ∩ B = (z1, . . . , zr−1) ⊆ I ∩ B. Write
I ′ = I ∩ B. By Theorem 13.6.22, ht(I) = ht(I ′) = r. There exists a polynomial
f in I ′ − (z1, . . . , zr−1) and by subtracting off an element of (z1, . . . , zr−1), we
can assume f is a nonzero polynomial in k[zr, . . . , zn]. Set y1 = z1, . . . , yr−1 =
zr−1. Set yr = f . Proceed as in Step 1. Let v be a positive integer and set

yr+1 = zr+1− zv
r+1

r , . . . , yn = zn− zv
n

r . For a sufficiently large v, B is integral over
C = k[y1, . . . , yn]. The set {y1, . . . , yn} is algebraically independent over k. The
height of I ∩ C is equal to the height of I. Since (y1, . . . , yr) is a prime ideal of
height r which is contained in I ∩ C, the two ideals are equal. □

Corollary 14.3.3. (E. Noether’s Normalization Lemma) Let k be a field and
A a finitely generated commutative k-algebra. There exist z1, . . . , zm in A such that

(1) the set {z1, . . . , zm} is algebraically independent over k,
(2) A is integral over k[z1, . . . , zm],
(3) dim(A) = m, and
(4) if A is an integral domain with quotient field K, then tr.degk(K) = m.

Proof. Let α1, . . . , αn be a generating set for A as a k-algebra. The assign-
ments xi 7→ αi define an epimorphism ϕ : k[x1, . . . , xn] → A. Let I be the kernel
of ϕ. Assume ht(I) = r. By Theorem 14.3.2, there exist y1, . . . , yn in k[x1, . . . , xn]
which are algebraically independent over k such that k[x1, . . . , xn] is integral over
k[y1, . . . , yn] and I ∩ k[y1, . . . , yn] = (y1, . . . , yr). The diagram

k[y1, . . . , yn]
ψ //

��

k[x1, . . . , xn]

ϕ

��
k[yr+1, . . . , yn]

θ // A = k[x1, . . . , xn]/I

commutes. The vertical maps are onto. The horizontal maps ψ and θ are one-to-
one. Since A is integral over k[y1, . . . , yn], θ is integral. Let m = n − r and set
z1 = θ(yr+1), . . . , zm = θ(yn). The set {z1, . . . , zm} is algebraically independent
over k and A is integral over k[z1, . . . , zm]. By Theorem 13.6.22, it follows that
dim(A) = m. If A is an integral domain, then the quotient field of A is algebraic
over k(z1, . . . , zm), so Part (4) follows from results in Section 5.10. □
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Corollary 14.3.4. Let k be a field and A an integral domain which is a finitely
generated commutative k-algebra.

(1) If p ∈ SpecA, then dim(A/p) + ht(p) = dim(A).
(2) If p and q are in SpecA such that p ⊇ q, then ht(p/q) = ht(p)− ht(q).

Proof. (1): By Corollary 14.3.3, there exist y1, . . . , yn in A such that A is
integral over B = k[y1, . . . , yn] and n = dim(B) = dim (A). By Theorem 10.3.7 (5)
and Theorem 13.6.22 (3), ht(p ∩B) = ht(p). Since A/p is integral over B, we have
A/p is integral over B/p∩B. By Theorem 13.6.22 (1), dim(A/p) = dim(B/p∩B).
By Theorem 14.3.2, if r = ht(p ∩ B), then there exist z1, . . . , zn in B such that
B is integral over C = k[z1, . . . , zn], p ∩ C = (z1, . . . , zr) and dim(B/p ∩ B) =
dim(C/p ∩ C) = n− r. This proves (1).

(2): By Part (1), dim(A/p)+ht(p) = dim(A) = dim(A/q)+ht(q), which implies
ht(p)−ht(q) = dim(A/q)−dim(A/p). By Part (1) applied to the prime ideal p/q in
Spec(A/q), dim(A/p) + ht(p/q) = dim(A/q). Combine these results to get (2). □

3.2. Separably Generated Extension Fields. This section contains an in-
troduction to the notion of separably generated field extensions.

Lemma 14.3.5. Let k ⊆ K ⊆ F be a tower of field extensions. If F = K(α) is
a simple algebraic extension of K, then

dimK ΩK/k ≤ dimF ΩF/k ≤ 1 + dimK ΩK/k.

Proof. Let f ∈ K[x] be the irreducible polynomial of α. Let I be the principal
ideal in K[x] generated by f . By Theorem 14.2.4,

I/I2
γ−→ ΩK[x]/k ⊗K[x] F

a−→ ΩF/k → 0

is an exact sequence of F -vector spaces. By Exercise 14.2.13 and Proposition 14.2.2,
ΩK[x]/k is a free K[x]-module of rank 1+ dimK ΩK/k. The image of γ is generated
over F by γ(f), hence has dimension less than or equal to one. □

Let F/k be a finitely generated extension of fields. Let Ξ ⊆ F be a transcen-
dence base for F/k. We say Ξ is a separating transcendence base of F/k in case
F is a separable algebraic extension of k(Ξ). We say F/k is separably generated if
there exists a separating transcendence base for F/k.

Theorem 14.3.6. Let F be a finitely generated extension field of k.

(1) dimF ΩF/k ≥ tr.degk F .
(2) dimF ΩF/k = tr.degk F if and only if F/k is separably generated.
(3) ΩF/k = 0 if and only if F is separable over k.

Proof. (3): This part follows from Theorem 14.2.5, Corollary 9.5.4, and
Proposition 9.5.7.

(1): A transcendence base ξ1, . . . , ξn exists for F/k, by Lemma 5.10.4. If we
set K = k(ξ1, . . . , ξn), then F/K is finite dimensional. Applying Lemma 14.3.5
iteratively, we get dimF ΩF/k ≥ dimK ΩK/k. Note that K is the quotient field
of k[ξ1, . . . , ξn]. By Proposition 14.2.2 and Exercise 14.2.12, dimK ΩK/k = n =
tr.degk F .

(2): Assume ξ1, . . . , ξn is a transcendence base and K = k(ξ1, . . . , ξn). If F/K
is separable, then ΩF/K = 0, by Theorem 14.2.5. Theorem 14.2.3 implies

ΩK/k ⊗K F
a−→ ΩF/k → 0
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is exact. Therefore, equality holds in Part (1). Conversely, suppose in Part (1)
that equality holds. Let n = tr.degk F and choose ξ1, . . . , ξn in F such that the set
dF/k(ξ1), . . . , dF/k(ξn) is a basis for the F -vector space ΩF/k. LetK = k(ξ1, . . . , ξn).
The diagram

K

dK/k

��

// F

dF/k

��
ΩK/k

ψ // ΩF/k

commutes. The image of ψ contains a generating set for ΩF/k, hence a : ΩK/k ⊗R
F → ΩF/k is onto. By Theorem 14.2.3, ΩF/K = 0. By Part (3), F/K is separable
and finite dimensional. By Lemma 5.10.4 (1), the set {ξ1, . . . , ξn} contains a tran-
scendence base for F/k. Since n = tr.degk F , Theorem 5.10.5 implies that the set
ξ1, . . . , ξn is a transcendence base for F/k. □

Proposition 14.3.7. (S. MacLane) Let k be a field and F = k(a1, . . . , an) a
finitely generated extension field of k. If F/k is separably generated, then there
exists a subset of {a1, . . . , an} which is a separating transcendence base for F/k.

Proof. Let r = tr.degk(F ). Let S = k[x1, . . . , xn] be the polynomial ring
over k in n indeterminates. Define ϕ : S → F by xi 7→ ai. Since the image of ϕ is
k[a1, . . . , an], an integral domain, the kernel of ϕ is a prime ideal P of S. The ideal
P is finitely generated, hence we can write P = (f1, . . . , fm). Let A = S/P . Then
F is the quotient field of A. The sequence

(3.2) P/P 2 γ−→ ΩS/k ⊗S A
a−→ ΩA/k → 0

of Theorem 14.2.4 is exact, ΩS/k ⊗S A is a free A-module, and {dx1, . . . , dxn} is a
free basis. For each i,

γ(fi) =

n∑
j=1

∂fi
∂xj

dxj .

Tensor (3.2) with ( )⊗A F . The sequence

F (m) J−→ F (n) → ΩF/k → 0

is exact, where J is multiplication by the jacobian matrix J = (∂fi/∂xj). Since
F/k is separably generated, by Theorem 14.3.6, the rank of J is n−r. This implies
there exists an (n−r)-by-(n−r) submatrix of J which also has rank n−r. Relabel
the xi if necessary and assume the rank of the submatrix

(∂fi/∂xj | 1 ≤ i ≤ n− r, r + 1 ≤ j ≤ n)
is n − r. The proof of Theorem 14.3.6 shows the set {dF/k(a1), . . . , dF/k(ar)} is a
basis for ΩF/k over F and a1, . . . , ar is a separating transcendence base for F/k. □

Lemma 14.3.8. Let k be a field and F = k(a1, . . . , an) a finitely generated
extension field of k. If tr.degk F = r and F/k is not separably generated, then
upon relabeling the ai, the field k(a1, . . . , ar+1) is of transcendence degree r over k,
and is not separably generated over k.

Proof. The proof is by induction on n. If n = r + 1, then there is nothing to
prove. Assume n > r + 1 and that the result is true for n− 1. Relabel the ai and
assume a1 is algebraically dependent on a2, . . . , an over k. Then k(a2, . . . , an) has
transcendence degree r over k. If k(a2, . . . , an) is not separably generated over k,
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then by induction we are done. Assume k(a2, . . . , an) is separably generated over k.
By Proposition 14.3.7, we can relabel the ai and assume a2, . . . , ar+1 is a separating
transcendence base for k(a2, . . . , an) over k. Then k(a2, . . . , an) is separable and
finite dimensional over k(a2, . . . , ar+1). It follows that k(a1, a2, . . . , an) is separa-
ble and finite dimensional over k(a1, a2, . . . , ar+1). By the transitive property of
separable field extensions, Theorem 5.6.6, it follows that k(a1, a2, . . . , ar+1) is not
separably generated over k. □

Theorem 14.3.9. Let k be a perfect field, and F/k a finitely generated extension
of fields.

(1) (F. K. Schmidt) F/k is separably generated.
(2) (Primitive Element Theorem) If r = tr.degk F , then there exists a tran-

scendence base Ξ = {ξ1, . . . , ξr} for F/k, an element u ∈ F which is
separable over k(Ξ), and F = k(Ξ)[u].

Proof. (1): Let r = tr.degk F and assume F = k(a1, . . . , an). For con-
tradiction’s sake, assume F/k is not separably generated. Let p = char k. By
Lemma 14.3.8, we reduce to the case where n = r+1. Let S = k[x1, . . . , xn] be the
polynomial ring over k in n indeterminates. Define ϕ : S → F by xi 7→ ai. Since
the image of ϕ is k[a1, . . . , an], an integral domain, the kernel of ϕ is a prime ideal
P of S. By Noether’s Normalization Lemma (Corollaries 14.3.3 and 14.3.4), P has
height one. Since S is a unique factorization domain, there exists an irreducible
polynomial f in S such that P = (f). View f(a1, . . . , ar, xr+1) as an element of
k(a1, . . . , ar)[xr+1]. Since ar+1 is not separable over k(a1, . . . , ar), it follows that
f is a polynomial in k[x1, . . . , xr][x

p
r+1]. Iterate this argument r + 1 times. Then

f ∈ k[xp1, . . . , xpr , x
p
r+1]. Since k is perfect, f = gp for some g ∈ S, a contradiction.

(2): This follows from Part (1), Proposition 14.3.7, and the Primitive Element
Theorem (Theorem 5.4.7). □

3.3. Second Form of the Normalization Lemma. We prove a second
version of Emmy Noether’s Normalization Lemma (Corollary 14.3.3). It requires
the ground field to be infinite. The advantage of this version is that it allows
us to construct the underlying polynomial ring in such a way that it contains a
separating transcendence base. As an application, we derive in Theorem 14.3.11
sufficient conditions for the integral closure of an integral domain A to be a finitely
generated A-module.

Theorem 14.3.10. (Emmy Noether’s Normalization Lemma) Let k be an infi-
nite field and A a finitely generated commutative k-algebra. Assume A is an integral
domain with field of fractions K. Then there exist z1, . . . , zm in A such that

(1) the set {z1, . . . , zm} is algebraically independent over k,
(2) A is integral over k[z1, . . . , zm],
(3) dim(A) = m,
(4) tr.degk(K) = m, and
(5) if A is generated as a k-algebra by x1, . . . , xn, then there are elements aij

in k such that zi =
∑n
j=1 aijxj.

(6) If K is separably generated over k, then {z1, . . . , zm} can be chosen in
such a way that K is separable over k(z1, . . . , zm).

Proof. We prove (6). The other cases are left to the reader. Our proof is
based on [65, I, Chapter V, Theorem 8, p. 266]. Let x1, . . . , xn be a generating set
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for A as a k-algebra. By Proposition 14.3.7, resort the list and assume {x1, . . . , xm}
is a separating transcendence base for K over k. Proceed by induction on n. If
m = n, then take zi = xi, for 1 ≤ i ≤ m, and stop. Otherwise, assume n > m
and assume the claim is true for any algebra on n − 1 generators. Then each of
xm+1, . . . , xn is algebraic over k(x1, . . . , xm).

Let A′ = k[x1, . . . , xn−1], and K
′ the field of fractions of A′. By assumption,

xn is separable over K ′. Starting with the minimum polynomial for xn over K ′,
we can find a polynomial P in k[X1, . . . , Xn] such that P (x1, . . . , xn−1, Xn) is a
separable polynomial in K ′[Xn] and such that P (x1, . . . , xn−1, xn) = 0. Write P
as a sum

(3.3) P (X1, . . . , Xn) =

q∑
i=0

Pi(X1, . . . , Xn)

where Pi(X1, . . . , Xn) is a homogeneous polynomial of degree i in the polyno-
mial ring k[X1, . . . , Xn], and Pq ̸= 0. Introduce new indeterminates Z1, . . . , Zn−1,
Λ1, . . . ,Λn−1 and define an embedding of k-algebras

θ : k[X1, . . . , Xn]→ k[Z1, . . . , Zn−1,Λ1, . . . ,Λn−1, Xn]

X1 7→ Z1 + Λ1Xn

...

Xn−1 7→ Zn−1 + Λn−1Xn.

If we denote by F the image of P under θ, then

F = F (Z1, . . . , Zn−1,Λ1, . . . ,Λn−1, Xn)

= P (Z1 + Λ1Xn, . . . , Zn−1 + Λn−1Xn, Xn)

=

q∑
i=0

Pi(Z1 + Λ1Xn, . . . , Zn−1 + Λn−1Xn, Xn).

(3.4)

Because each Pi is homogeneous of degree i, if we expand F as a polynomial in Xn,
the highest degree term is

(3.5) Xq
nPq(Λ1, . . . ,Λn−1, 1).

By An−1k we denote affine n − 1-space over k with the Zariski topology (Sec-

tion 10.2.2). The zero set of Pq(Λ1, . . . ,Λn−1, 1) in An−1k is a closed subset, call it V1.
Because the polynomial Pq(Λ1, . . . ,Λn−1, 1) is nonzero and k is infinite, we know

from Exercise 3.6.31 that V1 ̸= An−1k . There exists a point (λ1, . . . , λn−1) ∈ An−1k

such that if we set z1 = x1 − λ1xn, zn−1 = xn−1 − λn−1xn, then

(3.6) F (z1, . . . , zn−1, λ1, . . . , λn−1, Xn)

is a polynomial of degree q in k[z1, . . . , zn−1][Xn] and the leading coefficient is a
nonzero element of k. Since F (z1, . . . , zn−1, λ1, . . . , λn−1, xn) = P (x1, . . . , xn) = 0,
this shows xn is integral over k[z1, . . . , zn−1]. To finish the proof, we show that there
exists a choice for (λ1, . . . , λn−1) such that xn is a simple root of the polynomial in
(3.6). In (3.4), compute the derivative of F with respect to Xn:

(3.7)
∂F

∂Xn
=

n−1∑
i=1

Λi
∂P

∂Xi
+

∂P

∂Xn
.
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Substituting X1 = x1, . . . , Xn = xn, we have

(3.8)
∂F

∂Xn
(x1, . . . , xn) =

n−1∑
i=1

Λi
∂P

∂Xi
(x1, . . . , xn) +

∂P

∂Xn
(x1, . . . , xn).

which is a linear polynomial in k[Λ1, . . . ,Λn−1]. The polynomial (3.8) is not iden-
tically zero, because for Λ1 = 0, . . . , Λn−1 = 0 it evaluates to ∂P/∂Xn(x1, . . . , xn)
which is nonzero since xn is separable over K ′. The zero set of (3.8) in An−1k is
a proper closed subset, call it V2. Since V1 ∪ V2 is the zero set of a nonzero poly-
nomial in k[Λ1, . . . ,Λn−1], it is a proper closed subset. Therefore, there is a point
(λ1, . . . , λn−1) such that (3.8) is nonzero and xn is a simple root of the polynomial
(3.6). □

As an application, we get the following finiteness theorem for the integral clo-
sure of an integral domain in an extension of its quotient field. Theorem 14.3.11,
which requires A to be a finitely generated algebra over a field, is a strong version
of Theorem 10.1.13.

Theorem 14.3.11. Let A be an integral domain which is a finitely generated
algebra over a field k. Let K be the quotient field of A, and let L be a finitely
generated algebraic extension of K. If S is the integral closure of A in L, then S
is a finitely generated A-module, and is also a finitely generated k-algebra.

Proof. Our proof is based on [65, I, Chapter V, Theorem 9, p. 267]. By the
proof of Theorem 10.1.13, there are elements λ1, . . . , λn in S which generate L as
a vector space over K. Let B be the A-subalgebra of L generated by λ1, . . . , λn.
Then B is finitely generated as an A-module, finitely generated as a k-algebra, L is
the field of fractions of B, and S is the integral closure of B in L. After replacing A
with B and K with L, we assume S is the integral closure of A in K. It is enough
to show S is finitely generated as an A-module.

Let Ω be an algebraically closed field containing K. For the remainder of
this proof, every k-algebra is tacitly assumed to be a subring of Ω. Assume A is
generated as a k-algebra by x1, . . . , xn. Let k̄ be the algebraic closure of k, and
Ā the k̄-algebra generated by x1, . . . , xn. Let K̄ be the field of fractions of Ā. By
Theorem 14.3.9, K̄ is separably generated over k̄. By Theorem 14.3.10, there are
elements z1, . . . , zm in Ā which satisfy:

(a) k̄[z1, . . . , zm] is a polynomial subring of Ā,
(b) Ā is integral over k̄[z1, . . . , zm],
(c) there are elements aij in k̄ such that zi =

∑n
j=1 aijxj , for 1 ≤ i ≤ m,

(d) K̄ is separable over k̄(z1, . . . , zm).

Let Pj be the minimum polynomial for xj over k̄(z1, . . . , zm). By Theorem 10.1.11,
Pj is a polynomial with coefficients in k̄[z1, . . . , zm]. Let F be the subfield of k̄
generated by adjoining to k all of the elements aij of (c), and all of the k̄-coefficients
that appear in P1, . . . , Pn. Let A

′ be the F -algebra generated by x1, . . . , xn and let
K ′ be the field of fractions of A′. By construction, we have:

(e) F [z1, . . . , zm] is a polynomial subring of A′,
(f) A′ is integral over F [z1, . . . , zm], and
(g) K ′ is separable over F (z1, . . . , zm).

Let T be the integral closure of F [z1, . . . , zm] in K ′. By Theorem 10.1.13, T is
a finitely generated F [z1, . . . , zm]-module. By (f), T contains A′, hence T is a



4. MORE FLATNESS CRITERIA 617

finitely generated A′-module. Since dimk(F ) is finite, A′ is a finitely generated
A-module. Therefore, T is a finitely generated A-module. Since S = T ∩K, S is
an A-submodule of T . Since A is noetherian, S is a finitely generated A-module
(Corollary 7.6.12). □

4. More Flatness Criteria

In this section we prove some necessary results on flatness. The material in
this section is from various sources, including [39], [23], [38], and [48].

4.1. Constructible Sets. Let X be a topological space and Z ⊆ X. We say
Z is locally closed in X if Z is an open subset of Z̄, the closure of Z in X.

Lemma 14.4.1. The following are equivalent for a subset Z of a topological
space X.

(1) Z is locally closed.
(2) For every point x ∈ Z, there exists an open neighborhood Ux such that

Z ∩ Ux is closed in Ux.
(3) There exists a closed set F in X and an open set G in X such that

Z = F ∩G.

Proof. Is left to the reader. □

We say that Z is a constructible set in X if Z is a finite union of locally closed
sets in X. By Lemma 14.4.1, a constructible set Z has a representation

Z =

r⋃
i=1

(Ui ∩ Fi)

where each Ui is open in X and each Fi is closed in X.

Lemma 14.4.2. If Y and Z are constructible in X, then so are Y ∪ Z, Y − Z,
Y c = X − Y , and Y ∩ Z.

Proof. Write Y = (U1∩E1)∪· · ·∪(Ur∩Er) and Z = (V1∩F1)∪· · ·∪(Vs∩Fs)
where Ui, Vj are open and Ej , Fj are closed for all i and j. Using the identity

U ∩ E − V ∩ F = U ∩ E ∩ (V ∩ F )c

= U ∩ E ∩ (V c ∪ F c)
= (U ∩ E ∩ V c) ∪ (U ∩ E ∩ F c)
=
(
U ∩ (E ∩ V c)

)
∪
(
(U ∩ F c) ∩ E

)
the reader should verify that Y − V1 ∩ F1 is constructible. Now use induction on s
to prove Y −Z is constructible. This also proves Y c = X −Y and Zc = X −Z are
constructible. Hence Y ∩ Z = (Y c ∪ Zc)c is constructible. □

Proposition 14.4.3. Let X be a noetherian topological space and Z a subset
of X. The following are equivalent.

(1) Z is constructible in X.
(2) For each irreducible closed set Y in X, either Y ∩Z is not dense in Y , or

Y ∩ Z contains a nonempty open set of Y .
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Proof. (1) implies (2): Write Z = (U1∩E1)∪· · ·∪(Ur∩Er). Since Y is closed,
by Proposition 1.4.7 we can decompose each Y ∩Ei into its irreducible components.
Therefore, we can write Y ∩Z = (V1 ∩F1)∪ · · · ∪ (Vs ∩Fs) where each Vi is open in
X, each Fi is closed and irreducible in X, and Vi ∩ Fi is nonempty for each i. By
Lemma 1.4.4, Vi ∩ Fi = Fi. Therefore, Y ∩ Z = F1 ∪ · · · ∪ Fs. If Y ∩ Z is dense in
Y , then Y = F1∪· · ·∪Fs, so that for some i we have Y = Fi. Then Ui∩Y = Ui∩Fi
is a nonempty open subset of Y contained in Y ∩ Z.

(2) implies (1): Let S be the set of all closed sets of the form Z̄ where Z is
a subset of X that satisfies (2) but not (1). For contradiction’s sake, assume S
is nonempty. By Lemma 1.4.5 (4), let Z be a subset of X satisfying (2) but not
(1) such that Z̄ is minimal in S. The empty set is constructible, so Z ̸= ∅. Let
Z̄ = Z1 ∪ · · · ∪ Zr be the decomposition into irreducible closed components. Then
Z ∩Z1 ̸= ∅ and Z ∩ Z1 is a closed subset of Z1. Since Z1 = Z ∩ Z1∪ (Z1∩Z2) · · · ∪
(Z1∩Zr), it follows that Z ∩ Z1 = Z1. By (2) there exists a nonempty open U ⊆ Z1

such that U ⊆ Z. Notice that U is locally closed in X. The set Z ′1 = Z1 − U is a
proper closed subset of Z1. Write Z∗ = Z ′1 ∪ Z2 ∪ · · · ∪ Zr, a proper closed subset
of Z̄. We have Z ∩ Z∗ ⊆ Z∗ ⊊ Z̄.

We next show Z ∩ Z∗ satisfies (2). To this end, assume Y is an irreducible
closed in X such that Y ∩ Z ∩ Z∗ = Y . In this case, the closed set Z∗ contains Y ,
hence Y ∩Z∩Z∗ = Z∩Y . Since Z satisfies (2), Z∩Y contains a nonempty open set
of Y . This proves Z ∩Z∗ satisfies (2). Since Z̄ was a minimal member of S, Z ∩Z∗
is constructible. Therefore Z = U ∪ (Z ∩ Z∗) is constructible, a contradiction. □

4.1.1. Chevalley’s Theorem.

Lemma 14.4.4. Let θ : R → S be a homomorphism of commutative rings and
θ♯ : SpecS → SpecR the continuous map of Exercise 7.3.20. The following are
equivalent.

(1) The image of θ♯ is dense in SpecR.
(2) ker θ ⊆ RadR(0).

In particular, if RadR(0), then the image of θ♯ is dense if and only if θ is one-to-one.

Proof. The image of θ♯ is im θ♯ = {θ−1(Q) | Q ∈ SpecS}. By Lemma 7.3.9,
the closure of im θ♯ is V (I), where I is the ideal

I =
⋂

Q∈SpecS
θ−1(Q) = θ−1

 ⋂
Q∈SpecS

Q

 = θ−1 (RadS(0)) .

It is clear that ker θ ⊆ I.
(1) implies (2): If V (I) = SpecR, then I ⊆ RadR(0), and this implies (2).
(2) implies (1): The reader should verify that if x ∈ R and θ(x) ∈ RadS(0), then

x ∈ Rad(ker θ). By (2), I = θ−1 (RadS(0)) ⊆ RadR(0). Therefore, V (I) = SpecR,
which implies (1). □

Lemma 14.4.5. Let R be a noetherian integral domain and S a commutative
faithful finitely generated R-algebra with structure map θ : R→ S. There exists an
element a ∈ R− (0) such that the basic open set U(a) = SpecR−V (a) is contained
in the image of the natural map θ♯ : SpecS → SpecR.

Proof. Since θ is one-to-one, we assume R ⊆ S. Find x1, . . . , xn in S such
that S = R[x1, . . . , xn]. Further, assume x1, . . . , xr are algebraically independent
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over R, while each of the elements xr+1, . . . , xn satisfies an algebraic relation over
T = R[x1, . . . , xr]. For each j = r + 1, . . . , n find a polynomial fj(x) ∈ T [x]
satisfying

(1) fj(xj) = 0,
(2) fj has degree dj ≥ 1, and
(3) the leading coefficient of fj is fj0, an element of T .

Then f =
∏n
j=r+1 fj0 is a nonzero element of T . Let a be any nonzero coefficient of

f , where we view f as a polynomial over R in the variables x1, . . . , xr. We show that
this a is satisfactory. Let P be an arbitrary element of U(a). Then P ∈ SpecR and
a ̸∈ P . We show that P ∈ im θ♯. The reader should verify that PT = P [x1, . . . , xr]
is a prime ideal in T . Since f ̸∈ PT , each xj is integral over TPT . Therefore SPT
is integral over TPT . By Theorem 10.3.7, there exists a prime ideal Q in SPT lying
over (PT )TPT . On the left side of this diagram

SPT = S ⊗T TPT

S TPT

T = R[x1, . . . , xr]

R

Q

Q ∩ S (PT )TPT

Q ∩ T = PT

P

is the lattice of subrings, on the right, the lattice of prime ideals. We have Q∩R =
Q ∩ T ∩R = PT ∩R = P . Therefore, P = Q ∩R = Q ∩ S ∩R = θ♯(Q ∩ S). □

Lemma 14.4.6. Let R be a commutative noetherian ring and Z a constructible
set in SpecR. There exists a finitely generated R-algebra S such that the image of
the natural map SpecS → SpecR is Z.

Proof. Case 1: Z = U(a) ∩ V (I), where I is an ideal of R and U(a) =
SpecR− V (a) is a basic open set, for some a ∈ R. By Exercise 7.3.26, SpecR[a−1]
maps homeomorphically onto U(a). By Exercise 7.3.25, SpecR/I maps homeomor-
phically onto V (I). The reader should verify that S = R/I⊗RR[a−1] is satisfactory.

Case 2: Z is an arbitrary constructible set. Then Z is a finite union of sets
of the form U ∩ Y where U is open and F is closed. An arbitrary open is of the
form R − V (I), where I is a finitely generated ideal in the noetherian ring R.
Therefore, U can be written as a finite union of basis open sets. We can write Z =⋃n
i=1 U(ai)∩V (Ii). By Case 1, U(ai)∩V (Ii) is the image of SpecSi for some finitely

generated R-algebra Si. Let S be the finitely generated R-algebra S1⊕· · ·⊕Sn. By
Exercise 7.3.23, SpecS decomposes into the disjoint union SpecS1 ∪ · · · ∪ SpecSn.
The image of SpecS is Z. □

Theorem 14.4.7. (Chevalley) Let R be a commutative noetherian ring and S
a finitely generated R-algebra. Under the natural map θ♯ : SpecS → SpecR, the
image of a constructible set is a constructible set.

Proof. Step 1: im θ♯ is a constructible set. Let Y be an irreducible closed
in SpecR. In order to apply Proposition 14.4.3, assume im θ♯ ∩ Y is dense in Y .
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By Lemma 7.3.11, Y = V (P ) for some prime ideal P in R. Consider the two
commutative diagrams.

S // S/PS

R

θ

OO

η // R/P

θ̄

OO
SpecS

θ♯

��

Spec (S/PS)

θ̄♯

��

oo

SpecR ⊇ Y Spec (R/P )
η♯oo

The map η♯ maps SpecR/P homeomorphically onto Y . The set im θ♯∩Y is equal to
the image of η♯θ̄♯. By Lemma 14.4.4, θ̄ is one-to-one. By Lemma 14.4.5, im θ♯ ∩ Y
contains a nonempty open subset of Y . Proposition 14.4.3 implies im θ♯ is con-
structible.

Step 2: Let Z be a constructible set in SpecS. By Lemma 14.4.6 there exists a
finitely generated S-algebra T with structure homomorphism ϕ : S → T such that
the image of the natural map ϕ♯ : SpecT → SpecS is equal to Z. Notice that T
is a finitely generated R-algebra with structure homomorphism ϕθ : R → T and
the image of θ♯ϕ♯ is equal to θ♯(Z). By Step 1 applied to T , the image of θ♯ϕ♯

constructible. □

4.1.2. Submersive morphisms. Let X be a noetherian topological space. A
subset Z of X is said to be pro-constructible if there exists a family {Zi | i ∈ I} of
constructible sets such that Z =

⋂
i∈I Zi. We say Z is ind-constructible if such a

family of constructible sets exists and Z =
⋃
i∈I Zi.

Proposition 14.4.8. Let R be a noetherian commutative ring and S a com-
mutative R-algebra with structure homomorphism θ : R → S. The image of
θ♯ : SpecS → SpecR is a pro-constructible set in SpecR.

Proof. By Exercise 6.8.26, S = lim−→α
Sα, where Sα runs through the set of

all finitely generated R-subalgebras of S. For each α, let ϕα : R → Sα be the
structure homomorphism and let ψα : Sα → S be the set inclusion map. For each
α, we have θ♯ = ϕ♯αψ

♯
α. Therefore, im(θ♯) ⊆

⋂
α im(ϕ♯α). To show that these sets

are equal, suppose P ∈ SpecR − im(θ♯). Let SP = S ⊗R RP . The reader should
verify that PSP = SP . We can write 1 ∈ PSP as a finite sum, 1 =

∑n
i=1 aisiw

−1,
where w ∈ R − P and for each i, ai ∈ P and si ∈ S. Let T = R[s1, . . . , sn] be the
R-subalgebra of S generated by s1, . . . , sn. Then PTP = TP , so P is not in the
image of SpecT → SpecR. This proves im(θ♯) =

⋂
α im(ϕ♯α). By Theorem 14.4.7,

the image of θ♯ is pro-constructible. □

Let R be a commutative ring and P,Q ∈ SpecR. If P ⊆ Q, then we say that Q
is a specialization of P and P is a generalization of Q. The set of all specializations
of P is equal to the irreducible closed set V (P ). If Z ⊆ SpecR we say Z is stable
under specialization if Z contains all specializations of every point in Z. We say
Z is stable under generalization if Z contains all generalizations of every point in
Z. The reader should verify that a closed set is stable under specialization and an
open set is stable under generalization.

Lemma 14.4.9. Let R be a commutative noetherian ring.

(1) Let Z be a subset of SpecR which satisfies
(a) Z is pro-constructible and
(b) Z is stable under specialization.
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Then Z is closed.
(2) Let U be a subset of SpecR which satisfies

(a) U is stable under generalization and
(b) if P ∈ U , then U contains a nonempty open subset of the irreducible

closed set V (P ).
Then U is open.

Proof. (1): Write Z =
⋂
α∈I Zα, where each Zα is constructible. Let Z̄ =

Y1 ∪ · · · ∪ Ym be the decomposition into irreducible closed components. Fix i such
that 1 ≤ i ≤ m. Then Yi = V (Pi), where Pi is the generic point of Yi. As in the
proof of Proposition 14.4.3, Yi ∩ Z is a dense subset of Yi. For each α, Yi ∩ Zα is
dense in Yi. By Proposition 14.4.3, Yi ∩Zα contains a nonempty open subset of Yi.
Therefore, P ∈ Yi ∩ Zα for each α. Hence Pi ∈

⋂
α∈I Zα = Z. Since Z is stable

under specialization, Yi = V (Pi) ⊆ Z. Since i was arbitrary, Z̄ ⊆ Z, so Z is closed.
(2): Let Z = SpecR− U and let Z̄ = Y1 ∪ · · · ∪ Ym be the decomposition into

irreducible closed components. Fix i such that 1 ≤ i ≤ m. Then Yi = V (Pi), where
Pi is the generic point of Yi. For contradiction’s sake, assume Pi ∈ U . By (b) there
exists a nonempty set V ⊆ Yi such that V is open in Yi and V ⊆ Yi ∩ U . Since
Yi ̸⊆ Yj if i ̸= j, W = V −

⋃
j ̸=i Yj is a nonempty open subset of Yi, W is open in

Z̄, and W ⊆ U . Then Z̄ −W is a closed set containing Z which is a proper closed
subset of Z̄, a contradiction. We conclude that Pi ∈ Z. If P is a specialization of
Pi, then by (a), P ∈ Z. That is, Yi ⊆ Z. This proves Z̄ ⊆ Z, so Z is closed. □

We say that a homomorphism of commutative rings ϕ : R → S is submersive
if ϕ♯ : SpecS → SpecR is onto and the topology on SpecR is equal to the quotient
topology of SpecS. That is, Y ⊆ SpecR is closed if and only if (ϕ♯)−1(Y ) is closed.

Theorem 14.4.10. Let R be a commutative noetherian ring and S a commu-
tative R-algebra with structure homomorphism ϕ : R → S. If one of the following
three conditions is satisfied, then ϕ is submersive.

(1) S is a faithfully flat R-module.
(2) R is an integrally closed integral domain and S is an integral domain

which is a faithful integral R-algebra.
(3) ϕ♯ : SpecS → SpecR is onto, and going down holds for ϕ.

Proof. If condition (1) is satisfied, then by Theorem 10.3.6, going down holds
and by Lemma 7.5.4, ϕ♯ is onto. This case reduces to (3).

If condition (2) is satisfied, then by Theorem 10.3.7, so is condition (3).
Assume (3) is satisfied. Let Y be any subset of SpecR such that (ϕ♯)−1(Y )

is closed in SpecS. It suffices to show that Y is closed. There exists an ideal
J in S such that (ϕ♯)−1(Y ) = V (J). Since ϕ♯ is onto, ϕ♯(ϕ♯)−1(Y ) = Y . Let
η : S → S/J be the natural map. The image of ϕ♯η♯ is equal to Y , so by Proposi-
tion 14.4.8, Y is pro-constructible. By Lemma 14.4.9, if we show that Y is stable
under specialization, the proof is complete. Assume P1 ∈ Y and P2 is a specializa-
tion of P1 in SpecR such that P1 ⊊ P2. It suffices to show P2 ∈ Y . Since ϕ♯ is
onto, there exists Q2 ∈ SpecS lying over P1. Since going down holds, by Proposi-
tion 10.3.4, there exists Q1 ∈ SpecS lying over P1 such that Q1 ⊊ Q2. So Q2 is a
specialization of Q1. Since Q1 is in the closed set (ϕ♯)−1(Y ), so is Q2. Therefore
P2 = ϕ♯(Q2) ∈ ϕ♯(ϕ♯)−1(Y ) = Y . □
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Theorem 14.4.11. Let R be a commutative noetherian ring and S a commuta-
tive finitely generated R-algebra with structure homomorphism ϕ : R→ S. Assume
going down holds for ϕ. Then ϕ♯ : SpecS → SpecR is an open map.

Proof. Start with U an open in SpecS and show that ϕ♯(U) is open in SpecR.
By Theorem 14.4.7, ϕ♯(U) is constructible in SpecR. Let P2 ∈ ϕ♯(U). There
exists Q2 ∈ U lying over P2. Assume P1 is a generalization of P2, P1 ⊆ P2. By
Proposition 10.3.4, since going down holds, there exists Q1 ∈ SpecS lying over P1

such that Q1 ⊆ Q2. Therefore Q1 ∈ U , since Q1 is a generalization of Q2 and U
is open. Hence P1 ∈ ϕ♯(U), which proves ϕ♯(U) is stable under generalization. By
Lemma 14.4.9, SpecR− ϕ♯(U) is closed. □

4.2. Local Criteria for Flatness. References for the material in this section
are [39, Chapter 8, Section 20] and [23, Chapitre 0, § 10].

Let R be a commutative ring and I an ideal of R. Let M be an R-module. In
Example 11.2.3 and Example 11.2.5 we defined the associated graded ring

grI (R) =
⊕
n≥0

In/In+1

and the associated graded module

grI(M) =

∞⊕
n=0

InM/In+1M.

Then grI (M) is a graded grI(R)-module. For the following, set R0 = grI (R)0 =
R/I and M0 = grI (M)0 = M/I. The ring grI (R) is an R0-algebra, and M0 is an
R0-module. For all n ≥ 0, the multiplication map

µn0 :
In

In+1
⊗R0 M0 →

InM

In+1M

is onto. Taking the direct sum, there is a surjective degree-preserving homomor-
phism

µ : grI (R)⊗R0 M0 → grI (M)

of R0-modules. We say that M is ideal-wise separated for I if for each finitely
generated ideal J of R, the R-module J ⊗RM is separated in the I-adic topology.

Example 14.4.12. Some examples of modules that are ideal-wise separated are
listed here.

(1) Let S be a commutative R-algebra and M a finitely generated S-module.
Suppose S is noetherian and I is an ideal of R such that IS ⊆ J(S). Let
J be any ideal of R. The reader should verify that the I-adic topology
on J ⊗R M is equal to the I ⊗R S-adic topology, which is equal to the
IS-adic topology. Since J ⊗RM is a finitely generated S-module, Corol-
lary 11.3.6 (1) says J ⊗RM is separated in the I-adic topology. Therefore
M is ideal-wise separated for I.

(2) Let R be a commutative ring andM a flat R-module. If J is an ideal of R,
then 0→ J⊗RM →M →M/JM → 0 is exact. That is, J⊗RM = JM .
If I is an ideal of R and M is separated for the I-adic topology, then
InJM ⊆ InM so JM is separated for the I-adic topology. Therefore M
is ideal-wise separated for I.
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(3) Let R be a principal ideal domain. Let I and J be ideals of R and M
an R-module. If w ∈ In(J ⊗R M), then w can be written in the form
1 ⊗ z where z ∈ InM . If M is separated in the I-adic topology, then M
is ideal-wise separated for I.

Theorem 14.4.13. (Local Criteria for Flatness) Let R be a commutative ring,
I an ideal of R, and M an R-module. Let grI (M) be the associated graded grI(R)-
module. Set R0 = R/I and M0 =M/I. Assume

(A) I is nilpotent, or
(B) R is noetherian and M is ideal-wise separated for I.

Then the following are equivalent.

(1) M is a flat R-module.

(2) TorR1 (N,M) = 0 for all R0-modules N .
(3) M0 is a flat R0-module and 0→ I ⊗RM → IM is an exact sequence.

(4) M0 is a flat R0-module and TorR1 (R0,M) = 0.
(5) M0 is a flat R0-module and the multiplication maps

µn0 :
In

In+1
⊗R0 M0 →

InM

In+1M

are isomorphisms for all n ≥ 0.
(6) Mn =M/In+1M is a flat Rn = R/In+1-module for each n ≥ 0.

Proof. Notice that (A) or (B) is used to prove that (6) implies (1). The rest
of the proof is valid for an arbitrary module M .

Throughout the proof we will frequently make use of the natural isomorphism

N ⊗RM = N ⊗R/J (R/J)⊗RM = N ⊗R/J (M/JM)

for any ideal J of R and any R/J-module N .
(1) implies (2): If N is an R0-module, then N is an R-module. This follows

from Lemma 12.3.3.
(2) implies (3): Start with an exact sequence

0→ A→ B → C → 0

of R0 = R/I-modules. The sequence

TorR1 (C,M)→ A⊗R0 M0 → B ⊗R0 M0 → C ⊗R0 M0 → 0

is also exact. But TorR1 (C,M) = 0, so we conclude that M0 is a flat R0-module.
(3) implies (4): Follows easily from the exact sequence

TorR1 (R,M)→ TorR1 (R/I,M)→ I ⊗RM →M.

(4) implies (2): Let N be an R0-module and write N as a quotient of a free
R0-module F ,

0→ K → F → N → 0.

By Lemma 12.3.2 (7) and hypothesis (4) TorR1 (F,M) =
⊕

α Tor
R
1 (R0,M) = 0. The

sequence

0→ TorR1 (N,M)→ K ⊗R0
M0 → F ⊗R0

M0 → N ⊗R0
M0 → 0

is exact. But M0 is a flat R0-module, so we conclude that TorR1 (N,M) = 0.
(2) implies (5): Start with the exact sequence of R-modules

0→ In+1 → In → In/In+1 → 0
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where n ≥ 0. The multiplication homomorphisms combine to make up a commu-
tative diagram

0 // In+1 ⊗RM //

γn+1

��

In ⊗RM //

γn

��

In/In+1 ⊗R0 M0
//

µn0

��

0

0 // In+1M // InM // InM/In+1M // 0

The top row is exact because of hypothesis (2). The second row is clearly exact. The
multiplication maps γn+1, γn, µn0 are all onto. For n = 0, µn0 is an isomorphism.
For n = 1, γn is an isomorphism by the proof of (2) implies (3). By induction
on n, we see that γn is an isomorphism for all n ≥ 0. By the Snake Lemma
(Theorem 6.6.2) it follows that µn0 is an isomorphism for all n ≥ 0.

(5) implies (6): Fix an integer n > 0. For each i = 1, 2, . . . , n there is a
commutative diagram

Ii+1/In+1 ⊗RM //

αi+1

��

Ii/In+1 ⊗RM //

αi

��

Ii/Ii+1 ⊗R0 M0
//

µi0

��

0

0 // Ii+1M/In+1M // IiM/InM // IiM/Ii+1M // 0

with exact rows. By hypothesis, µi0 is an isomorphism for all i. For i = n,
the diagram collapses and we see immediately that αn is an isomorphism. By
descending induction on i we see that each αi is an isomorphism. In particular, α1

is an isomorphism. That is,

I/In+1 ⊗RM
α1 //

=

��

IM/In+1M

=

��
IRn ⊗Rn

Mn

∼= // IMn

commutes and the arrows are all isomorphisms. This proves that hypothesis (3) is
satisfied for the ring Rn, the ideal IRn and the moduleMn. Because (3) implies (2),

TorRn
1 (N,Mn) = 0 for all R0-modules N . Say 1 ≤ j ≤ n and A is an Rj = R/Ij+1-

module. Then IA and A/IA are R/Ij-modules. From the exact sequence

0→ IA→ A→ A/IA→ 0

we get the exact sequence

TorRn
1 (IA,Mn)→ TorRn

1 (A,Mn)→ TorRn
1 (A/IA,Mn).

If j = 1, this implies TorRn
1 (A,Mn) = 0. Induction on j shows TorRn

1 (A,Mn) = 0
for any Rn-module A. This implies Mn is a flat Rn-module.

(1) implies (6): The attribute of being flat is preserved under change of base
(Theorem 6.4.23).

(6) and (A) implies (1): If I is nilpotent, then In = 0 for some n. In this case,
M/InM =M is a flat R/In = R-module.

(6) and (B) implies (1). Let J be any finitely generated ideal of R. By Corol-
lary 7.8.4 it is enough to show

0→ J ⊗RM
µ−→M →M/JM
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is an exact sequence. We are assuming (B), which implies
⋂
n I

n(J ⊗RM) = 0. It
is enough to show ker(µ) ⊆ In(J ⊗RM) for each n > 0. By Corollary 11.2.14 there
exists ν ≥ n such that J ∩ Iν ⊆ InJ . Consider the commutative diagram

J ⊗RM

µ

��

ϕ //
(
J/(J ∩ Iν)

)
⊗RM

τ

��

ψ //
(
J/InJ

)
⊗RM

��
M // M/IνM // M/InM

(4.1)

The kernel of the composition ψϕ is ker(ψϕ) = InJ ⊗R M = In(J ⊗R M). By
hypothesis (6), M/IνM is a flat module over R/Iν . Since J/(J ∩ Iν) is an ideal in
R/Iν , by Corollary 7.8.4, the sequence

0→
(
J/(J ∩ Iν)

)
⊗R/Iν

(
M/IνM

)
→M/IνM

is exact. Since
(
J/J ∩ Iν

)
⊗R/Iν

(
M/IνM

)
=
(
J/J ∩ Iν

)
⊗R M , this implies the

sequence

0→
(
J/J ∩ Iν

)
⊗RM

τ−→M/IνM

is exact. In (4.1), since τ is one-to-one it follows that ker(µ) ⊆ ker(ψϕ) = In(J ⊗R
M). □

As an application of Theorem 14.4.13 we prove the following generalization of
Corollary 7.4.3.

Proposition 14.4.14. Assume all of the following are satisfied.

(A) R is a noetherian local ring with maximal ideal m and residue field k(m).
(B) S is a noetherian local ring with maximal ideal n and residue field k(n).
(C) f : R→ S is a local homomorphism of local rings (that is, f(m) ⊆ n).
(D) A and B are finitely generated S-modules, σ ∈ HomS(A,B), and B is a

flat R-module.

Then the following are equivalent.

(1) The sequence

0→ A
σ−→ B → coker(σ)→ 0

is exact and coker(σ) is a flat R-module.
(2) The sequence

0→ A⊗R k(m)
σ⊗1−−−→ B ⊗R k(m)→ coker(σ)⊗R k(m)→ 0

is exact.

Proof. (1) implies (2): Start with the short exact sequence in (1). Apply the
functor ( )⊗R k(m). The long exact Tor sequence includes these terms

· · · → TorR1 (coker(σ), k(m))→ A⊗Rk(m)
σ⊗1−−−→ B⊗Rk(m)→ coker(σ)⊗Rk(m)→ 0.

Use the fact that coker(σ) is flat to get (2).
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(2) implies (1): For any R-module M , identify M ⊗R k(m) with M/mM . The
diagram

mA

��

mB

��

m cokerσ

��
A

α

��

σ // B //

β

��

cokerσ

γ

��

// 0

0 // A/mA
τ // B/mB // cokerσ/m cokerσ // 0

commutes. The rows and columns are exact. The three vertical arrows α, β, γ are
onto.

Step 1: Show that ker(σ) = 0. If x ∈ ker(σ), then x ∈ mA. The idea is to show

x ∈
⋂
n≥1

mnA ⊆
⋂
n≥1

nnA,

which proves x = 0, by Corollary 11.3.6. Fix n ≥ 1 and assume x ∈ mnA. Since mn

is finitely generated over R, the vector space mn/mn+1 is finite dimensional over
k(m). Let π1, . . . , πr be a set of generators for mn which restricts to a k(m)-basis
for mn/mn+1. Write x =

∑r
i=1 πixi where xi ∈ A. Then 0 = σ(x) =

∑
πiσ(xi)

in the flat R-module B. By Corollary 7.8.4 there exist an integer s, elements
{bij | 1 ≤ i ≤ r, 1 ≤ j ≤ s} in R, and y1, . . . , ys in B satisfying

∑
i πibij = 0 for

all j and σ(xi) =
∑
j bijyj for all i. Since π1, . . . , πr are linearly independent over

k(m), each bij is in m. This implies each σ(xi) is in mB. Since τ is one-to-one, this
implies each xi is in mA. We conclude that x ∈ mn+1A. As stated already, this
proves x = 0.

Step 2: Show that coker(σ) is a flat R-module. By Step 1, the sequence

0→ A
σ−→ B → coker(σ)→ 0

is exact. Apply the functor ( )⊗R k(m). Since B is a flat R-module, the long exact
Tor sequence reduces to the exact sequence

0→ TorR1 (coker(σ), k(m))→ A⊗R k(m)
σ⊗1−−−→ B⊗R k(m)→ coker(σ)⊗R k(m)→ 0.

By assumption, σ ⊗ 1 is one-to-one, so TorR1 (coker(σ), k(m)) = 0. By Exam-
ple 14.4.12 (1) the hypotheses of Theorem 14.4.13 (4) are satisfied. Therefore coker(σ)
is a flat R-module. □

Corollary 14.4.15. Assume all of the following are satisfied.

(1) R is a noetherian commutative ring.
(2) S is a noetherian commutative R-algebra.
(3) M is a finitely generated S-module which is a flat R-module and f ∈ S.
(4) For each maximal ideal m ∈ MaxS,

0→M/(m ∩R)M ℓf−→M/(m ∩R)M
is exact, where ℓf is left multiplication by f .

Then

0→M
ℓf−→M →M/fM → 0

is exact and M/fM is a flat R-module.
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Proof. Let m ∈ MaxS and n = m ∩ R. Then Mm is a finitely generated
Sm-module. By Corollary 12.3.6, Mm is a flat Rn-module. By assumption,

0→M ⊗R (R/n)
ℓf−→M ⊗R (R/n)

is exact. Since Sm is a flat S-module,

0→Mm ⊗R (R/n)
ℓf−→Mm ⊗R (R/n)

is exact. By Exercise 7.1.17, Rn/(nRn) is a flat R/n-module. Therefore,

0→Mm ⊗Rn
(Rn/nRn)

ℓf−→Mm ⊗Rn
(Rn/nRn)

is exact. We are in the context of Proposition 14.4.14 with the rings being Rn, Sm,
and σ being ℓf : Mm → Mm. We have shown that Proposition 14.4.14 condition
(2) is satisfied. Therefore, the sequence

0→Mm
ℓf−→Mm →Mm/fMm → 0

is exact, and (M/fM)⊗SSm =Mm/fMm is a flat Rn-module. By Proposition 7.1.6,
ℓf :M →M is one-to-one. By Corollary 12.3.6, M/fM is a flat R-module. □

Corollary 14.4.16. Let R be a commutative noetherian ring and S = R[x1, . . . , xn]
the polynomial ring over R in n indeterminates. Let f ∈ S and assume the coef-
ficients of f generate the unit ideal in R. Then f is not a zero divisor of S and
S/fS is a flat R-algebra.

Proof. Let m ∈ MaxS and n = m ∩ R. Then R/n is an integral domain
and f ̸∈ n[x1, . . . , xn]. Moreover, S/nS = S ⊗R R/n = (R/n)[x1, . . . , xn], so ℓf :
S/nS → S/nS is one-to-one. The rest follows from Corollary 14.4.15. □

Corollary 14.4.17. Let θ : R→ S be a local homomorphism of commutative
noetherian local rings. Let M be a finitely generated S-module which is flat over R.
Let m be the maximal ideal of R and k(m) the residue field. For any f ∈ S, let ℓf
be the left multiplication by f map. Then the following are equivalent.

(1) The sequence

0→M
ℓf−→M →M/fM → 0

is exact, and M/fM is flat over R.
(2) The sequence

0→M ⊗R k(m)
ℓf−→M ⊗R k(m)

is exact.

Proof. Apply Proposition 14.4.14. □

In Corollary 14.4.18, the reader is referred to Definition 15.3.1 for the definition
of a regular sequence for an R-module contained in an ideal of R.

Corollary 14.4.18. Let θ : R→ S be a local homomorphism of commutative
noetherian local rings. Let M be a finitely generated S-module which is flat over R.
Let m be the maximal ideal of R and k(m) the residue field. Let n be the maximal
ideal of S, and (f1, . . . , fr) a regular sequence forM⊗Rk(m) in n. Then (f1, . . . , fr)
is a regular sequence for M and M/(f1, . . . , fr)M is flat over R.

Proof. Use Corollary 14.4.17 and induction on r. □
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4.3. Theorem of Generic Flatness.

Theorem 14.4.19. Let R be a noetherian integral domain and S a finitely
generated commutative R-algebra. For any finitely generated S-module M , there
exists a nonzero element f in R such that the localization M [f−1] =M ⊗R R[f−1]
is a free R[f−1]-module.

Proof. Step 1: If M is not a faithful R-module, then we can take f to be a
nonzero element of annihR(M). From now on we assume S is an extension ring of
R and M is a faithful R-module.

Step 2: By Theorem 13.2.9, there exists a filtration 0 =M0 ⊊M1 ⊊M2 ⊊ · · · ⊊
Mn = M of M and a set of prime ideals Pi ∈ SpecS such that Mi/Mi−1 ∼= S/Pi
for i = 1, . . . , n. If

0→ A→ B → C → 0

is an exact sequence of R-modules where A and C are free, then so is B. It is
enough to prove the theorem for the case where M = S/P , for a prime ideal P in
S. From now on assume M = S and S is an integral domain which is an extension
ring of R.

Step 3: Let K be the quotient field of R and L the quotient field of S. Consider
SK = S ⊗R K, the K-subalgebra of L generated by S. Since S is a finitely
generated R-algebra, SK is a finitely generated K-algebra. The Krull dimension
of SK, n = dim (SK), is finite. The proof is by induction on the integer n.

Step 4: Assume n = 0. That is, SK = L is the quotient field of S. Let
s1, . . . , sk be a set of generators for S as an R-algebra. Each si is integral over
K, so there exists a polynomial pi(x) ∈ K[x] such that pi(si) = 0. There exists
a nonzero element α in R − (0) such that αpi(x) ∈ R[x] for all i. Therefore,
R[α−1] ⊆ S[α−1] is a finitely generated integral extension of integral domains. By
Theorem 10.1.3 (1), S1 = S[α−1] is finitely generated as an R1 = R[α−1]-module.
Let u1, . . . , uν be a maximal subset in S1 which is linearly independent over R1.

Define ϕ : R
(ν)
1 → S1 by (a1, . . . , aν) 7→

∑
aiui. Let C = cokerϕ. Then C is a

finitely generated torsion R1-module. Let γ ∈ annihR1
(C). Tensor ϕ with R1[γ

−1]
to get R1[γ

−1] ∼= S1[γ
−1]. Take f to be αγ.

Step 5: Assume n ≥ 1. By Noether’s Normalization Lemma (Corollary 14.3.3),
there exist y1, . . . , yn in SK which are algebraically independent over K and such
that SK is integral over K[y1, . . . , yn]. For some element β of R− (0), βyi ∈ S. Re-
label if necessary, and assume R[y1, . . . , yn] ⊆ S. There exist s1, . . . , sk such that
S = R[s1, . . . , sk]. Each si is integral overK[y1, . . . , yn], so there exists a polynomial
pi(x) ∈ K[y1, . . . , yn][x] such that pi(si) = 0. There exists a nonzero element α in
R−(0) such that αpi(x) ∈ R[y1, . . . , yn][x] for all i. Therefore, R[α−1][y1, . . . , yn] ⊆
S[α−1] is an integral extension of integral domains. Let R1 = R[α−1], S1 = S[α−1],
and T = R1[y1, . . . , yn]. Then S1 is a finitely generated integral extension of T , so
by Theorem 10.1.3 (1), S1 is finitely generated as a T -module. Let u1, . . . , uν be a
maximal subset in S1 which is linearly independent over T . Define ϕ : T (ν) → S1 by
(a1, . . . , aν) 7→

∑
aiui. Let C = cokerϕ. Then C is a finitely generated T -module.

As in Step 2, there is a filtration of the T -module C. Since C is a torsion T -module,
for each prime ideal P of T that occurs in the filtration, ht(P ) ≥ 1. Consider one
such prime P ∈ SpecT . By Step 1, assume T/P is an extension of R1. Then

T/P ⊗R K =
T ⊗R K
P ⊗R K

.
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Since P ⊗R K is a nonzero prime ideal in T ⊗R K, dimK(T/P ⊗R K) < n. By
induction, there exists g ∈ R1 − (0) such that T/P ⊗R1 R1[g

−1] is a free R1[g
−1]-

module. Since R1 is an integral domain, we can find one g ∈ R1 − (0) such that
C ⊗R1

R1[g
−1] is a free R1[g

−1]-module. Since T is a free R1-module, this proves
S1 ⊗R1

R1[g
−1] = S ⊗R R[f−1] is a free R[f−1]-module for f = αg. □

Corollary 14.4.20. Let R be a noetherian integral domain and S a faithful
finitely generated commutative R-algebra. There exists a nonzero element f in R
such that S[f−1] is a faithful R[f−1]-algebra which is free as an R[f−1]-module.

In the language of Algebraic Geometry, Corollary 14.4.20 has the following
interpretation. Let ϕ : R → S be the structure homomorphism. Then over the
nonempty open subscheme U = U(f) = SpecR − V (f), ϕ♯ is faithfully flat. That
is, if V = (ϕ♯)−1(U), then the restriction of ϕ♯ to V → U is a faithfully flat
morphism.

Theorem 14.4.21. Let R be a commutative noetherian ring, S a finitely gen-
erated commutative R-algebra, and M a finitely generated S-module. Let U be the
set of all points P in SpecS such that MP =M ⊗S SP is a flat R-module. Then

(1) U is an open (possibly empty) subset of SpecS.
(2) If going down holds for R → S (in particular, if S is flat over R), then

the image of U in SpecR is open.

Proof. The idea is to apply Lemma 14.4.9 (2) to show that U is open. If U is
empty, there is nothing to prove.

Step 1: First we show that U is stable under generalization. Let P ∈ U and
assume Q is a generalization of P . The functor (·) ⊗R MP from MR to MSP

is
exact since P ∈ U . The functor (·)⊗SP

SQ from MSP
to MSQ

is exact since SQ is
a localization of SP . Thus (·) ⊗R MP ⊗SP

SQ = (·) ⊗R MQ is exact. This shows
Q ∈ U .

Step 2: Assume P ∈ U and prove that U contains a nonempty open subset of
the irreducible closed set V (P ). Let I = P∩R and letQ ∈ V (P ). Then ISQ ⊆ QSQ,
so by Example 14.4.12 (1), MQ is ideal-wise separated for I. Let R0 = R/I and
(MQ)0 = MQ/IMQ. By the local criteria for flatness (Theorem 14.4.13), MQ is a

flat R-module if and only if (MQ)0 is a flat R0-module and TorR1 (MQ, R0) = (0).
Step 2.1: By Theorem 14.4.19 applied to R0, S0 = S/IS, and M0 = M/IM ,

there exists f ∈ (R−I) ⊆ (S−P ) such thatM0[f
−1] is a free R0[f

−1]-module. Let
W = (SpecS − V (f)) ∩ V (P ). Since W consists of those specializations of P that
do not contain f ,W is an open subset of V (P ) which contains P . For Q ∈W , SQ is
a localization of S[f−1], so by Exercise 7.1.18, SQ/ISQ is a localization of S0[f

−1].
It follows from these observations that the functor (·) ⊗R0

M0[f
−1] from MR0

to
MS0[f−1] is exact, and the functor (·)⊗S0[f−1] (SQ/ISQ) from MS0[f−1] to MSQ/ISQ

is exact. Combining the two, it follows that (·)⊗R0
M0[f

−1]⊗S0[f−1] (SQ/ISQ) =
(·)⊗R0

(MQ)0 is exact. This shows (MQ)0 is R0-flat for all Q in the nonempty open
W ⊆ V (P ).

Step 2.2: Since P ∈ U , TorR1
(
MP , R0

)
= 0. By Lemma 12.3.5, TorR1 (M,R0)⊗S

SP = 0. Again by Lemma 12.3.5, TorR1 (M,R0) is a finitely generated S-module.
By Lemma 7.1.7, there exists an open neighborhood T of P in SpecS such that
TorR1 (M,R0) ⊗S SQ = 0 for all Q ∈ T . By Lemma 12.3.5, TorR1

(
MQ, R0

)
= 0 for

all Q in the nonempty open T ⊆ V (P ).
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Step 2.3: If W is from Step 2.1 and T is from Step 2.2, then for all Q in W ∩T ,
MQ is flat over R. Therefore U contains W ∩ T which is a nonempty open subset
of V (P ). □

5. Complete I-adic Rings and Inverse Limits

The main result of this section, Corolary 14.5.4, provides sufficient conditions
on a directed system of noetherian local rings such that the direct limit is again a
noetherian local ring. The proof is a compilation of results from all of the following
sources: [39], [12], [48], and [23].

Proposition 14.5.1. Let {Ai, ϕji} be an inverse system of discrete commutative

rings for the index set {0, 1, 2, . . . }. Let {Mi, ψ
j
i } be an inverse system of modules

over the inverse system of rings {Ai, ϕji}. For each 0 ≤ i ≤ j, define nj to be the

kernel of ϕj0 : Aj → A0, assume ϕii : Ai → Ai is the identity mapping, and

0→ ni+1
j → Aj

ϕj
i−→ Ai → 0

and

0→ ni+1
j Mj →Mj

ψj
i−−→Mi → 0

are exact sequences. If A = lim←−Ai and M = lim←−Mi, then the following are true.

(1) A is a separated and complete topological ring, M is a separated and com-
plete topological A-module, and the natural maps αj : A→ Aj, βj :M →
Mj, are onto.

(2) If M0 is a finitely generated A0-module, then M is a finitely generated
A-module. More specifically, if S is a finite subset of M and β0(S) is a
generating set for M0, then S is a generating set for M .

Proof. (1): This follows from Proposition 11.1.7, Corollary 11.1.10, and the
definition of inverse limit (Definition 6.8.12).

(2): For all ℓ ≤ k, the diagram

0 // ni+1
i+ℓ

��

// Ai+ℓ

ϕi+ℓ
i+k

��

ϕi+ℓ
i // Ai

ϕi
i

��

// 0

0 // ni+1
i+k

// Ai+k
ϕi+k
i // Ai // 0

commutes and the vertical arrows are onto. By Proposition 6.8.19, if we define
mi+1 to be the kernel of αi : A→ Ai, then

mi+1 = lim←−
k

ni+1
i+k.

Similarly, if we set Ni+1 to be the kernel of βi :M →Mi, then

Ni+1 = lim←−
k

ni+1
i+kMi+k.
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It follows from the commutative diagram

0 // mi+k+1

��

// A

=

��

αi+k // Ai+k

ϕi+k
i

��

// 0

0 // mi+1
// A

αi // Ai // 0

that

(5.1) αi+k(mi+1) = kerϕi+ki = ni+1
i+k.

Likewise,

(5.2) βi+k(Ni+1) = ni+1
i+kMi+k.

For i ≥ 1 and j ≥ 1,

βi+j−1(miNj) = αi+j−1(mi)βi+j−1(Nj)

= nii+j−1n
j
i+j−1Mi+j−1

= ni+ji+j−1Mi+j−1

= 0

since ni+ji+j−1 is the kernel of αi+ji+j . This shows that miNj ⊆ kerβi+j−1 = Ni+j .

Similarly, one checks that mimj ⊆ mi+j . Defining m0 = A, and N0 =M , {mi} is a
filtration on A and {Ni} is a compatible filtration on M . The reader should verify
that the topologies on A and M are those defined by the filtrations {mi} and {Ni}.

Let S be a finite subset of M and assume β0(S) is a generating set for M0.
Let M ′ be the submodule of M generated by S. Let a be an ideal in A such that
α1(a) = n1. We are going to prove

(5.3) Ni = aiM ′ +Ni+1

for all i ≥ 0. Define ai = αi(a) and M ′i = βi(M
′). Since Ni+1 = kerβi, to prove

(5.3) it suffices to prove

(5.4) βi(Ni) = βi(a
iM ′) = αi(a

i)βi(M
′) = aiiM

′
i .

Since β0(N0) = β0(M) = M0 is equal to M ′0 = β0(M
′) = M0, we see that (5.4) is

satisfied for i = 0. For i ≥ 1, the diagram

0 // ni

��

// Ai

ϕi
1

��

ϕi
0 // A0

=

��

// 0

0 // n1 // A1

ϕ1
0 // A0

// 0

commutes and the vertical arrows are onto. Therefore, ϕi1(ni) = n1. Since the
diagram

A

αi   

α1 // A1

Ai

ϕi
1

OO
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commutes, ϕi1(ni) = n1 = α1(a) = ϕi1αi(a) = ϕi1(ai). Since n2i = kerϕi1, it follows
that ni = ai + n2i . For i ≥ 1 the diagram

M

βi !!

β0 // M0

Mi

ψi
0

OO

commutes and ψi0 is onto. Therefore, ψi0(M
′
i) = ψi0βi(M

′) = β0(M
′) = M0 =

ψi0(Mi). Since niMi = kerψi0, it follows that Mi = M ′i + niMi. Combining these
results, we have

(5.5) niiMi = (ai + n2i )
i(M ′i + niMi).

For 0 ≤ k ≤ i we have aki n
i+1−k
i ⊆ ni+1

i = 0. From this and (5.2), we see that (5.5)
collapses to

βi(Ni) = niiMi = aiiM
′
i .

Together with (5.4), this proves (5.3).
From (5.1), m1 = α−11 (n1). Therefore, a ⊆ m1, and ai ⊆ mi1 ⊆ mi. From (5.3),

this shows Ni ⊆ miM
′ + Ni+1. On the other hand, miM ⊆ Ni, from which it

follows that
Ni = miM

′ +Ni+1.

It follows from Corollary 11.3.19 that M ′ =M . □

Corollary 14.5.2. In the context of Proposition 14.5.1, assume M0 is a
finitely generated A0-module and that the ideal n1 of A1 is finitely generated. Let
m1 be the kernel of α0 : A→ A0. Then the following are true.

(1) The topologies on A and M are the m1-adic topologies.
(2) For all i ≥ 0, the sequences

0→ mi+1
1 → A

αi−→ Ai → 0

and

0→ mi+1
1 M →M

βi−→Mi → 0

are exact.
(3) m1/m

2
1 is a finitely generated A-module.

Proof. We retain the notation established in the proof of Proposition 14.5.1.
Since n1 is a finitely generated ideal in A1, we assume a is a finitely generated ideal
in A such that α1(a) = n1. Let i ≥ 0 be any integer. Since a and M are finitely
generated A-modules, so is aiM . For all j ≥ 0, it follows from (5.3) that

Ni+j = aj(aiM) +Ni+j+1 ⊆ mj(a
iM) +Ni+j+1.

On the other hand, mj(a
iM) ⊆ mjmiM ⊆ mi+jM ⊆ Ni+j . This shows
Ni+j = mj(a

iM) +Ni+j+1.

Define a filtration {Nij}j∈Z on Ni by

Nij =

{
Ni if j < 0

Ni+j if j ≥ 0.

Applying Corollary 11.3.19, we obtain Ni = aiM . Since ai ⊆ mi1 ⊆ mi, we have
Ni ⊆ mi1M ⊆ miM ⊆ Ni. Hence, Ni = mi1M . If we take Mi = Ai, this shows
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mi = mi1, and the proof of (1) is complete. Part (2) follows from (1) and the
definitions for mi and Ni. By (5.3), m1 = a+m2

1, which proves Part (3). □

Example 14.5.3. Let R be a commutative ring and I an ideal in R such that
I/I2 is a finitely generated R/I-module. Let R̂ = lim←−nR/I

n be the separated

completion of R. With respect to the filtration {În}, R̂ is separated and com-
plete (Corollary 11.1.10). The reader should verify that the inverse system of rings

{R/In} satisfies the hypotheses of Corollary 14.5.2, hence the topology on R̂ is the

Î-adic topology. Moreover, Î/Î2 ∼= I/I2 is finitely generated over R̂/Î.

Corollary 14.5.4. Let {Ai, ϕij} be a directed system of commutative local
rings for a directed index set I. Let mi denote the maximal ideal of Ai. For each
i ≤ j, assume ϕij : Ai → Aj is a local homomorphism of local rings. If A = lim−→Ai,
then the following are true.

(1) A is a local ring with maximal ideal m = lim−→i
mi, each homomorphism

αi : Ai → A is a local homomorphism of local rings, and the residue field
of A is lim−→i

Ai/mi.

(2) If mj = miAj, for each i ≤ j, then miA = m.
(3) For each i ≤ j, assume mj = miAj and Aj is a faithfully flat Ai-module.

If each Ai is noetherian, then A is noetherian.

Proof. (1): Let m =
⋃
i αi(mi). The reader should verify that m is the unique

maximal ideal of A. Take the direct limit of the exact sequences

0→ mi → Ai → Ai/mi → 0

and apply Theorem 6.8.6 to get the exact sequence

0→ m→ A→ A/m→ 0.

(2): The sequence mi ⊗Ai Aj → mj → 0 is exact. The functor lim−→j
( ) is exact

(Theorem 6.8.6) and commutes with tensor products (Proposition 6.8.8). Hence
the sequence mi ⊗Ai

A→ m→ 0 is exact.
(3): By Exercise 6.8.30 and Exercise 7.5.27, A is faithfully flat over each Ai.

Therefore, 0→ mni ⊗Ai A→ Ai ⊗Ai A is exact, and mni ⊗Ai A→ mni A = mn is an
isomorphism. It follows that

mn/mn+1 ∼= (mni A) /
(
mn+1
i A

)
∼=
(
mni /m

n+1
i

)
⊗Ai

A

∼=
(
mni /m

n+1
i

)
⊗Ai/mi

(Ai/mi ⊗Ai
A)

∼=
(
mni /m

n+1
i

)
⊗Ai/mi

A/m

are isomorphisms of A/m-vector spaces. Since Ai is noetherian, m
n
i /m

n+1
i is a finite

dimensional Ai/mi-vector space. Therefore, mn/mn+1 is finite dimensional over

A/m. Let Â = lim←−A/m
n. By (2), Â = lim←−A/m

n
i A, for each i. By Example 14.5.3

and Proposition 11.2.2, Â is noetherian.
The maximal ideal of Â is m̂. By Proposition 11.3.1, we have m̂ = mÂ = miÂ,

for each i. Because A is flat over Ai, (Ai/mi
n)⊗Ai A is flat over Ai/m

n
i . Therefore,

Â/mi
nÂ = A/mi

nA = Ai/m
n
i ⊗Ai

A
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is flat over Ai/m
n
i . In the terminology of Example 14.4.12 (1), the Ai-module Â is

ideal-wise separated for mi. By (6) implies (1) of Theorem 14.4.13, it follows that Â

is flat over Ai. By Exercise 7.5.27, Â is faithfully flat over Ai. By Exercise 6.8.31,
Â is faithfully flat over A. By Exercise 7.6.24, A is noetherian. □



CHAPTER 15

Normal Integral Domains

1. Normal Rings and Regular Rings

1.1. Normal Integral Domains.

Definition 15.1.1. Let R be an integral domain with quotient field K. If R
is integrally closed in K, then we say R is normal. Let u ∈ K. We say u is almost
integral over R in case there exists r ∈ R − (0) such that run ∈ R for all n > 0.
We say R is completely normal in case the set of all elements in K that are almost
integral over R is equal to R itself.

Lemma 15.1.2. Let R be an integral domain with quotient field K.

(1) If u ∈ K and u is integral over R, then u is almost integral over R.
(2) If u, v ∈ K are both almost integral over R, then u+ v and uv are almost

integral over R.
(3) If R is noetherian and u ∈ K, then u is almost integral over R if and only

if u is integral over R.

Proof. (1): By Proposition 10.1.2, there exists m ≥ 1 such that R[u] is gen-
erated as an R-module by 1, u, u2, . . . , um−1. Write u = a/b for some a, b ∈ R. For
i = 1, . . . ,m− 1 we have bm−1ui ∈ R. The rest is left to the reader.

(2): Is left to the reader.
(3): Assume u is almost integral and r ∈ R − (0) such that run ∈ R for all

n > 0. Consider r−1R, which is a principal R-submodule of K. Hence R[u] is an
R-submodule of the finitely generated R-module r−1R. By Corollary 7.6.12, R[u]
is finitely generated. By

Proposition 10.1.2, u is integral over R. The converse follows from Part (1). □

Example 15.1.3. IfR is a noetherian normal integral domain, then Lemma 15.1.2 (3)
implies that R is completely normal. In particular, if R is a UFD, then R is normal
by Example 10.1.6. If R is a noetherian UFD, then R is completely normal. If k is
a field, then k[x] and k[[x]] are completely normal.

Definition 15.1.4. Let R be a commutative ring. We say R is a normal ring
in case RP is a normal local integral domain for each P ∈ SpecR. We say R is
a regular ring in case RP is a regular local ring (see Definition 13.6.14) for each
P ∈ SpecR.

Lemma 15.1.5. Let R be a commutative noetherian ring with the property that
Rm is an integral domain, for each maximal ideal m ∈ MaxR. Let P1, . . . , Pn be
the distinct minimal primes of R.

(1) The natural map

R
ϕ−→ R/P1 ⊕ · · · ⊕R/Pn

635
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is an isomorphism.
(2) The nil radical of R, Rad (0), is equal to (0).
(3) R is a normal ring if and only if each ring R/Pi is a normal integral

domain.

Proof. By Corollary 7.6.15, there are only finitely many minimal prime over-
ideals of (0).

(1) and (2): For each maximal ideal m ∈ MaxR, the local ring Rm is an
integral domain. If I = Rad (0) is the nil radical of R, then Im = 0 for each m.
By Proposition 7.1.6, I = 0. By Exercise 13.2.18, P1 ∩ · · · ∩ Pn = (0). Suppose
m is a maximal ideal such that Pi + Pj ⊆ m. The integral domain Rm has a
unique minimal prime ideal, namely (0). This means PiRm = PjRm = (0). By
Exercise 7.3.26, we conclude i = j. If n > 1, then the minimal prime ideals of R
are pairwise comaximal. The rest follows from the Chinese Remainder Theorem
(Theorem 3.3.8).

(3): Is left to the reader. □

Lemma 15.1.6. Let R be a commutative ring.

(1) If R is a completely normal integral domain, then so is R[x1, . . . , xn].
(2) If R is a completely normal integral domain, then so is R[[x1, . . . , xn]].
(3) If R is a normal ring, then so is R[x1, . . . , xn].

Proof. (1): It is enough to prove R[x] is completely normal. Let K be the
quotient field of R. We have the tower of subrings R[x] ⊆ K[x] ⊆ K(x) and K(x)
is the quotient field of R[x] as well as K[x]. By Example 15.1.3, K[x] is completely
normal. Let u ∈ K(x) and assume u is almost integral over R[x]. Then u is almost
integral over K[x], hence u ∈ K[x]. Let f ∈ R[x] and assume fun ∈ R[x] for all n.
Write u = utx

t + ut+1x
t+1 + · · · + uTx

T , where ui ∈ K, t ≥ 0, and ut ̸= 0. Write
f = fsx

s + fs+1x
s+1 + · · ·+ fSx

S , where fi ∈ R, s ≥ 0, and fs ̸= 0. Since R is an
integral domain, in fun, the coefficient of the lowest degree monomial is equal to
fsu

n
t . Therefore, ut is almost integral over R, hence ut ∈ R. By Lemma 15.1.2 (2)

we see that u − utxt = ut+1x
t+1 + · · · + uTx

T is almost integral over R[x]. By a
finite iteration, we can prove that every coefficient of u is in R.

(2): Mimic the proof of Part (1). The proof is left to the reader.
(3): It is enough to prove R[x] is normal. Let Q be a prime ideal in R[x].

We need to show R[x]Q is a normal integral domain. Let P = Q ∩ R. Then
R[x]Q is a localization of RP [x]. By assumption, RP is a normal integral domain.
By Proposition 10.1.9, it is enough to prove the result when R is a local normal
integral domain. Let K be the quotient field of R. Let u ∈ K(x) and assume u is
integral over R[x]. Then u is integral over K[x] and K[x] is integrally closed, so
u ∈ K[x]. We can write u = urx

r+· · ·+u1x+u0 where each ui ∈ K. Each ui can be
represented as a fraction ui = ti/bi, for some ti, bi ∈ R. There is a monic polynomial
f(y) ∈ R[x][y] such that f(u) = 0. Write f(y) = ym + fm−1y

m−1 + · · ·+ f1y + f0,
where each fi ∈ R[x]. Let S be the subring of R generated by 1, b0, . . . , br, t0, . . . , tr,
together with all of the coefficients of all of the polynomials f0, . . . , fm−1. Since
S is a finitely generated Z-algebra, S is noetherian, by the Hilbert Basis Theorem
(Theorem 10.2.1). Also, S is an integral domain and S[x] ⊆ R[x]. If F is the
quotient field of S, then F ⊆ K and u ∈ F [x]. Therefore, u is integral over
S[x]. By the proof of Part (1), each coefficient of u is almost integral over S. By
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Lemma 15.1.2 (3), each coefficient of u is integral over S. Therefore, each coefficient
of u is integral over R. Since R is integrally closed, this proves u ∈ R[x]. □

Let R be a commutative ring and I an ideal of R such that the I-adic topology
of R is separated. In this case,

⋂
n I

n = (0). As in Example 11.2.3, let grI(R) =⊕
n≥0 I

n/In+1 be the graded ring associated to the I-adic filtration R = I0 ⊃
I1 ⊇ I2 ⊃ . . . . For notational simplicity, set grn(R) = In/In+1. Then grI(R) =
gr0(R)⊕gr1(R)⊕gr2(R)⊕· · · . Given x ∈ R−(0), there exists a unique nonnegative
integer n such that x ∈ In and x ̸∈ In+1. This integer n is called the order of x
with respect to I, and is written ord(x). Define ord(0) = ∞. The reader should
verify that ord(xy) ≥ ord(x) + ord(y) and ord(x+ y) ≥ min(ord(x), ord(y)).

If x ̸= 0 and n = ord(x), then the image of x in grn(R) = In/In+1 is denoted
λ(x). We call λ(x) the least form of x. Define λ(0) = 0.

Theorem 15.1.7. Let R be a commutative ring and I an ideal of R such that
the I-adic topology of R is separated.

(1) If grI(R) is an integral domain, then R is an integral domain and for any
x, y ∈ R, ord(xy) = ord(x) + ord(y) and λ(xy) = λ(x)λ(y).

(2) If R is noetherian, I is contained in the Jacobson radical of R, and grI(R)
is a normal integral domain, then R is a normal integral domain.

Proof. (1): Let x and y be nonzero elements of R. Write m = ord(x) and
n = ord(y). Then λ(x) ∈ grm(R) is nonzero and λ(y) ∈ grn(R) is nonzero. Since
λ(x)λ(y) is a nonzero element of grm+n(R), we have xy ∈ Im+n and xy ̸∈ Im+n+1.
This proves xy ̸= 0. This also proves ord(xy) = ord(x) + ord(y) and λ(xy) =
λ(x)λ(y).

(2): By Part (1), R is an integral domain. Let a/b be an element of the quotient
field of R which is integral over R. We must prove that a ∈ bR. By Corollary 11.3.6,
the I-adic topology of R/bR is separated. In other words, bR = ∩n(bR + In),
and it suffices to prove a ∈ bR + In for all n ≥ 0. The n = 0 case is trivially
true, since I0 = R. Inductively assume n > 0 and that a ∈ bR + In−1. Write
a = bx + c, for some c ∈ In−1 and x ∈ R. It is enough to prove c ∈ bR + In.
Assume c ̸= 0, otherwise the proof is trivial. Since c/b = a/b + x is integral over
R, c/b is almost integral over R, by Lemma 15.1.2. There exists d ∈ R − (0)
such that d(c/b)m ∈ R for all m > 0. Therefore, dcm ∈ bmR for all m > 0.
By Part (1), λ is multiplicative, so λ(d)λ(c)m ∈ λ(b)m grI(R), for all m. This
implies λ(c)/λ(b) is almost integral over grI(R). By Proposition 11.2.9, grI(R) is
noetherian. By Lemma 15.1.2, λ(c)/λ(b) is integral over grI(R). By hypothesis,
grI(R) is integrally closed, hence λ(c) ∈ λ(b) grI(R). Since λ(c) is homogeneous,
there exists a homogeneous element λ(e) ∈ grI(R) such that λ(c) = λ(b)λ(e). By
Part (1), λ(c) = λ(be). By definition of λ, this implies ord(c) < ord(c − be). By
choice of c we have n− 1 < ord(c) < ord(c− be). Thus, c− be ∈ In, which proves
c ∈ bR+ In. □

1.2. Regular Local Rings. A generalization of Theorem 15.1.8 for the ideal
generated by a regular sequence in a commutative noetherian ring is proved in
Corollary 15.3.7.

Theorem 15.1.8. Let R be a noetherian local ring with maximal ideal m, and
residue field k = R/m. Then R is a regular local ring of Krull dimension n if and
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only if the graded ring grm(R) associated to the m-adic filtration is isomorphic as
a graded k-algebra to a polynomial ring k[t1, . . . , tn].

Proof. Assume that R is regular. By Definition 13.6.14, m is generated by
a regular system of parameters, say m = x1R + · · · + xnR. By Example 11.2.3,
grm(R) = R/m⊕m/m2 ⊕m2/m3 ⊕ · · · is a k = R/m-algebra which is generated by
λ(x1), . . . , λ(xn). As in the proof of Proposition 13.6.7, let S = k[t1, . . . , tn] and
define θ : S → grm(R) by θ(ti) = λ(xi). Then θ is a graded homomorphism of
graded k-algebras and θ is onto. Let I denote the kernel of θ. Then I is a graded
ideal, hence is generated by homogeneous polynomials. If I = (0), then we are
done. For contradiction’s sake, assume f is a homogeneous polynomial of degree N
in I. The sequence of graded S-modules

0→ S(−N)
ℓf−→ S → S/fS → 0

is exact, where S(−N) is the twisted module. If m > N , the components of degree
m give the sequence

0→ Sm−N
ℓf−→ Sm → (S/fS)m → 0

which is still exact. By Example 13.5.10,
m∑
d=0

ℓ(Sd) =

(
n

n

)
+ · · ·+

(
m− 1 + n

n

)
=

(
m+ n

n

)
,

and
m−N∑
d=0

ℓ(Sd) =

(
n

n

)
+ · · ·+

(
m−N − 1 + n

n

)
=

(
m−N + n

n

)
.

Since

(S/fS)0 ⊕ (S/fS)1 ⊕ · · · ⊕ (S/fS)m
θ−→ R/m⊕m/m2 ⊕ · · · ⊕mm/mm+1

is onto, applying the length function, we have(
m+ n

n

)
−
(
m−N + n

n

)
≥ ℓ

(
R/mm+1

)
.

The left hand side is a numerical polynomial in m of degree n−1, by Lemma 13.5.8.
At the same time, Theorem 13.6.11 says the function ℓ(A/mm+1) is a polynomial
in m of degree n. This contradiction implies I = (0).

Conversely, assume grm(R) is isomorphic to a polynomial ring k[t1, . . . , tn].
The Hilbert function of R is therefore ℓ(R/mm+1) =

(
m+n
n

)
, a polynomial in m

of degree n. Corollary 13.6.13 says R has Krull dimension n. Also, dimk m/m
2 =

dimk(kt1 + · · ·+ ktn) = n. By Exercise 13.6.17, R is regular. □

Corollary 15.1.9. If R is a commutative noetherian regular local ring, then
R is a normal integral domain.

Proof. This follows from Theorem 15.1.7 and Theorem 15.1.8. □

Corollary 15.1.10. Let R be a commutative noetherian local ring with max-
imal ideal m. Let R̂ = lim←−R/m

n be the completion of R with respect to the m-adic
topology.

(1) R̂ is a noetherian local ring with maximal ideal m̂ = mR̂.

(2) The Krull dimension of R is equal to the Krull dimension of R̂.
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(3) R→ R̂ is faithfully flat.

(4) R is a regular local ring if and only if R̂ is a regular local ring.

Proof. (1): Follows from Corollary 11.1.12 and Corollary 11.3.18.
(2): This is Corollary 13.6.13 (4).
(3): Follows from Theorem 11.3.7.

(4): By Corollary 11.3.2, the associated graded rings grm(R) and grm̂(R̂) are
isomorphic as graded rings. Part (4) follows from Theorem 15.1.8. □

1.3. Exercises.

Exercise 15.1.11. Let k be an algebraically closed field of characteristic dif-
ferent from 2 and 3 and let x and y be indeterminates. Let f = y2 − x2 + x3 and
R = k[x, y]/(f). Define α : k[x]→ R by x 7→ x.

(1) Show that α is one-to-one.
(2) Show that R is a finitely generated k[x]-module.
(3) Show that R is not a separable k[x]-module.
(4) Show that R is an integral domain.
(5) Show that R is not a normal integral domain.

2. Valuations and Valuation Rings

2.1. Valuation Rings. In this section we employ the notation R∗ to designate
the group of invertible elements of a ring.

Lemma 15.2.1. Let R be an integral domain with quotient field K. The follow-
ing are equivalent.

(1) For all x ∈ K∗, either x ∈ R, or x−1 ∈ R.
(2) For all a, b in R, either a | b, or b | a.

Proof. Is left to the reader. □

If R is an integral domain that satisfies the equivalent parts of Lemma 15.2.1,
then we say R is a valuation ring of K.

Let G be an abelian group, written additively. We say G is an ordered group, if
there is a partial order on G that preserves the binary operation. In other words,
if u ≤ v and x ≤ y, then u+ x ≤ v + y. We say G is a totally ordered group, if the
partial order is a chain.

Example 15.2.2. The set R is partially ordered by the usual “less than” rela-
tion. Under addition, R is a totally ordered group. The subgroup Z is also a totally
ordered group.

A valuation on a field F is a function ν : F ∗ → G, for a totally ordered group
G which satisfies

(1) ν(xy) = ν(x) + ν(y), and
(2) if x+ y ̸= 0, then ν(x+ y) ≥ min(ν(x), ν(y)).

The reader should verify that ν(1) = 0.

Lemma 15.2.3. Suppose F is a field and ν : F ∗ → G is a valuation on F . Let

R = {0} ∪ {x ∈ F ∗ | ν(x) ≥ 0}.
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Then R is a valuation ring of F which we call the valuation ring associated to ν.
Conversely, if R is a valuation ring of F , then there exists a valuation v : F ∗ → H
for some totally ordered group H such that R is the valuation ring of v.

Proof. Is left to the reader (see Exercise 15.2.8). □

Let F be a field and R ⊆ S subrings of F . Assume R and S are local rings and
that the inclusion homomorphism R → S is a local homomorphism of local rings
(or, equivalently, the maximal ideal of S contains the maximal ideal of R). In this
case, we say S dominates R. The reader should verify that this defines a partial
order on the set of all local subrings of F .

Lemma 15.2.4. Let F be a field and ν : F ∗ → G a valuation on F . Let R be
the valuation ring of ν.

(1) R is a local ring with maximal ideal mR = {0} ∪ {x ∈ F ∗ | ν(x) > 0}.
(2) If R ⊆ A ⊆ F is a tower of local subrings of F such that A dominates R,

then R = A. In other words, R is a maximal local subring with respect to
the relation “dominates”.

(3) R is integrally closed in F .

Proof. (1) and (2): Are left to the reader.
(3): Let x ∈ F and assume x is integral over R. We prove x ∈ R. Assume the

contrary. By Lemma 15.2.1, x−1 ∈ R. Since x is integral over R, there are elements
r0, . . . , rn−1 in R such that

xn + rn−1x
n−1 + · · ·+ r1x+ r0 = 0

where n > 0. Multiply by x1−n and solve for x. Then

x = −(x−1)n−1(rn−1xn−1 + · · ·+ r1x+ r0)

= −(rn−1 + · · ·+ r1x
2−n + r0x

1−n)

is in R, a contradiction. □

Let F be a field and Ω an algebraically closed field. Consider the set

C(Ω) = {(R, f) | R is a subring of F and f : R→ Ω is a homomorphism of rings}.

If (R,F ) and (S, g) are in C, then we say (S, g) extends (R, f), in case R ⊆ S and
the diagram

R

��

f // Ω

S

g

??

commutes. The reader should verify that this defines a partial order on C(Ω).

Lemma 15.2.5. Let F be a field, R a local subring of F which is maximal
with respect to the relation “dominates”. Let mR be the maximal ideal of R and
kR = R/m the residue field. Let k̄ be an algebraic closure of kR and η : R→ k̄ the
natural map. Then (R, η) is a maximal element of C(k̄).
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Proof. Assume R ⊆ A ⊆ F is a tower of subrings of F and h : A → k̄ is a
homomorphism that extends η. The diagram

R

��

η // k̄

A

h

??

commutes. If P denotes the kernel of h, then it is easy to see that P ∩ R = mR.
Then R → AP is a local homomorphism of local rings and AP dominates R. By
hypothesis, R is equal to AP . We conclude that R = A. □

Lemma 15.2.6. Let F be a field, Ω an algebraically closed field, and (R, f) a
maximal element of C(Ω). Then R is a valuation ring of F .

Proof. Step 1: R is a local ring, with maximal ideal m = ker g. Since the
image of f is a subring of the field Ω, we know that m = ker g is a prime ideal of R.
Consider the tower of subrings of F , R ⊆ RP ⊆ F . By Theorem 3.5.5, f extends
uniquely to g : RP → Ω. By maximality of (R, f), we conclude that R = RP .
Therefore, R is local and m is the maximal ideal.

Step 2: For any nonzero α ∈ F , either mR[α] ̸= R[α], or mR[α−1] ̸= R[α−1].
Assume the contrary. Then m[α] = R[α] and m[α−1] = R[α]. There exist elements
a0, . . . , am ∈ m such that

(2.1) 1 = a0 + a1α+ · · ·+ amα
m.

Among all such relations, pick one such that m is minimal. Likewise, there is a
relation

(2.2) 1 = b0 + b1α
−1 + · · ·+ bnα

−n

where b0, . . . , bn ∈ m and n is minimal. Without loss of generality assume m ≥ n.
Multiply (2.2) by αn and rearrange to get

(1− b0)αn = b1α
n−1 + · · ·+ bn.

By Step 1, R is a local ring, so 1 − b0 is invertible in R. Solve for αn and we can
write

αn = c1α
n−1 + · · ·+ cn

for some c1, . . . , cn ∈ m. Multiply by αm−n to get αm = c1α
m−1 + · · · + cnα

m−n.
Substituting this in (2.1), we get a relation with degree less thanm, a contradiction.

Step 3: Let α ∈ F ∗ and prove that either α ∈ R, or α−1 ∈ R. Without loss
of generality we assume by Step 2 that mR[α] ̸= R[α]. Let M be a maximal ideal
of R[α] such that mR[α] ⊆ M . Now M ∩ R is a prime ideal of R which contains
the maximal ideal m. Hence M ∩R = m and we can view R[α]/M as an extension
field of R/m. The field R[α]/M is generated as an algebra over R/m by the image
of α. Therefore, R[α]/M is a finitely generated algebraic extension of R/m. By
Corollary 5.3.9, there exists a homomorphism R[α]→ Ω which extends f : R→ Ω.
Since (R, f) is maximal, we conclude that R = R[α]. □

Theorem 15.2.7. Let F be a field and R a subring of F .

(1) Let Ω be an algebraically closed field and f : R → Ω a homomorphism of
rings. Then there exists a valuation ring A of F and a homomorphism
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g : A → Ω such that (A, g) extends (R, f) and the kernel of g is equal to
the maximal ideal of A.

(2) If R is a local ring, then there exists a valuation ring A of F such that A
dominates R.

(3) The integral closure of R in F is equal to the intersection of the valuation
rings of F that contain R.

(4) If R is a local ring, then the integral closure of R in F is equal to the
intersection of the valuation rings of F that dominate R.

Proof. (2): Take Ω to be an algebraic closure of the residue field of R and let
η : R→ Ω be the natural map. Apply Part (1).

(1): Let C be the subset of C(Ω) consisting of those pairs (A, g) that extend
(R, f). Then C contains (R, f), hence is nonempty. Suppose {(Ai, fi)} is a chain
in C. The reader should verify that the union ∪fi : ∪Ai → Ω is also in C. By
Zorn’s Lemma, Proposition 1.3.3, C contains a maximal member, say (A, g). By
Lemma 15.2.6, A is a valuation ring of F and the kernel of f is the maximal ideal
of A.

(3): Let R̃ be the integral closure of R in F . Let A be a valuation ring of F

which contains R. By Lemma 15.2.4 (3), A is integrally closed. Therefore R̃ ⊆ A.

Conversely, suppose α ∈ F − R̃. The reader should verify that α ̸∈ R[α−1], so α−1
is not invertible in R[α−1]. There exists a maximal ideal M of R[α−1] such that
α−1 ∈ M . By Part (2), there exists a valuation ring A of F which dominates the
local ring R[α−1]M . Because α−1 is an element of the maximal ideal of A, A does
not contain α.

(4): In the proof of Part (3), notice that the diagram

R

ϕ

&&��
R[α−1]

η // R[α−1]/M

commutes. Since η(α−1) = 0, the image of ϕ is equal to the image of η. Therefore,
ϕ is onto and the kernel of ϕ is a maximal ideal of R. If R is local with maximal
ideal m, this proves M ∩R = m. The rest is left to the reader. □

2.2. Exercise.

Exercise 15.2.8. This exercise outlines a proof to the last part of Lemma 15.2.3.
Let F be a field and R a valuation ring of F . Define G to be the factor group F ∗/R∗.
There is a natural homomorphism of groups ν : F ∗ → G. The group G is an abelian
group, written multiplicatively. If x ∈ F ∗, the coset represented by x is denoted
ν(x).

(1) Define a binary relation on G by the rule ν(x) ≥ ν(y) if and only if
xy−1 ∈ R. Prove the following.
(a) ≥ is a well defined binary relation on G.
(b) ≥ is a partial order on G.
(c) ≥ preserves the group law on G, hence G is an ordered group.
(d) ≥ is a chain, hence G is a totally ordered group.

(2) ν : F ∗ → G is a valuation on F .
(3) The valuation ring of ν is R.
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2.3. Discrete Valuation Rings. If F is a field, a discrete valuation on F is a
valuation ν : F ∗ → Z such that ν is onto. The valuation ring of ν is R = {0}∪{x ∈
F ∗ | ν(x) ≥ 0}. Then R is a valuation ring of F . In particular, Lemma 15.2.4
implies that R is a local ring with maximal ideal m = {0} ∪ {x ∈ F ∗ | ν(x) > 0},
F is the field of fractions of R, and R is integrally closed in F . Since ν is onto, we
see that m ̸= (0), so dimR ≥ 1. An integral domain A is called a discrete valuation
ring (DVR), if there exists a discrete valuation on the field of fractions of A such
that A is the associated valuation ring.

Lemma 15.2.9. Let F be a field and ν a discrete valuation on F . Let R be the
associated DVR, with maximal ideal m.

(1) R is a PID.
(2) R is noetherian.
(3) For any element π ∈ R such that ν(π) = 1, m = πR. A complete list of

the ideals of R is (0), Rπ,Rπ2, . . . , R.
(4) dimR = 1.

Proof. (1): Let I be a proper ideal in R. Then I ⊆ m. Consider the set
S = {ν(x) | x ∈ I − (0)}. This is a nonempty subset of Z which has a lower bound.
By the Well Ordering Principle, Axiom 1.2.1, there exists a least element, say ν(z).
For any x ∈ I, we have ν(x/z) ≥ 0, so x/z ∈ R. Therefore, x = z(x/z) ∈ Rz. This
proves that I = Rz is principal.

(2): Follows from (1) and Theorem 3.4.16.
(3): If x, y ∈ R, then x and y are associates if and only if Rx = Ry, if and only

if xy−1 ∈ R∗, if and only if ν(x) = ν(y). Since ν : F ∗ → Z is onto, there exists
π ∈ R such that ν(π) = 1. Let I be a proper ideal of R. By Part (1), I = Rz for
some z ∈ R. Since I is proper, ν(z) = k > 0. Then ν(z) = ν(πk), so Rz = Rπk.
This proves every ideal of R is represented in the list. For i ≥ 0, the ideals Rπi are
distinct, since πi and πj are associates if and only if i = j.

(4): See Example 13.6.1. □

Theorem 15.2.10. Let R be a noetherian local integral domain with field of
fractions K, maximal ideal m and residue field k = R/m. If dim(R) = 1, the
following are equivalent.

(1) R is a DVR.
(2) R is a PID.
(3) R is regular.
(4) R is normal.
(5) m is a principal ideal.
(6) There exists an element π ∈ R such that every ideal of R is of the form

Rπn, for some n ≥ 0. We call π a local parameter for R.

Proof. (1) implies (2): This is Lemma 15.2.9.
(2) implies (1): There exists π ∈ R such that m = Rπ. The only prime ideals

of R are m and (0). By Exercise 3.5.10, any x ∈ K∗ can be factored uniquely as
x = uπν(x) for some integer ν(x) and u ∈ R∗. The reader should verify that the
function ν : K∗ → Z is a discrete valuation on K, R is the valuation ring associated
to ν, and the function ν does not depend on the choice of π.

(2) implies (3): There exists π ∈ R such that m = Rπ. Then π is a regular
system of parameters and R is regular, by Definition 13.6.14.
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(3) implies (4): Corollary 15.1.9.
(4) implies (5): Let x ∈ m − (0). Since dim(R) = 1, the only prime ideal that

contains Rx is m. Therefore, Rad (Rx) = m. By Corollary 13.1.4, there exists
n > 0 such that mn ⊆ Rx. If m = Rx, then we are done. Otherwise pick n such
that mn−1 ̸⊆ Rx. Let y ∈ mn−1−Rx and set π = xy−1 ∈ K. Then ym ⊆ mn ⊆ Rx
implies π−1m = yx−1m ⊆ R. Since π−1x = y ̸∈ Rx it follows that π−1 ̸∈ R. Since
R is integrally closed in K, it follows that π−1 is not integral over R. If π−1m ⊆ m,
then m is a faithful R[π−1]-module which is finitely generated as an R-module.
Proposition 10.1.2 implies π−1 is integral over R, a contradiction. Therefore, π−1m
is an ideal in R which is not contained in m. This means π−1m = R, π ∈ m, and
m = Rπ.

(5) implies (6): Let I be a proper ideal of R. Then I ⊆ m. Since dim(R) = 1, R
is not artinian. By Proposition 8.4.5, for all n ≥ 1, mn+1 ⊊ mn. There exists n ≥ 1
such that I ⊆ mn and I ̸⊆ mn+1. Pick y ∈ I such that y ∈ mn and y ̸∈ mn+1. There
exists π ∈ R such that m = Rπ. For some u ∈ R, we can write y = uπn. Since
y ̸∈ mn+1, we know that u ∈ R−m. That is, u ∈ R∗. It follows that πn = u−1y ∈ I,
so I = mn.

(6) implies (2): Is trivial. □

2.3.1. Completion of a Discrete Valuation Ring.

Theorem 15.2.11. Let R be a DVR with field of fractions K and maximal
ideal m = πR. Let R̂ = lim←−R/m

n be the completion of R with respect to the m-adic
topology.

(1) R̂ is a DVR with maximal ideal m̂ = πR̂.
(2) K is equal to the localization R[π−1].

(3) The quotient field of R̂ is K̂ = R̂⊗R K.

(4) K̂ is equal to the localization R̂[π−1].

(5) R̂ ∩K = R.

(6) Given a ∈ R̂ and p > 0 there exists b ∈ R such that a− b ∈ mp.

(7) Given a ∈ K̂ and p > 0 there exists b ∈ K such that a− b ∈ m̂p.

Proof. (1) – (4): By Corollary 15.1.10, R̂ is a DVR with maximal ideal m̂ =

πR̂ and R → R̂ is faithfully flat. It follows from Theorem 15.2.10 that K is
generated as an R-algebra by π−1. By the same argument, the field of fractions
of R̂ is generated by π−1. Consider the exact sequence R[x] → K → 0 where

x 7→ π−1. Tensor with R̂ to get the exact sequence R̂[x] → K̂ → 0. Therefore, K̂

is generated as a R̂-algebra by π−1, so K̂ is equal to the field of fractions of R̂.
(5): Let a ∈ R̂ ∩K. Since a ∈ R̂, ν(a) ≥ 0. Then a is in the valuation ring of

K, which is equal to R.
(6): Since R̂ is the completion of R with respect to the m-adic topology, the

open set a+mp has a nontrivial intersection with R.
(7): Is left to the reader. □

3. Some Local Algebra

3.1. Regular Sequences. Let R be a commutative ring, M an R-module,
and a1, . . . , an some elements of R. We denote by (a1, . . . , an) = Ra1 + · · · + Ran
the ideal which they generate and in the same fashion (a1, . . . , an)M = Ra1M +
· · ·+RanM .
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Definition 15.3.1. Let a1, . . . , ar be elements of R. We say a1, . . . , ar is a
regular sequence for M in case the following are satisfied.

(1) a1 is not a zero divisor for M ,
(2) for k = 2, . . . , r, ak is not a zero divisor for M/(a1, . . . , ak−1)M , and
(3) M ̸= (a1, . . . , ar)M .

If this is true, and if I is an ideal of R such that (a1, . . . , ar) ⊆ I, then we say
a1, . . . , ar is a regular sequence forM in I. A regular sequence a1, . . . , ar is maximal
if there is no b ∈ I such that a1, . . . , ar, b is a regular sequence for M in I.

Example 15.3.2. Let R be a regular local ring of dimension n and maximal
ideal m. By Definition 13.6.14, m is generated by a regular system of parameters,
say m = x1R + · · · + xnR. We will show in Theorem 15.3.31 (1) that x1, . . . , xn is
a regular sequence for R in m.

Lemma 15.3.3. Suppose a1, . . . , ar is a regular sequence for M . If ξ1, . . . , ξr
are elements of M and

∑r
i=1 aiξi = 0, then for all i, ξi ∈ (a1, . . . , ar)M .

Proof. If r = 1, then a1ξ1 = 0 implies ξ1 = 0. Inductively assume r > 1
and that the result is true for a regular sequence of length r − 1. We have arξr ∈
(a1, . . . , ar−1)M , which implies ξr ∈ (a1, . . . , ar−1)M . Write ξr =

∑r−1
i=1 aiζi, for

some ζi ∈ M . Hence 0 =
∑r−1
i=1 aiξi + ar

∑r−1
i=1 aiζi. By the induction hypothesis,

for each 1 ≤ i < r, ξi + arζi ∈ (a1, . . . , ar−1)M . Consequently each ξi is in
(a1, . . . , ar)M . □

Let S = R[x1, . . . , xn] be the polynomial ring in n variables with coefficients
in R. Give S the usual grading, where S0 = R and deg(xi) = 1, for each i.
By M [x1, . . . , xn] we denote the R-module M ⊗R R[x1, . . . , xn]. An element f of
M [x1, . . . , xn] can be viewed as a polynomial f(x1, . . . , xn) with coefficients in M .
Give T = M [x1, . . . , xn] the grading where T0 = M and deg(xi) = 1, for each i.
If (a1, . . . , an) ∈ Rn, then f(a1, . . . , an) ∈ (a1, . . . , an)M . Let I = (a1, . . . , an) and
grI(M) =

⊕∞
k=1 I

kM/Ik+1M the graded module associated to the I-adic filtration
of M . Given a homogeneous polynomial f ∈ Tk, f(a1, . . . , an) ∈ IkM . There is an
evaluation mapping

ϕk : Tk → IkM/Ik+1M

which maps f to the coset of f(a1, . . . , an). The reader should verify that ϕk
is onto. Sum over all k to get a graded homomorphism ϕ : T → grI(M). If
f ∈ IM [x1, . . . , xn] is homogeneous of degree k, then f(a1, . . . , an) ∈ Ik+1M . So ϕ
factors into

ϕ :M/IM [x1, . . . , xn]→ grI(M)

which is a surjective graded homomorphism. If ϕ is an isomorphism, then a1, . . . , an
is called a quasi-regular sequence for M .

Lemma 15.3.4. Let R be a commutative ring, M an R-module, a1, . . . , an ∈ R,
I = (a1, . . . , an). The following are equivalent.

(1) a1, . . . , an is a quasi-regular sequence for M .
(2) If f ∈M [x1, . . . , xn] is a homogeneous polynomial and f(a1, . . . , an) = 0,

then f ∈ IM [x1, . . . , xn].

Proof. (1) implies (2): Suppose f is homogeneous of degree k and f(a1, . . . , an) =
0. Since ϕ is one-to-one, f is in IM [x1, . . . , xn].
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(2) implies (1): Suppose f is homogeneous of degree k and that f(a1, . . . , an) ∈
Ik+1M . If k = 0, then this implies f ∈ IM and we are done. Suppose k ≥ 1. Since
Ik+1M = IkIM , there is a homogeneous polynomial g ∈ IM [x1, . . . , xn] such that
f(a1, . . . , an) = g(a1, . . . , an). If f = g, then we can stop. Otherwise, f − g is
a homogeneous polynomial of degree k such that (f − g)(a1, . . . , an) = 0. Then
f − g ∈ IM [x1, . . . , xn], hence f ∈ IM [x1, . . . , xn]. □

Definition 15.3.5. Let R be a commutative ring and M an R-module. If S
is a submodule of M and I is an ideal of R, then the module quotient of S over
I is defined to be S : I = {x ∈ M | Ix ⊆ S}. If M is R and S is an ideal of R,
this definition agrees with the ideal quotient defined in Exercise 3.2.30. If A is a
commutative ring containing R as a subring, then R : A is called the conductor
ideal from A to R (see Exercise 4.1.25).

Theorem 15.3.6. Let R be a commutative ring, M an R-module, a1, . . . , an ∈
R, I = (a1, . . . , an).

(1) Assume a1, . . . , an is a quasi-regular sequence for M and x is an element
of R such that IM : x = IM . Then IkM : x = IkM for all k > 0.

(2) If a1, . . . , an is a regular sequence for M , then a1, . . . , an is a quasi-regular
sequence for M .

(3) Assume
(a) M , M/(a1)M , M/(a1, a2)M , . . . , M/(a1, . . . , an−1)M are separated

for the I-adic topology, and
(b) a1, . . . , an is a quasi-regular sequence for M .
Then a1, . . . , an is a regular sequence for M .

Proof. (1): Inductively assume k > 1 and that the result is true for k − 1.
Suppose xξ ∈ IkM = IIk−1M ⊆ Ik−1M . By the induction hypothesis, ξ ∈ Ik−1M .
There exists a homogeneous polynomial f(x1, . . . , xn) in M [x1, . . . , xn] of degree
k − 1 such that ξ = f(a1, . . . , an). Thus xξ = xf(a1, . . . , an) is in I

kM . By quasi-
regularity, the polynomial xf is in IM [x1, . . . , xn], which implies the coefficients of
f are in IM : x = IM . So ξ = f(a1, . . . , an) is in I

kM .
(2): The proof is by induction on n. The basis step, n = 1, is left to the

reader. Assume n > 1 and that the result is true for a regular sequence of length
n−1. Let f inM [x1, . . . , xn] be a homogeneous polynomial of degree k and assume
f(a1, . . . , an) = 0. By Lemma 15.3.4, it suffices to show f is in IM [x1, . . . , xn]. If
k = 0 this is trivial. If k = 1, this is Lemma 15.3.3. Proceed by induction on k.
Assume k > 1 and that for any such homogeneous polynomial of degree k − 1, its
coefficients are in IM . Write

f(x1, . . . , xn) = xng(x1, . . . , xn) + h(x1, . . . , xn−1)

where g and h are homogeneous polynomials of degrees k − 1 and k respectively.
Then f(a1, . . . , an) = ang(a1, . . . , an)+h(a1, . . . , an−1) = 0, which says g(a1, . . . , an)
is in the set (a1, . . . , an−1)

kM : an. Because a1, . . . , an is a regular sequence,
(a1, . . . , an−1)M : an is equal to (a1, . . . , an−1)M . By our induction hypothesis,
a1, . . . , an−1 is quasi-regular. Part (1) implies that g(a1, . . . , an) is in (a1, . . . , an−1)

kM ⊆
IkM . Now g is homogeneous of degree k−1 and by induction on k and the proof of
Lemma 15.3.4, this implies g(x1, . . . , xn) is in IM [x1, . . . , xn]. Because g(a1, . . . , an)
is in (a1, . . . , an−1)

kM , there exists a homogeneous polynomial p(x1, . . . , xn−1) of
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degree k such that g(a1, . . . , an) = p(a1, . . . , an−1). Look at the polynomial

q(x1, . . . , xn−1) = h(x1, . . . , xn−1) + anp(x1, . . . , xn−1)

which is either 0 or homogeneous of degree k in n−1 variables. Because q(a1, . . . , an−1) =
f(a1, . . . , an) = 0, the induction hypothesis on n says q(x1, . . . , xn−1) is in IM [x1, . . . , xn−1].
This implies q(a1, . . . , an−1) is in Ik+1M . Now p(a1, . . . , an−1) = g(a1, . . . , an) is
in IkM , from which it follows that anp(a1, . . . , an−1) is in Ik+1M . This shows
h(a1, . . . , an−1) is in Ik+1M . By induction on n and the proof of Lemma 15.3.4,
this implies the coefficients of h are in IM . We conclude that the coefficients of f
are in IM .

(3): We must show conditions (1), (2) and (3) of Definition 15.3.1 are satis-
fied. Since M is separated for the I-adic topology we have

⋂
k>0 I

kM = (0). In
particular, M ̸= IM .

Step 1: Show that a1 is not a zero divisor for M . Suppose ξ ∈M and a1ξ = 0.
Consider f(x) = ξx1, a homogeneous linear polynomial in M [x1, . . . , xn]. Since
f(a1, . . . , an) = 0, by quasi-regularity ξ is in IM . There exists a homogeneous
linear polynomial f1 =

∑n
i=1mixi in M [x1, . . . , xn] such that f1(a1, . . . , an) =

ξ. In this case, a1f1(a1, . . . , an) is equal to f(a1, . . . , an) = 0, so the coefficients
of the homogeneous quadratic x1f1(x1, . . . , xn) are in IM . That is, for each mi

there exists a homogeneous linear polynomial fi2 such that mi = fi2(a1, . . . , an).
Consider the homogeneous quadratic polynomial

f2 =

n∑
i=1

fi2xi.

Then f2(a1, . . . , an) = ξ is in I2M . Moreover, a1f2(a1, . . . , an) = 0, so the co-
efficients of f2 are in IM . By an obvious iterative argument, we conclude that
ξ ∈ IkM for all k ≥ 1. Since M is separated in the I-adic topology, this proves
ξ = 0.

Step 2: Show that a2, . . . , an is a quasi-regular sequence for M/a1M . For
this, apply Lemma 15.3.4 (2). Let f be a homogeneous polynomial of degree k
in M [x2, . . . , xn]. Assume f(a2, . . . , an) ∈ a1M . For some ξ ∈ M , we can write
f(a2, . . . , an) = a1ξ. Since

⋂
IiM = (0), there exists i ≥ 0 such that ξ ∈ IiM −

Ii+1M . There is a homogeneous polynomial g in M [x1, . . . , xn] with degree i such
that ξ = g(a1, . . . , an). For contradiction’s sake, suppose i < k − 1. Then IkM ⊆
Ii+2M . Notice that x1g(x1, . . . , xn) is homogeneous of degree i + 1 and under
the evaluation map, a1g(a1, . . . , an) is in Ii+1M/Ii+2M . But a1g(a1, . . . , an) =
f(a2, . . . , an) ∈ IkM . Because a1, . . . , an is a quasi-regular sequence for M the
coefficients of g are in IM . Then ξ = g(a1, . . . , an) is in Ii+1M , a contradiction.
Consequently, we know i = k − 1. Set

h(x1, . . . , xn) = f(x2, . . . , xn)− x1g(x1, . . . , xn),

a homogeneous polynomial of degree k. Since h(a1, . . . , an) = 0, by quasi-regularity,
the coefficients of h are in IM . h(0, x2, . . . , xn) = f(x2, . . . , xn), each coefficient of
f is in IM . Under the map M [x2, . . . , xn]→ (M/a1M)[x2, . . . , xn] the image of f
is in the submodule (a2, . . . , an)(M/a1M)[x2, . . . , xn]. That completes Step 2.

Step 3: To complete Part (3), we must show that for all k = 2, . . . , n, ak is not
a zero divisor for M/(a1, . . . , ak−1)M . We prove a stronger statement. For n = 1,
Step 1 shows Part (3) is true. Therefore, assume n ≥ 2 and that the statement of
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Part (3) is true for any sequence of length n− 1. By Step 2, a2, . . . , an is a quasi-
regular sequence for M/a1M . By the induction hypothesis we conclude a2, . . . , an
is a regular sequence for M/a1M . From this it follows that ak is not a zero divisor
for M/(a1, . . . , ak−1)M . □

Corollary 15.3.7. Let R be a noetherian commutative ring, M a finitely
generated R-module, and a1, . . . , an elements of the Jacobson radical of R. Then
a1, . . . , an is a regular sequence for M if and only if a1, . . . , an is a quasi-regular
sequence for M .

Proof. Is left to the reader. □

Corollary 15.3.8. Let R =
⊕

n≥0Rn be a commutative graded ring, M =⊕
n≥0Mn a graded R-module, and a1, . . . , an elements of R. Assume each ai is

homogeneous of positive degree. Then a1, . . . , an is a regular sequence for M if and
only if a1, . . . , an is a quasi-regular sequence for M .

Proof. There exists a positive integer N such that IkM ⊆
∑
n≥kN Mn. The

rest is left to the reader. □

Theorem 15.3.9. Let R be a commutative noetherian ring and M a finitely
generated R-module. Let I be an ideal of R such that IM ̸= M and n a positive
integer. The following are equivalent.

(1) There exists a regular sequence a1, . . . , an for M in I.
(2) For all i < n and for all finitely generated R-modules N such that Supp(N) ⊆

V (I), we have ExtiR(N,M) = (0).
(3) ExtiR(R/I,M) = (0) for all i < n.
(4) There exists a finitely generated R-module N such that Supp(N) = V (I)

and ExtiR(N,M) = (0) for all i < n.

Proof. (2) implies (3): Is trivial. (3) implies (4): Is trivial.
(4) implies (1): Step 1: Show that there exists an element a1 ∈ R such that

a1 is not a zero divisor for M . There exists a finitely generated R-module N such
that Supp(N) = V (I) and ExtiR(N,M) = (0) for all i < n. In particular, if i = 0,
HomR(N,M) = (0). For contradiction’s sake, assume every element of I is a zero
divisor for M . Then I is a subset of the union of the associated primes of M . By
Lemma 10.3.2, there exists P ∈ AssocR(M) such that I ⊆ P . By Lemma 13.2.1,
M contains an element x such that

0→ P → R
ρx−→M

is exact, where ρx(1) = x. Localize at P . Let mP denote the maximal ideal PRP
and kP the residue field RP /mP . Then ρx : kP →MP is one-to-one, where 1 7→ x.
Since P ∈ V (I) = Supp(N), NP ̸= (0). By Corollary 6.3.2, NP ⊗RP

kP ̸= (0).
Since NP ⊗RP

kP is a nonzero finitely generated kP -vector space, there exists a
nonzero RP -module homomorphism

NP → NP ⊗RP
kP → kP

ρx−→MP .

That is, HomR(N,M)⊗R RP = HomRP
(NP ,MP ) ̸= (0), a contradiction.

Step 2: The induction step. By Step 1, let a1 be an element of I which is not a
zero divisor for M . If n = 1, then we are done. Otherwise, assume (4) implies (1)
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is true for n− 1. Start with the short exact sequence of R-modules

(3.1) 0→M
ℓa1−−→M →M/a1M → 0.

By Proposition 12.3.12 (2) there is a long exact sequence
(3.2)

· · · → ExtiR(N,M)
ℓa1−−→ ExtiR(N,M)→ ExtiR(N,M/a1M)

δi−→ Exti+1
R (N,M)→ . . .

from which it immediately follows ExtiR(N,M/a1M) = (0) for 0 ≤ i < n − 1. By
the induction hypothesis, there exists a regular sequence a2, . . . , an for M/a1M in
I.

(1) implies (2): Since a1 is not a zero divisor forM , the sequence (3.1) is exact.
Let N be a finitely generated R-module with Supp(N) ⊆ V (I). In degree zero, the
long exact sequence (3.2) is

0→ Ext0R(N,M)
ℓa1−−→ Ext0R(N,M).

For any r > 0, “left multiplication” by ar1 is one-to-one on Ext0R(N,M). By
Exercise 13.2.16, Supp(N) ⊆ V (I) implies there exists r > 0 such that ar1 ∈
annihR(N). That is, “left multiplication” by ar1 is the zero map. Applying the
functor Ext0R(·,M) to ℓar1 : N → N , “left multiplication” by ar1 is the zero map

on Ext0R(N,M). Taken together, this implies Ext0R(N,M) = (0). Proceed by
induction on n. Assume n > 1 and that (1) implies (2) is true for a regular se-
quence of length n− 1. Then a2, . . . , an is a regular sequence for M/a1M in I and
ExtiR(N,M/a1M) = (0) for i = 0, . . . , n−2. The long exact sequence (3.2) reduces
to the exact sequence

0→ ExtiR(N,M)
ℓa1−−→ ExtiR(N,M)

for i = 0, . . . , n− 1. The rest of the proof is left to the reader. □

Definition 15.3.10. Let R be a noetherian commutative ring andM a finitely
generated R-module. Let I be a proper ideal in R. The I-depth of M , denoted
depthI(M), is the least element of the set {i | ExtiR(R/I,M) ̸= (0)}. By The-
orem 15.3.9, depthI(M) is equal to the length of any maximal regular sequence
for M in I. If R is a local ring with maximal ideal m, then we sometimes write
depth(M) instead of depthm(M).

On the subject of depth, the terminology and notation appearing in the lit-
erature is inconsistent. In [24] Grothendieck calls depth(M) the “profondeur de
M” and writes prof(M). In [7] and [8] Auslander, Buchsbaum and Goldman call
depth(M) the “codimension of M” and write codim(M). Our terminology and
notation agree with that used by Matsumura (see [39, p. 102]).

Lemma 15.3.11. Let R be a noetherian commutative local ring with maximal
ideal m. Let M and N be nonzero finitely generated R-modules. For all i less than
depth(M)− dim(N), ExtiR(N,M) = (0).

Proof. Set n = dim(N). By definition, n = dim(R/ annihR(N)). The proof
is by induction on n. If n = 0, then R/ annihR(N)) is a local artinian ring and
Supp(N) = {m}. By Part (1) implies (2) of Theorem 15.3.9, ExtiR(N,M) = (0) for
all i < depth(M). Inductively assume n > 0 and that the lemma is true for any
module L such that 0 ≤ dim(L) < n. By Theorem 13.2.9 there exists a filtration
0 = N0 ⊊ N1 ⊊ N2 ⊊ · · · ⊊ Nt = N of N and a set of prime ideals Pj ∈ SpecR
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such that Nj/Nj−1 ∼= R/Pj for j = 1, . . . , t. Moreover, for each j, Pj ∈ Supp(M),
hence annihR(M) ⊆ Pj . Then dim(R/Pj) ≤ dim(N). For each j we have a short
exact sequence

0→ Nj−1 → Nj → R/Pj → 0

and a long exact sequence

· · · → Exti(Nj−1,M)→ Exti(Nj ,M)→ Exti(R/Pj ,M)→ . . . .

Therefore, it is enough to prove that ExtiR(R/Pj ,M) = (0) for 1 ≤ j ≤ t and
i < depth(M) − dim(N). Assume P ∈ Spec(R) and n = dim(R/P ). Then P ̸= m
so there exists a ∈ m− P . Denote by S the quotient R/(P + (a)). In the integral
domain R/P , a is not a zero divisor, so the sequence

0→ R/P
ℓa−→ R/P → S → 0

is exact. By Corollary 13.6.13, dim(S) = n − 1. If i < depth(M) − n, then
i+1 < depth(M)−(n−1). By the induction hypothesis, Exti+1

R (S,M) = (0). From
the long exact sequence of Ext groups, left multiplication by a is an isomorphism

0→ Exti(R/P,M)
ℓa−→ Exti(R/P,M)→ 0

for all i < depth(M)− n. Tensoring ℓa with R/m it becomes the zero map. There-
fore, by Corollary 6.3.2, Exti(R/P,M) = (0). □

Corollary 15.3.12. Let R be a noetherian commutative local ring and M a
nonzero finitely generated R-module.

(1) depth(M) ≤ dim(R/P ) for every associated prime ideal P ∈ AssocR(M).
(2) depth(M) ≤ dim(M).

Proof. (1): If P ∈ AssocR(M), then HomR(R/P,M) ̸= (0). By Lemma 15.3.11,
depth(M)− dim(R/P ) ≤ 0.

(2): Is left to the reader. □

Lemma 15.3.13. Let R be a commutative noetherian local ring, m the maxi-
mal ideal of R, M a nonzero finitely generated R-module, and a1, . . . , ar a regular
sequence for M in m. Then dim(M/(a1, . . . , ar)M) = dim(M)− r.

Proof. Let t = dim(M) = dim(R/ annihR(M)). Then t is the supremum
of the lengths of all prime chains annihR(M) ⊆ Q0 ⊊ Q1 ⊊ · · · ⊊ Qt ⊊ R.
A minimal prime over-ideal Q0 of annihR(M) is in the support of M , hence by
Theorem 13.2.7, Q0 is an associated prime ofM . Then every element of Q0 is a zero
divisor of M , hence a1 ̸∈ Q0. By Exercise 15.3.19, Supp(M/a1M) = Supp(M) ∩
Supp(R/(a1)). Let s = dim(M/a1M) = dim(R/ annihR(M/a1M)). Then s is the
supremum of the lengths of all prime chains annihR(M/a1M) ⊆ P0 ⊊ P1 ⊊ · · · ⊊
Ps ⊊ R. Since a1 ∈ P0, this proves s < t. Iterate this argument r times to see
that dim(M/(a1, . . . , ar)M) ≤ dim(M) − r. For the reverse inequality, dim(M) ≥
dim(M/a1M) ≥ dim(M) − 1, by Lemma 13.6.10. Iterate r times to see that
dim(M/(a1, . . . , ar)M) ≥ dim(M)− r. □
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3.2. Exercises.

Exercise 15.3.14. Let R be a noetherian commutative ring, I a proper ideal
of R, M an R module, and a1, . . . , ar a regular sequence for M in I.

(1) There exists n ≥ r and elements ar+1, . . . , an such that a1, . . . , an is a
maximal regular sequence for M .

(2) depthI(M/(a1, . . . , ar)M) = depthI(M)− r.

Exercise 15.3.15. Let R be a noetherian commutative local ring with maximal
ideal m. Let M be a finitely generated R-module. Then depthm(M) = 0 if and
only if m is an associated prime of M .

Exercise 15.3.16. Let R be a noetherian commutative ring and P ∈ Spec(R).
Let M be a finitely generated R-module. Let mP = PRP be the maximal ideal of
RP and let MP =M ⊗R RP . The following are equivalent.

(1) depthmP
(MP ) = 0.

(2) mP ∈ AssocRP
(MP ).

(3) P ∈ AssocR(M).

Exercise 15.3.17. Let R be a noetherian commutative ring and P ∈ Spec(R).
Let M be a finitely generated R-module. Let mP = PRP be the maximal ideal of
RP and let MP =M ⊗R RP . Then depthmP

(MP ) ≥ depthP (M).

Exercise 15.3.18. Let R be a commutative local ring. Let M and N be
nonzero finitely generated R-modules. Show that M ⊗R N is nonzero.

Exercise 15.3.19. Let R be a commutative ring. Let M and N be nonzero
finitely generated R-modules. Show that Supp(M ⊗R N) = Supp(M) ∩ Supp(N).

3.3. Cohen-Macaulay Modules.

Definition 15.3.20. Let R be a commutative noetherian local ring with max-
imal ideal m. Let M be a finitely generated R-module. By Corollary 15.3.12, if
M is nonzero, then depthm(M) ≤ dim(M). We say that M is a Cohen-Macaulay
module in case M = (0), or depthm(M) = dim(M). If depthm(R) = dim(R), then
we say R is a Cohen-Macaulay local ring.

Theorem 15.3.21. Let R be a noetherian commutative local ring with maximal
ideal m, and M a finitely generated R-module. If P ∈ Spec(R), then we write mP
for PRP and MP for M ⊗R RP .

(1) IfM is a Cohen-Macaulay module and P ∈ AssocR(M), then depth(M) is
equal to dim(R/P ). The associated primes of M all have the same height,
or in other words,M has no embedded prime ideals (see Definition 13.2.8).

(2) If a1, . . . , ar is a regular sequence for M in m, then M is a Cohen-
Macaulay module if and only if M/(a1, . . . , ar)M is a Cohen-Macaulay
module.

(3) IfM is a Cohen-Macaulay module and P ∈ Spec(R), thenMP is a Cohen-
Macaulay RP -module. If MP ̸= (0), then depthmP

(MP ) = depthP (M).

Proof. (1): Since P is an associated prime ofM ,M is nonzero and depth(M) =
dim(M). By Corollary 15.3.12, depth(M) ≤ dim(R/P ). Since AssocR(M) ⊆
Supp(M), annihR(M) ⊆ P . Then dim(M) = dim(R/ annihR(M)) ≥ dim(R/P ).

(2): Since (a1, . . . , ar) ⊆ m, by Corollary 6.3.2, M/(a1, . . . , ar)M is nonzero if
and only if M is nonzero. Assume M is nonzero. Then dim(M/(a1, . . . , ar)M) =
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dim(M)−r, which follows from Lemma 15.3.13. Consequently, depth(M/(a1, . . . , ar)M) =
depth(M)− r, by Exercise 15.3.14.

(3): AssumeMP ̸= (0), hence annihR(M) ⊆ P . By Exercise 15.3.17, depthP (M) ≤
depthmP

(MP ). By Corollary 15.3.12, depthmP
(MP ) ≤ dim(MP ). To finish the

proof, we show depthP (M) = dim(MP ). The proof is by induction on n =
depthP (M).

For the basis step, assume depthP (M) = 0. Then every element of P is a zero
divisor of M . It follows from Proposition 13.2.2 and Lemma 10.3.2 that P ⊆ Q for
some Q ∈ AssocR(M). By Exercise 13.2.17 and Part (1), Q is a minimal prime over-
ideal of annihR(M). Because annihR(M) ⊆ P ⊆ Q, we conclude P = Q. Then mP
is a minimal prime over-ideal for annihRP

(MP ). By Lemma 13.6.4, dim(MP ) = 0.
Inductively, assume n = depthP (M) > 0 and that the result holds for n − 1.

Let a be a nonzero divisor of M in P . The sequence

0→M
ℓa−→M →M/aM → 0

is exact. Since RP is a flat R-module, the sequence

0→MP
ℓa−→MP → (M/aM)P → 0

is also exact and a is a nonzero divisor ofMP inmP . Also, (M/aM)P =MP /(aMP ),
so by Lemma 15.3.13, dim((M/aM)P ) = dim(MP ) − 1. By Exercise 15.3.14,
depthP (M/aM) = depthP (M) − 1. By Part (2), M/aM is a Cohen-Macaulay R-
module. By induction on n, dim((M/aM)P ) = depthP (M/aM) which completes
the proof. □

Theorem 15.3.22. Let R be a noetherian commutative Cohen-Macaulay local
ring. Let m denote the maximal ideal of R.

(1) Let a1, . . . , ar be a sequence of elements in m. The following are equivalent.
(a) a1, . . . , ar is a regular sequence for R in m.
(b) ht(a1, . . . , ai) = i for all i such that 1 ≤ i ≤ r.
(c) ht(a1, . . . , ar) = r.
(d) If n = dim(R), then there exist ar+1, . . . , an in m such that a1, . . . , an

is a system of parameters for R.
(2) Let I be a proper ideal of R. Then ht(I) = depthI(R) and ht(I) +

dim(R/I) = dim(R).
(3) If P and Q are in SpecR such that P ⊇ Q, then ht(P/Q) = ht(P )−ht(Q).

Proof. (1): The reader should verify that the proofs of the implications (a)
implies (b) implies (c) implies (d) are all true without the Cohen-Macaulay hypoth-
esis.

(a) implies (b): Since a1, . . . , ar is a regular sequence, ht(a1) = 1, by Corol-
lary 13.6.12. Inductively, assume i > 1 and that ht(a1, . . . , ai−1) = i − 1. Let
I = (a1, . . . , ai) and I1 = (a1, . . . , ai−1). By Corollary 13.6.12, ht(I) ≤ i. For
contradiction’s sake, assume there exists a prime ideal P containing I such that
ht(P ) = i− 1. Since I1 ⊆ P , it follows that P is a minimal prime over-ideal of I1.
Thus P is an associated prime of R/I1, which implies ai is a zero divisor of R/I1,
a contradiction.

(b) implies (c): is trivial.
(c) implies (d): Let I = (a1, . . . , ar). We are given that ht(I) = r. If r =

n = dim(R), then ht(m) = r, which means m is a minimal prime over-ideal of
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I. Therefore, I is m-primary and a1, . . . , ar is a system of parameters for R. If
dim(R) > r, then by Exercise 13.6.19, there exists an element ar+1 ∈ m such that
ht(a1, . . . , ar+1) = r + 1. Iterate this process to construct a1, . . . , an such that
ht(a1, . . . , an) = n = dim(R).

(d) implies (a): Let R be a Cohen-Macaulay local ring and x1, . . . , xn a system
of parameters for R. We show that x1, . . . , xn is a regular sequence for R. By
Proposition 13.6.15, dim(R/(x1)) = n − 1. If P is an associated prime of (0),
then dim(R/P ) = n, by Theorem 15.3.21 (1). This implies x1 is not in P . By
Proposition 13.2.2, x1 is not a zero divisor of R. By Theorem 15.3.21 (2), R/(x1) is
a Cohen-Macaulay local ring. Moreover, the images of x2, . . . , xn make up a system
of parameters for R/(x1). By induction on n, x2, . . . , xn is a regular sequence for
R/(x1) in m.

(2): Step 1: Show that depthI(R) = ht(I). Let ht(I) = h. By Exercise 13.6.19,
there exist elements x1, . . . , xh in I such that ht(x1, . . . , xi) = i for 1 ≤ i ≤ h. By
Part (1), x1, . . . , xh is a regular sequence for R in I. This proves ht(I) ≤ depthI(R).
On the other hand, if a1, . . . , ar is a regular sequence for R in I, then by Part (1),
r = ht(a1, . . . , ar) ≤ ht(I), so depthI(R) ≤ ht(I).

Step 2: Show that ht(P ) + dim(R/P ) = dim(R) for all prime ideals P . Let
ht(P ) = r. By Step 1, depthP (R) = r. Start with a maximal regular sequence
a1, . . . , ar for R in P and put J = (a1, . . . , ar). By Theorem 15.3.21 (2), R/I
is Cohen-Macaulay. Every element of P is a zero divisor for R/I, so P is an
associated prime of R/I. By Theorem 15.3.21 (1), R/I has no embedded primes,
so P is a minimal prime over-ideal of I. Therefore, dim(R/I) = dim(R/P ). By
Lemma 15.3.13, dim(R/I) = dim(R)− r.

Step 3: ht(I) + dim(R/I) = dim(R). By definition, ht(I) = inf{ht(P ) | P ∈
V (I)}. By Step 2, this becomes

ht(I) = inf{dim(R)− dim(R/P ) | P ∈ V (I)}
= dim(R)− sup{dim(R/P ) | P ∈ V (I)}.

The reader should verify that dim(R/I) = sup{dim(R/P ) | P ∈ V (I)}, so we are
done.

(3): By Theorem 15.3.21 (3), RP is a Cohen-Macaulay ring. By Part (2),
dimRP = ht(QRP ) + dim(RP /QRP ). By Lemma 13.6.2, and Exercise 7.3.26,
ht(P ) = ht(Q) + ht(P/Q). □

Definition 15.3.23. A commutative ring R is said to be a Cohen-Macaulay
ring if R is noetherian and RP is a Cohen-Macaulay local ring, for every prime ideal
P in R. By Theorem 15.3.21, a noetherian commutative ring R is Cohen-Macaulay
if Rm is Cohen-Macaulay for every maximal ideal m of R.

Theorem 15.3.24. Let R be a noetherian commutative ring. The following are
equivalent.

(1) R is a Cohen-Macaulay ring.
(2) For every r ≥ 0, if I = (a1, . . . , ar) is an ideal generated by r elements in

R such that ht(I) = r, then R/I has no embedded primes.
(3) For every maximal ideal m of R, and for every r ≥ 0, if J = (a1, . . . , ar)

is an ideal generated by r elements in Rm such that ht(J) = r, then Rm/J
has no embedded primes.
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Proof. (2) implies (1): Let P be a prime ideal in R and assume ht(P ) = r.
We must prove that RP is Cohen-Macaulay. If r = 0, then RP is a field and by
Exercise 15.3.26, RP is Cohen-Macaulay. Assume r > 0. By Exercise 13.6.19,
there exist elements a1, . . . , ar in P such that ht(a1, . . . , ai) = i for all i = 1, . . . , r.
By (2), the ideal (0) has no embedded primes. Since ht(a1) = 1, a1 belongs to
no associated prime of (0). So a1 is not a zero divisor of R. For 1 ≤ i < r,
R/(a1, . . . , ai) has no embedded primes. Since ht(a1, . . . , ai+1) = i + 1, ai+1

belongs to no associated prime of (a1, . . . , ai). So ai+1 is not a zero divisor of
R/(a1, . . . , ai). This shows a1, . . . , ar is a regular sequence for R in P . We have
r ≤ depthP (R) ≤ depthPRP

(RP ), by Exercise 15.3.17. By Corollary 15.3.12,
depthPRP

(RP ) ≤ dimRP , which is equal to ht(P ) = r, by Lemma 13.6.2. This
proves RP is Cohen-Macaulay.

(1) implies (3): Let m be a maximal ideal of R. By definition, Rm is a Cohen-
Macaulay local ring. By Theorem 15.3.21, the zero ideal of Rm has no embedded
primes. Let r > 0 and J = (a1, . . . , ar) an ideal generated by r elements in Rm

such that ht(J) = r. By Theorem 15.3.22, the sequence a1, . . . , ar is a regular
sequence for Rm in mRm. By Theorem 15.3.21, Rm/J is Cohen-Macaulay and has
no embedded primes.

(3) implies (2): Let I be a nonunit ideal in R. Let P be an associated prime of
R/I in SpecR and assume P is an embedded prime. Let m be a maximal ideal of
R containing P . By Lemma 13.2.5, PRm is an associated prime of Rm/IRm which
is an embedded prime. □

Theorem 15.3.25. If R is a Cohen-Macaulay ring, then so is R[x] for an
indeterminate x.

Proof. Let Q be a prime ideal in S = R[x] and let P = Q ∩ R. We must
show that SQ is a Cohen-Macaulay local ring. But RP is a Cohen-Macaulay local
ring, by Theorem 15.3.21. Since (R − P ) ⊆ (S − Q), SQ is the localization of
S⊗RRP = RP [x] at the prime ideal Q⊗RRP . From now on assume R is a Cohen-
Macaulay local ring with maximal ideal P and residue field k = R/P . Moreover
assume Q is a prime ideal of S = R[x] and Q ∩ R = P . Then S/PS = k[x]. The
reader should verify that S is a flat R-module. Consequently, SQ is a flat R-module.
By Theorem 10.3.6, going down holds for R→ S.

Suppose dim(R) = r and a1, . . . , ar is a regular sequence for R in P . If ℓa1 :
R → R is left multiplication by a1, then ℓa1 is one-to-one. Upon tensoring with
the flat R-algebra SQ, ℓa1 is still one-to-one. In the same way, upon tensoring
ℓai : R/(a1, . . . , ai−1) → R/(a1, . . . , ai−1) with the flat R-algebra SQ, ℓai is still
one-to-one. Therefore, a1, . . . , ar is a regular sequence for SQ in QSQ. This proves
r ≤ depth(SQ).

A prime ideal of k[x] is principal and is either equal to the zero ideal, or is
generated by a monic irreducible polynomial in k[x]. Since Q is a prime ideal of S
containing PS, Q is equal to PS+gS, where g is either 0, or a monic polynomial in
S = R[x] which restricts to an irreducible polynomial in k[x]. There are two cases.

Case 1: Q = PS. Theorem 13.6.21 says dim(SQ) = dim(R) = r. This implies
SQ is Cohen-Macaulay.

Case 2: Q = PS+gS. In this case, the fiber SQ⊗Rk is equal to the localization
of k[x] = S ⊗R k at the prime ideal Q/PS. The local ring SQ⊗R k is a PID, hence
has Krull dimension one. By Theorem 13.6.21, dim(SQ) = dim(R) + 1 = r + 1.
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But g is a monic polynomial in R[x] so g is not a zero divisor for R/(a1, . . . , ar)[x].
Therefore, depthQ(S) ≥ r + 1. This implies SQ is Cohen-Macaulay. □

3.4. Exercises.

Exercise 15.3.26. Let F be a field. If F is viewed as a local ring with maximal
ideal (0), then F is a Cohen-Macaulay local ring.

Exercise 15.3.27. Let R be a local PID. Then R is a Cohen-Macaulay local
ring.

Exercise 15.3.28. Let R be a Cohen-Macaulay local ring with maximal ideal
m, and x1, . . . , xr a set of elements of m. Then x1, . . . , xr is a regular sequence for
R in m if and only if dim(R/(x1, . . . , xr) = dimR− r.

Exercise 15.3.29. Let k be a field. As in Exercises 13.1.10, 13.2.19, and 11.3.9,
let A = k[x, y] and R = k[x2, xy, y2, x3, x2y, xy2, y3]. Prove:

(1) R and A have the same quotient field, namely k(x, y), and A is equal to
the integral closure of R in k(x, y).

(2) dim(R) = 2.
(3) Let M be the maximal ideal in A generated by x and y. Let m =M ∩R.

Then m is generated by x2, xy, y2, x3, x2y, xy2, y3, and ht(m) = 2.
(4) In R, ht(x3) = 1, and dim(R/(x3)) = 1.
(5) depth(Rm/(x

3) = 0 and Rm is not Cohen-Macaulay.

Exercise 15.3.30. Let k be a field and R the localization of k[x, y] at the
maximal ideal (x, y). Show that the rings R, R/(xy), R/(xy, x − y) are Cohen-
Macaulay.

3.5. Cohomological Theory of Regular Local Rings.

Theorem 15.3.31. Let R be a regular local ring with maximal ideal m, residue
field k, and regular system of parameters x1, . . . , xr. The following are true.

(1) x1, . . . , xr is a regular sequence for R in m.
(2) R is a Cohen-Macaulay local ring.
(3) For each i, Pi = (x1, . . . , xr) is a prime ideal of R of height i, and R/Pi

is a regular local ring of Krull dimension r − i.
(4) If P is a prime ideal of R such that R/P is a regular local ring of dimension

r−i, then there exists a regular system of parameters y1, . . . , yr for R such
that P = (y1, . . . , yi).

(5) dim(R) = r = coh.dim(R).

Proof. (1): By Theorem 15.1.8, k[t1, . . . , tr] ∼= grm(R). The sequence x1, . . . , xr
is a quasi-regular sequence for R in m. By Corollary 15.3.7, x1, . . . , xr is a regular
sequence for R in m.

(2): By Part (1), depth(R) ≥ r = dim(R).
(3): By Proposition 13.6.15, dim(R/Pi) = r − i. Since m/Pi is generated by

xi+1, . . . , xr, R/Pi is a regular local ring. By Corollary 15.1.9, R/Pi is a normal
integral domain. Thus Pi is a prime ideal.

(4): Let m̄ = m/P . By Exercise 13.6.17, r = dim(R) = dimk(m/m
2) and

r − i = dim(R/P ) = dimk(m̄/m̄
2). But m̄/m̄2 = m/(m2 + P ). Consider the tower

of ideals m2 ⊆ m2 + P ⊆ m. Then r − i = dimk(m/(m
2 + P )) = dimk(m/m

2) −
dimk((m

2 + P )/m2), from which it follows that dimk((m
2 + P )/m2) = i. Choose i
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elements y1, . . . , yi in P such that modulo m2, y1, . . . , yi are linearly independent
over k. Choose r− i elements yi+1, . . . , yr in m such that modulo m2, y1, . . . , yr are
linearly independent over k. Then y1, . . . , yr is a regular system of parameters for
R. By Part (3), Q = (y1, . . . , yi) is a prime ideal of height i. By Theorem 15.3.22,
ht(P ) = dim(R)− dim(R/P ) = i. Since Q ⊆ P , this proves Q = P .

(5): Let x1, . . . , xd be a regular system of parameters for R. By Proposi-
tion 12.4.10 applied recursively to k = R/(x1, . . . , xd), proj.dimR(k) = proj.dim(R)+
d = d. By Theorem 12.4.15, coh.dim(R) = d. □

Theorem 15.3.32. Let R be a commutative regular ring. If x is an indetermi-
nate, then R[x] is a regular ring.

Proof. As in the proof of Theorem 15.3.25, we can reduce to the case where
R is a regular local ring with maximal ideal P , k = R/P , Q is a prime ideal of
S = R[x] and Q ∩ R = P . Moreover, S/PS = k[x] and going down holds for
R→ S. A prime ideal of k[x] is principal and is either equal to the zero ideal, or is
generated by a monic irreducible polynomial in k[x]. Since Q is a prime ideal of S
containing PS, Q is equal to PS + gS, where g is either 0, or a monic polynomial
in S = R[x] which restricts to an irreducible polynomial in k[x].

Suppose dim(R) = r. Then P is generated by r elements. There are two cases.
If Q = PS, then Q is generated by r elements. In this case, Theorem 13.6.21
says dim(SQ) = dim(R) = r, hence SQ is regular. For the second case, assume
Q = PS + gS and g ̸= 0. Then Q is generated by r + 1 elements. In this case,
the fiber SQ ⊗R k is equal to the localization of k[x] = S ⊗R k at the prime ideal
Q/PS. The local ring SQ ⊗R k is a PID, hence has Krull dimension one. By
Theorem 13.6.21, dim(SQ) = dim(R) + 1 = r + 1. Hence SQ is regular in this case
as well. □

Corollary 15.3.33. (Hilbert’s Syzygy Theorem) Let k be a field and x1, . . . , xn
a set of indeterminates. Then k[x1, . . . , xn] has cohomological dimension n.

Proof. By Theorem 14.3.1, R = k[x1, . . . , xn] has dimension n. Let m be a
maximal ideal of R. By Theorem 15.3.32, Rm is a regular local ring of dimension
n. By Theorem 15.3.31, coh.dim(RP ) = n. By Lemma 12.4.14 (2), coh.dim(R) =
n. □

Lemma 15.3.34. Let R be a commutative noetherian local ring with maximal
ideal m. If every element of m − m2 is a zero divisor of R, then m an associated
prime of R.

Proof. If m2 = m, then by Nakayama’s Lemma (Theorem 8.1.3), m = 0. In
this case, R is a field and the result is trivially true. Assume m−m2 is nonempty.
Let {P1, . . . , Pn} be the set of associated primes of R. By Proposition 13.2.2,

m−m2 ⊆ P1 ∪ · · · ∪ Pn.

Since m is not a subset of m2, it follows from Lemma 10.3.2 that m ⊆ Pi for some
i. Since m is maximal, m is equal to Pi. □

Lemma 15.3.35. Let R be a commutative noetherian local ring with maximal
ideal m. Let a be an element of m−m2. The natural map m/am→ m/aR splits.
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Proof. Without loss of generality, assume m ̸= m2. In the R/m-vector space
m/m2, the image of a is nonzero. Extend the image of a to a basis of m/m2, and lift
this basis to elements a, b1, . . . , bn in m− m2. Let B = Rb1 + · · ·+ Rbn. Consider
an element ax in the intersection aR∩B, where x ∈ R. Then ax =

∑
ribi for some

ri ∈ R. We have linear independence of a, b1, . . . , bn modulo m2, hence ax ∈ m2. By
choice of a, if x ∈ R−m, then ax ̸∈ m2. Therefore x ∈ m. This proves aR∩B ⊆ am,
so the natural map B → m/am factors through B/(aR ∩ B). Let α be the inverse
of the natural isomorphism B/(aR∩B)→ (aR+B)/aR. The reader should verify
that the composition

m

aR

=−→ aR+B

aR

α−→ B

aR ∩B
→ m

am
→ m

aR
is the identity map. □

Lemma 15.3.36. Let R be a commutative noetherian local ring with maximal
ideal m. Let M be a finitely generated R-module of finite projective dimension. If
a is an element in m which is both M -regular and R-regular, then

(1) M/aM is an R/aR-module of finite projective dimension, and
(2) proj.dimR/aR(M/aM) ≤ proj.dimR(M).

Proof. Let proj.dimR(M) = n. If n = 0, then M is a projective R-module
andM/aM is a projective R/aR-module. This implies proj.dimR/aR(M/aM) = 0.
Inductively, suppose n > 0 and that the result holds for any finitely generated R-
module of projective dimension less than n. By Exercise 12.3.10, there exists a
projective resolution P• → M such that each Pi is finitely generated. Since R is a
local ring, each Pj is free. Let K be the kernel of ϵ : P0 → M . Consider the exact
sequence

0→ K → P0 →M → 0.

The reader should verify that proj.dimR(K) = proj.dimR(M) − 1. Since R is
noetherian, K is finitely generated. The diagram

0 // K

α

��

// P0

β

��

// M

γ

��

// 0

0 // K // P0
// M // 0

commutes, where the three vertical maps are “left multiplication” by a. Since a
is R-regular and P0 is free, β is one-to-one. Since a is M -regular, γ is one-to-one.
The Snake Lemma (Theorem 6.6.2) implies α is one-to-one, and the sequence

0→ K/aK → P0/aP0 →M/aM → 0

is exact. Since P0/aP0 is a free R/aR-module, this proves

proj.dimR/aR(M/aM) ≤ proj.dimR/aR(K/aK) + 1.

Since α is one-to-one, a is K-regular. Applying the induction hypothesis to K, it
follows that proj.dimR/aR(K/aK) ≤ n. In conclusion, proj.dimR/aR(M/aM) ≤
n+ 1. □

Theorem 15.3.37. (Hilbert-Serre) Let R be a commutative noetherian local
ring. The following are equivalent

(1) R has finite cohomological dimension.
(2) R is regular.
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If either condition is satisfied, coh.dim(R) = dim(R).

Proof. Let m denote the maximal ideal of R and k = R/m the residue field.
(2) implies (1): This follows from Theorem 15.3.31. It also follows that the

equation coh.dim(R) = dim(R) is satisfied.
(1) implies (2): Let n = coh.dim(R).
Step 1: Prove that m−m2 contains an R-regular element. For contradiction’s

sake, assume m−m2 is nonempty and consists of zero divisors. By Lemma 15.3.34,
m is an associated prime of R. By Lemma 13.2.1, there exists x ∈ R − (0) such
that xm = (0). In other words, m is not faithful, hence not free. By Proposi-
tion 7.4.2, m is not a projective R-module. By Definition 12.4.13, coh.dim(R) ≥
proj.dimR(m) ≥ 1. By Theorem 12.4.15, proj.dimR(k) = coh.dim(R) ≥ 1. By

Proposition 12.4.10, TorRn+1(R/xR, k) = 0. The exact sequence of R-modules

0→ m→ R
ℓx−→ R→ R/xR→ 0

can be shortened to

0→ k → R→ R/xR→ 0.

Since TorRi (R, k) = 0 for i ≥ 1, the associated long exact sequence of Lemma 12.3.2 (3)

implies the boundary map ∂ : TorRn+1(R/xR, k) → TorRn (k, k) is an isomorphism.

This implies TorRn (k, k) = 0, which is a contradiction to Theorem 12.4.15.
Step 2: The proof is by induction on d = dim(R). If d = 0, then R is regular,

by Definition 13.6.14. Assume d > 0 and that the result is true for a ring of
dimension d − 1. By Step 1 we can assume there exists an element a ∈ m − m2

such that a is R-regular. Then a is also m-regular. Consider the local ring R/aR,
which has maximal ideal m/aR. By Corollary 13.6.13 (3), dim(R/aR) = d − 1.
By (1), proj.dimR(m) ≤ coh.dim(R) is finite. By Lemma 15.3.36, m/am is an
R/aR-module of finite projective dimension. By Lemma 15.3.35, m/aR is an R/aR-
module direct summand of m/am. By Exercise 12.4.25, m/aR is an R/aR-module
of finite projective dimension. By the induction hypothesis, R/aR is a regular local
ring. By Exercise 15.3.40, R is regular. □

Corollary 15.3.38. If R is a regular local ring and P a prime ideal of R,
then RP is a regular local ring.

Proof. Is left to the reader. □

Proposition 15.3.39. If R is a regular local ring and M a nonzero finitely
generated R-module, then the following are true.

(1) depth(M) + proj.dim(M) = dim(R).
(2) M is a free R-module if and only if depth(M) = dim(R).

Proof. Let n = dim(R), m the maximal ideal of R, and k = R/m the residue
field. Since R is regular, coh.dim(R) = n (Theorem 15.3.31 (5)). Therefore,
proj.dimR(M) ≤ n (Definition 12.4.13) and proj.dimR(k) = n (Theorem 12.4.15).
The proof is by induction on d = depth(M). First assume d = 0. By Exer-
cise 15.3.15, there is an R-submodule N ⊆M such that N is isomorphic to k. The
short exact sequence 0→ N →M →M/N → 0 yields

· · · → TorRn+1(M/N, k)
∂−→ TorRn (N, k)→ TorRn (M,k)→ · · ·
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(Lemma 12.3.2). By Proposition 12.4.10 (2), TorRn+1(M/N, k) = 0 and by Theo-

rem 12.4.15, TorRn (N, k) ̸= 0. Since TorRn (M,k) ̸= 0, Proposition 12.4.10 (2) implies
proj.dim(M) ≥ n. We have shown that proj.dim(M) = n.

Inductively, assume d > 0 and that the statement is true for any module
of depth d − 1. Let x be an M -regular element in m. Then depth(M/xM) =
depth(M)−1 = d−1 (Exercise 15.3.14) and proj.dim(M/xM) = proj.dim(M)+1
(Proposition 12.4.10 (3)). By induction, we are done. □

3.6. Exercises.

Exercise 15.3.40. Let R be a commutative noetherian local ring with maximal
ideal m and let a be an R-regular element in m. Prove that if R/aR is regular, then
R is regular and a ̸∈ m2.

Exercise 15.3.41. Let S be a commutative faithfully flat R-algebra. Prove
that if R and S are both noetherian, and S is regular, then R is regular.

Exercise 15.3.42. Let R be a commutative noetherian ring. Prove R is regular
if and only if Rm is a regular local ring for every m ∈ MaxR.

4. Noetherian Normal Integral Domains

4.1. A Noetherian Normal Integral Domain is a Krull Domain. Let
R denote a noetherian integral domain and K the field of fractions. Given an ideal
I of R, let

I−1 = {x ∈ K | xI ⊆ R}.
Then R ⊆ I−1 and I−1is an R-submodule of K. The reader should verify that
I ⊆ I−1I ⊆ R and I−1I is an ideal of R.

Lemma 15.4.1. Let R be a noetherian integral domain, x a nonzero noninvert-
ible element of R, and P ∈ AssocR(R/xR). Then P−1 ̸= R.

Proof. By Lemma 13.2.1, there exists y ∈ R − xR such that P = (xR : y).
Then yP ⊆ xR, or in other words, yx−1P ⊆ R. This implies yx−1 ∈ P−1 and
yx−1 ̸∈ R because y ̸∈ xR. □

Lemma 15.4.2. Let R be a noetherian local integral domain with maximal ideal
m. If m ̸= (0) and m−1m = R, then m is a principal ideal and R is a DVR.

Proof. By Exercise 7.6.23, R is not artinian. By Proposition 8.4.5, m ̸= m2.
Pick π ∈ m − m2. Then πm−1 ⊆ R. Hence πm−1 is an ideal in R. If πm−1 ⊆ m,
then πR = πm−1m ⊆ m2, which contradicts the choice of π. Since πm−1 is an ideal
of R which is not contained in m, we conclude that πm−1 = R. That is, πR =
πm−1m = m, which proves that m is principal. By Corollary 13.6.13, dimR = 1.
By Theorem 15.2.10, R is a DVR. □

Let R be a noetherian normal integral domain with field of fractions K. Let
X1(R) denote the subset of SpecR consisting of all prime ideals P such that ht(P ) =
1. If P ∈ X1(R), then RP is a one-dimensional noetherian normal local integral
domain. By Theorem 15.2.10, RP is a DVR of K. Denote by mP the maximal
ideal of RP and by πP a generator of mP . Then πP is unique up to associates in
RP . Let νP : K → Z be the valuation on K defined as in the proof of (2) implies
(1) of Theorem 15.2.10.
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Theorem 15.4.3. Let R be a noetherian normal integral domain with field of
fractions K.

(1) Let x be a nonzero, noninvertible element of R. If P is an associated
prime of Rx, then the height of P is equal to one.

(2) Let P be a prime ideal of height one in R and I a P -primary ideal. Then
there exists a unique ν > 0 such that I is equal to P (ν), the νth symbolic
power of P .

(3) If dim(R) ≤ 2, then R is Cohen-Macaulay.

Proof. (1): Let P ∈ AssocR(R/xR). By Lemma 13.6.2, it suffices to prove
dim(RP ) = 1. By this observation and Lemma 13.2.5, we assume from now on
that R is a local normal integral domain with maximal ideal P and that P is
an associated prime of a nonzero principal ideal xR and x is noninvertible. By
Lemma 15.4.1 we have R ⊊ P−1. For contradiction’s sake, assume ht(P ) > 1.
Lemma 15.4.2 says P−1P = P . Given α ∈ P−1, we have αP ⊆ P , and for all
n > 0,

αnP = αn−1αP ⊆ αn−1P ⊆ · · · ⊆ αP.
Therefore, αn ∈ P−1 for all n > 0, and R[α] ⊆ P−1. Since x ̸= 0, P ̸= (0), so
there exists x1 ∈ P − (0). Then for all y ∈ P−1, x−11 y ∈ R. So y ∈ x−11 R, which
shows P−1 is a subset of the principal R-module x−11 R. Since R is noetherian, P−1

is finitely generated as an R-module. Since R[α] ⊆ P−1, it follows that R[α] is
finitely generated as an R-module. By Proposition 10.1.2, α, and hence P−1, is
integral over R. Since R is integrally closed, it follows that P−1 ⊆ R, which is a
contradiction.

(2): By Theorem 15.2.10, RP is a DVR and every proper ideal is equal to
PmRP , for some m > 0. By Exercise 13.1.7, there is a unique ν such that I =
P νRP ∩R, which is equal to P (ν), by Exercise 13.3.9.

(3): This follows from Part (1), and Theorem 15.3.24. □

In the terminology of [22], Corollary 15.4.4 says that R is a Krull domain.

Corollary 15.4.4. Let R be a noetherian normal integral domain with field
of fractions K. Let α ∈ K∗.

(1) νP (α) = 0 for all but finitely many P ∈ X1(R).
(2) α ∈ R if and only if νP (α) ≥ 0 for all P ∈ X1(R).
(3) α ∈ R∗ if and only if νP (α) = 0 for all P ∈ X1(R).
(4) R =

⋂
P∈X1(R)RP .

Proof. Step 1: Assume α ∈ R−(0). By Theorem 15.4.3, the reduced primary
decomposition of Rα is

αR = P
(n1)
1 ∩ · · · ∩ P (ns)

s

where s ≥ 0, P1, . . . , Ps are height one primes of R, ni ≥ 1, and s = 0 if and only if
α is invertible in R. The integers s, n1, . . . , ns and the primes P1, . . . , Ps are unique.
By Exercise 7.1.12,

αRP =

{
mni

Pi
if P ∈ {P1, . . . , Ps}

RP if P ̸∈ {P1, . . . , Ps}.
It follows that

νP (α) =

{
ni if P ∈ {P1, . . . , Ps}
0 if P ̸∈ {P1, . . . , Ps}.
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This proves that

αR =
⋂

P∈X1(R)

P (νP (α)).

Step 2: Assume α = uv−1 ∈ K∗, where u, v ∈ R− (0). We can apply Step 1 to
both u and v. That is, uR =

⋂
P∈X1(R) P

(νP (u)) and vR =
⋂
P∈X1(R) P

(νP (v)) where

νP (u) ≥ 0 and νP (v) ≥ 0 for all P ∈ X1(R). For each P ∈ X1(R), νP (uv
−1) =

νP (u)−νP (v) is zero for all but finitely many P . This proves Part (1). If νP (uv
−1) ≥

0 for all P , then uR ⊆ vR, hence uv−1R ⊆ R which implies uv−1 ∈ R. This proves
Part (2). Parts (3) and (4) are left to the reader. □

4.2. Serre’s Criteria for Normality.

Definition 15.4.5. Let R be a commutative noetherian ring and i ∈ N. We
say R has property (Si), if for every prime ideal P in R depth(RP ) ≥ inf(i,ht(P )).
We say R has property (Ri), if for every prime ideal P in R such that ht(P ) ≤ i,
RP is a regular local ring.

Example 15.4.6. Some important cases of properties (Si) are listed here.

(1) Any commutative noetherian ring R has property (S0).
(2) By Exercise 15.3.16, R has property (S1) if and only if R has no embedded

primes.
(3) The commutative noetherian ring R has properties (Si) for all i ≥ 0 if

and only if for every P ∈ SpecR, depth(RP ) = dim(RP ) = ht(P ). This
is true if and only if R is Cohen-Macaulay.

Proposition 15.4.7. Let R be a commutative noetherian ring. Then R has
properties (S1) and (R0) if and only if RadR(0) = (0). The ring R is said to be
reduced.

Proof. Assume R is reduced, that is, assume RadR(0) = (0). Let P1, . . . , Pn
be the complete list of distinct minimal primes of the zero ideal. By Theorem 13.2.7,
AssocR(R) ⊇ {P1, . . . , Pn}. By Exercise 13.2.18, the natural homomorphism of
rings

R
ϕ−→

n⊕
i=1

R/Pi

is one-to-one. By Corollary 13.2.3, we have AssocR (
⊕n

i=1R/Pi) = {P1, . . . , Pn}.
These results, together with Proposition 13.2.2 (4), prove AssocR(R) = {P1, . . . , Pn}.
Therefore every associated prime of R is minimal. Given P ∈ Spec(R), if ht(P ) ≥ 1,
then depth(P ) ≥ 1, by Exercise 15.3.16. Therefore, R has property (S1). If
ht(P ) = 0, then by Exercise 7.3.28, the nil radical of RP is (0). Since RP has
dimension 0, by Lemma 8.4.2, RP is artinian. Proposition 8.4.3 implies RP is a
field. This proves R has property (R0).

Conversely, assume RadR(0) ̸= (0) and R has property (S1). We show R does
not have property (R0). By Proposition 13.2.2 (1), there exists a nonzero nilpotent
element x ∈ RadR(0) and a prime ideal P ∈ Spec(R) such that P = annihR(x).
Then P ∈ AssocR(R) and by property (S1), ht(P ) = 0. By Exercise 15.4.18, the
image of x in RP is a nonzero nilpotent. Therefore, RP is not a field, so R does
not have property (R0). □
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Theorem 15.4.8. (Serre’s Criteria for Normality) Let R be a commutative
noetherian ring. Then R is normal if and only if the following two properties are
satisfied.

(R1) For every prime ideal P in R such that ht(P ) ≤ 1, RP is a regular local
ring.

(S2) For every prime ideal P in R,

depth(RP ) ≥

{
1 if ht(P ) = 1

2 if ht(P ) ≥ 2.

Proof. Assume R is normal and P ∈ Spec(R). By definition, RP is an in-
tegrally closed integral domain. If ht(P ) = 1, then Theorem 15.2.10 says RP is a
regular local ring. Suppose ht(P ) ≥ 2. By Exercise 13.6.19, there exist elements
a1, a2 in PRP such that ht(a1) = 1 and ht(a1, a2) = 2. Therefore, a1 is not a zero
divisor for RP . By Theorem 15.4.3 (1), RP /(a1) has no embedded primes, so a2 is
not a zero divisor for RP /(a1). This proves a1, a2 is a regular sequence for RP in
PRP , hence depth(RP ) ≥ 2.

The converse is a series of four steps. Assume R has properties (R1) and (S2).
Step 1: Show that the nil radical of R is trivial. If P ∈ SpecR and ht(P ) ≥ 1,

then by (S2), depth(RP ) ≥ 1 and by Exercise 15.3.16, P is not an associated prime
of R. That is, Assoc(R) contains no embedded primes. By Proposition 15.4.7 we
know that RadR(0) = (0).

Step 2: Show that the localization of R with respect to the set of all nonzero
divisors decomposes into a sum of fields. Let P1, . . . , Pn be the distinct minimal
primes of R. Then RPi is a field, and by Exercise 7.1.17, RPi is the quotient
field of R/Pi. Since Assoc(R) = {P1, . . . , Pn}, by Proposition 13.2.2, the set of
nonzero divisors in R is equal to W = R −

⋃n
i=1 Pi. Then W is a multiplicatively

closed set and Spec(RW−1) = {P1W
−1, . . . , PnW

−1}. Since each prime ideal in
RW−1 is maximal, RW−1 is artinian. By Exercise 7.3.28, RadRW−1(0) = (0). By
Proposition 8.4.3 and Theorem 8.2.3, RW−1 is semisimple. By Theorem 8.3.3 (2)
RW−1 decomposes into a direct sum

RW−1 =

n⊕
i=1

RW−1

PiW−1
=

n⊕
i=1

(R/Pi)W
−1

where each ring (R/Pi)W
−1 is a field. Since W ⊆ R − Pi for each i, there is a

natural map RW−1 →
⊕n

i=1RPi
. This gives a homomorphism

(R/Pi)W
−1 =

RW−1

PiW−1
ϕi−→ RPi

for each i. For each i, the kernel of the natural map R→ (R/Pi)W
−1 is the prime

ideal Pi. Hence R/Pi → (R/Pi)W
−1 is one-to-one and factors through the quotient

field RPi
,

RPi

ψi−→ (R/Pi)W
−1

for each i. The maps ϕi and ψi are inverses of each other, so the natural map

RW−1 ∼=
n⊕
i=1

RPi

is an isomorphism.
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Step 3: Show that R is integrally closed in its total ring of quotients RW−1.
Suppose rw−1 ∈ RW−1, u ≥ 1, and a1, . . . , au−1 ∈ R such that

(4.1) (rw−1)u + au−1(rw
−1)u−1 + · · ·+ a1(rw

−1) + a0 = 0

in RW−1. The objective is to show r ∈ wR, so assume w is not a unit in R. If
Q is a prime ideal that contains w, then the image of w is a nonzero divisor of
RQ in mQ = QRQ. By Corollary 13.6.12, ht(Q) ≥ 1. If ht(Q) ≥ 2, then by (S2),
depth(RQ) ≥ 2. By Exercise 15.3.14, depth(RQ/wRQ) ≥ 1 and by Exercise 15.3.16,
Q is not an associated prime of R/wR. That is, Assoc(R/wR) consists only of
minimal prime over-ideals of wR. Let Q ∈ Assoc(R/wR). By (R1), RQ is an
integral domain which is integrally closed in its field of fractions. By (4.1), the
image of rw−1 in the quotient field of RQ is integral over RQ. In other words,
rw−1 ∈ RQ, or r ∈ wRQ ∩ R. If I is a Q-primary ideal in R, then IRQ = mνQ,

for some ν > 0. By Exercise 13.1.7, I = QνRQ ∩ R = Q(ν), the ν-th symbolic
power of Q. The reduced primary decomposition of wR can be written in the form

wR = Q
(ν1)
1 ∩· · ·∩Q(νs)

s . In this case, wRQi = Qνii RQi and we already showed that

r is in wRQi
∩R = Q

(νi)
i . This proves r ∈ wR.

Step 4: Show that R is normal. Let e1, . . . , en be the orthogonal idempotents in
RW−1 corresponding to the direct sum decomposition of Step 2. Each ei satisfies
the monic polynomial x2 − x over R, hence belongs to R, by Step 3. This proves
the natural map

R→ R/P1 ⊕ · · · ⊕R/Pn
is onto, hence it is an isomorphism. The ideals P1, . . . , Pn are pairwise co-maximal.
Every prime ideal Q of R contains exactly one of the ideals P1, . . . , Pn. Each of
the integral domains R/Pi satisfies the two properties (R1) and (S2). By Step 3,
R/Pi is integrally closed in its quotient field RPi

. By Lemma 15.1.5, R is a normal
ring. □

Corollary 15.4.9. If R is a Cohen-Macaulay ring, then R is normal if and
only if RP is regular for all P such that ht(P ) ≤ 1.

Proof. For every prime ideal P in R, depth(RP ) = dim(RP ) = ht(P ), so
condition (S2) of Theorem 15.4.8 is satisfied. Therefore, R is normal if and only
condition (R1) is satisfied. □

4.2.1. Local Complete Intersection Criteria.

Proposition 15.4.10. Let R be a commutative noetherian ring. Let a1, . . . , ar
be a sequence of elements of R such that I = (a1, . . . , ar) is not the unit ideal
in R. Assume for every maximal ideal M of R such that I ⊆ M that RM is a
Cohen-Macaulay local ring and ht(IRM ) = r. Then

(1) R/I is Cohen-Macaulay, and
(2) R/I is normal if and only if (R/I)P is regular for all P ∈ Spec(R/I) such

that ht(P ) ≤ 1.

Proof. (1): Since RM is Cohen-Macaulay and ht(a1RM + · · · + arRM ) =
r, by Theorem 15.3.22, a1, . . . , ar is a regular sequence for RM in MRM . By
Theorem 15.3.21, RM/IRM = (R/I)M/I is Cohen-Macaulay. By Definition 15.3.23,
R/I is Cohen-Macaulay.

(2): Follows by Corollary 15.4.9 and Part (1). □
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4.3. The Approximation Theorem.

Lemma 15.4.11. Let R be a noetherian integrally closed integral domain. Let
r ≥ 1 and p, p1, . . . , pr a set of r + 1 distinct primes in X1(R). Then there exists
t ∈ R such that νp(t) = 1 and for 1 ≤ i ≤ r, νpi

(t) = 0.

Proof. Let πp be an element in R which maps to a local parameter for Rp.
If πp ̸∈

⋃r
i=1 pi, then set t = πp and stop. Otherwise rearrange the list p1, . . . , pr

and assume that πp ∈
⋂s
i=1 pi and πp ̸∈

⋃r−s
j=1 ps+j for some s ≥ 1. Applying

Lemma 10.3.2, since p2 ̸⊆
⋃s
i=1 pi, pick f0 ∈ p2−

⋃s
i=1 pi. Likewise, for 1 ≤ j ≤ r−s,

since ps+j ̸⊆
⋃s
i=1 pi, pick fj ∈ ps+j −

⋃s
i=1 pi. Set t = πp − f0f1 · · · fr−s. Then

t ∈ p−
⋃r
i=1 pi. Thus νpi

(t) = 0 for 1 ≤ i ≤ r. Now f0f1 · · · fr−s ∈ p2Rp and since
πp is a local parameter for Rp, t ∈ pRp − p2Rp. Thus νp(t) = 1. □

Theorem 15.4.12. (The Approximation Theorem) Let R be a noetherian inte-
grally closed integral domain with field of fractions K. Let r ≥ 1 and p1, . . . , pr a
set of distinct primes in X1(R). Let n1, . . . , nr ∈ Z. Then there exists α ∈ K such
that

νp(α) =

{
ni if p ∈ {p1, . . . , pr}
≥ 0 otherwise.

Proof. Using Lemma 15.4.11, pick t1, . . . , tr in R such that νpi
(tj) = δi,j

(Kronecker delta). In K∗, let β = tn1
1 · · · tnr

r . If there is no height one prime
p in X1(R) − {p1, . . . , pr} such that νp(β) < 0, then we take α = β and stop.
Otherwise, let q1, . . . , qs be those height one primes in X1(R) − {p1, . . . , pr} such
that νqj

(β) < 0 for 1 ≤ j ≤ s. Using Lemma 15.4.11, pick u1, . . . , us in R such that

νp(uj) =


1 if p = qj ,

0 if p = qi, for some i ̸= j,

0 if p ∈ {p1, . . . , pr}.

Let mj = νqj
(β) for 1 ≤ j ≤ s. Then α = tn1

1 · · · tnr
r u−m1

1 · · ·u−ms
s satisfies the

conclusion of the theorem. □

4.4. Divisor Classes of Integral Domains.

Definition 15.4.13. Let R be a noetherian normal integral domain with field
of fractions K. Let X1(R) be the subset of SpecR consisting of those prime ideals
of height one. The free Z-module on X1(R),

DivR =
⊕

P∈X1(R)

ZP

is called the group of Weil divisors of R. According to Corollary 15.4.4, there is a
homomorphism of groups Div : K∗ → Div(R) defined by

Div(α) =
∑

P∈X1(R)

νP (α)P,

and the kernel of Div() is equal to the group R∗. The class group of R is defined
to be the cokernel of Div(), and is denoted Cl(R). The sequence

0→ R∗ → K∗
Div−−→ Div(R)→ Cl(R)→ 0
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is exact. The image of Div : K∗ → DivR is denoted PrinR and is called the group
of principal Weil divisors. In other words, Cl(R) is the group of Weil divisors
modulo the principal Weil divisors.

Theorem 15.4.14. Let R be a noetherian integral domain. Then R is a UFD
if and only if every prime ideal of height one is principal.

Proof. Suppose R has the property that every height one prime is principal.
Let p be an irreducible element of R. By Exercise 3.4.29, it suffices to show that p is
a prime element of R. By Lemma 3.4.5, it is enough to show that the principal ideal
(p) is a prime ideal. Let P be a minimal prime over-ideal of (p). By Corollary 13.6.12
(Krull’s Hauptidealsatz), ht(P ) = 1. By hypothesis, P = (π) is principal. Then
π divides p and since p is irreducible, it follows that π and p are associates. This
implies P = (p). The converse follows from Exercise 3.4.30. □

Corollary 15.4.15. Let R be a noetherian normal integral domain. Then R
is a UFD if and only if Cl(R) = (0).

Proof. The proof is left to the reader. □

Theorem 15.4.16. (Nagata’s Theorem) Let R denote a noetherian normal in-
tegral domain with field of fractions K. Let f be a nonzero noninvertible element
of R with divisor Div(f) = ν1P1 + · · ·+ νnPn. The sequence of abelian groups

1→ R∗ → R[f−1]∗
Div−−→

n⊕
i=1

ZPi → Cl(R)→ Cl(R[f−1])→ 0

is exact.

Proof. There is a tower of subgroups R∗ ⊆ R[f−1]∗ ⊆ K∗. There exists a
map α such that the diagram

1 // R∗ //

δ
��

K∗
Div //

ϵ

��

PrinR //

α

��

0

1 // R[f−1]∗ // K∗
Div // PrinR[f−1] // 0

is commutative, where δ is set inclusion and ϵ is set equality. Clearly, α is onto. By
the Snake Lemma (Theorem 6.6.2), coker δ ∼= kerα. Hence

(4.2) 1→ R∗ → R[f−1]∗ → kerα→ 0

is exact. Using Exercise 7.3.26, X1(R[f
−1]) is the subset of X1(R) consisting of

those primes of height one in R that do not contain f . We can view Div(R[f−1]) as
the free Z-submodule of Div(R) generated by primes in X1(R[f

−1]). Let β be the
projection map onto this subgroup defined by P1 7→ 0, . . . , Pn 7→ 0. This diagram

0 // Prin (R) //

α

��

Div(R) //

β

��

Cl(R)

γ

��

// 0

0 // Prin(R[f−1]) // Div(R[f−1]) // Cl(R[f−1]) // 0

commutes and the rows are exact. Since β is onto, so is γ. The group DivR is
free on X1(R). The only height one primes that contain f are P1, . . . , Pn. There-
fore, the kernel of β is the free subgroup ZP1 ⊕ · · · ⊕ ZPn. By the Snake Lemma
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(Theorem 6.6.2),

(4.3) 0→ kerα→ kerβ → ker γ → 0

is exact. Combine (4.2) and (4.3) to complete the proof. □

Example 15.4.17. Let k be a field with characteristic not equal to 3. Let

R =
k[x, y, z]

(z3 − y(y − x)(x+ 1))
.

The reader should verify that R is an integrally closed noetherian integral domain.
This can be done using the method outlined in Exercise 15.4.19. Let K be the
quotient field of R. In this example we compute the class group Cl(R) and the
group of invertible elements, R∗. To compute the class group Cl(R), we first show
that there exists a localization of R which is factorial. The transformation we use
is based on the blowing-up of the maximal ideal (x, y, z). The reader is referred to
[26, pp. 28–29] for more details. Start with the equation

(4.4) z3 − y(y − x)(x+ 1)) = 0

in K. Divide both sides of (4.4) by x3 and substitute v = y/x and w = z/x to get

(4.5) w3 − v(v − 1)(1 + x−1) = 0.

Solve (4.5) for x to get

(4.6) x =
v2 − v

w3 − v2 + v
.

Now treat v, w as indeterminates and define

(4.7) R =
k[x, y, z]

(z3 − y(y − x)(x+ 1))

ϕ−→ k[v, w][(w3 − v2 + v)−1]

by ϕ(x) = (v2 − v)(w3 − v2 + v)−1, ϕ(y) = vϕ(x), and ϕ(z) = wϕ(x). The reader
should verify that ϕ is a well-defined k-algebra homomorphism and that if we adjoin
(xy(y− x))−1 to R and (v2 − v)−1 to the ring on the right hand side of (4.7), then

(4.8) R[x−1, y−1, (y − x)−1] ϕ−→ k[v, w][v−1, (v − 1)−1, (w3 − v2 + v)−1]

is a k-algebra homomorphism which is onto. Since the domain and range of ϕ are
both noetherian integral domains with Krull dimension two, ϕ is an isomorphism
(Corollary 14.3.4). Since k[v, w] is a unique factorization domain, it follows from
Theorem 15.4.16 that the group of units in the ring on the right hand side of (4.8)
decomposes into the internal direct product

(4.9) k∗ × ⟨v⟩ × ⟨v − 1⟩ × ⟨w3 − v2 + v⟩.

Using the isomorphism (4.8) we see that the group of units in R[x−1, y−1, (y−x)−1]
is generated by k∗, x, y, y−x. Since z3−y2 is irreducible, R/(x) ∼= k[y, z]/(z3−y2) is
an integral domain of Krull dimension one. Also, R/(y, z) ∼= k[x] and R/(y−x, z) ∼=
k[x]. From this it follows that

p0 = (x)

p1 = (y, z)

p2 = (y − x, z)
(4.10)
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are each height one prime ideals of R. Using the identity (4.4) we see that z is a
local parameter for each of the two local rings: Rp1 and Rp2 . From this we compute
the divisors:

Div(x) = p0

Div(y) = 3p1

Div(y − x) = 3p2.

(4.11)

Since R[x−1, y−1, (y − x)−1] is factorial, the exact sequence of Nagata (Theo-
rem 15.4.16) is

(4.12) 1→ R∗ → R[(xy(y − x))−1]∗ Div−−→
2⊕
i=0

Zpi → Cl(R)→ 0.

From (4.12) and (4.11), it follows that Cl(R) ∼= Z/3 ⊕ Z/3 and is generated by
the prime divisors p1 and p2. We remark that from (4.9) and (4.12) it follows that
R∗ = k∗.

4.5. Exercises.

Exercise 15.4.18. LetR be a commutative ring and assume RadR(0) is nonzero.
Let x be a nonzero nilpotent element in R and let P be a prime ideal of R con-
taining annihR(x). Show that the image of x in the local ring RP is nonzero and
nilpotent.

Exercise 15.4.19. Let k be a field and n ≥ 2 an integer which is invertible in k.
Let f ∈ k[x, y, z] be the polynomial zn−xy and let R be the quotient k[x, y, z]/(f).
In R we prefer not to use special adornment for cosets. That is, write simply x, or
z for the coset represented by that element.

(1) Show that R is a noetherian integral domain and dim(R) = 2.
(2) Let P = (x, z) be the ideal in R generated by x and z. Show that P is a

prime ideal of height one.
(3) Let I = (x) be the principal ideal generated by x in R. Show that

Rad (I) = P .
(4) Show that RP is a DVR and z generates the maximal ideal mP .
(5) Show that νP (x) = n and Div(x) = nP .
(6) Show that R[x−1] ∼= k[x, z][x−1] and R[y−1] ∼= k[y, z][y−1]. Show that Rp

is regular if p ∈ U(x) ∪ U(y).
(7) Show that the only prime ideal containing both x and y is the maximal

ideal m = (x, y, z), which has height 2. Show that depth(Rm) = 2. Apply
Theorem 15.4.8 to show that R is integrally closed.

(8) Show that Cl(R[x−1]) = 0. (Hint: R[x−1] is a UFD.)
(9) Cl(R) is cyclic of order n.

Exercise 15.4.20. Let S = R[x, y]/(f), where f = x2 + y2 − 1. By Exer-
cise 6.3.8, S is not a UFD. This exercise is an outline of a proof that Cl(S), the
class group of S, is cyclic of order two.

(1) Let R be the R-subalgebra of S[x−1] generated by yx−1 and x−1. Show
that R = R[yx−1, x−1]/(1 + (yx−1)2 − (x−1)2) is a PID.

(2) Show that R[x] = S[1/x] is a PID.
(3) Let P1 = (x, y − 1) and P2 = (x, y + 1). Show that SP1

and SP2
are local

principal ideal domains. Conclude that S is normal.
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(4) Show that Div(x) = P1 + P2 and Div(y − 1) = 2P1.
(5) Use Theorem 15.4.16 to prove that that Cl(S) is generated by P1 and has

order two.

Exercise 15.4.21. (Nagata’s Theorem) Let R be a noetherian normal integral
domain with field of fractions K. Let W ⊆ R−{0} be a multiplicative set. Modify
the proof of Theorem 15.4.16 to show that there is an epimorphism of groups
γ : Cl(R)→ Cl(W−1R) and that the kernel of γ is generated by the classes of those
prime divisors P ∈ X1(R)−X1(W

−1R).

Exercise 15.4.22. This exercise is a continuation of Exercise 15.4.19. Let k
be a field and n ≥ 2 an integer which is invertible in k. Let f ∈ k[x, y, z] be the
polynomial zn − xy and let R be the quotient k[x, y, z]/(f). Let m be the maximal

ideal (x, y, z) in R, and R̂ the m-adic completion of R.

(1) Show that R̂ ∼= k[[x, y]][z]/(f).

(2) Follow the procedure outlined in Exercise 15.4.19 to show that R̂ is a

noetherian normal integral domain and Cl(R̂) is a cyclic group of order n
generated by the class of the prime ideal P = (x, z).

In Algebraic Geometry, the ring R is the affine coordinate ring of the surface X =
Z(zn − xy) in A3

k and the point p = (0, 0, 0) is called a singular point of X. It
follows from [19, A5] and [37] that p is a rational double point of type An−1.

Exercise 15.4.23. Let k be a field such that char k ̸= 2. For the ring

R =
k[x, y, z]

(z2 − (y2 − x2)(x+ 1))

follow the method of Example 15.4.17 to prove the following:

(1) R[x−1, (y2 − x2)−1] is a UFD.
(2) The group of invertible elements in R[x−1, (y2 − x2)−1] is generated by

x, y − x, y + x.
(3) q1 = (x, z − y), q2 = (x, z + y), p1 = (y − x, z), p2 = (y + x, z), are height

one prime ideals in R.
(4) Div(x) = q1 + q2, Div(y − x) = 2p1, Div(y + x) = 2p2.
(5) Cl(R) ∼= Z⊕ Z/2⊕ Z/2.

Exercise 15.4.24. Let k be a field and n > 1 an integer that is invertible in k.
Assume moreover that k contains a primitive nth root of unity, say ζ. Let a1, . . . , an
be distinct elements of k. For 1 ≤ i ≤ n, define linear polynomials ℓi(x, y) = y−aix
in k[x, y], and set f(x, y) = ℓ1(x, y) · · · ℓn(x, y). For the ring

R =
k[x, y, z]

(zn − f(x, y)(x+ 1))

follow the method of Example 15.4.17 to prove the following:

(1) R[x−1, f(x, y)−1] is a UFD.
(2) The group of invertible elements in R[x−1, f(x, y)−1] is generated by

x, ℓ1, . . . , ℓn.
(3) Let qi = (x, z−ζiy), for i = 0, . . . , n−1. Let pj = (ℓj , z), for j = 1, . . . , n.

Then q0, . . . , qn−1, p1, . . . , pn are height one prime ideals in R.
(4) Div(x) = q0 + · · ·+ qn−1, and Div(ℓj) = npj , for j = 1, . . . , n.

(5) Cl(R) ∼= (Z)(n−1) ⊕ (Z/n)(n).
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Notice that for n = 2, this agrees with computation carried out in Exercise 15.4.23.
The ring R was the focus of the article [21] where many other interesting properties
of R were studied.

Exercise 15.4.25. Let k be a field and n > 2 an integer that is invertible in
k. Let a1, . . . , an−1 be distinct elements of k. For 1 ≤ i ≤ n − 1, define linear
polynomials ℓi(x, y) = y − aix in k[x, y], and set f(x, y) = ℓ1(x, y) · · · ℓn−1(x, y).
For the ring

R =
k[x, y, z]

(zn − f(x, y)(x+ 1))

follow the method of Example 15.4.17 to prove the following:

(1) R[x−1, f(x, y)−1] is a UFD.
(2) The group of invertible elements in R[x−1, f(x, y)−1] is generated by

x, ℓ1, . . . , ℓn−1.
(3) Let p0 = (x), and for i = 1, . . . , n− 1, let pi = (ℓi, z). Then p0, . . . , pn−1,

are height one prime ideals in R.
(4) Div(x) = p0, and Div(ℓj) = npj , for j = 1, . . . , n− 1.

(5) Cl(R) ∼= (Z/n)(n−1).
Notice that for n = 3, this agrees with computation carried out in Example 15.4.17.

5. Fibers of a Faithfully Flat Morphism

Throughout this section R and S will be commutative rings. Usually R and S
will be noetherian. Let f : R→ S be a homomorphism of rings, and f ♯ : SpecS →
SpecR the continuous map of Exercise 7.3.20. Let P ∈ SpecR. The residue field
at P is k(P ) = RP /PRP . The fiber over P of the map f ♯ is Spec(S ⊗R k(P )),
which is homeomorphic to (f ♯)−1(P ), by Exercise 7.4.11. By Exercise 7.4.10, if Q
is a prime ideal of S lying over P , then the corresponding prime ideal of S⊗R k(P )
is Q⊗R k(P ) and the local ring is SQ ⊗R k(P ) = SQ/PSQ.

5.1. Flat Algebras and Depth.

Theorem 15.5.1. Assume all of the following are satisfied.

(1) R is a noetherian local ring with maximal ideal m.
(2) S is a noetherian local ring with maximal ideal n.
(3) f : R→ S is a local homomorphism of local rings.
(4) A is a finitely generated R-module and B is a finitely generated S-module

which is a flat R-module.

Then

depthS(A⊗R B) = depthR(A) + depthS⊗RR/m(B ⊗R R/m)

= depthR(A) + depthS/mS(B/mB).

Proof. The proof is by induction on n = depthR(A) + depthS(B/mB). If
n = 0, then by Exercise 15.3.15 we have m ∈ AssocR(A) and n ∈ AssocS(B/mB).
By Theorem 13.3.11,

AssocS(A⊗R B) =
⋃

P∈AssocR(A)

AssocS(B ⊗R R/P ).

We have n in the right hand side, hence n is in AssocS(A⊗RB). By Exercise 15.3.15,
depthS(A⊗R B) = 0. Now assume n > 0 and that the equation holds for modules
A′, B′ such that depthR(A

′) + depthS(B
′/mB′) < n.
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Case 1: Suppose depthR(A) > 0. Let α be a regular element for A in m. Since
B is R-flat, f(α) is a regular element for A⊗RB in n. By our Induction Hypothesis,
the equation depthS(A/αA⊗RB) = depthR(A/αA)+depthS/mS(B/mB) holds for

A/αA and B. Adding 1 to both sides shows the equation holds for A and B.
Case 2: Assume depthR(A) = 0 and depthS(B/mB) > 0. Let β be a regular

element for B/mB = B ⊗R R/m in n. Start with the sequence of S-modules

(5.1) 0→ B
ℓβ−→ B → B/βB → 0

where ℓβ is the “left multiplication by β” homomorphism. Applying the functor
( )⊗R R/m to (5.1), we get the sequence

(5.2) 0→ B ⊗R R/m
ℓβ⊗1−−−→ B ⊗R R/m→ (B/βB)⊗R R/m→ 0.

By choice of β, (5.2) is exact. By Proposition 14.4.14, (5.1) is exact and B/βB is
a flat R-module. Upon tensoring (5.1) with A⊗R ( ) we get

(5.3) 0→ A⊗R B
1⊗ℓβ−−−→ A⊗R B → A⊗R (B/βB)→ 0

which is an exact sequence, by Lemma 12.3.2. This means β is a regular element
for A⊗R B in n. Therefore depthS (A⊗R (B/βB)) = depthS(A⊗R B)− 1. Since
(5.2) is an exact sequence of S/mS-modules, β is a regular element for B/mB in
nS/mS. Therefore depthS/mS((B/βB)⊗R R/m) = depthS/mS(B ⊗R R/m)− 1. By
our Induction Hypothesis, the equation

depthS (A⊗R (B/βB)) = depthR(A) + depthS/mS((B/βB)⊗R R/m)

holds for A and B/βB. Adding 1 to both sides shows the equation holds for A and
B. □

Corollary 15.5.2. Assume f : R→ S is a local homomorphism of noetherian
local rings making S into a flat R-algebra. If the maximal ideal of R is m, then the
following are true.

(1) depth(S) = depth(R) + depth(S/mS).
(2) S is Cohen-Macaulay if and only if R and S/mS are both Cohen-Macaulay.

Proof. (1): Follows straight from Theorem 15.5.1.
(2): By Theorems 10.3.6 and 13.6.21, dim(S) = dim(R) + dim(S/mS). By

Corollary 15.3.12, the depth of a noetherian local ring is always less than or equal
to its Krull dimension. Part (2) follows from these facts and Part (1). □

Corollary 15.5.3. Assume f : R → S is a faithfully flat homomorphism of
commutative noetherian rings. Let i be a positive integer. Then the following are
true.

(1) If S satisfies property (Si) of Definition 15.4.5, then so does R.
(2) If R satisfies property (Si) and for each P ∈ SpecR, S ⊗R k(P ) satisfies

(Si), then S satisfies property (Si).

Proof. (1): Let P ∈ SpecR. By Lemma 7.5.4, f ♯ : SpecS → SpecR is onto.
By Exercise 7.3.25 there exists Q ∈ SpecS which is a minimal prime over-ideal
of PS and f ♯(Q) = P . Then dim(SQ ⊗R k(P )) = depth(SQ ⊗R k(P )) = 0. By
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Theorem 15.5.1, depth(SQ) = depth(RP ). It follows that

depth(RP ) = depth(SQ)

≥ inf(i,dim(SQ))

= inf(i,dim(RP ))

which shows R has property (Si).
(2): Let Q ∈ SpecS and set P = Q∩R. Applying Theorems 15.5.1 and 13.6.21,

we get

depth(SQ) = depth(RP ) + depth(SQ ⊗R k(P ))
≥ inf(i,dim(RP )) + inf (i,dim(SQ ⊗R k(P )))
≥ inf (i,dim(RP ) + dim(SQ ⊗R k(P )))
= inf(i,dim(SQ))

which shows S has property (Si). □

Theorem 15.5.4. Let R be a noetherian local ring with maximal ideal m, S a
noetherian local ring with maximal ideal n, and f : R → S a local homomorphism
of local rings. Then the following are true.

(1) If S is a flat R-algebra and regular, then R is regular.
(2) If

(a) dim(S) = dim(R) + dim(S/mS),
(b) R is regular, and
(c) S/mS is regular,
then S is a flat R-algebra and S is regular.

Proof. (1): This is Exercise 15.3.41. To prove it, apply Proposition 12.4.16
and Theorem 15.3.37.

(2): By (b), there exists {a1, . . . , am} ⊆ m which is a regular system of param-
eters for R. By (c), there exists {b1, . . . , bn} ⊆ n which maps onto a regular system
of parameters for S/mS. Then {f(a1), . . . , f(am), b1, . . . , bn} generate the ideal n.
By (a), dim(S) = m+ n. Therefore, S is regular.

To prove that S is a flat R-algebra, we utilize (5) implies (1) of Theorem 14.4.13.
It suffices to show that grm(R) ⊗R/m S/mS ∼= grmS(S). In the notation from
above, there is a regular system of parameters {a1, . . . , am} ⊆ m for R such that
{f(a1), . . . , f(am)} is a regular sequence for S in n. By Theorem 15.3.6 (2),

grmS(S) = (S/mS)[t1, . . . , tm] = (R/m)[t1, . . . , tm]⊗R/mS/mS = grm(R)⊗R/mS/mS

which completes the proof. □

Corollary 15.5.5. Assume f : R → S is a faithfully flat homomorphism of
commutative noetherian rings. Let i ≥ 0 be a natural number. Then the following
are true.

(1) If S satisfies property (Ri) of Definition 15.4.5, then so does R.
(2) If R satisfies property (Ri) and for each P ∈ SpecR, S ⊗R k(P ) satisfies

(Ri), then S satisfies property (Ri).

Corollary 15.5.6. Assume f : R → S is a faithfully flat homomorphism of
commutative noetherian rings.
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(1) If S is a normal ring, then R is a normal ring. Conversely, if R is a
normal ring and for each P ∈ SpecR, S ⊗R k(P ) is a normal ring, then
S is a normal ring.

(2) Part (1) is true if “normal ring” is replaced with “Cohen-Macaulay ring”.
(3) Part (1) is true if “normal ring” is replaced with “reduced ring”.

Proof. (1): If S is a normal ring, thenR is a normal ring, by Exercise 10.1.18 (3).
Notice that this is true without the hypothesis that the rings R and S are noether-
ian. By Theorem 15.4.8, a commutative noetherian ring is normal if and only if
the properties (R1) and (S2) are satisfied. Therefore, the “conversely” statement
in (1) follows from Corollaries 15.5.5 and 15.5.3.

(2): By Example 15.4.6 (3), a commutative noetherian ring is Cohen-Macaulay
if and only if the properties (Si) are satisfied for all i ≥ 1. Therefore, (2) follows
from Corollary 15.5.3.

(3): By Proposition 15.4.7, a commutative noetherian ring is reduced if and
only if the properties (R0) and (S1) are satisfied. Therefore, (3) follows from Corol-
laries 15.5.5 and 15.5.3. □

5.2. Existence of a Flat Extension. Let R be a noetherian local ring with
maximal ideal m and residue field k = R/m. Let K/k be an extension of fields.
The purpose of this section is to prove that there exists a noetherian local ring S
and a faithfully flat local homomorphism θ : R → S such that S/mS = K. This
result appears as Theorem 15.5.7 below. All of the results in this section are based
on [23, Proposition 10.3.1] and its proof.

Theorem 15.5.7. Let R be a noetherian local ring with maximal ideal m and
residue field k = R/m. Let K/k be an extension of fields. Then there exists a
noetherian local ring S and a local homomorphism of local rings θ : R → S such
that S/mS = K and S is a faithfully flat R-algebra.

Proof. The method of proof is to reduce to the case where K is a simple
extension of k. To accomplish this, we write K as a direct limit of subfields over a
well ordered index set.

Step 1: Assume K = k(t) is a transcendental extension of k of degree one. Let
Q be the kernel of the natural map R[t]→ R[t]⊗R k = k[t]. Then Q is equal to the
ideal m[t]. Let S be the local ring of R[t] at the prime ideal Q. By Exercise 7.1.17,
the residue field S/QS is equal to the quotient field of R[t]/Q, which we identify
withK = k(t). Since Q is generated by m, we have R→ S is a local homomorphism
of local rings and mS = QS. Since S is flat over R[t] and R[t] is flat over R, we
have S is faithfully flat over R. Since R is noetherian, by Theorem 10.2.1 and
Corollary 7.6.13, the ring S is noetherian.

Step 2: Assume K = k(t) is a finite dimensional algebraic extension of k gener-
ated by the primitive element t. Let f = min.polyk(t) be the minimal polynomial
of t in k[x]. Let F ∈ R[x] be a monic polynomial which maps onto f under the
natural map R[x]→ R[x]⊗R k. Let S = R[x]/(F ). By Corollary 9.6.3, S is a local
ring with maximal ideal mS, residue field S/mS = K, and S is finitely generated
and free as an R-module. Therefore, S is a faithfully flat R-algebra. Since R is
noetherian, by Theorem 10.2.1, the ring S is noetherian.

Step 3: We will omit the details, but the reader should verify that the proof of
Proposition 2.10.17 can be modified to show that there exists a well ordered set I
and a family {Kξ | ξ ∈ I} of subfields of K indexed by I satisfying the following.
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(1) If 1 is the least element of I, then K1 = k.
(2) If α and β are in I and α ≤ β, then k ⊆ Kα ⊆ Kβ ⊆ K.
(3) For each β ∈ I, if β has an immediate predecessor, say α, then there

exists xβ ∈ Kβ such that Kβ = Kα(xβ) is a simple extension. If β has no
immediate predecessor, then Kβ =

⋃
ξ∈(−∞,β)Kξ.

(4) K =
⋃
ξ∈I Kξ.

By Transfinite Induction, Proposition 1.3.2, we define a direct limit system of local
rings {Sξ | ξ ∈ I} over the index set I. First we set S1 = R. Inductively, assume
δ ∈ I, 1 < δ. Assume for the well ordered set (−∞, δ) that there is a direct limit
system {Sξ, ϕαβ} where

(A) S1 = R.
(B) Each Sξ is a noetherian local ring with maximal ideal mξ and residue field

Sξ/mξ = Kξ.
(C) If α ≤ β < δ, then ϕαβ : Sα → Sβ is a local homomorphism of local rings,

mβ = mαSβ , and Sβ is a faithfully flat Sα-algebra.

To define Sδ there are two cases. If δ has an immediate predecessor, say β, then
Kδ is a simple extension of Kβ . By Step 1 or Step 2 there exists a noetherian local
ring Sδ which is a faithfully flat Sα-algebra with maximal ideal mδ and residue

field Kδ. For any α ≤ β the homomorphism ϕαδ is taken to be ϕβδ ◦ ϕαβ . If δ has

no immediate predecessor, then Kδ =
⋃
ξ∈(−∞,δ)Kξ. In this case we define Sδ to

be the direct limit over the well ordered index set (−∞, δ). By Exercise 6.8.30
and Corollary 14.5.4, Sδ = lim−→ξ∈(−∞,δ) Sξ is a noetherian local ring which is a

faithfully flat R-algebra with maximal ideal mδ = lim−→ξ
mξ = mξSδ, and residue

field Kδ. Definition 6.8.2, the natural homomorphisms ϕαδ : Sα → Sδ exist and we

have ϕαδ = ϕβδ ◦ ϕαβ whenever α ≤ β < δ. By Transfinite Induction, the direct limit

system {Sξ, ϕαβ} exists over the index set I. By Exercise 6.8.30 and Corollary 14.5.4,
if we define S to be the limit Sδ = lim−→ξ∈I Sξ, then S is a noetherian local ring which

is a faithfully flat R-algebra with maximal ideal mδ = lim−→ξ
mξ = mξS, and residue

field K =
⋃
ξ∈I Kξ.

□

Corollary 15.5.8. Let R be a noetherian local ring with maximal ideal m
and residue field k = R/m. Let C be the category whose objects are the noetherian
local faithfully flat R-algebras S such that S ⊗R R/m is a field. The morphisms
of C are R-algebra homomorphisms. Let D be the category whose objects are field
extensions of k and whose morphisms are k-algebra homomorphisms. Then the
functor ( )⊗R k : C→ D is essentially surjective.

Proof. This is a restatement of Theorem 15.5.7. □

Corollary 15.5.9. Let R be a noetherian local ring with maximal ideal m
and residue field k = R/m. Let K/k be a finite dimensional extension of fields.
Then there exists a noetherian local ring S and a local homomorphism of local
rings θ : R → S such that S/mS = K and S is a finitely generated faithfully flat
R-module.

Proof. In Step 3 of the proof of Theorem 15.5.7, the index set I can be taken
to be finite. For the induction step, Step 2 is applied to get the ring Sδ, hence Sδ
is a finitely generated free R-module. □
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Corollary 15.5.10. Let R be a local ring with maximal ideal m and residue
field k = R/m. Let K/k be an extension of fields. Then there exists a local ring S
and a local homomorphism of local rings θ : R→ S such that S/mS = K and S is
a faithfully flat R-algebra.

Proof. Notice that in Steps 1 and 2 of Theorem 15.5.7 the hypothesis that R
is noetherian was only used to prove that S is noetherian. In Step 3 the hypothesis
that each Sξ is noetherian was only used when Corollary 14.5.4 was applied to prove
that the direct limit is noetherian. □

5.3. Ramified Radical Extensions. As another application of Theorem 15.5.1,
we study the important class of finite extensions of commutative rings defined by
adjoining an nth root of an element. Let R be a commutative ring, n ≥ 2, a ∈ R,
and set S = R[x]/(xn − a). We say S/R is a radical extension of degree n. In this
section, the emphasis is on radical extensions which are not separable over R. Such
an extension is also said to be a ramified extension. Our goal is to derive necessary
and sufficient conditions on n and a such that if R is a noetherian normal integral
domain, then so is S. Necessary conditions are provided by Lemma 15.5.12 (2).
Sufficient conditions are stated in Lemma 15.5.13 and Theorem 15.5.14. For refer-
ence, we state sufficient conditions for S to be a separable R-algebra. The results
of this section are based on [20, Section 9.4].

Lemma 15.5.11. Let R be a commutative ring, n ≥ 2, and a ∈ R. Then the
following are true for the radical extension S = R[x]/(xn − a).

(1) S is an R-algebra which is a finitely generated free R-module of rank n
with basis 1, x, . . . , xn−1.

(2) S is separable over R if and only if a and n are both invertible in R.
(3) Let θ : R → S be the structure homomorphism. Then θ♯ : SpecS →

SpecR is onto and the closed set V (x) ⊆ SpecS is mapped homeomorphi-
cally onto the closed set V (a) ⊆ SpecR.

(4) If Q ∈ SpecS and P = Q ∩R, then
(a) ht(Q) = ht(P ),
(b) dim(SQ/PSQ) = 0, and
(c) depth(SQ) = depth(RP ).

(5) For i ≥ 1, S satisfies property (Si) of Definition 15.4.5 if and only if R
does.

Proof. (1) and (2): These follow from Exercises 4.2.26 and 9.5.17 respectively.
(3): By (1), S is faithfully flat and integral over R. By Lemma 7.5.4, θ♯ is onto.

Let η : S → S/(x) be the natural map. Then ηθ(a) = 0, so there is a commutative
diagram

R
θ //

��

S = R[x]/(xn − a)

η

��
R/(a)

θ̄ // S/(x)
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and the reader should verify that θ̄ is an isomorphism. By Exercise 7.3.22, there is
a commutative diagram

V (x)
θ̄♯ //

⊆
��

V (a)

⊆
��

SpecS
θ♯ // SpecR

and θ̄♯ is a homeomorphism.
(4) and (5): Part (4) follows from Theorems 10.3.6, 13.6.22, and Corollary 15.5.2.

Part (5) follows from Part (4). □

Lemma 15.5.12. Let R be a commutative ring and a an element of R that is
not a zero divisor. If n ≥ 2 and e ≥ 1, then the following are true for the radical
extension S = R[x]/(xn − ae).

(1) a and x are not zero divisors in S.
(2) If a is not a unit in R and e ≥ 2, then S is not integrally closed in Q(S),

the total ring of quotients of S.

Proof. (1): Since S is a free R-module (Lemma 15.5.11), a is not a zero divisor
of S. Suppose a0, . . . , an−1 are elements of R and (a0+a1x+ · · ·+an−1xn−1)x = 0.
Then a0x + a1x

2 + · · · + an−2x
n−1 + an−1a = 0 implies 0 = a0 = · · · = an−1.

Therefore, x is not a zero divisor in S.
(2): Let w = ax−1 and v = xa−1, which are elements of Q(S). If n ≥ e, then

wn = an(xn)−1 = an−e ∈ S. Therefore, w is integral over S. For contradiction’s
sake, assume w ∈ S. Then there are elements ai of R such that a0 + a1x + · · · +
an−1x

n−1 = ax−1. Then a0x+ a1x
2 + · · ·+ an−2x

n−1 + an−1x
n = a, which implies

0 = a0 = · · · = an−2, and an−1a
e = a. This is a contradiction, since a is not a zero

divisor and not invertible. If n < e, then a similar argument shows v is integral
over S, and v ̸∈ S. □

Now we derive sufficient conditions for a radical extension of a noetherian
normal integral domain R to be a noetherian normal integral domain. Let a be
a nonzero element of R and assume the divisor of a is

Div(a) = n1P1 + · · ·+ nvPv

(Definition 15.4.13). If P1, . . . , Pv are distinct height one primes in X1(R) and
n1 = n2 = · · · = nv = 1, then we say that Div(a) is a reduced effective divisor.

Lemma 15.5.13. Let R be a DVR with maximal ideal m = (π). Let S =
R[x]/(xn − π), where n ≥ 2. Then S is a DVR with maximal ideal M = (x).

Proof. Since R is a UFD, so is R[x]. By Eisenstein’s Criterion (Corol-
lary 3.7.7), xn−π is irreducible in R[x]. Therefore, S is an integral domain. By the
Hilbert Basis Theorem (Theorem 10.2.1), S is noetherian. Since S/(x) = R/(π) is
a field, M = (x) is a maximal ideal in S. By Theorem 10.3.7 (4) every maximal
ideal of S contains π. Since xn = π, this implies M is the unique maximal ideal,
so S is a local ring. By Krull’s Hauptidealsatz (Corollary 13.6.12 (2)), ht(M) = 1.
Therefore, dim(S) = 1 and by Theorem 15.2.10, S is a DVR. □

Theorem 15.5.14. Let R be a noetherian normal integral domain with quotient
field K. Let a be a nonzero element of R and assume Div(a) is a reduced effective
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divisor and n ≥ 2 is invertible in R. If S = R[x]/(xn − a) and L = K[x]/(xn − a),
then the following are true.

(1) L is a field.
(2) S is a noetherian integral domain.
(3) L is the quotient field of S.
(4) Let Q ∈ SpecS, P = Q ∩R, and assume that a ̸∈ P . Then RP is regular

if and only if SQ is regular.
(5) S is a noetherian normal integral domain.
(6) S is the integral closure of R in L.

Proof. (1): By Section 15.4.1, for each P ∈ X1(R), RP is a DVR with val-
uation νP . Let Div(a) = P1 + · · · + Pv, where P1, . . . , Pv are the distinct minimal
primes of a in X1(R). For each i, νPi

(a) = 1, so a is a local parameter for RPi
. By

Lemma 15.5.13, xn−a is irreducible in RPi
[x]. By Gauss’ Lemma (Theorem 3.7.3),

xn − a is irreducible in K[x], which implies L is a field.
(2): By Lemma 15.5.11, S is a free R-module of rank n and 1, x, . . . , xn−1 is a

basis. The natural mapping S = S ⊗R R → S ⊗R K = L is one-to-one since S is
a flat R-module. Hence S is a subring of L and consequently an integral domain.
By Theorem 10.2.1, S is noetherian.

(3): Let Q(S) denote the quotient field of S. By Corollary 3.5.6 there is a
homomorphism Q(S) → L which is onto since the natural mapping S → L is a
localization of S.

(4): Since a ̸∈ P , the image of a in k(P ) is invertible. By Lemma 15.5.11,
S ⊗R RP is separable over RP . By Exercise 9.4.8, SQ is separable over RP . By
Exercise 9.5.16, if k(P ) is the residue field of RP , then SQ ⊗R k(P ) is a separable
field extension of k(P ). By Theorem 15.5.4, RP is regular if and only if SQ is
regular.

(5): We apply the Serre Criteria, Theorem 15.4.8. By Lemma 15.5.11 (5) it
suffices to show S has property (R1). Let Q ∈ SpecS. Assume ht(Q) = 1 and set
P = Q ∩ R. By Part (4) we can assume a ∈ P . By Lemma 15.5.11 (3), the prime
ideals of S containing x correspond bijectively with the prime ideals of R containing
a. Under this correspondence, a prime ideal Q ∈ SpecS corresponds to P = Q∩R.
A prime ideal P ∈ SpecR corresponds to Q = PS+(x). The prime ideals of height
one in R that contain a are P1, . . . , Pv. For 1 ≤ i ≤ v, the height one prime of S
lying over Pi is Qi = PiS+(x). We have SQi

= S⊗RRPi
= RPi

[x]/(xn−1). Since
a is a local parameter for RPi

, Lemma 15.5.13 shows that SQi
is a DVR with local

parameter x. We have shown that S is regular in codimension one.
(6): S is integral over R and S is integrally closed in L. □

For more results related to ramified radical extensions, see Corollaries 16.5.11
and 16.5.16, and Example 15.6.6.
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6. Tests for Regularity

In this section, all rings are commutative. Suppose R is a local ring with
maximal ideal m and residue field k = R/m. If R is noetherian and has Krull
dimension dim(R) = d, then R is regular if and only if m = Rx1 + · · ·+Rxd for a
regular system of parameters x1, . . . , xd. By Exercise 13.6.17, R is a regular local
ring if and only if dimk(m/m

2) = d.

6.1. A Differential Criterion for Regularity. As above, let R be a local
ring with maximal ideal m. A coefficient field of R is a subfield k of R which is
mapped onto R/m under the natural map R→ R/m. In this case, R is a k-algebra,
and k → R/m is a k-algebra isomorphism. The reader should verify that if k is
a coefficient field of R, then every x ∈ R has a unique representation in the form
x = y + z, where y ∈ k and z ∈ m.

Proposition 15.6.1. Let R be a local ring with maximal ideal m and assume
R contains a coefficient field k. Then the k-linear map

m/m2 γ−→ ΩR/k ⊗R k

of Theorem 14.2.4 is an isomorphism.

Proof. The cokernel of γ is Ωk/k which is 0, so γ is onto. To show γ is
one-to-one, it is enough to apply the exact functor Homk(·, k) and show that

Homk(ΩR/k ⊗R k, k)
Hγ−−→ Homk(m/m

2, k)

is onto. As in the proof of Theorem 14.2.4, the map Hγ is isomorphic to

Derk(R, k)
ρ−→ HomR(m, k)

where ρ is defined by ∂ 7→ ∂|m. It suffices to show ρ is onto. Let h ∈ HomR(m, k).
Given x ∈ R, write x = y+z, where y ∈ k and z ∈ m. This representation is unique.
Define ∂ : R→ k by ∂(x) = h(z). It is easy to see that ∂ is a well defined function
that extends h, and ∂(k) = 0. The reader should verify that ∂ is a k-derivation on
R. □

Theorem 15.6.2. Let R be a local ring with maximal ideal m and assume R
contains a coefficient field k which is a perfect field. Assume R is a localization of
a finitely generated k-algebra. The following are equivalent.

(1) R is regular.
(2) ΩR/k is a free R-module of rank d = dim(R).

Proof. By Theorem 10.2.1 and Corollary 7.6.13, R is noetherian. By Theo-
rem 14.3.1 and Lemma 13.6.2, R is of finite Krull dimension.

(2) implies (1): By Proposition 15.6.1, dimk(m/m
2) = d and R is regular.

(1) implies (2): Assume dimk(m/m
2) = d. By Proposition 15.6.1, it follows

that dimk(ΩR/k ⊗R k) = d. By Corollary 15.1.9, R is a normal integral domain.
Let K be the quotient field of R. By Exercise 14.2.12, ΩR/k ⊗R K = ΩK/k. By
Theorem 14.3.9 and Theorem 14.3.6, dimK(ΩK/k) = tr.degk(K). By Noether’s
Normalization Lemma (Corollary 14.3.3), d = tr.degk(K). By Proposition 14.2.2
and Exercise 14.2.12, ΩR/k is a finitely generated R-module. By Corollary 7.7.3,
ΩR/k is a free R-module of rank d. □
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Corollary 15.6.3. Let k be an algebraically closed field and R an integral
domain that is a finitely generated k-algebra. Let n = dim(R). The following are
equivalent.

(1) R is regular.
(2) Rm is a regular local ring for every m ∈ MaxR.
(3) ΩRm/k is a free Rm-module of rank n for every m ∈ MaxR.
(4) ΩR/k is a finitely generated projective R-module of rank n.

Proof. By Theorem 10.2.1, R is noetherian. By Proposition 14.2.2, ΩR/k is a
finitely generated R-module. By Exercise 14.2.12, ΩRm/k = ΩR/k ⊗R Rm. (1) and
(2) are equivalent by Exercise 15.3.42. (2) and (3) are equivalent by Theorem 15.6.2.
(3) and (4) are equivalent, by Proposition 7.7.2. □

Corollary 15.6.4. Let k be an algebraically closed field and R an integral
domain that is a finitely generated k-algebra. If

RegR = {p ∈ SpecR | Rp is a regular local ring}

is the subset of SpecR consisting of all prime ideals p for which the local ring Rp

is regular, then

(1) RegR ∩MaxR ̸= ∅, and
(2) for every m ∈ RegR∩MaxR, there exists an open dense U ⊆ SpecR such

that m ∈ U ⊆ RegR.

Proof. Let K be the quotient field of R. By Theorem 14.3.9, K is separably
generated over k. By Corollary 14.3.3, if n = dimR, then n = tr.degk(K). By
Theorem 14.3.6, dimK ΩK/k = n. By Exercise 14.2.12, ΩK/k = ΩR/k ⊗R K. By
Proposition 14.2.2, ΩR/k is a finitely generated R-module and by Lemma 7.1.11,
there exists α ∈ R − (0) such that ΩR/k ⊗R Rα is a free Rα-module. By Corol-
lary 15.6.3, Rα is regular and the basic open set U(α) is a subset of RegR. It
follows from Hilbert’s Nullstellensatz that the Jacobson radical of R is (0) (see
Corollary 10.2.16). Consequently, there exists m ∈ MaxR such that α is not in m.
Thus m ∈ U(α) ∩MaxR, which proves (1).

To prove (2), let m be a maximal ideal of R and assume Rm is a regular local
ring. Then ΩRm/k = ΩR/k ⊗R Rm is free of rank n, by Theorem 15.6.2. By
Lemma 7.1.11, there exists β ∈ R−m such that ΩR/k ⊗R Rβ is a free Rβ-module.
By Corollary 15.6.3, Rβ is regular and the basic open set U(β) is a subset of RegR.
The open set U(β) is dense in SpecR since it contains the generic point (0). □

6.2. A Jacobian Criterion for Regularity. Throughout this section, k is
an algebraically closed field, and all rings are commutative. From a utilitarian
point of view, the jacobian criterion of Theorem 15.6.5 is one of the most useful
and powerful methods for showing that a finitely generated k-algebra R is regular.

First we review some terminology and notation from Section 10.2.2. Affine
n-space over k is denoted Ank and is equal to the set {(a1, . . . , an) | ai ∈ k}. For
any subset Y ⊆ Ank , the ideal of Y in A = k[x1, . . . , xn] is defined by

I(Y ) = {f ∈ A | f(P ) = 0, for all P ∈ Y }.

If T ⊆ A is a set of polynomials, then the set of zeros of T

Z(T ) = {P ∈ Ank | f(P ) = 0, for all f ∈ T}
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is an affine algebraic set. By Hilbert’s Nullstellensatz (Corollary 10.2.11), there is a
one-to-one correspondence between the algebraic sets in Ank and the radical ideals
in A defined by the assignments Y 7→ I(Y ) and I 7→ Z(I).

If Y ⊆ Ank is a affine algebraic set, then the affine coordinate ring of Y is
O(Y ) = A/I(Y ). Now assume I is a radical ideal in A, and Y = Z(I) is the
associated affine algebraic set. Then I = I(Y ) and O(Y ) = A/I. By Hilbert’s
Nullstellensatz (see Example 10.2.15), the maximal ideals in O(Y ) = A/I are in
one-to-one correspondence with the points P ∈ Y . A point P = (a1, . . . , an) ∈ Y ,
corresponds to the maximal ideal m in O(Y ) generated by x1 − a1, . . . , xn − an.
The localization of O(Y ) at the maximal ideal m is called the local ring at P on
Y and is denoted OP,Y . Theorem 15.6.5 is a jacobian criterion for OP,Y to be a
regular local ring.

Theorem 15.6.5. Let k be an algebraically closed field, Y ⊆ Ank an affine
algebraic set and f1, . . . , ft a set of generators for I(Y ). Let P ∈ Y and assume
the Krull dimension of the local ring OP,Y is r. Then the jacobian matrix

J =

(
∂fi
∂xj

(P )

)
has rank n− r if and only if OP,Y is a regular local ring.

Proof. Let A = k[x1, . . . , xn], I = I(Y ) = (f1, . . . , xt), and R = O(Y ) = A/I.
Let p denote the maximal ideal of R corresponding to the point P ∈ Y . Then
OP,Y = Rp. Let m = pRp be the maximal ideal of Rp. Since k is algebraically
closed, the residue field Rp/m is equal to k. Start with the exact sequence

I/I2
γ−→ ΩA/k ⊗A R

a−→ ΩR/k → 0

of Theorem 14.2.4. Tensoring with the residue field, ( )⊗R k, the sequence

I/I2 ⊗R k
γ−→ ΩA/k ⊗A k

a−→ ΩRp/k ⊗Rp
k → 0

is exact. As in the proof of Proposition 14.2.7, the image of γ is the column space
of the jacobian matrix J and ΩA/k ⊗A k ∼= k(n). From the exact sequence, the
dimension of ΩR/k ⊗R k over k is equal to n − Rank(J). By Proposition 15.6.1,

m/m2 ∼= ΩRp/k⊗Rp
k. Therefore, Rp is a regular local ring if and only if Rank(J) =

n− r. □

Example 15.6.6. In the above context, let F = Z(f) be an algebraic set in Ank
defined by a square free polynomial f inA = k[x1, . . . , xn]. Using Corollaries 13.6.12
and 14.3.4 we see that dim(O(F )) = n − 1. Let d ≥ 2 be an integer that is
invertible in k. Consider the algebraic set Y = Z(zd − f) in An+1

k . The affine

coordinate ring of Y , O(Y ) = A[z]/(zd − f), is a ramified radical extension of
A. We are in the context of Theorem 15.5.14. Then Y is irreducible, O(Y ) is a
normal integral domain, the quotient field of O(Y ) is a finite algebraic extension
of k(x1, . . . , xn), and the Krull dimension of O(Y ) is equal to n. If π : An+1

k → Ank
is the projection along the z-axis defined by (a1, . . . , an, b) 7→ (a1, . . . , an), then
π−1(F ) is the algebraic subset of Y equal to Y ∩ Z(z). Let Sing(Y ) denote the
set of points in Y where the local ring OP,Y is not a regular local ring. The set
Sing(Y ) is called the singular locus of Y . For any point Q ∈ Y such that π(Q)
is not in F , it follows from Theorem 15.5.14 (4) that OQ,Y is a regular local ring.
This implies Sing(Y ) ⊆ π−1(F ). Applying Theorem 15.6.5, we can say more. The
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jacobian of zd − f is
(
fx1

, . . . , fxn
, dzd−1

)
. From Theorem 15.6.5, we see at once

that P ∈ Sing(Y ) if and only if P = (a1, . . . , an, 0) and π(P ) = (a1, . . . , an) is
in Sing(F ). In other words, the singular locus of Y corresponds under π to the
singular locus of F . By Exercise 15.3.42, O(Y ) is a regular integral domain if and
only if O(F ) is a regular ring.

Example 15.6.7. Although the field in Theorem 15.6.5 is required to be al-
gebraically closed, it is sometimes possible to work around this obstacle. In this
paragraph, one such method is presented. Let k be a field and in this example do
not assume k is algebraically closed. Let k̄ be an algebraic closure of k. Let I be an
ideal in k[x1, . . . , xn] and T = k[x1, . . . , xn]/I. If T̄ = T ⊗k k̄, then the natural map
T → T̄ is faithfully flat (Exercise 7.5.18). By Exercise 15.3.41, if T̄ is regular, then
T is regular. By Exercise 10.1.18 (2), if T̄ is an integrally closed integral domain,
then T is an integrally closed integral domain. By Exercise 10.1.18 (3), if T̄ is a
normal ring, then T is a normal ring.

Corollary 15.6.8. Let k be an algebraically closed field and Y an irreducible
algebraic subset of Ank . Then the singular locus of Y , Sing (Y ), is a proper closed
subset of Y .

Proof. As in Example 15.6.6, Sing (Y ) consists of those points P in Y such
that OP,Y is not a regular local ring. There is a one-to-one correspondence between
the points P in Y and the maximal ideals m in MaxO(Y ) (Example 10.2.15).
The finitely generated k-algebra O(Y ) is an integral domain since Y is irreducible.
Therefore, this follows from Corollary 15.6.4. □



CHAPTER 16

Divisor Class Groups

1. Lattices

LetR be an integral domain with field of fractionsK. If V is a finite dimensional
K-vector space, andM is an R-submodule of V , then the K-subspace of V spanned
by M is denoted KM . Notice that KM is finite dimensional over K, but M is
not necessarily finitely generated as an R-module. If M is any finitely generated
torsion free R-module, the natural mapping R ⊗R M → K ⊗R M is one-to-one
(Lemma 7.1.1). In this case we can identify M with the R-submodule 1 ⊗M of
K ⊗RM . In this case, we write KM instead of K ⊗RM .

1.1. Definition and First Properties. Let R be an integral domain with
field of fractions K and V a finite dimensional K-vector space. The definition of an
R-lattice in V follows Proposition 16.1.1. If M is an R-submodule of V , then the
proposition establishes five equivalent conditions, any one of which can be taken
as the definition for an R-lattice in V . Of the five, the one with a particularly
straightforward interpretation is Property (1). It states that to be an R-lattice it is
necessary and sufficient thatM has two key properties. The first is thatM contains
a spanning set for V as a K-vector space and the second is that M is either finitely
generated as an R-module, or is contained in a finitely generated R-submodule of
V .

Proposition 16.1.1. Let R be an integral domain with field of fractions K
and V a finite dimensional K-vector space. The following are equivalent for an
R-submodule M of V .

(1) There is a finitely generated R-submodule N of V such that M ⊆ N , and
KM = V , where KM denotes the K-subspace of V spanned by M .

(2) There is a free R-submodule F in V with RankR(F ) = dimK(V ) and a
nonzero element r ∈ R such that rF ⊆M ⊆ F .

(3) There are free R-submodules F1, F2 in V with F1 ⊆M ⊆ F2 and RankR(F1) =
RankR(F2) = dimK(V ).

(4) There is a chain of R-submodules L ⊆ M ⊆ N where KL = V and N is
finitely generated.

(5) Given any free R-submodule F of V with RankR(F ) = dimK(V ), there
are nonzero elements r, s ∈ R such that rF ⊆M ⊆ s−1F .

Proof. Assume dimK(V ) = n. We prove that (4) implies (5). The rest is
left to the reader. Assume we are given F = Ru1 ⊕ · · · ⊕Run a free R-submodule
of V . Also, let L ⊆ M ⊆ N , where KL = V and N is a finitely generated R-
submodule of V . Since KL = V we can pick a K-basis for V in L, say {λ1, . . . , λn}
(Theorem 4.2.34). For each j there are kj,i ∈ K such that uj =

∑n
i=1 kj,iλi. Pick

a nonzero r ∈ R such that rkj,i ∈ R for all pairs j, i. Then ruj =
∑n
i=1 rkj,iλi ∈

681
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iRλi ⊆ L, hence rF =

∑
j Rruj ⊆ L ⊆M . Let ν1, . . . , νt be a generating set for

N . For each j there are κj,i ∈ K such that νj =
∑n
i=1 κj,iui. Pick a nonzero s ∈ R

such that sκj,i ∈ R for all pairs j, i. Then sνj =
∑n
i=1 sκj,iui ∈

∑n
i=1Rui = F .

Therefore, M ⊆ N =
∑t
j=1Rνj ⊆ s−1F . □

Definition 16.1.2. Let R be an integral domain, K the field of fractions of R,
and V a finite dimensional K-vector space. An R-submodule M of V that satisfies
any of the equivalent conditions of Proposition 16.1.1 is said to be an R-lattice in
V . The rank of an R-lattice M in V is defined to be dimK V .

Example 16.1.3. Let R be an integral domain with field of fractions K.

(1) If M is a finitely generated R-module, then the image of M → K ⊗RM
is a finitely generated R-lattice.

(2) Let R be a noetherian integral domain and M and N finitely generated
R-modules such that N is torsion free. Then HomR(M,N) is a finitely
generated torsion free R-module (Exercises 7.6.25 and 13.2.24). By Propo-
sition 7.5.8, HomR(M,N) embeds as an R-lattice inK⊗RHomR(M,N) =
HomK(K ⊗RM,KN). This is a special case of Proposition 16.1.6 (3).

(3) Assume R is integrally closed in K, L/K is a finite separable field exten-
sion, and S is the integral closure of R in L. By Theorem 10.1.13, S is an
R-lattice in L.

Proposition 16.1.4. Let R be an integral domain with field of fractions K.
Let V be a finite dimensional K-vector space and M an R-lattice in V .

(1) If R is noetherian, then M is a finitely presented R-module.
(2) If R is a principal ideal domain, then M is a finitely generated free R-

module and RankR(M) = dimK(V ).

Proof. (1): Apply Proposition 16.1.1 and Corollary 7.6.12.
(2): Apply (1) and Proposition 4.3.5. By Theorem 6.4.23, an R-basis for M is

also a K-basis for V , so the rank of M is equal to the dimension of V . □

Proposition 16.1.5. Let R be an integral domain and K the field of fractions
of R. In the following, U , V , V1, . . . , Vr, W denote finite dimensional K-vector
spaces.

(1) If M and N are R-lattices in V , then M +N and M ∩N are R-lattices
in V .

(2) If U is a K-subspace of V , and M is an R-lattice in V , then M ∩U is an
R-lattice in U .

(3) Let M1, . . . ,Mm be R-lattices in V1, . . . , Vm respectively. If ϕ : V1 × · · · ×
Vm → U is a multilinear form, then the R-module generated by ϕ(M1 ×
· · · ×Mm) is an R-lattice in the subspace spanned by ϕ(V1 × · · · × Vm).

(4) Let L/K be an extension of fields. Let S be an R-subalgebra of L such
that L is the field of fractions of S. If M is an R-lattice in V , then the
image of S ⊗RM → L⊗K V is an S-lattice in L⊗K V .

Proof. (1): We apply Proposition 16.1.1 (5). Let F be a free R-submodule of
V with rank n = dimK(V ). There exist nonzero elements a, b, c, d in R such that
aF ⊆ M , bF ⊆ N , M ⊆ c−1F , N ⊆ d−1F . Then (ab)F ⊆ M ∩ N ⊆ M + N ⊆
(cd)

−1
F .
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(2): Start with aK-basis, say u1, . . . , um, for U . Extend to aK-basis u1, . . . , um, . . . , ur
for V . Let E = Ru1⊕· · ·⊕Rum and F = Ru1⊕· · ·⊕Run. Then E = F ∩U . Also,
for any α ∈ K, (αF )∩U = (

∑n
i=1Rαui)∩U =

∑m
i=1Rαui = αE. We apply Propo-

sition 16.1.1 (5). Let r, s be nonzero elements in R such that rF ⊆ M ⊆ s−1F .
Then rE ⊆M ∩ U ⊆ s−1E.

(3): For each j, Mj contains a K-spanning set for Vj . From this is follows
that ϕ(M1 × · · · × Mm) contains a spanning set for the subspace of U spanned
by ϕ(V1 × · · · × Vm). For each j, let Nj be a finitely generated R-submodule of
Vj containing Mj . Then ϕ(N1 × · · · × Nm) is contained in a finitely generated
R-submodule of U .

(4): Since K ⊗RM = K ⊗R V = V , we have L⊗S S⊗RM = L⊗K K ⊗RM =
L⊗K V . If M ⊆ N ⊆ V with N a finitely generated R-module, then the diagram
of S-module homomorphisms

S ⊗RM //

&&

L⊗K V

S ⊗R N

88

commutes. Therefore, the image of S ⊗R M in L ⊗K V is contained in the image
of S ⊗R N which is a finitely generated S-module. □

Proposition 16.1.6. Let R be an integral domain and K the field of fractions of
R. Let V andW be finite dimensional K-vector spaces. In the following,M0,M1,M
denote R-lattices in V and N0, N1, N denote R-lattices in W . Using the module
quotient notation, N :M is defined to be

N :M = {f ∈ HomK(V,W ) | f(M) ⊆ N}.
Then

(1) If M0 ⊆M1, and N0 ⊆ N1, then N0 :M1 ⊆ N1 :M0.
(2) The restriction mapping ρ : (N : M) → HomR(M,N) is an isomorphism

of R-modules.
(3) N :M is an R-lattice in HomK(V,W ).
(4) Let Z ⊆ R−{0} be a multiplicative set and Z−1R the localization of R in

K. Then Z−1(N :M) = Z−1N : Z−1M .

Proof. (1): Is left to the reader.
(2): The reader should verify that restriction defines an R-module homomor-

phism ρ : (N : M) → HomR(M,N). Because M contains a K-basis for V , ρ
is one-to-one. Because M and N are torsion free R-modules, the maps M →
K ⊗R M = KM and N → K ⊗R N = KN are one-to-one. If θ ∈ HomR(M,N),
then the diagram

M

��

θ // N

��
K ⊗RM = V

1⊗θ // K ⊗R N =W

commutes. Therefore, 1 ⊗ θ : V → W is an extension of θ and belongs to N : M .
In other words, θ is in the image of ρ.

(3): Let E0 ⊆M ⊆ E1 be R-lattices in V with E0 and E1 free. Let F0 ⊆ N ⊆
F1 be R-lattices in W with F0 and F1 free. By (1), F0 : E1 ⊆ N :M ⊆ F1 : E0. By
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Proposition 16.1.1 (4), it suffices to prove (4) when M and N are free R-lattices.
In this case, HomR(M,N) is free over R and HomR(M,N)→ K ⊗R HomR(M,N)
is one-to-one. By Corollary 6.5.13, the assignment θ 7→ 1⊗ θ embeds HomR(M,N)
as an R-submodule of HomK(KM,KN) = HomK(V,W ). By (2), the image of
HomR(M,N) under this embedding is equal to N : M . This proves N : M is an
R-lattice in HomK(V,W ), when M and N are free R-lattices.

(4): If f ∈ (N : M) and z ∈ Z, then f(z−1x) = z−1f(x) ∈ z−1N for all
x ∈ M . Conversely, suppose f ∈ Z−1N : Z−1M . Let y1, . . . , yn be a generating
set for M . There exists z ∈ Z such that f(xi) ∈ z−1N for 1 ≤ i ≤ n. Therefore,
zf ∈ N :M . □

1.2. Reflexive Lattices. In the context of Proposition 16.1.6, we identify R :
M with the dual module M∗ = HomR(M,R). By Exercise 6.5.20 the assignment
m 7→ φm is an R-module homomorphism M → M∗∗ = R : (R : M), where φm is
the “evaluation at m” homomorphism. That is, φm(f) = f(m). The diagram

M

��

// M∗∗ = R : (R :M)

��
V // V ∗∗

(1.1)

commutes and the bottom horizontal arrow is an isomorphism (Theorem 4.4.23).
Since the vertical maps are one-to-one, the top horizontal arrow is one-to-one. We
say M is a reflexive R-lattice in case M → R : (R : M) is onto. For instance,
a finitely generated projective R-lattice is reflexive (Exercise 6.5.21). If M is an
R-lattice, then Lemma 16.1.7 shows that R :M , the dual of M , is reflexive.

Lemma 16.1.7. Let R be an integral domain with field of fractions K. Let V
be a finite dimensional K-vector space and M an R-lattice in V . Then R : M =
R : (R : (R :M)), or equivalently, R :M is a reflexive R-lattice in V ∗.

Proof. By Proposition 16.1.6 (1) applied to M ⊆ R : (R : M), we get the
set inclusion R : M ⊇ R : (R : (R : M)). The reverse inclusion follows from the
commutative diagram (1.1). □

Proposition 16.1.8. Let R be an integral domain with field of fractions K. Let
V be a finite dimensional K-vector space andM an R-lattice in V . LetM ⊆ F ⊆ V ,
where F is a free R-lattice (Proposition 16.1.1). Then M is a reflexive R-lattice if
and only if

M =
⋂

α∈(R:M)

(
α−1(R) ∩ F

)
.

Proof. It suffices to prove

(1.2) R : (R :M) =
⋂

α∈(R:M)

(
α−1(R) ∩ F

)
.

Let v ∈ V and assume v is in the right hand side of (1.2). Then v ∈ R : (R : M)
if and only if α(v) ∈ R, for all α ∈ R : M . Notice that if α ∈ R : M , then
α ∈ R : (α−1(R) ∩ F ). Therefore, α(v) ∈ R, which shows v ∈ R : (R :M).

For the reverse inclusion, let α ∈ R : M . Then α(M) ⊆ R, hence M ⊆
α−1(R) ∩ F ⊆ F . By Proposition 16.1.1 (4), this implies α−1(R) ∩ F is an R-
lattice in V . Let v ∈ R : (R : (α−1(R) ∩ F )). Under the identification V = V ∗∗,
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we identify v with a vector in V . As mentioned above, α ∈ R : (α−1(R) ∩ F ),
α(v) ∈ R, hence v ∈ α−1(R). Since F is free, F is reflexive (Exercise 6.5.21) and
we see that R : (R : (α−1(R) ∩ F )) ⊆ R : (R : F ) = F . Combined, this shows
R : (R : (α−1(R)∩F )) ⊆ α−1(R)∩F . That is, α−1(R)∩F is reflexive. This shows
R : (R :M) ⊆ α−1(R)∩F for each α. In (1.2), the left hand side is a subset of the
right hand side. □

Let R be an integral domain with field of fractions K. Let U , V , W be finite
dimensional K-vector spaces. Let

HomK(V,W )⊗K U
α−→ HomK(HomK(U, V ),W )

be the isomorphism of Lemma 6.5.11 which is defined by α(f ⊗ a)(h) = f(h(a)).
Let

HomK(U ⊗K V,W )
ϕ−→ HomK(U,HomK(V,W ))

be the Adjoint Isomorphism (Theorem 6.5.10) which is defined by ϕ(θ)(u) = θ(u⊗·).

Lemma 16.1.9. In the above context, let L, M , N be R-lattices in U , V , W
respectively.

(1) Let (N :M)L denote the image of (N :M)⊗R L→ HomK(V,W )⊗K U .
Then α ((N :M)L) ⊆ N : (M : L).

(2) Let LM denote the image of L ⊗R M → U ⊗K V . Then ϕ (N : LM) ⊆
(N :M) : L, and ϕ−1 ((N :M) : L) ⊆ N : LM .

Proof. (1): Let f ∈ N :M , ℓ ∈ L, h ∈M : L. Then α(f ⊗ ℓ)(h) = f(h(ℓ)) ∈
N .

(2): Assume θ ∈ HomK(U ⊗K V,W ) and θ(LM) ⊆ N . For all m ∈ M
and ℓ ∈ L, ϕ(θ)(ℓ)(m) = θ(ℓ ⊗ m) ∈ N . Therefore, ϕ(θ)(L) ⊆ N : M , hence
ϕ(θ) ∈ (N : M) : L. For the second part, suppose ϕ(θ)(ℓ) ∈ N : M for all ℓ ∈ L.
Then ϕ(θ)(ℓ)(m) = θ(ℓ⊗m) ∈ N , and θ ∈ N : LM . □

Proposition 16.1.10. Let R be an integral domain with field of fractions K.
Let N be an R-lattice in the finite dimensional K-vector space W . Let M be a
reflexive R-lattice in the finite dimensional K-vector space V . Then M : N is a
reflexive R-lattice in HomK(W,V ).

Proof. In this context,

HomK(W,V )
α∗

−−→ HomK(W ⊗K V ∗,K)
ϕ−→ HomK(W,V )

is the identity map. Under this identification, ϕ is the inverse of the dual of α. By
Lemma 16.1.9 (2),

ϕ(R : (R :M)N) ⊆ (R : (R :M)) : N =M : N

where the last equality is because M is reflexive. By Lemma 16.1.9 (1),

α((R :M)N) ⊆ R : (M : N)

taking duals,
R : (R : (M : N)) ⊆ R : α((R :M)N).

By the identification mentioned above, R : (R : (M : N)) ⊆M : N . □

Theorem 16.1.11. Let R be a noetherian integrally closed integral domain with
field of fractions K. Let V be a finite dimensional K-vector space and M an R-
lattice in V .
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(1) If L is another R-lattice in V , then Lp = Mp for all but finitely many
p ∈ X1(R).

(2) Suppose for each p ∈ X1(R) that N(p) is an Rp-lattice in V such that
N(p) =Mp for all but finitely many p ∈ X1(R). For N =

⋂
p∈X1(R)N(p),

the following are true.
(a) N is an R-lattice in V .
(b) Np = N(p) for all p ∈ X1(R).
(c) If N ′ is an R-lattice in V such that N ′p = N(p) for all p ∈ X1(R),

then N ′ ⊆ N .

Proof. (1): Using Proposition 16.1.1, the reader should verify that there exist
r, s ∈ R such that rM ⊆ L ⊆ s−1M . Let p ∈ X1(R) such that νp(r) = νp(s) = 0.
Then rM ⊗R Rp = s−1M ⊗R Rp. By Corollary 15.4.4, this proves (1).

(2): For each p ∈ X1(R), Rp is a discrete valuation ring. By Proposition 16.1.4,
N(p) is a finitely generated free Rp-module.

(a): Let F be a free R-lattice in V . By (1), Mp = Fp for all but finitely
many p ∈ X1(R). Assume q1, . . . , qt are those height one primes in X1(R) where
Fqj ̸= N(qj). Let u1, . . . , un be a free R-basis for F . Let {vj,1, . . . , vj,n} be a free

Rqj
-basis for N(qj). There are elements κk,j,i in K such that uk =

∑n
i=1 κk,j,ivj,i.

For some r ∈ R − (0), ruk ∈
∑n
i=1Rvj,i ⊆ N(qj) for all k, j. For 1 ≤ j ≤ t

this implies rF ⊆ N(qj). Also, if Fp = N(p), then rF ⊆ rFp = rN(p) ⊆ N(p).
Therefore, rF ⊆ N =

⋂
p∈X1(R)N(p).

There are elements λk,j,i in K such that vj,i =
∑n
k=1 λk,j,iuk. For some s ∈

R − (0), svj,i ∈
∑n
k=1Ruk = F for all j, i. This implies sN(qj) ⊆ Fqj , hence

N(qj) ⊆ (s−1F )qj for all j. Also, if N(p) = Fp, then sN(p) ⊆ N(p) = Fp, hence

N(p) ⊆ (s−1F )p. If necessary, replace F with s−1F , and assume N(p) ⊆ Fp for
all p ∈ X1(R). By taking direct sums in Corollary 15.4.4 (4) we see that F =⋂

p∈X1(R) Fp. Then N =
⋂

p∈X1(R)N(p) ⊆ F . By Proposition 16.1.1, N is an

R-lattice in V .
(b): By the last part of the proof of Part (a), N(p) ⊆ Fp for all p ∈ X1(R) with

equality for all but finitely many p ∈ X1(R). Assume p1, . . . , pw are those height
one primes in X1(R) where Fpi ̸= N(pi). (Note: we do not assume this list is equal
to q1, . . . , qt.) Then

N =
⋂

p∈X1(R)

N(p)

= N(p1) ∩ · · · ∩N(pw) ∩

 ⋂
p∈X1(R)

Fp


= N(p1) ∩ · · · ∩N(pw) ∩ F.

It follows from the definition of localization that

Np = N(p1)p ∩ · · · ∩N(pw)p ∩ Fp.

If p is not one of p1, . . . , pw, then by Lemma 16.1.12, N(pj)p = KN(pj) = V , for
1 ≤ j ≤ w. In this case, Np = Fp = N(p). On the other hand, if i ̸= j, then
N(pi)pj

= KN(pi) = V . Thus Npj
= N(pj)pj

∩ Fpj
. But N(pj)pj

= N(pj) ⊆ Fpj
,

so Npj
= N(pj) for 1 ≤ j ≤ w.
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(c): Suppose N ′ is an R-lattice in V such that N ′p = N(p) for all p ∈ X1(R).
Then N ′ ⊆

⋂
p∈X1(R)N

′
p =

⋂
p∈X1(R)N(p) = N . □

Lemma 16.1.12. Let R be an integral domain with field of fractions K. Let p,
q be prime ideals in R with p ̸⊆ q. Assume Rp is a discrete valuation ring. Then

(1) (Rp)q = K.
(2) If M is an Rp-module, then Mq =M ⊗R Rq =M ⊗Rp

K.

Proof. Let a ∈ p−q. Then a ∈ pRp and a−1 ∈ Rq, so the only maximal ideal
in (Rp)q is the zero ideal. □

Lemma 16.1.13. Let R be an integrally closed integral domain with field of
fractions K. Let V be a finite dimensional K-vector space and M an R-lattice in
V . Then the following are true.

(1) R :M =
⋂

p∈X1(R)Rp :Mp.

(2) For any p ∈ X1(R), (R :M)p = Rp :Mp.

Proof. Let F ⊆M be a free R-lattice. For every p ∈ X1(R), the diagram

(R :M)p
α //

β

��

(R : F )p

γ

��
Rp :Mp

δ // Rp : Fp

commutes where β and γ are the natural maps induced by change of base. Since
F is free, γ is an isomorphism (Corollary 6.5.13). By Proposition 16.1.6 (1), α and
δ are one-to-one. We have

R :M ⊆
⋂

p∈X1(R)

(R :M)p ⊆
⋂

p∈X1(R)

Rp :Mp

where the intersection takes place in V ∗ = K : V . Let f ∈
⋂

p∈X1(R)Rp : Mp.

Then for every p ∈ X1(R), f(M) ⊆ f(Mp) ⊆ Rp. Then f(M) ⊆ R =
⋂

p∈X1(R)Rp,

hence f ∈ R : M . This proves (1). Part (2) follows from Theorem 16.1.11 (2) and
Part (1). □

Theorem 16.1.14. Let R be a noetherian integrally closed integral domain with
field of fractions K. Let V be a finite dimensional K-vector space and M an R-
lattice in V . If we set M̃ =

⋂
p∈X1(R)Mp, then the following are true.

(1) R : (R :M) = M̃ .

(2) M is a reflexive R-lattice if and only if M = M̃ .

(3) For each p ∈ X1(R), M̃p =Mp.

(4) M̃ is a reflexive R-lattice in V containing M .
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Proof. (1): Each Mp is a free Rp-lattice, so by Lemma 16.1.13,

R : (R :M) =
⋂

p∈X1(R)

Rp : (R :M)p

=
⋂

p∈X1(R)

Rp : (Rp :Mp)

=
⋂

p∈X1(R)

Mp

= M̃.

The rest is left to the reader. □

Corollary 16.1.15. Let R be a noetherian integrally closed integral domain
with field of fractions K and let V be a finite dimensional K-vector space. Let M
and N be two R-lattices in V such that N is reflexive. In order for M ⊆ N it is
necessary and sufficient that Mp ⊆ Np for all p ∈ X1(R).

Proof. If M ⊆ N , then Mp ⊆ Np for all p ∈ Spec(R). Conversely, we have

M ⊆ R : (R :M) =
⋂

p∈X1(R)

Mp ⊆
⋂

p∈X1(R)

Np = R : (R : N) = N.

□

Proposition 16.1.16. Let R be a noetherian integrally closed integral domain.
LetM and N be finitely generated torsion free R-modules. Then there are R-module
isomorphisms

HomR(M,N)∗∗ ∼= (N∗ ⊗RM)∗ ∼= HomR(M,N∗∗) ∼= HomR(N
∗,M∗)

where we write (·)∗ for the dual HomR(·, R). In particular,

HomR(M,M)∗∗ ∼= HomR(M
∗,M∗) ∼= HomR(M

∗∗,M∗∗).

Proof. The homomorphism

N∗ ⊗RM
α−→ HomR(M,N)∗

of Lemma 6.5.11 is defined by α(f ⊗ x)(g) = f(g(x)). The dual of α is

HomR(M,N)∗∗
α∗

−−→ (N∗ ⊗RM)∗.

For each p ∈ X1(R), Rp is a DVR andMp is a free Rp-module (Proposition 16.1.4).
By Proposition 7.5.8 and Lemma 6.5.11,

N∗ ⊗RM ⊗R Rp
α⊗1−−−→ HomR(M,N)∗ ⊗R Rp

is an isomorphism. Taking duals and applying the same argument,

HomR(M,N)∗∗ ⊗R Rp
α∗⊗1−−−→ (N∗ ⊗RM)∗ ⊗R Rp

is also an isomorphism. By Theorem 16.1.14, HomR(M,N)∗∗ is a reflexive R-lattice.
Without explicitly doing so, we view all of the modules as lattices in suitable vector
spaces over the field of fractions of R. Applying Corollary 16.1.15, we see that α∗

is an isomorphism. The second and third isomorphisms follow from the first and
the Adjoint Isomorphisms (Theorem 6.5.10).
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By the first part, HomR(M,M)∗∗ ∼= HomR(M
∗,M∗). Then

HomR(M,M)∗∗ ∼= (HomR(M,M)∗∗)
∗∗

∼= HomR(M
∗,M∗)∗∗

∼= HomR(M
∗∗,M∗∗).

□

1.2.1. A Local to Global Theorem for Reflexive Lattices. Constructing nontriv-
ial examples of reflexive lattices of rank greater than or equal to two is generally a
difficult task. Theorem 16.1.17 provides a globalization method for constructing re-
flexive lattices from locally defined projective lattices. A version of Theorem 16.1.17
for sheaves of modules on a ringed space was proved by B. Auslander in [6, The-
orem VI.5]. A partial converse is [6, Theorem VI.6]. In the language of schemes,
it says that if U is an open subset of SpecR which contains X1(R), and M is a
sheaf of OU -modules which is locally projective of finite rank, then M comes from
a finitely generated reflexive R-module N .

Before stating Theorem 16.1.17 we establish some notation. Let R be a noe-
therian integrally closed integral domain with quotient field K. Let f1, . . . , fn be
a set of nonzero elements of R. Let f0 = f1 · · · fn. Write Ri for the localization
Rfi , and Ui for the basic open set U(fi) = SpecRi = {p ∈ SpecR | fi ̸∈ p}. Then
U0 ⊆ U1 ∩ · · · ∩Un. Assume f1, . . . , fn are chosen so that the open set U1 ∪ · · · ∪Un
contains X1(R). Let V be a finite dimensional K-vector space. Suppose for each
i that Mi is a locally free Ri-lattice in V such that for each pair i, j we have
Mi ⊗Ri Rij = Mj ⊗Rj Rij , where Rij = Rfifj . Let p ∈ X1(R). If p is in Ui, then
(Mi)p is an Rp-lattice in V . Moreover, if p is in Ui ∩ Uj , then (Mi)p = (Mj)p. Let
L be a free R0-lattice in V which contains M1 ⊗Ri

R0 = · · · = Mn ⊗Rn
R0. Let

v1, . . . , vr be a free R0-basis for L. Then F = Rv1 + · · ·+Rvr is a free R-lattice in
V .

Theorem 16.1.17. Let R, K, V , f1, . . . , fn, M1, . . . ,Mn, F be as above. For
each p ∈ X1(R), define N(p) to be (Mi)p, for any i such that p is in Ui. If

N =
⋂

p∈X1(R)

N(p),

then

(1) N is an R-lattice in V and Np = N(p) for all p ∈ X1(R).
(2) N is a reflexive R-lattice in V .
(3) N ⊗R Rfi =Mi for 1 ≤ i ≤ n.
(4) N =

⋂n
i=1Mi.

Proof. (1): By Corollary 13.6.12, a minimal prime of f0 has height one. By
Corollary 7.6.15, f0 is contained in only finitely many height one primes of R.
Therefore, U0 contains all but finitely many height one primes of R. By Theo-
rem 16.1.11 (1), (Mi)p = Fp for all but finitely many p ∈ X1(R0). Taken together,
this implies that N(p) = Fp for all but finitely many p ∈ X1(R). Part (1) follows
from Theorem 16.1.11 (2).

(2): Follows from Theorem 16.1.14 (4).
(3): For each p ∈ X1(Ri), (N ⊗R Ri)p = Np = N(p) = (Mi)p. By Exer-

cise 16.1.20 and Corollary 16.1.15, N ⊗R Ri =Mi.
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(4): Follows from: N =
⋂

p∈X1(R)N(p) =
⋂n
i=1

⋂
p∈X1(Ri)

(Mi)p =
⋂n
i=1Mi.

□

1.3. Exercises.

Exercise 16.1.18. Let R be an integral domain and M a finitely generated
torsion free R-module. Let S be a submodule of M and consider S̄ = KS ∩M .

(1) Prove that M/S̄ is a finitely generated torsion free R-module.
(2) Prove that KS = KS̄.

Exercise 16.1.19. Let R be an integral domain with field of fractions K. Let
V be a finite dimensional K-vector space and M an R-lattice in V . Then M is a
reflexive R-lattice if and only if there is an R-lattice N (in some K-vector space)
such that M is isomorphic as an R-module to R : N .

Exercise 16.1.20. Let R be a noetherian integrally closed integral domain
with field of fractions K. Let V be a finite dimensional K-vector space.

(1) IfM andN are reflexive R-lattices in V , thenM∩N is a reflexive R-lattice
in V .

(2) If U is a K-subspace of V , andM is a reflexive R-lattice in V , thenM ∩U
is a reflexive R-lattice in U .

(3) If M is a reflexive R-lattice in V and Z ⊆ R− {0} is a multiplicative set,
then Z−1M is a reflexive Z−1R-lattice in V .

2. The Class Group of Rank One Projective Modules

Let R be an integral domain with field of fractions K. A fractional ideal of
R is a nonzero R-submodule F of K such that there exists a finitely generated
R-submodule N of K and F ⊆ N ⊆ K. In the terminology of Definition 16.1.2, a
fractional ideal of R is an R-lattice in K, where we view K as a vector space over
itself.

Lemma 16.2.1. Let R be an integral domain with field of fractions K. If F is
a nonzero R-submodule of K, then the following are equivalent.

(1) F is a fractional ideal of R in K. That is, there exists a finitely generated
R-submodule N such that F ⊆ N ⊆ K.

(2) There are nonzero elements a, b in K such that aR ⊆ F ⊆ bR.
(3) There exists a nonzero c in R such that cF ⊆ R.
(4) There exists a nonzero d in K such that dF ⊆ R.

Proof. This is a special case of Proposition 16.1.1, so we only sketch the proof.
(1) implies (3): Write N = Rx1 + · · · + Rxn where x1, . . . , xn are elements of

K. If c is the product of the denominators of x1, . . . , xn, then for each i we have
cxi ∈ R. Therefore cF ⊆ cN ⊆ Rcx1 + · · ·+Rcxn ⊆ R.

(3) implies (4): Is trivial.
(4) implies (2): Suppose dF ⊆ R and d ∈ K − (0). If b = d−1 and a ∈ F − (0),

then we have aR ⊆ F = bdF ⊆ bR.
(2) implies (1): Take N = bR. □

Example 16.2.2. It follows immediately from Lemma 16.2.1 that a nonzero
ideal I of R is a fractional ideal.
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Let R be an integral domain with field of fractions K. If E and F are fractional
ideals of R, the product EF is defined to be the R-submodule of K generated by
the set {xy | x ∈ E and y ∈ F}.

Lemma 16.2.3. Let R be an integral domain with field of fractions K. If E and
F are fractional ideals of R, then E +F , E ∩F and EF are fractional ideals of R.

Proof. By definition, E and F are nonzero. Thus E + F is nonzero. Also by
definition there are finitely generated R-submodules M and N of K such that E ⊆
M and F ⊆ N . Then E +F is a submodule of the finitely generated R-submodule
M + N of K. This proves E + F is a fractional ideal of R. By Lemma 16.2.1 (2)
there are nonzero elements a, b, c, d inK such that aR ⊆ E ⊆ bR and cR ⊆ F ⊆ dR.
Then acR ⊆ EF ⊆ bdR, which shows EF is a fractional ideal. Now we show E ∩F
is a fractional ideal. Since E ∩ F ⊆ E ⊆ M , it remains to show E ∩ F is nonzero.
There exist r, s, u, v in R such that a = s/t and c = u/v. Then us = uta ∈ E and
us = svc ∈ F , hence us ∈ E ∩ F . □

If F is a fractional ideal, let

F−1 = R : F = {x ∈ K | xF ⊆ R}.

Lemma 16.2.4. Let R be an integral domain with field of fractions K. If F is
a fractional ideal of R, then the following are true.

(1) F−1 is a fractional ideal of R.
(2) F−1F ⊆ R and F−1F is an ideal of R.

Proof. (1): The proof that F−1 is a nonzero R-submodule of K is left to the
reader. Let a ∈ F − (0) and x ∈ F−1. Then xa ∈ R says x ∈ a−1R. Since x was
arbitrary, this implies F−1 ⊆ a−1R and by Lemma 16.2.1 (1), we are done.

The proof of (2) is left to the reader. □

Definition 16.2.5. A fractional ideal F is called an invertible ideal of R in
case F−1F = R.

Lemma 16.2.6. Let R be an integral domain with field of fractions K.

(1) If α ∈ K∗, then the principal fractional ideal I = Rα is invertible and
I−1 = Rα−1.

(2) If F is a fractional ideal of R and f ∈ HomR(F,R), then for all a, b ∈ F
it is true that af(b) = bf(a).

(3) Let F be a fractional ideal of R. For any α ∈ F−1, let ℓα : F → R be
“left multiplication by α“. The mapping α 7→ ℓα is an isomorphism of
R-modules ℓ : F−1 → F ∗ = HomR(F,R).

Proof. (2): Let a and b be arbitrary elements of F . There exist some elements
r, s, t, u ∈ R such that a = rs−1 and b = tu−1. Then as = r and bu = t are both in
R. Also, bas = br and abu = at are both in F . For any f ∈ HomR(F,R) we have

sf(abu) = f(sabu) = uf(abs).

Combining these, we get af(b) = saf(b)s−1 = f(abs)s−1 = f(abu)u−1 = buf(a)u−1 =
bf(a).

(3): The reader should verify that the mapping ℓ : F−1 → F ∗ is a one-to-one
homomorphism of R-modules. Let f ∈ F ∗. Fix an arbitrary a ∈ F − (0). By (2),
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if x ∈ F , then af(x) = xf(a). Let α = a−1f(a). Then f(x) = a−1xf(a) = αx =
ℓα(x). This shows f = ℓα.

The proof of (1) is left to the reader. □

Theorem 16.2.7. Let R be an integral domain with field of fractions K and let
F be a fractional ideal of R. The following are equivalent.

(1) F is a projective R-module.
(2) F is an invertible fractional ideal.
(3) F is a rank one R-progenerator. That is, F is an invertible R-module

(Definition 7.7.6).
(4) There exists a fractional ideal E of R such that EF = aR is a principal

ideal.

Proof. (3) implies (1): Is trivial.
(2) implies (4): Take E = F−1.
(4) implies (3): There exist elements x1, . . . , xn in E, y1, . . . , yn in F , and

a1, . . . , an in R such that a =
∑n
i=1 aixiyi. Since EF is nonzero, we know a ̸= 0.

For any x ∈ E and y ∈ F , we have xy ∈ aR. Then a−1xy ∈ R. This implies
a−1x ∈ F−1. By Lemma 16.2.6 (3), ℓa−1x ∈ F ∗. For each i, let ϕi = ℓa−1aixi

.
Consider {(yi, ϕi) | 1 ≤ i ≤ n}. Given any y ∈ F we have ay =

∑n
i=1 aixiyyi.

Therefore, y =
∑n
i=1 a

−1aixiyyi =
∑n
i=1 ϕi(y)yi, which shows {(yi, ϕi) | 1 ≤ i ≤ n}

is a dual basis for F . By Lemma 6.2.9, F is a finitely generated projective R-
module. Since R is an integral domain, by Corollary 6.3.4, F is an R-progenerator
and by Corollary 7.4.8, RankR(F ) is defined. Since K ⊗R F = K, we see that F
has RankR(F ) = 1.

(1) implies (2): By Lemma 6.2.9, F has a dual basis {(xi, fi) | i ∈ I}. It follows
from Lemma 16.2.6 (3) that for each i ∈ I there is αi ∈ F−1 such that fi = ℓαi

. If
x ∈ F − (0), then fi(x) = αix is zero for all but finitely many i ∈ I. Since αi ∈ K,
this implies I is a finite set. In particular, this implies F is finitely generated as an
R-module. Then x =

∑
i∈I fi(x)xi =

∑
i∈I αixxi. This equation holds in the field

K, so we cancel x to get 1 =
∑
i∈I αixi. Since each αi is in F

−1, this shows F−1F
is equal to the unit ideal R. □

Lemma 16.2.8. Let R be an integral domain with field of fractions K.

(1) If F1, . . . , Fn are fractional ideals of R, then F = F1F2 · · ·Fn is invertible
if and only if each Fi is invertible.

(2) If P1, . . . , Pr are invertible prime ideals in R, and Q1, . . . , Qs are prime
ideals in R such that P1P2 · · ·Pr = Q1Q2 · · ·Qs, then r = s and after
re-labeling, Pi = Qi.

Proof. (1): Is left to the reader.
(2): The proof is by induction on r. The reader should verify the basis step.

Assume r > 1 and that the claim is true for r− 1 prime factors. Choose a minimal
member of the set P1, . . . , Pr and for simplicity’s sake, assume it is P1. Since
Q1 · · ·Qs ⊆ P1, by Definition 10.3.1, there exists i such that Qi ⊆ P1. Re-label and
assume Q1 ⊆ P1. Likewise, P1 · · ·Pr ⊆ Q1 so there exists i such that Pi ⊆ Q1 ⊆ P1.
Since P1 is minimal, P1 = Q1. Multiply by P−11 to get P2 · · ·Pr = Q2 · · ·Qs. Apply
the induction hypothesis. □

Lemma 16.2.9. Let R be an integral domain with field of fractions K. Let M
be a nonzero finitely generated torsion free R-module.
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(1) If dimK(KM) = 1, then M is isomorphic as an R-module to a fractional
ideal of R in K.

(2) If R is a noetherian integrally closed integral domain and there exists
α ∈ K such that αM ⊆M , then α ∈ R.

Proof. (1): Choose any nonzero element m0 of M and let F = {α ∈ K |
αm0 ∈M}. Then F is an R-submodule of K. The assignment α 7→ αm0 defines a
one-to-one R-module homomorphism θ : F → M . Since the K-vector space KM
has dimension one, m0 is a generator. Given any m ∈ M , there exists α ∈ K
such that αm0 = m. Therefore θ is an isomorphism, and F is a nonzero finitely
generated R-submodule of K. This means F is a fractional ideal of R.

(2): Begin as in Part (1). For any m0 ∈M − (0), set F = {α ∈ K | αm0 ∈M}.
Then there is a one-to-one R-module homomorphism θ : F → M defined by α 7→
αm0. It follows from Corollary 7.6.12 that F is finitely generated as an R-module.
Since F is nonzero, F is a fractional ideal of R. Clearly R ⊆ F and α ∈ F . It
follows that αn ∈ F for all n ≥ 0. Then R[α] ⊆ F and Proposition 10.1.2 implies
that α is integral over R. But R is integrally closed, so α ∈ R. □

2.1. Exercises.

Exercise 16.2.10. Let R be an integral domain. Let E and F be fractional
ideals of R. If EF = R, then E = F−1 and F is an invertible fractional ideal.

Exercise 16.2.11. Let R be an integral domain with field of fractionsK. Let E
and F be fractional ideals of R. If E is invertible, then the multiplication mapping
α⊗ β 7→ αβ is an isomorphism E ⊗R F ∼= EF of R-modules.

Exercise 16.2.12. Let R be an integral domain with field of fractions K. Let
E and F be fractional ideals of R in K.

(1) KF = K.
(2) K ⊗R F ∼= KF by the multiplication mapping α⊗ x 7→ αx.
(3) If ϕ : E → F is an R-module isomorphism, then ϕ extends to a K-module

isomorphism ψ : K → K and ψ is “left multiplication by ψ(1)”.
(4) E and F are isomorphic as R-modules if and only if there exists α ∈ K

such that αE = F .

Exercise 16.2.13. Let R be an integral domain with field of fractions K. Let
Invert(R) denote the set of all invertible fractional ideals of R in K. Let Prin(R)
denote the subset of Invert(R) consisting of all principal fractional ideals of R in
K.

(1) Prove that Invert(R) is a group under multiplication and contains Prin(R)
as a subgroup.

(2) Every invertible ideal I ∈ Invert(R) is an invertible R-module, hence I
represents a class in the Picard group of R (Definition 7.7.6). Show that
this assignment defines a homomorphism θ : Invert(R)→ Pic(R).

(3) Show that θ induces an isomorphism Invert(R)/Prin(R) ∼= Pic(R). The
group Invert(R)/Prin(R) is called the class group of rank one projective
R-modules.

Exercise 16.2.14. Let k be a field, A = k[x] and R = k[x2, x3]. From Exer-
cises 7.7.16 and 10.1.21, we know that the quotient field of R is K = k(x), A is the
integral closure of R in K, and the conductor ideal from A to R is m = (x2, x3),
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which is a maximal ideal in R. For each α ∈ k, Pα = R(1− αx) +m is a fractional
ideal of R in K. Notice that Pα is an R-submodule of A. Prove:

(1) Pα is isomorphic to R if and only if α = 0.
(2) PαPβ = Pα+β . (Hints: x4 ∈ m2, x3 ∈ Pαm, x2 ∈ Pαm, 1 − (α + β)x ∈

PαPβ .)
(3) PicR contains a subgroup isomorphic to the additive group k.
(4) PicR is generated by the classes of the modules Pα, which implies PicR ∼=

k. (See [26, Example II.6.11.4].) This proof may involve methods not yet
proved in this text. Here is an outline of a proof which uses a Mayer-
Vietoris exact sequence of Milnor (see [20, Exercise 14.2.19]). First show
that the diagram

R //

��

R/m

��
A // A/m

is a cartesian square of commutative rings (Example 6.8.17). There is an
exact sequence

1→ R∗ → A∗ × (R/m)∗ → (A/m)∗
∂−→ PicR→ PicA× Pic(R/m)→ Pic(A/m).

of abelian groups from which PicR can be computed.

Exercise 16.2.15. Let k be a field and A = k[x, y] the polynomial ring over
k in two variables. Consider the subring R = k[x2, xy, y2, x3, x2y, xy2, y3] of A.
The ideal m = (x2, xy, y2, x3, x2y, xy2, y3) in R is maximal ideal. We know from
Exercises 15.3.29 and 11.3.9 that the quotient field of R is K = k(x, y), A is the
integral closure of R in K, and the conductor ideal from A to R is m. For each pair
(α, β) ∈ k2, Pα,β = R(1−αx− βy) +m is a fractional ideal of R in K. Notice that
Pα,β is an R-submodule of A. Prove:

(1) Pα,β is isomorphic to R if and only if α = β = 0.
(2) Pα,βPγ,δ = Pα+γ,β+δ. (Hints: m2 contains every monomial of degree

4, Pα,βm contains every monomial of degree 3 or 2, Pα,βm contains m,
1− (α+ γ)x− (β + δ)y ∈ Pα,βPγ,δ.)

(3) PicR contains a subgroup isomorphic to the additive group k2.
(4) PicR is generated by the classes of the modules Pα,β , which implies

PicR ∼= k2. As in Exercise 16.2.14 (4), apply the Mayer-Vietoris sequence
of Milnor. Use Corollary 15.4.15 and Exercise 16.4.16 to show that ∂ is
onto. Now show the image of ∂ contains each class of the form Pα,β .

Exercise 16.2.16. Let k be a field, R = k[x, y]/(xy), A = R/(x)⊕R/(y). Let
m be the maximal ideal of R generated by x, y.

(1) Show that the natural map θ : R → A is one-to-one, hence R can be
viewed as a subring of A.

(2) Show that the conductor ideal from A to R is m.
(3) As in Exercise 16.2.14 (4), apply the Mayer-Vietoris sequence of Milnor to

show that R∗ = k∗ and PicR = ⟨0⟩.

Exercise 16.2.17. Let R be an integral domain with field of fractions K. Let
S be another subring of K such that R ⊆ S ⊆ K is a tower of subrings. Prove that
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R : S, the conductor ideal from S to R, is nonzero if and only if S is a fractional
ideal of R in K.

3. Dedekind Domains

Proposition 16.3.1. Let R be a commutative noetherian integral domain of
Krull dimension one. For any proper ideal I of R, there exist unique primary ideals
I1, . . . , In such that

(1) Rad I1, . . . ,Rad In are distinct maximal ideals of R, and
(2) I = I1I2 · · · In.

Proof. (Existence.) By Theorem 13.3.8, I has a reduced primary decom-
position I = I1 ∩ I2 ∩ · · · ∩ In. In a reduced primary decomposition the primes
Rad I1, . . . ,Rad In are distinct. Because I is nonzero and dimR = 1, each Rad Ii
is a maximal ideal of R. Two distinct maximal ideals are necessarily comaxi-
mal. By Exercise 7.3.21, the ideals Ii are pairwise comaximal. By Exercise 2.3.21,
I = I1I2 · · · In.

(Uniqueness.) Suppose I1, . . . , In are primary ideals such that Rad I1, . . . ,Rad In
are distinct maximal ideals of R, and I = I1I2 · · · In. By the same argument
as above, I = I1 ∩ I2 ∩ · · · ∩ In is a reduced primary decomposition of I. By
Lemma 13.3.5, the primary ideals Ii are uniquely determined by I. □

Theorem 16.3.2. Let R be an integral domain. The following are equivalent.

(1) R is a noetherian normal integral domain with Krull dimension one.
(2) R is a noetherian integral domain and for every prime ideal P of height

greater than or equal to one, the local ring RP is a DVR.
(3) Every proper ideal in R has a unique representation as a product of a

finite number of prime ideals.
(4) Every nonzero ideal in R is invertible. By Theorem 16.2.7, this is equiv-

alent to each of the following statements.
(a) Every nonzero ideal of R is R-projective.
(b) Every nonzero ideal of R is an invertible R-module.

(5) Every fractional ideal of R is invertible. By Theorem 16.2.7, this is equiv-
alent to each of the following statements.
(a) Every fractional ideal of R is R-projective.
(b) Every fractional ideal of R is an invertible R-module.

(6) Let Frac(R) denote the set of all fractional ideals of R. Then Frac(R) is
a group under multiplication.

An integral domain satisfying the equivalent conditions of Theorem 16.3.2 is
called a Dedekind domain.

Proof. (1) is equivalent to (2): Is left to the reader.
(5) is equivalent to (6): Is left to the reader.
(5) implies (4): Is trivial.
(1) implies (3): Let I be a proper ideal of R. By Proposition 16.3.1, I =

I1 · · · In where I1, . . . , In are unique primary ideals. If Pi = Rad Ii, then Pi is a

maximal ideal of R. By Theorem 15.4.3, Ii is equal to the symbolic power P
(νi)
i ,

for some unique νi > 0. By Proposition 13.1.2 (3), P νii is a Pi-primary ideal. By
Exercise 13.3.9, it follows that Ii = P νii .



696 16. DIVISOR CLASS GROUPS

(4) implies (5): If F is a fractional ideal, then F−1F is invertible. By Lemma 16.2.8,
F is invertible.

(4) implies (2): Let I be a nonzero ideal of R. By Theorem 16.2.7, I is a rank
one projective R-module. Then I is finitely generated and by Corollary 7.6.7, R is
noetherian. Let P be a nonzero prime ideal of R and let m denote the maximal ideal
PRP in RP . By Proposition 7.4.2, m is a free RP -module of rank one. In other
words, m is a principal ideal and Corollary 13.6.13 says dimR = 1. Theorem 15.2.10
implies RP is a DVR.

(3) implies (4): By Lemma 16.2.8, it suffices to show every nonzero prime ideal
of R is invertible. The proof is split into two steps.

Step 1: If P is an invertible prime ideal in R, then P is maximal. The proof is
by contradiction. Assume a ∈ R− P and P +Ra ̸= R. By assumption,

P +Ra = P1 · · ·Pm
P +Ra2 = Q1 · · ·Qn

for some prime ideals P1, . . . , Pm, Q1, . . . , Qn. Since P is prime, R/P is an integral
domain. Let η : R→ R/P be the natural map.

η(P +Ra) = η(P1) · · · η(Pm)

η(P +Ra2) = η(Q1) · · · η(Qn)

The two ideals on the left-hand side are the principal ideals in R/P generated by
η(a) and η(a2) respectively. By Lemma 16.2.6 (1), η(P + Ra) and η(P + Ra2) are
invertible. Since P ⊆ Pi and P ⊆ Qj for each i and j, the ideals η(Pi) and η(Qj)
are prime ideals in R/P . By Lemma 16.2.8 (1), for all i and j, the ideals η(Pi)
and η(Qj) are invertible prime ideals in R/P . Apply Lemma 16.2.8 (2) to the two
factorizations

η(Q1) · · · η(Qn) = η(P1)
2 · · · η(Pm)2

of the principal ideal η(P +Ra2) = η(P +Ra)2. Then n = 2m and upon relabeling,
η(Pi) = η(Q2i−1) = η(Q2i) for i = 1, . . . ,m. By Proposition 3.2.12, Pi = Q2i−1 =
Q2i for i = 1, . . . ,m, which implies

P +Ra2 = Q1 · · ·Qn = P 2
1 · · ·P 2

m = (P +Ra)2.

We see that

P ⊆ P +Ra2 ⊆ (P +Ra)2 ⊆ P 2 +Ra.

Suppose x ∈ P 2, r ∈ R, and x+ ra ∈ P . Since P is prime and a ̸∈ P , we conclude
r ∈ P . Hence P ⊆ P 2 + Pa ⊆ P . But P is invertible, so R = P−1(P 2 + Pa) =
P +Ra, a contradiction.

Step 2: If P is a nonzero prime ideal in R, then P is invertible. Let x ∈
P − (0). By assumption, Rx = P1 · · ·Pm for some prime ideals P1, . . . , Pm. Then
P1 · · ·Pm ⊆ P . By Lemma 16.2.6 (1), Rx is invertible. By Lemma 16.2.8, each Pi
in the product is invertible. By Definition 10.3.1, there exists i such that Pi ⊆ P .
By Step 1, Pi is a maximal ideal in R. This shows P = Pi, hence P is invertible
(and maximal). □

Proposition 16.3.3 is a generalization of Proposition 4.3.1.

Proposition 16.3.3. Let R be a Dedekind domain.

(1) Let P be a nonzero prime ideal in R, e > 0 and A = R/(P e). The
following are true.
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(a) Every ideal in A is principal.
(b) A is a field if and only if e = 1.
(c) A is a local ring with maximal ideal P/P e.
(d) A has exactly e+1 ideals, namely: (0) ⊆ P e−1/P e ⊆ · · · ⊆ P 2/P e ⊆

P/P e ⊆ A.
(2) Let P1, . . . , Pn be distinct nonzero prime ideals of R, e1, . . . , en positive

integers, I = P e11 P e22 · · ·P enn , and A = S/I. The following are true.
(a) A is isomorphic to the direct sum of the local rings

⊕
i S/P

ei
i .

(b) Every ideal in A is principal.
(c) Including the two trivial ideals (0) and A, there are exactly (e1 +

1)(e2 + 1) · · · (en + 1) ideals in A.
(d) A has exactly n maximal ideals, namely P1/I, . . . , Pn/I.

Proof. (1): The only maximal ideal of R that contains P e is P , which is
(c). By Theorem 16.3.2 (3), the ideals of R that contain P e are P e, P e−1, . . . , P,R,
which is (d) and (b). If 1 ≤ i < e and α ∈ P i−P i+1, then P e+Rα is not a subset
of P i+1. Hence P e +Rα = P i, which proves (a).

(2): This follows from Theorems 3.3.8, 3.3.5, Exercise 3.3.22, and Part (1). □

Corollary 16.3.4. Let I be an ideal in the Dedekind domain R. If I is not
principal, then I is generated by two elements. That is, there exist α, β in I such
that I = Rα+Rβ.

Proof. Assume I is not principal and pick any nonzero element α in I. By
Proposition 16.3.3, the ideal I/Rα is a principal ideal in R/Rα. There exists β ∈ I
such that Rα+Rβ = I. □

If I is an ideal in a Dedekind domain R, by Corollary 16.3.4, I = Rα + Rβ,
where α ∈ I − (0) is arbitrary. For this reason, a Dedekind domain is said to have
the “one and a half generator property for ideals”.

Corollary 16.3.5. Let I and J be proper ideals in the Dedekind domain R.
Then there exist an element α in R and an ideal C in R satisfying J +C = R and
IC = Rα.

Proof. By Proposition 16.3.3, the ideal I/IJ is a principal ideal in R/IJ .
There exists α ∈ I such that Rα + IJ = I. By Exercise 16.3.13, there exists
an ideal C in R such that Rα = IC. Multiplying IC + IJ = I by I−1 yields
C + J = R. □

Theorem 16.3.6. Let R be a Dedekind domain with quotient field K and M
a finitely generated torsion free R-module. If n = dimK (KM), then there exist
fractional ideals F1, . . . , Fn of R such that M ∼= F1 ⊕ · · · ⊕ Fn.

Proof. Let x be any nonzero element of M . Let S = Rx be the principal
submodule of M generated by x. Let S̄ = KS ∩M . By Exercise 16.1.18, M/S̄ is
torsion free and KS̄ = KS. Since dimK KS̄ = 1, by Lemma 16.2.9, there exists
a fractional ideal F1 of R such that S̄ ∼= F1. Since dimK

(
K ⊗R (M/S̄)

)
= n − 1,

by induction on n, there exist fractional ideals F2, . . . , Fn of R such that M/S̄ ∼=
F2 ⊕ · · · ⊕ Fn. By Theorem 16.3.2, each Fi is projective. Therefore the sequence
0→ S̄ →M →M/S̄ → 0 is split exact. □
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We now prove that the integral closure of a Dedekind domain in a finite exten-
sion of its quotient field is a Dedekind domain. Theorem 16.3.7 is a corollary to
the Krull-Akizuki Theorem (Theorem 13.7.5).

Theorem 16.3.7. Let R be a noetherian integral domain with dim(R) = 1. Let
K be the quotient field of R, L a finitely generated algebraic field extension of K,
and S the integral closure of R in L. Then S is a Dedekind domain.

Proof. By Theorem 13.7.5, S is noetherian and has Krull dimension one. By
Corollary 10.1.8, L is the quotient field of S. Since S is integrally closed in L, by
Theorem 16.3.2 (1), S is a Dedekind domain. □

3.1. Exercises.

Exercise 16.3.8. Let R be a Dedekind domain and Frac(R) the group of
fractional ideals of R.

(1) Frac(R) is a free abelian group on the set Max(R), where the binary
operation is multiplication.

(2) There is an isomorphism Frac(R) ∼= Div(R) which maps a maximal ideal
P to the corresponding generator of Div(R).

Exercise 16.3.9. Let R be a Dedekind domain and Frac(R) the group of
fractional ideals of R. Let Prin(R) = {Rα | α ∈ K∗} denote the subset of Frac(R)
consisting of all principal fractional ideals.

(1) Prin(R) is a subgroup of Frac(R).
(2) The quotient Frac(R)/Prin(R) is isomorphic to Cl(R).
(3) The following are equivalent.

(a) R is a PID.
(b) R is a UFD.
(c) Cl(R) = (0).

Exercise 16.3.10. Let R be a Dedekind domain and M a finitely generated
R-module. The following are equivalent.

(1) M is torsion free.
(2) M is flat.
(3) M is projective.

Exercise 16.3.11. Show that if R is a Dedekind domain, then Pic(R) and
Cl(R) are isomorphic.

Exercise 16.3.12. Let R be a Dedekind domain. Let P1, . . . , Pm, Q1, . . . , Qn
be nonzero prime ideals of R satisfying

∏m
i=1 Pi ⊇

∏n
j=1Qj . Then m ≤ n and upon

relabeling, Pi = Qi for i = 1, . . . ,m.

Exercise 16.3.13. Let R be a Dedekind domain. If A and B are ideals of R
such that A ⊇ B, then there exists an ideal C such that AC = B

Exercise 16.3.14. Let R be a Dedekind domain. Let P1, . . . , Pn be distinct
nonzero prime ideals of R and let e1, . . . , en, f1, . . . , fn nonnegative integers. Let

I =
∏
P eii and J =

∏
P fii . Let mi = min(ei, fi) and Mi = max(ei, fi). Then

I + J =
∏
Pmi
i and I ∩ J =

∏
PMi
i .

Exercise 16.3.15. Suppose I and J are proper ideals in a Dedekind domain R
such that I+J = R. Then there exists an isomorphism of R-modules I⊕J ∼= R⊕IJ .
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Exercise 16.3.16. Let R be a Dedekind domain. If F1 and F2 are fractional
ideals of R, then there exists an isomorphism of R-modules F1 ⊕ F2

∼= R⊕ F1F2.

Exercise 16.3.17. Let R be a Dedekind domain and assume I1, . . . , Im and
J1, . . . , Jn are fractional ideals of R. The following are equivalent.

(1) There exists an isomorphism of R-modules I1 ⊕ · · · ⊕ Im ∼= J1 ⊕ · · · ⊕ Jn.
(2) m = n and there exists an isomorphism of R-modules I1 · · · Im ∼= J1 · · · Jn.

4. The Class Group of Rank One Reflexive Modules

4.1. Reflexive Fractional Ideals. Let R be an integral domain with field of
fractions K. In this section we study fractional ideals of R in K which are reflexive
R-lattices. Such fractional ideals are called reflexive fractional ideals. For instance,
any invertible fractional ideal is projective (Theorem 16.2.7), hence reflexive. If
F is a fractional ideal of R in K, then F ⊆ (F−1)−1. By Lemma 16.2.6 (3), the
assignment α 7→ ℓα defines an isomorphism F−1 → HomR(F,R). The reader
should verify that F → F ∗∗ is an isomorphism (that is, F is reflexive) if and only
if F = (F−1)−1. If E and F are two fractional ideals of R in K, then

E : F = {α ∈ K | αF ⊆ E}.

We call E : F either the ideal quotient, or module quotient (Definition 15.3.5).
Notice that F−1 = R : F .

Lemma 16.4.1. Let R be an integral domain with field of fractions K.

(1) If E and F are fractional ideals of R, then E : F is a fractional ideal of
R.

(2) Given fractional ideals I1 ⊆ I2 and J1 ⊆ J2, J1 : I2 ⊆ J2 : I1.
(3) If F is a fractional ideal, then

F−1 = R : F = R : (R : (R : F )).

That is, F−1 is a reflexive fractional ideal and F−1 ∼= (F−1)∗∗.
(4) If F is a fractional ideal, then

(F−1)−1 =
⋂

α∈F−1

α−1R.

That is, F is a reflexive fractional ideal if and only if

F =
⋂

α∈F−1

α−1R.

(5) If D, E and F are fractional ideals, then
(a) D : EF = (D : E) : F , and
(b) (D : E)F ⊆ D : (E : F ).

(6) If F is a fractional ideal, then (F−1F )−1 = F−1 : F−1.
(7) If F is a fractional ideal and E is a reflexive fractional ideal, then E : F

is a reflexive ideal.

Proof. The reader should verify that (1), (2), (3), (4), (5) and (7) are special
cases of Proposition 16.1.6, Lemma 16.1.7, Proposition 16.1.8, Lemma 16.1.9, and
Proposition 16.1.10. (6): By Part (5) (a), R : F−1F = (R : F ) : F−1 = (R : F ) :
(R : F ). □
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Let Reflex(R) denote the set of all reflexive fractional ideals of R in K. If
E and F are reflexive fractional ideals of R, then EF is not necessarily reflexive.
Define a binary operation on Reflex(R) by the formula E ∗ F = R : (R : EF ).
By Exercise 16.4.12, this operation turns Reflex(R) into an abelian monoid with
identity R. If R is a noetherian normal integral domain, then Lemma 15.1.2 (3)
implies that R is completely normal and Proposition 16.4.2 implies that Reflex(R)
is an abelian group.

Proposition 16.4.2. If R is an integral domain with field of fractions K, then
Reflex(R) is an abelian group if and only if R is completely normal (see Defini-
tion 15.1.1).

Proof. Assume Reflex(R) is an abelian group. Let I be a fractional ideal of
R in K. By Exercise 16.4.11, it is enough to show R = I : I. Let J = (I−1)−1. By
Lemma 16.4.1 (3), J is a reflexive fractional ideal. By Lemma 16.4.1 (7), J : J is a
reflexive fractional ideal. By Exercise 16.4.9, J : J is an intermediate ring R ⊆ J :
J ⊆ K, so (J : J)2 = J : J . Then R : (R : (J : J)2) = R : (R : (J : J)) = J : J
says J : J is the idempotent of the group Reflex(R). That is, R = J : J . Again by
Exercise 16.4.9,

R ⊆ I : I ⊆ I−1 : I−1 ⊆ J : J = R.

Conversely, if I ∈ Reflex(R), then so is I−1 by Lemma 16.4.1 (3). By Lemma 16.4.1 (6),
R : II−1 = I−1 : I−1 = R. Then R : (R : II−1) = R, so I−1 is the inverse of I in
Reflex(R). □

Lemma 16.4.3. Let R be a noetherian normal integral domain with field of
fractions K.

(1) Suppose I is an ideal in R that is maximal among all proper reflexive ideals
in R. Then there exists an element x ∈ K such that I = R : (Rx + R)
and I is a prime ideal.

(2) If P is a prime ideal of R and P is a reflexive ideal, then ht(P ) = 1.
(3) If P ∈ X1(R), then P is reflexive.

Proof. (1): Since I is a proper reflexive ideal, I−1 ̸= R. Pick x ∈ I−1 − R.
Then I ⊆ R : (Rx + R) ⊆ R and since x ̸∈ R, 1 ̸∈ R : (Rx + R). The ideal R :
(Rx+R) is reflexive, by Lemma 16.4.1 (3). By the maximality of I, I = R : (Rx+R).
Now suppose a, b ∈ R and ab ∈ I. Let A = Ra + I and B = Rb + I. Suppose
b ̸∈ I. Since AB ⊆ I, it follows that I ⊊ B ⊆ I : A. Also, I : A ⊆ I : I = R. By
Lemma 16.4.1 (7), I : A is a reflexive ideal in R. By maximality of I we conclude
that I : A = R. Since 1 ∈ I : A, we conclude that a ∈ I.

(2): Since P ̸= R, R ̸= R : P . Suppose Q ∈ SpecR and (0) ⊊ Q ⊊ P . Let
x ∈ P − Q. Then (R : P )x ⊆ R, so (R : P )xQ ⊆ Q. But x ̸∈ Q and Q is prime,
so (R : P )Q ⊆ Q. Thus R : P ⊆ Q : Q. Since R is normal, R = Q : Q. This is a
contradiction.

(3): If x ∈ P − (0), then Rx is free, hence reflexive. The set

S = {I ∈ Reflex(R) | I ⊆ P and there exists α ∈ K∗ such that I = Rα−1 ∩R}

is nonempty. Since R is noetherian, S has a maximal member, M = Rα−1 ∩R. It
suffices to show thatM is prime. Let a, b be elements of R such that ab ∈M . Then
R(aα)−1 ∩R ⊇ Rα−1 ∩R =M . By Exercise 16.4.15, R(aα)−1 ∩R is in Reflex(R).
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Case 1: Assume R(aα)−1 ∩ R ⊆ P . By the choice of M , R(aα)−1 ∩ R = M .
Thus ab ∈ R(aα)−1 ∩ R, so there exists r ∈ R such that ab = r(aα)−1 ∈ R. This
shows that b = r(aα)−1a−1 ∈ Rα−1 ∩R =M .

Case 2: Assume R(aα)−1 ∩ R ̸⊆ P . There exists y ∈ R(aα)−1 ∩ R such that
y ̸∈ P . Given w = r(yα)−1 ∈ R(yα)−1 ∩ R, yw = rα−1 ∈ M ⊆ P . Since y ̸∈ P ,
this proves R(yα)−1 ∩ R ⊆ P . We have M = Rα−1 ∩ R ⊆ R(yα)−1 ∩ R ⊆ P . By
the choice of M , this means M = R(yα)−1 ∩R. Hence a ∈ R(yα)−1 ∩R =M .

This proves that M is prime. Since ht(P ) = 1, we conclude M = P . Thus P
is reflexive. □

Theorem 16.4.4. Let R be a noetherian normal integral domain with field of
fractions K.

(1) If I is an ideal in R, then I is reflexive if and only if there exist P1, . . . , Pn ∈
X1(R) such that I = R : (R : (P1 · · ·Pn)).

(2) If I is a reflexive ideal in R, then there are only finitely many P ∈ X1(R)
such that I ⊆ P .

(3) The factorization in Part (1) is unique up to the order of the factors.
(4) Reflex(R) is a free Z-module and X1(R) is a basis. The group Reflex(R)

is isomorphic to Div(R), the group of Weil divisors of R.

Proof. (1): Suppose I is a proper ideal of R and I is reflexive. If I ∈ X1(R),
then I has the desired factorization. The proof is by contradiction. Since R is
noetherian, there exists a maximal counterexample, sayM . That is,M is a reflexive
proper ideal in R and M does not have a factorization in the form M = R : (R :
(P1 · · ·Pn)), where each Pi is in X1(R). By Lemma 16.4.3, there is a maximal
reflexive ideal P1 that properly contains M . In fact, P1 is in X1(R). Since R ⊊
P−11 , it follows that M ̸= P−11 ∗M , hence M ⊊ (R : P1)M . Take double duals,
M ⊊ R : (R : (R : P1)M). Also, M ⊆ P1 ⊆ R, so (R : P1)M ⊆ (R : P1)P1 ⊆ R.
That is, R : (R : (R : P1)M) is a reflexive ideal in R that properly contains M . By
the choice of M , this ideal has a factorization in the desired form:

R : (R : (R : P1)M) = R : (R : (P2 · · ·Pn))

where P2, . . . , Pn ∈ X1(R). Use Exercise 16.4.12 and Proposition 16.4.2 to show
that P−11 ∗M = P2 ∗ · · · ∗ Pn and M = P1 ∗ P2 ∗ · · · ∗ Pn = R : (R : (P1 · · ·Pn)).
The converse follows from Lemma 16.4.1 (3).

(2): Suppose I = R : (R : (P1 · · ·Pm)) and each Pi ∈ X1(R). Then P1 · · ·Pm ⊆
I. Suppose P ∈ X1(R) such that I ⊆ P . By Proposition 3.2.14, there must be
some i in 1, . . . ,m such that Pi ⊆ P . Since ht(P ) = 1, Pi = P . There are only
finitely many choices for P .

(3): Suppose I = R : (R : (P1 · · ·Pm)) and each Pi ∈ X1(R). If m = 1, then
I = P1 so the claim is trivially true. Proceed by induction on m. By Part (2), we
can assume I ⊆ P1. It follows that I : P1 ⊆ P1 : P1 = R. By Lemma 16.4.1, I : P1

is a reflexive ideal in R. By Exercise 16.4.13, I : P1 = I ∗P−11 . By Exercise 16.4.12,
I : P1 = P2 ∗ · · · ∗ Pm = R : (R : (P2 · · ·Pm)) and by induction we are done.

(4): By Parts (2) and (3) it suffices to show Reflex(R) is generated by those
ideals in X1(R). Let I ∈ Reflex(R). There exists a ∈ R such that aI ⊆ R. By
Part (1) there are primes Qi and Pj in X1(R) such that aR = Q1 ∗ · · · ∗ Qn and
aI = P1 ∗ · · · ∗ Pm. Therefore, in the group Reflex(R) we have

I ∗Q1 ∗ · · · ∗Qn = P1 ∗ · · · ∗ Pm.
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The last claim follows from the fact that the group of Weil divisors, Div(R), is the
free Z-module on X1(R) (Definition 15.4.13). □

4.2. A Nodal Cubic Curve. This section is devoted to an example of an
algebraic plane curve that is nonnormal and birational to the affine line A1. Assume
that the characteristic of k, the base field, is not 2. Consider the polynomial
y2 − x2(x + 1) in k[x][y]. By Eisenstein’s Criterion (Corollary 3.7.7) with prime
p = x+1, y2−x2(x+1) is irreducible in k[x][y]. Let R = k[x, y]/(y2−x2(x+1)). In
the following we show that R is a nonnormal integral domain, the Krull dimension
of R is one, every maximal ideal of R is reflexive, and there is exactly one maximal
ideal of R that is not projective,

First we show that R is isomorphic to the ring of Exercises 7.7.18 and 10.1.23.
Let A = k[z] be the polynomial ring over k in the variable z. Define θ : k[x, y]→ k[z]
by assigning θ(x) = z2−1, θ(y) = z(z2−1), and applying Theorem 3.6.3. The image
of θ is the ring k[z2 − 1, z(z2 − 1)]. It is routine to see that θ(y2 − x2(x+ 1)) = 0.
Therefore, θ factors through R and the diagram

k[x, y]
θ //

η

��

k[z2 − 1, z(z2 − 1)]

R = k[x,y]
(y2−x2(x+1))

θ̄

55

commutes. Since θ is onto, θ̄ is onto. Since k[z2−1, z(z2−1)] is an integral domain,
ker θ̄ is a prime ideal in R. By Theorem 14.3.1 and Corollaries 13.6.12, and 14.3.4,
dim(R) = 1. By Theorem 13.6.22, dim(k[z2 − 1, z(z2 − 1)]) = dim(k[z]) = 1.
Another application of Corollary 14.3.4 shows θ̄ is one-to-one.

Proposition 16.4.5. Let k be a field with characteristic different from 2 and
R = k[x, y]/(y2 − x2(x+ 1)). Then the following are true.

(1) R is a noetherian integral domain with Krull dimension 1.
(2) If K denotes the quotient field of R, then y/x is transcendental over k

and K = k(y/x) is the field of rational functions in one variable over k.
(3) R is equal to the k-subalgebra of K generated by the two elements x =

(y/x)2 − 1 and y = (y/x)((y/x)2 − 1). The integral closure of R in K is
R[y/x] = k[y/x].

(4) The conductor ideal from k[y/x] to R is equal to the ideal m = (x, y). The
ideal m is a maximal ideal in R and a principal ideal (x) in k[y/x].

Proof. We already proved Part (1). From Exercises 7.7.18 and 10.1.23, the
quotient field of k[z2 − 1, z(z2 − 1)] is equal to k(z), the integral closure is equal to
k[z], and the conductor ideal from k[z] to k[z2 − 1, z(z2 − 1)] is (z2 − 1, z(z2 − 1)).
Parts (2) – (4) follow from this and the isomorphism θ̄ derived above. To see this,
note that the identity y2 = x2(x + 1) implies x = (y/x)2 − 1. Starting with the
isomorphism θ̄, there is a commutative diagram

k[y/x]
∼= // A = k[z]

R = k[x,y]
(y2−x2(x+1))

OO

∼= // k[z2 − 1, z(z2 − 1)]

OO
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of k-algebras. The left vertical arrow is defined by x 7→ (y/x)2− 1 and y 7→ (y/x)x
and is one-to-one. The right vertical arrow is set containment. The top horizontal
arrow is the isomorphism defined by y/x 7→ z. □

Proposition 16.4.6. Let k be a field with characteristic different from 2 and
R = k[x, y]/(y2−x2(x+1)). Let K denote the quotient field of R and R̄ the integral
closure of R in K. Then the following are true.

(1) In R, the ideal m = (x, y) has the following properties:
(a) m is a maximal ideal of R and m is the only prime ideal of R that

contains x.
(b) As R-modules, m is isomorphic to R̄.
(c) m and R̄ are reflexive fractional ideals of R.
(d) m and R̄ are not invertible fractional ideals. That is, m and R̄ are

not projective R-modules.
(e) R : R̄ = R̄−1 = m, R : m = m−1 = R̄, and m : m = R̄.

(2) If P is a maximal ideal of R and x is not in P , then P is a projective
R-module. That is, P is an invertible fractional ideal.

Proof. (1): Since R/(x, y) = k, this proves m = (x, y) is maximal. Any
prime ideal that contains x contains x2(x + 1) = y2, hence contains y. From
Proposition 16.4.5, R̄ is generated as an R-module by 1 and y/x. Since (y/x)2 =
x + 1, we have R̄ = R + R(y/x). Therefore, R̄ is a fractional ideal of R in K.
Then R̄−1 is equal to the conductor ideal R : R̄, which is m = (x, y). As an
R̄-module, m = R̄x = R̄((y/x)2 − 1) is cyclic. Therefore, left multiplication by
x = (y/x)2 − 1 is an R-module isomorphism ℓx : R̄ → m. By Lemma 16.4.1,
m = R : R̄ is a reflexive fractional ideal of R. By the isomorphism R̄ ∼= m,
this implies R̄ is a reflexive fractional ideal of R. Since R̄−1R̄ = m ̸= R, by
Theorem 16.2.7 we see that R̄ and m are not invertible fractional ideals. Since R̄
is reflexive, we have R̄ = R : (R : R̄) = R : m. The last identity in (e) follows from
R̄ ⊆ m : m ⊆ R : m = R̄.

(2): Let P be a maximal ideal in R and assume x is not in P . Since P ⊗R Rm

is the unit ideal, it is free of rank 1 over the local ring Rm. By Exercise 7.3.27,
P ⊗R R[1/x] is a maximal ideal in R[1/x]. By Exercise 7.7.18, R[1/x] = R̄[1/x].
Since R̄ is a PID, P ⊗RR[1/x] is a principal ideal, hence free of rank 1 over R[1/x].
From this it follows that P satisfies Proposition 7.7.2 (4). Therefore, P is locally
free of rank 1. By Theorem 16.2.7, P is an invertible fractional ideal. □

See Exercise 16.4.18 for a continuation of this example.

4.3. Exercises.

Exercise 16.4.7. Let R be an integral domain with field of fractions K. Let
E and F be fractional ideals of R in K. For any α ∈ E : F , let ℓα : F → E be
“left multiplication by α“. The mapping α 7→ ℓα is an isomorphism of R-modules
E : F → HomR(F,E).

Exercise 16.4.8. Let R be an integral domain with field of fractions K.

(1) If M is a reflexive R-module, then M is torsion free.
(2) If M is a finitely generated reflexive R-module and dimK(K ⊗RM) = 1,

then M is isomorphic to a reflexive fractional ideal of R in K.
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Exercise 16.4.9. Let R be an integral domain with field of fractions K. Let
F be a fractional ideal of R in K.

(1) F : F is a ring, and R ⊆ F : F ⊆ K is a tower of subrings.
(2) F : F ⊆ F−1 : F−1 ⊆ (F−1)−1 : (F−1)−1.

Exercise 16.4.10. Let R be an integral domain with field of fractions K and
let α ∈ K. The following are equivalent.

(1) α is almost integral over R.
(2) R[α] is a fractional ideal of R in K.
(3) There exists a fractional ideal F of R in K such that αF ⊆ F .

Exercise 16.4.11. If R is an integral domain with field of fractions K, then R
is completely normal if and only if R = F : F for all fractional ideals F of R in K.

Exercise 16.4.12. Let R be an integral domain with field of fractions K. Let
D,E, F be fractional ideals of R in K.

(1) Show that (D−1 : E) : F = (E−1 : F ) : D.
(2) Show that (D((EF )−1)−1)−1 = (((DE)−1)−1F )−1 = (DEF )−1.
(3) Show that with the binary operation E∗F = R : (R : EF ) = ((EF )−1)−1,

Reflex(R) is an abelian monoid.

Exercise 16.4.13. Let R be a noetherian normal integral domain with field
of fractions K. Let E and F be elements of the group Reflex(R). Prove that
E : F = E ∗ F−1 and F : E = F ∗ E−1.

Exercise 16.4.14. Let R be an integral domain with field of fractions K. Let
E and F be elements of the group Reflex(R). Prove that HomR(E,F ) is a free
R-module of rank one if and only if E is isomorphic to F .

Exercise 16.4.15. Let R be a noetherian normal integral domain with field
of fractions K. Let E and F be reflexive fractional ideals. Prove that E ∩ F is a
reflexive fractional ideal.

Exercise 16.4.16. Let R be a noetherian normal integral domain with field of
fractions K.

(1) Invert(R) is a subgroup of Reflex(R).
(2) Prin(R) is a subgroup of Reflex(R).
(3) The quotient Reflex(R)/Prin(R) is called the class group of rank one

reflexive R-modules. Show that this group is isomorphic to the class
group of Weil divisors Cl(R).

(4) Show that there is a one-to-one homomorphism

Invert(R)/Prin(R)→ Reflex(R)/Prin(R)

from the class group of rank one projectives into the class group of rank
one reflexives.

(5) There is a one-to-one homomorphism Pic(R)→ Cl(R).

Exercise 16.4.17. Let R be a noetherian normal integral domain and Sing(R)
the set of all maximal ideals m ∈ Max(R) such that Cl(Rm) ̸= (0). Show that the
natural maps induce an exact sequence

0→ Pic(R)→ Cl(R)→
∏

m∈Sing(R)

Cl(Rm)
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of abelian groups. (Hint: Exercise 15.4.21.)

Exercise 16.4.18. Let k be a field with characteristic different from 2. Let
R = k[x, y]/(y2 − x2(x + 1)) be the ring of Section 16.4.2. Let K denote the
quotient field of R and R̄ the integral closure of R in K. Consider the tower of
rings k[x] ⊆ R ⊆ R̄. Prove the following:

(1) R is free of rank 2 over k[x].
(2) R̄ is free of rank 2 over k[x].
(3) R̄ is not free over R.
(4) R is not separable over k[x].
(5) R̄ is not separable over k[x].
(6) R̄ is separable over R. (Hint: Theorem 14.1.19.)

5. Functorial Properties of the Class Group

Let R be a noetherian normal integral domain with field of fractions K. Let S
be a noetherian normal integral domain with field of fractions L. The class group
is not a functor. That is, a homomorphism R → S does not necessarily induce a
homomorphism of groups Cl(R)→ Cl(S). There are three important cases where a
homomorphism on class groups does exist. The first case is when S is a localization
of R in K and K = L. This is the context of Nagata’s Theorem and the reader is
referred to Theorem 15.4.16 and Exercise 15.4.21. Secondly, if S is a flat R-algebra,
we show that there is an induced homomorphism γ : Cl(R) → Cl(S). This is the
subject of Section 16.5.1. The third scenario is when S is a faithful R-algebra which
is finitely generated as an R-module. In this context, we show in Section 16.5.2
that there is a homomorphism γ : Cl(R) → Cl(S). The special case where L/K is
a finite Galois extension of fields is investigated in Section 16.5.3.

5.1. Flat Extensions. Now assume S/R is an extension of noetherian normal
integral domains and L/K is the corresponding extension of the fields of fractions.
Assume S is a flat R-algebra. Then in this context, Proposition 16.5.2 shows that
there is a homomorphism of divisor groups β : Div(R) → Div(S) which induces a
homomorphism of class groups γ : Cl(R)→ Cl(S).

Lemma 16.5.1. Let R be a noetherian integral domain with field of fractions
K. Let M be a reflexive R-lattice in the finite dimensional K-vector space V . Let
θ : R→ S be a flat homomorphism of commutative rings. The following are true.

(1) S ⊗RM is a reflexive S-module.
(2) If θ is one-to-one and S is an integral domain with field of fractions L,

then the image of S ⊗RM is a reflexive S-lattice in L⊗K V .

Proof. (1): Since R is noetherian, both M and HomR(M,R) are finitely
presented R-modules. Applying Proposition 7.5.8, we see that S⊗RM is a reflexive
S-module.

(2): By Proposition 16.1.5, S ⊗RM is an S-lattice in L⊗K V . □

Proposition 16.5.2. Let S/R be an extension of noetherian normal integral
domains and L/K the corresponding extension of the fields of fractions. Assume S
is a flat R-algebra. Let I be a reflexive fractional ideal of R in K. The following
are true.

(1) IS is a reflexive fractional ideal of S in L.
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(2) I ⊗R S ∼= IS by the multiplication map a⊗ b 7→ ab.
(3) The action I 7→ IS induces a homomorphism Cl(R) → Cl(S) of abelian

groups.

Proof. (2): There is α ∈ R such that αI ⊆ R. Since S is flat over R, the
multiplication map αI ⊗R S → αIS is an isomorphism, by Corollary 7.8.4. From
this we get I ⊗R S → IS is an isomorphism.

(1): This follows from (2) and Lemma 16.5.1.
(3): By (1) and (2), the assignment I 7→ IS induces a homomorphism Reflex (R)→

Reflex (S). If I is a principal ideal of R, then IS is a principal ideal of S, hence
under this homomorphism Prin (R) is mapped to Prin (S). By Exercise 16.4.16,
this induces a homomorphism of groups Cl (R)→ Cl (S). □

Corollary 16.5.3. Let S/R be an extension of noetherian normal integral
domains and L/K the corresponding extension of the fields of fractions. Assume S
is a faithfully flat R-algebra.

(1) Let I be a fractional ideal of R in K. Then I is a projective fractional
ideal if and only if IS is a projective fractional ideal of S in L.

(2) If Pic(R) = 0, then Cl(R)→ Cl(S) is one-to-one.

Proof. (1): This follows from Proposition 16.5.2 and Lemma 7.5.12.
(2): If I is a reflexive fractional ideal of R in K and IS is principal, then I is

an invertible fractional ideal, by (1). Since Pic(R) = 0, I is principal. □

Corollary 16.5.4. (Mori’s Theorem) Let R be a commutative noetherian ring,

I an ideal contained in the Jacobson radical of R, and R̂ the I-adic completion of R.
If R̂ is an integrally closed integral domain, then R is an integrally closed integral
domain and Cl(R)→ Cl(R̂) is one-to-one.

Proof. By Theorem 11.3.7, the ring R and ideal I make up a Zariski pair
and R̂ is a faithfully flat R-algebra. By Corollary 11.3.18, R̂ is noetherian. If R̂
is an integrally closed integral domain, then R is also, by Exercise 10.1.18. Given
a reflexive fractional ideal a of R, by Proposition 16.5.2 the assignment a 7→ aR̂
induces a homomorphism Cl(R) → Cl(R̂). There exists a nonzero element c ∈ R
such that ca ⊆ R. By Corollary 11.3.20, if caR̂ is a principal ideal, then ca is a
principal ideal. It follows that the map on class groups is one-to-one. □

Polynomial rings are an important special case of the above. Let R be a com-
mutative ring and x an indeterminate. By Exercise 7.5.23, R[x] is a faithfully flat
extension of R. If R is a normal ring, then so is R[x], by Lemma 15.1.6.

Theorem 16.5.5. Let R be a noetherian commutative ring.

(1) If R is an integrally closed integral domain, then the natural homomor-
phism Cl(R)→ Cl(R[x]) is an isomorphism.

(2) If R is a normal ring, then the natural homomorphism Pic(R)→ Pic(R[x])
is an isomorphism.

Proof. (1): Let K be the quotient field of R. Since K[x] is a unique factor-
ization domain, Cl(K[x]) = 0 (Corollary 15.4.15). By Nagata’s Theorem (Exer-
cise 15.4.21), Cl(R[x]) is generated by the prime divisors P ∈ X1(R[x]) such that
P ∩R ̸= (0). Let S = R[x] and P ∈ X1(S). Since S/R is faithfully flat, going down
holds and Theorem 13.6.21 says ht(P ) = ht(P∩R)+ht(P/(P∩R)S). If P∩R ̸= (0),
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this means P ∩ R ∈ X1(R), and P = (P ∩ R)S. Therefore, Cl(R) → Cl(R[x]) is
onto. Consider the commutative diagram

Pic(R)
α //

��

Pic(R[x])

��
Cl(R)

β // Cl(R[x])

in which β is onto and the vertical maps are one-to-one (Exercise 16.4.16). If
R[x] → R is the homomorphism defined by x 7→ 0, then R → R[x] → R is an
isomorphism of rings. Since Pic( ) is a functor, Pic(R) → Pic(R[x]) → Pic(R) is
an isomorphism of abelian groups, hence α is one-to-one. By Corollary 16.5.3 (1)
it follows that α is onto and β is one-to-one.

(2): By the proof of (1), this is true when R is an integral domain. It follows
from Lemma 15.1.5 that R is a finite direct sum of normal integral domains. By
Exercise 7.7.12, the Picard group distributes across direct sums. □

5.2. Finite Extensions. We begin by establishing some notation that will
be in effect throughout this section. Let S/R be an extension of noetherian normal
integral domains and L/K the corresponding extension of the fields of fractions.
Assume S is a finitely generated R-module. Then S is equal to the integral closure of
R in L. Since S⊗RK is the localization of S in L with respect to the multiplicative
set R−{0}, S⊗RK is an integral domain. By Theorem 6.4.23, S⊗RK is a finitely
generated K-vector space. Thus S ⊗R K is a field, by Exercise 4.5.15. Therefore,
S ⊗R K = L which implies dimK(L) = m is finite.

In this context, we show that there is a homomorphism of divisor groups β :
Div(R) → Div(S) which induces a homomorphism of class groups γ : Cl(R) →
Cl(S). By Parts (1) and (5) of Theorem 10.3.7, the continuous map SpecS →
SpecR is onto and going down holds for R → S. Assume p ∈ X1(R) and q ∈
Spec(S) such that p = q∩p. By Theorem 13.6.22, q ∈ X1(S). By Theorem 15.2.10,
Rp is a discrete valuation ring. By Corollary 10.3.8, Sp = S ⊗R Rp is a semilocal
ring whose maximal ideals correspond to the prime ideals q ∈ X1(S) lying over p.
Before defining the homomorphism β : DivR → DivS, we define for every prime
q ∈ X1(S) such that p = q ∩ p two important numbers e(q), f(q). These numbers
are significant in their own right, hence Proposition 16.5.6 is stated in the special
case where R is a discrete valuation ring with quotient field K and S is the integral
closure of R in a finite algebraic extension field of K.

Proposition 16.5.6. Let R be a DVR with quotient field K, maximal ideal
m, residue field k = R/m, and local parameter π. Let L/K be a finite algebraic
extension of fields with dimK(L) = m and let S be the integral closure of R in L.
Then the following are true.

(1) The ring S satisfies the following:
(a) S is a noetherian normal integral domain with Krull dimension one.

In other words, S is a Dedekind domain (see Theorem 16.3.2).
(b) The quotient field of S is L.
(c) S is a torsion free R-module and S ⊗R K = L. If S is a finitely

generated R-module, then S is a free R-module of rank m.
(d) X1(S) is a finite set, say {q1, . . . , qt}.
(e) S is semilocal.
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(f) PicS = ClS = (0).
(g) S is a PID and hence a UFD.

(2) For each 1 ≤ i ≤ t, Sqi is a DVR and R→ Sqi is a local homomorphism
of local rings. Denote the maximal ideal of Sqi

by m(qi) and the residue
field by k(qi). There exist unique positive integers ei and fi satisfying:
(a) mSqi

= m(qi)
ei .

(b) k(qi) is a finite dimensional extension field of k and dimk k(qi) = fi.

(3) The numbers t, ei, fi satisfy the identity: dimk S ⊗R k =
∑t
i=1 eifi. If

S is a finitely generated R-module, then dimk S ⊗R k = RankR (S) =
dimK (L).

Proof. (1): By Theorem 16.3.7, S is a Dedekind domain and L is the quotient
field of S. By Lemma 13.7.1, S ⊗R K = L. Therefore S is a torsion free R-
module of rank dimK(L) = m. By Corollary 13.7.6, S is semilocal and the maximal
ideals of S are precisely the minimal prime over-ideals of m. For some t ≥ 1 we
have X1(S) = {q1, . . . , qt}. Over a semilocal integral domain a finitely generated
projective module is free, by Exercise 8.1.12. By Exercises 16.3.11 and 16.3.9,
PicS = ClS = (0) and S is a PID. This proves (1).

(2): Fix 1 ≤ i ≤ t. By Theorem 15.2.10, Sqi is a discrete valuation ring for L.
Let m(qi) be the maximal ideal and k(qi) the residue field of Sqi . Since m = qi∩R,
the ideal mSqi

is contained in m(qi). By Lemma 15.2.9, mSqi
= m(qi)

ei for a unique
ei ≥ 1, which is (a). By Theorem 13.7.5, S ⊗R k is a finite dimensional k-vector
space. By Exercise 7.6.35 and Theorem 8.4.6, S ⊗R k decomposes into the direct
sum of local rings

(5.1) S ⊗R k =

t⊕
i=1

Sqi
/mSqi

.

Each local ring Sqi
/mSqi

is finite dimensional over k. Therefore, the residue field
k(qi) is finite dimensional over k. Then dimk k(qi) = fi is finite, which is (b).

(3): Fix 1 ≤ i ≤ t. By (2) we have the identity

mSqi
= m(qi)

ei .

The local ring Sqi
/mSqi

= Sqi
/m(qi)

ei is a k-vector space with filtration by sub-
spaces

m(qi)
ei

m(qi)ei
⊆ m(qi)

ei−1

m(qi)ei
⊆ · · · ⊆ m(qi)

2

m(qi)ei
⊆ m(qi)

m(qi)ei
⊆ Sqi

m(qi)ei
.

Since Sqi
is a DVR, for 1 ≤ j ≤ ei, the factor m(qi)

j−1/m(qi)
j is isomorphic to k(qi)

as a k-vector space. Thus the dimension of each factor of the filtration is equal to
fi. There are ei factors in the filtration, so dimk Sqi/mSqi = eifi. Combining this

with the direct sum in (5.1), we have dimk S ⊗R k =
∑t
i=1 eifi, which completes

the proof. □

Definition 16.5.7. In Proposition 16.5.6 (2), the number ei is called the ram-
ification index of qi over p and the number fi is called the degree of the residue
field extension of qi over p. Notice that ei = 1 if and only if mSqi = m(qi). In this
case we say qi is unramified over p.

Corollary 16.5.8. In the context of Proposition 16.5.6, S ⊗R k is separable
over k if and only if for each i, ei = 1 and the extension of residue fields k(qi)/k
is separable.
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Proof. This follows from Corollary 9.5.9 and Proposition 16.5.6. □

Now let S/R be an extension of noetherian normal integral domains and L/K
the corresponding extension of the fields of fractions. Assume S is a finitely gen-
erated R-module. Let p ∈ X1(R). By Theorem 15.2.10, Rp is a discrete valuation
ring. Since Sp is the localization of S in L with respect to the multiplicative set
R−p, by Lemma 10.1.7, Sp is the integral closure of Rp in L and Sp is an integrally
closed integral domain by Theorem 10.1.3. Then Rp, with quotient field K and Sp,
with quotient field L are in the context of Proposition 16.5.6. Then X1(Sp) is a
finite set. If q is in X1(Sp), the ramification index of q over p is denoted eq and the
degree of the residue field extension is denoted fq. A prime q in X1(Sp) corresponds
to a minimal prime over-ideal of pS in SpecS, which will also be denoted q. The
local ring of Sp at q is equal to the local ring Sq. The homomorphism

β : DivR→ DivS

is defined by sending the prime divisor p ∈ X1(R) to the divisor
∑

q∩R=p eqq, where

the sum runs over the set of primes in X1(S) lying over p, which is equal to the set
X1(Sp). Thus,

β(p) =
∑

q∩R=p

eqq

=
∑

q∈X1(Sp)

eqq.

Proposition 16.5.9. Let S/R be an extension of noetherian normal integral
domains and L/K the corresponding extension of the fields of fractions. Assume S
is a finitely generated R-module. Then there is a homomorphism γ : Cl(R)→ Cl(S)
which is induced on divisors by the homomorphism β defined above.

Proof. Let α ∈ K∗. Let q ∈ X1(S) and q ∩R = p. By definition of ramifica-
tion index, νq(α) = eqνp(α). Therefore, β maps a principal divisor to a principal
divisor, the diagram

0 // Prin (R) //

��

Div(R) //

β

��

Cl(R)

γ

��

// 0

0 // Prin(S) // Div(S) // Cl(S) // 0

commutes and the rows are exact. □

In the context of Proposition 16.5.9, the ramification divisor on SpecS is the
subset of X1(S) consisting of all primes q of height one such that eq > 1. In Propo-
sition 16.5.10 we show that the ramification divisor is a finite set if the extension
of fields L/K is separable.

Proposition 16.5.10. Let R be a noetherian integrally closed integral domain
with field of fractions K. Let L/K be a finite separable extension of fields and S
the integral closure of R in L. The ramification divisor,

{q ∈ X1(S) | eq > 1} ,

is a finite set.
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Proof. By the Primitive Element Theorem, Theorem 5.4.7, there exists α ∈ L
such that L = K(α) is a simple extension. Let f = Irr.polyK(α) be the irreducible
polynomial of α in K[x]. So f is separable and the ideal in K[x] generated by f
and f ′ contains 1. There exist g, h ∈ K[x] such that gf + hf ′ = 1. The poly-
nomials f, g, h, f ′ have coefficients in K. Let a be a nonzero element of R such
that the polynomials af, ag, ah, af ′ have coefficients in R. Let A = R[a−1] be the
localization of R in K formed by inverting a. Then the polynomials f, g, h, f ′ have
coefficients in A and the ideal in A[x] generated by f and f ′ contains 1. By Propo-
sition 9.6.2, T = A[x]/(f) is separable over A and T is a free A-module of rank
m = deg(f) = dimK(L). Since L = K[x]/(f), we can map T isomorphically onto
A[α] by the assignment x 7→ α. The quotient field of T contains K and α, hence L
is equal to the quotient field of T . The diagram of subrings

L = K(α)

T = A[α]

88

K

dd

S

;;

A = R[a−1]

ff ::

R

cc 77

commutes where each arrow is set inclusion. By change of base (Corollary 9.3.2),
given any p ∈ Spec(A), we have T ⊗A k(p) is separable over k(p). By Corol-
lary 16.5.8, every q ∈ X1(T ) is unramified over q ∩ A. For each p ∈ Spec(A), we
have T ⊗A k(p) is a direct sum of fields by Corollary 9.5.9. Therefore, T ⊗A k(p)
is a regular ring. So T is normal by Corollary 15.5.6. This means T is the integral
closure of A in L. By Lemma 10.1.7, S[a−1] is the integral closure of A in L. This
proves T = S[a−1]. As in the proof of Theorem 15.4.16, we can view Div(R[a−1])
as the free Z-submodule of Div(R) generated by the primes in X1(R[a

−1]). Let
Div(a) = ν1p1 + · · ·+ νnpn. Then X1(R) = X1(R[a

−1]) ∪ {p1, . . . , pn}. Let q be a
ramified height one prime in X1(S) and set p = q∩R. Then p is not in X1(R[a

−1]),
so p is in the finite set {p1, . . . , pn}. By Proposition 16.5.6, there are only finitely
many primes of S that lie over each pi. □

We apply the results of this section to a ramified radical extension (see Sec-
tion 15.5.3).

Corollary 16.5.11. Let R be a noetherian normal integral domain and a a
nonzero element of R such that Div(a) = P1+ · · ·+Pv is a reduced effective divisor.
If n ≥ 2 is invertible in R and S = R[x]/(xn − a), then the following are true.

(1) There are unique primes Q1, . . . , Qv in X1(S) such that Pi = Qi ∩R and
Div(x) = Q1 + · · ·+Qv.

(2) For each i, the ramification index eQi is equal to n.
(3) The ramification divisor of the extension S/R is equal to {Q1, . . . , Qv}.

Proof. This follows from the proofs of Parts (4) and (5) of Theorem 15.5.14.
□
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5.3. Galois Descent of Divisor Classes. References for the material in this
section are [22], [49], and [53]. Let R be a noetherian integrally closed integral
domain with quotient field K. Let L/K be a finite dimensional extension of fields
which is Galois with group G. The degree of the extension is denoted n. Let
S be the integral closure of R in L. Then L is the quotient field of S and S is
finitely generated as an R-module (Theorem 10.1.13). We are in the context of
Proposition 16.5.9. The reader should verify that that G acts on S as a group of
R-algebra automorphisms, and SG = R. If q ∈ SpecS, then it is clear that for every
σ ∈ G, σ(q) is in SpecS. Moreover, if p ∈ X1(R), then Sp is the integral closure
of Rp in L and G acts as a group of permutations of X1(Sp). The prime ideals in
X1(Sp) correspond to height one primes in S lying over p. By Theorem 10.3.6 (6),
any two primes in X1(Sp) are conjugate to each other. Therefore, G acts as a group
of permutations on X1(S). Since Div(S) is the free abelian group on X1(S), this
makes Div(S) into a ZG-module. In Proposition 16.5.12, we employ the notation
of Section 12.5.

Proposition 16.5.12. In the above context, the following are true.

(1) There is a monomorphism β : Div(R)→ Div(S)G of abelian groups.
(2) Cl(S) is a ZG-module and there is a homomorphism of groups γ : Cl(R)→

Cl(S)G.
(3) There is a natural exact sequence

0→ ker γ → H1(G,S∗)→ Div(S)G/Div(R)

of abelian groups.
(4) If each q ∈ X1(S) is unramified over q ∩ R, then β : Div(R) → Div(S)G

is an isomorphism.

Proof. (1): Clearly β is one-to-one. Given q ∈ X1(S), let p = R ∩ q. Each
σ ∈ G induces a commutative diagram

Sq
σ //

  

Sσ(q)

Rp

==

where the top row is an isomorphism. From this we see that the ramification index
of q is equal to the ramification index of σ(q). Hence the image of β is fixed by σ.

(2): If α ∈ L∗, then νq(α) = νσ(q)(σ(α)), so σ maps a principal divisor to a
principal divisor and Cl(S) is a ZG-module. The rest follows from (1).

(3): The long exact sequence of cohomology associated to

(5.2) 1→ S∗ → L∗ → PrinS → 0

and Hilbert’s Theorem 90 (Theorem 12.5.25) yield the exact sequence

(5.3) 1→ R∗ → K∗ → Prin(S)G → H1(G,S∗)→ 0

→ H1(G,PrinS)
δ1−→ H2(G,S∗)

ϵ−→ H2(G,L∗).
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By definition, K∗/R∗ = PrinR. The diagram

0 // PrinR

��

// DivR

β

��

// ClR

γ

��

// 0

0 // Prin(S)G // Div(S)G // Cl(S)G

(5.4)

commutes and the rows are exact. To finish (3), combine (5.3) and (5.4) with the
Snake Lemma (Theorem 6.6.2).

(4): For each p ∈ X1(R), let P (p) = {q ∈ X1(S) | q ∩ R = p} be the set of
those prime divisors in X1(S) lying over p. Then β(p) =

∑
q∈P (p) eqq =

∑
q∈P (p) q

because each ramification index is assumed to be 1. By Theorem 10.3.7 (6), if
q ∩ R = p, then the set P (p) is equal to the orbit of q under the action of G on
Div(S). Let D =

∑
q∈X1(S)

aqq be a divisor in Div(S)G. Since D is fixed by each

σ ∈ G, the coefficients aq are constant as q runs through P (p). If we denote this
constant by ap, then

D =
∑

p∈X1(R)

ap ∑
q∈P (p)

q

 =
∑

p∈X1(R)

apβ(p)

which shows D is in the image of β. □

Proposition 16.5.13. In the above context, H1(G,DivS) = (0).

Proof. For each p ∈ X1(R) fix a prime Qp ∈ X1(S) lying above p. Let Gp be
the subgroup of G fixing Qp. The reader should verify that

Div(S) =
⊕

p∈X1(R)

ZG⊗ZGp
Z

as G-modules. Since G is finite, HomZGp
(ZG,Z) and ZG⊗ZGp

Z are isomorphic as
G-modules (Lemma 12.5.20). From Theorem 12.5.15, for each p ∈ X1(R) we have
the identity H1(G,HomZGp

(ZG,Z)) = H1(Gp,Z). But Z is a trivial Gp-module

and by Proposition 12.5.11 we see that H1(Gp,Z) = Hom(Gp,Z). But G is finite,
so the last group is the trivial group (0). It follows from Exercise 12.5.31 that
H1(G,Div(S)) = (0). □

The exact sequence that we derive in Theorem 16.5.14 is a special case of the
main theorem of [49].

Theorem 16.5.14. (D. S. Rim) In the above context, there is an exact sequence

(5.5) 0→ Cl(S/R)
γ0−→ H1(G,S∗)

γ1−→ Div(S)G/Div(R)
γ2−→ Cl(S)G/Cl(R)

γ3−→ H2(G,S∗)
γ4−→ H2(G,L∗)

of abelian groups where Cl(S/R) is the kernel of Cl(R)→ Cl(S).

Proof. The long exact sequence of cohomology associated to the short exact
sequence

(5.6) 0→ PrinS → DivS → ClS → 0

is

(5.7) 0→ Prin(S)G → Div(S)G → Cl(S)G
δ0−→ H1(G,PrinS)→ H1(G,DivS).
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By Proposition 16.5.13, δ0 is onto. Combine (5.3) with (5.7) to get

(5.8) 0→ Cl(S/R)
γ0−→ H1(G,S∗)

γ1−→ Div(S)G

γ2−→ Cl(S)G
δ1δ0−−−→ H2(G,S∗)

γ4−→ H2(G,L∗).

Using Diagram (5.4) it is straightforward to derive (5.5) from (5.8). □

In Proposition 16.5.12 we saw that the group Div(S)G/Div(R) is trivial when-
ever S/R is unramfied at every height one prime. We end this section with a
description of this group for another important class of examples. In Proposi-
tion 16.5.15 we assume that for every prime q ∈ X1(S), if q is ramified, then q is
fixed by the Galois group. That is, eqfq = n.

Proposition 16.5.15. In the context of Section 16.5.3, assume that for every
height one prime q of S, if q is ramified, then q is fixed by the Galois group. Let
q1, . . . , qv be those primes in X1(S) with ramification index eqi > 1. The case v = 0
is allowed. In the context of Theorem 16.5.14,

Div(S)G/Div(R) ∼=

{
(0) if v = 0⊕v

i=1(Z/eqi
)qi if v > 0.

Proof. Let pi = qi ∩ R, U = X1(R) − {p1, . . . , pv} and V = X1(S) −
{q1, . . . , qv}. Start with the commutative diagram

0 //⊕v
i=1 Zpi //

α

��

Div(R)
π //

β

��

⊕
p∈U Zp //

γ
��

0

0 //⊕v
i=1 Zqi // Div(S)G

θ ////
(⊕

q∈V Zq
)G

where the map π is the projection onto the submodule spanned by U and θ is
the projection onto the submodule spanned by V . The vertical maps α and γ
are induced by β. The map α is defined by pi 7→ eqi

qi. The proof of Propo-
sition 16.5.12 (4) shows γ is an isomorphism. The rest follows from the Snake
Lemma (Theorem 6.6.2). □

We apply the results of this section to a ramified radical extension (see Sec-
tion 15.5.3).

Corollary 16.5.16. Let R be a noetherian normal integral domain with quo-
tient field K. Assume R is a Z[n−1, ζ]-algebra, where ζ is a primitive nth root
of unity in C. Let a be a nonzero element of R and assume Div(a) is a reduced
effective divisor. If S = R[x]/(xn − a) and L = K[x]/(xn − a), then the following
are true.

(1) L/K is a cyclic Galois extension with group G = ⟨σ⟩, and σ(x) = ζx.
(2) If Div(x) = Q1 + · · ·+Qv, then in the context of Theorem 16.5.14,

v⊕
i=1

(Z/n)Qi = Div(S)G/Div(R)

is a free Z/n-module of rank v.
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Proof. By Theorem 5.8.4, L/K is a Kummer extension of degree n. By Corol-
lary 16.5.11, the ramification divisor of the extension S/R is equal to {Q1, . . . , Qv}.
For each i, the action by G on Div(S) fixes each ramified prime divisor Qi =
PiS + (x). The ramification index eQi

is equal to n. The rest follows from Propo-
sition 16.5.15. □

5.4. Exercises.

Exercise 16.5.17. Let n ≥ 2 be an integer and k a field in which 2n is in-
vertible. Also assume k contains a primitive 2nth root of unity, ζ. For T =
k[x, y, z]/(zn − xn−1y + 1), prove the following.

(1) T is an integrally closed integral domain.
(2) If α : T [x−1] → k[x, z, x−1] is the function defined by y 7→ (zn + 1)x1−n,

x 7→ x, z 7→ z, then α is an isomorphism of k-algebras.
(3) For i = 1, . . . , n, the ideal Qi = (x, z + ζ2i−1) is a height one prime ideal

of T .
(4) The divisor of x is Div x = Q1 + · · ·+Qn.
(5) Cl(T ) = ZQ1 ⊕ · · · ⊕ ZQn−1.
(6) Let σ be the k[x, y]-algebra automorphism of T defined by z 7→ ζ2z (see

Exercise 3.6.34). Let G = ⟨σ⟩ and A = k[x, y].
(a) G is a cyclic group of order n which acts on Cl(T ) by σQ1 = −Q1 −

Q2 − · · · −Qn−1, σQ2 = Q1, . . . , σQn−1 = Qn−2.
(b) p = ⟨xn−1y − 1⟩ is a height one prime in A and q = ⟨z, xn−1y − 1⟩ is

a height one prime in T .
(c) For the extension A→ T , the ramification index of q over p is n.
(d) Div(T )G/Div(A) is a cyclic group of order n generated by q.
(e) Cl(T )G = ⟨0⟩ (Hint: Exercise 12.5.36).
(f) In the exact sequence of Theorem 16.5.14 for the extension A → T ,

the homomorphism γ1 : H1(G,T ∗)→ Div(T )G/Div(A) is an isomor-
phism between cyclic groups of order n.

Exercise 16.5.18. Let n ≥ 2 be an integer and k a field in which 2n is in-
vertible. Also assume k contains a primitive 2nth root of unity, ζ. For T =
k[x, y, z]/(zn − xn−1 + yn), prove the following.

(1) T is an integrally closed integral domain.
(2) Let

T [x−1]
α−→ k[u, v][(un + vn)−1]

be the function defined by x 7→ (un + vn)−1, y 7→ u(un + vn)−1, z 7→
v(un + vn)−1. Then α is an isomorphism of k-algebras.

(3) For i = 1, . . . , n, let ℓ = z+ ζ2i−1y. Then the ideal Pi = (x, ℓi) is a height
one prime ideal of T .

(4) In Div(T ) we have Div x = P1 + · · ·+ Pn, and Div ℓi = (n− 1)Pi.
(5) Cl(T ) is isomorphic to the free Z/(n − 1) module of rank n − 1, and is

generated by P1, . . . , Pn−1.
(6) Let σ be the k[x, y]-algebra automorphism of T defined by z 7→ ζ2z (see

Exercise 3.6.34). Let G = ⟨σ⟩ and A = k[x, y].
(a) G is a cyclic group of order n which acts on Cl(T ) by σP1 = −P1 −

P2 − · · · − Pn−1, σP2 = P1, . . . , σPn−1 = Pn−2.
(b) p = ⟨xn−1 − yn⟩ is a height one prime in A and q = ⟨z, xn−1 − yn⟩ is

a height one prime in T .
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(c) For the extension A→ T , the ramification index of q over p is n.
(d) Div(T )G/Div(A) is a cyclic group of order n generated by q.
(e) Cl(T )G = ⟨0⟩ (Hint: Exercise 12.5.36).
(f) In the exact sequence of Theorem 16.5.14 for the extension A → T ,

the homomorphism γ1 : H1(G,T ∗)→ Div(T )G/Div(A) is an isomor-
phism between cyclic groups of order n.

6. Reflexive Lattices over Regular Domains

In this section R denotes a noetherian regular integral domain with field of
fractions K.

6.1. A Theorem of Auslander and Goldman. The goal of this section is
to prove that if a reflexive R-latticeM has a projective ring of endomorphisms, then
M is projective (Theorem 16.6.8). The proof given here is essentially the original
proof by Auslander and Goldman in [8].

Theorem 16.6.1. Let R be a noetherian regular integral domain and assume
the Krull dimension of R is less than or equal to two. Let M be a finitely generated
R-lattice. Then M is reflexive if and only if M is projective.

Proof. By Exercise 6.5.21, if M is projective, then M is reflexive. Assume
M is a reflexive R-lattice. By Proposition 7.7.2, it suffices to show this when R
is a regular local ring. If dim(R) = 0, then R is a field and every R-module is
projective. If dim(R) = 1, then R is a DVR (Theorem 15.2.10), and M is free by
Proposition 16.1.4. Assume dim(R) = 2. By Proposition 16.1.6, M∗ = R :M is an
R-lattice. Let

0→ K0
d1−→ F0

ϵ−→M∗ → 0

be an exact sequence, where F0 is a finitely generated free R-module. Apply the
functor HomR(·, R) to get the exact sequence

0→M∗∗
ϵ∗−→ F ∗0

d∗1−→ K∗0 .

By hypothesis, M = M∗∗. Since K0 is an R-submodule of F0, K0 is an R-lattice.
By Proposition 16.1.6, K∗0 is an R-lattice and we can embed K∗0 in a free R-lattice
F1. If we define N to be the cokernel of F ∗0 → F1, then the sequence

(6.1) 0→M
ϵ∗−→ F ∗0

d∗1−→ F1 → N → 0

is exact. Since F0 is free, so is F ∗0 (Proposition 4.4.20). By Theorem 15.3.31,
coh.dim(R) = dim(R) = 2. By Theorem 12.4.5, M is projective because it is the
first syzygy of (6.1). □

Proposition 16.6.2. Let R be a noetherian integrally closed local integral
domain with maximal ideal m. If M is a finitely generated R-module such that
HomR(M,M) is reflexive and Ext1R(M,M) = 0, then M =M∗∗.

Proof. By Exercise 13.2.24, HomR(M,M) = HomR(M,M)∗∗ is torsion free.
By Exercise 13.2.22, M is torsion free. In particular, M is an R-lattice. If ν is the
natural map and C denotes the cokernel of ν, then

(6.2) 0→M
ν−→M∗∗ → C → 0

is an exact sequence. If dim(R) ≤ 1, then M is a finitely generated free R-module,
hence is reflexive (Exercise 6.5.21). Inductively, assume d = dim(R) > 1 and that
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the proposition is true for all noetherian integrally closed local integral domains of
Krull dimension less than d. For any p ∈ SpecR, if ht(p) < d, then by the induction
hypothesis, Cp = 0. Therefore, SuppR(C) ⊆ {m} and by Exercise 13.2.23, to show
C = 0, it suffices to show HomR(M,C) = 0. The long exact sequence of Ext
modules associated to (6.2) is
(6.3)

0→ HomR(M,M)
ν∗

−→ HomR(M,M∗∗)→ HomR(M,C)
δ0−→ Ext1R(M,M)→ . . .

(Proposition 12.3.12). Since Ext1R(M,M) = 0 by assumption, it suffices to show ν∗

is an isomorphism. The reader should verify that the diagram

HomR(M,M)
ν∗
//

=

��

HomR(M,M∗∗)

HomR(M,M)∗∗
α∗

// (M∗ ⊗RM)∗

β∗

OO
(6.4)

commutes where α∗ and β∗ are the isomorphisms of Proposition 16.1.16. □

Lemma 16.6.3. Let R be a noetherian commutative local ring with maximal
ideal m. Let M and N be finitely generated R-modules such that HomR(M,N) is
nonzero.

(1) If depth(N) ≥ 1, then depth(HomR(M,N)) ≥ 1.
(2) If depth(N) ≥ 2, then depth(HomR(M,N)) ≥ 2.

Proof. (1): Let x be a regular element for N in m. Applying the left exact
covariant functor HomR(M, ·) to the short exact sequence

0→ N
ℓx−→ N → N/xN → 0

yields the exact sequence

0→ HomR(M,N)
H(ℓx)−−−→ HomR(M,N)→ HomR(M,N/xN).

The module HomR(M,N) is finitely generated (Exercise 7.6.25). By Nakayama’s
Lemma (Corollary 6.3.5), the cokernel of H(ℓx) is a nonzero submodule of HomR(M,N/xN).
This shows x is a regular element for HomR(M,N).

(2): Let y be a regular element for N/xN in m. It follows from (1) that
y is a regular element for HomR(M,N/xN) and (x, y) is a regular sequence for
HomR(M,N) in m. □

Lemma 16.6.4. Let R be a regular local ring of dimension greater than or equal
to three. Let M and N be nonzero finitely generated R-modules satisfying

(1) depth(N) ≥ 2,
(2) HomR(M,N) is R-projective, and
(3) Ext1R(M,N) ̸= 0.

Then depth(Ext1R(M,N)) > 0.

Proof. Let n = dim(R), m the maximal ideal, and k = R/m the residue field.
Let x ∈ m a regular element for N . The long exact Ext sequence associated to

0→ N
ℓx−→ N → N/xN → 0



6. REFLEXIVE LATTICES OVER REGULAR DOMAINS 717

is

(6.5) 0→ HomR(M,N)
H(ℓx)−−−→ HomR(M,N)→ HomR(M,N/xN)→

Ext1R(M,N)
H1(ℓx)−−−−→ Ext1R(M,N)→ . . .

(Proposition 12.3.12). Write E for Ext1R(M,N) and assume for contradiction’s
sake that the depth of E is equal to zero. Since R is noetherian, and M and N are
finitely generated, we know that E is finitely generated (Lemma 12.3.13 (2)). Let
Ψ = {p ∈ AssocR(E) | x ̸∈ p}. Let K denote the kernel of the localization map
θ : E → R[x−1]⊗RE. By Proposition 13.2.6, K is the unique submodule of E such
that AssocR(K) = AssocR(E) − Ψ and AssocR(E/K) = Ψ. By Exercise 15.3.15,
m is an associated prime of E. Since x ∈ m, m ∈ AssocR(K). Since K is a finitely
generated R-module, the reader should verify that for some j > 0, the kernel of
the left multiplication map ℓxj : E → E is equal to K. Since R[x−1] = R[x−j ],
if necessary we replace x with xj and assume K is equal to the kernel of H1(ℓxj )
in (6.5). Since m ∈ AssocR(K), by Exercise 15.3.15, depth(K) = 0. Write H for
HomR(M,N) and Q for HomR(M,N/xN). The short exact sequence

(6.6) 0→ H/xH → Q→ C → 0

of R-modules gives rise to the long exact sequence of the modules TorRi (·, k)

(6.7) · · · → Torn+1(Q, k)→ Torn+1(K, k)→ Torn(H/xH, k)

→ Torn(Q, k)→ Torn(K, k)→ Torn−1(H/xH, k)→ . . .

(Lemma 12.3.2). Because H is projective and the sequence H → H → H/xH → 0
is exact, proj.dim(H/xH) ≤ 1. By Proposition 12.4.10, we have Tori(H/xH, k) = 0
for i ≥ 2. Because n− 1 ≥ 2, the sequence (6.7) produces two isomorphisms

Torn+1(Q, k) ∼= Torn+1(K, k)

Torn(Q, k) ∼= Torn(K, k)
(6.8)

SinceR is a regular local ring with dimension n, by Proposition 15.3.39, proj.dim(K) =
dim(R) − depth(K) = n. By Proposition 12.4.10, we have Torn+1(K, k) = 0 and
Torn(K, k) is nonzero. By Eq. (6.8) and Proposition 12.4.10, proj.dim(Q) = n. By
Proposition 15.3.39, depth(Q) = depth(HomR(M,N/xN) = 0. This is a contradic-
tion to Lemma 16.6.3 (2). □

Lemma 16.6.5. Let R be a regular local ring. If M is a finitely generated
reflexive R-module such that HomR(M,M) is free, then Ext1R(M,M) = 0.

Proof. The proof is by induction on n = dim(R). If dim(R) ≤ 2, then M
is projective, by Theorem 16.6.1, and Ext1R(M,M) = 0, by Proposition 12.3.12.
Assume n ≥ 3 and that the proposition is true for all rings of dimension less than
n. Let m be the maximal ideal in R. Let p be a prime ideal in SpecR − {m}.
By Corollary 15.3.38, Rp is a regular local ring and dim(Rp) = ht(p) < n. Apply-
ing Proposition 7.5.8, the reader should verify that Rp together with the module
Mp = M ⊗R Rp satisfy the hypotheses of the proposition. By Lemma 12.3.13 (3)

and the induction hypothesis, Ext1R(M,M)p = Ext1Rp
(Mp,Mp) = 0. This proves

Supp(Ext1R(M,M)) ⊆ {m}. For contradiction’s sake, assume Ext1R(M,M) ̸= 0. By
Theorem 13.2.7, m is the only associated prime of Ext1(M,M). By Exercise 15.3.15,
this implies depth(Ext1R(M,M)) = 0, which contradicts Lemma 16.6.4. □
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Lemma 16.6.6. Let R be a noetherian commutative local ring. Let M and
N be finitely generated R-modules such that proj.dim(M) = n is finite. Then
ExtnR(M,N) ̸= 0.

Proof. By Theorem 12.4.5 and Exercise 12.4.21, there exists a resolution

0→ Fn
dn−→ · · · d3−→ F2

d2−→ F1
d1−→ F0

ϵ−→M → 0

such that for all i ≥ 0, Fi is a finitely generated free R-module and im di+1 ⊆ mFi.
By Theorem 12.2.19, there is an exact sequence

HomR(Fn−1, N)
H(dn)−−−−→ HomR(Fn, N)→ ExtnR(M,N)→ 0.

If we write RankR(Fi) = ri, then HomR(Fi, N) ∼= Nri . Since the image of dn is
contained in mFn−1, the image of H(dn) : N

rn−1 → Nrn is contained in mNrn . By
Nakayama’s Lemma (Corollary 6.3.2), H(dn) is not onto. □

Proposition 16.6.7. Let R be a regular local ring. Let M be a nonzero finitely
generated R-module. Then the following are true.

(1) If dim(R) ≤ 2, then M∗ = HomR(M,R) is a finitely generated free R-
module.

(2) If dim(R) ≤ 2, and M =M∗∗, then M is free.
(3) If M =M∗∗ and HomR(M,M) is free, then M is free.

Proof. (1) and (2): Follow directly from Proposition 15.3.39 and Lemma 16.6.3
(or Example 16.1.3 (2), Exercise 16.1.19 and Theorem 16.6.1).

(3): The proof is by induction on n = dim(R). Part (2) covers the cases n ≤ 2.
We now prove the n = 3 case. By Proposition 15.3.39, depth(R) = dim(R) = 3.
Lemma 16.6.3 applied to M = M∗∗ gives depth(M) ≥ 2. By Proposition 15.3.39,
proj.dimR(M) ≤ 1. By Lemma 16.6.5, Ext1R(M,M) = 0. Lemma 16.6.6 implies
proj.dimR(M) ̸= 1, so we conclude that proj.dimR(M) = 0, which proves that M
is free.

Inductively, assume n ≥ 4 and that (3) is true for any ring of dimension less
than n. Let m be the maximal ideal of R. Let a1, . . . , an be a regular system of
parameters for R, and take a to be a1. SinceM =M∗∗ is torsion free, AssocR(M) =
(0) and a is a regular element for M in m. By Theorem 15.3.31, R̄ = R/aR is a
regular local ring with Krull dimension dim(R̄) = n − 1. Let M̄ = M/aM . The

short exact sequence 0→M
ℓa−→M → M̄ → 0 gives rise to the long exact sequence

0→ HomR(M,M)
H(ℓa)−−−→ HomR(M,M)→ HomR(M, M̄)

∂−→ Ext1R(M,M)

(Proposition 12.3.12). By Lemma 16.6.5, Ext1R(M,M) = 0, so we have the isomor-
phism of R̄-modules HomR(M,M)⊗R R̄ ∼= HomR(M, M̄). Since HomR(M,M) is a
free R-module, HomR(M, M̄) is a free R̄-module. By Theorem 6.5.10 (the Adjoint
Isomorphism),

HomR̄(M̄, M̄) ∼= HomR(M,M̄)

hence both modules are R̄-free. By Exercise 13.2.22, M̄ is torsion free. By Propo-
sition 16.1.16,

HomR̄(M̄, M̄) = HomR̄(M̄, M̄)∗∗ ∼= HomR̄(M̄
∗, M̄∗)

is R̄-free. By Lemma 16.1.9, M̄∗ is reflexive. By our induction hypothesis applied
to R̄ and M̄∗, we conclude that M̄∗ is R̄-free.
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Now depth(R̄) = dim(R̄) = n − 1 ≥ 3 and HomR̄(M̄, R̄) = M̄∗ is R̄-free. If
follows from Lemma 16.6.4, that the statement:

(6.9) If ExtiR̄(M̄, R̄) ̸= 0, then depth(ExtiR̄(M̄, R̄)) > 0.

is true. The Adjoint Isomorphism (Lemma 12.3.14) induces isomorphisms

(6.10) ExtiR̄(M̄, R̄) ∼= ExtiR(M, R̄)

for all i ≥ 0. Therefore, the statement:

(6.11) If ExtiR(M, R̄) ̸= 0, then depth(ExtiR(M, R̄)) > 0.

is equivalent to (6.9). The short exact sequence

(6.12) 0→ R
ℓa−→ R→ R̄→ 0

gives rise to the long exact sequence

0→M∗
ℓ∗a−→M∗ → HomR(M, R̄)

∂−→ Ext1R(M,R)
ℓ∗a−→ Ext1R(M,R)→ Ext1R(M, R̄)

(Proposition 12.3.12). Let p ∈ SpecR− {m}. By Lemma 12.3.13,

(6.13) Ext1R(M,R)p ∼= Ext1Rp
(Mp, Rp).

Our induction hypothesis applied to Rp and Mp implies that Mp is a free Rp-
module. By Proposition 12.3.12, both groups in (6.13) are trivial. This proves that
Supp(Ext1R(M,R)) ⊆ {m}. For contradiction’s sake assume that Ext1R(M,R)) ̸=
(0). Since a ∈ m, the image of

Ext1R(M,R)
ℓ∗a−→ Ext1R(M,R)

is contained in mExt1R(M,R). By Lemma 12.3.13 the module Ext1R(M,R) is
finitely generated. By Nakayama’s Lemma, coker(ℓ∗a) is a nontrivial submodule
of Ext1R(M, R̄). Since

Supp(coker(ℓ∗a)) ⊆ Supp(Ext1R(M,R)) ⊆ {m}

it follows from Theorem 13.2.7 that m is the only associated prime of Ext1R(M, R̄).
By Exercise 15.3.15, this implies depth(Ext1R(M, R̄)) = 0, which is a contradiction
to the statement in (6.11). This shows that Ext1(M,R) = 0, so the sequence

0→M∗
ℓ∗a−→M∗ → HomR(M, R̄)→ 0

is exact. As mentioned in (6.10), HomR̄(M̄, R̄) ∼= HomR(M, R̄). Since M̄∗ is R̄-
free, this proves M∗/aM∗, which is isomorphic to HomR(M, R̄), is also R̄-free. We
know that proj.dimR(R̄) = 1 (for instance, by the exact sequence (6.12)), hence
proj.dimR(M

∗/aM∗) = 1. By Proposition 12.4.10, proj.dimR(M
∗) = 0, henceM∗

is R-free. Therefore, M =M∗
∗
is R-free. □

Theorem 16.6.8. Let R be a noetherian regular integral domain with field of
fractions K. Let V be a finite dimensional K-vector space and M an R-lattice in
V . If M is R-reflexive and HomR(M,M) is R-projective, then M is R-projective.

Proof. Let p ∈ SpecR. Then Rp is a regular local ring (Corollary 15.3.38).
By Proposition 7.5.8 we see thatMp is Rp-reflexive and HomRp

(Mp,Mp) is Rp-free.
By Proposition 16.6.7, Mp is Rp-free. □
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6.2. The Class Group of a Regular Domain.

Theorem 16.6.9. Let R be a noetherian regular integral domain with field of
fractions K. Then the following are true.

(1) Pic(R) = Cl(R).
(2) If R is a local ring, then Cl(R) = (0) and R is a unique factorization

domain.
(3) If R is a semilocal ring, then Cl(R) = (0) and R is a unique factorization

domain.

Proof. (1): Let F be a reflexive fractional ideal of R in K. It follows from
Exercise 16.4.13 that F : F = R is free of rank one. By Theorem 16.6.8, F is
projective. The equality Pic(R) = Cl(R) follows from Exercise 16.4.16.

(2) and (3): For any local ring the Picard group is trivial since a finitely
generated projective module is free, by Proposition 7.4.2. The same is true for
finitely generated projective modules of constant rank over a semilocal ring, by
Exercise 8.1.12. By (1), the class group, Cl(R), is trivial. By Corollary 15.4.15, R
is a UFD. □

Example 16.6.10. In this example we show how to construct a regular integral
domain R such that Pic(R) is a finite cyclic group of order n. The example comes
from Algebraic Geometry and is based on the fact that if k is a field, then the class
group of the projective plane P2

k is an infinite cyclic group and is generated by a
line. For simplicity’s sake we construct our example using the projective plane.
However, the same ideas apply in higher dimensions. Start with any field k and
any integer n > 1. Let

S = k[x, y, z] = S0 ⊕ S1 ⊕ S2 ⊕ · · · ⊕ Sn ⊕ · · ·
be the polynomial ring in three variables, with the usual grading (Example 11.2.1).
Let f ∈ Sn be a homogeneous irreducible polynomial of degree n. The localized
ring S[f−1] has a Z-grading: S[f−1] =

⊕
i∈Z S[f

−1]i. If p ∈ Sm is homogeneous of

degree m, then pf−d is a typical homogeneous element of degree m−dn ∈ S[f−1]i.
Let R = S[f−1]0 be the subring of homogeneous elements in S[f−1] of degree 0.
We will show the following.

(1) R is a finitely generated k-algebra, a regular noetherian integral domain,
and the Krull dimension of R is dim(R) = 2.

(2) Pic(R) = Cl(R) ∼= Z/n.
(3) R∗ = k∗.

A typical element of R is a fraction pf−d where p ∈ Sdn. Since R is a subring of
the field k(x, y, z), R is an integral domain. Since f is irreducible and has degree
n ≥ 2, f(0, y, z) is a homogeneous polynomial in k[y, z] of degree n. Therefore, the
homomorphism k[x, y, z]→ k[y, z] defined by x 7→ 0 induces

R = S[f−1]0
θ−→ k[y, z][(f(0, y, z))−1]0.

Notice that θ is onto, and since the image is an integral domain, p = ker(θ) is a
prime ideal in R. Consider the local ring Rp. We will now show that Rp is a DVR
and x/y is a local parameter. If h+ i+ j = dn, then the monomial xhyizjf−d is in
the kernel of θ if and only if h ≥ 1. Then

(6.14)
xhyizj

fd
fd

yh+izj
=
xh

yh



6. REFLEXIVE LATTICES OVER REGULAR DOMAINS 721

shows pRp is generated by x/y. This also proves that ht(p) = 1. Notice that in
S[f−1], which is a UFD, the element xnf−1 belongs to the unique minimal prime
ideal (x) = (xf−1). Viewing R as a subring of S[f−1], we see that xnf−1 is
irreducible in R, and p is the unique minimal prime of R containing xnf−1. Using
(6.14) we compute

(6.15) νp(x
nf−1) = n.

Consider the localized ring R[fx−n]. Given p ∈ Sdn we multiply and divide by
(xnf−1)d to get

pf−d = (px−dnfd)(fx−n)−df−d

= p(1, y/x, z/x) (f(1, y/x, z/x))
−d
.

Therefore, the assignments x 7→ 1, y 7→ u, z 7→ v induce an isomorphism of k-
algebras

(6.16) R[fx−n]→ k[u, v][(f(1, u, v))−1].

The homomorphism in (6.16) is usually specified by saying “dehomogenize with
respect to x”. Notice that the ring on the right hand side of (6.16) is a finitely
generated k-algebra, a regular integral domain, and has Krull dimension two. By
the same argument used in (6.16), but dehomogenizing with respect to y and z,
the reader should verify that R[fy−n] and R[fz−n] are finitely generated regular
integral k-algebras of Krull dimension two. For some N > 0, fN is a sum of mono-
mials of the form xhyizj where at least one of h, i, j is greater than n. Therefore,
1 = fNf−N is in the ideal of R generated by xnf−1, ynf−1, znf−1. This shows that
R[fx−n] ⊕ R[fy−n] ⊕ R[fz−n] is a faithfully flat extension of R (Exercise 7.5.28)
By Proposition 7.5.36, R is finitely generated as a k-algebra. For each prime ideal
P ∈ SpecR, the local ring RP is regular and has dimension two. This proves (1).
Since f(x, y, z)x−n = f(1, yx−1, zx−1), we see that f(1, u, v) is irreducible because
f(x, y, z) is irreducible. Applying Nagata’s Theorem (Theorem 15.4.16) to the ring
R, the sequence

(6.17) 1→ R∗ → (R[fx−n])∗
Div−−→ Zp→ Cl(R)→ Cl(R[fx−n])→ 0

is exact. By the isomorphism in (6.16), we see that R[fx−n] is a UFD. Hence
Cl(R[fx−n]) is equal to (0) by Corollary 15.4.15. Using (6.16) and the fact that
k[u, v] is a UFD, we see that

(R[fx−n])∗ = k∗ × ⟨xnf−1⟩

is an internal direct sum. This and (6.15) shows that the image of Div in (6.17)
is nZp. Therefore, Cl(R) is generated by p and has order n. Part (2) follows from
Theorem 16.6.9, and the reader is asked to prove Part (3) in Exercise 16.6.11.

6.3. Exercise.

Exercise 16.6.11. If R is the ring of Example 16.6.10, prove the following.

(1) R∗ = k∗.
(2) pn is equal to the principal ideal generated by xnf−1.
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7. The Class Group of a Graded Ring

Most of the results in this section were originally published in [53]. For addi-
tional results on this subject, the interested reader is referred to [53], [22, § 10],
and [45, § B.II.1]. Throughout this section all rings are commutative. The reader
is referred to Section 11.2 for the definitions of graded rings and modules. Let
R = ⊕∞n=0Rn be a graded integral domain andW = Rh−{0} the set of nonzero ho-
mogeneous elements. The localization W−1R is viewed as a subring of the quotient
field K of R. An element aw−1 in W−1R is said to be homogeneous if a ∈ Rh and
w ∈W . The degree of a homogeneous element aw−1 is defined to be deg a−degw.
The reader should verify:

(1) The degree function is well defined on homogeneous elements.
(2) The sum of two homogeneous elements of the same degree d is homoge-

neous of degree d.
(3) The product of a homogeneous element of degree d with a homogeneous

element of degree e is homogeneous of degree d+ e.
(4) Every element of W−1R can be written uniquely as a finite sum of homo-

geneous elements of different degrees.

Lemma 16.7.1. Let R = ⊕∞n=0Rn be a graded integral domain and W = Rh −
{0}. Then the following are true.

(1) W−1R is a Z-graded ring, a graded R-module and contains R as a graded
subring. If K0 =

(
W−1R

)
0
is the subring consisting of all homogeneous

elements of degree zero, then K0 is a field.
(2) If R ̸= R0, then W−1R is isomorphic to the Laurent polynomial ring

K0[t, t
−1].

Proof. (1): Is left to the reader.
(2): Since R ̸= R0, K0 is not equal to W−1R. Therefore, the set

{deg a− degw | a ∈ Rh, w ∈W}

contains nonzero integers. Let t = aw−1 ∈ W−1R, be a homogeneous element of
minimal positive degree. That is, deg a > degw and d = deg a− degw is minimal.
The proof is a series of three steps.

Step 1: Show that t = aw−1 is transcendental over K0. Suppose we have an
integral relation

(7.1) α0t
r + α1t

r−1 + · · ·+ αr−1t+ αr = 0

where each αi ∈ K0. Write αi = aiw
−1
i , where deg ai = degwi. Let y = w0w1 · · ·wr

and set yi = yw−1i . Then αi = aiyiy
−1. If we set bi = aiyi, then deg bi = deg y for

each i. Upon multiplying both sides of (7.1) by ywr, we get

(7.2) b0a
r + b1wa

r−1 + · · ·+ br−1w
r−1a+ brw

r = 0

which is a relation in R. The left hand side of (7.2) is a sum of homogeneous
elements. Since deg ar > degwar−1 > · · · > degwr−1a > degwr, no two terms in
(7.2) have the same degree. Therefore, bi = 0 for all i. This implies αi = 0 for all i.

Step 2: Since t is transcendental over K0, we have K0[t] ⊆ W−1R. In the
quotient field of R we have the chain of subrings: K0 ⊆ K0[t] ⊆ K0[t, t

−1] ⊆ K0(t).
Since deg a > 0, it follows that a ∈W . Hence t−1 = wa−1 ∈W−1R. Therefore, we
have K0[t, t

−1] ⊆W−1R.
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Step 3: Show that W−1R = K0[t, t
−1]. Suppose x ∈ Rh, y ∈ W , and deg x −

deg y = m. By the division algorithm, there exist integers q, r, such thatm = qd+r
and 0 ≤ r < d. Then

(deg x− deg y)− q(deg a− degw) = m− qd = r.

Since t was chosen so that d is minimal, this implies the homogeneous element
xy−1t−q is of degree zero. That is, z = xy−1t−q ∈ K0, which implies xy−1 = tqz ∈
K0[t, t

−1]. Since every element of W−1R is a sum of homogeneous terms of the
form xy−1, this shows W−1R ⊆ K0[t, t

−1]. □

Proposition 16.7.2. If R = ⊕∞n=0Rn is a graded noetherian integrally closed
integral domain, then the natural map Divh(R) → Cl(R) is onto, where Divh(R)
is the subgroup of Div(R) generated by those prime ideals in X1(R) which are
homogeneous.

Proof. Let W = Rh − {0}. By Lemma 16.7.1, W−1R = K0[t, t
−1]. Since

K0[t] is factorial, so is the localization W−1R = K0[t, t
−1]. By Exercise 15.4.21,

Cl(R) is generated by the classes of those prime divisors p ∈ X1(R)−X1(W
−1R).

Let p be a prime ideal in R of height one and assume p ∩ W ̸= ∅. Then p is
homogeneous, by Lemma 13.5.2 (4). □

Lemma 16.7.3. Let R = ⊕∞n=0Rn be a graded noetherian integral domain with
field of fractions K. Let F be a fractional ideal of R in K which is a graded R-
submodule of W−1R. Then the following are true.

(1) There is a nonzero homogeneous r ∈ Rh such that rF ⊆ R.
(2) F−1 = R : F is a fractional ideal of R in K and a graded R-submodule of

W−1R.

Proof. (1): By Lemma 16.2.1, there exists c ∈ R − (0) such that cF ⊆ R.
Write c = c0 + c1 + · · ·+ cd as a sum of homogeneous elements, and assume cd ̸= 0.
Let y ∈ Fh − (0) be a nonzero homogeneous element of F . By Lemma 16.7.1, R is
a graded subring of W−1R. Since cy = (c0 + c1 + · · ·+ cd)y is in R, it follows that
cdy ∈ R. If we set r = cd, then rF ⊆ R.

(2): By Proposition 16.1.6, F−1 is a fractional ideal of R in K. By (1), there
is r ∈ Rh − {0} such that rF ⊆ F ∩ R. Then there exists s ∈ F ∩ Rh, s ̸= 0. If
t ∈ F−1, then ts = x is an element of R. Since s ∈ W , we see that t = xs−1 is in
W−1R. This shows F−1 is an R-submodule of W−1R. Write t = t1 + t2 + · · ·+ td
as a sum of homogeneous elements in W−1R, where deg ti = di. Then for each
homogeneous element y ∈ Fh, we have ty = t1y + t2y + · · · + tdy is in R. By
Lemma 16.7.1, R is a graded subring of W−1R. Therefore, tiy ∈ R, for each i.
Since y was arbitrary, this implies ti ∈ F−1, for each i. Therefore, F−1 is a graded
R-submodule of W−1R. □

Corollary 16.7.4. Let R = ⊕∞n=0Rn be a graded noetherian integrally closed
integral domain. If R0 is a field and hence, the exceptional ideal m = R+ =⊕∞

n=1Rn is maximal, then the natural homomorphism Cl(R) → Cl(Rm) is an
isomorphism.

Proof. The natural map γ : Cl(R) → Cl(Rm) is onto, by Exercise 15.4.21.
Let K be the field of fractions of R and I a reflexive fractional ideal of R in K.
To show that γ is one-to-one, we prove that if Im is principal, then I is principal.
By Proposition 16.7.2, we can assume I is in the subgroup of Reflex(R) generated
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by the homogeneous prime ideals of R in X1(R). The reader should verify that
the product of two fractional ideals of R which are graded R-submodules of W−1R
is again a graded R-submodule of W−1R. Using this, and Lemma 16.7.3 (2), we
see that if I is in the subgroup of Reflex(R) generated by the homogeneous prime
divisors, then I is a graded R-submodule of W−1R. By

Now let I be a reflexive fractional ideal of R which is a graded R-submodule of
W−1R and assume Im is principal. We show that I is principal. By Lemma 16.7.3 (1),
we can assume I ⊆ R. If ξ1, . . . , ξs is a set of homogeneous elements of I which
generate I as an R-module, then the vector space Im ⊗ R/m has dimension one
and is generated by the image of one of the elements ξi. By Proposition 7.4.2, Im
is generated by the image of the same element ξi. Let ξ ∈ I be a homogeneous
element such that Im = ξRm. Let x be any nonzero homogeneous element of I.
Then x = ξ(yz−1) for some y ∈ R−{0}, z ∈ R−m. Write y = yq+yq+1+ · · ·+yq+d
and z = z0 + z1 + · · ·+ ze as sums of homogeneous elements. Since y ̸= 0, assume
yq ̸= 0. Since z ∈ R − R+, we know that z0 ̸= 0. Then xz = ξy implies that the
relation

xz0 + xz1 + · · ·+ xze = ξyq + ξyq+1 + · · ·+ ξyq+d

holds in the graded module I. Therefore, xz0 = ξyq. Since R0 is a field, z0 is

invertible in R. Therefore, x = ξ(yqz
−1
0 ) is an element of ξR. Since I is generated

by homogeneous elements, this shows I = ξR. □

8. The Ring of Integers in a Global Field

In this section we prove two main results from classical Algebraic Number
Theory. A field L is said to be a global field , if one of the following is true:

(1) L is a finitely generated algebraic extension field of Q and B is the integral
closure of Z in K. In this case we also say L is an algebraic number field
and B is the ring of algebraic integers in L.

(2) k[t] is the ring of polynomials in one variable over a finite field k, k(t) is
the field of rational functions, L is a finitely generated separable extension
field of k(t), and B is the integral closure of k[t] in L. In this case we also
say L is the function field of an algebraic curve over the finite field k and
B is called the ring of integers in L.

Notice that in (2) the ring of integers B depends not only on the field L but also
on the choice of t.

Let L be a global field and B the ring of integers in L. By Corollary 10.1.8, L
is the quotient field of B. In Section 8.1 we show that the class group of the ring B
is finite. This is proved in Theorem 16.8.8. In Section 8.2 we assume B is the ring
of integers in an algebraic number field. In this case, we show that B∗, the group
of units in B, is a finitely generated abelian group. The torsion subgroup of B∗ is
a cyclic group.

This is half of the Dirichlet Units Theorem. The second half of Dirichlet’s
theorem, which we do not prove here, describes the rank of the torsion free part of
B∗.

8.1. The Class Group of a Global Field is Finite. In this section we show
that if R is the ring of integers in a global field, then R is a Dedekind domain (Propo-
sition 16.8.3) and the class group of R is a finite abelian group (Theorem 16.8.8).
The proof we give is based on [59] and [16, §20]. For the remainder of this section,
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let A be either Z or k[t], where k is a fixed finite field of order q. Let K be the
quotient field of A, L a global field which is a finitely generated separable extension
field of K, and B the ring of integers in L. The ring A is a UFD, hence is inte-
grally closed in K (Proposition 10.1.5). Hence K is itself a global field with ring of
integers A.

Lemma 16.8.1. In the above context, let V be a finite dimensional K-vector
space, and M1 ⊆M2 a tower of A-lattices in V . Then the following are true.

(1) EachMi is a finitely generated free A-module and RankA(Mi) = dimK(V ).
(2) The index [M2 :M1] is finite. The group M2/M1 is a finite abelian group.
(3) There are only finitely many A-lattices M such that M1 ⊆M ⊆M2.

Proof. (1): Since A is a PID, this follows from Proposition 16.1.4.
(2): By Proposition 16.1.1 there exists an element α ∈ A − (0) such that

αM2 ⊆ M1 ⊆ M2. By (1), M2/αM2 is isomorphic to the direct sum of dimK(V )
copies of the cyclic A-module A/αA. If A = Z, then the group A/αA is finite of
order |α|. If A = k[t], then by Exercise 4.2.26, A/αA is a k-vector space of dimension
degα. The group A/αA has order qdegα. The rest follows from Theorem 2.2.11.

(3): By Proposition 16.1.1, any A-module M such that M1 ⊆ M ⊆ M2 is an
A-lattice in V . This follows from (2) and Theorem 4.1.19. □

In the above context, if I is a nonzero ideal inA, then as seen in Lemma 16.8.1 (2),
the index [A : I] is finite. Let NA : A→ N ∪ {0} be the function defined by

NA(α) =

{
0 if α = 0

[A : αA] if α ̸= 0.

Suppose α ̸= 0. The proof of Lemma 16.8.1 (2) shows that

NA(α) =

{
|α| if A = Z
qdegα if A = k[t].

Lemma 16.8.2. In the above context, the function NA : A→ N ∪ {0} satisfies:
(1) If m ∈ N and Ξ = {α ∈ A | NA(α) ≤ m}, then Ξ is a finite set and
|Ξ| ≥ m.

(2) If α, β ∈ A, then NA(αβ) = NA(α)NA(β) and NA(α + β) ≤ NA(α) +
NA(β).

(3) If α ∈ A∗, then NA(α) = [A : αA] = 1.

Proof. Part (3) is left to the reader. The proofs of (1) and (2) are split into
two cases.

First assume A = Z. The set Ξ = {α ∈ Z | |α| ≤ m} has cardinality 2m + 1,
which proves (1). Part (2) follows from the fact that on Z the absolute value
function satisfies |αβ| = |α||β| and |α+ β| ≤ |α|+ |β|.

If A = k[t] and α ∈ A, then NA(α) = qdegα ≤ m if and only if degα ≤ logq(m).

If i is the unique integer such that qi ≤ m < qi+1, then i ≤ logq(m) < i + 1 and

the set Ξ = {α ∈ A | deg(α) < i + 1} has cardinality qi+1. Since qi+1 ≥ m, this
proves (1). Part (2) is obviously true if one or more of α, β, or α+ β is equal to 0.
Otherwise,

NA(αβ) = qdeg(αβ) = qdeg(α)+deg(β) = qdeg(α)qdeg(β) = NA(α)NA(β)
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and

NA(α+ β) = qdeg(α+β) ≤ qmax(deg(α),deg(β)) ≤ qdeg(α) + qdeg(β) = NA(α) +NA(β).

□

Proposition 16.8.3. In the above context, let L be a global field and B the
ring of integers in L. Then the following are true.

(1) B is a Dedekind domain with quotient field L.
(2) B is a finitely generated A-lattice in L, hence is a free A-module of rank

dimK(L).
(3) If A = k[t], then B is a finitely generated k-algebra.

Proof. Part (1) follows from Theorem 16.3.7. Parts (2) and (3) follow from
Theorem 10.1.13, Lemma 16.8.1, and Exercise 4.1.24. □

As above, A is either Z or k[t], where k is a fixed finite field of order q. The
quotient field of A is denoted K. Let Λ be a finite dimensional K-algebra. Assume
Λ is a domain. By Exercise 4.5.15, this is equivalent to assuming Λ is a division
ring. We say Λ is a finite dimensionalK-division algebra. Let B be an A-subalgebra
of Λ which is also an A-lattice in Λ. We call the ring B an A-order in Λ.

By Lemma 16.8.1, B is a free A-module of rank n = dimK(Λ). If u1, . . . , un is
an A-basis for B, then u1, . . . , un is also a K-basis for Λ. As in Example 10.2.13,
the norm NΛ

K : Λ → K is a homogeneous polynomial function on Λ of degree n.
With respect to the basis u1, . . . , un we can identify Λ with affine n-space over K.
Under this identification, the norm NΛ

K : Λ → K corresponds to a homogeneous
polynomial F (x1, . . . , xn) in K[x1, . . . , xn] of degree n. Given a point (s1, . . . , sn) in
Kn, we have the element β = s1u1+· · ·+snun in Λ, and ℓβ is the “left multiplication
by β” map on Λ. Then F (s1, . . . , sn) is equal to N

Λ
K(β), which is the determinant

det(ℓβ). The norm NΛ
K : Λ→ K restricts to a norm NB

A : B → A (Exercise 4.7.26).
The formula derived in Lemma 16.8.4 below bears an interesting resemblance

to that of Exercise 4.7.41 (2).

Lemma 16.8.4. In the above context, let β be a nonzero element in B. Then the
right ideal βB is an A-submodule of B of finite index and [B : βB] = NA(N

B
A (β)) =

|det(ℓβ)|.

Proof. By Lemma 16.8.1, the index [B : βB] is finite. By the Simultaneous
Bases Theorem (Corollary 4.6.26), there is a basis u1, . . . , un for B over A and
elements δ1, . . . , δn in A− (0) such that βui = δiui for each i and δ1 | δ2 | · · · | δn.
Then det(ℓβ)) = δ1δ2 · · · δn. The sequence of A-modules

0→ B
β−→ B → B/βB → 0

is exact and B/βB is isomorphic to the direct sum A/δ1A⊕· · ·⊕A/δnA of cyclic A-
modules. The group A/δiA has order NA(δi). By Lemma 16.8.2, NA is multiplica-
tive. Therefore [B : βB] = NA(δ1) · · ·NA(δn) = NA(δ1 · · · δn) = NA(det(ℓβ)) =
NA(N

B
A (β)) □

Lemma 16.8.5. In the above context, let u1, . . . , un be an A-basis for B and
F (x1, . . . , xn) the homogeneous polynomial of degree n in A[x1, . . . , xn] associated
to the norm map NB

A : B → A. Then there is a constant U ∈ N such that for
every ϵ ∈ N, if 0 ≤ si ≤ ϵ for each 1 ≤ i ≤ n and β = s1u1 + · · · + snun, then
[B : βB] ≤ ϵnU .
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Proof. As in Section 3.6.1, write F as a linear combination of monomials
of degree n: F (x1, . . . , xn) =

∑r
i=1 aix

ei,1
1 · · ·xei,nn , where ai ∈ A, ei,j ∈ N ∪ {0},

and ei,1 + · · · + ei,n = n for every i. Let U =
∑r
i=1NA(ai) and assume ϵ ∈ N,

(s1, . . . , sn) ∈ An, NA(si) ≤ ϵ for each 1 ≤ i ≤ n, and β = s1u1+ · · ·+ snun. Using
Lemmas 16.8.4 and 16.8.2, we have

[B : βB] = NA(N
B
A (β))

= NA(F (s1, . . . , sn))

= NA

(
r∑
i=1

ais
ei,1
1 · · · sei,nn

)

≤
r∑
i=1

(NA(ai)NA(s1)
ei,1 · · ·NA(sn)ei,n)

≤
r∑
i=1

NA(ai)ϵ
n

≤ ϵnU.

□

Lemma 16.8.6. As above, let A be either Z or k[t], where k is a fixed finite
field of order q. Let K be the quotient field of A, Λ a finite dimensional K-division
algebra, B an A-order in Λ. Then there exists N ∈ N such that for every right ideal
J of B that is also an A-lattice in Λ, the following are true.

(1) There exists an element ξ in J − (0) such that [B : ξB] = NA(N
B
A (ξ)) ≤

[B : J ]N .
(2) ξ−1J is a right B-submodule and A-lattice in Λ such that B ⊆ ξ−1J and

[ξ−1J : B] ≤ N .

Proof. (1): Let {u1, . . . , un} be an A-basis for B. Let r be the maximum
integer in {r ∈ N | rn ≤ [B : J ]}. Then r is well defined, by Lemma 16.8.1, and
(r + 1)n > [B : J ]. By Lemma 16.8.2, the set Ξ = {α ∈ A | NA(α) ≤ 2r} has at
least 2r elements. Since 2r ≥ r + 1, the subset X = {s1u1 + · · · + snun | si ∈ Ξ}
of B has at least (r + 1)n elements. Since (r + 1)n > [B : J ], there are two
distinct elements ξ1, ξ2 in X such that ξ = ξ1 − ξ2 = s1u1 + · · · + snun is in
J . If s, t are in Ξ, then by Lemma 16.8.2, NA(s − t) ≤ NA(s) + NA(t) ≤ 2(2r).
Therefore, NA(si) ≤ 4r, for each i. By Lemma 16.8.5, there exists U ∈ N such that
[B : ξB] = NA(N

B
A (ξ)) ≤ (4r)nU ≤ 4nU [B : J ]. Taking N = 4nU , Part (1) follows.

(2): Since ξ ∈ J , we have ξB ⊆ J . Multiplying by ξ−1 ∈ K, it follows that
B ⊆ ξ−1J . The diagram of right B-modules

0 // B

ξ

��

// ξ−1J

ξ

��

// ξ−1J/B

ξ

��

// 0

0 // ξB // J // J/ξB // 0

commutes. The rows are exact sequences. The vertical arrows are left multiplication
by ξ and are isomorphisms. The groups in the right hand column are finite, by
Lemma 16.8.1. Combining all of this with Part (1) and Theorem 2.2.11 applied to
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ξB ⊆ J ⊆ B, we have

[ξ−1J : B] = [J : ξB]

= [B : ξB]/[B : J ]

≤ N.
□

Lemma 16.8.7. As above, let A be either Z or k[t], where k is a fixed finite
field of order q. Let K be the quotient field of A, Λ a finite dimensional K-division
algebra, B an A-order in Λ. For any N ∈ N, let S be the set of all right B-
submodules of Λ such that B ⊆ M , M is an A-lattice in Λ, and [M : B] ≤ N .
Then S is a finite set.

Proof. Let M ∈ S. By Lemma 16.8.1, M/B is a finitely generated torsion A-

module. By Theorem 4.3.15, M/B is isomorphic as an A-module to
⊕ℓ

i=1A/αiA,
where α1, . . . , αℓ are the invariant factors ofM/B. Then αℓ annihilatesM/B, hence
αℓM ⊆ B. We have αℓB ⊆ αℓM ⊆ B. For each i, the order of A/αiA is equal to
NA(αi), hence αi belongs to the finite set Ξ = {α ∈ A− (0) | NA(α) ≤ N}. Since
Ξ is a finite subset of A − (0), there exists γ ∈ A − (0) such that for every α ∈ Ξ,
α divides γ. Therefore, γB ⊆ γM ⊆ B for every M in S. By Lemma 16.8.1, there
are only finitely many choices for γM . Therefore, there are only finitely many M
in S. □

Theorem 16.8.8. If B is the ring of integers in the global field L, then Cl(B)
is a finite abelian group.

Proof. By Proposition 16.8.3, B is a Dedekind domain and an A-lattice in
L, where A is Z if char(L) = 0 and A = k[t] otherwise. The class group of B is
the group of fractional ideals modulo the group of principal fractional ideals. If F
is a fractional ideal, then for some d ∈ L, J = dF is a nonzero ideal in B. By
Lemma 16.8.6, there is an upper bound N ∈ N that depends only on B, an element
ξ in J such that ξ−1J is a fractional ideal of B containing B and [ξ−1J : B] ≤ N . By
Lemma 16.8.7, there are only finitely many such fractional ideals ξ−1J . Therefore,
there are only finitely many ideal classes. □

Corollary 16.8.9. If B is the ring of integers in the global field L, then there
exists β ∈ B such that the localization B[β−1] is a principal ideal domain.

Proof. Assume B is not a principal ideal domain. Let {p1, . . . , pt} be a set of
maximal ideals in B that generate Cl(B) (Theorem 16.8.8). Then U = SpecB −
{p1, . . . , pt} is a nonempty open. By Lemma 7.3.12, there is β ∈ B such that the
basic open subset U(β) is a nonempty open subset of U . By Theorem 15.4.16,
Cl(B[β−1]) = (0). By Exercise 16.3.9, B[β−1] is a unique factorization domain and
a principal ideal domain. □

8.2. The Dirichlet Units Theorem. The following proof of the Dirichlet
Units Theorem is based on Chapter 6 of [4].

Let F be a Galois extension of Q with finite group G = AutQ(F ). As in
Proposition 9.6.13, F ⊗Q C =

⊕
σ∈G Ceσ is isomorphic to the trivial G-Galois

extension of C. The change of base function

ϕ : F → F ⊗Q C =
⊕
σ∈G

Ceσ
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is a homomorphism of Q-algebras and the composite map is defined by ϕ(α) =∑
σ∈G σ(α)eσ. As defined in Section 1.5, the absolute value of a complex number

is |a + bi| =
√
a2 + b2. The absolute value followed by the logarithm defines a

homomorphism ln|·| : C∗ → R from the multiplicative group of C to the additive
group of R. Define λ : F ∗ →

⊕
σ∈GReσ

F ∗

ϕ

��

λ

))⊕
σ∈G C∗eσ

⊕ ln| | //⊕
σ∈GReσ

to be ϕ followed by the logarithm function applied coordinate-wise. On an ele-
ment α ∈ F ∗, λ is defined by λ(α) =

∑
σ∈G ln|σ(α)|eσ. If n = [G : 1], then in

Lemma 16.8.10 we identify
⊕

σ∈GReσ with Rn together with the usual euclidean
metric space.

Lemma 16.8.10. In the above context, let F/Q be a Galois extension of fields
with finite group G of order n. Let B be the integral closure of Z in F . If X is a
bounded subset of

⊕
σ∈G Reσ then the preimage of X under λ : B∗ →

⊕
σ∈G Reσ

is a finite set.

Proof. In this proof for convenience we use interval notation for subsets of R.
The logarithm is a monotonic increasing function (0,∞) → (−∞,∞) Since X is
bounded, there is a real number U > 0 such that X ⊆

∏
σ∈G[−U,U ]eσ. Then there

is a real number V > 1 such that V −1 ≤ y ≤ V whenever ln y ∈ X. If α ∈ B∗ and
λ(α) ∈ X, then for each σ ∈ G, V −1 ≤ |σ(α)| ≤ V . The characteristic polynomial
of α is

char.polyQ(α) =
∏
σ∈G

(x− σ(α))

by Exercise 5.7.9. Therefore, the coefficients of char.polyQ(α) are elementary sym-
metric polynomials (see Section 5.10.1) in {σ(α) | σ ∈ G}. By Exercise 4.7.29,

char.polyQ(α) is equal to
(
Irr.polyQ(α)

)t
for some t > 0. By Theorem 10.1.11,

Gauss’ Lemma, the coefficients of char.polyQ(α) are in Z. The elementary symmet-
ric polynomials are continuous functions from

∏
σ∈G R∗ to R. By choosing V larger

if necessary, we may assume the coefficients of char.polyQ(α) are integers in [−V, V ].
This means the set of polynomials {char.polyQ(α) | α ∈ B∗ and λ(α) ∈ X} is fi-
nite. Consequently, the set of polynomials {Irr.polyQ(α) | α ∈ B∗ and λ(α) ∈ X}
is finite. Therefore, the set {α | α ∈ B∗ and λ(α) ∈ X} is finite. □

Corollary 16.8.11. In the context of Lemma 16.8.10, let F be a finite Galois
extension of Q with group G and let B be the ring of integers in F . If T denotes
the kernel of the homomorphism λ : B∗ →

⊕
σ∈GReσ, then

(1) T is a finite cyclic group, and
(2) T is equal to the group of all roots of unity in F .

Proof. We know T is a finite group by Lemma 16.8.10 applied to X = {0}.
We know T is cyclic by Proposition 5.4.6. Suppose ζ ∈ F ∗ and ζm = 1 for some
m > 1. Then ζ is integral over Z, hence ζ ∈ B. For each σ ∈ G, |σ(ζ)|m =
|σ(ζ)m| = |σ(ζm)| = 1. So |σ(ζ)| = 1. By the definition of λ, this shows ζ ∈ T . □
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Lemma 16.8.12. Fix n > 0 and let Rn be the n-dimensional real vector space
with the usual euclidean metric. Let M be a nontrivial Z-submodule of Rn with the
property that X ∩M is a finite set whenever X is a bounded subset of Rn. Then
there exist vectors {e1, . . . , er} in M satisfying the following:

(1) 1 ≤ r ≤ n,
(2)

∑r
i=1 Rei is an r-dimensional subspace of Rn, and contains M ,

(3) M is a free Z-module of rank r,
(4) M is a Z-lattice in

∑r
i=1 Qei.

Proof. Let V be the subspace of Rn spanned by M . Let r = dimR(V ) and
let {e1, . . . , er} be an R-basis for V contained in M . Let

X =

{
r∑
i=1

aiei | ai ∈ R, 0 ≤ ai ≤ 1

}
.

Then X is a bounded subset of Rn. By hypothesis on M , X ∩M is a finite set.
Notice that X ∩ M contains {e1, . . . , er}. Let y be an arbitrary element of M .
There are unique ri ∈ R such that y =

∑r
i=1 riei. Define ρ(y) by the rule

ρ(y) = y −
r∑
i=1

⌊ri⌋ei

=

r∑
i=1

(ri − ⌊ri⌋) ei

where ⌊ ⌋ : R→ Z is the floor function (see Exercise 1.1.17). Since 0 ≤ x− ⌊x⌋ < 1
for all x ∈ R, it follows that ρ(y) ∈ X. Since y ∈ M and

∑r
i=1⌊ri⌋ei ∈ M , we

see that ρ(y) ∈ M ∩ X. This shows M is generated as a Z-module by the finite
set M ∩X. Therefore M is a finitely generated torsion free Z-module, hence free
of finite rank by Proposition 4.3.5. Since M contains {e1, . . . , er}, the rank of M
is at least r. The set {ρ(jy) | j ∈ Z} is a subset of the finite set M ∩ X. For
some pair of integers j < k we have ρ(jy) = ρ(ky). For 1 ≤ i ≤ r we have
(jri−⌊jri⌋)ei = (kri−⌊kri⌋)ei. Thus (k− j)ri = ⌊kri⌋−⌊jri⌋. This proves ri ∈ Q
for each i, hence M ⊆

∑r
i=1 Qei. By Proposition 16.1.1 (1), M is a Z-lattice in∑r

i=1 Qei. By Proposition 16.1.4, M is has rank r. □

Lemma 16.8.13. In the context of Lemma 16.8.10, let F be a finite Galois
extension of Q with group G and let B be the ring of integers in F . Then

(1) B∗ is a finitely generated abelian group.
(2) The torsion subgroup of B∗ is equal to the group of all roots of unity in F

and is a finite cyclic group.

Proof. By Lemma 16.8.12, the image of λ : B∗ →
⊕

σ∈G Reσ is a finitely
generated free Z-module of rank r ≤ [G : 1]. By Corollary 16.8.11, the kernel of λ
is equal to the group T = ⟨ζ⟩ of all roots of unity in F and is a finite cyclic group.
The sequence

⟨1⟩ → ⟨ζ⟩ → B∗
λ−→ Zr → ⟨0⟩

is split exact. □

Lemma 16.8.14. Let L be an algebraic number field with ring of integers A.
Then



8. THE RING OF INTEGERS IN A GLOBAL FIELD 731

(1) A∗ is a finitely generated abelian group.
(2) The torsion subgroup of A∗ is equal to the group of all roots of unity in L

and is a finite cyclic group.

Proof. By Corollary 5.4.3, there is a finite dimensional Galois extension F/Q
containing L as an intermediate field. If B is the ring of integers in F , then A is a
subring of B.

F

L

OO

B

__

Q

OO

A

__ OO

Z

OO__

The group of units in A is a subgroup of the group of units in B. By Lemma 16.8.13
and Corollary 4.3.3, A∗ is finitely generated and if T denotes the torsion subgroup
of A∗, then T is a finite cyclic group. The proof of Corollary 16.8.11 shows that T
is equal to the group of all roots of unity in L. □

We end this section with a statement of the Dirichlet Units Theorem. First we
establish some notation. Let L be an algebraic number field with ring of integers
A. By Theorem 5.4.7, L = Q(u) for some element u ∈ L. Let f = Irr.polyQ(u).
Since f is separable, the unique factorization of f as a polynomial in R[x] has the
form

f = (x− u1) · · · (x− ur1)q1(x) · · · qr2(x)
where u1, . . . , ur1 are the distinct real roots of f , r1 ≥ 0, q1(x), . . . , qr2(x) are the
irreducible monic quadratic factors of f in R[x], and r2 ≥ 0 (Theorem 5.6.8). Then

L⊗Q R =
Q[x]

(f)
⊗Q R

=

(
r1⊕
i=1

R[x]
(x− ui)

)
⊕

(
r2⊕
i=1

R[x]
(qi(x))

)

∼=

(
r1⊕
i=1

R

)
⊕

(
r2⊕
i=1

C

)
.

That is, L ⊗Q R is the ring direct sum of r1 copies of the field R and r2 copies of
the field C.

Theorem 16.8.15. (The Dirichlet Units Theorem) Let L be an algebraic num-
ber field with ring of integers A. In the above notation, the group of units in A is a
finitely generated abelian group isomorphic to ⟨ζ⟩ ⊕ Zr, where r = r1 + r2 − 1 and
⟨ζ⟩ is the group of all roots of unity in L.

Proof. By Lemma 16.8.14, A∗ is finitely generated and the torsion subgroup
is cyclic. The only part that has not been proved is the formula for the rank.
See [4] for a proof that is based on an application of Minkowski’s Convex Body
Theorem. □





Acronyms

ACC ascending chain condition . . . . . . . . . . . . . . . . . . . . . . . 18
DCC descending chain condition . . . . . . . . . . . . . . . . . . . . . . 18
PID principal ideal domain . . . . . . . . . . . . . . . . . . . . . . . . . 104
GCD greatest common divisor . . . . . . . . . . . . . . . . . . . . . . . . 116
UFD unique factorization domain . . . . . . . . . . . . . . . . . . . . . . 117
DVR discrete valuation ring . . . . . . . . . . . . . . . . . . . . . . . . . 643
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